
KAM theory in configuration space.

Author(en): Salamon, Dietmar / Zehnder, Eduard

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band(Jahr): 64(1989)

Artikel: Commentarii Mathematici HelveticiPersistenter Link: http://dx.doi.org/10.5169/seals-48936

Erstellt am: Apr 30, 2012

Nutzungsbedingungen
Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die
angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die
private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können
zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden.
Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger
schriftlicher Genehmigung des Konsortiums der Schweizer Hochschulbibliotheken möglich. Die
Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag.

SEALS
Ein Dienst des Konsortiums der Schweizer Hochschulbibliotheken

c/o ETH-Bibliothek, Rämistrasse 101, 8092 Zürich, Schweiz
retro@seals.ch

http://retro.seals.ch

http://dx.doi.org/10.5169/seals-48936


Comment Math Helvetici 64 (1989) 84-132 0010-2571 /89/010084-49S01 50 + 0 20/0

© 1989 Birkhauser Verlag, Basel

KAM theory in configuration space

Dietmar Salamon and Eduard Zehnder

Abstract A new approach to the Kolmogorov-Arnold-Moser theory concermng the existence of

invariant ton having prescnbed frequencies îs presented It îs based on the Lagrangian formahsm m

configuration space instead of the Hamiltonian formahsm in phase space used in earher approaches
In particular, the construction of the invariant ton avoids the composition of infinitely many
coordinate transformations The regulanty results obtained are apphed to invariant curves of

monotone twist maps The Lagrangian approach has been prompted by a récent study of minimal
foliations for vanational problems on a torus by J Moser

1. Introduction and results

In this paper we shall prove existence and regularity results of invariant tori

having prescribed frequencies. For this purpose we use the Lagrangian formalism
instead of the Hamiltonian formalism previously used. This leads to a con¬
sidérable simplification of the existence proofs both from a conceptual and from a

technical point of view. As outlined in the next paragraph the construction of

invariant tori avoids in particular the familiar technique of infinitely many
coordinate transformations. Instead a nonlinear functional équation is solved in a

family of linear spaces. Moreover, we point out that an annoying analyticity
assumption required so far for the unperturbed équation is removed by using a

new technical device. On the other hand, our approach requires slightly more
derivatives for the functional to start with. This is due to the fact that not the full

algebraic structure of the problem is taken into account.
The Lagrangian approach has been prompted by the récent work of J. Moser

[21], [23] on minimal solutions of variational problems on a torus which can be

viewed as an extension of the Aubry-Mather theory [4], [7], [12], [13], [14], [16]

to partial differential équations.
In order to describe the results we start with the Hamiltonian System

z~JVH{z) (1.1)

This research has been supported by the Nuffields Foundation under grant SCI/180/173/G and by

the Stiftung Volkswagenwerk.
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on JnxUn where Jn Un/In dénotes the n-torus and / dénotes the skew

symmetric matrix

J
\-i o

In the covering space we dénote z (x, y)eMn xMn and assume that H is

periodic with period 1 in the x -variables so that H(x +/, y) H (jc, y) for j e M&quot;.

The aim is to construct invariant tori for (1.1) with prescribed frequencies. To be

more précise, for a given frequency vector coeUn we are trying to find an

embedding.

w (u,v):Tn-+TnxM&quot; (1.2)

which maps the constant vector field | co on the torus J&quot; into the given

Hamiltonian vector field (1.1). This means that the solutions

of | co are mapped into solutions

z(t) &lt;p&apos;(w(Ç)) w(ê + t) (1.3)

of the Hamiltonian System (1.1). We also assume that m is a diffeomorphism of Jn

satisfying w(§ 4- j) w(§) +y for / e Zn. In particular, the embedded torus w(Jn)
is a graph in T&quot; x IRn and consists of quasiperiodic solutions of (1.1). Differentiat-
ing the identity (1.3) we obtain the nonlinear partial differential équation

Dw=JVH°w (1.4)

where D dénotes the following linear first order partial differential operator with

constant coefficients

(1.5)

Hence Dw dw co represents the derivative of w in the direction of the

frequency vector e Un. As a side remark we point out that (1.4) is the Euler
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équation of the variational principle defined by the functional

f (1.6)

for the embedding w. Indeed, one vérifies readily that the gradient of / with

respect to the L2 inner product is given by

VI(w) -JDw -VHoW (1.7)

so that the critical points of / are precisely the solutions of (1.4). This variational

principle is however highly degenerate and has so far not been used for existence

proofs quite in contrast to the analogous variational principle for periodic
solutions for which we refer to [6] and [8]. In fact, without further conditions on

H global critical points of / cannot be expected.
The breakthrough in the existence problem for invariant tori came in the

sixties with the development of the famous KAM theory which considers the local

perturbation problem for équation (1.4). More precisely, we assume that the

Hamiltonian differential équation (1.1) is close to an integrable System which in

our case means that

with a small parameter e and that the unperturbed System satisfies the

nondegeneracy condition

det//°=0.yy

Under thèse hypothèses KAM theory asserts that for e sufficiently small and H

sufficiently smooth there exists an abundance of invariant tori corresponding to

those frequency vectors co e M&quot; which are rationally independent and satisfy, in

addition, the Diophantine conditions

\j-(o\&gt;r\j\-\ 0#/eZ&quot;, (1.8)

for two fixed constants y &gt; 0 and t ^ n 1. Thèse invariant tori continue the ones

which for e 0 are given by the trivial embeddings
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where VH°(y) is the prescribed frequency vector for the corresponding
torus. For this theory we refer to Kolmogorov [10], [11], Arnold [1], [2], [3] and

Moser [18], [19]. Subsequently their work gave rise to many papers and results

among which we mention [5], [9], [26], [27], [28], [29], [30], [31].

We point out that a perturbation theory for invariant tori having rationally
independent frequency vectors which do not meet the diophantine conditions

(1.8) cannot be expected in the differentiable case. Indeed, quite recently J.

Mather [17] proved for the spécial case of monotone twist maps that every
invariant curve whose rotation number is only of Liouville type can be destroyed
by a Cx perturbation which is arbitrarily small. For rational rotation numbers this

was already known to Poincaré. We also recall that a differentiable solution of

(1.4) necessarily requires an excessive number of derivatives for H. For this

subtle phenomenon we refer to M. Herman [9] and the literature therein. Finally,
examples in [15] show that for sufficiently large e the smooth tori might disappear
too.

In order to reformulate the existence problem for a single invariant torus in

the Lagrangian framework we make use of the well known fact that under the

nondegeneracy condition

det Hyy 0

the Hamiltonian differential équation (1.1) can be transformed into the varia-
tional problem

F(xy x) dt

where the Lagrangian F{x, p) on Jn x Rn is related to the Hamiltonian H{xy y)

by

H(x, y) + F(x, p) yp, p Hy(x, y), y Fp(x, p).

It is, of course, well known that every solution z{t) (x(t), y(t)) of the

Hamiltonian differential équation (1.1) corresponds to a solution x(t) of the

Euler-Lagrange équations

d/diFp(x,x) Fx(x,x). (1.9)

In particular, it follows that if the embedding w given by (1.2) satisfies (1.4) then

for every § e R&quot; the function x(t) u(% + t) is a solution of (1.9). Thus we are
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looking for a diffeomorphism u:Jn-*Jn such that u(%) £ is of period 1 in ail

variables and the following nonlinear partial differential équation is satisfied

DFp(u,Du) Fx(u,Du). (1.10)

Conversely, every solution u of (1.10) détermines an embedding w (u, v) which

satisfies (1.4) if we define

v Fp(u,Du).

We point out that (1.10) is the Euler équation of a variational principle for

diffeomorphisms of Jn. Namely defining the functional

/(u) /F(a)=[ F(u,Du)dÇ (1.11)

for diffeomorphisms u one vérifies readily that the L2-gradient of / is given by

VI(u) -E(F} w)where

E(F, u) DFp(u, Du) - Fx{uy Du) (1.12)

so that the solutions of (1.10) are indeed the extremals of the variational problem
(1.11). This variational problem for invariant tori was first mentioned by Percival

[24], [25] and has been used for numerical purposes. In the case of two degrees of

freedom and under the additional Legendre condition

Fpp&gt;0 (1.13)

such a variational principle can be used for the existence theory of Mather sets

[7], [12], [13]. So far it has however not been used for existence proofs in the

higher dimensional case n ^ 2 where there is indeed no global existence theory
for équation (1.10). In the following we do not impose condition (1.13).

Our aim is to solve the Euler équation (1.10) as a perturbation problem.
Assuming the existence of a référence solution E(Fi\ w°) 0 we are looking for a

solution u of E(F, u) 0 for a given Lagrangian F near F° and a fixed frequency
vector a) e Un. This requires a stability condition on the pair Fi\ u{).

DEFINITION. The pair (F, u) is called stable if the matrix fonction «(£) on

Tn defined by

a(Ç) UTFpp(u, Du)U, U us,
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satisfies

deta(£)=É0, ÇeR&quot;,

det f *(£)-&apos;&lt;/! #0.

In the following the frequency vector a&gt; eUn entering the définition of the

operator D is fixed and assumed to satisfy the Diophantine conditions (1.8).
Moreover, we shall dénote by Cl for / £ I the space of Hôlder functions.

THEOREM. Let (F°, i*°) be a stable pair satisfying E(Fl\ u{)) 0 and suppose
that F°eCl and w°eC/+1 where l 4r + 2 + n for some constant jU &gt;0 and

l 2r 2 is not an integer. Moreover, let us define the neighbourhood

Then there exists a constant

such that for every F eBb there exists a cl~2r~2 diffeomorphism u ofJn solving the

équation

E(F, u) 0.

