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1. Introduction. The object ofthis paper is to present a general semigroup theoretic
framework for solving the linear quadratic control problem (LQCP) for systems with
an infinite dimensional state space and unbounded input and output operators.

The LQCP has been one of the central research problems in the area of mathemati-
cal systems, theory for more than twenty years. This is partly due to its beautiful
mathematical structure. Furthermore, the LQCP provides a link between the area of
optimal control and structure theory for linear control systems, and last, but not least,
the infinite time quadratic cost problem leads to a numerically stable procedure for
stabilizing a linear system by feedback.

For finite dimensional systems the LQCP is now well understood (see e.g. Willems
[28], Wonham [29]) and a more or less complete generalization ofthe finite dimensional
theory has been developed for infinite dimensional systems with bounded input and
output operators (see e.g. Datko [6], Curtain and Pritchard [4], Lions [19], Gibson
[10], Bensoussan, Delfour and Mitter [2], Zabczyk [30]).

In many dynamical systems, the control and observation processes are severely
limited. For example there may be delays in the control actuators and measurement
devices. Also for systems described by partial differential equations (PDE) it may not
be possible to influence or sense the state at each point of the spatial domain. Instead
controls and sensors are restricted to a few points or parts of the boundary. Modelling
such limitations results in unbounded input and output operators. For infinite
dimensional systems with unbounded input and output operators the LQCP has recently
been studied by various authors. One of the first papers in this direction was by Lukes
and Russell [20] and involved spectral operators. The classical reference for parabolic
systems is of course the book of Lions [19]. His results have only recently been
generalized to parabolic systems with a larger degree of unboundedness in the input
and output operators (Pollock and Pritchard [22], Balakrishnan [1], Flandoli [9],
Lasiecka and Triggiani [16], Sorine [26], [27]). The LQCP for first order hyperbolic
PDE’s has been studied by Russell [23]. Lasiecka and Triggiani [18] consider the
higher dimensional wave equation with Dirichlet boundary control. In their paper the
resulting optimal feedback operator is unbounded. For retarded systems with input
delays we refer to Ichikawa 12] and Delfour [8] and for neutral systems with output
delays to Datko [7] and Ito and Tam [14].
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All of these papers deal with very specific classes of infinite dimensional systems--
so far, no attempt has apparently been made to develop a general semigroup theoretic
approach for the infinite dimensional LQCP with unbounded input and output
operators which applies both to parabolic and hyperbolic PDE’s as well as to retarded
and neutral functional ditterential equations (FDE). In the present paper we fill this
gap. An essential feature in our approach is that the semigroup S(t) which describes
the dynamics of the homogeneous equation is not assumed to have any smoothing
properties. This is possible by means ofthe theory developed in Salamon [25, Chap. 1.3]
and provides the basis for our approach to .the LQCP.

In 2 we solve the finite quadratic control problem in the general semigroup
theoretic framework. In particul.ar, we derive the existence of a unique-nonnegative
solution P(t) of the operator differential Riccati equation and we show that the unique
optimal control is given by a time-varying feedback law involving this operator P(t).
We point out that the solution operator P(t) of the Riccati equation has smoothing
properties and that the associated feedback operator is bounded.

Section 3 is devoted to the infinite time problem and the solution is described in
terms of the operator algebraic Riccati equation. The solution of the algebraic Riccati
equation is derived as the limit operator of the solutions of the differential equation
on the interval [0, T] as T tends to infinity. Generalizing the results of Zabczyk [30],
we establish relationships between the stabilizability and detectability properties of
the system and existence and uniqueness results for the algebraic Riccati equation.

In 4 we show how our general theory applies to parabolic and hyperbolic PDE’s
with boundary control as well as for neutral FDE’s with output delays. For these
special classes of infinite dimensional systems we do not derive substantial new results.
We do, however, obtain a number ofknown results, which have not even been published,
as simple straightforward consequences of our general theory. Another application of
this theory to retarded FDE’s with delays in control and observation will be the subject
of a follow up paper.

2. Finite time control. In a formal sense our basic model is

)i( t) Ax( t) + Bu( t), X( to) Xo,
(2.1)

y( t) Cx( t), to <- <-- tl,

where u(. )s L2[to, t; U], y(. ) L2[to, tl; Y], U and Y are Hilbert spaces and A is
the infinitesimal generator of a strongly continuous semigroup S(t) on a Hilbert space
H. In order to allow for possible unboundedness of the operators B and C, we assume
that B ( U, V), and C ( W, Y) where W, V are Hilbert spaces such that

(2.2) Wc H c V

with continuous dense injections. Of course, we interpret (2.1) in the mild form which
means that its solution x(t) is given by the variation-of-constants formula

(2.3a) x(t) S(t- to)Xo+ S(t-tr)Bu(tr) dtr, to<- <- t.
to

In order to make this formula precise and to allow for trajectories in all three spaces
W, H, V, we have to assume that S(t) is also a strongly continuous semigroup on W
and V and that the following hypotheses are satisfied.

tl S(t tr)Bu(tr) dtr W and(H1) There exists some constant b >0 such that to
I15’,’o S(tl-tr)Bu(tr) drll , <- bllu ")11=(,o,,,;> for every u(. ) L2(to, t; U).
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(H2) There exists some constant c>0 such that IIfs(.-to)xll(,o,,,;>cllxllv
for every x W.

Remarks 2.1. (i) Hypothesis (HI) implies that for every Xo W and every u(. )
L(to, h; U) formula (2.3a) defines a continuous function x(. on the interval [ to, t]
with values in W. Hence the output can in this case be defined by

(2.3b) y(t) CS(t- to)Xo+ C S(t-tr)Bu(tr) dtr, to <- <- tl,
to

and is a continuous function on the interval [to, t] with values in Y. If Xo V, then
x(. is only a continuous function with values in V and (2.3b) does not make sense
directly. But if (H2) is satisfied, then for any Xo V we will use the expression
CS(t-to)Xo, to <- <-tl, to denote he function in LE(to, tl; Y) which is obtained by
continuous extension to Xo V of the operator which maps Xo W into CS(.- to)Xo
LE(to, tl; Y). In this sense the right-hand side of (2.3b) is a well defined LE-function
of with values in Y.

(ii) In the above sense the expression CS(t)Bu has a well defined meaning as a
function of for every u U. But the expression CS(t-tr)Bu(tr) will in general not
be a well defined function of tr. Therefore the operator C cannot be taken under the
integral sign in (2.3b).

