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1 Introduction

A gradient flow of a Morse function on a compact Riemannian manifold is said
to be of Morse-Smale type if the stable and unstable manifolds of any two critical
points intersect transversally. For such a Morse-Smale gradient flow there is a
chain complex generated by the critical points and graded by the Morse index.
The boundary operator has as its (x, y)-entry the number of gradient flow lines
running from x to y counted with appropriate signs whenever the difference
of the Morse indices is 1. The homology of this chain complex agrees with the
homology of the underlying manifold M and this can be used to prove the Morse
inequalities [30] (see also [24]).

Around 1986 Floer generalized this idea and discovered a powerful new ap-
proach to infinite dimensional Morse theory now called Floer homology. He
used this approach to prove the Arnold conjecture for monotone symplectic
manifolds [12] and discovered a new invariant for homology 3-spheres called
instanton homology [11]. This invariant can roughly be described as the ho-
mology of a chain complex generated by the irreducible representations of the
fundamental group of the homology 3-sphere M in the Lie group SU(2). These
representations can be thought of as flat connections on the principal bundle
M × SU(2) and they appear as the critical points of the Chern-Simons func-
tional on the infinite dimensional configuration space of connections on this
bundle modulo gauge equivalence. The gradient flow lines of the Chern-Simons
functional are the self-dual Yang-Mills instantons on the 4-manifold M ×R and
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they determine the boundary operator of instanton homology. The instanton
homology groups are denoted by HF inst

∗ (M). They play an important role
in Donaldson’s theory of 4-manifolds. If X is a 4-manifold whose boundary
M = ∂X is a homology-3-sphere then the Donaldson-polynomials of X take
their values in the instanton homology groups of M .

Via a Heegard splitting a homology-3-sphere can be represented as the union

M = M0 ∪Σ M1

of two handle bodies whose common boundary Σ = ∂M0 = ∂M1 is a Riemann
surface. The moduli space of irreducible flat connections on Σ × SU(2) is a
finite dimensional symplectic manifold M (with singularities) and the subset of
those which extend to a flat connection on Mi form a Lagrangian submanifold
Li ⊂ M for i = 0, 1. The intersection points of these Lagrangian submanifolds
correspond precisely to the flat connections on M that is the critical points
of the Chern-Simons functional. Now there is a Floer theory for Lagrangian
intersections in which the critical points are the intersection points of the La-
grangian submanifolds and the connecting orbits are pseudo-holomorphic curves
u : [0, 1]×R → M which satisfy u(i, t) ∈ Li and converge to intersection points
x± ∈ L0 ∩ L1 as t tends to ±∞. The associated Floer homology groups are
denoted by

HF symp
∗ (M,L0,L1).

In [1] Atiyah conjectured that the instanton homology of a homology-3-sphere
M is isomorphic to the Floer homology of the triple M,L0,L1 associated to a
Heegard splitting as above

HF inst
∗ (M) = HF symp

∗ (M,L0,L1).

In this paper we address a similar but somewhat simpler problem which
was suggested to us by A. Floer. The instanton homology groups can also be
constructed for 3-manifolds which are not homology-3-spheres if instead of the
trivial SU(2)-bundle we take a nontrivial SO(3)-bundle Q over M . Then the
integral first homology of M is necessarily nontrivial and we assume that there
is no 2-torsion in H1. This assumption guarantees that every flat connection on
Q has a discrete isotropy subgroup and is therefore a regular point for the action
of the identity component of the group of gauge transformations on the space
of connections. The instanton homology groups of the bundle Q are denoted by
HF inst

∗ (M ;Q).
A special case is where the bundle Q = Pf is the mapping cylinder of a non-

trivial SO(3)-bundle π : P → Σ over a Riemann surface Σ for an automorphism
f : P → P . The underlying 3-manifold is the mapping cylinder M = Σh of Σ
for the diffeomorphism h : Σ → Σ induced by f . Then the flat connections on
Pf correspond naturally to the fixed points of the symplectomorphism

φf : M(P ) → M(P )
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induced by f on the moduli space M(P ) of flat connections on the bundle P .
This moduli space is a compact symplectic manifold (without singularities) of
dimension 6k − 6 where k ≥ 2 is the genus of Σ. It is well known that this
manifold is connected and simply connected [21] and in [2] Atiyah and Bott
proved that π2(MF (P )) = Z. For any symplectomorphism φ : M → M of such
a symplectic manifold there are Floer homology groups HF symp

∗ (M, φ). In this
theory the critical points are the fixed points of φ and the conecting orbits are
pseudoholomorphic curves u : R2 → M which satisfy u(s+1, t) = φ(u(s, t)) and
converge to fixed points x± of φ as t tends to ±∞. The Euler characteristic of
HF symp

∗ (M, φ) is the Lefschetz number of φ. The main result of this paper is
the following.

Theorem 1.1 There is a natural isomorphism of Floer homologies

HF symp
∗ (M(P ), φf ) = HF inst

∗ (Σh;Pf ).

The proof consists of two steps. The first is an index theorem about the
spectral flows of two associated families of self adjoint operators and states
that the relative Morse indices agree. The second step is a characterization
of holomorphic curves in the moduli space M(P ) as a limit case of self-dual
Yang-Mills instantons on the bundle Pf ×R over the 4-manifold Σh×R. In the
present paper we outline the main ideas of the proof. Details of the analysis
will appear elsewhere.

Thanks to P. Braam, S. Donaldson, J.D.S. Jones, and J. Robbin for helpful
discussions.

2 Instanton homology

In this section we discuss Floer’s instanton homology for nontrivial SO(3)-
bundle. All the theorems are due to Floer [11], [13]. Let M be a compact
connected oriented 3-dimensional manifold without boundary and π : Q → M
be a principal bundle with structure group G = SO(3). We identify the space
A(Q) of connections on Q with the space of smooth Lie algebra valued 1-forms
a ∈ Ω1(Q, g) which are equivariant with respect to the adjoint action of G and
canonical in the fibres:

apx(vx) = x−1ap(v)x, ap(pξ) = ξ

for v ∈ TpQ, x ∈ G, and ξ ∈ g. The space G(Q) of gauge transformations can
be canonically identified with the space smooth maps g : Q → G which are
equivariant under the action of G on itself through inner automorphisms:

g(px) = x−1g(p)x.

Thus gauge transformations are sections of the adjoint bundle GQ = Q ×ad G
which consists of equivalence classes of pairs [p,A] where p ∈ Q and g ∈ G under
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the equivalence relation [p, g] ≡ [px, x−1gx] for x ∈ G. With these identifications
G(Q) acts on A(Q) by the formula

g∗a = g−1dg + g−1ag.

Let G0(Q) denote the component of the identity in G(Q) and consider the quo-
tient

C(Q) = A(Q)/G0(Q).

This space is not an infinite dimensional manifold since the group G0(Q) does
not act freely on A(Q). However, almost every connection is a regular point of
the action. More precisely, let

Ga = {g ∈ G(Q) : g∗a = a}

denote the isotropy subgroup of a connection a ∈ A(Q).

Lemma 2.1 The isotropy subgroup of a connection a ∈ A(Q) is discrete if and
only if

Ga ∩ G0(Q) = {1}.

Connections with a discrete isotropy subgroup are called regular.

Proof: Suppose that g ∈ Ga ∩ G0(Q) and g 6= 1. Then g lifts to a map
g̃ : Q → SU(2) and g̃(p) ∈ SU(2) commutes with the holonomy subgroup
H̃ ⊂ SU(2) of a at the point p ∈ Q lifted to SU(2). Since g 6= 1 the matrix
g̃(p) has two distinct eigenvalues and both eigenspaces are invariant under the
holonomy group H̃. Thus there exists a circle of matrices in SU(2) commuting
with H̃ and therefore Ga is not discrete. 2

The group of components of G(Q) acts on C(Q). These components are
characterized by two invariants, the degree

deg : G(Q) → Z

and the parity
η : G(Q) → H1(M ; Z2).

The definition of the degree is based on the next lemma. The proof was per-
sonally communicated to the second author by John Jones.

Lemma 2.2 (1) If w2(Q) = 0 then the induced map π∗ : H3(Q,Z) → H3(M,Z)
is onto.

(2) If w2(Q) 6= 0 then the induced map π∗ : H3(M,Z2) → H3(Q,Z2) is zero
and H3(M,Z)/imπ∗ = Z2.

(3) For every g ∈ G(Q) the induced map g∗ : H3(Q,Z) → H3(SO(3),Z) de-
scends to a homomorphism H3(M,Z) → H3(SO(3),Z).
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Proof: Examine the spectral sequence of the bundle Q → M with integer
coefficients to obtain

H3(Q,Z)/ kerπ∗ ' imπ∗ ' ker

(
d2 : H3(M,Z) → H1(M,Z2)

)
.

Now the image of the fundamental class [M ] under d2 : H3(M,Z) → H1(M,Z2)
is the Poincaré dual of w2(Q). Hence π∗ is onto if and only if w2(Q) = 0 and
imπ∗ = 〈2[M ]〉 otherwise. This proves statements (1) and (2).

Now let ι : SO(3) → Q be the inclusion of a fiber and denote the induced
map on homology by ι∗ : H3(SO(3),Z) → H3(Q,Z). Then it follows again by
examining the spectral sequence that ι∗ is injective and

im ι∗ ⊂ kerπ∗, kerπ∗/im ι∗ ' H2(M,Z2)

For every gauge transformation g : Q → SO(3) denote g∗ : H3(Q,Z) →
H3(SO(3),Z). The composition g ◦ ι is homotopic to a constant and hence
im ι∗ ⊂ ker g∗. This implies that g∗ descends to a homomorphismH3(Q,Z)/im ι∗ →
H3(SO(3),Z) = Z. Any such homomorphism must vanish on the subgroup
kerπ∗/im ι∗ ' H2(M,Z2). Thus we have proved that

kerπ∗ ⊂ ker g∗

for every gauge transformation g ∈ G(Q). In view of statement (2) it suffices to
prove that

w2(Q) 6= 0 =⇒ im g∗ ⊂ 〈2[SO(3)]〉

for every gauge transformation g ∈ G(Q). We prove instead that the dual
homomorphism g∗ : H3(SO(3),Z2) → H3(Q,Z2) is zero. To see this consider
the generator α ∈ H1(SO(3),Z2). Since ι∗g∗ = 0 it follows that g∗α = π∗β
for some β ∈ H1(M,Z2). Hence g∗(α3) = π∗(β3) = 0 where the last assertion
follows from statement (2). This proves the lemma. 2

For g ∈ G(Q) the induced homomorphism H3(M,Z) = Z → H3(G,Z) = Z

is determined by an integer deg(g) called the degree of g. Alternatively, the
degree can be defined as the intersection number of the submanifolds graph (g) =
{[p, g(p)] : p ∈ Q} and graph (1l) of the adjoint bundle GQ.