Moreover u&gt; Du, D2u e C2r+t* and the solution is (in this class) locally unique up

to translation in Tn. It dépends continuously on F in the Cs topology for
s &lt; l 2t - 2. Moreover, if F is of class Cm with m &gt; / and m 2r -2 is not an

integer then u is of class cm~2x~2. In particular, F e BàDCoc implies u e C00.

Finally, if F e B6 is real analytic then u is real analytic.

For a quantitative version of a stronger resuit we refer to section 4 and section
5. Moreover, note that the référence solution E(F{), u°) 0 need not corne from

an integrable System and that neither F° nor u° are assumed to be real analytic.
It is an immédiate conséquence of the above theorem (in the formulation of

section 4) that the invariant torus represented by u° is not isolated. It is a cluster

point of other invariant tori for F° corresponding to frequencies which are close

to (o and satisfy the same Diophantine conditions (1.8).
We illustrate the theorem by the simple example
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where V is of period 1 in ail variables. For e 0 we hâve E(F°, id) 0 and,

moreover, the pair (F0, id) is stable provided that

Therefore, HVeC1 with / &gt; 4t + 2 and if e is sufficiently small then the équation

D Vf (Du) e W(u) (1.14)

has a solution u e Cl~2r~2 which is a diffeomorphism of Jn close to the identity.
Moreover, up to translation the solution u is locally unique.

The above existence theorem together with a local uniqueness resuit will be

used in section 5 in order to dérive the following regularity theorem for invariant
tori.

THEOREM. Let (F, u) be a stable pair satisfying E(F, u) 0 and suppose
that u is of class Cl with / &gt; 4r + 3. Then F e C°° implies u e Cx. Moreover, if F is

real analytic then so is u.

Observe that the smoothness assumption on u agrées with the smoothness

required for the continuation of u under a perturbation of F.

As an application of the above theorem we shall dérive in section 6 a

regularity resuit for invariant curves

of an exact symplectic Cx diffeomorphism

We shall assume that y is a solution of the nonlinear différence équation

with an irrational rotation number oc satisfying the Diophantine inequalities

for ail integers p e Z and q &gt; 0 and some constants y &gt; 0 and r 1 4- e with e ^ 0.

We shall prove that if ty e Cl with / &gt; 7 + 4e and # e C* satisfies a monotone
twist condition then t/; must be of class CT.
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The proof makes use of the observation due to Moser [19] that &lt;Z&gt; can be

interpolated by a smooth Hamiltonian vector field depending periodically on time
and satisfying in addition the Legendre condition

Hyy{Uxyy)&gt;iï.

In section 6 we will in fact prove a stronger statement where the number of

derivatives needed is reduced to

This, however, also requires a stronger existence and uniqueness theorem for

invariant tori with only /&gt;2r + 3 derivatives. Such a resuit can so far only be

proved by using the Hamiltonian approach in phase space involving the

composition of infinitely many coordinate transformations [20], [26], [27], [30].

2. Outline of the proofs

The existence proof is based upon a quantitative itération technique of

Newton type in a family of linear spaces. The method is familiar in KAM theory
and was invented in order to overcome the socalled small divisor difficulty. We

rely on the analytic smoothing technique introduced by Moser [19], [20] and

abstracted in [31] in order to prove the existence resuit in the differentiable case.

It turns out that the functional équation meets the assumptions of the abstract

implicit function theorem in [31]. This theorem will however not be applied

directly since a minor but very crucial technical modification already used in [30]

allows to weaken the smoothness requirements for the unperturbed équation and

this plays a central rôle in the proof of the regularity theorem.
In order to describe the method in more détail let us first recall the idea of the

Newton itération. Assuming E{u) E(F, u) to be small one seeks a correction

term v such that u + v is a better approximation of the desired solution and

E(u + v) is closer to zéro. From the Taylor formula

E(u + v) E(u) + dE(u)v + R(u; v)y

with

dE(u)v d/deE(u + ev)\e==0,
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and the remainder term satisfying a quadratic estimate in v one concludes that

\E(u + v)\ O(\E(u)\2)

provided that the linear équation

E(u) + dE(u)v 0 (2.1)

can be solved for v with suitable estimâtes. Now the linearized operator is

computed to be

dE(u)v D(FppDv) + (Fpx - Fxp)Dv + (DFpx - Fxx)v (2.2)

where Fpp Fpp(u, Du) is to be understood as a function of £, the argument of u;

similarly for the other ternis.
One of the difficulties in solving équation (2.1) cornes from the operator D.

Due to the small divisors, entering the représentation of this operator with

respect to the Fourier expansion of functions on Tn, its inverse is unbounded.
More precisely, we hâve the following well known estimate in the space Wr of

real holomorphic functions in the complex strip |Imx|^r, xeCn, which are

periodic with period 1 in ail variables. The norm is denoted by

\f\r mp{\f(x)\\xeCn,\lmx\&lt;r}.

LEMMA 1. Let e Un satisfy the Diophantine conditions

for some constants y &gt; 0 and r ^ n 1. Then for every g eWr with mean value

zéro the équation Du g has a unique solution u eWp for p &lt;r with mean value

zéro. Moreover, u satisfies the estimate

p&lt;r, (2.3)

with Cq-c/y and a suitable constant c c(t, n)&gt;0.

Existence and uniqueness for Hôlder functions: assume g e Cl(Jn) with / &gt; r

has mean value zéro. Then there exists a unique u e L2(T&quot;) having mean value

zéro and satisfying

-f
Jj
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Moreover, u e C&apos;~T(Tn) and

\u\C&apos;-r^c\g\cl (2.4)

with a constant c c(n, t, y, /) &gt; 0 provided that l r is not an integer.

For the proof of the first statement we refer to Rùssmann [29]. The second

statement is readily deduced approximatif Hôlder functions by holomorphic
fonctions using Lemma 3 and 4 below.

Lemma 1 shows that there are two more obstacles for solving équation (2.1).
First we hâve to eliminate the terms of order zéro and one in équation (2.2) and

then the remaining second order partial differential équation requires a com-
patibility condition, namely that the inhomogeneous term in the équation be of

mean value zéro. In order to overcome thèse difficultés let us first consider the

very spécial case that u id is an approximate solution of E(F, id) 0. Then it

follows from direct considérations that the coefficient matrices of v and Dv in

(2.2) are small and can be neglected. In fact the coefficient matrix of v is precisely
the Jacobian of £(F, id) and for the Dv-term we refer to statement (ii) in Lemma
2 below in connection with the estimate in Lemma 1. Therefore équation (2.1)

can be replaced by

D{FppDv) -E(F, id)

and, by Lemma 1, this équation can indeed be solved since E(F, id) must always
be of mean value zéro. We conclude that if u id is an approximate solution of

(1.7) then (2.1) admits an approximate solution v so that the first step of the

Newton itération can be performed in this case. Now the following observation
allows us to reduce the gênerai case to the one where u is the identity on TH.

Abstractly speaking, the group of diffeomorphisms u of the «-torus T&quot; acts

contravariantly on the space of Lagrangians F by means of the opération

u*F(x,p) F(u(x),U(x)p)

where U(x) e UnXn dénotes the Jacobian of u and is therefore of period 1 in ail

variables. One vérifies easily that indeed

(UoV)*F v*u*F, id*F F

for two diffeomorphisms u and v. The functional (1.11) is compatible with this
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group action in the sensé that

/f(m^) W«) (2.5)

and, moreover, it is invariant under the subgroup of translations. Differentiating
équation (2.5) with respect to v and recalling that the L2 gradient of IF is given by

VIF(u) -£(F, u)

one finds that

UT°vE(F, uoV) E(u*F, u). (2.6)

In order to reduce équation (2.1) to the case of the identity transformation on T&quot;

we again differentiate équation (2.6) with respect to v in the direction of a

tangent vector w:Tn-+Mn to the group of torus diffeomorphisms at v id and

obtain

UTdE(F, u)Uw dE(u*F, id)w - (dU - w)TE(F, u). (2.7)

Moreover, note that (2.6) with v id reduces to the identity

UTE(F,u) E(u*F,id) (2.8)

which will be frequently used later on. Of course, this équation can also be

verified directly by an easy computation.
It now follows from (2.8) that whenever u is an approximate solution of

E(F, «) 0 then also E(u*F,id) is small and hence the above considérations
about the case u id show that there exists an approximate solution w of the

équation dE(u*F, id)w E(u*F, id). Combining this observation with the

identities (2.7) and (2.8) we conclude that équation (2.1) indeed has an

approximate solution v Uw in the sensé that errors of quadratic order are

ignored. In this context we point out that multiplication with the Jacobian of u

naturally transforms a tangent vector w to the group of torus diffeomorphisms at

the identity into a tangent vector at u. Abstractly speaking we hâve used the Lie

group structure of the torus diffeomorphisms Diff (Jn) and transformed équation
(2.1) from the tangent space at u to the tangent space at the identity élément

namely the Lie algebra X(Jn) of vectorfields on TM.

In order to dérive précise estimâtes for the approximate solution of the

linearized équation (2.1) we summarize some conséquences of the above
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considérations in the lemma below which is crucial for our approach. There we

make use of the abbreviations

LEMMA 2

(i) UTdE(F, u)Uw D(aDw) + bDw + cw

where a, b and c are the following nXn matrix valued fonctions on J&quot;

a UTFPP U, b UTFpç - F^U, c UTES.

(ii) Db c- cT.

(iii) \ bdÇ 0.

