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ON THE STABILITY PROPERTIES OF SPLINE APPROXIMATIONS
FOR RETARDED SYSTEMS*

F. KAPPEL’ AND D. SALAMON$

Abstract. This paper studies the qualitative properties of the spline approximation scheme for retarded
functional differential equations introduced by Kappel and Salamon [SIAM J. Control Optim., 25 (1987),
pp. 1082-1117]. It is shown that the approximating systems are stable for large N if the underlying retarded
functional differential equation is stable. In this case the approximating equations are in some sense uniformly
(with respect to the approximation index) stable in the vector component of the state but not so in the
complete state.
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1. Introduction. In 10] and 11] we have introduced a new spline approximation
scheme for retarded functional differential equations. The aim of this paper is to study
the qualitative properties of this approximation scheme with particular emphasis on
the stability problem.

The fundamental convergence properties of this approximation scheme have been
established in [11]. The central result is a convergence proof for both the original
semigroup S(t) and its adjoint S*(t) in the strong operator topology. Here lies the
main advantage over the spline approximation scheme, developed earlier in [2], for
which the adjoint semigroup is only approximated in the weak operator topology. In
addition, we have observed a quite significant improvement in the convergence
behaviour of our numerical computations, some of which are reported in [11].

The main result of this paper is that the approximating systems (En) are stable
(stabilizable, detectable) for sufficiently large N provided the original system (E) is
stable (stabilizable and detectable.) The proof consists of three parts. The first part is
a convenient characterization of the stability, stabilizability, and detectability of the
approximating systems in terms of a certain characteristic matrix A n (,). The second
part is a convergence proof for these matrices An(&). The third part establishes a
priori bounds for the unstable eigenvalues of the approximating systems.

We also discuss the role of the structural operator F in the spline approximation
scheme. Moreover, we prove that the approximating systems cannot be stable in a
uniform sense with respect to N and illustrate this result with computations of the
spectrum. In this respect the spline approximation differs from the averaging approxi-
mation scheme in [1] for which the uniform exponential stability property has been
established in 19]. But if we take the output of the system to be the vector component
of the state, then the approximating systems are in a sense uniformly output stable
with respect to N if the hereditary system is stable. For simplicity of presentation we
restrict ourselves to the single delay case. All results are true for equations with multiple
commensurate delays and without distributed delay. Some results are also true for the
general case. For details see [10].
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2. Linear retarded control systems.
2.1. Functional differential equations. We consider the linear retarded functional

differential equation (RFDE)

(2.1) :(t) Aox( t) + A,x( t- h) + Bou( t), y(t) CoX(t),

where x(t)n, u(t)t, y(t) G[m, Ao,Ann, Bol1, Co -I]mn, and h>0. It
is obvious that (2.1) admits a unique solution x(.) LZ(-h, T; I")f’l W’2(0, T; ")
for every input u(. ) L2(0, T; RI) and every initial condition of the form

(2.2) x(0)=th, x(’)=6(7"), -h _-<_ " < 0,

where ,=(b, l)M2=[2"xL2(-h,O;[") (see, for instance, [6], [9]). By X(t)
"", =>-h, we denote the fundamental matrix solution of (2.1), which corresponds
to the initial condition X(0)=/, X(-)=0, -h-<’<0, and the input u(t)--O. Its
Laplace transform is given by A(A)-, where A(A)= AI-Ao-A e-h, A C, is the
characteristic matrix of (2.1).

2.2. State space theory. We consider two state concepts for (2.1). In the classical
sense the state at time t_->0 is defined to be the pair z(t)=(x(t),x,)M, where
x,(-) x(t + ’) for -h <= " :< 0. This state defines a weak solution of the abstract Cauchy
problem

2(t) Az(t) + Bu(t), z(O) oh, y(t) Cz(t),

where B e (, M2) and C (M2, [m) are defined by Bu (Bou, 0) and Ch Coh
for u e [ and b e M. The unbounded operator A: dom A-* M is given by

M_ WI,2 toa4 (ao6’(o)+alch’(-h), ) domA={b Ib =b (0)}

and generates a strongly continuous semigroup S(t) of bounded linear operators on
M2. Therefore z(t) M is given by the variation-of-constants formula

(2.3) z(t)= S(t)e+ S(t-s)Bu(s) cls.

Now let ST(t) denote the semigroup corresponding to the RFDE :(t)=
Ax(t)+ Arx(t-h) so that its generator AT is defined as A with Ao, A replaced by
A, A(. Then there is an alternative (dual) state concept for the RFDE (2.1) that
relates the semigroups S(t) and S(t). It can be defined in terms of the structural
operator F (M) (for a normed linear space X we denote by (X) the space of
all bounded linear operators X X) given by

(2.4) [Fb]=b, [Fch]’(cr)=A,ch(-h-o’),-h<=tr<=O
for 4 M2 (we define 41(’) 0 for " [-h, 0]). It is a remarkable fact that for every
weak solution z(t) M of the Cauchy problem (Y_,) the function w(t) Fz(t) M
defines a weak solution of the abstract Cauchy problem

vg( t) A*rw( t) + Bu( t), w(O) f
_
M2, y( t) Cw( t),

with f= F,;b.
Equivalently, the structural operator F satisfies the following equations:

(2.5) FS(t) S*(t)F, FB= B, CF= C

for t>=0. In particular, for every solution x(t)[", t>=-h, of (2.1) the function
w( t) F(x( t), x,) . m is given by

io(2.6) w(t)= S*T(t)Fqb+ S*T(t-s)Bu(s) ds.
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For more detailed discussion of these two state concepts and their relation see [6],
[13], [16], and [18].

2.3. Stability, stabilizability, and controllability. System (2.1) is said to be stable
if every solution x(t) of the free system (u(t)-O) tends to zero as goes to infinity.
Equivalently, det A(A) 0 implies that Re A < 0 for A C (see, for instance, [9]). Note
that r(A)= o’(A*)= {A C]det A(A)=0}. Moreover, system (2.1) is said to be stabiliz-
able if

(2.7)

and detectable if

rank [A(A), Bo] n for Re h _-> 0

(2.8) rank[_ Co
=n for ReA_->0.

