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This note is an introduction to our forthcoming paper [17]. There we
show how to construct the metaplectic representation using Feynman path
integrals. We were led to this by our attempts to understand Atiyah’s expla-
nation of topological quantum field theory in [2].

Like Feynman’s original approach in [9] (see also [10]) an action integral
plays the role of a phase function. Unlike Feynman, we use paths in phase
space rather than configuration space and use the symplectic action inte-
gral rather than the (classical) Lagrangian integral. We eventually restrict
to (inhomogeneous) quadratic Hamiltonians so that the finite dimensional
approximation to the path integral is a Gaussian integral. In evaluating this
Gaussian integral the signature of a quadratic form appears. This quadratic
form is a discrete approximation to the second variation of the action integral.

For Lagrangians of the form kinetic energy minus potential energy, eval-
uated on curves in configuaration space, the index of the second variation is
well-defined and, via the Morse Index Theorem,1 related to the Maslov In-

∗This research has been partially supported by the SERC.
1See [8] for example.
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dex of the corresponding linear Hamiltonian system. The second variation of
the symplectic action has both infinite index and infinite coindex. However,
this second variation does have a well-defined signature via the aforemen-
tioned discrete approximation. This signature can be expressed in terms of
the Maslov index of the corresponding linear Hamiltonian system. This is a
symplectic analog of the Morse Index Theorem.

Our treatment is motivated by the formal similarity between Feynman
path integrals and the Fourier integral operators of Hörmander [13]. A key
point of Hörmander’s theory is that the phase function which appears in the
expression for a Fourier integral operator can be replaced by another phase
function which defines the same symplectic relation. This is how Feynman
path integrals can be evaluated: one replaces the symplectic action by the
generating function of the corresponding symplectic relation.

In sections 1 and 2 we review how to use phase functions to construct
Lagrangian manifolds and symplectic relations. These generalities are mo-
tivated by the examples in section 3 where the phase function is the action
integral.

Our topic has a vast literature. Our formula for the metaplectic represen-
tation appears in [16] where it is obtained by other arguments. Souriau [26]
found an explicit solution for the quantum harmonic oscillator involving the
Maslov index (thus correcting Feynman’s original formula which is valid only
for short times). Keller [14] first noticed the phase shift due to the Maslov
index in Theorem 5.2 below and for this reason the Maslov index is some-
times called the Keller-Maslov index. Duistermaat‘s article [8] explains how
to interpret the Morse index in terms of the Maslov index but in the situation
studied here the Morse index is undefined. The article [1] explains how Feyn-
man and Dirac [7] were motivated by using the method of stationary phase
to obtain classical mechanics as the limit (as ~ → 0) of quantum mechanics.
Daubechies and Klauder [5] (see also [6]) have formulated a theory of path
integrals on phase space where the Hamiltonian function can be any poly-
nomial. They remark that the ‘time slicing’ construction used by Feynman
does not generalize. However, our Hamiltonians are at worst quadratic and
Feynman’s original method is adequate.
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1 Lagrangian manifolds

A variational family is a pair

π : P → X, φ : P → R

consisting of a surjective submersion π between manifolds P and X, and a
smooth function φ on P . Each choice of x ∈ X determines a constrained
variational problem

extremize φ(c) subject to π(c) = x.

We call a critical point of φ|π−1(x) a fiber critical point of φ. Denote
by C(π, φ) ⊂ P the set of all fiber critical points c ∈ P of φ. At a fiber
critical point c the differential dφ(c) vanishes on the vertical tangent space
ker dπ(c) = Tcπ

−1(x). This means that there exists a Lagrange multiplier
y ∈ T ∗

xX such that
dφ(c)γ = 〈y, dπ(c)γ〉 (1)

for every γ ∈ TcP . The Lagrange multiplier y is uniquely determined since
dπ(c) is surjective. Consider the map

λπ,φ : C(π, φ) → T ∗X

defined by λπ,φ(c) = (x, y) where x = π(c) and y is given by (1). Denote its
image by

Λ(π, φ) = {(x, y) ∈ T ∗X : ∃c ∈ π−1(x) such that (1)}.

If Λ = Λ(π, φ) is a set of this form then we say that (π, φ) defines Λ and
call φ a phase function for Λ with respect to π. An extreme case is where
P = X and π : P → X is the identity so that φ is a function on X and
Λ = Gr(dφ). In this case φ is called a generating function for Λ.

Let Nπ ⊂ T ∗P denote the fiber normal bundle:

Nπ = {(c, b) ∈ T ∗P : b ∈ ker(dπ(c))⊥}.

This is a co-isotropic submanifold of T ∗P and its symplectic quotient is T ∗X.
In the lingo of [28] Λ(π, φ) is the symplectic reduction of the Lagrangian
manifold Gr(dφ). Recall that two submanifolds G and N of a manifold W
are said to intersect
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- transversally in W iff TzW = TzG+ TzN , and

- cleanly in W iff Tz(G ∩N) = TzG ∩ TzN

for z ∈ G ∩ N . (For clean interesection impose the condition that the in-
tersection G ∩ N be a submanifold; for transverse intersections this follows.
A transversal intersection is automatically clean.) We call the variational
family (π, φ) tranversal (resp. clean) iff Gr(dφ) intersects Nπ transversally
(resp. cleanly) in P .

Proposition 1.1 If (π, φ) is a clean variational family, then Λ(π, φ) is an

immersed Lagrangian manifold. If (π, φ) is a transversal variational family,

then λπ,φ is a Lagrangian immersion.2

Proof: Localize and choose co-ordinates so that P = X ×U where X ⊂ R
n

and U ⊂ R
N and that π : X × U → X is the projection

π(c) = x, c = (x, u).

Then C(π, φ) is defined by the equation ∂uφ = 0 and Λ(π, φ) is defined by
eliminating u from the equations

∂uφ = 0, y = ∂xφ.