(iv) f UTE(F,u)dÇ 0.

Proof. Statement (i) follows from équation (2.7) by inserting the expression

(2.2) with F and v replaced by u*F and w&gt; respectively.
Statement (ii) can be verified by a direct computation which we leave to the

reader. Observe, however, that (ii) expresses the fact-well known in variational

theory - that the operator

Lw D(aDw) + bDw + cw

which represents the Hessian of the functional (1.11) is formally self adjoint.
Indeed, since aT a and bT -by the formai adjoint operator of L given by

L*w D{aTDw) - D(bTw) + cTw

D(aDw) + bDw -f (cT + Db)w

so that L* L if and only if cT + Db c as claimed.

Statement (iv) simply reflects the fact that the functional I(u) defined by

(1.11) is invariant under the subgroup of translations of the n-torus TH. Indeed,
this implies that VI(id) -£(F, id) is orthogonal to the corresponding subal-
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gebra X°(Jn) of constant vectorfields for any Lagrangian F. Choosing the

Lagrangian u*F the statement follows from (2.8). Alternatively, statement (iii)
can be verified directly using partial intégration

f

Jj
UTE(F, u)d%=\ (UTDFP - UTFX) d%

-f (DUTFp +
h»

- l d/dÇF(u,Du)dÇ

0.

A similar argument can be used to establish statement (iii). We will however

give an interprétation of this identity in terms of the embedding w (w, v) of Jn

into Trt x Un defined by v Fp(u, Du). Observing that

b ulvç -
we obtain that the pullback of the standard exact symplectic 2-form dX on

T&quot;xr with

is given by

This 2-form is exact since w*(dX) d(w*k) which implies that

for some function f :Tn^&gt;Rn so that indeed the intégral of b over T&quot; vanishes.

This finishes the proof of Lemma 2. D

It follows from Lemma 2 that if a is a solution of E(F, w) 0 and the

frequency vector w eUn is rationally independent then c 0 and 6=0. In fact,



KAM theory in configuration space 97

since Db 0 the function b(%) is constant along the dense line £ cot. Hence it is

constant on T&quot; and it follows from Lemma 2(iii) that 6=0. In view of the

remarks in the proof of Lemma 2 the condition b 0 reflects the fact that the

embedded torus w(Jn) is Lagrangian which means that w* dX 0. Thus we hâve

reestablished the well known fact that every solution w of (1.4) defines a

Lagrangian invariant torus if the frequencies are rationally independent. As a

particular conséquence the linearized operator is given by

UTdE(F, u)Uw D(aDw)

in the case E{F&gt; u) 0. As we shall see later this operator can be inverted

provided that the pair (F, m) is stable.

Returning to the Newton itération we shall now replace the linearized

équation (2.1) by

ignoring the terms of order zéro and one. As a conséquence of Lemma 1 and

Lemma 2 this équation has a unique solution w of mean value zéro provided that

(F} w) is a stable pair as defined in the introduction. Moreover, in the analytic

case w satisfies an estimate of the form

with a constant K which is independent of p, r and u. Multiplying the Taylor
formula for E with UT and inserting v Uw one finds that

UTE(u + v) bDw + cw + UTR(u; Uw).

Now it follows from Lemma 2 and Lemma 1 that both c and b can be estimated

by |£(u)|. Combining this with the above inequality for w one concludes that

E(u + v) satisfies a quadratic estimate

This suggests a modified Newton itération in a family of spaces

Wry&gt; rv r(l + 2&quot;v)/2.
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Starting with an approximate solution u0 e Wr such that

\E(uo)\r^ôr4* (2.9)

one constructs recursively a séquence «v e Wrv by

mv+1 wv + Uvw, D(avDw) - UlE(uv).

Then it follows from (2.9) in connection with the quadratic estimate above that
the functions wv converge in the région |Im §| &lt; r/2 to a solution u of £(w) 0

provided that ô&gt;0 has been chosen sufficiently small. Moreover, this solution
satisfies the estimate

\u-u0\rf2^cr-2*\E{u0)\r (2.10)

with a constant c which is independent of r. This summarizes the existence proof
in the analytic case. It will be carried out in détail in section 3.

In order to prove the existence resuit in the differentiable case we shall apply
an analytic smoothing technique invented by Moser [19], [20]. It is based on the

observation that the Hôlder spaces Cl(Un) can be characterized in terms of their

approximation properties by holomorphic functions. More precisely, for / k + ]U

with k an integer and 0&lt;ju&lt;1 we dénote by Cl(Un) the space of A&gt;times

continuously differentiable functions / with

where

l/l*.,. sup |3*/(*) &quot; daf(y)\l\x -y\&quot;

the supremum being taken over ail aeZ&quot; with \a\ k and ail x,yeR&quot; with

0&lt;|x-.y|&lt;l.

LEMMA 3. There is afamily of convolution operalors

K(r-l(x-y))f(y)dy,

front C°(Un) into the linear space of entire functions on Cn such that for every / &gt; 0

there exist a constant c c(/) &gt; 0 with the following properties. If f e Cl(Un) then
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for \a\ ^l and |Imjt| ^r

daSrf(x)- &apos;-|ûr| (2.11)
|/3|&lt;/-|&lt;*|

and in particular for p &lt; r

\daSrf - d«Spf\p &lt;c \f\c,r1-^. (2.12)

Moreover, in the real case

(2.13)

Finally, if f is periodic in some variables then so are the approximating fonctions
Srf in the same variables.

For the proof of this resuit as well as Lemma 4 we refer to [19], [30], [31].

Moreover we point out that from (2.13) one can easily deduce the following well

known convexity estimâtes which will be frequently used later on

I/I&amp;* ^ c |/|&apos;c*m |/|&amp;-*, k &lt; m &lt; /, (2.14)

1/ g\a =£ c(\f\a l/lco + l/lco Igla), * ^ 0. (2.15)

As a partial converse of Lemma 3 we shall need

LEMMA 4. Assume that f:Un-*M is the limit of a séquence of real analytic

fonctions fv(x) defined in the complex strip |Imjc| ^rv 2~vr0&gt; xeCn, with

0 &lt; r0 &lt; 1 and

\fv(x) -/v-!(*)l ^M, |Im jc| ^ rv.

Then f eCs(Rn) for every s^l which is not an integer and moreover

for 0&lt;6 s -[s]&lt;l and a suitable constant c c(/, n) &gt; 0.

The existence resuit of invariant tori for differentiable Lagrangians as

formulated in the introduction can now be proved as follows.
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We first observe that the algebraic identity (2.8) allows us to reduce the

existence theorem to the case u° id. For a given function F e Cl(Jn xR&quot;) with
/ 4t 4- 2 + fi we may therefore assume that E(F, id) is sufficiently small. In

order to solve the équation E(F, u) 0 we shall now proceed as follows.

Using Lemma 3 we approximate F by a séquence of real analytic Lagrangians

The functions Fv are chosen as to satisfy the estimâtes of Lemma 3 in the

decreasing complex strips |Im *| &lt; 8rv, |Im/?| &lt; 8rv, where

rv=2&quot;vr0 (2.16)

and the small number r() &gt; 0 is defined by

tf+&quot;. (2.17)

We then construct inductively a séquence of real analytic diffeomorphisms uv of

Jn in |Im §| ^ rv solving

£(Fv,uv) 0 (2.18)

and, in addition, satisfying suitable estimâtes. In the first step of the itération,
which is crucial for the regularity statement, we make use of (2.11) together with

(2.14) and the définition of r0 in (2.17) in order to show that the pair (Fo, id)
satisfies the foliowing estimate in the complex strip |Imx| ^2r0

\E(FOf id)\2rQ &lt; c \F\C, r(?(2r())4* (2.19)

The point now is to choose E(F, id) so small that the width r() defined by (2.17)
satisfies c|F|c*rg&lt;&lt;5 and hence the assumption (2.9) of the analytic existence

theorem is satisfied in the strip \ïmx\ ^ 2r{). We therefore find an analytic solution

«0 in |Im£|^r0 of E(F0, uo):=z0. Having constructed a solution uv of (2.18) in

|Im§|^rv we will then use the estimate (2.12) for Fv+l-Fv in order to verify
that E(Fv+l, uv) is sufficiently close to E(FV, wv) 0 so that the pair (Fv+1, uv)

meets the requirements of the analytic existence theorem in the complex strip

|Im||^rv. This guarantees the existence of a solution wv+1 of (2.18) in

rv/2 rv+1. In addition the inequality (2.10) of the analytic theorem
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shows that wv+1 satisfies an estimate of the form

|mv+1 - uv\ry+l &lt; cr~2x \E(FV+U uv)\rv

with a generic constant c &gt; 0 which is independent of v. Hence it follows from

Lemma 4 that the analytic functions uv converge on Un to a solution u e cl~2t~2

of

E(F, u) 0.

The détails of this argument will be carried out in section 4.

3. The analytic case

This section is devoted to the proof of the following quantitative existence

resuit for invariant tori for analytic Lagrangians. We make use of the abbreviating
notation

\\u\\r=\u\r + \Du\,+ \D2u\,

for bounded, real analytic functions u(§) in |Im £| &lt;r.

