MORSE THEORY, THE CONLEY INDEX AND FLOER
HOMOLOGY

DIETMAR SALAMON

1. Introduction

In 1965 Arnold [1] conjectured that the number of fixed points of an exact
symplectic diffeomorphism on a symplectic manifold M can be estimated below by
the sum of the Betti numbers provided that the fixed points are nondegenerate. This
estimate is, of course, much sharper than the Lefschetz fixed point theorem which
would only give the alternating sum of the Betti numbers as a lower bound. Its proof
is based on a Morse type index theory. If the symplectomorphism in question is C*
close to the identity then the problem can indeed be reduced to classical Morse theory
using generating functions [2, 34]. The general case, however, represents a much
deeper problem which has recently been addressed by many authors. (We do not
attempt here to give a complete overview of the literature and instead refer to [3, 13]
for a more extensive discussion of related works.) For the torus M =T?%** a
remarkable solution was given by Conley and Zehnder [7]. They used a variational
principle on the loop space, unbounded on either side, and overcame the problem of
an infinite Morse index by means of a finite dimensional reduction. An entirely
different approach by Gromov [16] was based on the analysis of holomorphic maps
and led to an existence proof for at least one fixed point. Recently, Floer [9-13]
combined the ideas of Conley and Zehnder with those by Gromov and gave a
beautiful proof of the Arnold conjecture for general symplectic manifolds, only
assuming that every holomorphic sphere is constant. (In {13] Floer’s assumption is
somewhat more general but we will restrict ourselves to this case in order to avoid
further complications.) He defined a relative index for a pair of critical points and
generalized the Morse complex of critical points and connecting orbits (as described
by Witten [35]) to the infinite dimensional situation of the loop space which led to the
concept of Floer homology.

In this paper we shall give an exposition of Floer homology including the
necessary background on the Conley index and the Morse complex. Moreover, we
propose an alternative approach to the connection index which plays an essential role
in the case of a coeflicient group other than Z/2. In a preliminary section we shall
briefly describe the classical Morse inequalities and give a proof which is based on the
Conley index (Section 2). In the case of a Morse-Smale gradient flow on a finite
dimensional manifold the critical points and connecting orbits determine a chain
complex [20, 30, 35] which represents a special case of Conley’s connection matrix [14,
15, 22] and plays an essential role in Floer’s work [9]. We shall describe this chain
complex in Section 3 and for the sake of completeness we include a proof of the fact
that it recovers the homology of the manifold M with coefficients in any abelian group
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2. Morse inequalities and the Conley index

On an n-dimensiona] Riemannian manifold M we consider the gradient flow

2.1)

of a smooth function f: M R The flow of (2.1) will be denoted by #° e Diff (M) and

is defined by

d S — & 0 _ -
P =—Viog, g =iq

W x) = {ye M; lim, | 4%y) = x}
is a submanifold of M and its dimension i the in

dex of the critica] point
ind (x) = dim W*(x).

Equivalently, the index of x can be defined as the number of negative eigenvalyes of
the Hessian V*x). The Morse inequalities relate the number ¢ of critical points of

index % to the Betti numbers B, = rank H,(M:;R) of the manifold M for any principal
ideal domain R. Throughout the paper H, will denote singular homology.

THEOREM 2.1 M. Morse).

clc_ck—1+“'i-co >ﬂk‘ﬂk—1+"'iﬂo

Jor k = 0,...,nand equality holds Jork=p

In particular ¢ 2 B, so that for every Morse function S the minimal number of
critical points is the sum of the Betti numbers of M. Moreover, note that Theorem
2.1 provides a simple proof of the fact that the Euler characteristic

XM=Y (- l)krankH,c(M; R) =3 (- D*e,
k=0
is independent of the coefficient ring R,

We shall give a proof of Theorem 2.1 which i
avoids the usya] construction of

k=0

s based on the Conley index and
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idea of the Conley index is to characterize an isolated invariant set by the behaviour
of the flow on the boundary of a neighbourhood. More precisely, we assume that
¢': M — M is a flow on a compact manifold M meaning

¢t+s _ ¢zo¢s’ ¢0 — ld

for t,seR. A set S = M is called invariant if #(S) = S for every teR and it is called
isolated if there exists a neighbourhood N of S such that

S=IN):= () ¢"(N).
teR
An index pair for an isolated invariant set S = Misa pair of compact sets . = N such
that S = I(cl(N\L)) c int (N\L) and
® xeL,¢""(x) c N=g(x)eL,
(ii) xe N\L =3t > 0 with ¢*(x) = N.

Condition (i) says that L is positively invariant in N and (ii) means that every orbit
which leaves N goes through L first.

In [6, 25] it is shown that every isolated invariant set S admits an index pair such
that the topological quotient N/L has the homotopy type of a finite polyhedron.
Moreover, the homotopy type of N/L is independent of the choice of the index pair.

Lemma 2.2 (C. Conley). If (N, L)) and (Ng, Ly) are two index pairs for S then the
index spaces N,/L, and N/ Lg are homotopy equivalent.
Proof. Consider the map ¢},: N,/L,— Ny/ L, defined by ¢ (x) = ¢'(x) if
#OHx) < NAL, and ¢U5%(x)  NAL,

and by ¢,(x) = * otherwise. This map is continuous for 7 > 1,5 Where 1., > 0 is the
minimal time such that for ¢ > tus/3

.8(x) « NAL,= xe N)\L,, 8(x) = N\Ly=>xe N,\L,.
p\p A

(See [27].) In particular, the induced semidynamical system ¢, on N,/L_ is continuous
for ¢ > t,, = 0 if and only if the pair N,, L, satisfies the properties (i) and (ii) above.
(See [25].) Moreover, ¢,, < t,5+ 5 and

G0 P = Bra’s o =1id
for 1 > t;, and s > 1,4 50 that ¢!, is the homotopy inverse of B

The Conley index of S is the homotopy type of the pointed space N/L. If L is a
neighbourhood deformation retract in N then the homology of the index space N /L
agrees with the homology of the pair N,L and is characterized by the index

polynomial
Py(s) = Y rank H(N, L; R) s*.
k

The Conley index is additive in the sense that Py(s) = Ps (9) + P (s) whenever S is the

disjoint union of the isolated invariant sets S; and S,.
As an example consider a hyperbolic fixed point x = 0 of a differential equation

5-2
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X =0(x) in R" Denote by E* and g
linearized equation d¢/dr = av(0) ¢, Then
S = {0} in the nonlinear flow is given by

N= {x,+xu;xseE",xueE“, Ix,) < e, Ix,| < e},

L= {x,+xueN; Ix,] = &

polynomial is gjven by Py(s) = s*.

In particular, a critical point xe Af of a Morse function
invariant set with index polynomial FAs) = 5@ Ifcisac
index pair for the isolated invariant set

S M->Risan isolated
ritical level of S then an

S={xeM; VAx) = 0,/x) = ¢}
is given by N = M°, L = M*® where

M® = {xeM;fix) < a}
and a < b are regular values of Jsuch that ¢ is the on iti
(a,b). 1t follows from Lemma 2.2 and the additivity of the Conley index that

2 rank H,(M", M*; R) ¢ = " ginaco,
k

ze8

Proof of Theorem 2.1. Define F¢ = rank H(M*; R) and let ¢ be the number of
critical points xeM of f with ind (x) =k and SX)<alfa<p are chosen as above
then it follows from (2.2) that rank H (M° M SRy =¢b —c; and hence the homology
exact sequence

2.2)

0 Oy
Hyp (M, Mo R) 2, M3 B~ H M R s B a1, pge, gy 221
shows that
rank d,_, +rank Op=cl— —Br+pe.
Equivalently R
PUs)—Ply(s) = Pe(s) ~PL()+(1+5) 9=y
where
Pi(s) =Y Bes*, Pis) = Y cst 0%(s) = Y rank 0, s*.
k=0 k=0

k=0
1 with nonnegative coefficients, It follows

PHS)—Pi(s) = (1+5) Q%)
where Q%(s) is a polynomial whose nonne

In particular, 0%(s) is a polynomia
inductively that

gative coefficients are given by

k
Pe=3 (- Dz~ k-i) = 0.

J=0
For g > supf these are the Morse inequalities.
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3. Connecting orbits and Fredholm operators

The gradient flow ¢° of a Morse function f: M — R is said to be of Morse-Smale
type if for any two critical points x and y the stable and unstable manifolds W*(x) and
W*(y) intersect transversally. This requirement can be achieved by means of an
arbitrarily small alteration of the Riemannian metric [31]. If fis of Morse-Smale type
then the connecting orbits determine the following chain complex.