The family is transversal iff 0 is a regular value of ∂uφ and clean iff C(π, φ)
is a manifold and the tangent space at a point c = (x, u) ∈ C(π, φ) is given
by

TcC(π, φ) = {(ξ, υ) ∈ R
n × R

N : ∂u∂xφ(x, u)ξ + ∂u∂uφ(x, u)υ = 0}.

To prove Proposition 1.1 fix c = (x, u) ∈ C(π, φ) and apply the next lemma
with A = ∂x∂xφ(x, u), B = ∂x∂uφ(x, u), BT = ∂u∂xφ(x, u), C = ∂u∂uφ(x, u),
d∂uφ(x, u) = (BT , C), T = TcC(π, φ), ` = dλπ,φ(c).

Lemma 1.2 Suppose that A ∈ R
n×n and C ∈ R

N×N are symmetric and that

B ∈ R
n×N . Let

T = {(ξ, υ) : BT ξ + Cυ = 0} ⊂ R
n × R

N

2In the transversal case this is due to Hörmander [13]. The clean case is folklore.
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and ` : T → R
n × R

n by

`(ξ, υ) = (ξ, Aξ +Bυ).

Then `(T ) ⊂ R
n × R

n is a Lagrangian subspace.

Proof: Note that (ξ, η) ∈ `(T ) iff the inhomogeneous system

Bυ = −Aξ + η

Cυ = −BT ξ

has a solution υ. Hence (ξ, η) ∈ `(T ) iff

BT ξ′ + Cυ′ = 0 =⇒ 〈ξ′,−Aξ + η〉 + 〈υ′,−BT ξ〉 = 0.

On the other hand (ξ, η) ∈ `(T )ω iff

BT ξ′ + Cυ′ = 0 =⇒ 〈ξ, Aξ′ +Bυ′〉 − 〈η, ξ′〉 = 0.

Hence `(T ) = `(T )ω. 2

At a critical point of a function, the Hessian is a well-defined quadratic
form on the tangent space; at a fiber critical point c the vertical Hessian
is defined on the vertical tangent space. By Taylor’s theorem the vertical
Hessian Φ is characterized by the equation

φ(c+ γ) = φ(c) + 1
2
Φ(γ) +O(‖γ‖3)

for dπ(c)γ = 0. Here c + γ = expc(γ) ∈ P where exp is an exponential map
which carries vertical tangent vectors to the fiber; Φ is independent of the
choice.

Proposition 1.3 Assume that (π, φ) is a transversal variational family, and

c ∈ C(π, φ). Then Φ is non-degenerate iff dπ(c) : TcC(π, φ) → TxX is an

isomorphism.

Proof: In local coordinates c = (x, u) the tangent space TcC(π, φ) is defined
by the equation

∂u∂xφ(c)x̂+ ∂u∂uφ(c)û = 0.

Hence the projection (x̂, û) 7→ x̂ is an isomorphism on TcC(π, φ) if and only
if the Hessian matrix Φ = ∂u∂uφ(c) is invertible. 2
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Definition 1.4 A fiber critical point c ∈ C(π, φ) is called nondegenerate
if the fiber Hessian Φ is nondegenerate. This implies that

(1) Gr(dφ) and Nπ intersect transversally at c,

(2) dπ(c) : TcC(π, φ) → TxX is invertible, and

(3) T ∗
xX ∩ T(x,y)Λ(π, φ) = 0.

In (3) T ∗
xX ⊂ T(x,y)T

∗X is the vertical tangent space of the cotangent bundle.
The inverse

G = dπ(c)−1 : TxX → TcC(π, φ)

of the projection in (2) is called the Green’s function of φ at c. By the
implicit function theorem π|C(π, φ) is a diffeomorphism in a neighborhood
of x = π(c): we denote the local inverse by g and call it the nonlinear
Green’s function. Clearly

G = dg(x).

Remark 1.5 If the projection π : C(π, φ) → X is a diffeomorphism, there is
a global nonlinear Green’s function g : X → P . Its image is the set g(X) =
C(π, φ) of fiber critical points. In this case Λ(π, φ) admits a generating
function φ ◦ g : X → R.

2 Symplectic relations

A symplectic relation from a symplectic manifold M0 to a symplectic
manifold M1 is a Lagrangian submanifold of M̄0 ×M1. The bar indicates
that the sign of the symplectic form in the first factor has been reversed. We
do not assume that M0 and M1 have the same dimension. A clean variational
family (π01, φ01) with π01 : P01 → X0 × X1 determine a symplectic relation
from T ∗X0 to T ∗X1. The construction is as in the previous section but with
a sign change. As before at a critical point c there is a Lagrange multiplier
(−y0, y1) ∈ T ∗

x0
X0 × T ∗

x1
X1 such that

dφ01(c)γ = 〈y1, ξ1〉 − 〈y0, ξ0〉 (2)

for every γ ∈ TcP where dπ(c)γ = (ξ0, ξ1). Denote by

R01 = {(x0, y0, x1, y1) ∈ T ∗X0 × T ∗X1 : ∃c ∈ π−1
01 (x0, x1) such that (2)}
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the relation induced by φ01. We call φ01 a phase function for R01 and call
R01 the relation defined by (π01, φ01). If (π01, φ01) is a clean variational family
then R01 is a symplectic relation. In the extreme case where P01 = X0 ×X1

and π01 is the identity we call φ01 a generating function for R01. If ψ10 :
T ∗X0 → T ∗X1 is a symplectomorphism then its graph R01 = Gr(ψ10) is a
symplectic relation. In this case we call φ01 a phase function (or generating
function) for ψ10.

The composition of two relations R01 ⊂ M̄0 ×M1 and R12 ⊂ M̄1 ×M2

is the relation

R01#R12 = {(z0, z2) : (z0, z1) ∈ R01, (z1, z2) ∈ R12} .

Note that by our conventions the graph operation is a contravariant functor:

Gr(ψ21 ◦ ψ10) = Gr(ψ10)#Gr(ψ21).

A Lagrangian manifold is a special case of a symplectic relation (take M0 to
be a point) and we have the formula

ψ21(Λ1) = Λ1#Gr(ψ21)

if Λ1 ⊂M1 is Lagrangian.
Let (π01, φ01) and (π12, φ12) be variational families with

π01 : P01 → X0 ×X1, π12 : P12 → X1 ×X2.