An abstract Cauchy problmn is said to be observable if a nonzero initial state produces
a nonzero output. Hence the Cauchy problem (E) is observable if and only if

y(t)=0 fort_>-_0 implies x( t) 0 for allt>=-h

for every solution of (2.1) and the Cauchy problem (E*) is observable if and only if

y(t)=0 fort_->-h implies x( t) 0 for allt----h

(see [17]). These two properties have been characterized as follows [13], [14], [17].
T.:OREM 2.1. System (52) is observable if and only if

[A(A)]=rankA,=n forallC;rank
Co

(E,) is observable if and only if

rank
A(1)

=rank n for all C.
Co Co

If (2.7) and (2.8) are satisfied, then there exist unique nonnegative, selfadjoint
operators H, P L(M2) satisfying range II c dom A*, range P c dom At, and the
algebraic Riccati operator equations

(2.9) A*H4:HA4-H*I4+C*C4:O,

(2.10) arPf+ PA,f PBB*Pf+ C*Cf=O
for 4) dom A and f dom A*r (see [4], [20]). It follows from (2.5) that the solution
operators II of (2.9) and P of (2.10) satisfy the identity

(2.1 II F* PF.

This was first observed in [5] for the Riccati differential equation. Finally, we point
out that H is injective if and only if (52) is observable, and that P is injective if and
only if (*r) is observable.

For a detailed discussion of the Riccati equation and its connection to optimal
control theory see [4], [7], and [20].

3. Spline approximation.
3.1. Notation and terminology. Consider the finite-dimensional linear subspace

XrV= M2 ’= Z efVzj, z.i
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where the scalar functions ejN( )e L2(-h, 0) are defined by

eoN(r)__ (r--t), t <-- "r < to,
elsewhere,

I- (’r-- tff+),

eft(,)= --h- (r- t,),

0 elsewhere,

tiN+ N
1--- r-- /j

---T--- 1,

N
eNu(r) -- (r-- t_,),

0 elsewhere,

for j 1,. ., N- and meshpoints tff -jh/N for j --0,. ., N. Note that the
function component of every e XN is a piecewise linear spline function on the
interval [-h, 0). The subspace XNc M2 can be identified with the Euclidean space
[2k(N), k(N)=n+(N+ 1)n, via the embedding N [2k(U)_> M2 defined by

(3.1) Uz: Zo, Y ez
j=O

for z col (Zo, Zl) [k(), where Zo [2" and zl col (Zo,. Z1N), Z!j n, j
0," ", N. On [2k(N) we will always consider the induced inner product

(3.2) <w, z>, wpz=(w, z,,
where

(h/N)q
(R) I,

-.o o

N= 0
0

o i
Here I denotes the n x n identity matrix. The corresponding vector and matrix norms
will be denoted by I1" IIN" The adjoint operator 7r --(N)*" M2- [2k() is then given by

=(p)-’z, zo=,
o

e -ZlJ
-h

(7") (/) (T) dr, j--0,’’’,N,

and satisfies the identities

(3.3) 7rU N= id, N N N
r =p
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where p N. M2XN denotes the orthogonal projection. Let the matrices HNE
[k(N)k(N), BN Ek(N)I, and Cs 6[mk(N) be defined by

Ao 0 0A1
I Bo

HN 0 BN 0

hN(R)i |

0 / o

c =(Co 0 0),- 0 0

h N (N+I)(N+I),

0

Finally, we define

AN (QN)-’HU A=(QN)-’HT
(A)*=(QN)-I(H), (AN)*=(QU)-’(HN),

where the matrix HNr (k(N)xk(N)) is obtained from HN by transposing the matrices
Ao,

Now we consider two control systems on the state space EkN):

(,) ,N(t)=az(t)+Bu(t), z(0)=rNb, y(t)=Cz(t),

(,N,) vgN(t)=(Ar),w(t)+BNu(t), wN(o)=rNf, yN(t)=CNwN(t).

In [11] we establish the following convergence theorem.
THEOREM 3.1. (i) For every ch M we have 4 limv-PU4.
(ii) B uB, C CUr
(iii) There exist constants M >-1, to >= 0 such that

eA’ll _-< Me% ea)*’ll _--< Me’

for every >= 0 and every N
(iv) _For all d, f M2,

S(t)4 lim

and the limits are uniform on every compact time interval [0, T].
In particular, this implies that for every 4 M and every input u(. 6 L2(0, T; [t)

we have z(t)= limu_ NzU(t) for 0_--< t--< T (uniformly), where z(t) is the unique
weak solution of (E) and zu (t) satisfies (ZN). In the same manner the solutions wN (t)
of (EN*) approximate the solution w(t) of (Z*).

In the remainder of this section we will study the structural properties of the
approximating systems (Zu) and (zrN*).

3.2. The structural operator. In 2 we have seen that the structural operator
F" M2-> M2 plays an important role for the state-space description of retarded systems.
In this section we introduce an analogous operator for the description of the
approximating systems () and (:ErN). The first step in this direction is Lemma 3.2.
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Suppose u(.) is an arbitrary control in V(o,v)[h] and its projection on the closed
subspace 0//is denoted by Up(.). For each $ in X one has

(Up("), (,.,CfTB)*(" ))L2(O,T;U)= (U(" ), (,.,CfTB)*(" )d/)L2(O,T;U)

(h, 4/)x (G, 4/)x

((5B)* )p, (5B)*(.)4)c:(o,v;u),
or

(up(.)--(6fTB)*(" )q, (6fTB)*("

Since q/ is dense in 0 and [Up(’)--(SfTB)*(’)q]e all, we have

Up(.)=(SfTB)*(.) for each u(.)e V(o,T)[h].

Therefore

11(Se-B)*(’)ll(o,;)--Ilu(’)ll,(o,;)_-<llu(’)11=(o,;) for each u(.)e V(o,T)[h].

By uniqueness of the minimum norm optimal control of the linear system (1.5), (3.15)
holds and u*(.)

Since u u*-e(e +()-lu* (see (3.10)), (3.14) is equivalent to

(3.16) lim e(e +()-lu* =0 in L2(0, T; U).
---)0

If we consider another family with parameter e > 0 of associated quadratic optimal
control problems,

2L (;

then J(v; q) takes its minimum at v v defined by

v (e +d)-x(SfTB)* (e +r)-Xu *.