(iii) In the following we identify the Hilbert spaces H, U, Y with their duals.
Then it follows from (2.2) by duality that

V* H W*

with continuous, dense injections. Furthermore, the adjoint semigroup S*(t) is a

strongly continuous semigroup on all three spaces V*, H, W*.
(iv) Hypothesis (H1) is satisfied if and only if the following dual statement holds.

(nl*) v*.

This is a simple consequence of the identity

x, S(t-r)Bu(r) &r (B*S*(t-r)x,
V*, V to

for x V* and u(. ) L2(to, h; U) and the fact that W**= W. Similarly, the dual
statement of (H2) is the following.

(H2*) For every y(. ) L2(to, tl; Y) we have

S*(z- to)C*y(r) dr clly("
o V*

(v) In view of hypothesis (HI*) the expression B*S*(t)x has a well defined
meaning as an L2 function of for every x W*, in paicular when x C*y with y K

Associated with the control system (2.3) is the performance index

(2.4) J(u)=(X(tl), Gx(t,))v.+ [llCx(t)ll+<u(t), Ru(t))v] at,
to

where G ( V, V*) is a nonnegative definite operator and R (U) satisfies

<u, Ru>   llull 
for some e > 0 and every u U.

Now let us consider system (2.3) with the feedback control

(2.5) UF( t) F( t)x( t), to <- <- tl,



124 A. J. PRITCHARD AND D. SALAMON

where F(t) .(V, U) is strongly continuous on the interval [to, tl]. Then we may
define a mild evolution operator F(t, S) (V), to <---- s <-- <-- tl, via

(2.6) F(t, S)X S(t- s)x + S(t- tr)BF(tr)dPF(tr s)x dtr

(see Curtain and Pritchard [4]).
Remarks 2.2. (i) It follows from (2.6) that F(t, S) satisfies the equation

(2.7) dPF(t, s)x--x= F(t, tr)[A+ BF(tr)]xdcr, to<=S=< t<-_ tl

for every x v(A) (the domain of A regarded as an unbounded, closed operator on
V). Equivalently the function s- F(t, S)X V is continuously ditterentiable on the
interval to, t] for every x v(A) and satisfies

OdpF( t, s)x
(2.8) s --bF( t, s)[A + BF(s)]x, to<-_ s <-_ <- t

(see Curtain and Pritchard [4].)
(ii) It is well known that the evolution operator satisfies the equation

(2.9) F(t,s)x=S(t--s)x+ F(t, tr)BF(cr)S(cr-s)xdtr

for to=< s=< t=< t and x V. (See Curtain and Pritchard [4].)
(iii) Often we will consider the feedback system with an additional forcing input

v(.) so that

(2.10) u( t) F( t)x( t) + v( t)

in (2.3). It follows easily from (2.9) thatmfor this control function--the corresponding
solution of (2.3) is given by

(2.11) x(t)=dP(t, to)Xo+ dP(t, cr)Bv(tr) dr, to=< t t.
to

(iv) Using (2.6), it is easy to see taat F(t, S) is also a strongly continuous
evolution operator on W and V and has the following propeies.

(HI’) There exists a constant b’> 0 such that

F(t, )Bu() d b’llu
W

for every u(. L2(to, t; U) and every [to, t].
(H2’) There exists a constant c’> 0 such that

c’llxllv
for every x W and every s to, t]

The dual propeies are the following:
(HI’)* e inequality

holds for every x V* and every to, tl].
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(H2’)* The inequality

holds for every y(.) e LE(to, tl; Y) and every s e to, tl].
Using the condition (H2’) and its dual, we can define a strongly continuous

operator PF( t) ( V, V*), by

PF(t)x=C*F(tl, t)GCF(tl, t)X+ (I)*(% t)C*CCF(" t)xdz

(2.12)
+ c*F(,, t)F*(,)RF(,)CF(-, t)xd,

for to -< -< and x V. Then the cost of the feedback control (2.5) corresponding to
an initial state Xo V is given by

(2.13) J(uF) (Xo, P( to)Xo)v,v..

If the initial state is in H, then this expression can be interpreted via the inner product
in H.

Remark 2.3. The adjoint operator of P(t) ( V, V*) is still an operator from V
to V* and coincides with P(t). In this sense one can say that PF(t) is self adjoint.
Equivalently, the operator i-lpF(t) on the Hilbert space V is self adjoint with respect
to the inner product on V where i" V V* is the canonical isometric isomorphism.
Finally, P(t) is self adjoint in the above sense if and only if its restriction to H is a
self adjoint operator on H.

A formula comparing the cost of an arbitrary control u(. ) LE(to, tl; U) with the
cost of the feedback control (2.5) will play an important role in our analysis. In the
proof of this result we will need to interchange some integrals. At some points this
becomes a delicate problem since we will have to operate with terms like CCF(t, s)B.
In order to make the results precise, we need a third hypothesis.

(H3) Suppose that

Z v(A) W

with a continuous, dense embedding where the Hilbert space Z is endowed
with the graph norm of A, regarded as an unbounded, closed operator on V..

This assumption is not very restrictive. It is satisfied by all known examples of systems
which satisfy (H1) and (H2) if the spaces W and V are chosen appropriately. In the
following we summarize some important consequences of (H3).

Remarks 2.4. (i) If (H3) is satisfied, then A can be regarded as a bounded operator
from Z into V. Correspondingly A* becomes a bounded operator from V* into Z*.
On the other hand A can be restricted to a closed, densely defined operator on Z. Its
adjoint in this sense coincides with the above operator A*: V* Z* (Salamon [25,
Lemma 1.3.2]) and moreover

w.(A*) c z.(A*) V*.

(ii) It is a well-known fact from semigroup theory that

Ttx S(s)x ds v(A) Z
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for every x V and every >= 0. If (H3) is satisfied, then T, is a strongly continuous
family of bounded, linear operators from V into W. It is easy to see that the adjoint
operator T,* ( W*, V*) is given by

T*t x S*(s)x ds e w.(A*) V*

for x W* and _-> 0.
(iii) If (H1), (H2) and (H3) are satisfied, then the following equation holds for

every u U and every t-> 0

C S(s)Buds CT,Bu CS(s)Buds.
o

This seems like a trivial fact; however, we were not able to establish this identity
without assuming (H3). Note that the LHS of the above equation has to be interpreted
in terms of (H1) and the RHS in terms of (H2). For establishing the equation one
must approximate Bu V by a sequence of elements in W. Then the term on the LHS
will not converge in general unless range T, c W.