Define another variational family (π02, φ02) by

P02 = {(c01, c12) ∈ P01 × P12 : π01(c01) = (x0, x1), π12(c12) = (x1, x2)}

with π02 : P02 → X0 ×X2 given by

π02(c01, c12) = (x0, x2)

and φ02 : P02 → R by

φ02(c01, c12) = φ01(c01) + φ12(c12).

Let Rjk ⊂ T ∗Xj × T ∗Xk be the relation defined by (πjk, φjk).

Proposition 2.1 R02 = R01#R12.

Proof: Fix c02 = (c01, c12) ∈ P02 and

γ02 = (γ01, γ12) ∈ Tc01P01 × Tc12P12

and introduce the notations (xj, xk) = πjk(cjk) and

dπ01(c01)γ01 = (ξ0, ξ1), dπ12(c12)γ12 = (ξ′1, ξ2).
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The tangent space to P02 at is the set of all pairs γ02 such that ξ1 = ξ′1. The
tangent space to the fiber of P02 is defined by the three constraints ξ0 = 0,
ξ1 = ξ′1, and ξ2 = 0. Then c02 is a fiber critical point iff there are Lagrange
multipliers y0 ∈ T ∗

x0
X0, y1 ∈ T ∗

x1
X1, and y2 ∈ T ∗

x2
X2 such that

dφ01(c01)γ01 + dφ12(c12)γ12 = 〈y2, ξ2〉 + 〈y1, ξ1 − ξ′1〉 − 〈y0, ξ0〉

for all (γ01, γ12) ∈ Tc01P01 × Tc12P12. In particular

dφ01(c01)γ01 = 〈y1, ξ1〉 − 〈y0, ξ0〉

(take γ12 = 0) and

dφ12(c12)γ12 = 〈y2, ξ2〉 − 〈y1, ξ
′
1〉

(take γ01 = 0). This shows that R02 ⊂ R01#R12. For the reverse inclusion
argue backwards. 2

The composition operation has the following interpretation. For x ∈ X
we identify T ∗

xX with the vertical tangent space

V = T ∗
xX ⊂ T(x,y)T

∗X.

It is a Lagrangian submanifold of T ∗X. Now fix x0 ∈ X0 and x2 ∈ X2. The
goal is to find all pairs y0 ∈ T ∗

x0
X0 and y2 ∈ T ∗

x2
X2 such that

(x0, y0, x2, y2) ∈ R02.

These points correspond to Lagrangian intersections of the image of T ∗
x0
X0

under R01 with the preimage of T ∗
x2
X2 under R12. For every point

(x1, y1) ∈
(
T ∗

x0
X0#R01

)
∩
(
R12#T

∗
x2
X2

)
(3)

in this intersection there exist points y0 ∈ T ∗
x0
X0 and y2 ∈ T ∗

x2
X2 such that

(x0, y0, x1, y1) ∈ R01 and (x1, y1, x2, y2) ∈ R12 and hence (x0, y0, x2, y2) ∈ R02

as required. In the special case where Rjk is the graph of a symplectomor-
phism each intersection point (x1, y1) determines y0 and y2 uniquely. Thus
given x0 and x2 there is a one-to-one correspondence of Lagrangian intersec-
tion points in T ∗X1 with points in R02 ∩

(
T ∗

x0
X0 × T ∗

x2
X2

)
.
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Now assume that Rjk is a manifold and fix

(xj, yj, xk, yk) ∈ Rjk.

Let c02 = (c01, c12) ∈ P02 be the corresponding fiber critical point so that

πjk(cjk) = (xj, xk)

With this notation we have (3). In the tangent space T(x1,y1)T
∗X1 there are

three interesting Lagrangian subspaces:

L0 = T(x1,y1)

(
T ∗

x0
X0#R01

)
, L2 = T(x1,y1)

(
R12#T

∗
x2
X2

)
,

and the vertical space
V = T ∗

x1
X1.

We assume that L0 and L2 are transverse to V . Then the pair (L0, L2) deter-
mines a quadratic form on the quotient space Tx1X1 = T(x1,y1)T

∗X1/T
∗
x1
X1.

To define it choose a Lagrangian complement H of V :

T(x1,y1)T
∗X1 = H ⊕ V.

Identify H with the dual space V ∗ using the symplectic form on T(x1,y1)T
∗X1.

Since L0 and L2 are transverse to V there exist quadratic forms Qj : H →
V = H∗ such that

L0 = Gr(Q0), L2 = Gr(Q2).

There is a natural projection (isomorphism) H → Tx1X1 and the difference

Q = Q0 −Q2 (4)

descends to a quadratic form Tx1X1 → T ∗
x1
X1. The result is independent of

the choice of H. We abuse language and identify Q with a form on Tx1X1.
The form Q is called the composition form of (L0, L2). Denote by Φjk

the fiber Hessian at cjk. Assume that the fiber critical points cjk ∈ Cφjk
are

nondegenerate and denote the Green’s function by Gjk : Txj
Xj × Txk

Xk →
Tcjk

Cφjk
. Define

G0ξ1 = G01(0, ξ1), G2ξ1 = G12(ξ1, 0).
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Proposition 2.2 The linear map

Tc02π
−1
02 (x0, x2) → Tc01π

−1
01 (x0, x1) × Tx1X1 × Tc12π

−1
12 (x1, x2)

given by

γ02 = (γ01, γ12) 7→ (γ01 −G0ξ1, ξ1, γ12 −G2ξ1)

where ξ1 = dπ1(c01)γ01 is an isomorphism. Moreover,

Φ02(γ02) = Φ01(γ01 −G0ξ1) + Φ12(γ12 −G2ξ1) + 〈Qξ1, ξ1〉. (5)

Proof: In local coordinates we have

φ02(x0, u01, x1, u12, x2) = φ01(x0, u01, x1) + φ12(x1, u12, x2).

