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Abstract

This is an expository paper. Its purpose is to explain the linear algebra
that underlies Donaldson–Thomas theory and the geometry of Riemannian
manifolds with holonomy in G2 and Spin(7).

1 Introduction

In these notes we give an exposition of the structures in linear algebra that underlie
Donaldson–Thomas theory [DT98, DS11] and calibrated geometry [HL82, Joy00].
No claim is made to originality. All the results and ideas described here (except
perhaps Theorem 7.8) can be found in the existing literature, notably in the beautiful
paper [HL82] by Harvey and Lawson. Perhaps these notes might be a useful
introduction for students who wish to enter the subject.

Our emphasis is on characterizing the relevant algebraic structures—such as
cross products, triple cross products, associator and coassociator brackets, asso-
ciative, coassocitative, and Cayley calibrations and subspaces—by their intrinsic
properties rather than by the existence of isomorphisms to the standard structures
on the octonions and the imaginary octonions, although both descriptions are of
course equivalent.

Section 2 deals with cross products and their associative calibrations. It contains
a proof that they exist only in dimensions 0, 1, 3, and 7. In Section 3 we discuss
nondegenerate 3–forms on 7–dimensional vector spaces (associative calibrations)
and explain how they give rise to unique compatible inner products. Additional
structures such as associative and coassociative subspaces and the associator and
coassociator brackets are discussed in Section 4. These structures are relevant for
∗partially supported by the Swiss National Science Foundation

1



understanding G2–structures on 7–manifolds and the Chern–Simons functional in
Donaldson–Thomas theory.

The corresponding Floer theory has as its counterpart in linear algebra the
product with the real line. This leads to the structure of a normed algebra which only
exists in dimensions 1, 2, 4, and 8, corresponding to the reals, the complex numbers,
the quaternions, and the octonions. These structures are discussed in Section 5.
Going from Floer theory to an intrinsic theory for Donaldson-type invariants of
8–dimensional Spin(7)–manifolds corresponds to dropping the space-time splitting.
The algebraic counterpart of this reduction is to eliminate the choice of the unit
(as well as the product). What is left of the algebraic structures is the triple cross
product and its Cayley calibration—a suitable 4–form on an 8–dimensional Hilbert
space. These structures are discussed in Section 6. Section 7 characterizes those 4–
forms on 8–dimensional vector spaces (the Cayley-forms) that give rise to (unique)
compatible inner products and hence to triple cross products. The relevant structure
groups G2 (in dimension 7) and Spin(7) (in dimension 8) are discussed in Section 8
and Section 9 with a particular emphasis on the splitting of the space of alternating
multi-linear forms into irreducible representations. In Section 10 we examine spin
structures in dimensions 7 and 8. Section 11 relates SU(3) and SU(4) structures to
cross products and triple cross products and Section 12 gives a brief introduction to
the basic setting of Donaldson–Thomas theory.

Here is a brief overview of some of the literature about the groups G2 and
Spin(7). The concept of a calibration was introduced in the article of Harvey–
Lawson [HL82] which also contains definitions of G2 and Spin(7) in terms of the
octonions. Humphreys [Hum78, Section 19.3] constructs (the Lie algebra of) G2

from the Dynkin diagram and proves that this coincides with the definition in terms
of the octonions. The characterization ofG2 and Spin(7) as the stabilisers of certain
3– and 4–forms is due to Bonan [Bon66].

Harvey–Lawson also introduced the (multiple) cross products and the associator
and coassociator brackets. The concept of a multiple cross product goes back to
Eckmann [Eck43]. Building on this work, Whitehead [Whi62] classified those
completely; see also Brown–Gray [BG67]. To our best knowledge, the splitting of
the exterior algebra into irreducible G2–representations is due to Fernández–Gray
[FG82, Section 3], who also emphasize the relation between G2 and the cross
product in dimension seven. This as well as the analogous result for Spin(7) can
also be found in Bryant [Bry87, Section 2].

Among many others, the more recent articles by Bryant [Bry06], Karigian-
nis [Kar08,Kar09,Kar10] and Muñoz [Muñ14, Section 2] contain useful summaries
of the linear algebra related to G2 and Spin(7).
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2 Cross products

We assume throughout that V is a finite dimensional real Hilbert space.

Definition 2.1. A skew-symmetric bilinear map

(2.2) V × V → V : (u, v) 7→ u× v

is called a cross product if it satisfies

〈u× v, u〉 = 〈u× v, v〉 = 0, and(2.3)

|u× v|2 = |u|2|v|2 − 〈u, v〉2(2.4)

for all u, v ∈ V .

A bilinear map (2.2) that satisfies (2.4) also satisfies u× u = 0 for all u ∈ V
and, hence, is necessarily skew-symmetric.

Theorem 2.5. V admits a cross product if and only if its dimension is either 0, 1, 3,
or 7. In dimensions 0 and 1 the cross product vanishes, in dimension 3 it is unique
up to sign and determined by an orientation of V , and in dimension 7 it is unique
up to orthogonal isomorphism.

Proof. See page 8.

The proof of Theorem 2.5 is based on the next five lemmas.

Lemma 2.6. Let (2.2) be a skew-symmetric bilinear map. Then the following are
equivalent:

(i) Equation (2.3) holds for all u, v ∈ V .

(ii) For all u, v, w ∈ V we have

(2.7) 〈u× v, w〉 = 〈u, v × w〉.

(iii) The map φ : V 3 → R, defined by

(2.8) φ(u, v, w) := 〈u× v, w〉,

is an alternating 3–form (called the associative calibration of (V,×)).
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Proof. Let (2.2) be a skew-symmetric bilinear map. Assume that it satisfies (2.3).
Then, for all u, v, w ∈ V , we have

0 = 〈v × (u+ w), u+ w〉
= 〈v × w, u〉+ 〈v × u,w〉
= 〈u, v × w〉 − 〈u× v, w〉.

This proves (2.7).
Now assume (2.7) and let φ be defined by (2.8). Then, by skew-symmetry, we

have φ(u, v, w)+φ(v, u, w) = 0 for all u, v, w and, by (2.7), we have φ(u, v, w) =
φ(v, w, u) for all u, v, w. Hence, φ is an alternating 3–form. Thus we have proved
that (i) implies (ii) implies (iii).

That (iii) implies (i) is obvious. This proves Lemma 2.6.

Lemma 2.9. Let (2.2) be a skew-symmetric bilinear map that satisfies (2.3). Then
the following are equivalent:

(i) The bilinear map (2.2) satisfies (2.4).

(ii) If u and w are orthonormal, then |u× w| = 1.

(iii) If |u| = 1 and w is orthogonal to u, then u× (u× w) = −w.

(iv) For all u,w ∈ V we have

(2.10) u× (u× w) = 〈u,w〉u− |u|2w.

(v) For all u, v, w ∈ V we have

(2.11) u× (v × w) + v × (u× w) = 〈u,w〉v + 〈v, w〉u− 2〈u, v〉w.

Proof. That (i) implies (ii) is obvious.
We prove that (ii) implies (iii). Fix a vector u ∈ V with |u| = 1 and define

the linear map A : V → V by Aw := u× w. Then, by skew-symmetry and (2.7),
A is skew-adjoint and, by (2.3), it preserves the subspace W := u⊥. Hence,
the restriction of A2 to W is self-adjoint and, by (ii), it satisfies 〈w,A2w〉 =
−|u × w|2 = −|w|2 for w ∈ W . Hence, the restriction of A2 to W is equal to
minus the identity. This proves that (ii) implies (iii).

We prove that (iii) implies (iv). Fix a vector u ∈ V and define A : V → V by
Aw := u× w as above. By (iii) we haveA2w = −|u|2w whenever w is orthogonal
to u. Since A2u = 0, this implies (iv).

Assertion (v) follows from (iv) by replacing u with u + v. To prove that (v)
implies (i), set w = v in (2.11) and take the inner product with u. Then |u× v|2 =
〈u, u× (v× v) + v× (u× v)〉 = |u|2|v|2 − 〈u, v〉2. Here the first equality follows
from (2.7) and the second from (2.11) with w = v. This proves Lemma 2.9.
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Lemma 2.12. Assume dimV = 3.

(i) A cross product on V determines a unique orientation such that u, v, u × v
form a positive basis for every pair of linearly independent vectors u, v ∈ V .

(ii) If (2.2) is a cross product on V , then the 3–form φ given by (2.8) is the volume
form associated to the inner product and the orientation in (i).

(iii) If (2.2) is a cross product on V , then

(2.13) (u× v)× w = 〈u,w〉v − 〈v, w〉u

for all u, v, w ∈ V .

(iv) Fix an orientation on V and denote by φ ∈ Λ3V ∗ the associated volume form.
Then (2.8) determines a cross product on V .

Proof. Assertion (i) follows from the fact that the space of pairs of linearly indepen-
dent vectors in V is connected (whenever dimV 6= 2). Assertion (ii) follows from
the fact that, if u, v are orthonormal, then u, v, u× v form a positive orthonormal
basis and

φ(u, v, u× v) = |u× v|2 = 1.

We prove (iii). If u and v are linearly dependent, then both sides of (2.13) vanish.
Hence we may assume that u and v are linearly independent or, equivalently, that
u× v 6= 0. Since (u× v)× w is orthogonal to u× v, by equation (2.7), and V has
dimension 3, it follows that (u× v)× w must be a linear combination of u and v.
The formula (2.13) follows by taking the inner products with u and v, and using
Lemma 2.9 (v).

We prove (iv). Assume that the bilinear map (2.2) is defined by (2.8), where
φ is the volume form associated to an orientation of V . Then skew-symmetry
and (2.3) follow from the fact that φ is a 3–form (see Lemma 2.6). If u, v are
linearly independent, then by (2.8) we have

u× v 6= 0

and
φ(u, v, u× v) = |u× v|2 > 0.

If u, v are orthonormal, it follows that u, v, u× v is a positive orthogonal basis and
so

φ(u, v, u× v) = |u× v|.

Combining these two identities we obtain |u× v| = 1 when u, v are orthonormal.
Hence, (2.4) follows from Lemma 2.9. This proves Lemma 2.12.
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Example 2.14. On R3 the cross product associated to the standard inner product
and the standard orientation is given by the familiar formula

u× v =

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 .

Example 2.15. The standard structure on R7 can be obtained from a basis of the
form i, j,k, e, ei, ej, ek, where i, j,k, e are anti-commuting generators with square
minus one and ij = k. Then the cross product is given by

(2.16) u× v :=



u2v3 − u3v2 − u4v5 + u5v4 − u6v7 + u7v6

u3v1 − u1v3 − u4v6 + u6v4 − u7v5 + u5v7

u1v2 − u2v1 − u4v7 + u7v4 − u5v6 + u6v5

u1v5 − u5v1 + u2v6 − u6v2 + u3v7 − u7v3

−u1v4 + u4v1 − u2v7 + u7v2 + u3v6 − u6v3

u1v7 − u7v1 − u2v4 + u4v2 − u3v5 + u5v3

−u1v6 + u6v1 + u2v5 − u5v2 − u3v4 + u4v3


.

With
eijk := dxi ∧ dxj ∧ dxk

the associated 3–form (2.8) is given by

(2.17) φ0 = e123 − e145 − e167 − e246 − e275 − e347 − e356.

The product (2.16) is skew-symmetric and (2.7) follows from the fact that the matrix
A(u) defined by

A(u)v := u× v

is skew symmetric for all u, namely,

A(u) :=



0 −u3 u2 u5 −u4 u7 −u6

u3 0 −u1 u6 −u7 −u4 u5

−u2 u1 0 u7 u6 −u5 −u4

−u5 −u6 −u7 0 u1 u2 u3

u4 u7 −u6 −u1 0 u3 −u2

−u7 u4 u5 −u2 −u3 0 u1

u6 −u5 u4 −u3 u2 −u1 0


.

We leave it to the reader to verify (2.4) (or equivalently |u× v| = 1 whenever u and
v are orthonormal).

See also Remark 3.6 below.
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Lemma 2.18. Let V be a be a real Hilbert space and (2.2) be a cross product on
V . Let φ ∈ Λ3V ∗ be given by (2.8). Then the following holds:

(i) Let u ∈ V be a unit vector and Wu := u⊥. Define ωu : Wu ×Wu → R and
Ju : Wu →Wu by

ωu(v, w) := 〈u, v × w〉, Juv := u× v

for v, w ∈Wu. Then ωu is a symplectic form onWu, Ju is a complex structure
compatible with ωu, and the associated inner product is the one inherited from
V . In particular, the dimension of V is odd.

(ii) Suppose dimV = 2n+ 1 ≥ 3. Then there is a unique orientation of V such
that the associated volume form vol ∈ Λ2n+1V ∗ satisfies

(2.19) (ι(u)φ)n−1 ∧ φ = n!|u|n−1vol

for every u ∈ V . In particular, n is odd.

Proof. We prove (i). By Lemma 2.6 the bilinear form ωu is skew symmetric and,
by Lemma 2.9, we have Ju ◦ Ju = −1. Moreover,

ωu(v, Juw) = 〈u× v, u× w〉 = −〈v, u× (u× w)〉 = 〈v, w〉

for all v, w ∈ V . Here the first equation follows from the definition of ωu and Ju,
the second follows from (2.7), and the last from Lemma 2.9. Thus the dimension of
Wu is even and so the dimension of V is odd.

We prove (ii). The set of all bases (u, v1, . . . , v2n) ∈ V 2n+1, where u has norm
one and v1, . . . , v2n is a symplectic basis of Wu, is connected. Hence, there is a
unique orientation of V with respect to which every such basis is positive. Let
vol ∈ Λ2n+1V ∗ be the associated volume form. To prove equation (2.19) assume
first that |u| = 1 and choose an orthonormal symplectic basis v1, . . . , v2n of Wu.
(For example pick an orthonormal basis v1, v3, . . . , v2n−1 of a Lagrangian subspace
of Wu and define v2k := Juv2k−1 for k = 1, . . . , n.) Now evaluate both sides of
the equation on the tuple (u, v1, . . . , v2n). Then we obtain n! on both sides. This
proves (2.19) whenever u has norm one. The general case follows by scaling. It
follows from (2.19) that n is odd since otherwise the left hand side changes sign
when we replace u by −u. This proves Lemma 2.18.

Lemma 2.20. Let n > 1 be an odd integer and V be an oriented real Hilbert space
of dimension 2n+ 1 with volume form vol ∈ Λ2n+1V ∗. Let φ ∈ Λ3V ∗ be a 3–form
and denote its isotropy group by

G := {g ∈ Aut(V ) : g∗φ = φ} .

If φ satisfies (2.19), then G ⊂ SO(V ).
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Proof. Let g ∈ G and u ∈ V . Then it follows from (2.19) that

|gu|n−1g∗vol =
1

n!
g∗
(

(ι(gu)φ)n−1 ∧ φ
)

=
1

n!

(
(g∗ι(gu)φ)n−1 ∧ g∗φ

)
=

1

n!
(ι(u)g∗φ)n−1 ∧ g∗φ

=
1

n!
(ι(u)φ)n−1 ∧ φ

= |u|n−1vol.

Hence, there is a constant c > 0 such that

g∗vol = c−1vol, |gu|n−1 = c|u|n−1

for every u ∈ V . Since n > 1, this gives |gu| = c
1

n−1 |u| for u ∈ V and hence

g∗vol = c
2n+1
n−1 vol = c

3n
n−1 g∗vol.