LEMMA 2.5. Suppose that (H1), (H2), (H3) are satisfied; let F(t)Sf(V, U),
to<= <= tl, be strongly continuous and let dl( t, s) ( V) VI ( W) be defined by (2.6).
Moreover, let u( L2(t0, tl U) and y( L2(to, t U) be given. Then

(2.14) (Cdr(t,s)Bu(s),y(t))gdtds= C dPF(t,s)Bu(s) ds, y(t) dt
to to to Y

where the first expression must be interpreted in terms of (H2) and the second in terms
of(Hi).

Proof. First note that, by (2.6) and (H1), F(t, S) S(t s) ( V, W). Hence it
is enough to establish the desired equation with F(t, S) replaced by S(t s). Secondly
it is easy to see that with Tt &( V, W) defined as in Remark 2.4(ii) the-equations

x(t) S(t- s)Bu(s) ds T,_sBft(s) ds e W,
to to

(s) S* *y r*_sC*fi(t) dte V*

hold for u(. e [o, t; U] with u(to) 0 and y(.) e ’[to, tl; Y] with y(t) 0.
Interchanging integrals, we obtain from these identities that

(Cx(t), y(t))ydt= (Bu(s), z(s))v,v, ds
to to

q
(CS(- s)Bu(s), y(t))ydt ds.

Now the statement of the lemma follows from the fact that both sides of this equation
depend continuously on u(. e L[ to, t; U] and 3’(" e L[ to, t; Y].

Now we are in the position to prove the desired comparison formula for the
feedback control (2.5).

LEMMA 2.6. Suppose that (H1), (H2), (H3) are satisfied; let F(t)e(V, U) be
strongly continuous on the interval to, tl] and let PF( t) ( V, V*) be defined by (2.12)
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and (2.6). Then thefollowing equation holdsfor every Xo Vand every u( L2( to, tl U)

J(u)-(Xo, P(to)Xo)v,v. (R-1B*PF(t)x(t)
to

+u(t), g[R-1B*PF(t)x(t)+u(t)]) dt
(2.15)

I (R-1B*P(t)x(t)
to

+ F(t)x(t), g[g-IB*PF(t)x(t)+ F(t)x(t)]) dt

where x( t), to <- l, is given by (2.3).
oo We sketch only the main steps of the proof for the case Xo Let x(t)

be the mild solution of (2.1) given by (2.3) and define

V( t) u( t) F( t)x( t),

z(t)= F(t, s)Bv(s) ds= x(t)--F(t, to)Xo
to

for to tl (see Remark 2.2(iii)). en applying Lemma 2.5, we can obtain

2Re (C(t,s)(s), C(t,s)Bv(s)) dtds
o

q
(t, s)Bv(s)) dtds= IlCz(t)ll dtRe (Cz(t),C

to to

and therefore, again using Lemma 2.5,

2Re (C(t, s)x(s), C(t, s)Bv(s)} dtds
o

=2Re (C*F(t,, to)Xo, Cz(t)) at+ IlCz(t)ll at
to to

IlCx(t)ll dt- IIC*F(t, to)xolldt.
to to

alogous identities can be derived in a more straightforward way when C*C is
replaced by G( V*) or F*(t)RF(t) (V, V*). Using first (2.12) and then these
identities, we get

+ IlCx(t)II at- C*(t, to)xoll dt
to to

(F(t)(t, to)xo, RF(t)(t, to)xo) dt
o
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+ (F(t)x(t), RF( t)x(t)) dt.
to

It is easy to see that this equation implies (2.15).
We are now able to prove the main result of this section.
THEOREM 2.7. Let (H1), (H2) and (H3) be satisfied. Then there exists a unique

strongly continuous selfadjoint, nonnegative operator P( t) ’( V, V*) to <- <- tl solving
the integral Riccati equation.

(2.16)
P( t)x I,*( tl t)GC,( tl t)x

+ *.(s, t)[C*C+P(s)BR-B*P(s)](s, t)xds

for x Wand to<- <- t where oi,(s, t) v(s, t) is the evolution operator defined by (2.6)
with F(t) -R-1B*p( t) ,( V, U). Furthermore there is a unique optimal control which
minimizes the performance index (2.4) subject to (2.3). This optimal control is given by
the feedback control law

(2.17)

and the optimal cost is

(2.18)

UF( t) -R-B*P( t)x( t)

(z, Pk+l(t)X)v,v* (k( tl, t)z, Gk(t t)x)v,v.

(2.19) + (Ck(s, t)z, C(s, t)x)yds

+ (B*Pk(S)k(s, t)z, RB*Pk(S)k(s, t)x)vds

holds for to<=t<=tl and x W. Applying Lemma 2.6 to F(t)=-R-IB*Pk_I(t) and
Uk(t)=--R-B*Pk(t)x(t), we obtain

(Xo, Pk+,( to)Xo) J( Uk) (Xo, Pk( to)Xo)

([P(- _(,lx(,l,-*
(2.20)

,o

[PK(’)--Pk_,(’)]X(r)) dr

<- Xo Pk (to)Xo)

for k and Xo V. Thus the sequence (Xo, Pk(to)Xo)v,v*, k, is monotonically
decreasing and positive. Applying Kato’s result [15, p. 454, Thm. 3.3] to the monotoni-
cally decreasing sequence of nonnegative operators -Pk(to) on V where i" V- V* is

Proof We regard (2.16) as a fixed point problem which is to be solved by iteration.
Let us define the sequence Pk(t) 0( V, V*) recursively through

so that

Po(t) O, P(t)=Pv(t), F( t) -R-’B*Pk_I( t)

for ke and to<- t<- tl, where PF(I) is given by (2.12). Let us also define

(s,t)=(s,t), F( t) -R-B*Pk( t),

J(UF) (Xo, P( to)Xo).
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the canonical isomorphism (Remark 2.3), we obtain the strong convergence of this
sequence to a nonnegative limit operator on V. Hence the operators Pk(to) ( V, V*)
converge strongly to a nonnegative self adjoint operator P(to) ( V, V*). The same
conclusion is valid for every to, t] since to <- tl can be chosen arbitrarily.

Moreover, (2.20) shows that the operators Pk(t)(V, V*), to<= t<= tl, kt are
uniformly bounded. Hence the limit operator P(t) ( V, V*) is strongly measurable
and uniformly bounded on the interval to, t]. Therefore we can introduce a strongly
continuous evolution operator (s, t) F(S, t) (V) f’l (W) which is defined by
(2.6) with F( t) -R-1B*P( t).

Our next step is to show that the function k( ", t)x (., t)x c#[ t, tl; W] conver-
ges to zero in the sup-norm for every x V and every to, t]. For this purpose let
us consider the identity

OP(s, t)X--OPk(S t)x= S(s-’)BR-1B*[Pk(’)-P(’)]OP(% t)xd"

S(s-,-’*P(,l[,(,,x-,(,,x],

and apply Gronwall’s lemma. Then the desired convergence of k(s, t)x follows from
the pointwise strong convergence of Pk(’) to P(’) together with the dominated
convergence theorem.