The relation R01 is defined by eliminating u01 from the nonlinear system

−y0 = ∂x0φ01(x0, u01, x1)
y1 = ∂x1φ01(x0, u01, x1)
0 = ∂u01φ01(x0, u01, x1).

The last equation defines the set Cφ01 . The Lagrangian manifold T ∗
x0
X0#R01

is defined by fixing x0 and eliminating u01 from the last two. The tangent
space Tc01R01 is defined by eliminating υ01 from

−η0 = (∂x0∂x0φ01)ξ0 + (∂x0∂x1φ01)ξ1 + (∂x0∂u01φ01)υ01

η1 = (∂x1∂x0φ01)ξ0 + (∂x1∂x1φ01)ξ1 + (∂x1∂u01φ01)υ01

0 = (∂u01∂x0φ01)ξ0 + (∂u01∂x1φ01)ξ1 + (∂2
u01
φ01)υ01.

The last equation defines the tangent space to Cφ01 and the Green’s function
G01 is given by solving for υ01. Thus

G0ξ1 = (0,Γ0ξ1, ξ1), Γ0 = −
(
∂2

u01
φ01

)−1
∂u01∂x1φ01.

To define the Lagrangian subspace L0 = T(x1,y1)

(
T ∗

x0
X0#R01

)
, set ξ0 = 0

and eliminate υ01 in the last two equations. Hence L0 is the graph of the
symmetric matrix

Q0 = (∂2
x1
φ01) + (∂x1∂u01φ01)Γ0.
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Similarly, L2 is the graph of Q2 where

−Q2 = (∂2
x1
φ12) + (∂x1∂u12φ12)Γ2, Γ2 = −

(
∂2

u12
φ12

)−1
∂u12∂x1φ12.

Now the tangent vector γ02 is in local co-ordinates given by

γ02 = (0, υ01, ξ1, υ12, 0)

with γ01 = (0, υ01, ξ1) and γ12 = (ξ1, υ12, 0). Hence

γ01 −G0ξ1 = (0, υ01 − Γ0ξ1, 0)

and

Φ01(γ01 −G0ξ1) = 〈(∂2
u01
φ01)υ01, υ01〉 + 2〈(∂u01∂x1φ01)ξ1, υ01〉

−〈ξ1, (∂x1∂u01φ01)Γ0ξ1〉.

Similarly,

Φ12(γ12 −G2ξ1) = 〈(∂2
u12
φ12)υ12, υ12〉 + 2〈(∂u12∂x1φ12)ξ1, υ12〉

−〈ξ1, (∂x1∂u12φ12)Γ2ξ1〉.

Subtract these two identities from the Hessian

Φ02(γ02) = 〈(∂2
u01
φ01)υ01, υ01〉 + 〈(∂2

u12
φ12)υ12, υ12〉

+2〈(∂u01∂x1
φ01)ξ1, υ01〉 + 2〈(∂u12∂x1

φ12)ξ1, υ12〉

+〈(∂2
x1
φ01)ξ1, ξ1〉 + 〈(∂2

x1
φ12)ξ1, ξ1〉.

and use the above formulae for Q0 and Q2 to prove the proposition. 2

3 Examples

In our examples, except for the last one, the space P is a space of paths and
the work of the previous section can be interpreted formally. Alternatively
one can introduce Hilbert manifold structures and generalize the previous
work to the infinite dimensional case.
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Example 3.1 Let X be a manifold and L : R×TX → R be a function. Fix
t0, t1 ∈ R and take P01 = P (t0, t1) to be the space of all paths c : [t0, t1] → X.
Take X0 = X1 = X and define the projection π = π01 by evaluation at the
endpoints:

π(c) = (c(t0), c(t1)).

The phase function φ = φ01 is the Lagrangian action integral

φ(c) =
∫ t1

t0
L(t, c(t), ċ(t)) dt

from the calculus of variations. A tangent vector γ ∈ TcP01 is a vectorfield
along c and it is vertical iff it vanishes at the endpoints. A curve c is a fiber
critical point iff it satisfies the Euler-Lagrange equations

ẏ = ∂xL, y = ∂ẋL

where L = L(t, x, ẋ). The right side of Equation (2) consists of the boundary
terms which result from the integration by parts in the derivation of the
Euler-Lagrange equations. If t2 is replaced by t and allowed to vary between
t1 and t2, the restriction c|[t0, t] is a fiber critical point of the new problem
on P (t0, t) and the Lagrange mutiplier y(t) is the y(t) which appears in the
Euler-Lagrange equations. When the Legendre transformation

TX → T ∗X : (x, ẋ) 7→ (x, y), y = ∂ẋL

is a diffeomorphism, the Euler-Lagrange equations take the form of Hamil-
ton’s equations

ẋ = ∂yH, ẏ = −∂xH

where H : T ∗X → R is defined by eliminating ẋ (via the Legendre transfor-
mation) from

H(t, x, y) = 〈y, ẋ〉 − L(t, x, ẋ).

Example 3.2 Specialize the previous example by taking X a Riemannian
manifold with energy function L(x, ẋ) = 1

2
|ẋ|2x. Then the fiber critical points

are the geodesics. The Hessian Φ = Φ01 is defined by

Φ(γ) =
∫ t1

t0
〈(Wγ)(t), γ(t)〉c(t) dt

12



where the operator W is given by

Wγ =
D2γ

dt2
+R(ċ, γ)ċ.

Here D/dt denotes the covariant derivative along c and γ(t) ∈ Tc(t)X. The
linear second order differential equation Wγ = 0 is the Jacobi equation. The
geodesic is non-degenerate when its end points are not conjugate and the
Green’s function G has its usual interpretation of assigning to the boundary
conditions ξ0 ∈ Tx(t0)X and ξ1 ∈ Tc(t1)X the unique solution γ = G(ξ0, ξ1) of
the boundary value problem

Wγ = 0, γ(t0) = ξ0, γ(t1) = ξ1.