If we can show

(3.17)

then

2lime IIv (")11 (o,;) 0,

lim llv(.)ll,.(o,;ts)--< lim max {e IIv(.)ll=(o,;)}
e--)O

2_-< lim max {e e IIv (’)11 (o,;)} 0,
e0

The last equation just is (3.16). The rest is to show (3.17) holds for p X. (Notice, if
q e K(o,a) then (3.17) holds. Here we may show (3.17) holds for any given eX.)

Suppose q is arbitrarily given in X and

q =q5 +’,
where b e K(o,T) and ql e K(o,m--the orthogonal complement of K(O,T). Since X
/(0,T) (0,T), one has

Denote

3 (e +)-l(6erB)*q5 and

for any q e X.

v (e + )-(9B)*o.
Then

V 9 + V
+/-
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3.3. Criteria for stability, stabilizability, and controllability. We shall need the
following facts on the real (N+ 1) (N+ 1)-matrix aN=(qN)-h N.

LEMMA 3.5. (a) Let I1" I1 be the operator norm corresponding, to the vector norm
IX[2N:TqNx on CN+. Then [leaNt[[Nl for N=l,2,. and t>=O.

(b) Let lx 6 r(a) and x=col (Xo, ,xn)6CN+, x O, such that either (txq N

hN)x=0 or (txqN-(hN)r)x=O. Then xo#O and xnO.
(c) Let tx6cr(a N) and x--col(I,0,.-.,0) or x--col(0,...,0,1). Then

x range (txq N h N and x range (/xq (h N r).
(d) Re/z < 0 for every tx r(a ).
Proof (a) For every xC+ the following equation holds:

Re (ffrh Nx) (Re x) rh N (Re x) + (Im x) rh N (Im x)
(3.7)

Ixo12- 1/2 Ix,l.
Hence a N is a dissipative operator on CN+ with respect to the inner product

(y,x)N =grqUx, x, yC+’.
Therefore exp (aNt), >= O, is a contraction semigroup on C+ supplied with the norm

[u (see, for instance, [15]).
(b) This follows from

__1+ 6 00

6-- -3 X

ixqN h U
0

0-----0 "-1/2 +
and the fact that/x +3 is not an eigenvalue of a N.

(c) x range (/xq h) would imply x _t_ ker (/xq N -(h)r), which is impossible
by (b).

(d) Assume that /z o-(a) and Re/x >_- 0. Then there exists an x C /, x 0,
such that (/xq- h)x 0. By (3.7) this implies

0_< (Re/x))qx Re ()rh x)
1 12.--lxol lx,

Hence xo x 0, and therefore x =0 by (b) in contradiction to x
For every/x C not in the spectrum of a N (in particular, for every z in the closed

right half-plane) we introduce the vector
N(3.8) aN(/x) col (ao(/x),

as the unique solution of

(3.9) (/xqN- hN)au(/x)= col (1, 0,..., 0).

The complex n x n-matrix

(3.10) AN (A AI- Ao-A, (A-hN)
plays a role for the approximating systems (S) and (EN*) analogous to that of the
characteristic matrix A(A) for the original systems () and (*). In particular, it
determines their input-output behaviour (see Proposition 3.7 below).
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Next we characterize the resolvent operator (AQU Hu )-! in terms ofthe matrices
AN (A), FN and E N (/) ck(N)n, TN (A) E C k( N)k(N). The latter are defined as follows"

(3.11) tu(A)--col 1, ao ,’’’,aN\]

(; o )(3.12) TN(A) ((Ah/N)qN_hN)_ @L

PROPOSITION 3.6. Let A C with Ah/N cr(a N) and x, z C k(N), where x is written
as x (Xo, xl) with Xo Rn, then

(a) (AQN- HN)x z if and only if

(3.13.1) x= EN(A)xo+ T(A)z,

(3.13.2) zXu (,)Xo E"(A)rFUz.

(b) (AQN-(H)r)x z if and only if

(3.14.1) x= FUEU(,)Xo+ TU(,)rz,

(3.14.2) Au (,)Xo E u (,) z.
Proof We put z= (Zo, zl), xl (Xo,"" ", XN), Z (Z0,""", ZN). It is easy to

see that (AQN-HN)x z if and only if

(3.15.1) (hi- Ao)xo- AlXIN ZO,

-h N) @])Xl Z +CO1 (Xo, O,""", 0).

Observing that (see (3.9))

we get from (3.15.2)"

hh N N
Xl= q -h (R)I z+E u(A)xo,

which proves (3.13.1) and

x, Xo + 2 - z,.
k=0

The last expression oge:fier witfi (J.15.l) establishes (3.13.2).
For (b) we observe that (AQU-(H)r)x= z is equivalent to

(3.16.1) hXo Aoxo Xlo Zo,
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Observing

--qS--(h)r

we get from (3.16.2):
x= F()Xo+ T()z,

which proves (3.14.1), and

Xlo=? a Zlk+Ala Xo,
=0

which together with (3.16.1 gives (3.14.2).
In particular, the previous proposition shows that

(AQN--HN)-’= EN(A)AN(A)-’EN(A)TFN + TN(A),
(AQN--(H)T)--- FNEN(A)AN(A)-EN(A) T-{- TN(A) T,

and hence

(3.17) (AI-AN)-’= EN(A)AN(A)-IEN(A)TQNFN + TN(A)QN,
(3.18) (AI-(ATN)*)-1= FNEN(A)AN(A)-EN(A)TQN + TN(A)TQN

provided A cr(a N) and det AN (A) 0.
PROPOSITION 3.7. (a) The left upper n n block xN(t) in the matrix eANt coincides

with that of the matrix e(AT)*. Its Laplace transform is given by A (h )- (see (3.10) for
the definition of AN h ).

(b) Let wN(t)=CO1 (WoN(t), ") and zN(t)=CO1 (ZoN(t), ") be the unique sol-
utions of (i, N) and (*), respectively, with initial state zero. Then

woN(t) z0N(t) xN(t-s)Bou(s) ds, t>-O.

(c) The transfer matrices of (EN) and (E N,) coincide and are given by

GN(A)=CoAN(A)-’Bo.
Proof Statement (a) is an immediate consequence of (3.17), (3.18), and the special

form of the matrices E N(A), TN(A), fN, QN. Statements (b) and (c) follow directly
from (a). [3

The following characterization of stabilizability and detectability for the
approximating systems (EN) and (E*) is precisely the analogue to (2.7) and (2.8).