The homomorphism g∗ : π1(Q) → π1(G) = Z2 descends to a homomorphism
η(g) : π1(M) → Z2, called the parity of g. It is the obstruction for g to lift to a
map g̃ : Q → SU(2). A gauge transformation is called even if η(g) = 0. Every
even gauge transformation is of even degree but not vice versa. Moreover, the
map η : G(Q) → H1(M,Z2) is always onto. Throughout we shall assume the
following hypothesis.

Hypothesis (H1) Every cohomology class η ∈ H1(M ; Z2) can be represented
by finitely many embedded oriented Riemann surfaces. Moreover w2(Q) 6= 0.

5



If M is orientable then every one dimensional integral cohomology class can
be represented by finitely many embedded oriented Riemann surfaces. So the
first part of hypothesis (H1) will be satisfied whenever M is orientable and
there is no 2-torsion in H1. Also note that (H1) implies the following weaker
hypothesis.

Hypothesis (H2) There exists an embedding ι : Σ →M of a Riemann surface
such that ι∗Q is the nontrivial SO(3)-bundle over Σ.

Some important consequences of hypotheses (H1) and (H2) are summarized
in the next lemma. The proof will be given in the appendix.

Lemma 2.3 (1) Two gauge transformations are homotopic if and only if they
have the same degree and the same parity.

(2) Assume (H1). Then for every g ∈ G(Q)

deg(g) ≡ w2(Q) · η(g) (mod 2). (1)

Conversely, for every integer k and every η ∈ H1(M ; Z2) with k ≡ w2(Q) ·
η (mod 2) there exists a gauge transformation with deg(g) = k and η(g) =
η.

(3) Assume (H2). Then there exists a gauge transformation g of degree 1.

Remark 2.4 (i) If Q = RP 3×SO(3) then there exists a gauge transformation
of degree 1. However, for such a gauge transformation equation (1) is
violated since w2(Q) = 0. IfM is a homology 3-sphere andQ = M×SO(3)
is the product bundle then equation (1) is trivially satisfied but there is
no gauge transformation of degree 1.

(ii) Another interesting example is the (unique) nontrivial SO(3)-bundle π :
Q → RP 3. This bundle does not satisfy hypothesis (H2). It can be
represented in the form Q = S3 ×Z2 SO(3) with (x,A) ∼ (−x,RA) where
R ∈ SO(3) is a reflection, i.e. R2 = 1l. A gauge transformation of this
bundle is a smooth map g : S3 → SO(3) such that g(−x) = Rg(x)R.
Any such map lifts to a smooth map g̃ : S3 → SU(2) and the degree of
g in the above sense is the degree of the lift g̃ (or half the degree of g
as a map between oriented 3-manifolds). The lift g̃ is necessarily of even
degree. So in this case there is no gauge transformation of degree 1. Hence
statements (2) and (3) of Lemma 2.3 are both violated.

The space A(Q) of connections on Q is an affine space whose associated
vector space is Ω1(gQ). Here gQ = Q×Gg is the vector bundle overM associated
to Q via the adjoint representation of G on its Lie algebra. We think of an
infinitesimal connection α ∈ Ω1(gQ) as an invariant and horizontal 1-form on
Q. The Lie algebra of G(Q) is the space of invariant g-valued functions on Q
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and so may be identified with Ω0(gQ). The infinitesimal action of G(Q) is given
by the covariant derivative

da : Ω0(gQ) → Ω1(gQ), daη = dη + [a ∧ η].

Thus the tangent space to the configuration space C(Q) at a regular connection
a is the quotient Ω1(gQ)/im da.

The curvature of a connection is the 2-form

Fa = da+
1

2
[a ∧ a] ∈ Ω2(M ; gQ)

and determines a natural 1-form on the space of connections via the linear
functional

α 7→

∫

M

〈Fa ∧ α〉

on TaA(Q) = Ω1(gQ). Here 〈 , 〉 denotes the invariant inner product on the Lie
algebra g given by minus the Killing form or 4 times the trace. We shall denote
this 1-form by F . The Bianchi identity asserts that F is closed. Since the affine
space A(Q) is contractible this implies that F is the differential of a function.
Integrating F along a path which starts at a fixed flat connection a0 ∈ A(Q)
we obtain the Chern-Simons functional

CS(a0 + α) =
1

2

∫

M

(
〈da0α ∧ α〉 +

1

3
〈[α ∧ α] ∧ α〉

)

for α ∈ Ω1(gQ). One can check directly that

dCS(a)α =

∫

M

〈Fa ∧ α〉

for a ∈ A(Q) and α ∈ Ω1(gQ). Thus the flat connections on Q appear as
the critical points of the Chern-Simons functional. Since the 1-form dCS =
F is invariant and horizontal it follows that the difference CS(g∗a) − CS(a)
is independent of the connection a and is locally independent of the gauge
transformation g. So it depends only on the component of G(Q) and it turns
out that

CS(a) − CS(g∗a) = 8π2 deg(g). (2)

Hence as a function on the quotient A(Q)/G(Q) the Chern-Simons functional
takes values in S1. Note that this function is only well defined up to an additive
constant which we have chosen such that CS(a0) = 0.

Denote the space of flat connections by

Aflat(Q) = {a ∈ A(Q) : Fa = 0} .

For every flat connection a ∈ Aflat(Q) there is a chain complex

Ω0(gQ)
dA−→ Ω1(gQ)

dA−→ Ω2(gQ)
dA−→ Ω3(gQ).
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with associated cohomology groups H j
a(M). These cohomology groups can be

identified with the spaces of harmonic forms

Hj
a(M) = kerda ∩ ker d∗a

where d∗a denotes the L2-adjoint of da : Ωj−1 → Ωj with respect to a Riemannian
metric on M . A flat connection is called nondegenerate if H1

a(M) = 0. This
is consistent with the Chern-Simons point of view since the Hessian of CS at a
critical point a ∈ Aflat(Q) is given by ∗da and should be viewed as an operator on
the quotient Ω1(gQ)/imda. Here ∗ : Ωj → Ω3−j denotes the Hodge-∗-operator
with respect to the Riemannian metric on M and the invariant inner product on
g. So the flat connection a is nondegenerate if and only if the Hessian of CS at
a is invertible. Note that a flat connection a is both regular and nondegenerate
if and only if the extended Hessian

Da =

(
∗da da
d∗a 0

)

is nonsingular. Here Da is a selfadjoint operator on Ω1(gQ) ⊕ Ω0(gQ).

Lemma 2.5 If (H2) is satisfied then every flat connection on Q is regular.

Proof: By (H2) there exists an embedding ι : Σ →M of an oriented Riemann
surface such that w2(ι

∗Q) 6= 0. Let a ∈ Aflat(Q) and g ∈ Ga ∩ G0(Q). Then
ι∗a ∈ Aflat(ι

∗Q) and ι∗g ∈ Gι∗a ∩ G0(ι
∗Q). By Lemma 4.1 below ι∗g = 1l and

hence g = 1l. 2

Remark 2.6 It is easy to construct regular flat connections with Ga 6= {1l}.
The holonomy of such a connection is conjugate to the abelian subgroup of
diagonal matrices in SO(3) with diagonal entries ±1

Via the holonomy the flat connections on Q correspond naturally to repre-
sentations

ρ : π1(M) → SO(3).

The second Stiefel-Whitney class w2(Q) ∈ H2(M ; Z2) appears as the cohomol-
ogy class

wρ ∈ H2(π1(M),Z2)

associated to ρ as follows. Choose any map ρ̃ : π1(M) → SU(2) which lifts ρ
and define wρ(γ1, γ2) = ρ̃(γ1γ2)ρ̃(γ2)

−1ρ̃(γ1)
−1 = ±1. Then wρ is a cocycle:

∂wρ(γ1, γ2, γ3) = wρ(γ2, γ3)wρ(γ1γ2, γ3)wρ(γ1, γ2γ3)wρ(γ1, γ2) = 1.

The coboundaries are functions of the form

∂f(γ1, γ2) = f(γ1)f(γ1γ2)f(γ2)
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for some map f : π1(M) → {±1}. Hence wρ is a coboundary if and only
if the lift ρ̃ : π1(M) → SU(2) can be chosen to be a homomorphism. The
cohomology class of wρ is independent of the choice of the lift ρ̃. It determines
the second Stiefel-Whitney class of the bundle Q via the natural homomorphism
ι : H2(π1(M),Z2) → H2(M,Z2).

The Casson invariant λ(M ;Q) of the ManifoldM (with respect to the bundle
Q) can roughly be defined as “half the number of representations ρ : π1(M) →
SO(3) with ι(wρ) = w2(Q)” or “half the number of zeros of F”. Here the
flat connections are to be counted modulo even gauge equivalence and with
appropriate signs. This is analogous to the Euler number of a vector field on
a finite dimensional manifold. As in finite dimensions we will in general have
to perturb the 1-form F to ensure finitely many nondegenerate zeros. In [11]
Floer discovered a refinement of the Casson invariant which is called instanton
homology. These homology groups result from Floer’s new approach to infinite
dimensional Morse theory applied to the Chern-Simons functional. The Casson
invariant appears as the Euler characteristic of instanton homology.

The L2-gradient of the Chern-Simons functional with respect to the Rieman-
nian metric on M and the invariant inner product on g is given by gradCS(a) =
∗Fa ∈ Ω1(gQ). Thus a gradient flow line of the Chern-Simons functional is a
smooth 1-parameter family of connections a(t) ∈ A(Q) satisfying the nonlinear
partial differential equation

ȧ+ ∗Fa = 0. (3)

The path a(t) of connections on Q can also be viewed as a connection on the
bundle Q×R over the 4-manifold M ×R. In this interpretation (3) is precisely
the self-duality equation with respect to the product metric onM×R. Moreover,
the Yang-Mills functional agrees with the flow energy

YM(a) = 1
2

∫ ∞

−∞

(
‖ȧ‖

2
+ ‖Fa‖

2
)
dt.