As a consequence of this convergence result we obtain that qk(s, t) converges to
,(s, t) both in (V) and in (W) and that this convergence is uniform for <= s _-<

(t fixed). This allows us to apply the dominated convergence theorem to formula (2.19)
and hence P(t) satisfies the integral Riccati equation (2.16). Finally it follows easily
from (2.16) together with the strong continuity of ,(s, t) and *(s, t) in both variables
and in both spaces V and W that the operator P(t) A( V, V*) is strongly continuous
on the interval to, tl]. Thus we have proved the existence of a solution to (2.16).

In order to prove the uniqueness for the solution of (2.16) together with the
statements on the optimal control, let us assume that P(t)( V, V*) is any strongly
continuous, nonnegative solution of (2.16). Moreover, let Xo V, u(.) LE(to, tl; U)
be given, let x(t) V be the corresponding solution of (2.1) which is given by (2.3)
and define v(t) u(t)+ R-1B*P(t)x(t) for to -< t_-< tl. Then it follows from Lemma
2.6 that

(2.21) J(u)=(Xo, P(to)Xo)+ (v(t), Rv(t)) at.
to

Hence the optimal control is unique and given by the feedback law (2.17) and the
optimal cost is given by (2.18). Moreover, we conclude from (2.21) that (Xo, P(to)Xo)
(Xo, P(to)Xo) for any two nonnegative solutions P(t), /3(t) ( V, V*) of (2.16) and
any Xo V. Since to<- t can be chosen arbitrarily, this proves the uniqueness of the
solution to (2.16). F1

The following result shows that the integral Riccati equation (2.16) can be conver-
ted into a differential Riccati equation.

PROPOSITION 2.8. Suppose that (H1), (H2) and (H3) are satisfied and let P(t)
(V, V*) be a nonnegative, self adjoint, strongly continuous operator on the interval
to, t]. Moreover, let the evolution operator (s, t)= F(S, t) (V) be defined by (2.6)
with F(t) -R-B*P(t). Then the following statements are equivalent.

(i) Equation (2.16) holds for every x W and every to, tl].
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(ii) For every x W and every to, tl] the following equation holds

(2.22) P(t)x=dP*(tl, t)GS(tl-t)x/ dp*(s, t)C*CS(s-t)xds.

(iii) For every x W and every to, tl] the following equation holds"

(2.23)
P( t)x S*( tl t)GS( tl t)x

+ S*(s-t)[C*C-P(s)BR-B*P(s)]S(s-t)xds.

(iv) For every x Z the function P( t)x, to <- <-_ tl is continuously differentiable with
values in Z* and satisfies the differential Riccati equation

(2.24a)
d

A*- P(t)x+ P(t)x+P(t)Ax-P(t)BR-B*P(t)x+C*Cx=O,

(2.24b) P( tl)X Gx.

In this equation A is regarded as a bounded operator from Z into V.
Proof. The equivalence of the statements (i), (ii) and (iii) can be established in a

straightforward way using the formulae (2.6) and (2.9) together with Lemma 2.5.
In order to prove that (iii) implies (iv), note that the equation

(2.25) (CS(t)z, CS(t)x}-(Cz, Cx}= [(CS(s)Az, CS(s)x}+(CS(s)z, CS(s)Ax}] as

holds for all x, z w(A) and every >-0. It follows from (H3) and (H2) that both
sides of this equation depend continuously on x, zZ= v(A)c W and that
z(A) w (A)c Z. Consequently fiw(A) is dense in Z and hence (2.25) holds for
all x, z Z.

From (2.25) we see that the function (z, P(t)x)--defined by (2.23)--is continuously
differentiable on the interval to, tl] for all x, z Z and satisfies the equation

d
_2. (z, P(t)x) -(S( tl t)Az, GS( tl t)x)-(S( t)z, GS( t t)Ax)
dt

-(Cz, Cx)+(z, P(t)BR-’B*P(t)x)

Ittl
[(CS(s- t)Az, CS(s- t)x)

+(CS(s- t)z, CS(s- t)Ax)] as

+ (S(s- t)Az, P(s)BR-B*P(s)S(s t)x) ds

+ (S(s- t)z, P(s)BR-1B*P(s)S(s t)Ax) ds

-(Az, P(t)x)-(z, P(t)Ax)

-(Cz, Cx)+(z, P(t)BR-’B*P(t)x).
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This implies

(, P(t)X)z,z. , Gx + [A*P(s)x + P(s)Ax

P(s)BR-B*P(s)x + C*Cx] dS)z,z
and hence (2.24a). Thus we have proved that (iii) implies (iv).

Conversely, let us assume that P(t) satisfies (2.24). Then the following equation
holds for every x e Z and every e to, h]

I ’ (s-
d
S* t)P(s)S(s t)xdsS*(h t)GS(h-t)x-P(t)x=

f" S*(s- t)[P(s)+ A*P(s)+ P(s)A]S(s- t)x ds
d

( t
S*(s t)[ C*C P(s)BR-1B*P(s)]S(s t)x ds

where the integral has to be understood in the Hilbe space Z* and P(t) is the strong
derivative of P(t), to t t regarded as an operator in (Z, Z*).

3. Infinite time control. In this section we consider the control problem ofminimiz-
ing the performance index

(3.1) J(u)= [I]y(t)l]+(u(t), Ru(t))g] dt

where y(t) is again the output of (2.1) with to =0, i.e.

(3.2) y(t)=CS(t)xo+C S(t-s)Bu(s) ds,

For this infinite time problem it is not clear that the cost will be finite for any control
input u(. e L(0, m; U). So we add this as another hypothesis.

(H4) For every xo e g there exists a u(. e L[0,
We will derive the optimal control via the solution of an algebraic Riccati equation
which is actually the stationary version of (2.24). For this sake we consider the finite
time control problems of minimizing the cost functionals.

(3.3) Jr(u) [lly(t)ll+(u(t), Ru(t))g] dt

subject to the constraint (3.2). The corresponding ccati operator will be denoted by
Pr(t) ( V, V*) and satisfies the equation

(3.4) Pr(t)x= S*(s-)[C*C-Pr(s)BR-B*Pr(s)]S(s-)xds

for every x e W and every e [0, T].
LEMMA 3.1.