Example 3.3 Again take X0 = X1 = X but now take P(t0, t1) the space of
all curves

c = (x, y) : [t0, t1] → T ∗X

with projection π = πt0t1 : P(t0, t1) → X ×X given by

π(c) = (x(t0), x(t1)).

A time-dependent Hamiltonian H : R× T ∗X → R determines a one-form σH

on R × T ∗M via
σH = 〈y, dx〉 −H dt

called the action form of H. Define the phase function φ = φt0t1 to be the
integral

φ(c) =
∫

c

σH

of the action form along c is called the action integral. A more explicit
formula is

φ(c) =

t1∫

t0

(
〈y, ẋ〉 −H(t, x, y)

)
dt.

where c(t) = (x(t), y(t)). As before the vertical critical points of (π, φ) are
the solutions of the Euler-Lagrange equations of this functional. They are
Hamilton’s equations

ẋ = ∂yH, ẏ = −∂xH.
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The Lagrange multipliers in Equation (2) are given by y0 = y(t0) and y1 =
y(t1). Assume for simplicity that these differential equations are complete.
Then the symplectic relation determined by (πt0t1 , φt0t1) is Gr(ψt1

t0 ) where
t 7→ ψt

t0
(x, y) is the solution of Hamilton’s equations satisfying the initial

condition ψt0
t0 (x, y) = (x, y). These symplectomorphisms define an evolution

system meaning that

ψt2
t1
◦ ψt1

t0
= ψt2

t0
, ψt0

t0
= 1l.

Remark 3.4 Assume that c0 is a nondegenerate fiber critical point in the
previous example. Then there is a local nonlinear Green’s function which as-
signs to every point (x0, x1) near π(c0) the unique solution c(t) = (x(t), y(t))
near c0 of Hamilton’s equation which satisfies x(t0) = x0 and x(t1) = x1. Let

St0t1(x0, x1) =

t1∫

t0

(
〈y, ẋ〉 −H(t, x, y)

)
dt

denote the action integral of this solution. This is a local generating function
of the symplectomorphism ψt1

t0 .

Remark 3.5 Now fix t0 and x0. Then the generating function S(t, x) =
St0t(x0, x) satisfies the Hamilton-Jacobi equation

∂tS +H(t, x, ∂xS) = 0.

To prove this differentiate the identity

S(t, x(t)) =

t∫

t0

(
〈y(s), ẋ(s)〉 −H(s, x(s), y(s))

)
ds

with respect to t and use y = ∂S/∂x.

Example 3.6 By a partition of R we mean an infinite discrete subset T ⊂ R

extending to infinity in both directions. Every t ∈ T has a unique successor
t+ ∈ T and predecessor t− ∈ T defined by

t− = sup T ∩ (−∞, t), t+ = inf T ∩ (t,∞).

Denote the mesh of T by

|T | = sup
t∈T

|t+ − t|.
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Now take X = R
n, T ∗X = R

n×R
n, and fix a time dependent Hamiltonian

H(t, x, y) and a partition T . Let t0, t1 ∈ T with t0 < t1. Define the space

PT (t0, t1) = {c = (x, y) : x : T ∩ [t0, t1] → R
n, y : T ∩ [t0, t1) → R

n}

of discrete paths in R
2n. These discrete paths are finite sequences of length

N and N − 1 where N is the cardinality of the finite set T ∩ [t0, t1]. The
projection π = πt0t1 : PT (t0, t1) → R

n × R
n is given by

π(c) = (x(t0), x(t1)).

The discrete action functional φT : PT (t0, t1) → R is defined by

φT (c) =
∑

t∈T
t0≤t<t1

(
〈y(t), x(t+) − x(t)〉 −H(t, x(t+), y(t))(t+ − t)

)
.

The vertical critical points of (πT , φT ) are the solutions of the discrete
Hamiltonian equations

x(t+) − x(t) = ∂yH(t, x(t+), y(t))(t+ − t)
y(t+) − y(t) = −∂xH(t, x(t+), y(t))(t+ − t).

(6)

These equations define (x(t+), y(t+)) implicitly in terms of (x(t), y(t)). Let
(y0, y1) be the Lagrange multipliers in equation (2). Then y0 = y(t0) and
y1 = y(t1) is defined by equation (6).

Remark 3.7 Assume that cT0 is a nondegenerate fiber critical point in the
previous example and define a discrete generating function ST

t0t1
(x0, x1) as

in the continuous case. Now fix a time interval [t0, t1], let the mesh |T | of
the partition go to zero, and let cT0 converge to a nondegenerate fiber critical
point of the continuous variational problem. Then we have a limit

lim
|T |→0

ST = S.

This follows from standard arguments in the discretization of ordinary dif-
ferential equations.
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4 Hessians

We now compare the fiber Hessians in Examples 3.3 and 3.6. We take X = R
n

and T ∗X = R
n × R

n. To simplify the notation we assume that for each t the
Hamiltonian H(t, x, y) is homogeneous quadratic in (x, y):

H(t, x, y) = 1
2
〈Hxx(t)x, x〉 + 〈Hyx(t)x, y〉 + 1

2
〈Hyy(t)y, y〉

where Hxx(t), Hyx(t), Hyy(t) are n×n matrices with Hxx and Hyy symmetric.
We abbreviate Hxy = HT

yx.

Continuous time

In the continuous time case the fiber Hessian Φ = Φt0t1 is given by

Φ(γ) = 〈Wγ, γ〉

for γ = (ξ, η) : [t0, t1] → R
n × R

n with ξ(t0) = ξ(t1) = 0. The inner product
on the right is the L2 inner product and the fiber Hessian W = Wt0t1 is the
self-adjoint operator on L2([t0, t1],R

n × R
n) with dense domain

W(t0, t1) = H1
0 ([t0, t1],R

n) ×H1([t0, t1],R
n)

given by W (ξ, η) = (u, v) where

u = −η̇ −Hxxξ −Hxyη, v = ξ̇ −Hyxξ −Hyyη,

We call W = Wt0t1 the second variation from t0 to t1. By Proposition 1.3
the Hessian is nondegenerate if and only if the symplectomorphism ψt1

t0 gen-
erated by H admits a generating function.