THEOREM 3.8. (a) For h C with Re h _-> 0 the following properties are equivalent:
(i) A o-(AN);
(ii) A cr((aN)*);
(iii) det A (A) 0.

In particular, the matrix AN (or equivalently (A)*) is stable ifand only if det AN (A) # 0
for every A C with Re A ---0.

(b) The system (ZN) (or equivalently (E *)) is stabilizabte if and only if
rank AN (A), Bo] n

for every A C with Re h _-> 0.
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(c) The system (,N) (or equivalently (E*)) is detectable if and only if

rank(AN(’)) =nCo
jbr every h C with Re h 0.

Proof. It is well known from finite-dimensional linear system theory that (zN) is
detectable if and only if ker (hi A) G ker C N {0}, or equivalently,

ker (AQN-HN)Gker CN ={0}

for every h C with Re h 0. But h(h/N) g(a) for Re h 0 (Lemma 3.5(d)).
Therefore, according to Proposition 3.6(a), x=col(xo, x)ker(hQ-Hu) is
equivalent to (h)Xo=0 and x EN(h)Xo. This implies that detectability of (EN) is
equivalent to

ker (h) ker C {0}

for every h C with Re h 0. When we use Proposition 3.6(b), it follows analogously
that this condition is also equivalent to detectability of (E *).

Statement (b) follows from (c) by duality and statement (a) follows from (b) with
Bo =0.

THEOREM 3.9. (a) Let C be such that A(h/N) (aN). en (A) fand
only if detAN(A)=0. If A(h/N)(aN), then A(AN) if and only if deta,=0.
Moreover, ((a)*)= (AN).

(b) System () is controllable if and only (

rank [A(A), Bo] n forallAeC,(aN),
rank [A, bo] n.

(c) System () is observable if and only if

rank(A(A)) ()n for all h C a
Co

rank A n.

(d) System (E*) is controllable if and only if

rank (I), Bo] n for all C a

rank A n.

(e) System (*) is observable if and only if

rank (AN (’k)) ( N)n for all h c Ck a
Co

rank(A) =n.
Co

Proo We first prove (c), i.e., we must show that ker (II-A) ker C= {0} for
all IC For I((N/h)a ), or equivalently, for lh/N (a) we see as in the

(a/proof of Theorem 3.8(c) that this is equivalent to rank Co )= n.
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Now let hr((N/h)an). We assume rankA=n and take x=
col (Xo, Xo,’"" ,xn)ker(hl-An)fflkerC n. Then (3.15.2) implies (((hh/N)qn-
hn)(R)I)Xl =col (Xo, 0,. ., 0) and therefore Xo=0 by Lemma 3.5(c). This and (3.15.1)
imply Axn =0, i.e., Xn =0. Then we get from Lemma 3.5(b) x =0, and thus x=0.

Conversely assume that ker (hi An) f’/ker C n {0} and take : ker A. Accord-
ing to Lemma 3.5(b) there exists a vector x=col (Xo,"’" ,xn)C(n/l)n such that
[(h(h/N)qn-hn)(R)I]x=O and xn =. For x=col (0, x) equations (3.15) (with
Zo-0) imply (hQn-Hn)x=O. Obviously we have Cnx=O. By assumption this
implies x--0, and thus :=0. We conclude rank A- n. This finishes the proof of
statement (c).

It still holds that h o’((N/h)an). Assume that kerA1 flker Co={0} and let x
Ck(n) satisfy (AQ-(H)T)x=O, Cnx=O. Then (3.16.2) and Lemma 3.5(c) imply
Axo=0. This together with Coxo=0 shows Xo=0. Hence it follows by (3.16.1) that
Xo=0. Finally we get from Lemma 3.5(b) that x =0, and thus x =0, i.e., ker (AI-
(An)*) f’l ker cn {0}.

Conversely, suppose that ker(hl--(AT)*)f’lker Cn ={0} and let Xo
ker A ker Co. By Lemma 3.5(b) there exists a vector a col (ao, , an) Cn/

such that

h N N T)A q -(h a --0

We define x =col (xlo,""" ,xn)Cn(s+) by

and ao= 1.

xk =a(hI-Ao)xo
for k =0,..., N. Then it follows from (3.16) that x-col (Xo, x)
ker(hQN--(H-Nr))f’lker C N. By assumption this implies x=0, and hence Xo=0, i.e.,
ker A fqker Co {0}. Thus statement (e) is proved.

Statements (b) and (d) follow from (e) and (c) by duality. The proof of statement
(a) is the same as for (c) with C N --0, respectively Co=0. [3

4. Stability. It is our goal to prove that stability (respectively, stabilizability, or
detectability) of the original system (E) implies the corresponding property for the
approximating system (En) and (Y_,*) provided N is sufficiently large. The first step
in this direction was the characterization of these properties in Theorem 3.8 using the
matrices An(h). The second step will be a convergence result for the characteristic
matrices An (h). As a third step we need a priori bounds for the unstable eigenvalues
of the matrices An

4.1. Convergence of N(/), First we derive explicit formulas for the av(/z) (as
defined in (3.8) and (3.9)) and use those to prove convergence of An (h) to A(A). Let
the rational functions dV(/z), k 0,..., N, and the polynomials pk(tZ), qk(tZ), k-
-1," ", N, respectively, k- 1,. ., N, be defined recursively by

do(/x) 2/z +3,
9-/z____(4.1) d(p,) =4 + d-l()’

k= 1, , N- 1,

2

d(/x) 2/x +3 +

(4.2)
p_(/z) 1, po(/Z) 2/x + 3,

Pk (P, 4tXpk- (p, + (9 -/z2)pk_2(p, ),
q(/x) (2/x +3)pk._(l)+(9--lX2)pk_z(tX).
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The function w w(z) is defined by

(4.3) w(z) (9+ 3z)
taking the branch that is positive for/x iO, 0 R, 101 <. Furthermore, we set

(4.4) y0(/z) 2/x + w(/x), ’tl(/b 2/x w(/z), /x C.
Since w() is real for iO, [01-<-,,/, we obtain

(4.5) [yo(iO)l=lyl(iO)[=13-iOI, I01<-,,/, 0.