THEOREM 1. Let e Un satisfy \w\&lt;Mand

for some constants A/&gt;1, y&gt;0, t&gt;ai 1 and let F(xf p) be a real analytic

function in the domain |Imjc|^2Âr, |Imp|^2Âr which is of period 1 in the

x-variables and satisfies

|3&quot;F|2Ar&lt;M, |*|&lt;4, (3.1)

with suitable constants 0&lt;r&lt;l and Â&gt;1. Moreover&gt; let Jt wo(£) be a real

analytic diffeomorphism of the n-torus defined in the région |Im §| ^r such that

wo(§) § is of period 1 and

||ttO-«||r+l|t/ollr=SA. (3.2)
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We assume that uois a stable approximate solution in the sensé that

\DFp(u0, Du0) - Fx(u0, Duo)\r &lt; ôr4r,

\UlFpp(uOy Duo)Uo - a\r &lt; &lt;5 (3.3)

where a(£) is an invertible nXn matrix in |Im£|&lt;r (not necessarily analytic)
which is ofperiod 1 and satisfies

|a(^)~1|^Af, (I a(£)~l d%) ^M. (3.4)

for |Im §| &lt; r.

Then there exist constants ô* &lt;5*(y, t, M, A, n) &gt;0 and c c(y, t, M, A, n) &gt;

8M3 smc/ï that cô* &lt; 1 and f/ie following statement holds. If ô&lt;ô* then there exists

a real analytic torus diffeomorphism x w(£) mapping the strip |Im || &lt; r/2 /nto

|Im w(£)| ^ 2Ar, |Im Ow(^)| &lt; 2Ar 5wc/ï ^/iar w(§) % is of period 1 and

(3.5)

Moreover, the pair (F, u) is stable and satisfies the estimâtes

\\u-uo\\r/2^côr2\

\UTFpp(u, Du)U-a\r/2^cô/4M3. (3.6)

Remark. If T and 5 are complex n xn matrices such that T is nonsingular and

- T\ \T~[\ &lt; 1 then S is nonsingular and

Hence it follows from (3.4) and (3.6) that the matrix A(%) UTFpp(u, Du)U
satisfies the inequalities

l^&quot;1 - a&apos;%2 * (cô/4Af )(1 - CÔ/4M2)&apos;1 &lt; cô/2M,

-cô/2yl^côM.

In order to prove Theorem 1 we shall need the following two Lemmata.
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LEMMA 5. Let w eUn satisfy the Diophantine conditions of Theorem 1 and

let a(^)eCnXn and g(Ç)eCn be real analytic functions defined in the strip

|Im || &lt; r &lt; 1 which are of period 1 in ail variables. Moreover, assume that g is of

mean value zéro and that a satisfies

-î

for |Im £| &lt; r with some constant M ^ 1.

Then there exists a unique real analytic function w(§) e Cn in |Im £| &lt; r which is

of period 1 with mean value zéro and solves

D(aDw)=g.

Moreover, w satisfies the estimate

\w\p + \Dw\p Y~\r - Pr^coy-2M3(r - p)~2x \g\r

for 0 &lt; p &lt; r with a suitable constant c0 co(r, n) &gt; 0.

Proof By Lemma 1 there exists a unique real analytic solution /(£) e Cn,

|Im || &lt; r, of Df g which is of period 1 and mean value zéro. Now we choose

a e Un such that a~l(f a) is of mean value zéro and define the real analytic
function w(£) e C&quot; (again of period 1 and mean value zéro) to be the unique
solution of Dw a~l(f a) so that D(aDw) g. In order to dérive the estimate
for w we dénote by c c(t, n) the constant of Lemma 1 and obtain

Now the identity

shows that

and hence

\a~\f ~ a)|(,+py2s cy-&apos;M(Af2 + l)2\r -
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We conclude that w satisfies the estimate

and this proves Lemma 5.

LEMMA 6. Let F{x, p) be a real analytic function defined in the région

|Imx| &lt;/?,* Cn, \lmp\ &lt;R, pe Cn, and satisfying

Moreover, let u and v be real analytic mappings of Cn such that |Im w(§)| 4-

|Im u(£)| &lt; R and |Im Dm(§)| 4- |Im Dt/(£)| &lt; R for |Im g| &lt; r. r/ien r/zere exists a

constant c c(R, M) &gt; 0 5wc/i that

\E(u + v) - £(ii) - rf£(u)t;|r ^ c |v|? (1 + |«|r)

E(u) £(F, w) DFp(u, Du) - Fx{uy Du),

Proof. The statement of the Lemma is an immédiate conséquence of Taylor&apos;s

formula

E(u + v) - E(u) - dE(u)v

DFp(u + v, Du + Dv) - Fx(u + v, Du + Dv) - DFp(u} Du) 4- Fx(u, Du)

~ D(Fpp(ut Du)Dv) - (Fpx(ut Du) - Fxp(ut Du))Dv

- (DFpx(ut Du) - Fxx(u, Du))v

(Fpp(u 4 v, Du 4 Du) - F^(w, Du))D2v

4- (F^(w 4v,Dw + Du) - F^(w, Dw))Du

+ (Fpp(u + v, Du + Dv) - F^(W&gt; Du) - Fppp(u, Du)Dv - F/W(M, Dm)u)D2w

+ (Fpx(u + u, Dw + Du) - F^(w, Dw) - FW(M, Dw)Du - F^w, Du)v)Du

- (Fx(u 4 u, Du 4 Du) - F,(u, Dm) - F^,(w, Dm)Du - Fxx(u, Du)v). D

Proof of Theorem 1. We shall construct a séquence of real analytic torus

diffeomorphisms x uv(Ç), v e N, defined in the complex strip |Im §| =s rv with

rv r(l4 2&quot;v)/2, ro r,
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such that E(uv) E(F, uv) converges to zéro Thèse transformations are defined
inductively by

wv+! uv + Uvw

where h&gt;(£) îs of penod 1 with mean value zéro and satisfies

D{avDw) -UÎE(uv), av UÎFpp(uv, Duv)Uv (3 7)

In each step of the itération we shall prove that the pair (F, uv) îs stable and

satisfies the estimâtes

\\Uv-uQ\\r^cxôr2x&lt;k, (3 8)

llt/v-t/olU^ôr2&apos; &apos;^A, (3 9)

\av-a\r^cxàlAM\ (3 10)

with a suitable constant Cj c,(y, r, M, A, n) &gt; 8M3 The remark after Theorem 1

shows that (3 10) implies

-1

-(//&lt;

provided that c^ &lt; 1 Combinmg thèse mequahties with (3 4) and (3 8-9) with
(3 2) we obtain

;2M, &lt;2M (3 11)

Observe that thèse mequahties are, by assumption, satisfied for v 0 provided
that c &gt; 8M3 and cô &lt; 1 Moreover, ît follows from (3 11) that the transformation
jc Mv(^) maps the stnp |Im^|&lt;rv mto |ImMv(§)| &lt;2Ar |ImDwv(§)| &lt;2Ar so

that the expression E(uv) îs well defined in this région The convergence proof îs

based on the quadratic error estimate

\E(uv+l)\rv+^c2(rv-rv+iy4*\E(uy)\l (3 12)
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in connection with the inequalities

IK+i &quot; «vllrv+1 ^ c2(rv - ry+ïy2r \E(uv)\rv, (3.13)

ll*/v+i &quot; Uv\\,^ ^c2(rv -rv+l)-2x-1 \E{uv)\ryi (3.14)

with a sufficiently large constant C2 c2(y, r, M, A, n)&gt;l. The constants ô, cl
and c2 will be determined in the course of the itération.

Let us now fix an integer N&gt;0 and assume that the torus diffeomorphisms
wv(§) hâve been constructed for v 0,.. N such that the inequalities (3.8-11)
are satisfied for 0 &lt; v &lt; N and (3.12-14) for 0 &lt; v &lt; N - 1.

In order to construct the next approximant uN+x uN + UNw we recall from
Lemma 2 that the right hand side of (3.7) is of period 1 and mean value zéro.

Moreover, the inequality (3.11) shows that the matrix function aN{%) satisfies the

requirements of Lemma 5. Hence there exists a unique solution w(t~) of (3.7)
with v N which is of period 1 and mean value zéro and satisfies the estimate

\w\p + \Dw\p (rN - rN+l)~r * c(rN - rN+ly2r \E(uN)\r» (3.15)

with p=z(rN + rN+l)/2. Hère-and in the following-we dénote by c&gt;0 a

generic constant depending only on y, t, M, A and n. Using Cauchy&apos;s estimate we

obtain

with p (rN + 3rN+l)/4 and hence

\D(UNw)\p \{DUN)w + UN{Dw)\p

\D\UNw)\p \(D2UN)w + 2{DUN){Dw) + UN(D2w)\p

Thus we hâve established (3.13) for v N in the région |Im £| s p (rN +

3rN+1)/4 and hence (3.14) follows from Cauchy&apos;s estimate. We point out that we
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have only used (3.11) in order to dérive (3.13) and (3.14) so that the constant c2 is

independent of the previous steps in the itération.
In order to dérive the quadratic estimate (3.12) for v N we make use of the

hypothesis that it holds already for 0&lt;v&lt;N-l. We define ev \E(uv)\r% for

v 0, N so that (3.12) can be written in the form

ev+l &lt;s c2(rv - rv+l)-4rel apve2v

with a c2(4/r)4T and /3 24r. Defining

ôv *jSv+1£v c2(2/(rv - rv+1))4T£v (3.16)

for 0 &lt; v &lt; TV we obtain

£ n/Rv + 2e &lt; sv2R2v + 2c2 S2
ov+1 ap £y+i^ap £yov

for 0 &lt; v &lt; N 1 so that &lt;5V will converge to zéro provided that ô0 &lt; 1. In fact, we

will choose ô* so small that

Clô* &lt; 1, d c284T+2À2M4 &gt; 8M3. (3.17)