Discrete time

In discrete time we do the analogous thing. For t0, t1 ∈ T with t0 < t1 define

WT (t0, t1) =
{
γ = (ξ, η) ∈ PT (t0, t1) : ξ(t0) = ξ(t1) = 0

}
.

This is a Hilbert space with the approximate L2-norm

‖γ‖2
T =

∑

t0≤t<t1

(
|ξ(t+)|2 + |η(t)|2

)
(t+ − t).
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In this case the fiber Hessian is the (finite dimensional) symmetric operator
W T = W T

t0t1
: WT (t0, t1) → WT (t0, t1) given by W T (ξ, η) = (u, v) where

u(t) = −
η(t) − η(t−)

t− t−
−Hxx(t

−)ξ(t) −Hxy(t
−)η(t−),

v(t) =
ξ(t+) − ξ(t)

t+ − t
−Hyx(t)ξ(t

+) −Hyy(t)η(t).

We call W T = W T
t0t1

the discrete second variation from t0 to t1. By
Proposition 1.3 the Hessian is nondegenerate if and only if the affine sym-
plectomorphism φt1

t0 generated by the discrete Hamiltonian equations admits
a generating function.

Signature

The operator W T is defined on a finite dimensional space and hence has
a well defined index (number of negative eigenvalues), coindex (number of
positive eigenvalues), signature (coindex minus index), and nullity. For the
operator W the index and coindex are both infinite and hence the signature
is undefined. However, the signature of W T stabilizes when the mesh of the
partition gets sufficiently small. It is related to the Maslov index µ(t0, t1, H)
of the Hamiltonian flow (defined below) as follows.

Theorem 4.1 Assume that Wt0t1 is non-degenerate. If the mesh |T | is suf-

ficiently small then

signW T
t0t1

= 2µ(t0, t1, H).

Here is the definition of the Maslov index. Let Sp(2n) denote the sym-
plectic group and S̃p(2n) its universal cover. Think of an element of S̃p(2n)
covering Ψ as a homotopy class of paths starting at 1l and ending at Ψ. Define
the Maslov cycle

Σ = {Ψ ∈ Sp(2n) : Ψ (0 × R
n) ∩ (0 × R

n) 6= {0}} ,

and its complement
Sp0(2n) = Sp(2n) \ Σ

and denote by Σ̃ and S̃p0(2n) the preimages under the covering map. For
Ψ10,Ψ21 ∈ Sp0(2n) let Q(Ψ21,Ψ10) denote the composition form of the pair

17



(Ψ10(0 × R
n),Ψ−1

21 (0 × R
n)). If the matrices Ψkj are written in block matrix

notation

Ψkj =

(
Akj Bkj

Ckj Dkj

)
(7)

then the composition form is given by

Q = B−1
21 B20B

−1
10 .

Theorem 4.2 There is a unique locally constant map µ : S̃p0(2n) → n/2+Z

such that

µ(Ψ̃20) = µ(Ψ̃21) + µ(Ψ̃10) + 1
2
signQ(Ψ21,Ψ10)

whenever Ψ̃20 = Ψ̃21Ψ̃10 and Ψ̃kj covers Ψkj. This is called the Maslov
index.

The number µ(Ψ̃) of Theorem 4.2 is essentially the intersection number
of Ψ̃ with the Maslov cycle. The definition is modified to adjust for the fact
that the curve Ψ̃ begins at the identity (which is an element of the Maslov
cycle). For details see [19]. The number µ(t0, t1, H) of Theorem 4.1 is the
Maslov index of the curve [t0, t1] → Sp(2n) : t 7→ Ψt

t0
defined by the evolution

system generated by H.

Remark 4.3 Suppose that the evolution system generated by the Hamilto-
nian H is a symplectic shear

Ψt1
t0

=

(
1l B(t1, t0)
0 1l

)
.

Then B(t2, t0) = B(t2, t1) +B(t1, t0) and B(t0, t0) = 1l. The Maslov index is
given by

µ(t0, t1, H) = − 1
2
signB(t1, t0).

For any two symmetric matrices A, B such that A, B, A+B, and A−1 +B−1

are nonsingular we have the signature identity

sign(A) + sign(B) = sign(A+B) + sign(A−1 +B−1).

This proves that the Maslov index as defined by intersection numbers satis-
fies the composition formula of Theorem 4.2 in the case of symplectic shears.
The signature identity is obvious if the matrices are simultaneously diago-
nalizable. The general case can be proved with a homotopy argument.
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Assume that t0, t1, t2 ∈ T are such that the Hessians Wtj tk are nonde-
generate and denote by QT the corresponding composition form as in equa-
tion (4). The composition forms QT converge to the composition form Q of
the continuous time problem as the mesh |T | tends to zero. If the mesh is
sufficiently small then, by Proposition 2.2,

signW T
t0t2 = signW T

t0t1 + signW T
t1t2 + signQT .

Thus the signature of the discrete second variation W T satisfies the compo-
sition formula of Theorem 4.2 and this can be used to prove Theorem 4.1.
Alternatively one can prove Theorem 4.1 first in the special case of a sym-
plectic shear and then use a homotopy argument.

Remark 4.4 Theorem 4.2 is essentially due to Leray [16]. Leray’s index
m(Ψ̃) is related to ours by the formula

m(Ψ̃) = µ(Ψ̃) +
n

2
.

5 Feynman path integrals

Heuristically a variational family (π, φ) together with some sort of measure
on the fibers determines a distribution on the base

f(x) =
∫

c∈P

π(c)=x

eiφ(c)/~Dc. (8)

If the base is a product X = X0 ×X1 the distribution may be interpreted as
an integral kernel

K(x1, x0) =
∫

c∈P

π(c)=(x0,x1)

eiφ(c)/~Dc

of an operator from a space of functions on X0 to a space of functions on X1:

Uf(x1) =
∫

X0

K(x1, x0)f(x0)dx0.