Thus c = 1 and this proves Lemma 2.20.

Proof of Theorem 2.5. Assume dimV > 1, let (2.2) be a cross product on V , and
define φ : V × V × V → R by (2.8). By Lemma 2.6, we have φ ∈ Λ3V ∗. By
Lemma 2.18 (i), the dimension of V is odd. By Lemma 2.20, we have dimV =
4n+ 3 for some integer n ≥ 0. In particular dimV 6= 5.

We prove that dimV ≤ 7. Define A : V → End(V ) by A(u)v := u× v. Then
it follows from Lemma 2.9 that

A(u)u = 0, A(u)2 = uu∗ − |u|21.

Define γ : V → End(R⊕ V ) by

(2.21) γ(u) :=

(
0 −u∗
u A(u)

)
,

where u∗ : V → R denotes the linear functional v 7→ 〈u, v〉. Then

(2.22) γ(u)∗ + γ(u) = 0, γ(u)∗γ(u) = |u|21

for every u ∈ V . Here the first equation follows from the fact that A(u) is skew-
adjoint for every u and the last equation follows by direct calculation. This implies
that γ extends to a linear map from the Clifford algebra C`(V ) to End(R⊕V ). The
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restriction of this extension to the Clifford algebra of any even dimensional subspace
of V is injective (see, e.g. [Sal99, Proposition 4.13]). Hence, 22n ≤ (2n+ 2)2. This
implies n ≤ 3 and so dimV = 2n+1 ≤ 7. Thus we have proved that the dimension
of V is either 0, 1, 3, or 7. That the cross product vanishes in dimension 0 and 1
is obvious. That it is uniquely determined by the orientation of V in dimension 3
follows from Lemma 2.12. The last assertion of Theorem 2.5 is restated and proved
in Theorem 3.2 below.

Remark 2.23. Let V be a nonzero real Hilbert space that admits a 3–form φ whose
isotropy subgroup G is contained in SO(V ). Then

dim Aut(V )− dim Λ3V ∗ ≤ dim G ≤ dim SO(V ).

Hence, dimV ≥ 7 as otherwise dim SO(V ) < dim Aut(V ) − dim Λ3V ∗. This
gives another proof for the nonexistence of cross products in dimension 5.

3 Associative calibrations

Definition 3.1. Let V be a real vector space. A 3–form φ ∈ Λ3V ∗ is called
nondegenerate if, for every pair of linearly independent vectors u, v ∈ V , there
is a vector w ∈ V such that φ(u, v, w) 6= 0. An inner product on V is called
compatible with φ if the map (2.2) defined by (2.8) is a cross product.

Theorem 3.2. Let V be a 7–dimensional real vector space and φ, φ′ ∈ Λ3V ∗. Then
the following holds:

(i) φ is nondegenerate if and only if it admits a compatible inner product.

(ii) The inner product in (i), if it exists, is uniquely determined by φ.

(iii) If φ and φ′ are nondegenerate, the vectors u, v, w are orthonormal for φ and
satisfy φ(u, v, w) = 0, and the vectors u′, v′, w′ are orthonormal for φ′ and
satisfy φ′(u′, v′, w′) = 0, then there exists a g ∈ Aut(V ) such that g(u) = u′,
g(v) = v′, g(w) = w′, and g∗φ′ = φ.

Proof. See pages 12 and 14.

Remark 3.3. If dimV = 3, then φ ∈ Λ3V ∗ is nondegenerate if and only if it is
nonzero. If φ 6= 0, then, by Lemma 2.12, an inner product on V is compatible with
φ if and only if φ is the associated volume form with respect to some orientation,
i.e., φ(u, v, w) = ±1 for every orthonormal basis u, v, w of V . Thus assertion (i)
of Theorem 3.2 continues to hold in dimension three.

However, assertion (ii) is specific to dimension seven.

9



Lemma 3.4. Let V be a 7–dimensional real Hilbert space and φ ∈ Λ3V ∗. Then
the following are equivalent:

(i) φ is compatible with the inner product.

(ii) There is an orientation on V such that the associated volume form vol ∈ Λ7V ∗

satisfies

(3.5) ι(u)φ ∧ ι(v)φ ∧ φ = 6〈u, v〉vol

for all u, v ∈ V .

Each of these conditions implies that φ is nondegenerate. Moreover, the orientation
in (ii), if it exists, is uniquely determined by φ.

Remark 3.6. It is convenient to use equation (3.5) to verify that the bilinear map
in Example 2.15 satisfies (2.4). In fact, it suffices to check (3.5) for every pair of
standard basis vectors. Care must be taken. There are examples of 3–forms φ on
V = R7 for which the quadratic form

V × V → Λ7V ∗ : (u, v) 7→ ι(u)φ ∧ ι(v)φ ∧ φ

has signature (3, 4). One such example can be obtained from the 3–form φ0 in
Example 2.15 by changing the minus signs to plus.

Proof of Lemma 3.4. If (i) holds, then, by Lemma 2.18 (ii), there is a unique orien-
tation on V such that the associated volume form satisfies

ι(u)φ ∧ ι(u)φ ∧ φ = 6|u|2vol

for every u ∈ V . Applying this identity to u + v and u − v and taking the
difference we obtain (3.5). Moreover, if u, v ∈ V are linearly independent, then
φ(u, v, u × v) = |u × v|2 = |u|2|v|2 − 〈u, v〉2 6= 0. Hence, φ is nondegenerate.
This shows that (i) implies (ii) and nondegeneracy.

Conversely, assume (ii). We prove that φ is nondegenerate. Let u, v ∈ V be
linearly independent. Then u 6= 0 and, hence, by (3.5), the 7–form

σ := ι(u)φ ∧ ι(u)φ ∧ φ = 6|u|2vol ∈ Λ7V ∗

is nonzero. Choose a basis v1, . . . , v7 of V with v1 = u and v2 = v. Evaluating σ
on this basis we obtain that one of the terms φ(u, v, vj) with j ≥ 3 must be nonzero.
Hence, φ is nondegenerate as claimed.
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Now define the bilinear map V × V → V : (u, v) 7→ u× v by (2.8). This map
is skew-symmetric and, by Lemma 2.6, it satisfies (2.3). We must prove that it also
satisfies (2.4). By Lemma 2.9, it suffices to show

(3.7) |u| = 1, 〈u, v〉 = 0 =⇒ |u× v| = |v|.

We prove this in five steps. Throughout we fix a unit vector u ∈ V .

Step 1. Define the linear map A : V → V by Av := u× v. Then A is skew-adjoint
and its kernel is spanned by u.

That A is skew-adjoint follows from the identity 〈Av,w〉 = φ(u, v, w). That
its kernel is spanned by u follows from the fact that φ is nondegenerate.

Step 2. Let A be as in Step 1. Then there are positive constants λ1, λ2, λ3 and
an orthonormal basis v1, w1, v2, w2, v3, w3 of u⊥ such that Avj = λjwj and
Awj = −λjvj for j = 1, 2, 3.

By Step 1, there is a constant λ > 0 and a vector v ∈ u⊥ such that

A2v = −λ2v, |v| = 1.

Denote w := λ−1Av. Then Av = λw, Aw = −λv, w is orthogonal to v, and

|w|2 = λ−2〈Av,Av〉 = −λ−2〈v,A2v〉 = |v|2 = 1.

Moreover, the orthogonal complement of u, v, w is invariant underA. Hence, Step 2
follows by induction.

Step 3. Let λi be as in Step 2. Then λ1λ2λ3 = 1.

Let A be as in Step 1, denote W := u⊥, and define ω : W ×W → R by

ω(v, w) := 〈Av,w〉 = φ(u, v, w)

for v, w ∈ W . Then, by Step 1, ω ∈ Λ2W ∗ is a symplectic form. Moreover,
ω(vi, wi) = 〈Avi, wi〉 = λi for i = 1, 2, 3 while ω(vi, wj) = 0 for i 6= j and
ω(vi, vj) = ω(wi, wj) = 0 for all i and j. Hence,

λ1λ2λ3 =
1

6
ω3(v1, w1, v2, w2, v3, w3)

= vol(u, v1, w1, v2, w2, v3, w3).

Here the first equation follows from Step 2 and the definition of ω and the sec-
ond equation follows from (3.5) with u = v and |u| = 1. Since the vectors
u, v1, w1, v2, w2, v3, w3 form an orthonormal basis of V , the last expression must
be plus or minus one. Since it is positive, Step 3 follows.

11



Step 4. Define

(3.8) G := {g ∈ Aut(V ) : g∗φ = φ} , H := {g ∈ G : gu = u} .

Then dim G ≥ 14 and dim H ≥ 8

Since dim Aut(V ) = 49 and dim Λ3V ∗ = 35, the isotropy subgroup G of
φ has dimension at least 14. Moreover, by Lemma 2.20, G acts on the sphere
S := {v ∈ V : |v| = 1} which has dimension 6. Thus the isotropy subgroup H of
u under this action has dimension dim H ≥ dim G− dimS ≥ 14− 6 = 8. This
proves Step 4.

Step 5. Let λi be as in Step 2. Then λ1 = λ2 = λ3 = 1.

By definition of A in Step 1 and H in Step 4, we have 〈Agv, gw〉 = 〈Av,w〉 for
all g ∈ H and all v, w ∈ V . Moreover, H ⊂ SO(V ), by Lemma 2.20. Hence,

(3.9) g ∈ H =⇒ gA = Ag.

Now suppose that the eigenvalues λ1, λ2, λ3 are not all equal. Without loss of
generality, we may assume λ1 /∈ {λ2, λ3}. Then, by (3.9), the subspaces W1 :=
span{v1, w1} and W23 := span{v2, w2, v3, w3} are preserved by each element
g ∈ H. Thus H ⊂ O(W1)×O(W23). Since dim O(W1) = 1 and dim O(W23) = 6,
this implies dim H ≤ 7 in contradiction to Step 4. Thus we have proved that
λ1 = λ2 = λ3 and, by Step 3, this implies λj = 1 for every j. This proves Step 5.

By Step 2 and Step 5 we have A2v = −v for every v ∈ u⊥. Hence, by Step 1,
|Av|2 = −〈v,A2v〉 = |v|2 for every v ∈ u⊥. By definition of A, this proves (3.7)
and Lemma 3.4.

Proof of Theorem 3.2 (i) and (ii). The “if” part of (i) is the last assertion made
in Lemma 3.4. To prove (ii) and the “only if” part of (i) we assume that φ is
nondegenerate. Then, for every nonzero vector u ∈ V , the restriction of the 2–form
ι(u)φ ∈ Λ2V ∗ to u⊥ is a symplectic form. Namely, if v ∈ u⊥ is nonzero, then u, v
are linearly independent and hence there is a vectorw ∈ V such that φ(u, v, w) 6= 0;
the vector w can be chosen orthogonal to u.

This implies that the restriction of the 6–form (ι(u)φ)3 ∈ Λ6V ∗ to u⊥ is
nonzero for every nonzero vector u ∈ V . Hence, the 7–form ι(u)φ ∧ ι(u)φ ∧ φ ∈
Λ7V ∗ is nonzero for every nonzero vector u ∈ V . Since V \ {0} is connected, there
is a unique orientation of V such that ι(u)φ ∧ ι(u)φ ∧ φ is a positive volume form
on V for every u ∈ V \ {0}. Fix a volume form σ ∈ Λ7V ∗ compatible with this
orientation. Then the bilinear form

V × V → R : (u, v) 7→ ι(u)φ ∧ ι(v)φ ∧ φ
σ

=: g(u, v)
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is an inner product. Define µ > 0 by σ = µvolg. Replacing σ by σ̃ := λ2σ we get

g̃ = λ−2g, volg̃ = λ−7volg.

Thus
σ̃ = λ2σ = λ2µvolg = λ9µvolg̃.

With λ := (6/µ)1/9 we get σ̃ = 6volg̃.
Thus we have proved that there is a unique orientation and inner product on

V such that φ satisfies (3.5). Hence the assertion follows from Lemma 3.4. This
proves parts (i) and (ii) of Theorem 3.2.

Remark 3.10. Let V,W be n-dimensional real vector spaces. Then the determinant
of a linear map A : V →W is an element detA ∈ ΛnV ∗ ⊗ ΛnW . In particular, if
V is equipped with an orientation and an inner product g ∈ S2V ∗, and ig : V → V ∗

denotes the isomorphism defined by igv := g(v, ·), then det ig ∈ (ΛnV ∗)2 and the
volume form volg associated to g is

volg =
√

det ig.

Here the orientation is needed to determine the sign of the square root.
If V is 7–dimensional and φ ∈ Λ3V ∗ is nondegenerate, then the formula

G(u, v) :=
1

6
i(u)φ ∧ i(v)φ ∧ φ for u, v ∈ V

defines a symmetric bilinear formG : V ×V → Λ7V ∗ and iG : V → V ∗⊗Λ7V ∗ is
an isomorphism (see second paragraph in the proof of Lemma 3.4). The determinant
of iG is an element of (Λ7V ∗)9 and (det iG)1/9 can be defined without an orientation
on V . If an inner product g and an orientation on V are such that (3.5) holds, then

volg = (det(iG))1/9 and g =
G

volg
.

Conversely, with this choice of inner product and orientation, (3.5) holds. This
observation is due to Hitchin [Hit01, Section 8.3].

Lemma 3.11. Let V be a 7–dimensional real Hilbert space equipped with a cross
product V ×V → V : (u, v)→ u× v. If u and v are orthonormal and w := u× v,
then v × w = u and w × u = v.

Proof. This follows immediately from equation (2.11) in Lemma 2.9.
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Proof of Theorem 3.2 (iii). Let φ0 : R7 ×R7 ×R7 → R be the 3–form in Exam-
ple 2.15 and let φ ∈ Λ3V ∗ be a nondegenerate 3–form. Let V be equipped with the
compatible inner product of Theorem 3.2 and denote by V × V → V : (u, v) 7→
u× v the associated cross product. Let e1, e2 ∈ V be orthonormal and define

e3 := e1 × e2.

Let e4 ∈ V be any unit vector orthogonal to e1, e2, e3 and define

e5 := −e1 × e4.

Then e5 has norm one and is orthogonal to e1, e2, e3, e4. For e1 and e4 this follows
from the definition and (2.7). For e3 we observe

〈e3, e5〉 = −〈e1 × e2, e1 × e4〉 = 〈e2, e1 × (e1 × e4)〉 = −〈e2, e4〉 = 0.

Here the last but one equation follows from Lemma 2.9. For e2 the argument
is similar; since e2 = e3 × e1, by Lemma 3.11, and 〈e3, e4〉 = 0, we obtain
〈e2, e5〉 = 0. Now let e6 be a unit vector orthogonal to e1, . . . , e5 and define

e7 := −e1 × e6.

As before we have that e7 has norm one and is orthogonal to e1, . . . , e6. Thus the
vectors e1, . . . , e7 form an orthonormal basis of V and it follows from Lemma 3.11
that they satisfy the same relations as the standard basis of R7 in Example 2.15.
Hence, the map

R7 g−→ V : x = (x1, . . . , x7) 7→
7∑
i=1

xiei

is a Hilbert space isometry and it satisfies g∗φ = φ0. This proves Theorem 3.2 (and
the last assertion of Theorem 2.5).