The key obstacle for Morse theory in this context is that equation (3) does not
define a well posed initial value problem and the Morse index of every critical
point is infinite. In [11] Floer overcame this difficulty by studying only the
space of bounded solutions of (3) and constructing a chain complex as was done
by Witten [30] in finite dimensional Morse theory (see also [24]). In order to
describe how this works we make another assumption on the bundle Q.

Hypothesis (H3) Every flat connection on Q is nondegenerate.

This condition will in general not be satisfied. If there are degenerate flat
connections then we perturb the Chern-Simons functional in order to ensure
nondegenerate critical points for the perturbed functional.

If (H3) is satisfied then for every smooth solution a(t) ∈ A(Q) of (3) with
finite Yang-Mills action there exist flat connections a± ∈ Aflat(Q) such that
a(t) converges exponentially with all derivatives to a± as t tends to ±∞ (see
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for example [18]). Conversely, if a(t) is a solution of (3) for which these limits
exist then the Yang-Mills action is finite:

YM(a) = CS(a−) − CS(a+).

Fix two flat connections a± ∈ Aflat(Q) and consider the space of those solutions
a(t) ∈ A(Q) of (3) which also satisfy

lim
t→±∞

a(t) = g∗±a
±, g± ∈ G0(Q). (4)

These solutions are usually termed instantons or connecting orbits from a−

to a+. The moduli space of these instantons is denoted by

M(a−, a+) =
{a(t) ∈ A(Q) : (3), (4)}

G0(Q)
.

The next theorem due to Floer [11] summarizes some key properties of these
moduli spaces.

Theorem 2.7 Assume (H2) and (H3). For a generic metric on M the moduli
space M(a−, a+) is a finite dimensional oriented paracompact manifold for every
pair of flat connections a± ∈ Aflat(Q). There exists a function µ : Aflat(Q) → Z

such that
dimM(a−, a+) = µ(a−) − µ(a+).

This function µ satisfies

µ(a) − µ(g∗a) = 4 deg(g)

for a ∈ Aflat(Q) and g ∈ G(Q).

In our context the integer µ(a) plays the same role as the Morse index does
in finite dimensional Morse theory. The number µ(a−) − µ(a+) is given by the
spectral flow [3] of the operator family Da(t) as the connection a(t) ∈ A(Q)
runs from a− to a+. So the function µ : Aflat(Q) → Z is only defined up to
an additive constant. We will choose this constant such that µ(a0) = 0 where
a0 ∈ Aflat(Q) is a fixed flat connection.

To construct the instanton homology groups we can now proceed as in finite
dimensional Morse theory [30]. The key idea is to construct a chain complex
over the flat connections and to use the instantons to construct a boundary
operator. For simplicity of the exposition we restrict ourselves to coefficients in
Z2.

Let C be the vector space over Z2 generated by the flat connections modulo
gauge equivalence. For now we divide only by the component of the identity

10



G0(Q). This vector space is graded by µ. It follows from Uhlenbeck’s compact-
ness theorem [28] that the space

Ck =
⊕

a∈Aflat(Q)/G0(Q)

µ(a)=k

Z2〈a〉

is finite dimensional for every integer k. It follows also from Uhlenbeck’s com-
pactness theorem that the moduli space M(a−, a+) consists of finitely many
instantons (modulo time shift) whenever

µ(a−) − µ(a+) = 1.

Let n2(a
−, a+) denote the number of such instantons, counted modulo 2. These

numbers determine a linear map ∂ : Ck+1 → Ck defined by

∂〈b〉 =
∑

µ(a)=k

n2(b, a)〈a〉

for b ∈ Aflat(Q) with µ(b) = k + 1. In [11] Floer proved that (C, ∂) is a chain
complex and that its homology is an invariant of the bundle Q→M .

Theorem 2.8 Assume (H2) and (H3).

(1) The above map ∂ : C → C satisfies ∂2 = 0. The associated homology groups

HF inst
k (M ;Q) =

ker∂k−1

im∂k

are called the Floer homology groups of pair (M,Q).

(2) The Floer homology groups HF inst
k (M ;Q) are independent of the metric on

M used to construct them.

To prove ∂2 = 0 we must show that

∑

b∈Aflat(Q)/G0(Q)

µ(b)=k

n2(c, b)n2(b, a) ∈ 2Z

whenever µ(a) = k − 1 and µ(c) = k + 1. This involves a glueing argument for
pairs of instantons running from c to b and from b to a. Such a pair gives rise to a
(unique) 1-parameter family of instantons running from c to a. Now the space of
instantons running from c to a (modulo time shift) is a 1-dimensional manifold
and has therefore an even number of ends. This implies ∂2 = 0. That any
two instanton homology groups corresponding to different metrics are naturally
isomorphic can be proved along similar lines.
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Remark 2.9 (i) The Floer homology groupsHF inst
∗ (M ;Q) are new invariants

of the 3-manifold M which cannot be derived from the classical invariants
of differential topology.

(ii) The Floer homology groups are graded modulo 4. It follows from Lemma 2.3
that there exists a gauge transformation g ∈ G(Q) of degree 1 and by The-
orem 2.7 the map a 7→ g∗a induces an isomorphism

HF inst
k+4(M ;Q) = HF inst

k (M ;Q).

Note however that the even gauge transformations g ∈ Gev(Q) only give
rise to a grading modulo 8. So the Euler characteristic of HF inst

∗ (M ;Q)
is the number

χ(HF inst
∗ (M ;Q)) =

3∑

k=0

(−1)k dimHF inst
k (M ;Q)

=
1

2

∑

a∈Aflat(Q)/Gev(Q)

(−1)µ(a).

This is the Casson invariant λ(M ;Q).

(iii) By Lemma 2.3 the group of components of the space of degree-0 gauge
transformations {g ∈ G(Q) : deg(g) = 0} is isomorphic to the finite group

Γ = {η(g) : g ∈ G(Q), deg(g) = 0} ⊂ H1(M ; Z2).

This group acts on HF inst
k (M ;Q) for every k through permutations of the

canonical basis. By Remark 2.6 the group Γ does not act freely. The
above definition of the Casson invariant ignores this action of Γ.

(iv) The same construction works over the integers. For this we must assign
a number +1 or −1 to each instanton running from a− to a+ whenever
µ(a−) − µ(a+) = 1. This involves a consistent choice of orientations for
the Moduli spaces M(a−, a+).

(v) If Hypothesis (H3) is violated then the Floer homology groups can still
be defined. The construction then requires a suitable perturbation of the
Chern-Simons functional. This will be discussed in Section 7.

(vi) It represents a much more serious problem if Hypothesis (H2) fails. This
is because of the presence of flat connections which are not regular. Such
connections cannot be removed by a gauge invariant perturbation.

(vii) If Q is the trivial SO(3)-bundle over a homology-3-sphere M then the
only flat connection which is not regular is the trivial connection. In this
case the difficulty mentioned in (vi) does not arise. This is in fact the
context of Floer’s original work on instanton homology [11].
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3 Floer homology for symplectic fixed points

In [12] Floer developed a similar theory for fixed points of symplectomorphisms.
In his original work Floer assumed that the symplectomorphism φ is exact and
he proved that the Floer homology groups HF symp

∗ (M, φ) are isomorphic to the
homology of the underlying symplectic manifold (M, ω). Like Floer we assume
that M is compact and monotone. This means that the first Chern class c1
of TM agrees over π2(M) with the cohomology class of the symplectic form
ω. Unlike Floer we assume in addition that M is simply connected but we do
not require the symplectomorphism φ : M → M to be isotopic to the identity.
Then there are Floer homology groups of φ whose Euler characteristic is the
Lefschetz number. Here is how this works.

The fixed points of φ can be represented as the critical points of a function
on the space of smooth paths

Ωφ = {γ : R → M : γ(s+ 1) = φ(γ(s))} .

The tangent space to Ωφ at γ is the space of vector fields ξ(s) ∈ Tγ(s)M along
γ such that ξ(s+ 1) = dφ(γ(s))ξ(s). The space Ωφ carries a natural 1-form

TγΩφ → R : ξ 7→ −

∫

γ

ι(ξ)ω.

This 1-form is closed but not exact since Ωφ is not simply connected. Since
M is simply connected the fundamental group of Ωφ is π1(Ωφ) = π2(M). The

universal cover Ω̃φ can be explicitly represented as the space of homotopy classes
of smooth maps u : R × I → M such that

u(s, 0) = x0, u(s+ 1, t) = φ(u(s, t)), u(s, 1) = γ(s).

Here x0 = φ(x0) is a reference point chosen for convenience of the notation.
The homotopy class [u] is to be understood subject to the boundary condition
at t = 0 and t = 1. The second homotopy group π2(M) acts on Ω̃φ by taking
connected sums. A sphere in M can be represented by a function v : R×I → M
such that v(s, 0) = v(s, 1) = v(0, t) = x0 and v(s + 1, t) = v(s, t) for s, t ∈ R.

The connected sum of [u] ∈ Ω̃φ and [v] ∈ π2(M) is given by u#v(s, t) = v(2t, s)
for t ≤ 1/2 and u#v(s, t) = u(2t− 1, s) for t ≥ 1/2.

The pullback of the above 1-form on Ωφ is the differential of the function

ãφ : Ω̃φ → R, ãφ(u) =

∫
u∗ω

called the symplectic action. This function satisfies

ãφ(u#v) = ãφ(u) +

∫

S2

v∗ω

13



for every sphere v : S2 → M. Since M is monotone the symplectic form ω is
integral and hence ãφ descends to a map aφ : Ωφ → R/Z. By construction the
differential of aφ is the above 1-form on Ωφ. So the critical points of aφ are the
constant paths in Ωφ and hence the fixed points of φ.

? ?