In view of e0 &lt; r4rô and ô &lt; ô* this leads to the inequality

Ôq c2(8/r)4T£0 =s c284T&lt;5 &lt; 1/64A2M4 (3.18)

and in particular we have ô0 &lt; 1/2 so that ôv &lt; 2~vô0 for v &lt; M

Now (3.13) has already been established for v N. In combination with (3.16)
this leads to the estimate

l|Wv+i - «vllrv+1 ^ c2{rv - rv+l)~2rev

r2xôv

&lt;r2T2-v&lt;50

for v 0, N. Likewise we obtain from (3.14) that

|| t/v+1 - Uv ||rv+1 &lt; r*-lôv &lt; r^-^^ôo.
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thèse two inequalities in connection with (3.18) show that

IK+. - «olk+l ^ r2t2ô0&lt; r2r2 84rc2&lt;5 &lt; A (3.19)

and

\\UN+l - l/oll^, s \\UN+l - UN\\,H., + \\UN- t/,,11^,

&lt;r2l-&apos;2^(1

&lt;r2r-&apos;2-84rc2ô

s A. (3.20)

Moreover, it follows from (3.17-20) that

&lt; ô + m,|^+11/^(1*0, Du,,) - Fpp(«^+I, DuN+l)\rN

+ \UlFpp{uN+u DuN+x)\r^ \U(&gt;-UN+I\r»tl

+ \Ut}- f//V+lL+l l^p(«/V+l. OM/V+l)t//V+llrw&lt;l

&lt; ô + A2M ||u0 - H«,+ ,IUtl + 3AM \Un - UN+l\rKtl

&lt; Ô + 2A2M ôo + 6AM ô()

&lt; ô + 8A2Mc284Tô

Thus we hâve established the inequalities (3.8-10) for v N + l and we hâve

already seen that (3.11) follows from (3.10). Therefore it remains to prove the

crucial estimate (3.12) for v N. For this purpose we recall from Lemma 2 and

(3.7) that

UUE(uN)UNw + Uj,E(uN)

D(aNDw) + bNDw + cNw - UTNE(uN)

(3.21)

where cN - UnE(un)ç. In view of (3.11) the matrix cN satisfies the inequality

\cN\p &lt; 2A \E(uNh\p s 4A(rN - rN+1)~l \E(uN)lN (3.22)
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with p (rN + rN+i)/2. Since bN is of period 1 with mean value zéro and satisfies

DbN cN-clf (Lemma 2) we obtain from Lemma 1 that

\pbN\rN+l ^ 2Tc0(rN - rN+l)~x \cN - cTN\

T~l \E(uN)\,N. (3.23)

Hère c &gt; 1 again dénotes a generic constant depending only on y, r, M, A and «.

Moreover, observe that by (3.1) and (3.11)

and hence it follows from (3.21) in combination with the estimâtes (3.15) and

(3.22-23) that

£(iiN)|rjv+l

)\2rN. (3.24)

Recalling from (3.20) and (3.2) that

ll^lk+1 + l|l^+i-f//vlk+I=s2A (3.25)

we observe that the transformations u uN and v uN+l uN meet the require-
ment of Lemma 6 with R 2Âr. Hence it follows from (3.24) and Lemma 6 that

+i) - E(uN) - dE(uN){uN+x - uN)\r»+i

uN) + dE(uN)UNw\rN+l

&lt; c ||mn+1 - uN\\%+l + c(rN - ryv+1)&quot;2T&quot;1 \E(uN)\2rN

and thus we hâve established (3.12) for v N. We point out that the last

inequality is based on (3.13) with v TV so that the constant c2 from (3.13) and

(3.14) has to be enlarged in order to dérive (3.12). However, ail three estimâtes

(3.12-14) hâve been obtained from (3.11) and (3.25) only so that the constant es

is independent of the constant c, defined by (3.17). This finishes the induction.

Finally, the inequality (3.13) for v e Z shows that

- uy ||rv+1 &lt; c2(rv - rv+ ,)&quot;2T |£(&quot;v)L ^ ôv &lt; 2~yô{)
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and hence mv(£) is a Cauchy séquence in the domain |Im §| &lt;r/2&lt;rv. It follows
from (3.8-10) that the limit function

satisfies the inequalities (3.6). Moreover, the above estimate shows that E(uv)

converges to zéro in |Im §| &lt;r/2 so that u is a solution of (3.5). This finishes the

proof of Theorem 1. D

4. The differentiable case

In the theorem below we make use of the abbreviating notation

THEOREM 2. Let eUn satisfy \\&lt;M and

for some constants y &gt; 0, x&gt;n-l and let F(x, p) be a function of class Cl with
l 4r + 2 + fi, jU &gt; 0. We assume that F is of period 1 in the x-variables and

satisfies

xe

co)~l dx) M. (4.1)

Then there exists a constant e e(y, t, ju, M, «) &gt; 0 such that if

\F\ci \DFp(x, (o) - FK(x, )\^4T^ ^ e (4.2)

for x e U&quot; then the équation

DFp(u, Du) Fx(u, Du). (4.3)

admits a solution x w(§) such that u(%) § is of period 1. // 2r + fi is not an

integer then uf Du and D2u are of class C2t+m and satisfy the estimate

u - id\\c, s c, \F\c \E(F, id)\&lt;èr&gt;-^^ (4.4)
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for 0&lt;s&lt;2t + ju, s$Z, where cs c/6(l- 0) and Q&lt;O=s-[s]&lt;\ with a

suitable constant c c(y, t, \i&gt; M, n) ^ 1 Moreover, if F eCm for some m&gt;l and

m 2r 2 is not an integer then u, Du and D2u are of class cm~2r~2 So in

particular F eCx implies u eCx Finally, if F is real analytic then so is u

Proof We approximate F{x,p) by a séquence of real analytic functions
K(*&gt; p)&gt; v 0, 1, which are of penod 1 in the x-variables and defined in the

stnp

|Imx|&lt;8rv, |Imp|&lt;8rv, rv 2&quot;

where the small constant r0 &gt; 0 is given by

If £&gt;0 is sufficiently small then, in view of (4 2), we may assume that
0 &lt; r0 &lt; 1/2 By Lemma 3, the function Fo can be chosen as to satisfy

&lt;c()|F|c,r(&apos;r2 (4 5)

for |Im;t|^87b with a suitable constant cQ c0(l, n)&gt;0 Analogous mequahties
hold with Fpp replaced by Fpx or Fx Moreover, Lemma 3 allows us to assume that

-1^ |ar|&lt;/, v&gt;l, (4 6)

4, v^O (4 7)

We will then construct inductively a séquence of real analytic functions x wv(l)
in the stnp |Im £| &lt; rv such that wv(§) - § is of penod 1 and

DFvp(uv, Duv) Fvx(uv, Duy) (4 8)

For v 0 we shall use the estimâtes (4 2) and (4 5) in order to venfy that the

pair (FOi id) satisfies the requirements of Theorem 1 with r 2r{) and À 2 First,
ît follows from (4 1), (4 7) and (4 5) that

|or|&lt;4,

e x, )\ &lt; c0 \F\O rg, |Im jc| &lt; 4r« (4 9)

Moreover, denotmg by co&gt;0 a genenc constant dependmg only on /, M and aï,
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we obtain from (4 5) that for |Im jc|

DF{)p(x,(o)~

F()x(x,a))-

Imx)aI

o))-Fx(Rex,aj))\

&lt; c« |F|C, rfr

/ 2

rg |£(F,

Observe that we hâve used the interpolation inequahty (2 14) Moreover, note

that this estimate in connection with (4 1) and (4 9) shows that the pair (F^, id)
satisfies the requirements of Theorem 1 with r 2r0, ô &lt;50 c() |F|c/rfî and

a(!=) F^(Re g, co) provided that

o c« |F|ci rff c0 |F|C/ |£(F,

where 6* ô*(y, r, c0Af, 2, n) îs the constant of Theorem 1 But this inequahty
îs indeed satisfied if (4 2) holds with e ô*/c0 Hence there exists a real analytic
diffeomorphism x wo(§) of the n-torus defined m the région |Im $| &lt; r{) such that

m()(^) - § îs of penod 1 and (4 8) holds for v 0 Moreover, Theorem 1 yields the

estimâtes

Duo)Ui}-Fpp(Re g, &lt;o)\r &lt; (4 10)

where cx =c,(y, t, c(), M, 2, /i) îs the constant of Theorem 1 enlarged by the

factor 22t For later purposes we assume that
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and, moreover, we permit oursleves to enlarge the constant c0 in the forthcoming
estimâtes, if necessary.

Now suppose that the solutions x wv(£), |Im£|&lt;rv, of (4.8) hâve been

constructed for v 0, N such that wv(§) - § is of period 1 and

\\UV - I/v.JU^CoC, |F|c,r2vT+&quot;-\ v 1, /V,

\av -flv-iU ^coc, |F|c/&lt;/4M3, (4.11)

where av(£) ^v^(wv&gt; Duv)Uv for |Im £| &lt;rv and £/v dénotes the Jacobian of

mv. In order to make sure that the expression Fv(wv, Duy) is well defined in the

domain |Im §| &lt; rv we point out that

coc, \F\c&gt; 2 r; coc, |F|ci rff/(l - 2&quot;&quot;) &lt; c,ô*/(l - 2~&quot;) &lt; 1.