4 The associator and coassociator brackets

We assume throughout that V is a 7–dimensional real Hilbert space, that φ ∈ Λ3V ∗

is a nondegenerate 3–form compatible with the inner product, and (2.2) is the cross
product given by (2.8). It follows from (2.11) that the expression (u × v) × w
is alternating on any triple of pairwise orthogonal vectors u, v, w ∈ V . Hence, it
extends uniquely to an alternating 3–form V 3 → V : (u, v, w) 7→ [u, v, w] called
the associator bracket. An explicit formula for this 3–form is

(4.1) [u, v, w] := (u× v)× w + 〈v, w〉u− 〈u,w〉v.

14



The associator bracket can also be expressed in the form

(4.2) [u, v, w] =
1

3

(
(u× v)× w + (v × w)× u+ (w × u)× v

)
.

Remark 4.3. If V is any Hilbert space with a skew-symmetric bilinear form (2.2),
then the associator bracket (4.1) is alternating iff (2.11) holds. Indeed, skew-
symmetry of the associator bracket in the first two arguments is obvious, and the
identity

[u, v, w] + [u,w, v] = w × (v × u) + v × (w × u)

− 〈u,w〉v − 〈u, v〉w + 2〈v, w〉u

shows that skew-symmetry in the last two arguments is equivalent to (2.11). By
Lemma 2.12, the associator bracket vanishes in dimension three.

The square of the volume of the 3–dimensional parallelepiped spanned by
u, v, w ∈ V will be denoted by

|u ∧ v ∧ w|2 := det

 |u|2 〈u, v〉 〈u,w〉
〈v, u〉 |v|2 〈v, w〉
〈w, u〉 〈w, v〉 |w|2

 .

Lemma 4.4. For all u, v, w ∈ V we have

(4.5) φ(u, v, w)2 + |[u, v, w]|2 = |u ∧ v ∧ w|2.

Proof. If w is orthogonal to u and v, then we have

|[u, v, w]|2 = |(u× v)× w|2

= |u× v|2|w|2 − 〈u, v × w〉2

= |u ∧ v ∧ w|2 − φ(u, v, w)2.

Here the first equation follows from the definition of the associator bracket and
orthogonality, the second equation follows from (2.4), and the last equation follows
from (2.4) and orthogonality, as well as (2.8). The general case can be reduced to
the orthogonal case by Gram–Schmidt.

Definition 4.6. A 3–dimensional subspace Λ ⊂ V is called associative the associ-
ator bracket vanishes on Λ, i.e.,

[u, v, w] = 0 for all u, v, w ∈ Λ.

15



Lemma 4.7. Let Λ ⊂ V be a 3–dimensional linear subspace. Then the following
are equivalent:

(i) Λ is associative.

(ii) If u, v, w is an orthonormal basis of Λ, then φ(u, v, w) = ±1.

(iii) If u, v ∈ Λ, then u× v ∈ Λ.

(iv) If u ∈ Λ⊥ and v ∈ Λ, then u× v ∈ Λ⊥.

(v) If u, v ∈ Λ⊥, then u× v ∈ Λ.

Moreover, if u, v ∈ V are linearly independent, then the subspace spanned by the
vectors u, v, u× v is associative.

Proof. That (i) is equivalent to (ii) follows from Lemma 4.4.
We prove that (i) is equivalent to (iii). That the associator bracket vanishes on

a 3–dimensional subspace that is invariant under the cross product follows from
Lemma 2.12 (iii). Conversely suppose that the associator bracket vanishes on Λ.
Let u, v ∈ Λ be linearly independent and let w ∈ Λ be a nonzero vector orthogonal
to u and v. Then, by Lemma 4.4, we have

〈u× v, w〉2 = φ(u, v, w)2 = |u ∧ v ∧ w|2 = |u× v|2|w|2

and hence u× v is a real multipe of w. Thus u× v ∈ Λ.
We prove that (iii) is equivalent to (iv). First assume (iii) and let u ∈ Λ, v ∈ Λ⊥.

Then, by (iii), we have w × u ∈ Λ for every w ∈ Λ. Hence, 〈w, u × v〉 =
〈w × u, v〉 = 0 for every w ∈ Λ and so u × v ∈ Λ⊥. Conversely assume (iv)
and let u, v ∈ Λ. Then, by (iii), we have w × u ∈ Λ⊥ for every w ∈ Λ⊥. Hence,
〈w, u× v〉 = 〈w × u, v〉 = 0 for every w ∈ Λ⊥. This implies u× v ∈ Λ. Thus we
have proved that (iii) is equivalent to (iv).

We prove that (iv) is equivalent to (v). Fix a unit vector u ∈ Λ⊥ and define
the endomorphism J : u⊥ → u⊥ by Jv := u × v. By Lemma 2.9 this is an
isomorphism with inverse −J . Condition (iv) asserts that J maps Λ to Λ⊥ ∩ u⊥
while condition (v) asserts that J maps Λ⊥∩u⊥ to Λ. Since both are 3–dimensional
subspaces of u⊥, these two assertions are equivalent. This proves that (iv) is
equivalent to (v).

If u and v are linearly independent, then u × v 6= 0, by (2.4), and u× v is
orthogonal to u and v, by (2.3). Hence, the subspace Λ spanned by u, v, u× v is 3–
dimensional. That it is invariant under the cross product follows from assertion (iv)
in Lemma 2.9. Hence, Λ is associative, and this proves Lemma 4.7.
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Lemma 4.8. The map ψ : V 4 → R defined by

ψ(u, v, w, x) := 〈[u, v, w], x〉

=
1

3

(
φ(u× v, w, x) + φ(v × w, u, x) + φ(w × u, v, x)

)(4.9)

is an alternating 4–form (the coassociative calibration of (V, φ)). Moreover, it
is given by ψ = ∗φ, where ∗ : ΛkV ∗ → Λ7−kV ∗ denotes the Hodge ∗–operator
associated to the inner product and the orientation in Lemma 3.4.

Proof. See page 18.

Remark 4.10. By Lemma 4.7 and Lemma 4.8 the associator bracket [u, v, w] is
orthogonal to the vectors u, v, w, v×w,w× u, u× v. Second, these six vectors are
linearly independent if only if [u, v, w] 6= 0. (Make them pairwise orthogonal by
adding to v a real multiple of u and to w a linear combination of u, v, u× v. Then
their span and [u, v, w] remain unchanged.) Third, if [u, v, w] 6= 0 then the vectors
u, v, w, v × w,w × u, u× v, [u, v, w] form a positive basis of V .

Remark 4.11. The standard associative calibration on R7 is

(4.12) φ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356

(see Example 2.15). The corresponding coassociative calibration is

(4.13) ψ0 = −e1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567.

Remark 4.14. Let V → V ∗ : u 7→ u∗ := 〈u, ·〉 be the isomorphism induced by the
inner product. Then, for α ∈ ΛkV ∗ and u ∈ V , we have

(4.15) ∗ ι(u)α = (−1)k−1u∗ ∧ ∗α.

This holds on any finite dimensional oriented Hilbert space.

Remark 4.16. Throughout we use the notation

(4.17) (LAα)(v1, . . . , vk) := α(Av1, v2, . . . , vk) + · · ·+ α(v1, . . . , vk−1, Avk)

for the infinitesimal action of A ∈ End(V ) on a k–form α ∈ ΛkV ∗. For u ∈ V
denote by Au ∈ so(V ) the skew-adjoint endomorphism Auv := u× v. Then equa-
tion (4.9) can be expressed in the form

(4.18) LAuφ = 3ι(u)ψ.

Since ψ = ∗φ, we have LAψ = ∗LAφ for all A ∈ so(V ). Hence, it follows from
equation (4.15) that

(4.19) LAuψ = ∗(3ι(u)ψ) = −3u∗ ∧ φ.
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Proof of Lemma 4.8. It follows from Remark 4.3 that ψ is alternating in the first
three arguments. To prove that ψ ∈ Λ4V ∗ we compute

ψ(u, v, w, x) = 〈(u× v)× w + 〈v, w〉u− 〈u,w〉v, x〉
= 〈u× v, w × x〉+ 〈v, w〉〈u, x〉 − 〈u,w〉〈v, x〉.

(4.20)

Here the first equation follows from the definition of ψ in (4.9) and the definition of
the associator bracket in (4.1). Swapping x and w as well as u and v in (4.20) gives
the same expression. Thus

ψ(u, v, w, x) = ψ(v, u, x, w) = −ψ(u, v, x, w).

This shows that ψ ∈ Λ4V ∗ as claimed. To prove the second assertion we observe
the following.

Claim. If u, v, w, x are orthonormal and u× v = w × x, then ψ(u, v, w, x) = 1.

This follows directly from the definition of ψ and of the associator bracket
in (4.1) and (4.9). Now, by Theorem 3.2, we can restrict attention to the standard
structures on R7. Thus φ = φ0 is given by (4.12) and this 3–form is compatible with
the standard inner product on R7. We have the product rule ei × ej = ek whenever
the term eijk or one of its cyclic permutations shows up in this sum, and the claim
shows that we have a summand εeijk` in ψ = ψ0 whenever ei × ej = εek × e`
with ε ∈ {±1}. Hence, ψ0 is given by (4.13). Term by term inspection shows that
ψ0 = ∗φ0. This proves Lemma 4.8.

Lemma 4.21. For all u, v, w, x ∈ V we have

[u, v, w, x] := φ(u, v, w)x− φ(x, u, v)w + φ(w, x, u)v − φ(v, w, x)u

=
1

3

(
−[u, v, w]× x+ [x, u, v]× w − [w, x, u]× v + [v, w, x]× u

)
.

(4.22)

The resulting multi-linear map

V 4 → V : (u, v, w, x) 7→ [u, v, w, x]

is alternating and is called the coassociator bracket on V .

Proof. Define the alternating multi-linear map τ : V 4 → V by

τ(u, v, w, x) := 3
(
φ(u, v, w)x− φ(x, u, v)w + φ(w, x, u)v − φ(v, w, x)u

)
+ [u, v, w]× x− [x, u, v]× w + [w, x, u]× v − [v, w, x]× u.

We must prove that τ vanishes. The proof has three steps.
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Step 1. τ(u, v, w, x) is orthogonal to u, v, w, x for all u, v, w, x ∈ V .

It suffices to assume that u, v, w, x are pairwise orthogonal. Then we have
[u, v, w] = (u× v)× w and similarly for [x, v, w] etc. Hence,

〈τ(u, v, w, x), x〉 = 3|x|2φ(u, v, w)− 〈[u, v, x], w × x〉
− 〈[w, u, x], v × x〉 − 〈[v, w, x], u× x〉

= 3|x|2φ(u, v, w)− 〈(u× v)× x,w × x〉
− 〈(w × u)× x, v × x〉 − 〈(v × w)× x, u× x〉

= 0.

Here the last step uses the identity (2.7) and the fact that x × (u × x) = |x|2u
whenever u is orthogonal to x. Thus τ(u, v, w, x) is orthogonal to x. Since τ is
alternating, this proves Step 1.

Step 2. τ(u, v, u× v, x) = 0 for all u, v, x ∈ V .

It suffices to assume that u, v are orthonormal and that x is orthogonal to
u, v, and w := u × v. Then v × w = u, w × u = v, φ(u, v, w) = 1, and
φ(x, v, w) = φ(x,w, u) = φ(x, u, v) = 0. Moreover, [u, v, w] = 0 and

[x, v, w] = [v, w, x] = (v × w)× x = u× x, [x, v, w]× u = x,

and similarly [x,w, u]× v = [x, u, v]×w = x. This implies that τ(u, v, w, x) = 0.

Step 3. τ(u, v, w, x) = 0 for all u, v, w, x ∈ V .

By the alternating property we may assume that u and v are orthonormal. Using
the alternating property again and Step 2 we may assume that w is a unit vector
orthogonal to u, v, u × v and that x is a unit vector orthogonal to u, v, w and
v × w,w × u, u× v. This implies that

φ(u, v, w) = φ(x, v, w) = φ(x,w, u) = φ(x, u, v) = 0.

Hence, the vectors x×u, x×v, x×w form a basis of the orthogonal complement of
the space spanned by u, v, w, x. Each of these vectors is orthogonal to τ(u, v, w, x)
and hence τ(u, v, w, x) = 0 by Step 1. This proves Lemma 4.21.

The square of the volume of the 4–dimensional parallelepiped spanned by
u, v, w, x ∈ V will be denoted by

|u ∧ v ∧ w ∧ x|2 := det


|u|2 〈u, v〉 〈u,w〉 〈u, x〉
〈v, u〉 |v|2 〈v, w〉 〈v, x〉
〈w, u〉 〈w, v〉 |w|2 〈w, x〉
〈x, u〉 〈x, v〉 〈x,w〉 |x|2

 .
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Lemma 4.23. For all u, v, w, x ∈ V we have

(4.24) ψ(u, v, w, x)2 + |[u, v, w, x]|2 = |u ∧ v ∧ w ∧ x|2.

Proof. The proof has four steps.

Step 1. If u, v, w, x are orthogonal, then

ψ(u, v, w, x)2 = 〈u× v, w × x〉2,
|[u, v, w, x]|2 = 〈u× v, w〉2|x|2 + 〈u× v, x〉2|w|2

+ 〈u,w × x〉2|v|2 + 〈v, w × x〉2|u|2,
|u ∧ v ∧ w ∧ x|2 = |u|2|v|2|w|2|x|2.

The first equation follows from (4.1) and (4.9), using (2.7). The other two
equations follow immediately from the definitions.

Step 2. Equation (4.24) holds when u, v, w, x are orthogonal and, in addition, w
and x are orthogonal to u× v.

Since [u, v, w] 6= 0, it follows from the assumptions and Lemma 4.7 that w × x
is a linear combination of the vectors u, v, u× v. Hence, the assertion follows from
Step 1.

Step 3. Equation (4.24) holds when u, v, w, x are orthogonal

Suppose, in addition, that w and x are orthogonal to u × v and replace x by
xλ := x+ λu× v for λ ∈ R. Then ψ(u, v, w, xλ) is independent of λ and

|[u, v, w, xλ]|2 = |[u, v, w, x]|2 + λ2|u|2|v|2|w|2|u× v|2.

Hence, it follows from Step 2 that (4.24) holds when u, v, w, x are orthogonal and,
in addition, w is orthogonal to u× v. This condition can be achieved by rotating
the pair (w, x). This proves Step 3.

Step 4. Equation (4.24) holds always.

The general case follows from the orthogonal case via Gram–Schmidt, because
both sides of equation (4.24) remain unchanged if we add to any of the four vectors
a multiple of any of the other three. This proves the lemma.

Definition 4.25. A 4–dimensional subspace H ⊂ V is called coassociative if

[u, v, w, x] = 0 for all u, v, w, x ∈ H.
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Lemma 4.26. Let H ⊂ V be a 4–dimensional linear subspace. Then the following
are equivalent:

(i) H is coassociative.

(ii) If u, v, w, x is an orthonormal basis of H , then ψ(u, v, w, x) = ±1.

(iii) For all u, v, w ∈ H we have φ(u, v, w) = 0.

(iv) If u, v ∈ H , then u× v ∈ H⊥.

(v) If u ∈ H and v ∈ H⊥, then u× v ∈ H .

(vi) If u, v ∈ H⊥, then u× v ∈ H⊥.

(vii) The orthogonal complement H⊥ is associative.

Proof. That (i) is equivalent to (ii) follows from Lemma 4.23.
We prove that (i) is equivalent to (iii). That (iii) implies (i) is obvious by

definition of the coassociator bracket in (4.22). Conversely, assume (i) and choose
a basis u, v, w, x of H . Then [u, v, w, x] = 0 and hence, by (4.22), we have
φ(u, v, w) = φ(x, v, w) = φ(x,w, u) = φ(x, u, v) = 0. This implies (iii).