We first choose an orientation of the vectorspace E*(x) = T, W*(x) for every
critical point of fand denote by {x) the pair consisting of a critical point x and this
orientation. For every k = 0, 1,...,n we then denote by C, the free group

C,= D Z(x)

where x runs over all critical points of index k. The function f being of Morse-Smale
type implies that W*(x) N W*(y) consists of finitely many orbits if ind (y)—ind (x) =
1. In this case one can define an integer n(y, x) by assigning a number +1 or —1 to
every connecting orbit and taking the sum. Let p(s) be such a connecting orbit
meaning a solution of (2.1) with lim, ,_ y(s) =y and lim,_ y(s) = x. Then {y)
induces an orientation on the orthogonal complement E}(y) of v = lim,_,_|7(s)|*7(s)
in E*(y). In the case ind(x) =ind(y)—1 =k the tangent flow induces an
isomorphism from E}(y) onto E*(x) and we define n, to be +1 or —1 according to
whether this map is orientation preserving or orientation reversing. Define

n(y,x)=}.n,

where the sum runs over all orbits of (2.1) connecting y to x. Then the boundary
operator d3: C,,, — C, of the chain complex is defined by

0 yy = Ln(y, x)<x>

where the sum runs over all critical points of index k.
One can extend this chain complex to coefficients in any abelian group G by
defining C,(G) = G® C, and

0(G) =15 ® ;. C,1(G) — C(G).

The significance of the above construction rests on the following result.

Theorem 3.1 (R. Thom, S. Smale, J. Milnor, C. Conley, E. Witten).

@ 3_4(6G)08:(G) = 0,
(ii) H(M:G) =kf_;‘?a(_g2

Note that the second part of this theorem implies the Morse inequalities if
G = R is a principal ideal domain.

The above formulation of the chain complex is due to Witten [35]. He actually
considers the dual coboundary operator § and recovers the de Rham cohomology of
M. In [20] Milnor proved the above theorem for a selfindexing Morse function on a
manifold with boundary and used it in order to establish Poincaré duality. In a
somewhat more implicit way Theorem 3.1 was already contained in Smale’s
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handlebody approach to Morse theory [29, 30] and in the earlier work by Thom [32].
More recently Floer [9] has proved Theorem 3.1 for Alexander cohomology with an
arbitrary coefficient ring. In [20] the boundary operator ¢ was characterized in terms

of intersection numbers and we shall now describe this construction.
If M is oriented then the level set

M, ={xe M|fx) = g}
is an oriented submanifold of M for every regular value a. More precisely, a basis
Eos-ous &, Of I, M, will be called positively oriented if ~VAx), o ..., &, defines a
positively oriented basis of . M. Moreover, the orientation {x) of E"x)=Tw *“(x)
induces an orientation of E*(x) = T, W*(x) since ITM=EYx)®E *(x). It follows that
the descending sphere W*(y) = w “(¥) N M, inherits an o

rientation from W*(y) and
the ascending sphere W*(x) = W*(x) N M, inherits an orientation from W*(x). The

integer n(y, X) in Witten’s boundary operator agrees with the intersection number of
Wi(y) and w o(x) in M,. The nonorientable case can be treated by considering the
Z/2-invariant lift of S to the oriented double cover of M,

We also point out that the above boundary operator represents a special case of
Conley’s connection matrix and Th

eorem 3.1 follows directly from Franzosa’s work
[14, 15, 22]. As a matter of fact, a

connection matrix with the properties of Theorem
3.1 can still be defined if ¢’ is not a Morse-Smale flow, even if the critica] points of
S are degenerate or if @* is not even a gradient flow. However, in these cases the
connection matrix need no longer be unique [24].

N, L, denote the inde at an orientation of
E'xy=T.w “(x) determines a generator of H, (N,

wLy;Z) ~ Z where k = ind (x).
This shows that the group C, can be identified with

Clc = ®Hk(Nza Lz’Z)

where the sum runs over aj critical points of index . Since H(N,, L,;7) is a free
group it follows from the universal coefficient theorem that the natural homo-
morphism G ® H(N,,L,;Z)- H(N,L,;G)is an isomorphism and hence

G®Q=@&Wﬂg®=g@.
Following Floer we define
M(y,x) = W(y) n we(x),

the union of the orbits of (2.1) connecting y

dimension ind (»)~ind (x) provided that ¢°
ind (y)—ind (x) = 1 then

to x. This set is a submanifold of M of
is a Morse-Smale flow. If moreover

Sy, %) = M(p,x)y {x, y}

o be an index pair for S(y,x) and define
N, =N,u (N, N M) where Sx) < a<Ap). Then N,, N, is an index pair for y and
N, N, is an index pair for x. Define the homomorphism

Ak(x’y;G):chu Ny’ Ly;G)"’Hk(Nz’ L:c;G)

MORSE TF

to be the composition

Hk+1(Ny’ L,;6)-

where the first and tt
equivalence of Lemme

which is a special case
operator of Milnor an

LeEMMA 3.2

In the case of Z/2 «
a Morse-Smale flow
of connecting orbits n
Floer [9] using Milnor’
sake of completeness 1

Proof of Lemma 3
isolating neighbourho«
points of fin f([a, b
the set of all critical pc
orbits. Then S'is a rep
that N = g"([0, 0)) i
zedN = g™}(0) [25]. \
increasing cutoff funct
r=>¢, define f,: M — [

Then f, has the same cr
it follows that S < f;
points z # x with ind
homomorphisms ¢° an

Givena<c<b, a
we define the index pa

N”={ZGM
Nz ={ZGM,f(9

(see Figure 1 for thg c
attractor-repeller pair

N, =M

and we shall use this
coefficients.

To this end note tk
T — 0. Likewise, N,
width converges to zer
follows that N, N W*(



>y Thom [32].
dlogy with an
rized in terms

isely, a basis
¢, defines a
) =T, W*(x)
t follows that
a W*(y) and

W?(x). The
n number of
1sidering the

ecial case of
zosa’s work
of Theorem
:al points of
se cases the

;tion matrix
int x of f'let
ientation of
k = ind (x).

7) is a free
ral homo-
ce

d of M of
moreover

nd define
for y and

MORSE THEORY, THE CONLEY INDEX AND FLOER HOMOLOGY 119

to be the composition
0
Hk+1(Ny’Ly§G)'_’Hk+1(N2s N,;G)— H(N,,N,;G)— H(N,, L,; G)
where the first and third isomorphism is induced by the flow defined homotopy
equivalence of Lemma 2.2. This determines a homomorphism

A(G): Cp 1 (G)— C(G)

which is a special case of Conley’s connection matrix and agrees with the boundary
operator of Milnor and Witten.

0°(G) = A(G).

In the case of Z/2 coefficients this result is due to McCord [18] and it says that in
a Morse-Smale flow Conley’s connection map A,(y,x;Z/2) is given by the number
of connecting orbits modulo 2. With integer coefficients Lemma 3.2 was proved by
Floer [9] using Milnor’s characterization of n(y, x) as an intersection number. For the
sake of completeness we give an alternative proof.

LEmMMa 3.2.

Proof of Lemma 3.2. Allowing for an alteration of the function f outside an
isolating neighbourhood of S(y, x) we may assume that x and y are the only critical
points of f in f~([a, b]) where a = f{x) and b = f{y). More precisely, let S denote
the set of all critical points z # y with ind (z) > ind () together with their connecting
orbits. Then S is a repeller and hence there exists a smooth function g: M — R such
that N = g}([0, c0)) is an isolating neighbourhood for S and dg(z) VAz) >0 for
zedN = g™1(0) [25]. With &> 0 sufficiently small and a smooth, monotonically
increasing cutoff function p: R — [0, 1], satisfying p(r) = 0 for r < 0 and p(r) = 1 for

r = ¢, define f.: M - R by
fe(2) = flz) + Cp(g(2)).