Therefore the function 6 6(0) is well defined by

ei(-y(iO)-702-9+4iOw(iO) IOl<=x/, 0[,

(4.6)
3/o(i0) 9 + 02

0_<- 3(0) =< 27r.

LEMMA 4.1. (a) For k=0,. ., N and tz o’(aN),
6(3 --/z )k 6(3 --/X kpN_k_ (/Z)

(4.7) a(/x)
d

_
(/x) d (/x qN(/x

(b) det (qN--hN)--(1/6N/)qN() and

2" 6N+’w det (/xq N h) (3 + w)2(yo) -(3- w)2(y,) N

for all C.
(c) For tz o(a) and tz +i,,/,

(3+ w)(o)-- (3 w)(,)-(4.8) a (z)=6(3-/x) (3+w)2(yo)-_(3_w)2(y)
k=O,. N. Moreover,

9(1-cos k6(O))+ w2(iO)(1 +cos k6(O))
(4.9)

(9+ w2(iO))2(1-cos S6(O))+a6w2(iO)(1 +cos S6(O))
for k=0,..., N, 10[ </, 0[.

Proof Suppose that the functions dk d(/x), k =0,..., N, are given by (4.1)
and define

-3-/x 3-/x
bk-- Ck-- k= l," N.

dk-1 dk-1
Then it is easy to see that

6(/xq

1

i
0

c 1

It is not difficult to calculate the inverse matrices. Since c N (/x) is the first column of
(/xqN--hN)- (see (3.9)) we conclude that

6CN-k+ eN 6(3 --/x
k

()
dN d-k d’

k=O,...,N.
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If the polynomials Pk(/Z) and qk(/z) are given by (4.2) and the rational functions
d(k) by (4.1), then we see by induction that

d(/z) =Pk(/Z)/Pk-I(/Z), k=0, , N- 1,

d(/z)
This implies

Pk(/Z) d(/z) d(/z), k=0, , N- 1,

qN(/Z) doN(/z) d(/z)=det[h(/zqN-hN)].

This finishes the proof of (a) and also establishes the first part of (b).
To prove (c) we choose/z C,/z +ix/. Then 3/0 3/1 and

2)3/i-4/z%-(9-/z =0, i=0,1.

Hence 3/0 and 3/1 are the characteristic roots of the difference equation in (4.2). This
implies that

3+w 3-w(o)+l (,)+(4.10) Pk(/Z)
z"w 2w

k -1, 0," ", N- 1. Using 3/o3/1 22-9, we get from (4.2) and (4.10) that

qN (/z) (2/z +3)p_l(/z)+(9-/z2)pN_2(/z)

(4.11)

3+w
[(2/z + 3)(3/o) u + (9-/Z)(%,) N-’

3+w

2w
[(2/Z + 3)(3/,) + (9 /Z 2) 3/1) -]

(3 + w) )___(3/o)N_(3-w
2w 2w

The second part of (b) and (4.8) are immediate consequences of (4.10), (4.11).
To prove (4.9) we use (4.8) and observe 3/1(i0) ei6()3/o(iO and (4.5).
The explicit formulas in the previous lemma allow us to prove that the matrices

A N (Z) actually converge to the characteristic matrix A(A) of the delay system.
THEOREM 4.2. A(A) limN_ AN (A), A C, the limit being uniform on bounded

subsets of C.
Proof Fix 8 (0, x/). Then w(/z) as defined in (4.3) is continuous and

3 on I/zl_-< 8. From w(/Z)-3=3/ZZ/(w(/Z)+3) we see that

(4.12) ]w(/z) 31-<-1/Z12 if I/Z] =< 6.

In the next step we prove that a (/Z/N) converges for arbitrary c > 0 uniformly to
e -" on I/z]-<-c as N-. To this end we use formula (4.8) for k- N and obtain, with
w w(/z/N), N >= c6 -1,

NN()-’ (3+)( / )U (3--W)2( -/w-2
/z

3-(4.13) ce
12

w+2 3-
12w

From (4.12) and limN_, W(/Z/N)= 3 uniformly on I/Zl -<- c we see that

(3 + w(/z/ N)) (3 w(/z/ N))
lim =1 and lim =0

12w(/Z/N) N-o lZw(/Z/N)
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uniformly on IIx[ <- c. Moreover, we also obtain from (4.12)"

w+2IX/N IX w-3+(IX/N)2 ___+0[1
3-IX/N

=1++ =1+
N 3-IX/N N -3-IX/N

=1
3N 3-IX/N =1--+O

as N- oe uniformly on IIXl----c. These relations together with (4.13) show

lirn e"

uniformly on IIx[ =< c. Finally, the theorem follows from (3.10).

4.2. Uniform bounds. We first establish bounds for the a (ix) in Re IX >_-0.

LEMMA 4.3. The estimate [ce (IX )I <= 2 is valid for all tx C with Re Ix => 0 and all
N-- 1,2,....

Proof Since, according to Lemmas 3.5(d) and 4.1(b), the polynomial qN(tZ) is
stable, aN(Ix) is a proper rational function without poles in Re Ix _.0 (cf. (4.7)). It
follows from the maximum principle for analytic functions that [a (IX)[ achieves its
maximum value in Re Ix _-> 0 on the imaginary axis. Therefore we only have to prove
[a (ito)[ -<_ 2 for all to and all N

First we consider Ix i with IIxl >_-.x/-. In this case we have

(4.14.1) ]d(ix)[ _-> 13- Ix[, k=0,...,N-l,

(4.14.2) Id N(IX)[ _>-- 3

for all N. The first estimate is obviously satisfied for k=0. Using
13- Ixl, we obtain from (4.1), assuming that the estimate is already established for k:

9+11Im d+(tz)l 4 Im Ix- [d,V(ix)] 2 Im

9+lzl2

>-- 411- Id U(z)[z
>-- 411- (9 + [ix lz)

->_ (9+ I1)’/, k=0,... v-2.