Formally the Feynman path integral is an example of this. The composition
formula of Proposition 2.1 should correspond to the composition of operators.
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Consider a time dependent quadratic Hamiltonian

H(t, x, y) = H0(t) + 〈Hx(t), x〉 + 〈Hy(t), y〉

+ 1
2
〈Hxx(t)x, x〉 + 〈Hyx(t)x, y〉 + 1

2
〈Hyy(t)y, y〉

where Hxx(t), Hyx(t), Hyy(t) are as before, Hx(t), Hy(t) ∈ R
n, and

H0(t) ∈ R. Let φ(c) denote the action integral. The Feynman path inte-
gral associated to H is the formal expression

U(t1, t0, H)f(x1) =
∫

c∈P(t0,t1)
x(t1)=x1

eiφ(c)/~f(x(t0))Dc.

where c = (x, y). Feynman was led to integrals of this type by physical
considerations. He assigned a phase eiφ(c)/~ to each classical path c and
summed over all paths c. Our goal is to interpret this integral as a limit in
the same way Feynman did. The discrete analogue of the path integral is the
expression

UT (t1, t0, H)f(x1) =
∫

c∈PT (t0,t1)
x(t1)=x1

eiφT (c)/~f(x(t0))Dc

where

D c =
∏

t0≤t<t1

(2π~)−n det
(
1l − (t+ − t)Hxy

)1/2
dx(t)dy(t).

The order of integration is the time-order, i.e. first dx(t0), then dy(t0), then
dx(t+0 ) etc. The notation D c hides the normalization which makes the Feyn-
man product a unitary operator. The integral does not converge absolutely
as an integral in all its variables. Interchanging the order of integration
requires justification.

Theorem 5.1 The limit

U(t1, t0, H) = lim
|T |→0

UT (t1, t0, H)

exists in the strong operator topology. It is a unitary operator on L2(Rn).
Here the partitions partition the interval [t0, t1].
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We now give an explicit formula for the operator U(t1, t0, H). According
to the philosophy of Fourier integral operators it should be possible to replace
φ by any other phase function defining the same symplectic relation provided
that Dc is modified appropriately. In the case at hand the symplectic relation
is the graph of the evolution system ψt1

t0 (see Example 3.3) so it is natural to
seek a formula in terms of the generating function S(x0, x1) from t0 to t1. Let
Ψt1

t0 denote the linear part of ψt1
t0 , µ = µ(t0, t1, H) denote the Maslov index of

[t0, t1] → Sp(2n) : t 7→ Ψt
t0 , and B = B(t1, t0) denote the right upper block

in the block decomposition (7) of Ψt1
t0 .

Theorem 5.2 If ψt1
t0 admits a generating function then U(t1, t0, H) is given

by

U(t1, t0, H)f(x1) =
(2π~)−n/2

| detB|1/2
eiπµ/2

∫

Rn

ei S(x0,x1)/~f(x0) dx0.

The formula is first proved in the case of discrete time and then con-
vergence as well as the continuous time formula are obvious. To prove the
analogous formula in discrete time note that Taylor’s formula

φT (c) = ST (x0, x1) + 1
2
〈W T

t0t1
γ, γ〉

is exact (since the action is quadratic). Here c = c0 + γ. c0 is a fiber
critical point with π(c0) = (x0, x1), so ST (x0, x1) = φT (c0). Now integrate
over γ. Then the Maslov index appears as the signature of W T

t0t1 according
to Theorem 4.1.

Associated to the Hamiltonian H(t, x, y) is a second order differential
operator H(t, Q, P ) where Qj and Pj denote the self-adjoint operators

(Pjf) (x) = −i~∂jf(x), (Qjf) (x) = xjf(x),

and H(t, Q, P ) results from H(t, x, y) by making the following substitutions

xj 7→ Qj, yj 7→ Pj,

xjxk 7→ QjQk, yjyk 7→ PjPk, xkyj 7→ QkPj −
i~

2
δjk1l.

Pay attention to the mixed term: Qj and Pj do not commute. If the Hamil-
tonian has the form H = 1

2
|y2| + V (x) the equation in the next theorem is

the Schrödinger equation.
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Theorem 5.3 The operators U(t, t0, H) are the evolution operators of the

time-dependent partial differential equation

i~
∂u

∂t
= H(t, Q, P )u.

Proof: Assume that ψt
t0 admits a generating function and let S(t, x, x0)

be given by the action. Let B(t) denote the right upper block in the block

decomposition of Ψt
t0 = dψt

t0 and abbreviate λ = eiπµ(t,t0 ,H)/2 (2π~)−n/2. Then

u(t, x) = U(t, t0, H)f(x) = λ| detB(t)|−1/2
∫

Rn

eiS(t,x,x0)/~f(x0) dx0.

Differentiating with respect to x gives

Pju = λ| detB|−1/2
∫

Rn

∂S

∂xj
eiS/~f

and

PjPku = −i~
∂2S

∂xj∂xk

u+ λ| detB|−1/2
∫

Rn

∂S

∂xj

∂S

∂xk

eiS/~f

Hence the right hand side of the equation is

H(t, Q, P )u = −i~ 1
2
tr (Hyx +HyyDB

−1) u

+λ| detB|−1/2
∫

Rn

H(t, x, ∂xS)eiS/~f.

Here we have used the identity ∂2S/∂x2 = DB−1 where D = D(t) is the
lower right block in the block decomposition (7) of Ψt

t0 . Now

d

dt
| det B|−1/2 = − 1

2
tr (ḂB−1)| det B|−1/2

= − 1
2
tr (Hyx +HyyDB

−1)| det B|−1/2

and hence

i~
∂u

∂t
= −i~ 1

2
tr (Hyx +HyyDB

−1) u− λ| detB|−1/2
∫

Rn

∂S

∂t
eiS/~f.