Then f,, has the same critical points as ffor any positive value of C. With C > b— inf(f)
it follows that S = f7}((h, ©)). A similar argument can be used for the critical
points z # x with ind (z) < ind (x). This alteration does not affect either of the

homomorphisms ¢° and A.
Given a < ¢ < b, a sufficiently small number & > 0 and a sufficiently large 7> 0

we define the index pairs
N,={zeM;fl¢g"7(2) < b+e,fln) 2 ¢}, L,= {zeN,;f(2) = c},
N, ={zeM;fi$"(2)) 2 a—e.fie) < ¢}, L, ={zeN,;fi$"(2)) = a—¢},
(see Figure 1 for the case of a single connecting orbit). Then an index triple for the
attractor-repeller pair x, y in the isolated invariant set S(y, x) is given by
N,=N,UN,, N,=N,UL, Ny=L,Ucl(L\N,),
and we shall use this triple in order to prove that @° = A in the case of integer

coefficients.

To this end note that N, is contractible onto W*(y) N {f = ¢} by taking the limit
T - . Likewise, N, defines a tubular neighbourhood of W*(x) n{f < c} whose
width converges to zero as T — co. Since W*(y) and W*(x) intersect transversally, it
follows that N, n W*(y) n{f= ¢} consists of finitely many components ¥;,..., ¥,
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FiG. 1

each containing a unique point zzeM(y,x)n V,. More precisely, with D* denoting the
closed unit ball in R*, there exists a diffeomorphism

¥.:N,— D¥ x pn-*

with y (L,) = dD* x D™, w (W) n N,) = {0} x D** and v.(V}) = D*x {6,} where
6,€0D™* In particular, ¥}is a k-manifold with boundary W,=¥nL, diffeomorphic
to D* via y, = oy, | V,:¥V,—> D*, and the map w,oy,:N,— D* induces an
isomorphism on homology

H(N,, L,) ~ H,(D*,0D*) ~ HV,, ).

The given orientation of E*(x) determines a generator of the homology
a€H,(N,,L,) ~ Z which under the above isomorphism is mapped to a generator
o€ H(V,, W)). The homology class o, is determined by the orientation of 7;1 V; in-
herited from the orientation of E*(x) via the flow defined isomorphism 2;1 V, = E*(x).
This orientation may or may not agree with the one inherited from W*(y) via the
injection

LY=L O0VAz) < T, ()
(by taking —VAz,) as the first basis vector). Indeed, both orientations agree if
and only if n; =1 where n,e{—1, 1} is the sign associated to the connecting orbit
s) = ?°(z,).

Now choose a triangulation of the k-manifolds ¥; and extend it to a triangulation
of the k + 1-manifold W) n{f> c} with boundary W*»)n{f=e. Together with
the given orientation of W*(y) this determines a generator

ﬂer+1(W“(y) NN, W“y)n L)~ H,, N, L).

The homology class 9, H(W™(y)n L,cl(W*(»)n L\W)) ~ Hy( V, W) s
Tepresented by the original triangulation of V, together with the orientation
inherited from W*(y) and therefore agrees with n, o, Using the above isomorphism
H(N,, L)~ H( V,, W) we obtain

AB= Y ma=n(y,x)acH(N,L,)
=1

and this proves the statement in the case G = 7.

The general case then follows from the identity A(G) = 1 ¢ ® A(Z) which is a
consequence of the fact that the homomorphism G QH(;Z)> H,(.; G) commutes
with the boundary operators.
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Proof of Theorem 3.1. For j < k let S, denote the union of the sets M(y, x) over
all pairs (x,y) of critical points of f with j <ind(x) <ind(y) < k. These sets are
compact provided that the gradient flow ¢° of fis of Morse-Smale type. Indeed, if
7,(s) is a sequence of orbits connecting y to x then a subsequence converges in
an appropriate sense to a finite collection of orbits y/(s) connecting x’ to x'~* for
j=1,...,m where x* = x, x™ = y and ind (x*"!) <ind ().

It follows that Sy, is an isolated invariant set for j < k. In particular, S,, = M and
S, consists of all critical points of index k. In [6] Conley proved that there exists an
index filtration N, = N, = ... = N, such that N, = M and (¥,, N,_,) is an index pair
for S,, where j <k and N_, = (.

By Lemma 3.2 that there is a commuting diagram

7 o
CG) — C(G)

Cein(G)

Oy O
H, (N, N; G)— H(N,,N,_,; G)Ll—’ H, (N, N,_5;G)

in which the vertical isomorphisms are given by Lemma 2.2 and it follows that
07-1(G) 0 3:(G) = 0.
In addition, Lemma 2.2 shows that Hy(N,, N,_;; G) = {0} for j # k and it follows
from the homology exact sequence that the inclusion induced map

H(N,;G) = H{(Ny,,;G)

is an isomorphism for j# k,k+1. This shows that Hy(N,;G)— (M;G) is an
isomorphism for j < k and H(N,) = {0} for j > k. The latter identity shows that in the

commuting diagram
0

9 +
0 H(N;G) —— H(N, N ;) Hey(N,156)

0

!
Hy ;(Ne_1s Ni_25G)

the horizontal and vertical sequences are exact. In particular the homomorphism
H, (N, ,;G)— H,_,(N,_;,N,_,;G) is injective so that the kernels of the two
boundary homomorphisms agree. They are isomorphic to both H,(N,;G) and
ker 8._,(G) = C,(G). We conclude that the homology exact sequence

0y
Hy  (Nyy1s N G)— H(N,; @) — H(Ny.y; G)—0



122 DIETMAR SALAMON

is isomorphic to an exact sequence

C

Cons(G) — ket 8_(G) —— H,(M; G)—— 0
and hence H,(M;G) ~ ker 0;-1(G)/im 85(G).

The same arguments as above are used in [2I] in order to characterize the
homology of a CW-complex. Moreover, note that Theorem 3.1 remains valid if Z is
replaced by a principal ideal domain R and G by any module over R.

We illustrate Theorem 3.1 with the example of a Morse function on M = RP?
having three critical points (Figure 2). In this example the connection matrix is given
by 2 0

Cz—'cl_’co

with C, = Z and determines the integral homology H, =(Z,7/2,0) of RP:.

FiG. 2

As a side remark we point out that the connecting orbits of (2.1) can be interpreted
as the solutions of the variational problem

w1

@[ 2
2|+ e (1)
for smooth curves y: R — M subject to the boundary conditions

lim y(s) =y, lim y(8) = x (3.2)

where x and y are critical points of f. Indeed, if the space 4(y, x) of all solutions y(r)
of (2.1) satisfying (3.2) is nonempty then it consists of the absolute minima of the
energy functional ®,. This follows immediately from the identity

ds+f(y)~fx)

20) =3 [Z+v

for every smooth curve y:R > M which satisfies (3.2). Note that the solutions of
X—VAx) = 0 also define absolute minima of ¢, = ®@_; and that at most one of the
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spaces #(y, x) and .#(x, y) can be nonempty. These observations indicate that in the
rather elementary context of finite dimensional Morse theory there is some similarity
to the theory of Yang-Mills equations on 4-manifolds with the spaces .#(, x) of
connecting orbits playing the role of the moduli spaces [5].

If #(y, x) is nonempty then the relative index ind (y) —ind (x) can be expressed as
the Fredholm index of a certain linear first order differential operator. The latter is
defined on vectorfields £(s) along a connecting orbit y(s) by linearizing equation 2.1).
More precisely, given a vectorfield &(s)e T, M we define

EE=V, +V:VAY) (3.3)

where V denotes the covariant derivative. We define the Hilbert space

Ly) = {.f: R— TM;{(s)e T, M,J |E(s)|Fds < oo}
and consider £ as a linear operator from W'%(y) = {¢e L¥(y); V, £ € L¥(»)} into L3(p).

TreOREM 3.3. If f: M — R is a Morse function with critical points x,ye M and
v:R— M is a smooth curve satisfying (3.2) then E is a Fredholm operator and

ind (F) = ind (y)—ind (x).

If, moreover, the gradient flow of f is of Morse—Smale type and y satisfies (2.1) then E
is onto.

As a matter of fact, it turns out that the kernel of F, consists of vectorfields tangent
to W*(y) N W*(x) whenever y is a solution of (2.1). The proof of Theorem 3.3 makes
use of the following observation.

LeMMA 3.4. Let X, Y, Z be Banach spaces and suppose that the bounded linear
operator Fe L(X, Y) and the compact operator Ke L(X, Z) satisfy an estimate

Ixllx < (|l Fxlly + [ Kx|l 1)

Jor every xeX. Then F has a closed range and dimker F < .