This proves (4.14.1). To prove (4.14.2) we note that Re dkU(/x) is always positive (and
decreasing with respect to k) because

Re d7+()=
i()l

Re d?(), k=0,. ., V-.
Therefore the last equation in (4.1) implies

9+[!
_

Re d( 3+
Id --ii)l

Re d ()_-> 3

which proves (4.14.2). Now it follows from (4.14) and (4.7) that

13-.______Lt 13- 1 3

It remains to consider Ix iO with 10[ < v, 0 [.
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Then we obtain from (4.9), with k N,

[ce(/z)12 36W2/((9+W2)21--COS N6 W2 l+cos N3)+36 <1
2 2

because 6w =< 9 + W2o [’-]

From Lemma 4.3 we obtain the following a priori bounds for the unstable
eigenvalues of the matrices AN and (A’)*.

PROPOS,TON 4.4. Let w IIa011+211All. For every N and every a C with
Re h >= 0 and det AN (h) 0 we have [hi _-< to.

Proof It follows from Lemma 4.3 that

Ao+ A,a N\--] II.aoll + 211A, w

for every h C with Re h >-0 and every N[. Therefore we obtain from (3.10) that
IlhI-a(a)ll._<- o, for every h C with Re ->_0 and every N. Hence det AN(X) 0
for every h C with Re h >=0 and Ihl> w. This proves the statement of the propo-
sition. [3

Now we are in a position to prove the desired result on stabilizability and
detectability for the approximating systems (EN).

4.3. Stability, stabilizability, and detectability.
THEOREM 4.5. The following statements are true"
(a) If system (E) is stable, then there exists an No such that system (EN) is stable

for every N >= No.
(b) If system (E) is stabilizable (respectively, detectable) then there exists an No

such that system (ZN) is stabilizable (respectively, detectable) for every N >= No.
Proof Suppose (E) is stable. Then det A(,)0 for every A C with Re A =>0.

Hence the uniform convergence result for AN (h) on bounded domains (Theorem 4.2)
shows that det N(A) 0 for C with Re , >-0 and [Al<-w provided N is sufficiently
large. If o > 0 is large enough then we obtain from Proposition 4.4 that det N(h) 0
for all A C with Re , => 0 provided N is sufficiently large. Now the stability of (ZN)
follows from Theorem 3.8(a). This proves (a). Statement (b) can be established
analogously. [3

Now we might ask whether the stability of system () implies stability of the
approximating systems (N) uniformly with respect to N, i.e., the existence of constants
M=>I, e>0suchthat

[leatllN<=Me-t, t>O=

for N sufficiently large. A result of this type would be needed to apply a result of
Gibson [8] concerning the approximation of the solution to the algebraic Riccati
equation. Moreover, the uniform stability has been stated as a conjecture in [3] for
the spline approximation scheme developed in [2]. Our result below shows that such
a conjecture is definitely wrong for the approximation scheme developed in this paper.
This also indicates that it is wrong for the spline approximation scheme in [2].

PROPOSITION 4.6. Suppose that there exist constants M >-1 and eN > 0 such that

Ilexp (Sat)[[ <-- Me-’, t>0,=

for all N. Then eN o(1/N/2). Here I1" denotes the operator norm corresponding to
the vector norm Ixl=(1/N)xqx on +.
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Proof. First note that

xrx<_xrqNx<_xrx, xN+’,
and therefore

xrx<=xr(q)--x<_6xrx, xN+.
This implies, for Xo col (1, 0,. ., 0) and x iR (cf. (3.9)),

N

k=O

=6N e-"t exp (NaNt/N)(qN)-lxo dt

=6NM2l(qN)-lxo]2 e-(’/ dt

6N3M2 6N2M2

EN

36N2M
N

Therefore

x[(qU)-’Xo

(4.15) eN <=6NM c /(]d, 12
k=0

for all/x i.
Now let tx=iO satisfy 101<,, 0. Since 6(i0)0 as [0[, we can choose

a sequence 0, 10NI, such that ]0NJ and 6u=6(iON)=2/N. We put
N

wN w(iON) and get, using (4.9) and =o cos (2k/N)= 1,

()1 ()2 9
cos + 1 + cos2 _(i0N) w =o =ok=0

(4.6)
9

N.

sin 6(0)
40w(iO)
9_t_02

From (4.6) we get

which shows that for positive constants c, c2,

C1 2---< wr < for all N.
N- --This and (4.16) imply
N

[c’(/xr)[2->const. N.
k=O

This last estimate and (4.15) show that

8N <- const.
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The result above shows that exponential stability uniform with respect to N is,
in general, impossible for our scheme. Numerical studies show that there is a sequence
AN, N= 1,2,. ., of eigenvalues Arcr((N/h)a u) such that Re N-0 and Im AN-
o. In fact, the numerical results indicate Re u O(1/N2). In the general case where
tr((N/h)a) is not part of tr(AU), numerical studies still show the existence of a
sequence N, N= 1, 2,’’’, such that Aur(Au) with Re u <0, Re u-*0 and
Im Au- oe. Figure 1 illustrates the location of the spectrum for the approximating
systems in case of the scalar equation 2(t)= x(t)+x(t-1). For comparison Fig. 2
illustrates the spectrum of Na N.

5. Uniform output stability. Despite the negative result of Proposition 4.6 and the
fact that some eigenvalues of the approximating systems approach the imaginary axis,
we are still able to prove a uniform L2-estimate for the En-components

zoN(t; dp)n, WoN(t;f)

of the unique solutions of (E) and (E*) (with u-=0). We call this property the
uniform output stability of the systems (E) and (E*).

THEOREM 5.1. Suppose system (E) is stable. Then the approximating systems
and (*) are uniformly output stable for N sufficiently large, i.e., there exists an No6N
and a constant c > 0 such that for N >= No

(5.1) lzo(t; ()l,, dt:cll(ll foraZt M,
(5.2) ]WoN(t;f)] dtc]lfll forallf M.