We prove that (iii) is equivalent to (iv). If (iii) holds and u, v ∈ H , then
〈u× v, w〉 = φ(u, v, w) = 0 for every w ∈ H and hence u× v ∈ H⊥. Conversely,
if (iv) holds and u, v ∈ H , then u×v ∈ H⊥ and hence φ(u, v, w) = 〈u×v, w〉 = 0
for all w ∈ H .

Thus we have proved that (i), (ii), (iii), (iv) are equivalent. That assertions (iv),
(v), (vi), (vii) are equivalent was proved in Lemma 4.7.

Remark 4.27. Let V be a 7–dimensional real Hilbert space equipped with a cross
product and denote the associative and coassociative calibrations by φ and ψ. Let
Λ ⊂ V be an associative subspace and define H := Λ⊥. Orient Λ and H by the
volume forms volΛ := φ|Λ and volH := ψ|H . A standard basis of the space Λ+H∗

of self-dual 2–forms on H is a triple ω1, ω2, ω3 ∈ Λ+H∗ that satisfies the condition
ωi ∧ ωj = 2δijvolH for all i and j. In this situation the map

(4.28) Λ→ Λ+H∗ : u 7→ −ι(u)φ|H
is an orientation preserving isomorphism that sends every orthonormal basis of Λ
to a standard basis of Λ+H∗. (To see this, choose a standard basis of V as in
Remark 4.11 with Λ = span{e1, e2, e3}.) Let πΛ : V → Λ and πH : V → H be
the orthogonal projections. Let u1, u2, u3 be any orthonormal basis of Λ and define
αi := u∗i |Λ and ωi := −ι(ui)φ|H for i = 1, 2, 3. Then the associative calibration φ
can be expressed in the form

(4.29) φ = π∗ΛvolΛ − π∗Λα1 ∧ π∗Hω1 − π∗Λα2 ∧ π∗Hω2 − π∗Λα3 ∧ π∗Hω3.
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The next theorem characterizes a nondegenerate 3–form φ in terms of its coas-
sociative calibration ψ in Lemma 4.8.

Theorem 4.30. Let V be a 7–dimensional vector space over the reals, let φ, φ′ ∈
Λ3V ∗ be nondegenerate 3–forms, and let ψ,ψ′ ∈ Λ4V ∗ be their coassociative
calibrations. Then the following are equivalent:

(i) φ′ = φ or φ′ = −φ.

(ii) ψ′ = ψ.

Proof. That (i) implies (ii) follows from the definition of ψ in Lemma 4.8 and the
fact that reversing the sign of φ also reverses the sign of the cross product and thus
leaves ψ unchanged (see equation (4.9)). To prove the converse assume that ψ′ = ψ
and denote by 〈·, ·〉′ the inner product determined by φ′, by ×′ the cross product
determined by φ′, and by [·, ·, ·]′ the associator bracket determined by φ′. We prove
in four steps that φ′ = ±φ.

Step 1. A 3–dimensional subspace Λ ⊂ V is associative for φ if and only if it is
associative for φ′.

Let Λ ⊂ V be a three-dimensional linear subspace. By Definition 4.6 it is
associative for φ if and only if [u, v, w] = 0 for all u, v, w ∈ Λ. By Lemma 4.8 this
is equivalent to the condition that the linear functional ψ(u, v, w, ·) on V vanishes
for all u, v, w ∈ Λ. Since ψ = ψ′, this proves Step 1.

Step 2. There is a linear functional α : V → R and a c ∈ R \ {0} such that

u×′ v = α(u)v − α(v)u+ cu× v

for all u, v ∈ V .

Fix two linearly independent vectors u, v ∈ V . Then the vectors u, v, u × v
span a φ–associative subspace Λ ⊂ V by Lemma 4.7. The subspace Λ is also
φ′–associative by Step 1. Hence, u×′ v ∈ Λ by Lemma 4.7 and so there exist real
numbers α(u, v), β(u, v), γ(u, v) such that

(4.31) u×′ v = α(u, v)v + β(u, v)u+ γ(u, v)u× v.

Since u, v, u ×′ v are linearly independent, it follows that γ(u, v) 6= 0 and the
coefficients α, β, γ depend smoothly on u and v. Differentiate equation (4.31) with
respect to v to obtain that α and γ are locally independent of v. Differentiate it with
respect to u to obtain that β and γ are locally independent of u. Since the set of
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pairs of linearly independent vectors in V is connected, it follows that there exist
functions α, β : V → R and a constant c ∈ R \ {0} such that

u×′ v = α(u)v + β(v)u+ cu× v

for all pairs of linearly independent vectors u, v ∈ V . Interchange u and v to obtain
β(v) = −α(v) for all v ∈ V . Since the function V → V : u 7→ u×′ v is linear for
all v ∈ V it follows that α : V → R is linear. This proves Step 2.

Step 3. Let α and c be as in Step 2. Then α = 0 and 〈u, v〉′ = c2〈u, v〉 for all
u, v ∈ V .

Fix a vector u ∈ V \ {0} and choose a vector v ∈ V such that u and v are
linearly independent. Then u× (u× v) = 〈u, v〉u− |u|2v by Lemma 2.9. Hence,
it follows from Step 2 that

〈u, v〉′u− |u|′2v = u×′ (u×′ v)

= u×′ (α(u)v − α(v)u+ cu× v)

= α(u)u×′ v + cu×′ (u× v)

= α(u)
(
α(u)v − α(v)u+ cu× v

)
+ c

(
α(u)u× v − α(u× v)u+ cu× (u× v)

)
= α(u)

(
α(u)v − α(v)u+ cu× v

)
+ c

(
α(u)u× v − α(u× v)u+ c〈u, v〉u− c|u|2v

)
=
(
c2〈u, v〉 − cα(u× v)− α(u)α(v)

)
u

+
(
α(u)2 − c2|u|2

)
v + 2cα(u)u× v.

Since u, v, and u× v are linearly independent, it follows that

α(u) = 0, |u|′2 = c2|u|2 − α(u)2.

Since u ∈ V \ {0} was chosen arbitrarily, it follows that α(u) = 0 and

〈u, v〉′ = c2〈u, v〉, u×′ v = cu× v

for all u, v ∈ V . This proves Step 3.

Step 4. φ′ = ±φ.

It follows from Step 2 and Step 3 that

φ′(u, v, w) = 〈u×′ v, w〉′ = c3〈u× v, w〉 = c3φ(u, v, w)

for all u, v, w ∈ V , and so ψ = ψ′ = c4ψ by equation (4.9). Hence c = ±1 and
this proves Theorem 4.30.
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The next theorem follows a suggestion by Donaldson for characterizing coasso-
ciative calibrations in terms of their dual 3–forms.

Theorem 4.32. Let V be a 7–dimensional vector space over the reals and let
ψ ∈ Λ4V ∗. Then the following are equivalent:

(i) There exists a nondegenerate 3–form φ ∈ Λ3V ∗ and a number ε = ±1 such
that εψ is the coassociative calibration of (V, φ).

(ii) If α, β ∈ V ∗ are linearly independent, then there exists a 1–form γ ∈ V ∗ such
that α ∧ β ∧ γ ∧ ψ 6= 0.

Proof. That (i) implies (ii) follows from equation (4.38) in Lemma 4.37 below. To
prove the converse, assume (ii) and fix any volume form σ ∈ Λ7V ∗. Define the
3–form Φ on the dual space V ∗ by

(4.33) Φ(α, β, γ) :=
α ∧ β ∧ γ ∧ ψ

σ
for α, β, γ ∈ V ∗.

This 3–form is nondegenerate by (ii). Denote the corresponding coassociative
calibration by Ψ : V ∗ × V ∗ × V ∗ × V ∗ → R and let 〈·, ·〉V ∗ be the inner product
on V ∗ determined by Φ. Let κ : V → V ∗ be the isomorphism induced by this inner
product, so α(u) = 〈α, κ(u)〉V ∗ for α ∈ V ∗ and u ∈ V . Let 〈·, ·〉V be the pullback
under κ of the inner product on V ∗. Then φ := κ∗Φ ∈ Λ3V ∗ is a nondegenerate
3–form compatible with the inner product and the volume form

vol := 1
7κ
∗Φ ∧ κ∗Ψ.

By equation (4.33),

(4.34) φ(u, v, w)σ = κ(u) ∧ κ(v) ∧ κ(w) ∧ ψ.

for all u, v, w ∈ V . Choose λ > 0 and ε = ±1 such that

(4.35) vol = ελ−4/3σ.

Replace σ by σλ := λσ in (4.33) to obtain Φλ = λ−1Φ. Its coassociative cali-
bration is Ψλ = λ−4/3Ψ, the inner product on V ∗ induced by Φλ is 〈·, ·〉V ∗,λ =

λ−2/3〈·, ·〉V ∗ , and the isomorphism κλ : V → V ∗ is κλ = λ2/3κ. Hence ,

φλ := κ∗λΦλ = λφ, ψλ := κ∗λΨλ = λ4/3κ∗Ψ.

By (4.35) this implies

volλ := 1
7φλ ∧ ψλ = λ7/3vol = ελσ = εσλ.
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Multiply both sides in equation (4.34) by ελ2 to obtain

φλ(u, v, w)εσλ = κλ(u) ∧ κλ(v) ∧ κλ(w) ∧ εψ

Since εσλ = volλ, it follows from (4.38) below that the same equation holds
with εψ replaced by ψλ. Thus εψ = ψλ is the associative calibration of φλ. (Here ε
is independent of the choice of σ.) This proves Theorem 4.32.

Remark 4.36. We can interpret Theorem 4.32 in the spirit of Remark 3.10. In the
notation of Remark 3.10, if V is an oriented n–dimensional vector space with an
inner product g, then the Hodge ∗–operator ∗ : ΛkV ∗ → Λn−kV ∗ can be defined
as

∗α = (i−1
g )∗α⊗ volg ∈ ΛkV ⊗ ΛnV ∗ = Λn−kV ∗.

If V is a 7–dimensional vector space and ψ ∈ Λ4V ∗, then we can equivalently
think of it as a 3–form φ∗ on V ∗ with values in Λ7V ∗ since Λ4V ∗ = Λ3V ⊗ Λ7V ∗.
Define a symmetric bilinear form G∗ : V ∗ × V ∗ → (Λ7V ∗)2 by

G∗(α, β) :=
1

6
i(α)φ∗ ∧ i(β)φ∗ ∧ φ∗ for α, β ∈ V ∗.

Condition (ii) in Theorem 4.32 is equivalent to iG∗ : V ∗ → V ⊗ (Λ7V ∗)2 being
an isomorphism. Note that det iG∗ ∈ (Λ7V ∗)12. After picking an orientation we
define a positive root (det iG∗)

1/12 ∈ Λ7V ∗. Define a volume form on V and an
inner product on V ∗ by

volg := (det(iG∗))
1/12 and g∗ :=

G∗

vol2g
.

A moment’s thought shows that volg is the volume form associated with the dual
inner product g and the chosen orientation on V . Further, the 3–form

φ :=
(ig)

∗φ∗

volg
∈ Λ3V ∗

satisfies
1

6
i(u)φ ∧ i(v)φ ∧ φ = g(u, v) volg.

and ∗φ = ψ.

The next lemma summarizes some useful identities that will be needed through-
out. The first of these has already been used in the proof of Theorem 4.32. Assume
that V is a 7–dimensional oriented real Hilbert space equipped with a compatible
cross product, φ ∈ Λ3V ∗ is the associative calibration, and ψ := ∗φ ∈ Λ4V ∗ is the
coassociative calibration of (V, φ).
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Lemma 4.37. The following hold for all u, v, w, x ∈ V and all ω ∈ Λ2V ∗:

ψ ∧ u∗ ∧ v∗ ∧ w∗ = φ(u, v, w)vol,(4.38)

φ ∧ u∗ ∧ v∗ ∧ w∗ ∧ x∗ = ψ(u, v, w, x)vol,(4.39)

ι(u)ψ ∧ v∗ ∧ ι(v)ψ = 0,(4.40)

∗(ψ ∧ u∗) = ι(u)φ,(4.41)

∗(φ ∧ u∗) = ι(u)ψ,(4.42)

|ι(u)φ|2 = 3|u|2,(4.43)

|ι(u)ψ|2 = 4|u|2,(4.44)

φ ∧ ι(u)φ = 2ψ ∧ u∗,(4.45)

φ ∧ ι(u)ψ = −4ι(u)vol,(4.46)

ψ ∧ ι(u)φ = 3ι(u)vol,(4.47)

ψ ∧ ι(u)ψ = 0,(4.48)

∗(φ ∧ ι(u)φ) = 2ι(u)φ,(4.49)

∗(φ ∧ ι(u)ψ) = −4u∗,(4.50)

∗(ψ ∧ ι(u)φ) = 3u∗,(4.51)

∗(ψ ∧ ∗(ψ ∧ ι(u)φ)) = 3ι(u)φ,(4.52)

ι(u)φ ∧ ∗ι(v)φ = 3〈u, v〉vol,(4.53)

u∗ ∧ v∗ = ι(u× v)φ− ι(v)ι(u)ψ,(4.54)

u∗ ∧ v∗ ∧ ∗ι(u× v)φ = |u× v|2vol,(4.55)

u∗ ∧ v∗ ∧ ι(u)φ ∧ ι(v)ψ = 2|u× v|2vol,(4.56)

ψ ∧ u∗ ∧ v∗ = ι(u× v)vol,(4.57)

φ ∧ u∗ ∧ v∗ ∧ w∗ = ι([u, v, w])vol,(4.58)

φ ∧ u∗ ∧ v∗ = ∗ι(v)ι(u)ψ,(4.59)

∗(ψ ∧ ∗(ψ ∧ ω)) = ω + ∗(φ ∧ ω),(4.60)

∗(φ ∧ ∗(φ ∧ ω)) = 2ω + ∗(φ ∧ ω).(4.61)

Proof. It is a general fact about alternating k–forms on a finite-dimensional Hilbert
space V that 〈u∗1 ∧ · · · ∧ u∗k, α〉 = α(u1, . . . , uk) for all ui ∈ V and all α ∈ ΛkV ∗.
This proves (4.38) and (4.39). Equations (4.41) and (4.42) follow from (4.15) in
Remark 4.14.

To prove equations (4.40) and (4.43)–(4.47) assume without loss of generality
that u, v are orthonormal. By Theorem 3.2 assume that V = R7 with u = e1 and
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v = e2, and that φ and ψ are as in (4.12) and (4.13), i.e.,

φ = φ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356,

ψ = ψ0 = −e1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567.
(4.62)

Then

ι(u)φ = e23 − e45 − e67,

ι(u)ψ = −e247 − e256 + e346 − e357,

v∗ ∧ ι(v)ψ = −e1247 − e1256 + e2345 − e2367.

(4.63)

Equation (4.40) follows by multipying the last two sums, and (4.43) and (4.44)
follow by examining the first two sums. Moreover, by (4.62) and (4.63),

φ ∧ ι(u)φ = −2e12345 − 2e12367 + 2e14567 = 2 ∗ι(u)φ = 2u∗ ∧ ψ.

This proves (4.45). By (4.62) and (4.63) we also have ψ ∧ ι(u)φ = 3e234567 and
φ ∧ ι(u)ψ = −4e234567. This proves (4.46) and (4.47).