Proof of Theorem 3.3.  In our proof of the operator F, being Fredholm we closely
follow the line of argument used by Floer {11] in an analogous situation. For every
C* vectorfield ¢ along y and sufficiently large constants ¢ > 0 and T > 0 we shall
prove the estimate

0 o0 T
| qerswemas<e( [ perass [ eras). 34

~0 -0 -T
Then Lemma 3.4 shows that F, has a closed range and a finite dimensional kernel.
Subsequently we will characterize the kernel and the cokernel of E in order to
establish the index formula.

Let Xi(s),...,X,(s) be an orthonormal basis of T,, M for seR such that

VX,(s) =0 and let (£,,...,&,)eR” denote the coordinates of ¢ with respect to this
basis. Then
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where
a,,(s) = {Xs), Voo VAV(S)) = a,(s).

We shall from now on denote by ¢ the n-vector with components ¢, ..., &, and by F
the operator E in the new coordinates so that

Fe) = %9 4 4909

where A(s) e R™* denotes the symmetric matrix with entries a,,(s). Observe that the

matrices 4, = lim,_,_ A(s) and A, =1lim,,__ A(s) represent the Hessian of fat x and
¥, respectively. Since fis a Morse function, it follows that A, and A4, are nonsingular.
We claim that the operator

_&

from W*¥R,R") to L¥(R, R") is boundedly invertible. Using the Fourier transform
£+ 1 ® —~tws
i) == [ ey
we observe that E¢ = 4 if and only if
(ol + 4,) iw) = #liv), weR.

Since 4, is nonsingular, it follows that (14w |Gw)? < clfi(iw)]? and hence

IS5 = f (1+|of) & do < 0f il* dew = cln|2s.

Thus we have proved that the operator K, or F, for that matter, is boundedly
invertible. This property is preserved under s

ufficiently small perturbations and hence
we obtain the following estimate for large T

[{5fjo<c]

On bounded time intervals
fgraela= [
—+AE| ds =

J‘—T ds -7
e
? —
_r\2
l T

>
1l

[, (e Jeos ch(|§|2+ e[ (6)

Now choose a cutoff function BR-

a

a@% ac
ds

E_*-Aé

2
ds, ifé(s)=0for —T<s<T

|t . Jde .

d—S’ +2<$,A§>+IA6| )ds
dé
ds

i
ds

2—IA612) ds

2

T

ds—c f €2 ds
-7

and hence

¢

ds

[0,1] such that B®)=1 for | < T and

MORSE THE(

pHy=0for|f| 2T+1.T
(3.5) and (3.6) that

and this proves (3.4).
It remains to be
ind F, = ind (y)—ind (x).

the solution operator ¢
that (s, £) = d¢**((1))
&(s) = (s, 1) (1) for s, ¢
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F’l
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B(®) = 0 for |f| > T+ 1. Then, with a sufficiently large constant ¢ > 0, we obtain from
(3.5) and (3.6) that

10 wre < 1BEllwra+ 1A= B) Ellwre
< (BN g+ NFBEN 2+ 1 F(L = B) {1 22)

<c(eror2| Le|| +ioreioia-pras)

< 3c("é”L2[—T—1,T+1] + ”Ff”L’[m)

and this proves (3.4).
It remains to be shown that range F is of finite codimension and

ind F, = ind (y)—ind (x). For this, we denote by
O, t): Ly M— T, M

¥(8)
the solution operator of the linear differential equation V&4V, Vf(y) = 0. (Note
that ®(s, £) = dg*~(p(f)) whenever » satisfies (2.1).) Then {ekerF if and only if
E(s) = @(s, 1) &(F) for s,teR and £ L%(y). Define

E*(s) = {£€ T,,, M; lim ®(t,5) &(s) = 0}

¥y
t—+—00

EX(s) = {€€ T, M; lim 0(2,5) £(5) = O}

and

Using local coordinates near x and y one sees that &(s) converges to zero
exponentially as |s| — o if &(s) € E*(s) N E*(s). We conclude that eker F) if and only
if &(s) = ®(s, £) E() and &(s)e E*(s) N E*(s) so that
dim ker F, = dim (E* n E*).
In the same way as above the kernel of the adjoint operator
Fr.-wi*—L}, Fin= —Vn+V,VAy),
is related to the map
Y(s,0) = O, 5)*: T,y M— T, M.

In particular, it follows from the identity ('¥(s, ) n(?), O(s, £) E(D)) = {n(1), &(9)) that
—Vn+V,VAy) = 0is equivalent to n(s) = ¥(s, N n(z) for s, te R.If this is satisfied then
lim,_,_ 5(s) = 0 if and only if #(s) L E*(s) and likewise lim,_,_,, #(s) = 0 if and only if
7(s) L E*(s). Moreover, in both cases #(s) converges to zero exponentially. Hence F¥
has a finite dimensional kernel consisting of those vectorfields # along y which satisfy
n(s) = (s, ) n(t) and 7(s) L E*(s)+ E*(s) so that

dimker F} = dim (E*+E")*.

Since ind F, depends only on the homotopy class of y we may assume without loss of
generality that y(s) satisfies (2.1) outside an interval [T, T). In this case

Eu(s) = ];(s) Wu(y): s — T’ ES(S) = I;(a) Ws(x)’ s 2 Ts
and since O(s, 1) E**(t) = E**(s) it follows that

dim E%(s) = ind (), dim E*(s) = n—ind (x)
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for all se R. We conclude that
ind £, = dim ker F —dim ker F¥
=dim (E*n E¥) +dim (E*+E%)—n
=dimE*+dimE*—pn
= ind (y)—ind (x).

If the gradient flow of S is of Morse-Smale type and y(s) satisfies (2.1), then

E*(s)+ E*(s) = L.y M for every seR and it follows from the above that in this case
E is onto.

index theory for an indefinite functional on the loop space which was already
employed by Conley and Zehnder [7, 8] for the case of the 2n-torus. Floer used an
operator analogous to E in order to define a relative index for two critica] points with
infinite Morse index. Moreover, he generalized the chain complex described in

equation
X(0) = Xp(x(2), §). 4.1

Here H:MxR >R is a smooth function satisfying H(x, 1+ 1) = H(x, 0 and the
associated Hamiltonian vectorfield X,,: Mx R — T/ is defined by

O(Xp(x,0,8) = —~d, Hx, )¢, ¢e T, M.

The solutions x(#) of (4.1) determine a l-parameter family of symplectomorphisms
v, € Diff (M) satisfying y,(x(0)) = x(#) and any symplectomorphism ¥ = y, which
can be generated this way is called exact. We denote by

P={x:R—s M s x satisfies (4.1), x(z+ D) = x(#), x is null-homotopic}

the space of contractible I-periodic solutions of
called nondegenerate if det (I—dy,(x(0))) # 0.
We shall assume throughout that the integral of o v

(4.1). A periodic solution X€P, is
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THEOREM 4.1 (Floer). Suppose that (4.2) holds and the contractible 1-periodic
solutions of (4.1) are nondegenerate. Then their minimal number is the sum of the Betti
numbers of M (with coefficients in any principal ideal domain R).

If H(x,?f) = H(x) is time independent then this result follows directly from
Theorem 2.1 since the critical points of H are periodic solutions of (4.1). In the general
case the proof of Theorem 4.1 is based on a version of Morse theory on the loop
space. More precisely, we denote by LM the loop space of M and by L, M = LM the
subspace of contractible loops. We shall identify S* = R/Z and represent a loop in
M by its cover y:R— M satisfying y(z+1) = p(f). The contractible 1-periodic
solutions of (4.1) can then be characterized as the critical points of the functional
JSu: Ly M — R defined by

1) == [ o [ How.a

where D* = C denotes the unit disc and u: D* - M is a smooth function satisfying
u(e®™*) = y(r). Such a function u exists whenever y is a contractible loop and it follows
from (4.2) that fu*w is independent of the choice of u. Now the tangent space
T,L, M can be represented as the space of vectorfields £ e C*(y*TM) along y satis-
fying £(¢2+ 1) = £(#) and a simple calculation shows that the 1-form 4f,,: TL, M — Ris
given by
B, = [ 0.0+ D d.
0

It follows that the critical points of f,, are indeed periodic solutions of (4.1).
In order to determine the gradient of £, we choose an almost complex structure on

M meaning an endomorphism Je C®(End (TM)) such that J® = —1 and
&m =@, JX)n), &nel M, (4.3)

defines a Riemannian metric on M. Such an almost complex structure exists on every
symplectic manifold and J is an isometry with respect to the metric (4.3). Moreover,
T.M becomes an n-dimensional complex vectorspace with scalar multiplication
defined by z¢& = s&+tJ(x)¢é for z =s+iteC. A holomorphic curve is a solution
u: S — M of the nonlinear Cauchy-Riemann equations

= Ou ou

- Z_o0
ou 6s+J(u) %
defined on a Riemann surface S. Holomorphic curves have been studied extensively
by Gromov [16] and their analysis plays an essential role in Floer’s work. In
particular, they satisfy the identity

1
urw == | |Vul?
fs 2.[S|

and hence condition (4.2) implies that there are no nonconstant holomorphic spheres.
It actually turns out that both conditions are equivalent. We also point out that if
VH: M x R — TM denotes the gradient of H with respect to the x-variable then the
associated Hamiltonian vectorfield can be written as X, (x, £) = J(x) VH(x, ).