-

-Ω̃φ

Ωφ

R

R/Z

ãφ

aφ

π π

An almost complex structure J : TM → TM is said to be compatible
with ω if the bilinear form

〈ξ, η〉 = ω(ξ, Jη)

defines a Riemannian metric on M. The space J (M, ω) of such almost complex
structures is contractible. A symplectomorphism φ acts on J (M, ω) by pullback
J 7→ φ∗J . To construct a metric on Ωφ choose a smooth family Js ∈ J (M, ω)
such that

Js = φ∗Js+1. (5)

This condition guarantees that for any two vectorfields ξ, η ∈ TγΩφ the expres-
sion 〈ξ(s), η(s)〉s = ω(ξ(s), Js(γ(s))η(s)) is of period 1 in s. Hence define the
inner product of ξ and η by

〈ξ, η〉 =

∫ 1

0

〈ξ(s), η(s)〉s ds.

The gradient of aφ with respect to this metric on Ωφ is given by gradaφ(γ) =
Js(γ)γ̇. Hence a gradient flow line of aφ is a smooth map u : R2 → M satisfying
the nonlinear partial differential equation

∂u

∂t
+ Js(u)

∂u

∂s
= 0 (6)

and the periodicity condition

u(s+ 1, t) = φ(u(s, t)). (7)

Condition (5) guarantees that whenever u(s, t) is a solution of (6) then so is
v(s, t) = φ(u(s− 1, t)). Condition (7) requires that these two solutions agree.

14



As in section 2 equations (6) and (7) do not define a well posed Cauchy
problem and the Morse index of any critical point is infinite. However, the
solutions of (6) are precisely Gromov’s pseudoholomorphic curves [16]. It follows
from Gromov’s compactness that every solution of (6) and (7) with finite energy

E(u) =
1

2

∫ ∞

−∞

∫ 1

0

(
|∂su|

2
s + |∂tu|

2
s

)
dsdt <∞

has limits
lim

t→±∞
u(s, t) = x± = φ(x±). (8)

(See for example [24], [31].) Conversely, any solution of (6), (7), and (8) has
finite energy. Given any two fixed points x± let

M(x−, x+)

denote the space of these solutions.
For any function u : R2 → M which satisfies (7) and (8) we introduce the

Maslov index as follows. Let Φ(s, t) : R2n → Tu(s,t)M be a trivialization of
u∗TM as a symplectic vector bundle such that

Φ(s+ 1, t) = dφ(u(s, t))Φ(s, t).

Consider the paths of symplectic matrices Ψ±(s) = Φ(s,±∞)−1Φ(0,±∞) ∈
Sp(2n; R). These satisfy Ψ±(0) = 1l and Ψ±(1) is conjugate to dφ(x±). In
particular 1 is not an eigenvalue of Ψ±(1). The homotopy class of such a path
is determined by its Maslov index µ(Ψ±) ∈ Z introduced by Conley and Zehn-
der [5]. Roughly speaking the Maslov index counts the number of times s such
that 1 is an eigenvalue of the symplectic matrix Ψ±(s). The integer

µ(u) = µ(Ψ−) − µ(Ψ+)

is independent of the choice of the trivialization and is called the Maslov index
of u. This number depends only on the homotopy class of u. For a detailed
account of the Maslov index and its role in Floer homology we refer to [25]. The
next theorem is due to Floer [12].

Lemma 3.1 If u satisfies (7) and (8) then

µ(u#v) = µ(u) + 2

∫

S2

v∗c1

for any sphere v : S2 → M.

Theorem 3.2 For a generic family of almost complex structures satisfying (5)
the space M(x−, x+) is a finite dimensional manifold for every pair of fixed
points x± = φ(x±). The dimension of M(x−, x+) is given by the Maslov index

dimuM(x−, x+) = µ(u)

locally near u ∈ M(x−, x+).
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By Lemma 3.1 the Maslov index induces a map

µ : Fix(φ) → Z2N

such that µ(u) = µ(x−) − µ(x+) (mod 2N) for every solution u of (7) and (8).
Here the integer N is defined by c1(π2(M)) = NZ. This function µ : Fix(φ) →
Z2N is only defined up to an additive constant. We may choose this constant
such that

(−1)µ(x) = signdet(1l − dφ(x)) (9)

for every fixed point x = φ(x). The manifold M(x−, x+) is not connected and
the dimension depends on the component. It follows from Theorem 3.2 that the
dimension is well defined modulo 2N

dimM(x−, x+) = µ(x−) − µ(x+) (mod 2N).

The Floer homology groups of φ can now be constructed as follows. Let C
be the vector space over Z2 freely generated by the fixed points of φ. This vector
space is graded modulo 2N by the Maslov index. It is convenient to define

Ck =
⊕

x=φ(x)

µ(x)=k(mod 2N)

Z2〈x〉

for every integer k keeping in mind that Ck+2N = Ck. Since M is monotone
it follows from Gromov’s compactness for pseudoholomorphic curves that the
1-dimensional part of the space M(x−, x+) consists of finitely many connect-
ing orbits (modulo time shift) whenever µ(x−) − µ(x+) = 1(mod 2N). Let
n2(x

−, x+) be the number of these connecting orbits modulo 2. This gives a
linear map ∂ : Ck+1 → Ck via the formula

∂〈y〉 =
∑

x=φ(x)

µ(x)=k(mod 2N)

n2(y, x)〈x〉

for y = φ(y) with µ(y) = k + 1(mod 2N). In [12] Floer proved that (C, ∂) is a
chain complex.

Theorem 3.3 Assume that M is simply connected and monotone.

(1) The above map ∂ : C → C satisfies ∂2 = 0. The associated homology groups

HF symp
k (M;φ) =

ker∂k−1

im∂k

are called the Floer homology groups of the pair (M, φ).

(2) The Floer homology groups HF symp
k (M, φ) are independent of the almost

complex structure J used to construct them; they depend on φ only up to
symplectic isotopy.
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(3) If φ is isotopic to the identity in the class of symplectomorphisms then
HF symp

∗ (M;φ) is naturally isomorphic to the homology of the manifold
M

HF symp
k (M;φ) =

⊕

j=k(mod 2N)

Hj(M; Z2).

Proof of (2): To prove that HF symp
∗ (M;φ) depends only on the isotopy class

of φ we must generalize the above construction. Let

φs = ψ−1
s ◦ φ

be an isotopy of symplectomorphisms from φ0 = φ to φ1. Since M is simply
connected there exists a family of Hamiltonian vector fields Xs : M → TM
such that

d

ds
ψs = Xs ◦ ψs.

This means that the 1-form obtained by contracting Xs with the symplectic
form ω is exact

ι(Xs)ω = dHs.

The isotopy can be chosen such that

ψs+1 ◦ φ1 = φ0 ◦ ψs

or equivalently
φ∗Xs+1 = Xs, Hs+1 ◦ φ = Hs. (10)

Now replace equation (6) by

∂u

∂t
+ Js(u)

∂u

∂s
−∇Hs(u) = 0. (11)

Here ∇Hs = JsXs is the gradient of the Hamiltonian function Hs : M → R

with respect to the metric induced by Js. It follows from (5) that whenever
u(s, t) is a solution of (11) then so is v(s, t) = φ(u(s− 1, t)). Hence the period-
icity condition (7) is consistent with (11). One can prove by exactly the same
arguments as in [12] that HF symp

∗ (M;φ) is isomorphic to the Floer homology
constructed with (11) instead of (6). We denote these Floer homology groups
by HF symp

∗ (M;φ,H).
The stationary points of equation (11) (that is ∂u/∂t = 0) with the boundary

condition (7) are the paths γ ∈ Ωφ for which γ(s) = ψs(γ(0)). These paths are
in one-to-one correspondence with the fixed points of φ1 = ψ−1

1 φ. Now let
u : R

2 → M be any solution of (11) and (7) and define

v(s, t) = ψ−1
s (u(s, t)), Is = ψ∗

sJs.
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Then φ1
∗Is+1 = Is and v(s, t) satisfies the partial differential equation

∂v

∂t
+ Is(v)

∂v

∂s
= 0 (12)

and the periodicity condition

v(s+ 1, t) = φ1(v(s, t)). (13)

Hence there is a one-to-one correspondence between the solutions of (11) and (7)
on the one hand and the solutions of (12) and (13) on the other hand. This
shows that HF symp

∗ (M;φ,H) is isomorphic to HF symp
∗ (M;φ1). 2

Remark 3.4 (i) A similar construction works for monotone symplectic mani-
folds M which are not simply connected. In this case Ωφ will no longer be
connected and there are Floer homology groups for every homotopy class
of paths. Moreover, the fundamental group of Ωφ will no longer be isomor-
phic to π2(M) and aφ may not take values in S1. If this is the case then
the Floer homology groups will be modules over a suitable Novikov ring as
in [17]. Finally, not every isotopy of symplectomorphisms corresponds to
a time dependent Hamiltonian vector field but the Floer homology groups
will only be invariant under Hamiltonian isotopy.

(ii) In [17] the construction of the Floer homology groups has been generalized
to some classes of non-monotone symplectic manifolds. The results in [17]
include the case where the first Chern class c1 vanishes over π2(M) but
ω does not. In this case the Floer homology groups are modules over the
Novikov ring associated to the ordering on π2(M) determined by ω.

(iii) Theorem 3.3 implies the Arnold conjecture for simply connected mono-
tone symplectic manifolds M: If φ is the time-1-map of a time dependent
Hamiltonian vector field with nondegenerate fixed points then the number
of fixed points of φ can be estimated below by the sum of the Betti num-
bers. In [12] Floer proved this result without assuming M to be simply
connected.