Proof. Choose No N such that det AN (h) 0 for all A C with Re h >_- 0 and all
N=>No (Theorem 4.5). Then it follows from (3.17), (3.18), and Lemma 3.2 that the
Fourier transforms of zoN(t; 4)) and w(t;f) (determined to be identically zero for
< 0) are given by

P. oN ito b)= AN ito E N ito "rQNrNFch,

oN(iw; d) u(ito)-’Eu (ito) rQN’Nf

for N>= No. Using Plancherel’s theorem, we see that to prove (5.1) and (5.2) it is
enough to show

f

_
IAN ito )-l E N ito rQUz[,, dt <= 2rrczTQUz

for all ZE[k(N) and all N>-No. The definition of EN(A) in (3.11), together with
Lemma 4.3, show that it suffices to prove a uniform estimate of the form

(5.3) IIA(io)-*ll 2
k=O

2

dto <= c

for all N >-No (with a possibly different constant c). Of course, it is only necessary
to consider to _>- 0.
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Using (3.10) and Lemma 4.3 we immediately get the estimate

1
IlA(io)-ll forlol>Co, N=l,2,’’.,

I,ol-Co

where Co IIA011 + 2IIA I]. By Theorem 4.2 and the stability assumption on (E) we obtain

Cl(5.4) IIA(i)-II< for all w[=l+w2

and N sufficiently large, where c is not dependent on N.
Defining

1 N

f(0)= 2 Ic’(i0)l,
k=0

we find that for all N= 1, 2,...

N+I
(5.5) fu(0)<=4-<8 for

N

and for any a (0, 1)

N+I 2 4
(5.6) fu(0)<----< for 0 < 0 < cr,/.

N 1-ce2=l-cr

The estimate (5.5) is a straightforward consequence of (4.7) and estimates (4.14). To
obtain (5.6) we can use the representation (4.9) and the estimates w(i0)=9-30>=
9(1-2), w(iO)<-9, and 9+w2(iO)>-6w(iO) for 0-< 0_-< a,.

It remains to investigate the behaviour offu (0) at intervals of the form
0 < a < 1. There we cannot expect to have a bound for fN (0) uniformly with respect
to N. Formula (4.9) shows that we should expect difficulties for those 0 near such
that N6(0) is close to an integer multiple of 27r. This reflects the fact that the eigenvalues
of a v are closest to the imaginary axis near +iNx/ (see Fig. 2), i.e., for 0 wh/N
close to +/- x/-. In Fig. 3 we show the plot for fN (toh N), N 10, 20, 30, 40, h 1,
which illustrates the difficulties.

We first determine those parts of (ax/, x/), where we still can find a uniform
bound forfN(0). Since a is not yet fixed we consider 0[0, ax/].

CLAIM 1. If O6[O,x/] is such that O<=6(O)<-Tr/3N, then

(5.7) fN(0)--<_ 8 forallN.

Proof From 1/2<-cos N6(0)-<cos k(O), k =0,..., N, and (4.9) we get

9(1-cos N6(O))+ w(iO)(1 +cos kg(O))
Ic_,(io)l-<_ 4

9(1-cos N6(O))+4w(iO)(1 +cos Nt3(O))

9(1 -cos N6(O))+2w2(iO)
<=49(1 -cos N6(O))+6w2(iO) <=4,

for k 0,. ., N, which implies the result.
CLAIM 2. If 0 [0, v/] is such that

0,...,IN/2], then
1(O)-2r(v/N)l>= 7r/3N for

fN (0) -<_ 64 for all N.
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Proof From cos N5(0)cos (7r/3) =1/2, w2(i0)<=9 and (4.9) we obtain

2.9+2.9
-<36, k=0,...,N. IS][ -’(i0)12-< 36 92(1 cos N(O))-

For v, N N and ce (0, 1) we define the intervals

IN= {O[a,], x/-] ,NS(O)-27rvl<}
We have INs if and only if ,=0,... vl, where vl< N is determined by the
conditions 2 7rvl 7r/3 < N6(ax/) and 27r( Vl + 1 )- 7r/3 _-> N6(ce,f). Inequalities (5.5)-
(5.8) imply that for any c (0, 1) there exists a constant c= c(c) independent of N
such that

(5.9) fN(O)-<_c(ce), 0 M:=[.0, oo) L_J I

for all N N. Let /17/= { to _-> 01o)h / N M}. Then by (5.4) and (5.9)

IIA(i)-’ll=f

Let= {to >-Ol(toh/N) IN}, v, N N. Then by (5.4) (note, that to > aox/(N/h) for
~No I,,,
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(5.11)

J= y IIAN (ito)-1112f N dw

c N
-1 +3oN2/h2 -ff zN(o) dO

-=1

for N sufficiently large. It remains to prove an estimate of the form

N f fN(o dO < c
u=l

for all N 1, 2,. ., where C is independent of N.
Now we fix a Cro by imposing the condition

(5.12) (ox/) :-.
Then there exists a constant c2 such that

1
(5.13) --3(0)<w(i0)<C23(0), 0 [OoV, "ff

2

Proof of (5.13). From (4.6) we see that sin 3(0)=40w(i0)/(9+ 02). Therefore

4Crox/ 4x/
(5.14)

12
w(iO)<=sin 3(0)<= - w(iO) 0[Oo,/-,,f].

The monotonicity of 3(0) and (5.11) imply O<=3(O)<=vr/2. Then (2/r)3(0)<=
sin 3(0)<=3(0), which together with (5.14) implies the result. [3

CLAIM 3. There exists a constant c3 independent of N and u such that

(5.15) [I y[ c-for N= 1, 2,... and u 1,..., u. Here "[I] denotes the length of the interval IN

Proof. From (5.13) we get

1
(5.16) -w(iO--- <--

c23(0)’
0 aox/-, x/].

The definition (4.6) of 3(0) together with (4.3) implies

36
3’(0)=-(9+02)w(i0).

Using (5.16), for 0 e I we obtain

36 1 3

9 + 02 c23 0 c23 0

1 N

c27r /.,

Therefore

I 1 N2"rr
6, O dO > I.’l3N c2 u

for N 1, 2,... and u 1,. ., ul, which proves the result.
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CLAIM 4. There exists a constant c4 independent of N and v such that

for O e I, N= l,2, and v= l, Vl.

Proof. Let OI. Then 6(O)>(2rv-r/3)/N and by (5.13) we obtain

w(iO)>--’m 2Try- >= ..
cz N 3C2 N

This together with (4.9), w2(i0)<=9, and cos N6(0)>1/2 for 0 I implies

18 108c2 N
=(l+cos N3(O))w2(iO) 257r2 v

Then the result follows immediately.
Using (5.11), (5.15), and (5.17) we get the following estimate for J"

c, c3c4
+3ozN/h h =l

ClC3C4 N N 1 ClC2C N(1 +In N)
h l + 3crN2/ h = v h + 3oz)N2/ h 2

for N sufficiently large. This together with (5.10) establishes (5.3). Thus the proof of
Theorem 5.1 is finished.