Now the gradient of f,, with respect to the induced metric on L, M is given by

Viu@) = J3)7+VH(@, De TL, M.
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A gradient flow line of Ju will therefore be g smooth map u:Rx §! = Cliz- M
satisfying

ou ou
— == =0, 4,
FR +J(u) Y +VHu,H) =0 “4.4)

This equation with the initial condition u(0,7) = y(r) does not define a wellposed
Cauchy problem and, Tmoreover, at any critical point the Morse index for both f,, and
—/4 1s infinite, Nevertheless one can do Morse theory for Ju by studying only the
space of bounded solutions, an idea which goes back to C, Conley.

In order to describe the space of bounded solutions of (4.4) we choose any two
periodic solutions x€%, and ye#, and denote by #(y, x) the space of connecting
orbits with respect to the ‘gradient flow’ of /- These are the solutions of (4.4) which
satisfy the boundary conditions

lim u(s, 1) = y(r), lim u(s, t) = x(1) 4.5)
and they minimize the energy functional
1 (1 Noult |on 2
D,(u) = E_f_wJ; ( En + a—t—XH(u, 1) )dtdS.

As in the case of the functional (3.1) in finite dimensional Morse theory this follows
from the identity
2
At ds+ [ (¥) —fo(x).
In particular, if the Space #(y, x) is nonempty and x # y one gets

nf @y = fu(3)~fu(x) > 0

where the infimum is taken over all smooth functions u: R x S — A satisfying (4.5)
and is attained in #(y,x). 1t also follows that . #(y, x) is contained in the space

1(* ("16u Ou
D,(u) = Eﬁmﬁ ,£+J(u)E+VH(u, 1)

M = {ue C°(R x S, M); u satisfies (4.4), ®,(u) < 0 and uis null-homotopic}

of bounded solutions. Equivalently, .# can be defined as the space of solutions u of
(4.4) along which the decreasing function Ju(u,) with u (1) = u(s, t) remains bounded.
We point out that the real numbers act naturally on the space .# by shifting u(s, f)
in the s-direction. This action corresponds to the gradient flow of S restricted to the
space of bounded solutions and the spaces #(y, x) are invariant under this action,

ProPOsITION 4.2 (Floer). # = U Ay, x), where the union is taken over qgi] pairs
X,y €Z,. Moreover, if (4.2) is satisfied then 4 is compact. More precisely, let u, be any
Sequence in M (y, x). Then there exists q subsequence (still denoted by u,) and sequences
of times sleR, j = L,...,m, such that u(s+sl, 1) converges with its derivatives uniformly
on compact sets to v’ e M (x’, X1 where e, for j= 0, cesmand x° = x xm = >

For a proof of this result we refer to [11, 13, 17] and to the next section where we
present a modified version of Floer’s compactness proof.
It was Floer’s idea to reverse the approach to Morse theory which we have

described in Section 3. In particular, he used the spaces .#(y, x) of connecting orbits
in order to define a relative Morse index.
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ProrosiTiON 4.3. (Floer). Suppose that the contractible 1-periodic solutions of
(4.1) are nondegenerate. Then there exists a dense set J,,, ¢ C*(End (TM)) of almost
complex structures such that for every JelJ, and every pair x,yeP, the space
M(y, x) is a finite-dimensional manifold.

In finite-dimensional Morse theory the condition on the metric to be in J,,
corresponds to the gradient flow being of Morse-Smaie type. This analogy suggests
the dimension of the spaces .#(y,x) as a candidate for the relative Morse index.

The proof of Proposition 4.3 makes use of a first order differential operator E,
defined on vectorfields £ e C®(u*TM) by linearizing equation (4.4). More precisely,
we shall denote by V the Riemannian connection corresponding to the metric (4.3).
Then for ue # and a vectorfield &(s, ) e T, , M we define

F&=V,E+Jw)V,E+V,J) %+ V,VH(u, 1). (4.6)

More abstractly, one can consider the left-hand side of (4.4) as a vectorfield on the
infinite dimensional manifold of smooth maps u:R x S! — M satisfying (4.5). The
differential operator (4.6) can then be interpreted as the covariant derivative of this
vectorfield in the direction of a tangent vector ¢ € C*(u*TM ). We also point out that
F, can be written in the form

E& =V, 64+ 0V, Xy ) + Vo0 (3= Xof )

Observing that the formal adjoint operator of F, with respect to the metric (4.3) is
given by s
Fin = =V+J6) (Vo =V, X, (u,0) + Y, J@) (a—’t‘—x,,(u, t))

we define a locally square-integrable vectorfield ¢ along u to be a weak solution of
Fé=nif

r f<F:¢,¢>dtds= F f(¢,ry>dtds, pe Co(u*TM). @.7)

Then the local regularity theory for elliptic operators yields the following estimate.

LEMMA 4.4. Let & and 5 be locally square integrable vectorfields along u satisfying
(4.7). Then V¢ and V, & (defined in the distributional sense) are locally square integrable

and

JT f1(|5|2+lV,fI2+IV,élz)dtds< CJ J (€2 +|F, &Py dt ds
-TJO -TJ¢

with a constant ¢ > 0 depending on T but not on &. Moreover, if § = F, & is smooth (C*)
then so is & and any &€ C®(u*TM) is uniquely determined by F, ¢ together with the

values of & on {s} x S* for any seR.

We define the Hilbert space

L*w) = {é: RxS'— TM; &, 0)e T, 4 M, jw Jl [E(s, )|Pdtds < oo}
-0 J0



130 DIETMAR SALAMON

and consider F, as a linear operator from w12(y) = {CeL¥u);v, ¢ V.&e L¥w)} into

L*w).

ProrosiTiON 4.5 (Floer). If the contractible 1
nondegenerate then F, is a Fredholm operator for ever
which satisfies 4.5). Moreover, there exists a dense set
such that F, is onto Jor every je Jeg and every ye 4.

dim A(y, x) = ind F,

locally near e g (¥, x). The details of this argument become quite technical [11) and
we shall not describe them here.

ProrosiTION 4.6 (Floer). (4.2) holds and the contractible |

-periodic solutions of
4.1 are nondegenerate then the index u(y, x) = ind F, is indepen

dent of ue 4 (y,x) and
Mz, p)+u(y, ) = p(z, %), Ax,x) =0

Jor any triple x, V2P,

In his proof of Proposition 4.6 Floer uses analytical methods [13]. Alternatively,

can use the Mas]

one ov index in order to give a topological characterization of the
Fredholm index as was done by Floer [ i

intersections based on a construction due to Viterbo [33]. For th
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In order to define Floer homology with coefficients in any abelian group G we
need to assign an integer +1 or —1 to a connecting orbit ue #(y, x) provided that
ind (y)—ind (x) = 1 and F, is onto. Here we propose a slightly different approach
from the one in [13]. For a periodic solution xe%, we consider the differential
operator 4, on vectorfields £(7) = £(¢+ 1) along x defined by

A E = JNVE—V Xy(x, 1)) = J(x) VE+V VH(x, 1)+ V, J(x) . (4.8)

This operator represents the Hessian of f,, at the critical point xeL, M and is
selfadjoint on the Hilbert space L3(x*TM) with D(A4,) = W' %(x*TM). Observe that
this operator 4, has a bounded inverse if and only if x is nondegenerate as a periodic
solution of (4.1). Moreover, since A, has a compact resolvent operator it follows that

the linear subspace
E*(x;a)= @D ker(AI—A4,) < L}(x*TM)
—-a<i<0

is finite-dimensional for every o > 0. We assume that there exists an integer N > 0 and
numbers a, > 0 such that —a,¢0(4,) and

dim E*(x;,) = N+ind (x)

for every 1-periodic solution x of (4.1). Such numbers «, and N exist for example if
A, has simple eigenvalues and this can be achieved by an arbitrarily small
perturbation of the almost complex structure J. Returning to ue.#(y,x) with
ind(y)—ind(x) =1, we denote by d&%(u;a,) the space of all vectorfields
Ee C®(w*TM) such that F,& =0 and