Equation (4.48) follows by contracting u with the 8–form ψ ∧ ψ = 0. Equa-
tions (4.49)–(4.51) follow from (4.45)–(4.47) and the fact that ∗u∗ = ι(u)vol and
∗(u∗ ∧ ψ) = ι(u)φ by (4.41). To prove equation (4.52) take the exterior product of
equation (4.51) with ψ and then use (4.41) to obtain

ψ ∧ ∗(ψ ∧ ι(u)φ) = ψ ∧ 3u∗ = 3 ∗ι(u)φ.

Equation (4.53) follows from (4.43) and the fact that the left hand side in (4.53)
is symmetric in u and v. Equation (4.54) is equivalent to (4.20) in the proof of
Lemma 4.8. To prove equation (4.55) choose w := u× v in (4.38) to obtain

|u× v|2vol = u∗ ∧ v∗ ∧ (u× v)∗ ∧ ψ = u∗ ∧ v∗ ∧ ∗ι(u× v)φ.

Here the last equation follows from (4.41). To prove (4.56) we compute

u∗ ∧ v∗ ∧ ι(u)φ ∧ ι(v)ψ

= −ι(v)
(
u∗ ∧ v∗ ∧ ι(u)φ

)
∧ ψ

= −〈u, v〉v∗ ∧ ι(u)φ ∧ ψ + |v|2u∗ ∧ ι(u)φ ∧ ψ − u∗ ∧ v∗ ∧ (u× v)∗ ∧ ψ
= −〈u, v〉ι(u)φ ∧ ∗ι(v)φ+ |v|2ι(u)φ ∧ ∗ι(u)φ− u∗ ∧ v∗ ∧ ∗ι(u× v)φ

= 2|u× v|2vol.

Here the second step uses the identity ι(v)ι(u)φ = φ(u, v, ·) = (u× v)∗, the third
step follows from (4.41), and the last step follows from (4.45) and (4.55).
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To prove equation (4.57) take the exterior product with a 1–form w∗ and use
equation (4.38) to obtain(

ψ ∧ u∗ ∧ v∗
)
∧ w∗ = φ(u, v, w)vol = 〈u× v, w〉vol

= (∗(u× v)∗) ∧ w∗ = (ι(u× v)vol) ∧ w∗.

To prove equation (4.58) take the exterior product with a 1–form x∗ and use
equation (4.39) to obtain(

φ ∧ u∗ ∧ v∗ ∧ w∗
)
∧ x∗ = ψ(u, v, w, x)vol = 〈[u, v, w], x〉vol

= (∗[u, v, w]∗) ∧ x∗ = (ι([u, v, w])vol) ∧ x∗.

To prove equation (4.59) take the exterior product with w∗ ∧ x∗ for w, x ∈ V
and use equation (4.57) to obtain(

φ ∧ u∗ ∧ v∗
)
∧ (w∗ ∧ x∗) = ψ(u, v, w, x)vol

= 〈ι(v)ι(u)ψ,w∗ ∧ x∗〉vol

= (∗ι(v)ι(u)ψ) ∧ (w∗ ∧ x∗).

Since Λ2V ∗ has a basis of 2–forms of the form w∗ ∧ x∗, this proves (4.59).
To prove equations (4.60) and (4.61) it suffices to assume

ω = u∗ ∧ v∗

for u, v ∈ V . Then it follows from (4.54) and (4.59) that

ι(u× v)φ = u∗ ∧ v∗ + ι(v)ι(u)ψ

= u∗ ∧ v∗ + ∗(u∗ ∧ v∗ ∧ φ)

= ω + ∗(φ ∧ ω).

(4.64)

Moroever, ∗(ψ ∧ ω) = (u× v)∗ by (4.57). Hence, by (4.41) and (4.64),

∗
(
ψ ∧ ∗

(
ψ ∧ ω

))
= ∗
(
ψ ∧ (u× v)∗

)
= ι(u× v)φ

= ω + ∗(φ ∧ ω).

This proves equation (4.60). Moreover, by (4.49) and (4.64),

∗
(
φ ∧ ∗

(
φ ∧ ω

))
= ∗
(
φ ∧

(
ι(u× v)φ− ω

))
= ∗
(
φ ∧ ι(u× v)φ

)
− ∗
(
φ ∧ ω

)
= 2ι(u× v)φ− ∗

(
φ ∧ ω

)
= 2ω + ∗(φ ∧ ω).

This proves equation (4.61) and Lemma 4.37.
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5 Normed algebras

Definition 5.1. A normed algebra consists of a finite dimensional real Hilbert
space W , a bilinear map

W ×W →W : (u, v) 7→ uv,

(called the product), and a unit vector 1 ∈W (called the unit), satisfying

1u = u1 = u

and

(5.2) |uv| = |u||v|

for all u, v ∈W .

When W is a normed algebra it is convenient to identify the real numbers with
a subspace of W via multiplication with the unit 1. Thus, for u ∈ W and λ ∈ R,
we write u+ λ instead of u+ λ1. Define an involution W →W : u 7→ ū (called
conjugation) by 1̄ := 1 and ū := −u for u ∈ 1⊥. Thus

(5.3) ū := 2〈u, 1〉 − u.

We think of R ⊂ W as the real part of W and of its orthogonal complement as
the imaginary part. The real and imaginary parts of u ∈ W will be denoted by
Reu := 〈u, 1〉 and Imu := u− 〈u, 1〉.
Theorem 5.4. Normed algebras and vector spaces with cross products are related
as follows.

(i) If W is a normed algebra, then V := 1⊥ is equipped with a cross product
V × V → V : (u, v) 7→ u× v defined by

(5.5) u× v := uv + 〈u, v〉

for u, v ∈ 1⊥.

(ii) If V is a finite dimensional Hilbert space equipped with a cross product, then
W := R⊕ V is a normed algebra with

(5.6) uv := u0v0 − 〈u1, v1〉+ u0v1 + v0u1 + u1 × v1

for u = u0 +u1, v = v0 +v1 ∈ R⊕V . Here we identify a real number λ with
the pair (λ, 0) ∈ R⊕ V and a vector v ∈ V with the pair (0, v) ∈ R⊕ V .

These constructions are inverses of each other. In particular, a normed algebra
has dimension 1, 2, 4, or 8 and is isomorphic to R, C, H, or O.

Proof. See page 31.
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Lemma 5.7. Let W be a normed algebra. Then the following hold:

(i) For all u, v, w ∈W we have

(5.8) 〈uv,w〉 = 〈v, ūw〉, 〈uv,w〉 = 〈u,wv̄〉.

(ii) For all u, v ∈W we have

(5.9) uū = |u|2, uv̄ + vū = 2〈u, v〉.

(iii) For all u, v ∈W we have

(5.10) 〈u, v〉 = 〈ū, v̄〉, uv = v̄ū.

(iv) For all u, v, w ∈W we have

(5.11) u(v̄w) + v(ūw) = 2〈u, v〉w, (uv̄)w + (uw̄)v = 2〈v, w〉u

Proof. We prove (i). The first equation in (5.8) is obvious when u is a real multiple
of 1. Hence, it suffices to assume that u is orthogonal to 1. Expanding the identities
|uv+uw|2 = |u|2|v+w|2 and |uv+wv|2 = |u+w|2|v|2 we obtain the equations

(5.12) 〈uv, uw〉 = |u|2〈v, w〉, 〈uv,wv〉 = 〈u,w〉|v|2.

If u is orthogonal to 1, the first equation in (5.12) gives

〈uv,w〉+ 〈v, uw〉 = 〈(1 + u)v, (1 + u)w〉 − (1 + |u|2)〈v, w〉 = 0.

Since ū = −u for u ∈ 1⊥, this proves the first equation in (5.8). The proof of the
second equation is similar.

We prove (ii). Using the second equation in (5.8) with v = ū we obtain
〈uū, w〉 = 〈u,wu〉 = 〈1, w〉|u|2. Here we have used the second equation in (5.12).
This implies uū = |u|2 for every u ∈W . Replacing u by u+ v gives uv̄ + vū =
2〈u, v〉. This proves (5.9).

We prove (iii). That conjugation is an isometry follows immediately from the
definition. Using (5.9) with v replaced by v̄ we obtain

v̄ū = 2〈u, v̄〉 − uv = 2〈uv, 1〉 − uv = uv.

Here the second equation follows from (5.8). This proves (5.10).
We prove (iv). For all u,w ∈W we have

(5.13) 〈u(ūw), w〉 = |ūw|2 = |ū|2|w|2 = |u|2|w|2

Since the operator w 7→ u(ūw) is self-adjoint, by (5.8), this shows that u(ūw) =
|u|2w for all u,w ∈W . Replacing u by u+ v we obtain the first equation in (5.11).
The proof of the second equation is similar.
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Proof of Theorem 5.4. Let W be a normed algebra. It follows from (5.8) that
〈u, v〉 = −〈uv, 1〉 and, hence, u × v := uv + 〈u, v〉 ∈ 1⊥ for all u, v ∈ 1⊥.
We write an element of W as u = u0 + u1 with u0 := 〈u, 1〉 ∈ R and u1 :=
u− 〈u, 1〉 ∈ V = 1⊥. For u, v ∈W we compute

|u|2|v|2 − |uv|2 =
(
u2

0 + |u1|2
)(

v2
0 + |v1|2

)
− (u0v0 − 〈u1, v1〉)2

− |u0v1 + v0u1 + u1 × v1|2

= u2
0|v1|2 + v2

0|u1|2 + 2u0v0〈u1, v1〉+ |u1|2|v1|2 − 〈u1, v1〉2

− |u0v1 + v0u1|2 − |u1 × v1|2 − 2〈u0v1 + v0u1, u1 × v1〉
=|u1|2|v1|2 − 〈u1, v1〉2 − |u1 × v1|2

− 2u0〈v1, u1 × v1〉 − 2v0〈u1, u1 × v1〉.

The right hand side vanishes for all u and v if and only if the product on V
satisfies (2.3) and (2.4). Hence, (5.5) defines a cross product on V and the product
can obviously be recovered from the cross product via (5.6). Conversely, the same
argument shows that, if V is equipped with a cross product, the formula (5.6) defines
a normed algebra structure on W := R ⊕ V . Moreover, by Theorem 2.5, V has
dimension 0, 1, 3, or 7. This proves Theorem 5.4.

Remark 5.14. IfW is a normed algebra and the cross product on V := 1⊥ is defined
by (5.5), then the commutator of two elements u, v ∈W is given by

(5.15) [u, v] := uv − vu = 2u1 × v1.

In particular, the product on W is commutative in dimensions 1 and 2 and is not
commutative in dimensions 4 and 8.

Remark 5.16. Let W be a normed algebra of dimension 4 or 8. Then V := 1⊥ has
a natural orientation determined by Lemma 2.12 or Lemma 3.4, respectively, in
dimensions 3 and 7. We orient W as R⊕ V .

Remark 5.17. IfW is a normed algebra and the cross product on V := 1⊥ is defined
by (5.5), then the associator bracket on V is related to the product on W by

(5.18) (uv)w − u(vw) = 2[u1, v1, w1]

for all u, v, w ∈ W . Thus W is an associative algebra in dimensions 1, 2, 4 and
is not associative in dimension 8. The formula (5.18) is the reason for the term
associator bracket. Many authors actually define the associator bracket as the left
hand side of equation (5.18) (see for example [HL82]).
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To prove (5.18), we observe that the associator bracket on V can be written in
the form

2[u, v, w] = 2(u× v)× w + 2〈v, w〉u− 2〈u,w〉v
= (u× v)× w − u× (v × w) + 〈v, w〉u− 〈u, v〉w

(5.19)

for u, v, w ∈ V . Here the first equation follows from (4.1) and the second equation
follows from (2.11). For u, v, w ∈ V we compute

(uv)w − u(vw) = (−〈u, v〉+ u× v)w − u(−〈v, w〉+ v × w)

= (u× v)× w − u× (v × w)− 〈u, v〉w + 〈v, w〉u
= 2[u, v, w].

Here the first equation follows from the definition of the cross product in (5.5),
the second equation follows by applying (5.5) again and using (2.7), and the last
equation follows from (5.19). Now, if any of the factors u, v, w is a real number,
the term on the left vanishes. Hence, real parts can be added to the vectors without
changing the expression.

Theorem 5.20. Let W be an 8–dimensional normed algebra.

(i) The map W 3 →W : (u, v, w) 7→ u× v × w defined by

(5.21) u× v × w := 1
2

(
(uv̄)w − (wv̄)u

)
(called the triple cross product of W ) is alternating and satisfies

(5.22) 〈x, u× v × w〉+ 〈u× v × x,w〉 = 0,

(5.23) |u× v × w| = |u ∧ v ∧ w|,

for all u, v, w, x ∈W and

(5.24) 〈e× u× v, e× w × x〉 = −|e|2〈u× v × w, x〉

whenever e, u, v, w, x ∈W are orthonormal.

(ii) The map Φ : W 4 → R defined by

Φ(x, u, v, w) := 〈x, u× v × w〉

(called the Cayley calibration of W ) is an alternating 4–form. Moreover, Φ is
self-dual, i.e.,

(5.25) Φ = ∗Φ,

where ∗ : ΛkW ∗ → Λ8−kW ∗ denotes the Hodge ∗–operator associated to
the inner product and the orientation of Remark 5.16.
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(iii) Let V := 1⊥ with the cross product defined by (5.5) and the associator bracket
[·, ·, ·] defined by (4.1). Let φ ∈ Λ3V ∗ and ψ ∈ Λ4V ∗ be the associative and
coassociative calibrations of V defined by (2.8) and (4.9), respectively. Then
the triple cross product (5.21) of u, v, w ∈W can be expressed as

u× v × w = φ(u1, v1, w1)− [u1, v1, w1]

− u0(v1 × w1)− v0(w1 × u1)− w0(u1 × v1)
(5.26)

and the Cayley calibration is given by

(5.27) Φ = 1∗ ∧ φ+ ψ.

(iv) For all u, v ∈W we have

(5.28) uv = u× 1× v + 〈u, 1〉v + 〈v, 1〉u− 〈u, v〉.

Remark 5.29. There is a choice involved in the definition of the triple cross product
in (5.21). An alternative formula is

(u, v, w) 7→ 1
2

(
u(v̄w)− w(v̄u)

)
.

This map also satisfies (5.22) and (5.23). However, it satisfies (5.24) with the minus
sign changed to plus and the resulting Cayley calibration is given by Φ = 1∗∧φ−ψ
and is anti-self-dual. Equation (5.28) remains unchanged.

Proof of Theorem 5.20. Let W ×W ×W → W : (u, v, w) 7→ u× v × w be the
trilinear map defined by (5.21). We prove that this map satisfies (5.26). To see this,
fix three vectors u, v, w ∈W . Then, by (5.15), we have

v̄w − wv̄ = −2v1 × w1, uw − wu = −2w1 × u1, uv̄ − v̄u = −2u1 × v1.

Multiplying these expressions by u0, v0, w0, respectively, we obtain (twice) the
last three expressions on the right in (5.26). Thus it suffices to assume u, v, w ∈ V .
Then we obtain

2u× v × w = (uv̄)w − (wv̄)u

= −(uv)w + (wv)u

= −(−〈u, v〉+ u× v)w + (−〈w, v〉+ w × v)u

= 〈u× v, w〉+ 〈u, v〉w − (u× v)× w
− 〈w × v, u〉 − 〈w, v〉u+ (w × v)× u

= 2φ(u, v, w)− 2[u, v, w].