(iv) It follows from (9) that the Euler characteristic of HF symp
∗ (M;φ) is the

Lefschetz number of φ

χ(HF symp
k (M;φ)) =

2N−1∑

k=0

(−1)k dimHF symp
k (M;φ)

=
∑

x=φ(x)

sign det(1l − dφ(x))

= L(φ).
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4 Flat connections over a Riemann surface

Let π : P → Σ be principal SO(3)-bundle over a compact oriented Riemann
surface Σ of genus k. Up to isomorphism there are only two such bundles
characterized by the second Stiefel-Whitney class. We assume w2(P ) = 1 so the
bundle is nontrivial. As in section 1 let A(P ) denote the space of connections
on P and G(P ) denote the group of gauge transformations. The component of
the identity

G0(P ) = {g ∈ G(P ) : g ∼ 1}

can be characterized as the subgroup of even gauge transformation that is those
which lift to SU(2). Alternatively G0(P ) can be described as the kernel of the
epimorphism η : G(P ) → H1(Σ; Z2) which, as in section 1, assigns to each gauge
transformation its parity η(g). Here η induces an isomorphism from the group
of components of G(P ) to H1(Σ; Z2) ≈ Z2

2k

Recall from [2] that the affine space A(P ) is an infinite dimensional sym-
plectic manifold with symplectic form

ωA(a, b) =

∫

Σ

〈a ∧ b〉 (14)

for a, b ∈ TAA(P ) = Ω1(gP ). The gauge group G0(P ) acts on this manifold by
symplectomorphisms. The Lie algebra Lie(G0(P )) = Ω0(gP ) acts by Hamilto-
nian vector fields A(P ) → Ω1(gP ) : A 7→ dAξ where ξ ∈ Ω0(gQ). The associated
Hamiltonian functions are A(P ) → R : A 7→

∫
Σ
〈FA ∧ ξ〉. Thus the curvature

A(P ) 7→ Ω2(gP ) : A 7→ FA

is the moment map and the corresponding Marsden-Weinstein quotient is the
moduli space

M(P ) = Aflat(P )/G0(P ).

of flat connections modulo even gauge equivalence.
Since P is the nontrivial SO(3)-bundle the space M(P ) is a compact man-

ifold of dimension 6k − 6 provided that k ≥ 2. Moreover, every conformal
structure on Σ induces a Kähler structure on M(P ). To see this consider the
DeRham complex

Ω0(gP )
dA−→ Ω1(gP )

dA−→ Ω2(gP )

twisted by a flat connection A. It follows from Lemma 4.1 below that dA :
Ω0 → Ω1 is injective and hence H0

A(Σ) = 0. The first cohomology H1
A(Σ) =

ker dA ∩ d∗A ⊂ Ω1(gP ) appears as the tangent space of the manifold M(P ) at
A. A conformal structure on Σ determines a Hodge-∗-operator

H1
A(Σ) → H1

A(Σ) : a 7→ ∗a
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for A ∈ Aflat(P ). These operators form an integrable complex structure on
M(P ) which is compatible with the symplectic form (14) The associated Kähler
metric is given by

〈a, b〉 =

∫

Σ

〈a ∧ ∗b〉

for a, b ∈ H1
A(Σ).

Via the holonomy the space M(P ) can be identified with the space of odd
representations of the fundamental group of P in SU(2):

M(P ) =
Homodd(π1(P ), SU(2))

SU(2)
.

More precisely, since g = so(3) = su(2) the holonomy of a flat connection A ∈
Aflat(P ) at a point p0 ∈ P determines a homomorphism ρA : π1(P ) → SU(2)
whose image is denoted by HA(p0) = ρA(π1(P )). Since P is the nontrivial
bundle its fundamental group is given by 2k + 1 generators

α1, . . . αk, β1, . . . , βk, ε

with relations

k∏

j=1

[αj , βj ] = ε, [αj , ε] = 1, [βj , ε] = 1, ε2 = 1.

A homomorphism ρ : π1(P ) → SU(2) is called odd if ρ(ε) = −1. Any such
homomorphism is given by a 2k-tuple of matrices Uj , Vj ∈ SU(2) such that

k∏

j=1

[Uj , Vj ] = −1

The space of conjugacy classes of such homomorphisms is easily seen to be a
compact manifold of dimension 6k − 6. In particular, every flat connection on
P is regular.

Lemma 4.1 If A ∈ Aflat(P ) then GA ∩ G0(P ) = {1}.

Proof: Let g ∈ GA ∩ G0(P ) and let g̃ : P → SU(2) be a lift of g. Then g̃(p0)
commutes with HA(p0). By the above discussion HA(p0) is not an abelian
subgroup of SU(2). Hence g̃(p0) = ±1l and g(p0) = 1l. 2

The topology of the moduli space M(P ) has been studied extensively by
Atiyah and Bott [2] and Newsteadt [21]. We recall those results which are of
interest to us.

Theorem 4.2 Assume k ≥ 2. The moduli space M(P ) is connected and simply
connected and π2(M(P )) = Z.
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It is easy to see that M(P ) is connected for k ≥ 1 and simply connected for
k ≥ 2 [21]. Define

Rk : SU(2)2k → SU(2) : (U1, . . . , Uk, V1, . . . , Vk) 7→

k∏

j=1

[Uj , Vj ].

A 2k-tuple in Xk = SU(2)2k is a singular point for Rk if and only if all 2k
matrices commute. Hence the set Sk of singular points is a (2k+2)-dimensional
stratified subvariety of Zk = Rk

−1(1l). Hence there is a fibration Rk : Xk \Zk →
SU(2) \ {1l} with fibre Fk = Rk

−1(−1l) over a contractible base. The space
Xk \ Zk is connected for k ≥ 1 and simply connected for k ≥ 2 and so is Fk.
Now SO(3) acts freely on Fk and the quotient is M(P ). The homotopy exact
sequence of the fibration

SO(3) ↪→ Fk → M(P )

shows that M(P ) is connected and simply connected. Using the linking number
of a sphere in Xk \Zk with the codimension-3 submanifold Zk \ Sk we see that
π2(Fk) = π2(Xk \ Zk) = Z. But in this case the fundamental group of SO(3)
enters the exact sequence

0 → Z → π2(M(P )) → Z2 → 0

and we can only deduce that either π2(M(P )) = Z or π2(M(P )) = Z⊕Z2. We
must rule out the latter case. This requires the approach of Atiyah and Bott [2]
using infinite dimensional Morse theory.

Theorem 4.3 Assume k ≥ 2. Then the (infinite dimensional) space Aflat(P )
of flat connections on P is simply connected and π2(Aflat(P )) = 0.

The proof of this result is based on Morse theory for the Yang-Mills func-
tional

YM(A) =

∫

Σ

‖FA‖
2

on the space of connections A(P ). The idea is to extend a loop A1 : S1 →
Aflat(P ) to a map A : D → A(P ) on the unit disc. Then use the gradient flow
of the Yang-Mills functional to ‘push this extension down’ to the set Aflat(P )
of absolute minima. This requires that all the non-minimal critical manifolds
have Morse index at least 3 so that the extension A in general position does not
intersect their stable manifolds. The same consideration gives π2(Aflat(P )) = 0
if these Morse indices are at least 4. The details of this argument are carried
out in [6]. In [2] Atiyah and Bott used an alternative stratification of the space
A(P ) to prove Theorem 4.3.

Now the homotopy exact sequence of the fibration G0 ↪→ Aflat(P ) → M(P )
shows that

π2(M(P )) = π1(G0(P )) = Z.
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The last identity follows from Lemma 1.2 applied to the bundle Q = P × S1

over the 3-manifold M = Σ × S1. The isomorphism π1(G0(P )) = Z is given by
the degree of a loop g(s) ∈ G0(P ) regarded as a gauge transformation of P ×S1.

We shall now give a more explicit description of the isomorphism from
π1(G0(P )) to π2(M(P )). Let A0 ∈ Aflat(P ) be a flat connection and let
g(θ) ∈ G0(P ) be a loop of gauge transformations such that g(0) = g(1) = 1l. By
Theorem 4.3 there exists a map A : D → Aflat(P ) on the unit disc such that

A(e2πiθ) = A1(θ) = g(θ)∗A0. (15)

This map represents a sphere in the moduli space M(P ) since the boundary
of D is mapped to a point. An easy calculation shows that the integral of the
symplectic form over this sphere is given by

∫

D

∫

Σ

〈
∂A

∂s
∧
∂A

∂t

〉
dsdt =

1

2

∫ 1

0

∫

Σ

〈
dA1

dθ
∧ (A1 −A0)

〉
dθ

= 8π2 deg(g). (16)

The last identity follows from equation (2) applied to the Chern-Simons func-
tional on the bundle Q = P × S1.

Remark 4.4 (i) The group π0(G(P )) = G(P )/G0(P ) = Z2
2k of components of

the gauge group acts on the moduli space by symplectomorphism M(P ) →
M(P ) : [A] 7→ [g∗A]. This action is not free: it is easy to construct a flat
connection whose isotropy subgroup GA is nontrivial but discrete.

(ii) The tangent bundle of M(P ) is a complex vector bundle and therefore has
Chern classes. It follows from our theorem about the spectral flow [7] that
the integral of the first Chern class c1 ∈ H2(M(P ); Z) over the sphere
A : D → Aflat(P ) satisfying (15) is given by 2 deg(g). This was already
known to Atiyah and Bott [2].

5 Mapping cylinders

Continue the notation of the previous section. Any diffeomorphism h : Σ → Σ
lifts to an automorphism f : P → P since h∗P is isomorphic to P . We assume
throughout that h is orientation preserving. The automorphism f induces a
symplectomorphism

φf : M(P ) → M(P )

defined by φf ([A]) = [f∗A]. In the context of representations of the fundamental
group this symplectomorphism is given by ρ 7→ ρ ◦ f∗. Hence the symplecto-
morphism φf depends only on the homotopy class of f . A fixed point of φf is
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an equivalence class of a flat connection A0 ∈ Aflat(P ) such that g∗f∗A0 = A0

for some gauge transformation g ∈ G0(P ). This can be written as

f∗
gA0 = A0

where the automorphism fg ∈ Aut(P ) is defined by

fg(p) = f(p)g(p)

for p ∈ P . The differential of φf at the fixed point A0 is the linear map

f∗
g : H1

A0
(Σ) → H1

A0
(Σ).

Here we identify H1
A0

with the quotient ker dA0/im dA0 rather than the space of
harmonic forms which will in general not be invariant under f ∗

g .

Remark 5.1 For every g ∈ G(P ) and every A ∈ A(P )

f∗g∗A = (g ◦ f)∗f∗A.

Hence the symplectomorphism M(P ) → M(P ) : [A] 7→ [g∗A] commutes with
φf whenever g is homotopic to g ◦ f or equivalently the parity η(g) is in the
kernel of the homomorphism 1l− h∗ : H1(Σ,Z2) → H1(Σ,Z2). Define

Gf (P ) = {g ∈ G(P ) : g ∼ g ◦ f} , Γf = Gf (P )/G0(P ).

Then Γf ' ker(1l− h∗) is a finite group which acts on M(P ) by symplectomor-
phisms which commute with φf . In particular, Γf acts on the fixed points of
φf . More explicitly, if [A0] ∈ Fix(φf ) and g0 ∈ Gf (P ) then [A′

0] = [g∗0A0] ∈
Fix(φf ). To see this choose g ∈ G0(P ) such that g∗f∗A0 = A0 and define
g′ = (g0 ◦ f)−1gg0 ∈ G0(P ). Then g′

∗
f∗A′

0 = A′
0.