0 1 0
J f & dtds+f fe‘”“z‘l/,‘?dtds < o0.
-0J0 0 Jo

Since E, is onto this defines a vectorspace of dimension N+ind (x) + 1. Observing that
L*(u¥ TM) can be identified with L*(y*TM) if —s is sufficiently large we obtain a
linear transformation
P &(u;0) — E*(y; o)

defined by first restricting £ to {s} x S* then using the aforementioned identification
and finally projecting orthogonally onto E*(y;a,) = L*(y*TM). If N was chosen
sufficiently large then this map is actually an isomorphism. Similarly, identifying
L*(u} TM) with L%(x*TM) for large s one can define a surjective linear transformation
P,:8*(u;a,) - E*(x;a,). Both transformations remain surjective even if F, is not. If,
however, F, is onto then they induce an isomorphism

P.o Pl E*(y;a,) N & — E¥(x; o) 4.9)
where
. ou/ds
= lim —-———eL¥y*TM).
b= Jim e O TM)

We point out that we must have ind(y)—ind(x) =1 in order for the spaces
E*(x;a,) and E*(y;a,) N &; to be of the same dimension. Now we fix an orientation
of the spaces E*(x; a,) for every xe Z,. This induces an orientation on E*(y;a,) N &5
by taking &, as the first basis vector in E*(y;a,). For ue #(y, x) we then define n, to
be +1 or —1 according to whether the isomorphism (4.9) is orientation-preserving
or orientation-reversing.

As in the finite-dimensional situation we denote by (x) the pair consisting
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of a periodic orbit x e, together with the above mentioned orientation of the space
E*(x;a,). We then define C, to be the free group

C=Dxxy

where x runs over all x€Z, with ind(x) =k. For any pair x,ye, with
ind (y)—ind (x) = 1 we define the integer n(y,x)eZ by

ny,x)=Yn,

where the sum runs over all orbits in .# (», x). The boundary operator 0% : Coy > C,
of Floer’s chain complex is then defined by

Yy = X n(y,x){x), ye,

where the sum runs over all xe %, with ind (x) = ind (»)—1. This chain complex is
independent of N and of the choice of the orientations.

LemMMA 4.7.  For large enough integers N and N' and orientations {x)» and (x> of

the subspaces E*(x; ) and E¥(x; o), respectively, the associated chain complexes C,
and C;, are chain isomorphic.

We point out that increasing N corresponds to taking the product of the original
flow with a repelling fixed point. In the finite-dimensional case this is reflected in
increasing the Morse-Conley index by a common additive constant.

The above chain complex can be generalized to coefficients in any abelian group
G by defining C(G) = G ® C.and 0°(@) = 1, ® o".

THEOREM 4.8 (Floer). The boundary operator satisfies 0F 0 6F = (. Moreover, the
homology groups .
ker 0f_,(G)
HE(M:; G) = =1\
k im d%(G)
are independent of the Hamiltonian H and the almost complex structure J used to define
them. They agree with the singular homology groups of M.

The homology groups of the chain complex 47 Cy — C, are called the Floer
homology groups. The fact that they recover the homology of M proves Theorem 4.1
by choosing G = R to be a principal ideal domain.

Under these conditions Ju agrees with H on the subspace of constant loops and
Floer’s chain complex contains the Morse complex of H as a subcomplex. More
precisely, if ue # is independent of ¢ then 7)) = u(s, 1) is a connecting orbit in the
gradient flow of H and ind F, = ind E, where F is the Fredholm operator defined by
(3.3) with f = H. (This statement is not entirely obvious. It follows from a topological
characterization of the Fredholm index in terms of the Maslov index for which we
refer to a forthcoming paper.) It then follows from Theorem 3.3 that the index
of a critical point x of H in the sense of Floer (regarded as a 1-periodic solution of

»
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(4.1)) can be chosen as to agree with the Morse index. In the case JeJ,, and
ind (y)—ind (x) = 1 it also follows that every ue.#(y, x) is independent of ¢ since
otherwise ind F, = dimker F, > 2. Hence Floer’s boundary operator is in this case
entirely determined by the connecting orbits in the gradient flow of H. In order to
determine the number n, we observe that for a critical point x of H the tangent space
T,L,M consists of 1-periodic vectorfields £:S'—> .M. On T,M we choose a
symplectic orthonormal basis so that with respect to these coordinates the operator

(4.8) is given by
A, ¢ = Jd—é+S£
=2 dt

where J denotes the standard complex structure

— O I 2nx2n
J= [—I O]ER

and S = STeR?™?" represents the Hessian of H at x. In terms of the standard
Fourier series expansion of a loop &:S* — R®" with coordinates a,, a,, b, € R*", we
obtain that ¢ = 4, ¢ if and only if

ay = Sa,, a, = Sa,+2nkJb,, b, =—2nkJa,+ Sh,.

Recall that we may assume S to be arbitrarily small (but nondegenerate) and that the
dimension of the negative part of S is the index of x. We may therefore choose N =0
and a, = = and it follows that E*(x;a,) consists of the constant orbits taking values
in the unstable subspace E*(x) = T, W*(x) defined by the gradient flow of H.
Moreover, note that the operator F, is in the case u(s, ) = y(s) given by

F&=V,E+Jw)V,E+V,VH@)

and hence a dimension argument shows that &*(u;a,) consists of all vectorfields
¢:Rx S'— TM along y which are independent of ¢ and satisfy F,¢ = 0. We con-
clude that the isomorphism (4.9) in this case agrees with the flow defined map
E¥(y) = E¥(x) of Section 2. This shows that n, =n, and therefore the last state-
ment of Theorem 4.8 follows from Theorem 3.1.

We close this section with an existence result for periodic orbits of period greater
than 1 which in the case of the 2n-torus was proved by Conley and Zehnder [7]. For
general symplectic manifolds the proof is based on Floer homology and will be
carried out in a forthcoming joint paper with E. Zehnder.

THEOREM 4.9. Suppose that (4.2) holds and the contractible periodic solutions of
(4.1) with integer period are nondegenerate. Then there are infinitely many of them.

The assumptions of this result imply in particular that no root of 1 occurs as a
Floquet multiplier of a periodic solution with integer period. It seems to be an open
question whether the non-degeneracy condition in Theorem 4.9 can be removed or

replaced by a weaker assumption.

5. Compactness

The proof of Proposition 4.2 rests on the following two lemmas. In the first we
denote by B, the open disc of radius r > 0 centred at 0eC.
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LEMMA 5.1.  There exists a constant ¢ > 0 such that if u:B,— M is a smooth
solution of (4.4) satisfying
J,

2 8
< 1+—2J
r B,

The number ¢ > 0 in the estimate (5.1) depends on the manifold M, the symplectic
form w, the almost complex structure J and on the Hamiltonian function H. In the
case of holomorphic curves (H = 0) a similar estimate was proved by Gromov [16]
and Wolfson [36]. The proof in [36] carries through to the case H # 0 with only minor
modifications. We point out that in the case H = 0 the additive constant 1 on the
right-hand side of (5.1) can be dropped.

It follows from Lemma 5.1 that for every ue M

2
%’ dtds < e
ds
then

2
%(0) dt ds. (5.1)

@
ds

Ou
g (S, t) s

IVu| = = sup {max{

du
6_t(s’ t)

};seR,Osts 1}< 0.

LeMMA 52. Let G C be an open domain. Then every sequence of smooth
solutions u,: G — M of (4.4) satisfying

sup Hvuv”L""(G) <
veN

has a subsequence converging (with its derivatives) uniformly on every compact subset
of G.

The proof of Lemma 5.2 is based on a well-known elliptic bootstrapping
argument. For the sake of completeness we shall carry out the proof of both lemmas
below. On the basis of these results We are now in the position to carry out the proof
of Floer’s compactness result 11, 17).