Here the third and fourth equations follow from (5.5), and the last equation follows
from (2.8) and (5.19). This proves that the formulas (5.21) and (5.26) agree.
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We prove (i). By (5.26) we have

〈x, u× v × w〉 = x0φ(u1, v1, w1) + ψ(x1, u1, v1, w1)

− u0φ(x1, v1, w1)− v0φ(x1, w1, u1)

− w0φ(x1, u1, v1)

(5.30)

for x, u, v, w ∈W . Here we have used φ(u1, v1, w1) = 〈u1, v1 × w1〉 and

−〈x1, [u1, v1, w1]〉 = −ψ(u1, v1, w1, x1) = ψ(x1, u1, v1, w1).

It follows from the alternating properties of φ and ψ that the right hand side of (5.30)
is an alternating 4–form. Hence, the map (5.21) is alternating and satisfies (5.22).
For u, v, w ∈ V = 1⊥ equation (5.23) follows from Lemma 4.4. In general, if
u, v, w ∈W are pairwise orthogonal, it follows from (5.9) and (5.11) that

(uv̄)w = −(uw̄)v = (wū)v = −(wv̄)u.

This shows that

(5.31) 〈u, v〉 = 〈v, w〉 = 〈w, u〉 = 0 =⇒ u× v × w = u(v̄w)

and, hence, by (5.2), we have |u × v × w| = |u ∧ v ∧ w| in the orthogonal case.
This equation continues to hold in general by Gram–Schmidt. This proves that the
triple cross product satisfies (5.23).

We prove (5.24). The second equation in (5.11) asserts that (yz)z = |z|2y for
all y, z ∈W . Hence, by (5.31), we have

〈e× u× v, e× w × x〉 = 〈u× v × e, w × x× e〉
= 〈(uv̄)e, (wx̄)e〉
= 〈uv̄, ((wx̄)e)ē〉
= |e|2〈uv̄, wx̄〉
= |e|2〈(uv̄)x,w〉
= |e|2〈u× v × x,w〉
= −|e|2〈x, u× v × w〉

whenever e, u, v, w, x ∈ W are pairwise orthogonal. Thus the triple cross prod-
uct (5.21) satisfies (5.24). This proves (i).

We prove (ii) and (iii). That Φ is a 4–form follows from (i). That it satisfies
equation (5.27) follows directly from the definition of Φ and equation (5.30). That
Φ is self-dual with respect to the orientation of Remark 5.16 follows from (5.27)
and Lemma 4.8. Equation (5.26) was proved above.
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We prove (iv). By (5.15) and (5.21), we have

u1 × v1 = 1
2

(
uv − vu

)
= u× 1× v.

Hence, it follows from (5.6) that

uv = u0v0 − 〈u1, v1〉+ u0v1 + v0u1 + u1 × v1

= −u0v0 − 〈u1, v1〉+ u0v + v0u+ u1 × v1

= −〈u, v〉+ 〈u, 1〉v + 〈v, 1〉u+ u× 1× v.

This proves (5.28) and Theorem 5.20.

Example 5.32. If W = R8 = R ⊕ R7 with coordinates x0, x1, . . . , x7 and the
cross product of Example 2.15 on R7, then the associated Cayley calibration is
given by

Φ0 = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356

+ e4567 − e2367 − e2345 − e1357 + e1346 − e1256 − e1247.

Thus
Φ0 ∧ Φ0 = 14vol.

(See the proof of Lemma 4.8.)

Definition 5.33. Let W be an 8–dimensional normed algebra. The fourfold cross
product on W is the alternating multi-linear map W 4 → W : (u, v, w, x) 7→
u× v × w × x defined by

(5.34) 4x×u×v×w := (u×v×w)x̄−(v×w×x)ū+(w×x×u)v̄−(x×u×v)w̄.

Theorem 5.35. Let W be an 8–dimensional normed algebra with triple cross
product (5.21), Cayley calibration Φ ∈ Λ4W ∗, and fourfold cross product (5.34).
Then, for all x, u, v, w ∈W , we have

(5.36) |x× u× v × w| = |x ∧ u ∧ v ∧ w|

and

Re (x× u× v × w) = Φ(x, u, v, w),

Im (x× u× v × w) = [x1, u1, v1, w1]− x0[u1, v1, w1]

+ u0[v1, w1, x1]− v0[w1, x1, u1]

+ w0[x1, u1, v1],

(5.37)

where the last five terms use the associator and coassociator brackets on V := 1⊥

defined by (4.1) and (4.22). In particular,

(5.38) Φ(x, u, v, w)2 + |Im (x× u× v × w)|2 = |x ∧ u ∧ v ∧ w|2.
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Proof. That the fourfold cross product is alternating is obvious from the definition
and the alternating property of the triple cross product. We prove that it satis-
fies (5.36). For this it suffices to assume that u, v, w, x are pairwise orthogonal.
Then u× v × w = (uv̄)w and hence

(u× v × w)x̄ = ((uv̄)w)x̄ = −((uv̄)x)w̄ = −(u× v × x)w̄.

Here we have used (5.9) and (5.11). Using the alternating property of the triple
cross product we obtain that the four summands in (5.34) agree in the orthogonal
case. Hence, x× u× v×w = ((uv̄)w)x̄ and so equation (5.36) follows from (5.2).

We prove (5.37). Since u× 1× v = u1 × v1, we have

1× u× v × w = 1
4

(
u× v × w + (v1 × w1)ū+ (w1 × u1)v̄ + (u1 × v1)w̄

)
= 1

4

(
u× v × w + u0(v1 × w1) + v0(w1 × u1) + w0(u1 × v1)

)
+ 1

4

(
〈v1 × w1, u1〉+ 〈w1 × u1, v1〉+ 〈u1 × v1, w1〉

)
− 1

4

(
(v1 × w1)× u1 + (w1 × u1)× v1 + (u1 × v1)× w1

)
= φ(u1, v1, w1)− [u1, v1, w1].

The last equation follows from (5.26) and the definition of the associator bracket
in (4.1). This proves (5.37) in the case x1 = 0. Using the alternating property we
may now assume that x, u, v, w ∈ V := 1⊥. If x, u, v, w are orthogonal to 1 it
follows from (5.26) that u × v × w = φ(u, v, w) − [u, v, w] and Φ(x, u, v, w) =
−〈x, [u, v, w]〉 = ψ(x, u, v, w). Moreover, x̄ = −x and similarly for u, v, w.
Hence,

4x× u× v × w
= −(u× v × w)x+ (v × w × x)u− (w × x× u)v + (x× u× v)w

= [u, v, w]x− [v, w, x]u+ [w, x, u]v − [x, u, v]w

− φ(u, v, w)x+ φ(v, w, x)u− φ(w, x, u)v + φ(x, u, v)w

= −〈[u, v, w], x〉+ 〈[v, w, x], u〉 − 〈[w, x, u], v〉+ 〈[x, u, v], w〉
+ [u, v, w]× x− [v, w, x]× u+ [w, x, u]× v − [x, u, v]× w
− φ(u, v, w)x+ φ(v, w, x)u− φ(w, x, u)v + φ(x, u, v)w

= −4ψ(u, v, w, x)− 4[u, v, w, x]

= 4Φ(x, u, v, w) + 4[x, u, v, w].

Here the last but one equation follows from Lemma 4.21. Thus we have proved
(5.37) and Theorem 5.35.
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6 Triple cross products

In this section we show how to recover the normed algebra structure on W from the
triple cross product. In fact we shall see that every unit vector in W can be used as a
unit for the algebra structure. We assume throughout that W is a finite dimensional
real Hilbert space.

Definition 6.1. An alternating multi-linear map

(6.2) W ×W ×W →W : (u, v, w) 7→ u× v × w

is called a triple cross product if it satisfies

〈u× v × w, u〉 = 〈u× v × w, v〉 = 〈u× v × w,w〉 = 0,(6.3)

|u× v × w| = |u ∧ v ∧ w|(6.4)

for all u, v, w ∈W .

A multi-linear map (6.2) that satisfies (6.4) also satisfies u×v×w = 0 whenever
u, v, w ∈W are linearly dependent, and hence is necessarily alternating.

Lemma 6.5. Let (6.2) be an alternating multi-linear map. Then (6.3) holds if and
only if, for all x, u, v, w ∈W , we have

(6.6) 〈x, u× v × w〉+ 〈u× v × x,w〉 = 0.

Proof. If (6.6) holds, then (6.3) follows directly from the alternating property of the
map (6.2). To prove the converse, expand the expression 〈u× v × (w + x), w + x〉
and use (6.3) to obtain (6.6).

Lemma 6.7. Let (6.2) be an alternating multi-linear map satisfying (6.3). Then
equation (6.4) holds if and only if, for all u, v, w ∈W , we have

u× v × (u× v × w) + |u ∧ v|2w

=
(
|v|2〈u,w〉 − 〈u, v〉〈v, w〉

)
u+

(
|u|2〈v, w〉 − 〈v, u〉〈u,w〉

)
v.

(6.8)

Proof. If (6.8) holds and w is orthogonal to u and v, then

u× v × (u× v × w) = −|u ∧ v|2w.

Taking the inner product withw and using (6.6) we obtain (6.4) under the assumption
〈u,w〉 = 〈v, w〉 = 0. Since both sides of equation (6.4) remain unchanged if we
add to w a linear combination of u and v, this proves that (6.8) implies (6.4).
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To prove the converse we assume (6.4). If w is orthogonal to u and v, we have
|u× v × w|2 = |u ∧ v|2|w|2. Replacing w by w + x we obtain

(6.9) w, x ∈ u⊥ ∩ v⊥ =⇒ 〈u× v × w, u× v × x〉 = |u ∧ v|2〈w, x〉.

Using (6.6) we obtain (6.8) for every vector w ∈ u⊥ ∩ v⊥. Replacing a general
vector w by its projection onto the orthogonal complement of the subspace spanned
by u and v we deduce that (6.8) holds in general. This proves Lemma 6.7.

Let (6.2) be a triple cross product. If e ∈W is a unit vector, then the subspace
Ve := e⊥ carries a cross product (u, v) 7→ u×e v defined by u×e v := u× e× v.
Hence, by Theorem 2.5, the dimension of Ve is 0, 1, 3, or 7.

It follows that the dimension of W is 0, 1, 2, 4, or 8.

Lemma 6.10. Assume dimW = 8 and let (6.2) be a triple cross product. Then
there is a number ε ∈ {±1} such that

(6.11) e× u× (e× v × w) = ε|e|2u× v × w

whenever e, u, v ∈W are pairwise orthogonal and w ∈W is orthogonal to e, u, v,
and e× u× v.

Proof. It suffices to assume that the vectors e, u, v ∈W are orthonormal. Then the
subspace

H := span(e, u, v, e× u× v)⊥

has dimension four. It follows from (6.6) and (6.9) that the formulas

Iw := e× u× w, Jw := e× v × w, Kw := u× v × w,

define endomorphisms I, J,K of H . Moreover, by (6.6), these operators are skew
adjoint and, by (6.9), they are complex structures on H . It follows also from (6.9)
that e × x × (e × x × w) = −|x|2w whenever e, x, w are pairwise orthogonal
and |e| = 1. Assuming w ∈ H and using this identity with x = u + v we obtain
IJ +JI = 0. This implies that the automorphisms of H of the form aI+ bJ + cIJ
with a2 + b2 + c2 = 1 belong to the space J of orthogonal complex structures on
H . They form one of the two components of J and K belongs to this component
because it anticommutes with I and J . Hence, K = εIJ with ε = ±1. Since
the space of orthonormal triples in W is connected, and the constant ε depends
continuously on the triple e, u, v, we have proved (6.11) under the assumption that
e, u, v are orthonormal and w is orthogonal to the vectors e, u, v, e× u× v. Hence,
the assertion follows by scaling. This proves Lemma 6.10.
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Definition 6.12. Assume dimW = 8. A triple cross product (6.2) is called positive
if it satisfies (6.11) with ε = 1 and is called negative if it satisfies (6.11) with
ε = −1.

Definition 6.13. Assume dimW = 8 and let (6.2) be a triple cross product. Then,
by Lemma 6.5, the map Φ : W ×W ×W ×W → R defined by

(6.14) Φ(x, u, v, w) := 〈x, u× v × w〉

is an alternating 4–form. It is called the Cayley calibration of W .

Theorem 6.15. Assume dimW = 8 and let (6.2) be a triple cross product with
Cayley calibration Φ ∈ Λ4W ∗ given by (6.14). Let e ∈W be a unit vector.

(i) Define the map ψe : W 4 → R by

ψe(u, v, w, x) := 〈e× u× v, e× w × x〉
−
(
〈u,w〉 − 〈u, e〉〈e, w〉

)(
〈v, x〉 − 〈v, e〉〈e, x〉

)
+
(
〈u, x〉 − 〈u, e〉〈e, x〉

)(
〈v, w〉 − 〈v, e〉〈e, w〉

)
.

(6.16)

Then ψe ∈ Λ4W ∗ and

(6.17) Φ = e∗ ∧ φe + εψe, φe := ι(e)Φ ∈ Λ3W ∗,

where ε ∈ {±1} is as in Lemma 6.10.

(ii) The subspace Ve := e⊥ carries a cross product

(6.18) Ve × Ve → Ve : (u, v) 7→ u×e v := u× e× v,

the restriction of φe to Ve is the associative calibration of (6.18), and the
restriction of ψe to Ve is the coassociative calibration of (6.18).

(iii) The space W is a normed algebra with unit e and multiplication and conjuga-
tion given by

(6.19) uv := u×e×v+〈u, e〉v+〈v, e〉u−〈u, v〉e, ū := 2〈u, e〉e−u.

If the triple cross product is positive, then (uv̄)w − (wv̄)u = 2u× v × w.

Proof. We prove (i). If the vectors e, u, v, w, x are pairwise orthogonal, then

(6.20) 〈e× u× x, e× v × w〉 = −ε|e|2〈x, u× v × w〉.
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To see this, take the inner product of (6.11) with x. Then it follows from (6.6)
that (6.20) holds under the additional assumption thatw is perpendicular to e×u×v.
Since x is orthogonal to e, this additional condition can be dropped, as both sides of
the equation remain unchanged if we add to w a multiple of e × u × v. Thus we
have proved (6.20).

Now fix a unit vector e ∈ W . By definition, ψe is alternating in the first
two and last two arguments, and satisfies ψe(u, v, w, x) = ψe(w, x, u, v) for all
u, v, w, x ∈ W . By (6.4) we also have ψe(u, v, u, v) = 0. Expanding the identity
ψe(u, v + x, u, v + x) = 0 we obtain ψe(u, v, u, x) = 0 for all u, v, x ∈W . Using
this identity with u replaced by u+ w gives

ψe(u, v, w, x) + ψe(w, v, u, x) = 0.

Hence, ψe is also skew-symmetric in the first and third argument and so is an
alternating 4–form. To see that it satisfies (6.17) it suffices to show that εΦ and ψe
agree on e⊥. Since they are both 4–forms, it suffices to show that they agree on
every quadrupel of pairwise orthogonal vectors u, v, w, x ∈ e⊥. But in this case we
have ψe(u, x, v, w) = −εΦ(x, u, v, w) = εΦ(u, x, v, w), by equation (6.20). This
proves (i).