It therefore follows from (4.10) and (4.11) that

v

7=0

and likewise

so that

Hiiv - W||rv+ |H/V|U^2, v 0, /V. (4.12)

This shows that wv maps the strip |Im§|&lt;rv into |Im wv(§)| &lt;2rv =4rv4.,,
|Im Duv{%)\ &lt;2rv so that both Fv(wv, Duv) and Fv+,(mv, Dmv) are well defined in

this région. It also follows from (4.10) and (4.11) that

g, &lt;o)| &lt; c«c, |F|C, 2 r|74Af
&apos;

^
7=0

for v 0, N and |Im §| &lt; rv. Combining this inequality with (4.1) we obtain
from the remark after Theorem 1 that

|Img|&lt;rVf
-1

&lt;2Af, v 0, ...,M (4.13)
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We will now verify that the pair (FN+1, uN) satisfies the requirements of

Theorem 1 with r rN, &lt;5 co|F|c/rft+1 and a(£) aN(§). First it follows from

(4.1) and (4.7) that

\daFN+l\2,rN=\SaFN^\srN+^c0M (4.14)

where À 2. Moreover, enlarging the constant c0 where necessary, we obtain
from (4.12) and (4.6) that

Dun)Un - aN\rN

2N \FN+ltPP(uN, DuN) - FNtPP(uN, DuN)\rs

l (4.15)

and

\DFN+Up(uN, DuN) - FN+hx(uN, DuN)\rN

Dun) - FNtPP(uN, DuN)\rN \D2uN\rN

DUN) - FNtpx(uNt DUN)\TN \DuN\r

un) - FNx(uN, DuN)\rN

* Co \F\C&gt;rlNÎx{\D2uN\rN + \DuN - a&gt;\rN + 1 + \w\)

^co\F\c,r%+1r%\ (4.16)

The estimâtes (4.12-16) show that the assumptions of Theorem 1 are indeed

satisfied with F FN+U u0 uN, and ô c0 IFI^ rN+i ^ô*. Hence there exists a

real analytic solution x uN+l(^)f |Im Ç| &lt; rN/2 rN+1, of (4.8) and this solution
satisfies the estimate (4.11) with v N + 1. This finishes the induction.

It follows from (4.11) that wv(£) is a Cauchy séquence for l-elR&quot; and, by

Lemma 4, the limit function w(|) lim mv(£) is of class C2T&quot;*&quot;/i provided that

2r + // ^ Z. Moreover, Lemma 4 shows that u satisfies the estimate

\u - «fie. ^ (c2/0(l - 6)) \F\ci rV^~s

for 0&lt;5&lt;2t + jU and O&lt;0 5-[,s]&lt;l with a suitable constant c2

^(y» ^ A*&gt; Af, n)&gt;0. This proves (4.4) and it follows from (4.8) that m is a

solution of (4.3).
In order to prove higher differentiability of u let us now assume that F eCm

for some m ^ /. Then the inequality (4.6) is satisfied with / replaced by m and c0
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replaced by a larger constant cm. The same holds for the inequalities (4.15) and

(4.16) where in addition pi has to be replaced by m 4r - 2. Hence Theorem 1

can be applied in the v-th step of the itération with ô cm \F\Cmr~4r~2 and it

follows that

for v 1, 2, In connection with Lemma 4 this estimate shows that u, Du and

D2u are of class cm~2x-2.

Finally, in order to prove that u is real analytic, let us suppose that F is real

analytic and recall from Lemma 3 that

3&quot;FN(x,p) - 2 3a+pF(Rex, Rep)(i(lmx, Imp))fi/p\
/-|or|

rl-\&lt;*\

for aelnxln with |ar|&lt;/ and \Imx\&lt;8rN, llmpl^Sr^. The same estimate
holds with FN replaced by F if rN &gt; 0 is sufficiently small so that

where the constant c &gt; 0 is independent of N. This shows that the estimâtes (4.15)
and (4.16) can be performed with FN+i replaced by F leading to the inequalities

\UlFpp(uN, DuN)UN- aN\

\DFp(uN, DuN) - Fx(uN, DuN)\rN &lt; cr%r%\

It follows that for large Af the pair (F, uN) satisfies the requirements of Theorem 1

with r rN and ô crj^&lt; ô*. Hence there exists a real analytic diffeomorphism
x u(£) of the n-torus defined in the strip |Im §| &lt; rN+ï such that v(!~) § is of

period 1 and E(F, v) 0. Moreover, v satisfies the estimate

Combining this estimate with (4.11) we obtain from Lemma 4 that

for 0 &lt; s ^ 2r + ju and 0&lt;d=s -[s]&lt;l where the constant c&gt; 0 does not

dépend on our choice of N. Choosing s $ Z such that 2t &lt; s &lt; 2t + jU and

assuming that rN &gt; 0 is sufficiently small we can apply the uniqueness resuit from
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the next section (Theorem 4) and obtain that w(§) v(Ç + £()) for some constant
vector §() Un so that u is real analytic. This proves Theorem 2.

We will use the abstract Lie group structure as described in section 2 in order
to dérive the perturbation theorem for invariant tori in gênerai position
represented by a diffeomorphism u{) which is not necessarily close to the identity
map. For this purpose we shall need the following composition estimate.

LEMMA 7. Let u e Cl+2(R&quot;, U&quot;) and v,we C\Unf R&quot;) be given such that

||ii-i&lt;*||cf+2&lt;A#, ||u-/d||c/&lt;M, \\w-id\\c,&lt;M

and let e Un satisfy |o&gt;| ^ M. Then

\\u°v -u°w\\ci^c \\v - w\\ci

with a suitable constant c c(l, M, n). The same statement holds with \\-\\ replaced

by |-|.

Proof. We first prove the resuit with the standard norm || and observe that

|

ri ri

where du/dx and d2u/dx2 are to be understood with the argument rç

r\) + t{y - rj) + st(x -%-y + rj). This shows that for 0&lt; || - rj\ &lt; 1 we hâve the

estimate

|u(w(£)) - u(w(&amp;) - (u(v(r,)) - u(w(r,)))\
&lt; c(|u(§) - w(f - w(iï) + w(tj)| + |w(§) - iv(ij)| |i/(i,) - w(r,)\)

se || - fj|&quot; (|u - w|o. + klc |v - w\(*)

with a suitable constant c depending on the C2 norm of u - id and on the C
norm of w - irf. Thus we hâve proved the statement for 0 s / &lt; 1.
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Now we proceed by induction Assuming that the statement has been shown

for / &gt; 0 we mke use of the îdentity

(w°v)Xk - (uo w)Xk 2 (uXv°v)(vVXk - wVXk) + 2 (uxv°v-uXyo w)wVXk
v=l v=l

and obtain from (2 15) that

\(u o V)Xk ~ (u ° w)Xk \Ci &lt; C \V ~ H&gt;|c/+.

with a constant c&gt;0 dependmg on n, l, the C/+1 norm of u id and the C/+1

norm of v id and w id This proves the statement of the lemma in the case of

the standard norm |-| In the case of the norm ||-|| the statement follows from the

identities

D(u°v) - D(u o w) (U°v)(Dv - Dw) + (U°v- U°w)Dw

D2(u°v) - D2(uow) (U°v)(D2v - D2w) + D((Joy)(Dv - Dw)

+ (LJoy - Uo w)D2w + (D(U°v) - D(UoW))Dw

THEOREM 3 Let w e M&quot; satisfy |co| &lt; M and

\j \^y\j\-\ OïjeZ&quot;,

for some constants y&gt;0, x^n 1 Moreover, let F(x, p) be of penod 1 in the

x-vanables and let x wo(§) be a diffeomorphism of the n-torus such that

wo(§) - £ is of penod 1 We assume that F eCl and u{) e C/+l where l 4r 4- 2 + ju,

/i &gt; 0, and

|F|c/&lt;Af, \u{)-id\cl^M

Finally, suppose that the pair (F, w0) w stable and let M be such that

(1.

/or § e Un where ao(Ç) U^Fpp(u{)y Du{))U{)

Then there exists a constant e e(yy r, fi, M, «) &gt; 0 swc/i r/iar // |F(F, w())|c«» ^ ^

^/ien f/ie équation E(F, u) 0 admits a solution x w(£) 5wc/î f/wf w(Ç) - § is of

penod 1 If l 2r -2 is not an integer then u&gt; Du and D2u are of class cl~2T~2
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and satisfy the estimate

\u - uo\Cs =£= cs \E(F, ho)|£72t-2-5)/(&apos;-2) (4.17)

for 0&lt;s&lt;/-2r-2, s$Z, where cs c/6(1-0) with 0&lt; S s - [s]&lt; 1 and a

suitable constant c c(yf t, \i, M, n) ^ 1.

Proof Recall from (2.8) that the function

G(x, p) UoF(xt p) F(uo(x), U0(x)p)

satisfies

E(G, id) UlE(F, w()), Gpp(§, (o) ao(|).

This shows that the pair (G, id) satisfies ail the requirements of Theorem 2

provided that the constant e&gt;0 has been chosen sufficiently small. Hence there
exists a diffeomorphism x v(%) of the n-torus such that t/(§) £ is of period 1

and E(G, u) 0. Moreover, Theorem 2 shows that v is of class c&apos;&quot;2t~2 and

satisfies an estimate of the form

\v - id\a ss cs |E(G, i

with a constant c, &gt;0 as above. It follows from (2.6) and detf/o^O that the

function u-uo°v satisfies E{F, w) 0. Furthermore, Lemma 7 yields the

estimate

f/o&apos;lc- |£(G, /d)|c.)^2T-2-^-2&gt;

and hence the inequality (4.17) is a conséquence of the fact that t/(71

aôlUoFpp(uih Du{)) is in norm bounded by Af\ This proves Theorem 3.
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5. Uniqueness and regularity

In order to prove the uniqueness resuit for invariant tori we need the

following differentiable version of Lemma 5. We recall that

\\u\\Cs=\u\Cs+\Du\Cs + \D2u\c,.