Proof of Proposition 4.2. Recall from Lemma 5.1 that IVu|,« < oo for every
u€.#. It then follows from Lemma 5.2 that A is the union of the sets A (y,x) over
all pairs x, y€Z,. Otherwise there would exist a number ¢ > 0, a bounded solution
ue.M of (4.4) and a sequence (5,,,)eR [0, 1] such that Is,| converges to oo and
d(u(s,, t,), x(2,)) > ¢ for every veN and every xe4,. By Lemma 5.2 the sequence
u(s,0) = u(s+s,,¢) has a subsequence (still denoted by u,) converging with its
derivatives, uniformly on compact sets, to a function u*e .. Assuming without loss
of generality that ¢, converges to t*€(0, 1] we then obtain that dW*(0, ), x(1*)) > ¢
for every xe#,. But since Is,| converges to oo it follows that

T 2 T 1
f f‘ dtds = lim f f
-TJo Vo0 J-TJ0

for every T'> 0 and hence u*(s, 1) = x(t) for some X€%,, a contradiction.
We shall now assume that condition (4.2) is satisfied and prove that g is compact.
In view of Lemma 5.2 it is enough to prove that

ot
ds

Ou, |?
aT’ dtds =0

sup |[Vul| .= < oo.
ueM

We proceed

c,: = Hvuv" L
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We proceed indirectly and assume that there exists a sequence u,e.# such that
¢,:= [|[Vu,|| .= = co. We choose z, = s, +it,e C with

Ou, ou,
max{ ds (Zv) 2 E(Zv) } = %cv
and define v,(2): = u,(z,+¢,*z). Then
® Vo, (0)] > 3, 1Vo,ll =, < 1,
N dv, ov, 1 i
(i) —5;+J(vv) 7 +CVVH(I)‘,, t,+c't)=0,
2 2

(i) f o) _ J %4 " < 20,) < 2 max fu(3) —ful).

B, (0) Os By | 05 z,veP,

It follows from (i) and Lemma 5.2 that v, has a subsequence converging together with
its derivatives uniformly on every compact subset of C. The limit function v:C - M
is smooth and satisfies

@) Vuv(0) # 0,

. v v

(i) 5§+ J(v)-a =0,
ov|*

(iii) L 7 < 0.

Now define y,: S* —» M by y,(60) = v(re®™) and observe that

10) = 27 | 2 re0)

and hence
ov

2 o) 1 ) \
L pX —fo —;,;,;;J:m(en db dr < oo,

Therefore the length £(y;) < |y5ll.2 can be made arbitrarily small by choosing R
sufficiently large. Let a: U, » R®*" be a chart of M such that a(U,)) is convex and
suppose that y.(S?) < U, and aoyx(1) = 0. Defining w: S% = C U {0} - M by

oAre™™), r<R,

w(re’%) =
ot (%aov(Rez"“’), r = R,

one easily checks that for R sufficiently large

f w*w > f v*w—e&(R) = J
s? Dg Dp

and this contradicts condition (4.2). Alternatively one can use a removable singularity
theorem [16, 23] in order to establish that v extends to a (nonconstant) holomorphic
sphere v: S% — M again contradicting (4.2).

In order to establish the more detailed convergence result we choose a number

2

i

ds




136 DIETMAR SALAMON

€> 0 such that d(x(s), (®) > 2¢ for every pair X, y€%, and every teR. Given a

sequence u,e #(y, x) we then define

s, = sup{seR; d(u,(s, 1), x()) > ¢ for some e R}.

By Lemma 5.2 we can choose a subsequence such that u(s+s,,7) converges to

v

ue M. It follows that d('(s, 1), x(1)) < ¢ for all s 20,7eR, and d(u(0, ¢), x(t) =¢
for some reR so that u'e M(x', x) for some x'e,, x* # x. We are done if x! = y
and otherwise we proceed by induction. Having established the existence of

sequences s/ such that u,(s+s5,1) converges to 2 €M, x') for j=1,...,k with
x*#y we choose s* >0 such that d(u*(s, 1), x*(r)) < ¢ for some s < —s* For v
sufficiently large we then have d(u,(s¥—5*, 1), x*(1)) < & and define

s =inf{seR;s < s, ~s* and d(u,(o, ?), x¥()) <efors< o< sF— 5%},

Then sf — s* — s+1 converges to co and choosing a further subsequence we obtain that
u,(s+s;*1, 1) converges to u**le 4 (***1, x*) with x*** % x* This finishes the induction
step and the proof of Proposition 4.2.

We point out that Proposition 4.2 becomes false if condition (4.2) is not satisfied.
This is due to the phenomenon of ‘bubbling off of holomorphic spheres’ which was

work on pseudoholomorphic curves (16, 23, 36].
The proof of Lemma 5.1 is based on the next result which is a reformulation of
an estimate in [36]. The main idea of the proof is a well-known trick in the theory of

nonlinear partial differential equations which is due to Heinz and was also used by
R. Schoen [28] in a similar context.

LEMMA 53. If¢:R2 5 B, > R is a function of class C? satisfying

Ap>—A(1+¢%, ¢>0, f b < %, (5.2)

Jor some constant 4 > ¢ then

8
#(0) < ”W L P. (5.3)

r

Proof.  First observe that if ¢ 20 and Ag > — C then

2mpd(0) = —p f (logplog |x}) Ag + f 4

Crp®
< Cpf (logp—logIXIHf ¢ =Tp+f ¢
B, aBp aBp
and integrating over 0 < P < r we obtain
crt 1
<—+— . 5.4
60 < i ¢ (5.4

Secondly note that it is enough to prove Lemma 5.3 for r = |. The general case then
follows by rescaling.
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Given a C? function ¢: B, - R which satisfies (5.2) we define
o) =(1—p)supg, 0<p<1,
B

(4

and observe that f{0) = ¢(0) and f{1) = 0. Choose 0 < p* < 1 and &* EEP. such that
So*) =supf, c* =g({*) =supg,
B .

[0,1] ,

and define ¢ = 3(1 —p*) so that

fp*+e) fp*)
sup ¢ < su =4 <4 = 4c*.
B‘(fl’?) ¢ < Bp.,,,‘I?O) ¢ (1—p*)? = (1—p*?
From now on we shall assume that c* > 1 since otherwise ¢(0) < ¢* <1 and the
Lemma is proved. Then in B,(£*) the function ¢ satisfies the estimate

Ag > —A(1+¢%) = — A(1 +16¢*%) = —24Ac*?

and this in connection with (5.4) shows that

c* = ¢(E") < 3Ac*2p2+izf ¢dx, 0<p<e (5.5)
P" J Ben
Now suppose that 34c*¢* > §. Then we may choose p = (64c*) < ¢ in (5.5) and
obtain the inequality
« . C* 6Ac*
g+
2 T Jewm

ddx

which contradicts (5.2). Hence 34c*e? < and it follows from (5.5) with p = ¢ that

1 c* 1
c* <3Ac*232+—2J pdx < >+— ¢ dx
T&” J Bem 2 me B,(0)
and this implies
2
c*eP g = ¢ dx.
7 J B,

We conclude that

$(0) =0) < fp¥Y) = (1—p*yic* = deter < [ gax

B, (0)

and this finishes the proof of Lemma 5.3.

Proof of Lemma 5.1. In view of Lemma 5.3 it is enough to prove that for every
solution u: G — M of (4.4) the function ¢: G — R defined by

35, = 5

S|

satisfies an estimate of the form Ag > — A(1 + ¢2) with a suitable constant 4 > 0 which
only depends on M, w, J and H.
For this we first observe that every solution of (4.4) satisfies

ou Ju
VS($+VH)+V,(E—X) =Y
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where X = X, is the Hamiltonian vector field associated to H and the vector field ¥
along u is defined by

du du ou
e R e U WL

Now a somewhat technica] but straightforward calculation shows that

2
v xr-(v,2 v x\_(y & Y—VSVH>
os ds

ou Ou Ou\ (du ou Ou
_<a,R(a_S,a—t)(a—t—X)>+<a, \2 V,X> —<—a—t—X, Vv, V,X>.

Hence the inequalities

oul?
A¢—IV,6—S +

ou
Vv, %

oul |ou ou Ou? Ou |? Ou
thV,XISC(a—S En + V,a ), lV,V,Xlgc(E +,V,a ), 1YI<el—|,
and
ul® |oul?
a—’; 5‘;‘ <ce/TF g

yield the required estimate for Ag.

Proof of Lemma 5.2. In view of Rellich’s theorem it suffices to prove that for
every compact domain X <« G, every constant ¢, > 0 and numbers ke N,p > 1 with

kp > 2 there exists a constant C > 0 such that
”u”W“‘“’(K) < C('l5u+VH,'Wk'p(G) + ”u”W"-P(G) +1) (5.6)
for every smooth function u: G - M satisfying

+

Ou
6—1 (S’ t)

S0, z=s5+iteG.