We prove (ii). That (6.18) is a cross product on Ve = e⊥ follows immediately
from the definitions.

By (6.14) we have

〈u×e v, w〉 = Φ(w, u, e, v) = Φ(e, u, v, w) = φe(u, v, w)

for u, v, w ∈ Ve, and hence the restriction of φe to Ve is the associative calibration.
Moreover, the associator bracket (4.1) on Ve is given by

[u, v, w]e = (u× e× v)× e× w + 〈v, w〉u− 〈u,w〉v.

Hence, for all u, v, w, x ∈ Ve, we have

〈[u, v, w]e, x〉 = 〈e× w × (u× e× v), x〉+ 〈v, w〉〈u, x〉 − 〈u,w〉〈v, x〉
= 〈e× u× v, e× w × x〉 − 〈u,w〉〈v, x〉+ 〈u, x〉〈v, w〉
= ψe(u, v, w, x),

where the last equation follows from (6.16). Hence, the restriction of ψe to Ve is the
coassociative calibration and this proves (ii).

We prove (iii). That e is a unit follows directly from the definitions. To prove
that the norm of the product is equal to the product of the norms we observe that
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u× e× v is orthogonal to e, u, and v, by equation (6.6). Hence,

|uv|2 = |u× e× v + 〈u, e〉v + 〈v, e〉u− 〈u, v〉e|2

= |u× e× v|2 − 2〈v, e〉〈u, v〉〈v, e〉
+ 〈u, e〉2|v|2 + 〈v, e〉2|u|2 + 〈u, v〉2

= |u|2|v|2.

Here the last equality uses the fact that |u× e× v|2 = |u ∧ e ∧ v|2. Thus we have
proved that W is a normed algebra with unit e.

If the triple cross product (6.2) is positive, then ε = 1 and hence equation (6.17)
asserts that Φ = e∗ ∧ φe + ψe. Hence, it follows from (5.27) in Theorem 5.20 that
the Cayley calibration Φe associated to the above normed algebra structure is equal
to Φ. This implies that the given triple cross product (6.2) agrees with the triple
cross product defined by (5.21). This proves (iii) and Theorem 6.15.

Remark 6.21. Assume dimW = 8 and let (6.2) be a triple cross product with
Cayley calibration Φ ∈ Λ4W ∗ given by (6.14). Then, for every unit vector e ∈W ,
the subspace Ve = e⊥ is oriented by Lemma 3.4 and Theorem 6.15. We orient W
as the direct sum W = Re⊕ Ve. This orientation is independent of the choice of
the unit vector e. With this orientation we have e∗ ∧φe = ∗ψe, by Theorem 6.15 (ii)
and Lemma 4.8. Hence, it follows from equation (6.17) in Theorem 6.15 (i) that
Φ∧Φ 6= 0. In fact, the triple cross product is positive if and only if Φ∧Φ > 0 with
respect to our orientation and negative if and only if Φ∧Φ < 0. In the positive case
Φ is self-dual and in the negative case Φ is anti-self-dual.

Corollary 6.22. Assume dimW = 8 and let (6.2) be a triple cross product and let
ε be as in Lemma 6.10. Then, for all e, u, v, w ∈W , we have

e× u× (e× v × w) = ε|e|2u× v × w − ε〈e, u× v × w〉e
− ε〈e, u〉e× v × w
− ε〈e, v〉e× w × u
− ε〈e, w〉e× u× v
−
(
|e|2〈u, v〉 − 〈e, u〉〈e, v〉

)
w

+
(
|e|2〈u,w〉 − 〈e, u〉〈e, w〉

)
v

+
(
〈u, v〉〈e, w〉 − 〈u,w〉〈e, v〉

)
e.

(6.23)

Proof. Both sides of the equation remain unchanged if we add to u, v, or w a
multiple of e. Hence, it suffices to prove (6.23) under the assumption that u, v, w
are all orthogonal to e. Moreover, both sides of the equation are always orthogonal
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to e. Hence, it suffices to prove that the inner products of both sides of (6.23) with
every vector x ∈ e⊥ agree. It also suffices to assume |e| = 1. Thus we must prove
that, if e ∈W is a unit vector and u, v, w, x ∈W are orthogonal to e, then we have

〈e× u× (e× v × w), x〉 = ε〈u× v × w, x〉 − 〈u, v〉〈w, x〉+ 〈u,w〉〈v, x〉

or equivalently

(6.24) −〈e×u×x, e×v×w〉+ 〈u, v〉〈x,w〉−〈u,w〉〈x, v〉 = ε〈x, u×v×w〉.

The right hand side of (6.24) is εΦ(x, u, v, w) and, by (6.16), the left hand side
of (6.24) is −ψe(u, x, v, w). Hence, equation (6.24) is equivalent to the assertion
that the restriction of ψe to e⊥ agrees with Φ. But this follows from equation (6.17)
in Theorem 6.15. This proves Corollary 6.22.

Lemma 6.25. Assume dimW = 8 and let (6.2) be a triple cross product with
Cayley calibration Φ ∈ Λ4W ∗ given by (6.14). Let H ⊂ W be a 4–dimensional
linear subspace. Then the following are equivalent:

(i) If u, v, w ∈ H , then u× v × w ∈ H .

(ii) If u, v ∈ H and w ∈ H⊥, then u× v × w ∈ H⊥.

(iii) If u ∈ H and v, w ∈ H⊥, then u× v × w ∈ H .

(iv) If u, v, w ∈ H⊥, then u× v × w ∈ H⊥.

(v) If u, v, w ∈ H and x ∈ H⊥, then Φ(x, u, v, w) = 0.

(vi) If x, u, v, w is an orthonormal basis of H , then Φ(x, u, v, w) = ±1.

(vii) If e ∈ H⊥ has norm one, then H is a coassociative subspace of Ve := e⊥.

(viii) If e ∈ H has norm one, then H ∩ Ve is an associative subspace of Ve.

A 4–dimensional subspace that satisfies these equivalent conditions is called a
Cayley subspace of W . If the vectors u, v, w ∈ W are linearly independent, then
H := span{u, v, w, u× v × w} is a Cayley subspace of W .

Proof. We prove that (i) is equivalent to (v). If (i) holds and u, v, w ∈ H , x ∈ H⊥,
then u× v × w ∈ H and, hence, Φ(x, u, v, w) = 〈x, u× v × w〉 = 0. Conversely,
if (v) holds and u, v, w ∈ H , then 〈x, u × v × w〉 = Φ(x, u, v, w) = 0 for every
x ∈ H⊥ and hence u× v × w ∈ H .

We prove that (i) is equivalent to (vi). If (i) holds and x, u, v, w is an orthonormal
basis of H , then u × v × w is orthogonal to u, v, w and has norm one. Since
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u×v×w ∈ H , we must have x = ±u×v×w. Hence Φ(x, u, v, w) = ±|x|2 = ±1.
Conversely, assume (vi), let u, v, w ∈ H be orthonormal, and choose x such that
x, u, v, w form an orthonormal basis of H . Then

〈x, u× v × w〉2 = Φ(x, u, v, w)2 = 1 = |x|2|u× v × w|2.

Hence, u× v × w is a real multiple of x and so u× v × w ∈ H . Since the triple
cross product is alternating, the general case can be reduced to the orthonormal case
by scaling and Gram–Schmidt.

That (vi) is equivalent to (vii) follows from Lemma 4.26 and the fact that Φ|Ve is
the coassociative calibration on Ve. Likewise, that (vi) is equivalent to (viii) follows
from Lemma 4.7 and the fact that ι(e)Φ|Ve is the associative calibration on Ve.

Thus we have proved that (i), (v), (vi), (vii), (viii) are equivalent. The equiva-
lence of (i), (ii), (iii) for a unit vector u = e ∈ H follows from Lemma 4.26 with
V := Ve and H replaced by H⊥, using the fact that v ×e w = −e× v × w is the
cross product on Ve.

The equivalence of (iii) and (iv) follows from the equivalence of (i) and (ii)
by interchanging the roles of Λ and Λ⊥. Thus we have proved the equivalence
of conditions (i)–(viii). The last assertion of the lemma follows from (i) and
equation (6.8). This proves Lemma 6.25.

7 Cayley calibrations

We assume throughout that W is an 8–dimensional real vector space.

Definition 7.1. A 4–form Φ ∈ Λ4W ∗ is called nondegenerate if for every triple
u, v, w of linearly independent vectors in W there is a vector x ∈ W such that
Φ(u, v, w, x) 6= 0. An inner product on W is called compatible with a 4–form Φ if
the map W 3 →W : (u, v, w) 7→ u× v × w defined by

(7.2) 〈x, u× v × w〉 := Φ(x, u, v, w)

is a triple cross product. A 4–form Φ ∈ Λ4W ∗ is called a Cayley-form if it admits
a compatible inner product.

Example 7.3. The standard Cayley-form on R8 in coordinates x0, x1, . . . , x7 is
given by

Φ0 = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356

+ e4567 − e2367 − e2345 − e1357 + e1346 − e1256 − e1247.

It is compatible with the standard inner product and induces the standard triple cross
product on R8 (see Example 5.32). Note that Φ0 ∧ Φ0 = 14 vol.
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As in Section 3 we shall see that a compatible inner product, if it exists, is
uniquely determined by Φ. However, in contrast to Section 3, nondegeneracy is, in
the present setting, not equivalent to the existence of a compatible inner product,
but is only a necessary condition. The goal in this section is to give an intrinsic
characterization of Cayley-forms. In particular, we shall see that every Cayley-
form satisfies the condition Φ ∧ Φ 6= 0. It seems to be an open question whether
or not every nondegenerate 4–form on W has this property; we could not find a
counterexample but also did not see how to prove it. We begin by characterizing
compatible inner products.

Lemma 7.4. Fix an inner product on W and a 4–form Φ ∈ Λ4W ∗. Then the
following are equivalent:

(i) The inner product is compatible with Φ.

(ii) There is a unique orientation on W , with volume form vol ∈ Λ8W ∗, such that,
for all u, v, w ∈W , we have

(7.5) ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ = 6|u ∧ v|2vol.

(iii) Choose the orientation on W and the volume form vol ∈ Λ8W ∗ as in (ii).
Then, for all u, v, w ∈W , we have

(7.6) ι(v)ι(u)Φ ∧ ι(w)ι(u)Φ ∧ Φ = 6
(
|u|2〈v, w〉 − 〈v, u〉〈u,w〉

)
vol

Each of these conditions implies that Φ is nondegenerate and Φ ∧ Φ 6= 0.

Proof. We prove that (i) implies (ii). Assume the inner product is compatible with
Φ and let W 3 → W : (u, v, w) 7→ u × v × w be the triple cross product on W
defined by (7.2). Assume u, v ∈W are linearly independent. Then the subspace

Wu,v := {w ∈W : 〈u,w〉 = 〈v, w〉 = 0}

carries a symplectic form ωu,v : Wu,v ×Wu,v → R and a compatible complex
structure Ju,v : Wu,v →Wu,v given by

ωu,v(x,w) :=
Φ(x, u, v, w)

|u ∧ v|
, Ju,vw := −u× v × w

|u ∧ v|
.

Equation (6.4) asserts that Ju,v is an isometry onWu,v and equation (6.6) asserts that
Ju,v is skew adjoint. Hence, Ju,v is a complex structure on Wu,v and equation (7.2)
shows that, for all x,w ∈Wu,v, we have

ωu,v(x,w) =
〈x, u× v × w〉
|u ∧ v|

= −〈x, Ju,vw〉.
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Thus the inner product ωu,v(·, Ju,v·) onWu,v is the one inherited fromW . It follows
that

(7.7) ωu,v ∧ ωu,v ∧ ωu,v = 6volu,v,

where volu,v ∈ Λ6W ∗u,v denotes the volume form on Wu,v with the symplectic
orientation. Since the space of linearly independent pairs u, v ∈ W is connected,
there is a unique orientation on W such that, for every pair u, v of linearly inde-
pendent vectors in W and every symplectic basis e1, . . . , e6 of Wu,v, the basis
u, v, e1, . . . , e6 of W is positively oriented. Let vol ∈ Λ8W ∗ be the volume form
of W ∗ for this orientation. Then

volu,v =
1

|u ∧ v|
ι(v)ι(u)vol|Wu,v

and, hence, equation (7.5) follows from (7.7). This shows that (i) implies (ii).
That (ii) implies (iii) follows by using (7.5) with v replaced by v + w.

We prove that (iii) implies (i). Assume there is an orientation on W such
that (7.6) holds, and define the mapW 3 →W : (u, v, w) 7→ u×v×w by (7.2). That
this map is alternating and satisfies (6.3) is obvious. We prove that it satisfies (6.4).
Fix a unit vector e ∈W and denote

Ve := {v ∈W : 〈e, v〉 = 0} , φe := ι(e)Φ|Ve , vole := ι(e)vol|Ve .

Then equation (7.6) asserts that

ι(u)φe ∧ ι(v)φe ∧ φe = 6〈u, v〉vole

for every u ∈ Ve. Hence, φe satisfies condition (i) in Lemma 3.4 and therefore is
compatible with the inner product. This means that the bilinear map Ve × Ve →
Ve : (u, v) 7→ u×e v defined by 〈u×e v, w〉 := φe(u, v, w) is a cross product on Ve.
Since φe(u, v, w) = Φ(w, u, e, v) = 〈u×e×v, w〉, we have u×ev = u×e×v. This
implies |u×e×v| = |u∧v|whenever u and v are orthogonal to e and e has norm one.
Using Gram–Schmidt and scaling, we deduce that our map (u, v, w) 7→ u× v × w
satisfies (6.4) and, hence, is a triple cross product. Thus we have proved that (i), (ii),
and (iii) are equivalent. Moreover, condition (ii) implies that Φ is nondegenerate
and (i) implies that Φ ∧ Φ 6= 0, by Remark 6.21. This proves Lemma 7.4.

We are now in a position to characterize Cayley-forms intrinsically. A 4–form
Φ is nondegenerate if and only if the 2–form ι(v)ι(u)Φ ∈ Λ2W ∗ descends to
a symplectic form on the quotient W/span{u, v} or, equivalently, the 8–form
ι(v)ι(u)Φ∧ ι(v)ι(u)Φ∧Φ is nonzero whenever u, v are linearly independent. The
question to be adressed is under which additional condition we can find an inner
product on W that satisfies (7.5).
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Theorem 7.8. A 4–form Φ ∈ Λ4W ∗ admits a compatible inner product if and only
if it satisfies the following condition.

(C)



Φ is nondegenerate and, if u, v, w ∈W are linearly independent and

(7.9) ι(v)ι(u)Φ ∧ ι(w)ι(u)Φ ∧Φ = ι(u)ι(v)Φ ∧ ι(w)ι(v)Φ ∧Φ = 0,

then, for all x ∈W , we have

ι(w)ι(u)Φ ∧ ι(x)ι(u)Φ ∧ Φ = 0

⇐⇒ ι(w)ι(v)Φ ∧ ι(x)ι(v)Φ ∧ Φ = 0.
(7.10)

If this holds, then the compatible inner product is uniquely determined by Φ.

Proof. See page 50.

To understand condition (C) geometrically, assume Φ satisfies (7.6) for some
inner product onW . Then ι(v)ι(u)Φ∧ι(w)ι(u)Φ∧Φ = 0 if and only if |u|2〈v, w〉−
〈v, u〉〈u,w〉 = 0. Hence, if u, v, w are linearly independent, equation (7.9) asserts
that w is orthogonal to u and v. Under this assumption both conditions in (7.10)
assert that w and x are orthogonal.