The automorphism f also determines a principal SO(3)-bundle

Pf → Σh.

Here Q = Pf denotes the mapping cylinder of P for the automorphism f . That
is the set of equivalence classes of pairs [p, s] ∈ P × R under the equivalence
relation generated by [p, s + 1] ≡ [f(p), s]. Likewise the 3-manifold M = Σh

denotes the mapping cylinder of the Riemann surface Σ for the diffeomorphism
h. This bundle satisfies hypothesis (H1) of section 1. A connection a ∈ A(Pf )
is a 1-form a = A+ Φ ds where A(s) ∈ A(P ), Φ(s) ∈ Ω0(gP ) for s ∈ R and

A(s+ 1) = f∗A(s), Φ(s+ 1) = Φ(s) ◦ f. (17)

The group G(Pf ) of gauge transformations of Pf consists of smooth 1-parameter
families of gauge transformations g(s) ∈ G(P ) such that

g(s+ 1) = g(s) ◦ f.
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Such a gauge transformation acts on a connection a = A+ Φ ds ∈ A(Pf ) by

g∗a = g∗A+
(
g−1ġ + g−1Φg

)
ds.

Here we use the notation g∗ ambiguously: g∗a denotes the action of g ∈ G(Pf )
on a ∈ A(Pf ) whereas g∗A denotes the pointwise action of g(s) ∈ G(P ) on
A(s) ∈ A(P ).

Remark 5.2 Consider the normal subgroups

G0(Pf ) ⊂ GΣ(Pf ) ⊂ G(Pf )

where GΣ(Pf ) = {g ∈ G(Pf ) : g(s) ∈ G0(Σ) ∀ s} and G0(Pf ) is the component
of 1l. Then

G(Pf )/GΣ(Pf ) ' Γf , GΣ(Pf )/G0(Pf ) ' Z.

The second isomorphism is given by the degree while the first follows from the
fact that g0 ∈ G(P ) extends to a gauge transformation of Pf if and only if
g0 ∈ Gf (P ). The first isomorphism shows that Γf is the group of components
of gauge transformations of Pf of degree zero

The path space Ωφf
can be naturally identified with a subquotient of the

space of connections on Pf . Consider the subspace

AΣ(Pf ) = {A+ Φ ds ∈ A(Pf ) : FA = 0, d∗A (dA/ds− dAΦ) = 0} .

If A + Φ ds ∈ AΣ(Pf ) then Φ is uniquely determined by A. In fact dA/ds −
dAΦ represents the projection of dA/ds onto the space H1

A(Σ) = T[A]M(P ) of
harmonic forms.

Proposition 5.3 There are natural bijections

Ωφf
' AΣ(Pf )/GΣ(Pf ), Ω̃φf

' AΣ(Pf )/G0(Pf ).

In particular, Ωφf
is connected and

π1(Ωφf
) ' GΣ(Pf )/G0(Pf ) ' π2(M(P )).

Proof: A point in the space Ωφf
is a smooth path γ : R → M(P ) such that

γ(s + 1) = φf (γ(s)). Such a path lifts to a smooth map A : R → Aflat(P )
satisfying

A(s+ 1) = h(s)∗f∗A(s).

for some smooth map h : R → G0(P ). Two such pairs (A, h) and (A′, h′)
represent the same path γ : R → M(P ) if and only if there exists a smooth map
g : R → G0(P ) such that

A′(s) = g(s)∗A(s), h′(s) = (g(s) ◦ f)−1 h(s)g(s+ 1).
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Every path γ can be represented by a pair (A, h) with h(s) ≡ 1. To see this
choose, for any given pair (A, h), a path g : [0, 1] → G0(P ) such that g(s) = 1
for s near 0 and g(s) = h(s)−1 for s near 1. Then g(s) extends to a unique
function R → G0(P ) satisfying

h(s)g(s+ 1) = g(s) ◦ f.

This proves the first statement.
To prove the second statement recall from Theorem 4.3 that Aflat(P ) is con-

nected and simply connected and π2(Aflat(P )) = 0. Hence AΣ(Pf ) is connected
and simply connected. By the homotopy exact sequence

π1(AΣ(Pf )) → π1(AΣ(Pf )/G0(Pf )) → π0(G0(Pf ))

the quotient AΣ(Pf )/G0(Pf ) is simply connected. Hence this quotient is the
universal cover of AΣ(Pf )/GΣ(Pf ) ' Ωφf

. 2

The Chern-Simons functional on the space of connections A(Pf ) is given by
the formula

CS(A+ Φ ds) =
1

2

∫ 1

0

∫

Σ

(
〈Ȧ ∧ (A−A0)〉 + 〈FA ∧ Φ〉

)
ds

Here A0 is any flat connection on P such that f∗A0 = A0. A simple calculation
shows that the restriction of CS to AΣ(Pf ) induces the symplectic action func-

tional on Ω̃φf
= AΣ(Pf )/G0(Pf ). We shall in fact prove that the critical points

of the Chern-Simons functional, that is the flat connections on Pf , agree with
the critical points of the symplectic action, that is the fixed points of φf . To
see this note that the curvature of the connection a = A+ Φ ds is the 2-form

FA+Φ ds = FA +
(
dAΦ − Ȧ

)
∧ ds

Thus the flat connections on Pf are smooth families of flat connections A(s) ∈
Aflat(P ) such that dA/ds ∈ im dA and (17) is satisfied.

Proposition 5.4 The map A(Pf ) → A(P ) : A+ Φ ds 7→ A(0) induces a bijec-
tion

Aflat(Pf )/GΣ(Pf ) ' Fix(φf ).

In particular Aflat(Pf )/G(Pf ) ' Fix(φf )/Γf .

Proof: First assume that a = A+ Φ ds ∈ Aflat(Pf ). Then A(s) ∈ Aflat(P ) for

every s and Ȧ = dAΦ. Let g(s) ∈ G(P ) be the unique solution of the ordinary
differential equation ġ + Φg = 0 with g(0) = 1l. Then g(s)∗A(s) ≡ A0 and
hence it follows from (17) that g(1)∗f∗A0 = g(1)∗A(1) = A0. By construction,
g(1) ∈ G0(P ) and hence A0 represents a fixed point of φf . This proves that there
is a well defined map Aflat(Pf )/GΣ(Pf ) → Fix(φf ) given by A+ Φ ds 7→ A(0).

25



We prove that this map is onto. Suppose that A0 ∈ Aflat(P ) represents a
fixed point of φf and let g1 ∈ G0(P ) such that g∗1f

∗A0 = A0. Choose a smooth
1-parameter family of connections g(s) ∈ G0(P ) such that g(0) = 1, g(1) = g1
and g(s + 1) = (g(s) ◦ f)g1 for every s. Let A(s) ∈ Aflat(P ) be defined by
g(s)∗A(s) = A0 and Φ(s) = −ġ(s)g(s)−1. Then a = A + Φ ds is the required
flat connection on Pf .

We prove that the map is injective. Let a, a′ ∈ Aflat(Pf ) such that A′(0) =
g∗0A(0) for some g0 ∈ G0(P ). Define g(s) ∈ G0(P ) to be the unique solution of
the ordinary differential equation ġ = gΦ′ − Φg, g(0) = g0. Then

d

ds
g∗A = g−1Ȧg + dg∗A(g−1ġ) = g−1dAΦg + dg∗A(Φ′ − g−1Φg) = dg∗AΦ′.

Here we have used Ȧ = dAΦ. Since A′(0) = g(0)∗A(0) and Ȧ′ = dA′Φ′ it
follows that g(s)∗A(s) = A′(s) for every s. Moreover it follows from (17) that
g(s+1)−1g(s)◦f ∈ GA(s+1)∩G0(P ). By Lemma 4.1 this implies g(s+1) = g(s)◦f .
Hence g(s) defines a gauge transformation of Pf and a′ = g∗a. 2

Proposition 5.5 A flat connection A + Φ ds ∈ Aflat(Pf ) is nondegenerate as
a critical point of the Chern-Simons functional if and only if [A(0)] is a nonde-
generate fixed point of φf .

Proof: Let a = A + Φ ds ∈ Aflat(Pf ) be a flat connection and define A0 =
A(0) ∈ Aflat(P ). Then f∗

gA0 = A0 where g ∈ G0(P ) is defined by g = g(1) for
the unique solution g(s) ∈ G0(P ) of ġ(s) + Φ(s)g(s) = 0 with g(0) = 1l. We
must show that

1l − f∗
g : H1

A0
(Σ) → H1

A0
(Σ)

is an isomorphism if and only if H1
A+Φ ds(Σh) = 0. The latter means that

whenever α+ φ ds ∈ Ω1(gPf
) is an infinitesimal connection such that

dAα = 0, dAφ = α̇+ [Φ ∧ α] (18)

then there exists a ξ ∈ Ω0(gPf
) such that

α = dAξ, φ = ξ̇ + [Φ ∧ ξ]. (19)

Replacing a by g∗a and f by fg(1) we may assume without loss of generality
that Φ(s) ≡ 0 and A(s) ≡ A0.

Assume first that 1l − f∗ is an isomorphism of H1
A0

. Let α(s) ∈ Ω1(gP )
and φ ∈ Ω0(gP ) satisfy (18) and the boundary conditions α(s + 1) = f ∗α(s),
φ(s+ 1) = φ(s) ◦ f . Then

f∗α(0) − α(0) = dA0

∫ 1

0

φ(s) ds, dA0α(0) = 0.
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Since 1l − f∗ : H1
A0

→ H1
A0

is injective there exists a ξ0 ∈ Ω0(gP ) such that
α(0) = dA0ξ0. Define

ξ(s) = ξ0 +

∫ s

0

φ(θ) dθ.

Then φ = ξ̇, hence α̇ = dA0 ξ̇, and hence α = dA0ξ. The latter identity implies
that dA0ξ(s+ 1) = f∗dA0ξ(s) and hence ξ(s+ 1) = ξ(s) ◦ f .

Conversely, suppose that 1l − f∗ : H1
A0

→ H1
A0

is not injective. Then there
exist α0 ∈ Ω1(gP ) and ξ0 ∈ Ω0(gP ) such that

f∗α0 − α0 = dA0ξ0, dA0α0 = 0, α0 /∈ imdA0 .