”w”WIH'l'p(Bl) < Clc,p”ao w”W"’p(Bl), k= Os 1, ..

sl<p<ow 5.7
for every smooth function w: B, — R

with compact support, where
= ow  ow 0 7
Ogw=—+J = J—[_I OJ'

The estimate (5.7) is indeed a straightforward consequence of the interior regularity

for Laplace’s equation.
We shall prove (5.6) locally in the neighbourhoo

Bs(2) = B(67(z—z,)).
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Then
"uuw"“-”(s,,,,(zo)) < |Iﬂauuw"“v”(3,(zo))

and hence it suffices to estimate [|B;ull,.;,,- For this we shall need the following
fundamental inequalities for smooth functions f,g:R® - R™ and numbers keN,

1 < p < oo with kp > n:
1/8lk. < Co, gL N, plIgN o+ 1S oligl )5
IFofxp < Ci, ol Fllc*(lf 1k, +1)-

We point out that in the latter inequality the constant C,., depends on a bound for

the function f.
We are now in the position to carry out the estimate for |Bsull 11, , denoting by

C > 0 a generic constant which is independent of « and 4.

”ﬂdu"k+],p < Ck,pllgo 6u)”k,p
< Gy (1850 utlly, , + Csliul, )

|

<C ||ﬂd"L°°"‘_3u||k,p;B,,+ "ﬂé“k,p”éuubw+C¢5"u|lk,p+ Cs

Biut Bl J6)

+C6”u"k.p)
k,p

+C6“u"k,p)

pyu+ Gy —1) 20 Lo 4~ sy

kP

Vo= I iy || 2| +ia-sca, [ 222 )
a_(ﬂa“)

< C&(“éu“k,p—i— ”u"k,p+ D+ C”Jo_J(u)”L“‘(B,) ot

k.p

< Cy(10u+VH@, Ol + lulle, p + D+ Cell sl ga, -
With 6 > 0 sufficiently small we obtain Ce < 1 and this proves Lemma 5.2.

We point out that a similar argument as in the proof of Lemma 5.2 can be used
in order to establish Lemma 4.4 without referring to the general theory of elliptic

operators.

ACKNOWLEDGEMENT. I would like to thank J. Eells and M. Micallef for valuable
suggestions concerning the a priori estimate and for pointing out to me the work by
Schoen and Wolfson.

References

1. V.1 ArNoLD, ‘Sur une propriété topologique des applications globalement canoniques de la
mécanique classique’, C.R. Acad. Sci. Paris 261 (1965) 3719-3722.

2. V.1 ARNOLD, Mathematical methods in classical mechanics (Springer, Berlin, 1978), Appendix 9.

3. V.1. ArNoLD, ‘First steps in symplectic topology’, Russian Math. Surveys 41:6 (1986) 1-21.

4. N. ARONSZAJN, ‘A unique continuation theorem for solutions of elliptic partial differential equations
or inequalities of the second order’, J. Math. Pures Appl. 36 (1957) 235-249.

5. M. Arivas, N. J. HircuiN and 1. M. SINGER, * Selfduality in four-dimensional Riemannian geometry’,
Proc. Roy. Soc. London Ser. A 362 (1978) 425-461.



140 DIETMAR SALAMON

6.
7

- C. C. CoNLEY, Isolated invariant sets and the Morse index, CBMS Regional Conf. Ser. Math. 38
(Amer. Math. Soc., Providence, R.I, 1978).

- C.C.Contey and E, ZEHNDER, “The Birkhoff-Lewis fixed point theorem and a conjecture by V. I,
Armnold’, Invent. Math. 73 (1983) 33-49,

8. C.C. CoNLEY and E, ZEHNDER, ‘A global fixed point theorem for symplectic maps and subharmonic

10.
11.

12,
13.
14.
15.
16.
17.
18.
19,
20.
21.
22,

23.

26.
27.

29.
30.

31.

solutions of Hamiltonian equations on tori’, Pro. Sympos. Pure Math. 45 (Amer. Math. Soc.,
Providence, R.I, 1986), pp. 283-299,

. A. FLOER, ‘Witten’s complex and infinite dimensional Morse theory’, J. Diff. Geom. 30 (1989)
207-221.

A. FLOER, ‘Morse theory for Lagrangian intersections’, J. Diff. Geom. 28 (1988) 513-547.

A. FLOER, ‘The unregularized gradient flow of the symplectic action’, Comm. Pyre Appl. Math. 4]
(1988) 775-813.

A. FLOER, ‘A relative Morse index for the symplectic action’, Comm. Pyre Appl. Math. 41 (1988)
393-407.

A. FLOER, ‘Symplectic fixed points and holomorphic spheres’, Comm. Mah. Phys. 120 (1989)
575-611.

R. D. FrRaNzZosA, ‘Index filtrations and the homology index braid for partially ordered Morse
decompositions s Trans. Amer. Math, Soc. 298 (1986) 193-213.

R.D. FRANZOSA, ‘The connection matrix theory for Morse decompositions ’, Trans. Amer. Math.
Soc. 311 (1989) 561592,

M. Gromov, ‘Pseudoholomorphic curves in symplectic manifolds’, Invent. Mah. 82 (1985) 307-347.

H. Horer, ‘On the Z, cohomology of certain families of almost holomorphic discs in symplectic
manifolds and Ljusternic-Schnirelman theory for Lagrangian intersections ’, preprint, Rutgers
University, 1988.

C. McCorp, ‘The connection map for attractor repeller pairs’, preprint, University of Wisconsin,
1987.

J. W. MiLNOR, Morse theory, Ann. of Math, Studies 51 (Princeton University Press, 1963).

J. W. MILNOR, Lectures on the h-cobordism theorem, Math. Notes 1 (Princeton University Press, 1965).

J. W.MILNOR and J. D, STASHEFF, Characteristic classes, Ann. of Math. Studies 76 (Princeton
University Press, 1974),

R. MoECKEL, ‘Morse decompositions and connection matrices’, preprint, University of Minnesota,
1987.

B. PaNsuy, “Notes sur les pages 316 & 323 de Particle de M. Gromov “Pseudoholomorphic curves in
symplectic manifolds”’, preprint, Ecole Polytechnique, Palaiseau, 1986.

. J. F. REINECK, ‘The connection matrix for Morse-Smale flows ’, preprint, SUNY Buffalo, 1987.
28,

J. W. ROBBIN and D, SALAMON, ‘Dynamica] Systems, shape theory and the Conley index’, Ergodic
Theory Dynamical Systems 8 (1988) 375-393.

J. Sacks and K. UHLENBECK, ‘The existence of minimay immersions of 2-spheres’, Ann, of Math. 113
(1981) 1-24.

D. Saramon, ‘Connected simple systems and the Conley index for isolated invariant sets ’, Trans.
Amer. Math. Soc. 291 (1985) 1-41.

- R. M. ScHoEN, ‘Analytic aspects of the harmonic map problem’, Seminar on nonlinear partial

differential equations, MSRI Publ. 2 (S. S. Chern, ed., Springer, New York, 1984).

S. SMALE, ‘Morse inequalities for a dynamical system s Bull. Amer. Math. Soc. 66 (1960) 43-49,

S. SMALE, ‘The generalized Poincaré conjecture in higher dimensions s Bull. Amer. Marh, Soc. 66
(1960) 373-375.

S. SMALE, ‘On gradient dynamical systems’, Ann. of Math. 74 (1961) 199-206.

32. R. TuoM, ‘Sur une partition en cellules associde 4 une fonction sur une variété’, C.R. Acad. Sci. Paris
228 (1949) 973-975.
33. C. VITERBO, ‘Intersections de sous-variétés lagrangiennes fonctionelles d’action et indice des systémes

3s.
36.

hamiltoniens ’, preprint, 1986.

. A. WEINSTEIN, Lectures on symplectic manifolds, CBMS Regional Conf, Ser. 29 (Amer. Math. Soc,,

Providence, R.I, 1977).

E. Wrrten, ‘Supcrsymmetry and Morse theory’, J, Diff. Equations 17 (1982) 661-692.

J. G. WorFson, ‘Gromov’s compactness of pseudoholomorphic curves and symplectic geometry’,
J. Diff. Geom. 28 (1988) 383-405.

Mathematics Institute
University of Warwick
Coventry CV4 7AL