Pr_(t)=P-(t+a), O<=t<=T-c.
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Proof. The operator Pr(t + a) satisfies the equation

Pr(t+)x= S*(s-t-)[C*C-Pr(s)BR-B*Pr(s)]S(s-t-)xds

S*(s-t)[C*C-Pr(s+)BR-B*Pr(s+o)]S(s-t)xds

for x W and 0<= <- T-a. Thus the statement of the lemma follows from the
equivalence of (2.16) and (2.23) (Proposition 2.8) together with the uniqueness result
(Theorem 2.7). [3

We will derive the solution of the algebraic Riccati equation as the limit of the
solutions to integral Riccati equations as T goes to infinity. For this we need the
following preliminary result which is a special case of Proposition 2.8.

COROLLARY 3.2. Suppose that the hypotheses (HI), (H2) and (H3) are satisfied
and let P(V, V*) be a nonnegative, self adjoint operator. Moreover, let Sp(t)
(V)f’)(W) be the strongly continuous semigroup which is generated by A-
BR-1B*P: v(A) V, i.e. Sp(t) satisfies the equation

(3.5) Sp(t)x=S(t)x- S(t-s)BR-1B*PSp(s)xds

for x V and >-O. Then the following statements are equivalent.
(i) For every x W and every >= 0

(3.6) Px=S*p(t)PS(t)x+ S*p(s)[C*C+PBR-’B*P]Sp(s)xds.

(3.7)

(ii) For every x W and every >-0

Px=S*(t)PS(t)x+ S*(s)C*CS(s)xds.

(iii) For every x W and every >- 0

(3.8) Px= S*(t)PS(t)x+ S*(s)[C*C-PBR-1B*P]S(s)xds.

(3.9)

(iv) For every x Z the following equation holds in Z*

A*Px + PAx PBR-1B*Px + C*Cx O.

Now we are in the position to prove the main result of this section.
THEOREM 3.3. Let (HI), (H2) and (H3) be satisfied. Then thefollowing statements

hold.
(i) The hypothesis (H4) is satisfied if and only if there exists a nonnegative self

adjoint solution P ( V, V*) of (3.9).
(ii) If (H4) is satisfied, then there exists a unique optimal control Up(. L2(0, oo; U)

which is given by the feedback law.

(3.10) Up(t)=-R-1B*Px(t), t>-O,

where P (V, V*) is the (unique) minimal solution of (3.9). Moreover, the optimal
cost is given by

(3.11) J( up) (Xo, Pxo).

(iii) If (H4) is satisfied, then the minimal solution P L( V, V*) of (3.9) is strong
limit of PT(0)( V, V*) as T goes to infinity where Pr( t) is defined by (3.4).
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Proof. First recall that the optimal control ofthe finite time problem on the interval
[0, T] is given by ur(t) -R-1B*Pr(t)x(t), 0 <- <- T, and the optimal cost by Jr(ur)
(Xo, Pr(O)xo) (Theorem 2.7). So (H4) implies that

(Xo, P(O)xo r,(u,) -< r(u,,o) _-< r(U,,o) < oo

and thus there exists a limit of the increasing function (Xo, Pr(0)Xo), T=> 0, for every
Xo V. Hence there exists a nonnegative, self adjoint operator P ( V, V*) which is
the strong limit of P-(0) (Kato 15, p. 454, Thm. 3.3], compare the proof of Theorem
2.7).

By Lemma 3.1,

(3.12) Px s lim PT(t)x V*
Tcc

exists uniformly in on every compact time interval. Making use of formula (3.4), we
obtain for x W and => 0

Px lim PT(O)x

lira S*(s)[C*C-Pr(s)BR-1B*Pr(s)]S(s)xds

lira S*()S*(s-t)[C*C-Pr(s)BR-B*Pr(s)]S(s-t)S(t)xds

+ lira S*(s)[C*C-Pr(s)BR-B*Pr(s)]S(s)xds

lim S*(t)Pr(t)S(t)x+ S*(s)[C*C-PBR-B*P]S(s)xds
T

=S*(t)PS(t)x+ S*(s)[C*C-PBR-B*P]S(s)xds

and hence P e ( V, g*) is a solution of (3.6), (3.7), (3.8) and (3.9).
Conversely, let Q e ( g*) be any nonnegative solution of (3.9) and let uo(t)

-R-B*Qx(t) be the corresponding feedback control law with the associated closed
loop semigroup So(t) e (V) (W). Then the following inequality holds for every
Xoe g

Xo Qxo) i ((So(t)Xo QS0(t)Xo)

+ (So(s)xo, [C’C+ QBR-B*Q]So(s)xo} ds

(3.13)

and hence (H4) is satisfied. Moreover, the operator P e (g, g*) defined by (3.12)
satisfies the inequality

(xo, o} {xo, Pr(0)xo} N rlim Jr(u)= J(u)
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for every admissible control u(. ) L2(0, oo; U)’ This shows that P is the minimal
positive semidefinite solution of (3.6). Finally, taking Q= P, we conclude that the
unique optimal control is given by (3.10) with cost (3.11). [q

Although the above theorem yields a solution to the infinite time problem, in a
sense it is unsatisfactory. This is because we are not sure of a unique solution to the
algebraic Riccati equation and also we cannot be sure that the semigroup Sp(t) is
exponentially stable. In order to resolve those difficulties, we need another hypothesis.

(H5) If xoV and u(’)L2(0, oo; U) are such that J(u)<oo, then x(.)
L2(0, 00; V) where x(t), >-0, is given by (2.3) with to =0.

THEOREM 3.4. Let (H1), (H2), (H3) and (H5) be satisfied. Then the algebraic
Riccati equation (3.9) has at most one nonnegative, self adjoint solution P ( V, V*).
Moreover, ifP is such a solution, then the closed loop semigroup Sp t) ( V) is exponen-
tially stable.

Proof If P(V, V*) is a positive semidefinite solution of (3.9), then the
inequality (3.13) with Q= P shows that the closed loop control up(t)=-R-1B*Px(t)
has a finite cost for every initial state Xo V. By hypothesis (H5) this means that

IIs,( t)Xoll dt < oo

for every Xo V. Hence it follows from a result of Datko [5] that the semigroup
Sp(t) (V) is exponentially stable (see Curtain and Pritchard [4]). The stability of
Sp(t) shows that we have equality in (3.13) and hence

(Xo, Pxo).