LEMMA 8. Assume e Un satisfies \\ &lt; M and the Diophantine conditions

for two constants y&gt;0, r&gt;n-l where n&gt;2. Let a e Cr+^(Un; UnXn) be an

invertible matrix function of period 1 and let the constant M be chosen such that

Moreover, let g e C2x+tl(Jn ; Rn) be of mean value zéro and suppose that /x &gt; 0 and

r + /i are not integers. Then there exists a unique function u e CIA(Jn, Un) of mean

value zéro such that Du and D2u are also of class CM and

\ uTD(aTDcp)dÇ= l gT&lt;pdl ç&gt;eC-(Tn, Rn). (5.1)
Jjn Jjn

Moreover, u satisfies the estimate

(5.2)

with a suitable constant c c(y, r, /i, M, n).

Proof We proceed as in the proof of Lemma 5 and define / e Ct+fÀ(Jn\ Un)

to be the unique function of mean value zéro which satisfies Df g (Lemma 1).

Then choose a e M&quot; such that a~\f -a)e CT+^(T&quot;; Un) is of mean value zéro

and define u e CM(T&quot;; Mn), again of mean value zéro, to be the unique weak

solution of Du =a~ï(f - a). Then u of course satisfies (5.1).

Conversely, let u e C(TH, Rn) be of mean value zéro such that Du and D2u

are also of class CM and (5.1) is satisfied. Then the function

+ a, a=-\ aDudÇ
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is of mean value zéro, of class CM and satisfies Df g in the weak sensé. Hence

Lemma 1 shows that / e Ct+tA and

with a suitable constant c c{yy r, ju, n) &gt; 0. Moreover, the identity

f a(Ç)-ldÇa=[ «(§)-&apos;/

Jjn Jjn

yields the estimate

and this implies

\u\c, ^ c \Du - a)\c

* c(\a~ly \f -

In connection with the inequality

\D2u\c»&lt;M \Du\c&gt;+,&lt;&lt;M \Du\(

this proves the estimate (5.2). Finally, the uniqueness is an immédiate consé¬

quence of (5.2). This proves Lemma 8.

THEOREM 4 (Uniqueness). LeteU&quot; satisfy \\&lt;M and

for some constants y&gt;0, r ^ /i - 1, A/ &gt; 1. Moreover, let F e c2r+4+^(T&quot; x W)
be given with pt &gt; 0 and let x w(§) be a c2t+s+^ diffeomorphism of T&quot; ^wc

w(^) - £ is of period 1 and £(F, u) 0. We assume that the pair (F, w) /s

satisfies the estimâtes

,-l{
-1
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where a(!~)= UTFpp(u, Du)U. Finally, let x v(%) be another solution of

E(F, v) 0 such that v, Dv, and D2v are of class C2r+fÀ and v(^) - § is of period
1.

Then there exists a constant ô &lt;5(y, r, jU, M, n) &gt; 0 such that if \v - m|C2t+m &lt; ô

then v(Ç) u(Ç + |0) /or a//1 e IRW and 5ome constant vector g0 R&quot;.

Proof. It follows from the periodicity of «(§)-§ that

f K(

and hence we can assume without loss of generality that v(^) - w(§) is of mean

value zéro. Changing jU &gt; 0 if necessary we can also assume that \i and r -f pi are

not integers.
We consider first the case u /d and recall from section 2 that under the

assumption E(id) E(F, id) 0 we hâve

dE(id)w D(aDw).

Hence it follows from Lemma 8 and the differentiable version of Lemma 6

(obtained from the remainder formula in the proof of Lemma 6 in connection

with the estimate (2.15)) that

\\v - id\\c» &lt; c \D(aD(v - id

c \E(v) - E(id) - dE(id)(v - id)\C2r+(J

&lt; c \\v - id||CM \\v - /rf||C2T+M

with a generic constant c c(y, r, jU, M, n)&gt;0. We conclude that if

c \\v - id||C2r+H&lt; 1 then i; id.

In the gênerai case it follows from (2.6) that

£(w*F, id) 0, £(m*F, m&quot;1 ou) 0.

Moreover, Lemma 7 shows that

WU&apos;^V ~/d||C2r^&lt;C \\V -
with a constant c &gt; 0 depending on ||M~1||C2t+2+M. But a bound on this norm as well

as on the C2x+4+fÀ norm of u*F is guaranteed by the assumptions of Theorem 4.

This shows that the pair {u*F, id) satisfies the requirements of the theorem in the
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case of the identity transformation and therefore u~l°v is a translation provided
that ô &gt;0 has been chosen sufficiently small. This proves Theorem 4. D

THEOREM 5 (Regularity). Let eUn satisfy the conditions of Theorem 4

and let F e Cl(Jn x M&quot;) be given with l &gt; 4r + 2. Moreover, let x w(£) be a C/+1

diffeomorphism of Tn such that w(§) £ is of period 1. We assume that u is a

stable solution of E(Ff u) 0.

If F is of class Cm with m &gt; l and m - 2r 2 is not an integer then u, Du and

D2u are of class cm~2t~2. In particular, F eCx implies u e Cx. Moreover, if F is

real analytic then so is u.

Proof Let us choose jU &gt; 0 such that 4r + 2 + 2\i &lt; / and 2t + \i &lt;£ Z. Then

Lemma 3 shows that for any ô &gt; 0 we can find a real analytic diffeomorphism
x u(£) of Jn such that v(^) - g is of period 1 and

|t/ M|C4t+3+2M&lt; ô.

Hence we can make v*F u*F in the c4T+2+2/i norm as small as we please.

Making use of the fact that the pair (w*F, id) is stable and satisfies E(u*F, id) 0

we conclude that with a suitable choice of ô the Lagrangian v*F satisfies the

requirements of Theorem 2 with ju replaced by 2\x. In particular the pair (v*F, id)
is stable. Hence there exists a diffeomorphism x w(%) of Trt such that w(£) - §

is of period 1 and E(v*F, w) 0. Since det v% =£0 it follows from équation (2.6)
that E(F, v ° w) 0. Moreover, Theorem 2 shows that the transformation w and

hence u°h&gt; has the required regularity properties. It therefore remains to show

that M u°H&apos;uptoa translation.
For this purpose note that, again by Theorem 2, there exists a constant c

depending on co, F and u such that

\\w - id\\c2~^c\E(v

(replace /i by 2ju in that theorem and choose s 2t + \i $ Z). Since, by définition
of v, there is an upper bound for

we obtain from Lemma 7 that

||W ~ V O W\\C2r+» &lt; \\U - U||C2t+m + ||t/ - V O W\\C2r+f&gt;

* il&quot; ~ vile» + c \E(v*F,
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with a suitable constant c &gt; 0. By choice of ô &gt; 0 we can make the right hand side

of this inequality as small as we want. Moreover, in view of t&gt;1, we hâve

F e C2T+4+/i and u e C2r+5+&quot;. This allows us to apply Theorem 4 and we conclude
that

for ail § e Un and some fixed vector Ço eR&quot;. This proves Theorem 5.

6. Time dépendent Hamiltonians and monotone twist maps

We first point out that ail the results obtained so far remain valid for a

Lagrangian F{t,x,p) which dépends periodically on time t. In this case we are

trying to find solutions of the Euler équation which can be written in the form

where the function u(t, §) - £ is periodic with period 1 in ail variables. Moreover,
for every fixed t e U we assume that the map %-+x u(t&gt; £) is a diffeomorphism
of T&quot;. This leads to the nonlinear partial differential équation

DFp(t,u,Du) Fx(t,u,Du) (6.1)

for functions x u(t, £) where the first order differential operator D is now given

by

D 31 dt + X m, d/dÇr

The frequency vector m U&quot; is required to satisfy the Diophantine conditions

|; w - k\ &gt; y \(J, k)\~\ j eZ&quot;,ke Z, (/, *) #0, (6.2)

for some constants y &gt;0 and r&gt;n. Note that (6.1) is the Euler équation for the

variational problem defined by the functional

u) /F(«)=f F(t,u,Du)dtdÇ
Jjn + l
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whose gradient with respect to the L2 inner product is given by VI(u) E(F, u)

where

£(F, m) DFp(t, m, Du) - Fx(ty uy Du).

In this context the pair (F, u) is said to be stable if the matrix function

satisfies the conditions

det&lt;i(f, |)#0, (t,Ç)eRn+\

det f a(t,Ç)-ldtdÇ±0.

One vérifies readily that with thèse changes in the notation the existence,

uniqueness and regularity statements (Theorems 1-5) remain valid.