Choose any function φ(s) ∈ Ω0(gP ) satisfying

ξ0 =

∫ 1

0

φ(s) ds, φ(s+ 1) = φ(s) ◦ f.

For example take a cutoff function β : [0, 1] → R of mean value 1 which vanishes
near s = 0 and s = 1 and define φ(s+ j) = β(s)ξ0 ◦ f

j for 0 ≤ s ≤ 1 and j ∈ Z.
Let α(s) ∈ Ω1(gP ) be the unique solution of α̇ = dA0φ with α(0) = α0. Then α
and φ satisfy (18) but are not of the form (19) since α0 /∈ imdA0 . This shows
that H1

A+Φ ds 6= 0. 2

Remark 5.6 It is an open question whether every symplectomorphism φ :
M(P ) → M(P ) is isotopic (within the group of symplectomorphisms) to one
of the form φf for f ∈ Aut(P ). It is also an open question whether f0 and f1
are isotopic whenever φf0 and φf1 are isotopic.

6 Instantons and holomorphic curves

The proof of Theorem 1.1 is based on a comparison between holomorphic curves
in M(P ) and self-dual instantons on the 4-manifold Σh × R. To carry this out
we must choose a metric on Σh. Let 〈 , 〉s be a one parameter family of metrics
on Σ such that

〈dh(z)ζ0, dh(z)ζ1〉s = 〈ζ0, ζ1〉s+1.

Then the associated Hodge-∗-operators ∗s : Ωj(gP ) → Ω2−j(gP ) satisfy

∗s+1 ◦ f
∗ = f∗ ◦ ∗s. (20)

This defines a metric on Pf : whenever ξ(s), η(s) ∈ Ωj(gP ) with ξ(s+1) = f∗ξ(s)
and η(s+ 1) = f∗η(s) then the function

〈ξ(s), η(s)〉s =

∫

Σ

〈ξ(s) ∧ ∗sη(s)〉
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is of period 1 in s. The inner product of ξ and η is defined as the integral of
this function over the unit interval

〈ξ, η〉 =

∫ 1

0

∫

Σ

〈ξ(s) ∧ ∗sη(s)〉 ds.

Now recall that the tangent space to M(P ) at A is the quotient H1
A(Σ) =

ker dA/imdA. The metrics on Σ determine a family of complex structures

Js = ∗s : H1
A(Σ) → H1

A(Σ)

and condition (20) implies that these satisfy (5) with φ = φf . In order for the
space of harmonic forms to be invariant under ∗s we must use the L2-adjoint
d∗A = − ∗s dA∗s with respect to the s-metric.

Any smooth function u : R2 → M(P ) lifts to a smooth function A : R2 →
Aflat(P ). For any such map the partial derivatives ∂A/∂s and ∂A/∂t lie in
the kernel of dA but will in general not be harmonic. To apply a complex
structure we must first project these derivatives into the space of harmonic forms
corresponding to this complex structure. These projections can be described as
∂A/∂s− dAΦ and ∂A/∂t− dAΨ where Φ,Ψ ∈ Ω0(gP ) are uniquely determined
by the requirement

dA ∗s

(
∂A

∂s
− dAΦ

)
= 0, dA ∗s

(
∂A

∂t
− dAΨ

)
= 0.

Thus our function u = [A] : R2 → M(P ) satisfies the nonlinear Cauchy-
Riemann equations (6) if and only if there exist functions Φ,Ψ : R2 → Ω0(gP )
such that

∂A

∂t
− dAΨ + ∗s

(
∂A

∂s
− dAΦ

)
= 0. (21)

Moreover, the periodicity condition (7) with φ = φf is equivalent to

A(s+1, t) = f∗A(s, t), Φ(s+1, t) = Φ(s, t)◦f, Ψ(s+1, t) = Φ(s, t)◦f. (22)

The limit condition (8) takes the form

lim
t→±∞

A(s, t) = A±(s), lim
t→±∞

Φ(s, t) = Φ±(s), lim
t→±∞

Ψ(s, t) = 0 (23)

where A±(s) ∈ Aflat(P ) and Ȧ± = dA±Φ±. This means that A± + Φ± ds are
flat connections on Pf . Strictly speaking, the periodicity conditions (22) need
only be satisfied up to even gauge equivalence. However, any such triple A,Φ,Ψ
can be transformed so as to obtain (22). (See the proof of Proposition 4.1.)

If two solutions of (21) and (22) are gauge equivalent by a family of even
gauge transformations g(s, t) ∈ G0(P ) then

g(s+ 1, t) = g(s, t) ◦ f.
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This means that g defines a gauge transformation on the bundle Pf ×R over the
4-manifold Σh ×R. Moreover, the action of g on the triple A,Φ,Ψ corresponds
to the interpretation of this triple as a connection A + Φ ds + Ψ dt on Pf × R.
The curvature of this connection is the 2-form

FA+Φ ds+Ψ dt = FA −

(
∂A

∂s
− dAΦ

)
∧ ds−

(
∂A

∂t
− dAΨ

)
∧ dt

+

(
∂Ψ

∂s
−
∂Φ

∂t
+ [Φ,Ψ]

)
ds ∧ dt.

Hence the connection A+ Φ ds+ Ψ dt is self-dual if and only if

∂A

∂t
− dAΨ + ∗s

(
∂A

∂s
− dAΦ

)
= 0,

(24)

∂Φ

∂t
−
∂Ψ

∂s
− [Φ,Ψ] + ∗sFA = 0.

Note that the first equation in (24) agrees with (21) whereas the second equation
replaces the condition on A(s, t) to be flat.

Now the holomorphic curves described by equation (21) with FA = 0 can be
viewed as a limit case of the instantons described by equation (24). Following
Atiyah [1] we stretch the mapping cylinder Σh so that the period converges to
infinity. Formally this means that equation (22) is replaced by

A(s+1/ε, t) = f∗A(s, t), Φ(s+1/ε, t) = Φ(s, t)◦f, Ψ(s+1/ε, t) = Φ(s, t)◦f.

and in (24) ∗s is replaced by ∗εs. Now rescale A, Φ, and Ψ:

Aε(s, t) = A(s/ε, t/ε), Φε(s, t) = 1/εΦ(s/ε, t/ε), Ψε(s, t) = 1/εΨ(s/ε, t/ε).

The triple Aε,Φε,Ψε then satisfies the periodicity condition (22). Moreover,
equation (24) becomes

∂Aε

∂t
− dAεΨε + ∗s

(
∂Aε

∂s
− dAεΦε

)
= 0,

(25)

∂Φε

∂t
−
∂Ψε

∂s
− [Φε,Ψε] +

1

ε2
∗s FAε = 0.

This is equivalent to conformally rescaling the metric on Σ by the factor ε2.
It follows from an implicit function theorem that near every solution of (21),

(22) and (23) there is a solution of (25), (22) and (23) provided that ε > 0
is sufficiently small. This is a singular perturbation theorem and care must
be taken with the dependence of the linearized operators on ε. Conversely, a
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family of solutions Aε,Φε,Ψε of (25), (22) and (23) converges as ε tends to 0
and the curvature of Aε converges to 0. The key point is an energy estimate.
The Yang-Mills action of the rescaled equation is given by

YMε(A
ε + Φε ds+ Ψε dt)

=

∫ ∞

−∞

∫ 1

0

(∥∥∥∥
∂Aε

∂t
− dAεΨε

∥∥∥∥
2

s

+
1

ε2
‖FAε‖2

s

)
dsdt (26)

= CS(A− + Φ− ds) − CS(A+ + Φ+ ds).

This shows that the L2-norm of FAε on Σh × R converges to 0 as ε tends to 0.
Now Uhlenbeck’s compactness theorem requires an L∞-estimate of the form

sup
ε>0

(
1

ε2
‖FAε‖L∞(Σh×R) + ‖∂Aε/∂t− dAεΨε‖L∞(Σh×R)

)
<∞. (27)

The proof of this estimate involves a bubbling argument. Roughly speaking,
the estimate (27) may be violated in arbitrarily small neighborhoods of finitely
many points and in this case either instantons on S4 or instantons on Σ × C

or holomorphic spheres in M(P ) will split off. But this can be avoided in the
case which is relevant for the construction of the Floer homology groups namely
when the relative Morse index is 1:

µ(A− + Φ− ds) − µ(A+ + Φ+ ds) = 1.

Now there are two such relative Morse indices; one in the Chern-Simons theory
given by the spectral flow of the operator family Da(t) (section 2) and one in
symplectic Floer homology given by the Maslov index (section 3). We must
prove that both relative Morse indices agree. We shall address this problem as
well as singular perturbation and compactness in a separate paper.

7 Perturbations

The methods we have discussed so far require the assumption that all flat con-
nections on the bundle Q = Pf respectively all fixed points of the symplecto-
morphism φf on M(P ) are nondegenerate. The purpose of this section is to
show why this assumption is redundant. In particular we wish to apply Theo-
rem 1.1 to f = id in which case all flat connections are degenerate. Nevertheless
we obtain the following

Theorem 7.1 The instanton homology of the bundle P × S1 over Σ × S1 is
naturally isomorphic to the homology of the moduli space MF (P )

HF inst
k (Σ × S1, P × S1) =

⊕

j=k(mod 4)

Hj(MF (P ); Z2).
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To construct the symplectic Floer homology groups in the degenerate case
we must perturb the nonlinear Cauchy-Riemann equations (6) by a Hamiltonian
term as in the proof of Theorem 3.3. Likewise we must consider perturbations
of the Chern-Simons functional on the space of connections on Pf as in [11]
and [27] to construct the instanton homology groups of section 2.

We shall construct a smooth family of Hamiltonian functions Hs : A(P ) → R

which satisfy
Hs(g

∗A) = Hs(A) = Hs+1(f
∗A) (28)

for A ∈ A(P ) and g ∈ G0(P ). The differential of Hs can be represented by a
smooth map Xs : A(P ) → Ω1(gP ) such that

dHs(A)α =

∫

Σ

〈Xs(A) ∧ α〉.