Now let Q w( V, V*) be another nonnegative solution of (3.9) and let us apply Lemma
2.6 to the performance index

Jr,o(u)=(x(T), Qx(r))+ [lly(t)ll+(u(t), Ru(t))] dt

as well as the feedback F(t)=-R-B*Q and the control input Up(t). Then Pv(t)= Q
and hence the inequality

 Xo, eXo> J(u )

lira (xo, Qxo}+ (R-B*Ox(t)+u,(t), R[R-B*Qx(t)+u(t)])dt
T-

>- (Xo, Qxo)

holds for every Xo 6 V. Interchanging the roles of P and Q, we conclude that P Q. v1

FinalLy, let us briefly discuss the hypotheses (H4) and (HS) which are chosen in
a general sense but are difficult to check in concrete examples. In most cases it might
be desirable to replace them by stronger assumptions which are easier to check.

Remarks 3.5. Let (H1) and (H2) be satisfied.
(i) Suppose that system (2.1) is stabilizable in the sense that there exists a

feedback operator F (V, U) such that the closed loop semigroup Sv(t) (V)
defined by

SF(t)x=S(t)x+ S(t-s)BFS(s)xds

for 0 and x e V is exponentially stable. Then hypothesis (H4) is satisfied.
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In fact, there is an instant T> 0 and a constant cr > 0 such that the inequalities

IIS( T)ll<v) < l, IIcs,(" )xlIO,T;’) <---- CTIIXIIv
hold for every x W. This implies that

IIcs,(.)xll<o.;.) -< CT E IIS(T)ll<,,)llxll,,
k=O

for x W and hence (H4) is satisfied.
(ii) Suppose that system (2.1) is detectable in the sense that there exists an operator

K e ( Y, V) such that the output injection semigroup Sr (t) (V) defined by

Sr(t)x=S(t)x+ SK(t-s)KCS(s)xds

for t_->0 and x e W (see Salamon [25, Thin. 1.3.9]) is exponentially stable. Then
hypothesis (H5) is satisfied.

In fact, if x(t)e V and y(t)e Y are defined by (2.3) for xoe g and u(.)e
Lo(0, oo; U), then it is easy to see

x(t)=Sr(t)xo+ S(t-s)[Bu(s)-Ky(s)]ds, t>-O.

Hence J(u) <oo implies that x(.)e L(0, oo; V).
(iii) If (H4) and (H5) are satisfied, then system (2.1) is stabilizable in the sense

of (i). (Theorems 3.3 and 3.4.)
(iv) For finite dimensional systems (H5) is equivalent to detectability in the sense

of (ii). It seems to be an open problem whether this equivalence extends to the infinite
dimensional situation.

4. Examples.
4.1. Neutral systems with output delays. We consider the linear neutral functional

differential equation (NFDE)
d

(4.1) d-t (x(t) Mxt) Lxt + Bou(t), y(t) Cxt,

where x(t) Rn, u(t) Rm, y(t) P and xt is defined by xt(’) x(t + z), -h <- z <- 0,
h >0. Bo is an n x m matrix and L, M, C are bounded linear functionals from
c COl_h, 0; "] into " and P respectively. These can be represented by matrix-
functions r/(r),/.(), y(z) of bounded variation in the following way

Lth Ih d/(z)(),

C I. dy()(),

M d(’r)d(’r),
h

In order to guarantee the existence and uniqueness of solutions of (4.1), we will always
assume

(4.2) /z(O) l ,u,(z).

Moreover, we will assume at some places that M:Cg-> R" is of the special form

(4.3) Mb
j=l h

where 0 < hj
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A function x(. Loc(-h, ; ") is said to be a solution of (4.1) if the function
w(t)= x(t)-Mx, is absolutely continuous with an L2-derivative on every compact
interval [0, T], T> 0, and if if(t) Lx, + Bou(t) for almost every >= 0. It is well known
(Burns, Herdman and Stech [3], Salamon [25]) that (4.1) admits a unique solution
x(t), >=-h, for every input u(. ) Loc(0, c; ") and every initial condition

(4.4) limx(t)-Mx,=, x(-)=1(-), -h<=z<O,
t$o

where (, 1) M2 , x L2(-h, 0; "). Moreover it has been shown in [3], [25]
that the evolution of the state

(4.5) ( t) (x( t) Mx,, x,) M2

of system (4.1), (4.4) can be described by the formula

(4.6) ( t) S(t) + S( t- s)Bu(s) ds

where B (", M2) mapsu into the pair Bu=(Bou, 0) and S(t)(M2) is the
strongly continuous semigroup generated by A, where

D(A)={M2. 1 WI,2, o= 6(0)_ M}, A (L1, ).
Here W’2 denotes the Sobolev space W’2(-h, 0; ").

Obviously, the dense subspace

W= {(b(0)- Me, ): e W’’2} (A)

of Mendowed with the W’ normis invariant under S(t) and S(t) can be restricted
to a strongly continuous semigroup on W.

The output of the system (4.1) may be described through the operator

c. w-, c= ,((, 4,e w.
h

Remarks 4.1. (i) The infinitesimal generator A of S(t) can be interpreted as a
bounded operator from W into M. By duality, M can be regarded as a dense subspace
of W* and A* extends to a bounded operator from M into W*.

(ii) It has been proved in Burns, Herdman and Stech [3] and Salamon [25] that
system (4.1) satisfies the hypotheses (H1) and (H2) with H V M and the subspace
Wc M as defined above. Hypothesis (HI) says that the state (T)e M of (4.1)
defined by (4.5) is in W for every input u(. )e L(0, T; N") and zero initial condition
and that (T) e W depends continuously on u(. e L2[0, T; N’]. Hypothesis (H2) says
that the output y(. ofthe free system (4.1) (i.e. u(t) -= 0) is in L-(0, T; N) and depends
in this space continuously on the initial state e M.

(iii) If M: -N" is given by (4.3), then it is known that the semigroup S(t)e
(M) is exponentially stable if and only if

oo sup {Re I: det A(I 0} < 0

where zX(t)= .[I-M(e’)]-L(e"’), I ec, is the characteristic matrix of the NFDE
(4.1). A necessary condition for the exponential stability of S(t) is the stability of the
difference operator which means that

(4.7) sup Ret’det I- A_e-h =0 <0.
j=l
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These facts have been established by Henry [11] for S(t) .(W). They extend to
S(t) (M2) because ofthe similarity of these two semigroups through the transforma-
tion/xI-A" W--> M2 with/x tr(A).

(iv) IfM c __> Rn is given by (4.3) and if (4.7) holds, then system (4.1) is stabilizable
in the sense that there exists a feedback operator F (-M2, Rm) such that the closed
loop semigroup SF(t) e (M2) generated by A+ BF is exponentially stable if and only
if

(4.8) rank [A(A), Bo] n VA C, Re A => 0
(Pandolfi [21], Salamon [25]).