We shall use the time dépendent version of Theorem 5 in order to prove the

regularity theorem for an invariant curve of an area preserving Cx

diffeomorphism

of monotone twist type. In the covering space U2 this map is given by

&lt;P(x, y) (/(jc, y), g(x, y)) and is assumed to satisfy the following conditions

f(x + 1, y) =/(*, y) -f 1, g(x + 1, y) =/(*, y),

the 1-from &amp;*X - X with A y dx is exact on Sx x U,

3f/dy&gt;0. (6.3)

We assume that the invariant curve is given by an embedding

such that, in the covering space, «(£) £ and t/(£) are of period 1 and
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for ail § 6 U Moreover, ip solves the nonhnear différence équation

t/&gt;(£ + *) &lt;*&gt;° &lt;/&gt;(£) (6 4)

for an irrational rotation number a e U which satisfies the Diophantine conditions

\P + *q\*Y\qr (6 5)

for ail integersp eZ and q &gt;0 and some constants y &gt;0 and x&gt; 1 Note that this

condition îs équivalent to (6 2) with co a

A resuit due to J Moser [22] shows that 0 can be interpolated by a time

dépendent Hamiltonian differential équation

x Hy{t,x,y), y -Hx(t,x,y), (6 6)

where H(t, x, y) îs a smooth (Cx) Hamiltonian vector field which dépends

penodically on t and x and, in addition, satisfies the Legendre condition

Hyy(t,x,y)&gt;0 (6 7)

The time-1-map of H agrées with the given mapping &lt;P that îs

cpl(x,y) 0(x,y) (6 8)

where &lt;p&apos; e Diff (51 x R) dénotes the flow of H defined by

We use this flow in order to extend the invariant curve ip to an invariant torus

w(t, §) (u(t, ê), v(t, g)) &lt;p&apos; o ytf - at) (6 9)

for (6 6) This function satisfies the nonhnear differential équation

Dw=JVH(t,w) (6 10)

where D d/dt + a d/dÇ îs defined as above with n 1 and &lt;o oc Moreover, ît

follows from (6 4) and (6 8) that u{t, g) - | and v(ty £) are of penod 1 in t and £

The Legendre condition (6 7) allows us to transform the Hamiltonian System

(6 6) into the Euler équations of the vantional problem corresponding to a Cx



126 DIETMAR SALAMON AND EDUARD ZEHNDER

Lagrangian F(t, x, p) which is of period 1 in t and x and it foliows that the

function u(t, £) solves the Euler équation (6.1). If u meets the assumptions of

Theorem 5 in the time dépendent case, we can conclude that u and

v Fp(t, u, Du)

are Cx functions proving our claim. We therefore hâve to verify that (F, u) is a

stable pair as defined above. For this purpose observe that, by (6.7),

Fpp(t,x,p)&gt;0

so that it remains to show that u^{ty §)&gt;0.

LEMMA 9. Let HeC2(J2xU) satisfy the Legendre condition (6.7) and

suppose that the embedding y (w, v):S1-^Sl x U satisfies w&apos;(£)&gt;0 and (6.4)

with &lt;P &lt;p[ and some number aeU. Moreover, let u(t, g) be defined by (6.9).
Then

Proof. The proof of this statement is based on an argument due to Moser

[22]. We define

X(i91) us(t, § + en), Y(t, §) Vç(r, g + or),

and observe that

(Jf(r, §), y(r, |)) (ç&apos;&apos;«&gt;v)&apos;(l) ^&apos;(V(l))V&apos;(l)&apos;feO (6.11)

for ail t and § since «&apos;(£) &gt; 0. This allows us to introduce the angle

as a continuous function of t and §. Since X(0, ^) &gt; 0 for ail | we may choose the

function 6 as to satisfy

-ji/2&lt;6(0, §)&lt;^/2. (6.12)

Moreover, *(1, |) Jf(O, g + or) &gt; 0 and hence

2jïj - Jt/2 &lt; d{ 1, §) &lt; 2jt; -f jt/2 (6.13)
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for ail | R and some integer j. We shall prove that / 0 and observe for this

purpose that (p&apos;Qip(Ç + £)=éç&gt;&apos;°î//(£) for ail (t, §)eR2 and ail e&gt;0. We can

therefore define for s &gt; 0 a continuous function

satisfying

-jt/2&lt;0e(0, £)&lt;jf/2. (6.14)

for ail &gt; 0 and ail § e R. Observing that

and, by définition,

0(f,§) lim0e(f,g)
e0

we obtain from (6.13) and (6.14) that

2nj - Jt/2 &lt; 0e(l, g) &lt; 2nj + ^r/2. (6.15)

for ail e &gt; 0 and ail § e R. Now we make use of the fact that

for ail r and § and hence

for some fixed integer k. Combining this observation with (6.15) and (6.14) we

obtain that ; k 0 and therefore it follows from (6.13) that

-7il2&lt;e(\9Ç)&lt;nl2 (6.16)

for ail | e R as claimed.
We shall use (6.16) in order to prove that 6(t, §) &gt; -Jt/2 for every § R and

every r 6 [0, 1]. We proceed by contradiction and assume that there were a

te(0, 1) such that 6(t, §)&lt; -jt/2 for some §eR. By (6.16), there is a largest
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such t which we dénote by t* and we choose §* e M such that 0(t*, §*) -jt/2
This imphes that

X(t*,Ç*) 0, Y(t*,Ç*)&lt;0

It now follows from (6 11) that X and Y, considered as functions of t} satisfy the

hneanzed differential équation

X HyXX + Hyy Y
y

Y HXXX Hxy Y

In view of the Legendre condition (6 7) this shows that

and hence 6{t, £*) &lt; jt/2 for t &gt; t* close to t* This contradicts the définition of

t* and we conclude that mdeed 0(t, §) &gt; -jt/2
A similar argument usmg (6 12) shows that 6(ty £) &lt; jt/2 and hence X{t&gt; £) &gt;

0 for ail t and § This proves Lemma 9

The stronger regulanty statement for t// promised in the introduction îs based

on a regulanty resuit for the partial differential équation (6 10) which we descnbe

next
We consider a function H(t, x, y) on M x U&quot; x U&quot; which îs of penod 1 in the t

and x variables and define the functional

£(//, w) Dw-JVH(t, w)

for mappings

w (u, v) Tn+l-^Fxr

such that u(t, £) - § and v(t, §) are of penod 1 in ail variables

DEFINITION The pair (//, w) is said to be stable if the matnx u*(t, §) îs

nonsingular for ail (t, §) 6 Un+l and

det f uslHyy(ttutv)(usl)7dtdÇ±0

The followmg existence theorem extends a resuit due to J Moser [20] to the time
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dépendent case improving, its regularity assumptions on the unperturbed
Hamiltonian H°.

THEOREM 6. Let (oeRn satisfy \(o\&lt;M and the Diophantine conditions

(6.2) for some constants y&gt;0, x&gt;n and M&gt;\. Moreover, let H°eCl(Jn+x x

Un), u° e Cl+1(Jn+\ T&quot;) and v{) e Cl(Tn, R&quot;) be given with l 2r + 2 4- //, fi &gt; 0,

such that w° (w°, v°) is a stable solution of £(//°, h&gt;°) 0.

Then there exists a constant à &gt; 0 such that for every Hamiltonian H ofclass Cl

satisfying

the équation

E(H, w) 0

admits a solution w (m, v):Tn+l-»T&quot; x Un with u e Cl~2x~x andv°u~l e Cl~x~]

provided that / 2t 1 and l x - 1 are not integers. In the space cs~2x~x x

Cs~r~l with s&lt;l the pair (m,uo«&quot;!) dépends continuously on HeC1. If, in

addition, H eCm with m&gt;l and m - 2r - 1 and m r 1 are not integers then

ueCm~2r-\ and VoU-x ecm~x~x. In particular, HeCx implies weC~.
Moreover, if H is real analytic then w is real analytic.

Combining this existence statement with a corresponding uniqueness resuit as

in section 5 one dérives the following regularity theorem.

THEOREM 7. Let co e Un satisfy the Diophantine conditions (6.2) and let

H e Cl(Jn+l x Un) be given with l&gt;2r + 2. Moreover, let w (w, v) : Tn+i-+
Jn xUn be a stable solution of E{Hy w) 0 such that ueCl+x and v e C&apos;. Then

H eCx implies w eCx and if H is real analytic then w is real analytic.

Note that the smoothness assumption in Theorem 7 again agrées with the

smoothness required for the perturbation theorem.
We do not carry out the proofs of Theorem 6 and Theorem 7, they will appear

elsewhere. We do, however, point out that in contrast to the method described in

sections 2-5 the proof is based on the transformation theory for Hamiltonian
Systems. The interation procédure requires the composition of infinitely many
symplectic transformations. This quite familiar technique is more complicated,
allows however to replace the number 4t in the statement for the Lagrangian F

by the number 2r for the Hamiltonian H. Moreover, équation (6.10) involves
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only first derivatives of H as opposed to second derivatives of F in (6.1) so that

the loss of derivatives in the perturbation theory for (6.10) is only 2t + 1.

We can now apply Theorem 7 to the spécial case where the Hamiltonian
H C(T2 xU) has been obtained by interpolating a monotone twist map

and the invariant torus jviï^^xU is related to an invariant curve

via (6.9). It follows from the above considérations that if 0 and ip satisfy the

requirements of Theorem 8 below then H and w satisfy those of Theorem 7. In

particular, %p e C/+1 implies w e C/+1 and Lemma 9 shows that if «&apos;(§) &gt; 0 for ail

§ then the pair (H, w) is stable in the sensé of the above définition. This allows us

to conclude that w eCx and hence y e C*. Thus we hâve proved the following
regularity resuit for invariant curves.

THEOREM 8. Let &lt;P satisfy the conditions (6.3) and suppose that

is a parametrized curve such thaty in the coveringy u(%) - £ and v(%) are ofperiod
1 and m&apos;(£)&gt;0 for ail ÇeM. Moreover, assume that xp satisfies the nonlinear

différence équation (6.4) for an irrational number a eR satisfy ing the Diophantine
inequalities (6.5) with some constants y&gt;0 and r^l. Finally, suppose that

0 e C00 and %() e C/+1 withl&gt;2t + 2. Then yeCx.

We point out that the map &lt;P in the above theorem is not required to be close

to an integrable mapping.
It is an open question whether the regularity of an invariant curve t/&gt; can be

concluded under weaker differentiability assumptions on ip.
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