Remarks. (1) Uniform output stability in general does not imply a uniform (with
respect to N) exponential decay for the [-components of solutions of the approximat-
ing equations. If we are willing to accept the existence of eigenvalues I for the
approximating equations with Re Au-0 as N-.oo also in case det A 0 (as is
demonstrated numerically in Fig. 1 but not proved in this paper), it is sufficient to
show that in case det A 0 any eigenvector for the approximating system has a nonzero
C "-component. To prove this, assume yN =CO1 (yy, yN) with yV C", yC(N+l)" is
an eigenvector of Au corresponding to the eigenvalue AN. Assume yoN =0. Then
ANyN ANyS is equivalent to

N s(5.18) (0 0A)yN=O and -(a (R)I)y=hsyY.

The second equation implies yN=x(R)v, where aNx=(hh/N)x, x=(xo,’’ ",XN)
CN+\{0} and v C"\{0}. By Lemma 3.5(b) we have xN # 0. The first equation in (5.18)
implies A(XNV) XNAv 0, a contradiction to det A 0.

(2) It is interesting to state a consequence of uniform output stability for the
eigenvectors of the approximating equations. Assume (E) is stable so that (5.1) is true,
and let yN= (yoN, yN), Y C., Yl

N C(N+I) be an eigenvector of A corresponding
to an eigenvalue AN. Then zy(t;NyN) yoN e, t>= O, and therefore

o
IZo(t; Y)I"dt=

For N -> No, (5.1) implies

2clRe ANI

21Re ANI

1-2clRe
provided IRe AN] < 1/2c. Therefore if IRe ANI- 0 as N- then also yoN - 0 in C n.
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N N 16

FIG. 4

Figure 4 shows, for N:8, 16, I(yN)’(0)l, -1-<0=<0, and I(rNyN)01 for the
normalized eigenvector yN (i.e., 1) of AN corresponding to the eigenvalue
AN with the smallest real part (and at the same time largest imaginary part) in case
of the scalar equation :(t)=-2x(t)+x(t-1). The eigenvalues Av and ](yN)O],
N 4, 8, 16, are given by

A4=-2.9294+5.1788i, A8=-0.7218+ 12.7848i, A6=-0.1874+27.0462i,
[(4y4)[=0.3536, 1(8y8)1=0.0690, [(6y16)[=0.0167.

(3) Uniform output stability is sufficient to prove convergence of the approxi-
mating Riccati operators in the case of the infinite time horizon problem observed
numerically in [11]. This will be shown in a forthcoming paper [12].

Acknowledgment. We thank W. Prager for the computations concerning Figs. 1-4.

REFERENCES

[1] H. T. BANKS AND J. A. BURNS, Hereditary control problems: numerical methods based on averaging
approximation, SIAM J. Control Optim., 16 (1978), pp. 169-208.

[2] H. T. BANKS AND F. KAPPEL, Spline approximationsforfunctional differential equations, J. Differential
Equations, 34 (1979), pp. 496-522.

[3] H. T. BANKS, G. I. ROSEN, AND K. ITO, A spline based technique for computing Riccati operators and

feedback controls in regulator problems for delay equations, SIAM J. Sci. Statist. Comput., 5 (1984),
pp. 830-855.

[4] R. F. CURTAIN AND A. J. PRITCHARD, Infinite Dimensional Linear Systems Theory, Lecture Notes in
Control and Information Sciences 8, Springer-Verlag, Berlin, New York, 1978.

[5] M.C. DELFOUR, E. B. LEE, AND A. MANITIUS, F-reduction ofthe operator Riccati equation, Automatica,
14 (1978), pp. 385-395.

[6a] M. C. DELFOUR AND A. MANITIUS, The structural operator F and its role in the theory of retarded
systems, Part I; J. Math. Anal. Appl., 73 (1980), pp. 466-490.

[6b] --, The structural operator F and its role in the theory of retarded systems, Part I1, J. Math. Anal.
Appl., 74 (1980), pp. 359-381.



SPLINE APPROXIMATIONS FOR RETARDED SYSTEMS 431

[7] J. S. GIBSON, The Riccati irtegral equations for optimal control problems in Hilbert spaces, SlAM J.
Control Optim., 17 (1979), pp. 537-565.

[8] , Linear quadratic optimal control of hereditary differential systems: Infinite dimensional Riccati
equation and numerical approximations, SIAM J. Control Optim., 21 (1983), pp. 95-139.

[9] J. K. HALE, Theory of Functional Differential Equations, Springer-Verlag, Berlin, New York, 1977.
[10] F. KAPPEL AND D. SALAMON, On the stability properties ofspline approximations for retarded systems,

Technical Report No. 78-1986, Institute for Mathematics, University of Graz, Graz, Austria, 1986.
[11] , Spline approximation for retarded systems and the Riccati equation, SIAM J. Control Optim.,

25 (1987), pp. 1082-1117.
12] ,An approximation theoremfor the algebraic Riccati equation, SIAM J. Control Optim., submitted.

[13] A. MANITIUS, Completeness and F-completeness of eigenfunctions associated with retarded functional
differential equations, J. Differential Equations, 35 (1980), pp. 1-29.

[14] --, Necessary and sufficient conditions of approximate controllability for general linear retarded
systems, SIAM J. Control Optim., 19 (1981), pp. 516-532.

15] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-
Verlag, Berlin, New York, 1983.

16] D. SALAMON, On dynamic observation and statefeedbackfor time delay systems, in Evolution Equations
and their Applications, F. Kappel and W. Schappacher, eds., Research Notes in Mathematics 68,
Pitman, London, 1982, pp. 202-219.

[17] , On controlllability and observability of time delay systems, IEEE Trans. Automat. Control, 29
(1984), pp. 432-439.

[18] , Control and Observation of Neutral Systems, Research Notes in Mathematics 91, Pitman,
London, 1984.

19] , Structure and stability offinite dimensional approximations for functional differential equations,
SIAM J. Control Optim., 23 (1985), pp. 928-951.

[20] J. ZABCZYK, Remarks on the algebraic Riccati equation in Hilbert space, Appl. Math. Optim., 2 (1976),
pp. 251-258.