(v) IfM c _.> n is given by (4.3) and if (4.7) holds, then system (4.1) is detectable
in the sense that there exists an output injection operator K (Rp, M2) such that the
closed loop semigroup SK(t) (M2) generated by A+ KC is exponentially stable if
and only if

(4.9) rank
C(e’)

=n eC, Re>-0

(Salamon [25]).
Associated with the system (4.1) we consider the performance index

(4.10) J(u)= [lly(t)llp+ Ilu(t)ll] dt.

Then we have the following theorem (compare Ito and Tarn [14] and Datko [7]).
THEOREM 4.2. Assume M qg--> is given by (4.3) and (4.7) is satisfied; then the

following statements hold.
(i) If (4.8) is satisfied, there exists, for every initial state dp M2, a unique optimal

control which minimizes the cost functional (4.10). This optimal control is given by the
feedback law

(4.11) u( t) -B*Tr;( t)
where 7r o.’(M2) is the minimal selfadjoint, nonnegative operator which satisfies the
algebraic Riccati equation

(4.12) A*r / 7rA / C*C 7rBB* rr 0

(this equation must be understood in the space -( W, W*)). Moreover the optimal cost
is given by

(4.13) J(u) (dp, rdp)M2.

(ii) If (4.9) is satisfied, then there exists at most one nonnegative selfadjoint solution
7r(M2) of (4.12). Moreover if zr is such a solution, the closed loop semigroup
S,(t) (M2) generated by A- BB* zr is exponentially stable.

4.2. Paralmlie systems. Consider the system

(4.14) : Ax + Bu, y Cx

where A is a self adjoint operator on a real Hilbert space H. We assume that A has
a compact resolvent operator and that the spectrum ofA consists of a strictly decreasing
sequence An, n e , of real eigenvalues with associated eigenvector bn H, I111 1.
Then A generates the strongly continuous semigroup S(t) on H given by

S( t)x E ea"’(x, ok,)4,,.
n=l
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We assume that W and V are given by

W= xeH 2 y,(x, ,)2<0o
-=1

V*= xeH Z fl-’(x, ,)2<0o
n=l

with the obvious inner products, where/3, and yn are positive sequences satisfying
0</3,-<_ 1 =< 3’, < c for n N. Then the space V can be represented as a space of
sequences in the following way

V= xe Z

and the injection H c V is given by identifying x H with the sequence {(x, ,)},cN V.
Finally, we assume that the sequences b, e U, c, Y satisfy

and that the operators B ( U, V) and C ( W, Y) are given by

Cx Z c.(x,
-=1

Bu={(bn, u)u}nN.

LEMMA 4.3. (i) Let no=max {n N A, _-> 0} and suppose that

(4.16)

then hypothesis (H1) is satisfied.
(ii) If

(4.17)
no+

then hypothesis H2 is satisfied.
Proof. Statement (ii) is the dual of (i) and statement (i) follows from the inequality

S(t-s)Bu(s) ds Y. 3’. e"(r-)b,u(s) ds
W n=l

< X y,, e2" dsllb.ll=llu( )11 ==L [0, T; U]

-< y. e2a-* d, b. =+ X
n=no+l

"llb"ll=] Ilu(.)ll ==21A.I
, to,;.

In concrete examples the sequences b,, c, are given and the spaces W and V
have to be chosen in such a way that (HI), (H2) and (H3) are satisfied. The next
lemma shows under which conditions this is possible.

LEMMA 4.4. Let the sequences b, U, c, Y, A,, R be given such that A, is strictly
decreasing and tends to -oo. Then there exist positive sequences ,, "y, satisfying (4.15)-
(4.17) /f and only if

(4.18) -=-o+,Y IIb"llI’c"ll<’l.
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Furthermore, if (4.18) holds, then the sequences fl.,.y, can be chosen such that ft. <- y. <-_

ft. A. for almost every n .
Proof. The necessity of (4.18) is obvious. Conversely if (4.18) holds, then it is

easy to see that the sequences

c II/II b, 111hn[ 1/2, b, s O, c, O, A, O,

n=ll c. II=/]x l, b. 0, c. 0, A. 0,
"= 1/n=llb.II =, b. O, c,=0, A, S0,

1 otherwise,

Ixol’/=llc.ll/llb.ll, b. O, c, rs O, . s O,
n=ll c. =, b. 0, c. 0, A. 0,

T= IA,I/n=llb. =, b, 0, c, 0, A, 0,
max {1, I.1} otherwise,

satisfy the requirements of the lemma.
Remarks 4.5. (i) The condition y, =/3.1A.I for almost every n (with at most

a finite number of exceptions) means that

2v(e) c v((-e)1/2) x e V 2 /.IX.lx. < W V
.=1

so that (H3) is satisfied.
(ii) We can assume without loss of generality that Wc H V, i.e. the sequences

/3, and yl are bounded. This can always be achieved by redefining b,, c,,/3, and 3’,.

(iii) It is well known that system (4.14) is stabilizable in the space V if and only
if b, # 0 for n 1,..., no (Curtain and Pritchard [4]).

The system is detectable through the unbounded output operator C:W Y if
and only if c, # 0 for n 1,..., no. This follows from an obvious generalization of
the standard result for bounded output operators using a perturbation result in Salamon
[25].

We are now in the position to apply the Theorems 3.3 and 3.4 to the Cauchy
problem (4.14) with the performance index (4.10). Hence there exists a unique nonnega-
tive operator P ( V, V*) satisfying the algebraic Riccati equation.

(4.19) AP+ PA- PBB*P+ C*C 0

if b, # 0 and c, r 0 for n 1, , no. Furthermore the optimal control is given by the
feedback law

(4.20) u(t) -B*Px(t).

Example 4.6. As a specific example consider

(4.21a) zt=z, 0<s<l,

(4.21b) ze(t, 0) u(t), z(t, 1) 0, > 0,

(4.21c) y(t) c()z( t, sr) dsr, > O.

It can be shown (see Curtain and Pritchard [4]) that this system is equivalent to a
Cauchy problem of the form (4.14) with H L2[0, 1], ;to=0, bo(s) 1, A, =-n2r2,
6(sr) =/ cos norse, and Bu=-,u ( being the Dirac delta impulse at st= 0). Hence
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we get bo=-l, b, =-/ for nM and c,=(c, oh,) for n=0, 1, 2,.... So condition
(4.18) is satisfied if and only if

n=l

This allows for arbitrary bounded linear output operators C L2[0, 1]- R and even for
a class of unbounded output operators. If C is bounded, then c, is square summable
and we may choose y, 1,/3, n -E, which means that

W= L2[0, 1], V*= Hi[0, 1].