In other words Xs : A(P ) → Ω1(gP ) is the Hamiltonian vector field on A(P )
corresponding to the Hamiltonian function Hs. Since Hs is invariant under
G0(P ) the vector fields Xs satisfy

Xs(g
∗A) = g−1Xs(A)g, dAXs(A) = 0, Xs+1(f

∗A) = f∗Xs(A) (29)

for g ∈ G0(P ) and A ∈ A(P ). The vector fields Xs that arise from the holonomy
will be smooth with respect to the W k,p-norm for all k and p and hence give
rise to a Hamiltonian flow ψs : A(P ) → A(P ) defined by

d

ds
ψs = Xs ◦ ψs, ψ0 = id.

The diffeomorphisms ψs preserve the symplectic structure and are equivariant
under the action of G0(P )

ψs(g
∗A) = g∗ψs(A), Fψs(A) = FA.

Moreover,
ψs+1 ◦ ψ1

−1(f∗A) = f∗ψs(A)

forA ∈ A(P ). The restriction of this identity to the Marsden-Weinstein quotient
M(P ) can be written in the form

ψs+1 ◦ φf,H = φf ◦ ψs, φf,H = ψ1
−1 ◦ φf .

The symplectomorphism φf,H : M(P ) → M(P ) is related to φf by a Hamilto-
nian isotopy.

To construct the Hamiltonian functionsHs and the Hamiltonian vector fields
Xs we first recall some basic facts about the holonomy of a connection on P . For
any loop γ(θ+1) = γ(θ) ∈ P the holonomy determines a map ρ = ργ : A(P ) →
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SU(2) defined by ρ(A) = g(1) where g(θ) ∈ SU(2) is the unique solution of the
ordinary differential equation

ġ +A(γ̇)g = 0, g(0) = 1.

This equation is meaningful since the Lie algebra of SO(3) agrees with the Lie
algebra of SU(2). The differential of ρ can be expressed in terms of g:

ρ(A)−1dρ(A)α = −

∫ 1

0

g−1α(γ̇)g dθ

for α ∈ Ω1(gP ).
Now choose 2k embeddings γj : R/Z × R → P of the annulus such that the

projections π ◦γj are orientation preserving, generate the fundamental group of
Σ, and satisfy γj(0, λ) = pλ for every j. Denote by ρλ : A(P ) → SU(2)2k the
holonomy along the loops θ 7→ γj(θ, λ) for λ ∈ R. Now choose a smooth family
of functions hs : SU(2)2k → R which are invariant under conjugacy and vanishes
for s near 0 and 1. Let β : R → R be a smooth cutoff function supported in
[−1, 1] with mean value 1 and define Hs : A(P ) → R by

Hs(A) =

∫ 1

−1

β(λ)hs(ρλ(A)) dλ

for A ∈ A(P ) and 0 ≤ s ≤ 1.
The partial derivative of hs with respect to Uj can be represented by a

function ηj : [0, 1]× SU(2)2k → su(2) such that

∂hs
∂Uj

(U)Ujξ = 〈ηj(s, U), ξ〉.

Define Xs : A(P ) → Ω1(gP ) by

Xs(A) =

2k∑

j=1

Xj(s, A)

for 0 ≤ s ≤ 1 where Xj(s, A) ∈ Ω1(gP ) is supported in γj(S
1 × [−1, 1]) and

γ∗jXj(s, A) = βgjηj(s, ρλ(A))gj
−1dλ.

Here θ 7→ gj(θ, λ) is the holonomy of A along the loop θ 7→ γj(θ, λ). The vector
field Xs is related to the Hamiltonian Hs as above for 0 ≤ s ≤ 1. Both can be
extended to s ∈ R by (28) and (29).

Remark 7.2 Any smooth Hamiltonian function Hs : M(P ) → R can be rep-
resented in the form Hs = hs ◦ ρλ : Aflat(P ) → R where hs : SU(2)2k → R is
invariant under conjugacy. The functions hs : SU(2)2k → R can be chosen such
that φf,H has only nondegenerate fixed points. We do not assume here that Hs

is invariant under the action of Γf . This would require a transversality theorem
which takes account of the action of a finite group.
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The perturbed Chern-Simons functional CSH : A(Pf ) → R is defined by

CSH(a) = CS(a) −

∫ 1

0

Hs(A(s)) ds.

for a = A+ Φ ds ∈ A(Pf ). Its differential is given by

dCS(A+ Φ ds)(α+ φ ds) =

∫ 1

0

∫

Σ

(
〈(Ȧ− dAΦ −Xs(A)) ∧ α〉 + 〈FA ∧ φ〉

)
ds.

Hence a connection A+Φ ds on Pf is a critical point of CSH if and only if A(s)
is flat for every s and

Ȧ− dAΦ −Xs(A) = 0. (30)

Now the restriction of Hs to the moduli space M(P ) of flat connections is
in the class of perturbations for symplectic Floer homology considered in the
proof of Theorem 3.3. In other words the restriction of CSH to the space of
paths Ωφf

= AΣ(Pf )/GΣ(Pf ) is the perturbed symplectic action functional and
this restriction has the same critical points as CSH . They are in one-to-one
correspondence with the fixed points of the symplectomorphism φf,H . The class
of perturbations discussed here is large enough in order to obtain nondegenerate
critical points.

A Proof of Lemma 2.3

Let Q→M be a principal SO(3)-bundle over a compact 3-manifold. Through-
out we denote the unit interval by I = [0, 1].

Lemma A.1 For every integer k ∈ Z there exists a gauge transformation g ∈
G(Q) with deg(g) = 2k and η(g) = 0.

Proof: The condition η(g) = 0 means that g : Q → G lifts to a map g̃ : Q →
SU(2). Let ι : Σ →M be an embedding of an oriented Riemann surface. Then
ι extends to an embedding of a tubular neighborhood ι : Σ × I → M . Cut out
a disc D ⊂ Σ and define g̃ = 1 outside ι(D× I). Now trivialize Q over ι(D× I)
and choose g̃ ◦ ι : D × I → SU(2) of degree k with g̃ ◦ ι(∂(D × I)) = 1. 2

Lemma A.2 Let ι : Σ → M be an embedding of an oriented Riemann surface
with w2(ι

∗Q) = j ∈ {0, 1}. Then there exists a gauge transformation g : Q →
SO(3) of degree j whose parity

η(g) = ηΣ : π1(M) → Z2

is given by the intersection number of a loop with Σ.
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Proof: Extend ι to an embedding of a tubular neighborhood ι : Σ × I →M .
If w2(ι

∗Q) = 0 define g ◦ ι(z, t) = g0(t) for z ∈ Σ and t ∈ I where g0(t) is a
nontrivial loop in SO(3) with g0(0) = g0(1) = 1. Extend by g(p) = 1 outside
ι(Σ × I).

If w2(ι
∗Q) = 1 define g(p) = 1 for p /∈ ι(Σ×I) as above. Moreover decompose

Σ as
Σ = Σ1 ∪ Σ2

where Σ1 = D ⊂ Σ is a disc and Σ2 = cl(Σ \D). Choose sections σj : Σj × I →
Q|ι(Σj×I) for j = 1, 2 such that

σ2(e
2πiθ) = σ1(e

2πiθ)g0(θ).

Here g0(θ) is the loop in SO(3) covered by

γ(θ) =

(
eπiθ 0
0 e−πiθ

)
∈ SU(2).

Define g on ι(Σ × I) by

g ◦ σj(z, t) = g0(t), z ∈ Σj , t ∈ I.

This is consistent with the patching condition since g0(θ)g0(t)g0(θ)
−1 = g0(t).

We prove that h = g · g lifts to h̃ : Q→ SU(2) and that h̃ is of degree 1. To
see this note that

h̃ ◦ σj(z, t) = γ(2t), z ∈ Σj , t ∈ I,

and h̃(p) = 1 for p /∈ ι(Σ × I). Now choose a continuous function

β(r, t) =

(
a+ ib c
−c a− ib

)
∈ SU(2), 0 ≤ t ≤ 1 ≤ r ≤ 2.

such that β(1, t) = γ(2t), β(r, 0) = β(r, 1) = β(2, t) = 1l, a2 + b2 + c2 = 1
and c ≥ 0. (Contract the equator over a hemisphere.) Moreover, assume that
σ1 : D × I → Q extends to the disc D2 of radius 2 with the overlap condition
σ2(re

2πit) = σ1(re
2πit)g0(t) for 1 ≤ r ≤ 2. Also assume, up to homotopy, that

h̃ ◦ σ2(z, t) = 1 for z /∈ D2 and

h̃ ◦ σ2(z, t) = β(|z|, t), 1 ≤ |z| ≤ 2, t ∈ I.

By the overlap condition this implies

h̃ ◦ σ1(z, t) = γ(θ)β(r, t)γ(θ)−1 =

(
a+ ib ce2πiθ

−ce−2πiθ a− ib

)

for 1 ≤ |z| ≤ 2 and t ∈ I . Hence it follows from the definition of β that
h̃ ◦ σ1(z, t) = 1 whenever |z| = 2 or t = 0, 1. Thus h̃ ◦ σ1 defined a map from
D2 × I/∂(D2 × I) → SU(2). Since c ≥ 0, this map is of degree 1. 2
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Lemma A.3 If g ∈ G(Q) with deg(g) = 0 and η(g) = 0 then g is homotopic to
1.

Proof: If η(g) = 0 then g lifts to SU(2) = S3. Hence the statement follows
from the Hopf degree theorem. 2

Proof of Lemma 2.3: Statement (1) follows immediately from Lemma A.3.
We prove statement (2). By (H1) every cohomology class η : π1(M) →

Z2 can be represented by finitely many embedded oriented Riemann surfaces
ιj : Σj → M . The associated gauge transformations gj : Q → G constructed
in Lemma A.2 all satisfy (1). This together with Lemma A.1 implies that for
every k ∈ Z and every η ∈ H1(M ; Z2) with k ≡ w2(Q) · η (mod 2) there exists
a gauge transformation g ∈ G(Q) such that deg(g) = k and η(g) = η.

Conversely, we must prove that every gauge transformation g ∈ G(Q) satis-
fies (1). By Lemma A.2 we may assume that η(g) = 0. This implies that g lifts
to a map g̃ : Q→ SU(2) and hence deg(g) is even.

We prove statement (3). By (H2) there exists an embedding ι : Σ →M of an
oriented Riemann surface such that w2(ι

∗Q) = 1. So it follows from Lemma A.2
that there is a gauge transformation of degree 1. 2
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