Since S satisfies the Hamilton-Jacobi equation ∂tS + H(t, x, ∂xS) = 0 this
proves the statement whenever ψt

t0
admits a generating function. The general

case follows since both sides of the equation depend continuously on H. 2
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6 Geometric Quantization

A time dependent Hamiltonian H on R
2n determines an evolution system on

W = R
2n × U(1) via the formula

gt1
t0

(z0, u0) =
(
ψt1

t0
(z0), u0e

iφ(c)/~

)

for (z0, u0) ∈ W = R
2n×U(1) where ψt1

t0 is the evolution system generated by
H, φ(c) is the symplectic action integral evaluated at the curve c(t) = ψt

t0(z0).
If the generating function S = φ(c) of ψt1

t0 is defined then

gt1
t0

(z0, u0) =
(
ψt1

t0
(z0), u0e

iS(x0,x1)/~

)
(9)

where zj = (xj, yj), z1 = ψt1
t0 (z0). The group ESp(W, ~) of all diffeomorphisms

of W of form gt1
t0 where H runs over the time dependent (inhomogeneous)

quadratic Hamiltonians R → F2 is called the extended symplectic group.
The various groups ESp(W, ~) depend set-theoretically on ~ but are isomor-
phic as abstract groups. There is a central extension

1 → U(1) → ESp(W, ~) → ASp(R2n) → 1

where ASp(R2n) denotes the affine symplectic group; the projection is
given by gt1

t0 7→ ψt1
t0 and the U(1) subgroup consists of those gt1

t0 where H is
constant.

If the Hamiltonian H is time independent then the corresponding evolu-
tion systems ψt1

t0 and gt1
t0 are flows: denote by XH and YH the vector fields

generating these flows. Then XH is the Hamiltonian vector field of H, and
YH is a lift of XH to L. The Lie algebra to ASp(R2n) is the image of quadratic
Hamiltonians under the representation H 7→ XH but this representation is
not faithful as the constant Hamiltonians map to zero. However the repre-
sentation H 7→ YH is faithful. Differentiating gives the following

Proposition 6.1 The vector field YH on W is given by

YH(z, u) = (XH(z), uisH/~) , sH = 〈y, ∂yH〉 −H.

Souriau [25] and Kostant [15] describe the extended symplectic group as
the group of bundle automorphisms of the U(1) bundle W → R

2n which cover
affine symplectic transformations and preserve the connection form

α = −
i

~
〈y, dx〉 + u−1du.
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7 Representations

The group EMp(2n) of all unitary operators of the form

U = U(t1, t0, H) (10)

where H runs over the time dependent quadratic Hamiltonians and t1, t0
range over the real numbers form a finite dimensional group called the ex-
tended metaplectic goup. The subgroup Mp(2n) obtained by taking only
homogeneous quadratic Hamiltonians H in (10) is called the metaplectic
group. The subgroup HG(2n) obtained by taking only affine Hamiltonians
H in (10) is called the Heisenberg group. By Theorem 5.2 the map

EMp(2n) → ESp(W, ~) : U(t1, t0, H) 7→ g
t1
t0
(H)

is a well-defined double cover (which depends on ~). This repesentation of
the double cover of the symplectic group is called Siegel-Shale-Weil represen-

tation or the metaplectic representation. The restriction of the double cover
to the Heisenberg group is injective and the resulting representation is called
the Heisenberg representation.

Here is a more explicit description of the Heisenberg representation. If H
is an affine Hamiltonian with constant coefficients then

U(t, t0, H) = T ((t− t0)H)

where
T (H) = e−iH0/~−i〈Hx,x〉/~+i〈Hx,Hy〉/2~f(x−Hy).

If Ψ is a symplectic matrix then the map H 7→ T (H ◦ Ψ) is another such
representation corresponding to the same value of Planck’s constant ~. By the
Stone-von Neumann theorem these representations are unitarily isomorphic.
In other words there exists a unitary operator U : L2(Rn) → L2(Rn), unique
up to multiplication by a complex number of modulus 1, such that

T (H ◦ Ψ) = U−1 ◦ T (H) ◦ U.

Such an intertwining operator U may be taken as a lift of Ψ to the meta-
plectic group. This is apparently how the metaplectic representation was
discovered (see [23]). The elements of the metaplectic representation are
thus viewed as intertwining operators of various incarnations of the Heisen-
berg representation. See [20] for an exposition in terms of co-adjoint orbits
and polarizations.
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8 Quantum field theory

By generalizing from affine symplectomorphisms to affine symplectic relations
it should be possible to generalize the extended metaplectic representation
to the extended metaplectic functor. An extended Lagrangian subspace is a
Legendrian submanifold of W which covers an affine Lagrangian subspace of
R

2n. A quadratic function S : R
n → R determines an extended Lagrangian

subspace L(S) via

L(S) = {(x, y, u) ∈ W : y = ∂xS(x), u = eiS(x)/~}.

An element of the extended symplectic group can be interpreted as an ex-
tended Lagrangian subspace of the external tensor product W ∗ ⊗ W over
R̄

2n × R
2n. (The bar indicates that the sign of the symplectic form in the

first factor is reversed.) More generally given circle bundles W0 → R
2n0 and

W1 → R
2n1 as in Section 6 let W01 → R̄

2n0 × R
2n1 be endowed with the con-

nection form α1 − α0. Then an extended symplectic relation is an extended
Lagrangian subspace of R̄

2n0 × R
2n1 . Extended Lagrangian subspaces appear

as the special case n0 = 0. The extended metaplectic functor assigns to
each extended symplectic relation a distribution on R

n0 ×R
n1 , determined by

the relation only up to a sign, and respecting the operation of composition
defined in section 2. In the case of an extended symplectomorphism gt1

t0 (H)
the distribution is the distribution kernel of U(t0, t1, H). For a quadratic
generating function S(x) the distribution is eiS(x)/~ multiplied by a normal-
izing factor. Composition of extended symplectic relations corresponds to
composition of distribution kernels; there should be a formula like

U(R01#R12) = tr(U(R01) ⊗ U(R12)).

The extended metaplectic functor should give a simple model of Segal’s ax-
ioms for topological quantum field theory. Taking the homology of a Riemann
surface as the underlying symplectic vector space should lead to a (2 + 1)-
dimensional theory. This is what Atiyah calls the Abelian case (without the
lattice).
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