Remark 4.7. Existence and uniqueness results for the differential Riccati equation
associated with parabolic systems have been established by Pritchard and Pollock [22],
Flandoli [9] and Sorine [26], [27] under weaker hypothesis. The assumptions in these
papers are, roughly speaking, that A is a self adjoint nonpositive operator on H and
that

W= V*= ((-A)l/2).
In [9] and [22] it is assumed that the function IlCS(t)Bll.(u,v)is integrable on [0, T],
whereas our results are only applicable if this function is square integrable. However,
in [9] and [22] the Riccati operator P(t) will only be in (V, H)f’I(H, V*) and
correspondingly the optimal feedback operator F( t) -B*P( t) will only be in
(H, U) as opposed to ( V, U).

4.3. Hyperbolic systems. Consider the system

(4.22) " Az + Bu, y Cz,

where A is a self adjoint operator on a real Hilbert space H. We assume that A has
2 satisfya compact resolvent operator and that its (simple) negative eigenvalues A, -to,

(4.23) tol>--8, to.+a to. >-- 6, nN,

for some 6> 0. The corresponding eigenvectors are denoted by b, H, [[b, 1.
Furthermore, we assume that the spaces Wo, V1 are given by

.=1

-=1

where /3, and y, are positive sequences satisfying 0 =</3. =< 1 <- y. =</3,[h,I for n N.
Finally, we assume that the sequences b, U, c, Y satisfy

and that the operators B 6 ( U, V1), C ( Wo, Y) are given by

B*x E (x, 6.)b., Cx E (x,
n=l n=l

Defining Vc H by

V= ((-A)/) {x H
n=l
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and identifying H with its dual, we obtain that Vc H c V* and A extends to a bounded
operator from V to V*. In order to transform (2.22) into a first order system, we
introduce the product space

=VxH

with inner product

<x, ,> E [ll<xo, ><,, >+<x,, ><,, >].
n----1

Then the operator :() defined by

is the infinitesimal generator of the strongly continuous semigroup (t) e() which
is given by

[(cos t)(xo, )+2(sin t){x, )]
(t)x =’, [.(sin .t)(Xo, .)+ (cos .t)(Xl, .)1. ]

Finally, we introduce the spaces

n=l

and the operators e ( U, ), g e(, Y) by

[0] =[C 0].

en (4.22) is equivalent to the Cauchy problem

(4.25) x+ u, y x,
by means of the identification x (z, ). Note that we identify V x H with its dual.

LMMa 4.8. (i) If
(4.26) sup y, llb, ll <,
then the operator satisfies (H1).

(ii) If

(4.27) sup
c. < m,

then the operator satisfies (H2).
oof Statement (ii) is the dual of (i). In order to prove statement (i), note first that

r 2 w (sin ,(T- s))(b,, u(s)) ds
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for every u(. ) L2[0, T; U] and hence

or
.( T- s)3u(s) ds

2 Y (sin to(T-s))(b, u(s)) ds
=1

+ (cos o(r- s))(b, u(s))

(sup .llb.II =) f (sin ,(T- s))u(s) ds
n =1

+ cos (r- s)u(s) s

N const.(sup llb, ll=) Ilu("

e final inequality is a consequence of (4.23) together with some propeies of Fourier
series (see Ingham [13] and Russell [24]).
e next lemma shows under which conditions the spaces and can be chosen

in such a way that (H1), (H2), (H3) are satisfied if the sequences b, c are given.
LEMMA 4.9. Let the sequences b, U, c, Y, h, be given such that (4.23) is

satisfied. en there exist positive sequences ,, , satisfying (4.24), (4.26) and (4.27)
if and only if

(4.28) E
b, = c =

<.
Furthermore, if (4.28) holds, then the sequences ft,, r, can be chosen such that (M)

oofi The necessity of (4.28) is obvious. Conversely, if (4.28) holds, then it is
easy to see that the sequences

llc.ll=/IA.I, IIb.llllc.lll orb.=0,. 1/llb, ll=lA,I, IIb, IIc, 1 and b. 0,
1/IA.i, b 0, c. 0,

1/llb.II =
IIcll =, b:0, c0,
1, b,=0, c,=0,

satisfy the requirements of the lemma. In paicular ft,y is bounded and
for eve n .

We are now in the position to apply Theorem 2.7 to the Cauchy problem (4.25)
with the performance index

(4.29) J(u)= [lly(t)ll=+llu(t)ll =] dt.

Hence there exists a unique nonnegative strongly continuous operator (t) s (, *)
satisfying the differential ccati equation

(t)x + M*(t)x+ (t)Mx (t)*(t)x+*x O,
dt

(4.30)
( T)x O, x s ().
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Furthermore, the optimal control is given by the feedback law

(4.31) u(t)= -*(t)x(t).
Example 4.10. As a specific example we consider the system

(4.32a) zu=zu, 0<:<1, t>0,

(4.32b) z( t, O) u( t), z(t, 1)=0, t>0,

(4.32c) y( t) c()( t, ) d, > 0,

in the Hilbert space

=/-/[0,1] t[0,1]
which we identify with its dual. Then the operator A A" H2[0, 1 fq H[0, 1 -> L2[0, 1
has the eigenvalues A, n2r2 with corresponding eigenfunctions b,(:)=x/ sin
Furthermore, the input operator for (2.32) takes the form Bu =-’u, where 3’ is the
distributional derivative of the Dirac delta impulse at -0 (see Curtain and Pritchard
[4]). Hence

b f nm c x/ c() sin nr: d:
for n M. So condition (4.28) is satisfied if c is square integrable. The proof of Lemma
4.9 shows that we may choose

= 1 }/3,=max IxI,IAI=
1

In particular this means that the boundary control system (4.32) has continuous
solutions in the space

L2[0, 1 x H-l[0, 1]

for every input u(. ) L2[0, T]. This result has also been established by Lasiecka and
Triggiani [ !7]. For the output operator we can allow an arbitrary bounded linear map
from L2[0, 1] into . The space o//. depends on this map. In any case o/g. c and hence
’(t) //"-> * has a smoothing effect with respect to

Remark 4.11. An analogous result has been developed by Lasiecka and Triggiani
[18] for the higher dimensional wave equation. In their paper the output operator is
the identity on the displacement component of the state in L2x H-. This case
cannot be treated within our framework. However, the results in [18] are weaker than
ours. The uniqueness for the solution of the Riccati equation has not been established
in [18]. Furthermore, the Riccati operator in [18] is in (/’) and does not have
smoothing properties with respect to off.. Consequently the feedback operator becomes
unbounded with respect to this space. It seems that for hyperbolic PDE’s our assump-
tions are close to the weakest possible in order to derive a bounded feedback operator.
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