Every Cayley-form Φ induces two orientations on W . First, since the 8–form
ι(v)ι(u)Φ∧ ι(v)ι(u)Φ∧Φ is nonzero for every linearly independent pair u, v ∈W
and the space of linearly independent pairs in W is connected, there is a unique
orientation on W such that ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ > 0 whenever u, v ∈ W
are linearly independent. The second orientation of W is induced by the 8–form
Φ ∧ Φ. This leads to the following definition.

Definition 7.11. A Cayley-form Φ ∈ Λ4W ∗ is called positive if the 8–forms Φ∧Φ
and ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ induce the same orientation whenever u, v ∈ W
are linearly independent. It is called negative if it is not positive.

Thus Φ is negative if and only if −Φ is positive. Moreover, it follows from
Remark 6.21 that a Cayley-form Φ ∈ Λ4W ∗ is positive if and only if the associated
triple cross product is positive.

Theorem 7.12. If Φ,Ψ ∈ Λ4W ∗ are two positive Cayley-forms, then there is an
automorphism g ∈ Aut(W ) such that g∗Φ = Ψ.

Proof. See page 51.
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Lemma 7.13. Let W be a real vector space and g : W 4 → R be a multi-linear
map satisfying

(7.14) g(u, v;w, x) = g(w, x;u, v) = −g(v, u;w, x)

for all u, v, w, x ∈W and

(7.15) g(u, v;u, v) > 0

whenever u, v ∈W are linearly independent. Then the matrices

Λu(v, w) :=

(
g(u, v;u, v) g(u, v;u,w)
g(u,w;u, v) g(u,w;u,w)

)
∈ R2×2, and

A(u, v, w) :=

g(v, w; v, w) g(v, w;w, u) g(v, w;u, v)
g(w, u; v, w) g(w, u;w, u) g(w, u;u, v)
g(u, v; v, w) g(u, v;w, u) g(u, v;u, v)

 ∈ R3×3

are positive definite whenever u, v, w ∈W are linearly independent. Moreover, the
following are equivalent:

(i) If u, v, w are linearly independent and g(u, v;w, u) = g(v, w;u, v) = 0, then,
for all x ∈W , we have

(7.16) g(u,w;u, x) = 0 ⇐⇒ g(v, w; v, x) = 0.

(ii) If u, v, w and u, v, w′ are linearly independent, then

(7.17)
det(Λu(v, w))

det(Λv(u,w))
=

det(Λu(v, w′))

det(Λv(u,w′))
.

(iii) If u, v, w and u, v′, w′ are linearly independent, then

(7.18)
det(Λu(v, w))√
det(A(u, v, w))

=
det(Λu(v′, w′))√
det(A(u, v′, w′))

.

(iv) There is an inner product on W such that

(7.19) g(u, v;u, v) = |u|2|v|2 − 〈u, v〉2

for all u, v ∈W .

If these equivalent conditions are satisfied, then the inner product in (iv) is uniquely
determined by g and it satisfies

det(Λu(v, w)) = |u|2|u ∧ v ∧ w|2,
det(A(u, v, w)) = |u ∧ v ∧ w|4.

(7.20)
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Proof. Let u, v, w ∈ W be linearly independent. We prove that the matrices
Λu(v, w) and A(u, v, w) are positive definite. By (7.15) they have positive diagonal
entries. Since the determinant of Λu(v, w) agrees with the determinant of the
lower right 2× 2 block of A(u, v, w), it suffices to prove that both matrices have
positive determinants. To see this, we observe that the determinants of Λu(v, w)
and A(u, v, w) remain unchanged if we add to v a multiple of u and to w a linear
combination of u and v. With the appropriate choices both matrices become diagonal
and thus have positive determinants. Hence, Λu(v, w) and A(u, v, w) are positive
definite, as claimed.

We prove that (iv) implies (7.20). The matrix Λu(v, w) and |u∧ v ∧w|2 remain
unchanged if we add to v and w multiples of u. Hence, we may assume that v and
w are orthogonal to u. In this case

Λu(v, w) = |u|2
(
|v|2 〈v, w〉
〈w, v〉 |w|2

)
and this implies the first equation in (7.20). Since the determinant of the matrix
A(u, v, w) remains unchanged if we add to v a multiple of u and to w a linear
combination of u and v, we may assume that u, v, w are pairwise orthogonal. In
this case the second equation in (7.20) is obvious. Thus we have proved that (iv)
implies (7.20). By (7.20) the inner product is uniquely determined by g.

We prove that (i) implies (ii). Fix two linearly independent vectors u, v ∈ W .
Then the subspace

Wu,v := {w ∈W : g(u, v;w, u) = g(v, w;u, v) = 0}

has codimension two and W = Wu,v ⊕ span{u, v}. Now fix an element w ∈
Wu,v. Then (7.16) asserts that the linear functionals x 7→ g(u,w;u, x) and x 7→
g(v, w; v, x) on W have the same kernel. Hence, there exists a constant λ ∈ R
such that g(v, w; v, x) = λg(u,w;u, x) for all x ∈ W . With x = w we obtain
λ = g(v, w; v, w)/g(u,w;u,w) and hence

g(u,w;u, x)g(v, w; v, w) = g(u,w;u,w)g(v, w; v, x) for all x ∈W.

This equation asserts that the differential of the map

Wu,v \ {0} → R : w 7→ g(u,w;u,w)

g(v, w; v, w)

vanishes and so the map is constant. This proves (7.17) for all w,w′ ∈Wu,v \ {0}.
Since adding to w a linear combination of u and v does not change the determinants
of Λu(v, w) and Λv(u,w), equation (7.17) continues to hold for all w,w′ ∈W that
are linearly independent of u and v. Thus we have proved that (i) implies (ii).
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We prove that (ii) implies (iii). It follows from (7.17) that

w,w′ ∈Wu,v \ {0} =⇒ g(u,w;u,w)

g(v, w; v, w)
=
g(u,w′;u,w′)

g(v, w′; v, w′)
.

Using this identity with u replaced by u+ v we obtain

w,w′ ∈Wu,v \ {0} =⇒ g(u,w; v, w)

g(v, w; v, w)
=
g(u,w′; v, w′)

g(v, w′; v, w′)
.

Now let w,w′ ∈ Wu,v and assume that g(u,w; v, w) = 0. Then we also have
g(u,w′; v, w′) = 0 and so it follows from the definition of Wu,v that all off-
diagonal terms in the matrices Λu(v, w), Λu(v, w′), A(u, v, w), and A(u, v, w′)
vanish. Hence,

det(Λu(v, w))2

det(A(u, v, w))
=
g(u, v;u, v)g(u,w;u,w)

g(v, w; v, w)

=
g(u, v;u, v)g(u,w′;u,w′)

g(v, w′; v, w′)
=

det(Λu(v, w′))2

det(A(u, v, w′))
.

Thus we have proved (7.18) under the assumption that w,w′ ∈ Wu,v \ {0} and
g(w, u;w, v) = 0. Since the determinants of Λu(v, w) and A(u, v, w) remain
unchanged if we add to w a linear combination of u and v and if we add to v a
multiple of u, equation (7.18) continues to hold when v = v′. If u, v, w and u, v, w′

and u, v′, w′ are all linearly independent triples we obtain

det(Λu(v, w))2

det(A(u, v, w))
=

det(Λu(v, w′))2

det(A(u, v, w′))
=

det(Λu(v′, w′))2

det(A(u, v′, w′))
.

Here the last equation follows from the first by symmetry in v and w. This proves
equation (7.18) under the additional assumption that u, v, w′ is a linearly indepen-
dent triple. This assumption can be dropped by continuity. Thus we have proved
that (ii) implies (iii).

We prove that (iii) implies (iv). Define a function W → [0,∞) : u 7→ |u| by
|u| := 0 for u = 0 and by

(7.21) |u|2 :=
g(u,w;u,w)g(u, v;u, v)− g(u, v;u,w)2√

det(A(u, v, w))

for u 6= 0, where v, w ∈ W are chosen such that u, v, w are linearly independent.
By (7.18) the right hand side of (7.21) is independent of v and w. It follows
from (7.21) with u replaced by u+ v that

|u+ v|2 − |u|2 − |v|2 = 2
g(u,w; v, w)g(u, v;u, v)− g(u, v;u,w)g(u, v; v, w)√

det(A(u, v, w))
.
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Replacing v by−v gives |u+ v|2 + |u− v|2 = 2|u|2 + 2|v|2. Thus the map W →
[0,∞) : u 7→ |u| is continuous, satisfies the parallelogram identity, and vanishes
only for u = 0. Hence, it is a norm on W and the associated inner product of two
linearly independent vectors u, v ∈W is given by

(7.22) 〈u, v〉 :=
g(u,w; v, w)g(u, v;u, v)− g(u, v;u,w)g(u, v; v, w)√

det(A(u, v, w))

whenever w ∈ W is chosen such that u, v, w are linearly independent. That this
inner product satisfies (7.19) for every pair of linearly independent vectors follows
from (7.21) and (7.22) with w ∈Wu,v. This proves that (iii) implies (iv).

We prove that (iv) implies (i). Replacing v in equation (7.19) by v + w we
obtain

g(u, v;u,w) = |u|2〈v, w〉 − 〈u, v〉〈u,w〉.

for all u, v, w ∈W . Hence,

g(u, v;w, u) = g(v, w;u, v) = 0 ⇐⇒ 〈u,w〉 = 〈v, w〉 = 0.

If w ∈ W is orthogonal to u and v, then we have g(u,w;u, x) = |u|2〈w, x〉 and
g(v, w; v, x) = |v|2〈w, x〉. This implies (7.16) and proves Lemma 7.13.

Proof of Theorem 7.8. If Φ is nondegenerate and u ∈ W is nonzero, then ι(u)Φ
descends to a nondegenerate 3–form on the 7–dimensional quotient space W/Ru.
By Lemma 3.4 this implies that ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ ι(u)Φ descends to a
nonzero 7–form on W/Ru for every vector v ∈ W \ Ru. Hence, the 8–form
ι(v)ι(u)Φ∧ ι(v)ι(u)Φ∧Φ onW is nonzero whenever u, v are linearly independent.
The orientation on W induced by this form is independent of the choice of the
pair u, v. Choose any volume form Ω ∈ Λ8W ∗ compatible with this orientation
and, for λ > 0, define a multi-linear function gλ : W 4 → R by

(7.23) gλ(u, v;w, x) :=
ι(v)ι(u)Φ ∧ ι(x)ι(w)Φ ∧ Φ

6λ4Ω

This function satisfies (7.14) and (7.15) and, if Φ satisfies (C), it also satisfies (7.16).
Hence, it follows from Lemma 7.13 that there is a unique inner product 〈·, ·〉λ on
W such that, for all u, v ∈W , we have

(7.24) gλ(u, v;u, v) = |u|2λ|v|
2
λ − 〈u, v〉

2
λ.

Let volλ be the volume form associated to the inner product and the orientation.
Then there is a constant µ(λ) > 0 such that

volλ = µ(λ)2Ω.
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We have gλ = λ−4g1, hence |u|λ = λ−1|u|1 for every u ∈ W , and hence volλ =
λ−8vol1. Thus µ(λ) = λ−4µ(1). With λ := µ(1)1/6 we obtain µ(λ) = λ−4µ(1) =
µ(1)1/3 = λ2. With this value of λ we have λ4Ω = volλ. Hence, it follows
from (7.23) and (7.24) that

ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ = 6
(
|u|2λ|v|

2
λ − 〈u, v〉

2
λ

)
volλ.

Hence, by Lemma 7.4, Φ is compatible with the inner product 〈·, ·〉λ. This shows
that every 4–form Φ ∈ Λ4W ∗ that satisfies (C) is compatible with a unique inner
product.

Conversely, suppose that Φ is compatible with an inner product. Then, by
Lemma 7.4, there is an orientation on W such that the associated volume form
vol ∈ Λ8W ∗ satisfies (7.5). Define g : W 4 → R by

g(u, v;w, x) :=
ι(v)ι(u)Φ ∧ ι(x)ι(w)Φ ∧ Φ

6vol
.

By (7.5) this map satisfies condition (iv) in Lemma 7.13 and it obviously satis-
fies (7.14) and (7.15). Hence, it satisfies condition (i) in Lemma 7.13 and this
implies that Φ satisfies (C). This proves Theorem 7.8.

Proof of Theorem 7.12. Let Φ ∈ Λ4W ∗ be a positive Cayley-form with the asso-
ciated inner product, orientation, and triple cross product. Let φ0 ∈ Λ3(R7)∗ and
ψ0 ∈ Λ4(R7)∗ be the standard associative and coassociative calibrations defined in
Example 2.15 and in the proof of Lemma 4.8. Then Φ0 := 1∗∧φ0 +ψ0 ∈ Λ4(R8)∗

is the standard Cayley-form on R8.
Choose a unit vector e ∈W and denote

Ve := e⊥, φe := ι(e)Φ|Ve ∈ Λ3V ∗e , ψe := Φ|Ve ∈ Λ4V ∗e .

Then φe is a nondegenerate 3–form on Ve and, hence, by Theorem 3.2, there is an
isomorphism g : R7 → Ve such that g∗φe = φ0. It follows also from Theorem 3.2
that g identifies the standard inner product on R7 with the unique inner product
on Ve that is compatible with φe, and the standard orientation on R7 with the
orientation determined by φe via Lemma 3.4. Hence, it follows from Lemma 4.8
that g also identifies the two coassociative calibrations, i.e., g∗ψe = ψ0. Since Φ is
a positive Cayley-form, we have

Φ = e∗ ∧ φe + ψe.

Hence, if we extend g to an isomorphism R8 = R ⊕ R7 → W , which is still
denoted by g and sends e0 = 1 ∈ R ⊂ R8 to e, we obtain g∗Φ = Φ0 and this
proves Theorem 7.12.
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Remark 7.25. The space S2Λ2W ∗ of symmetric bilinear forms on Λ2W can be
identified with the space of multi-linear maps g : W 4 → R that satisfy (7.14).
Denote by S2

0Λ2W ∗ ⊂ S2Λ2W ∗ the subspace of all g ∈ S2Λ2W ∗ that satisfy the
algebraic Bianchi identity

(7.26) g(u, v;w, x) + g(v, w;u, x) + g(w, u; v, x) = 0

for all u, v, w, x ∈W . Then there is a direct sum decomposition

S2Λ2W ∗ = Λ4W ∗ ⊕ S2
0Λ2W ∗

and the projection
Π : S2Λ2W ∗ → Λ4W ∗

is given by

(Πg)(u, v, w, x) := 1
3

(
g(u, v;w, x) + g(v, w;u, x) + g(w, u; v, x)

)
.

Note that

dim Λ2W = 28, dim S2Λ2W = 406,(7.27)

dim Λ4W = 70, dim S2
0Λ2W = 336.(7.28)

Moreover, there is a natural quadratic map qΛ : S2W ∗ → S2
0Λ2W ∗ given by(

qΛ(γ)
)
(u, v;x, y) := γ(u, x)γ(v, y)− γ(u, y)γ(v, x)

for γ ∈ S2W ∗ and u, v, x, y ∈ W . Lemma 7.13 asserts, in particular, that the
restriction of this map to the subset of inner products is injective and, for each
element g ∈ S2Λ2W ∗, it gives a necessary and sufficient condition for the existence
of an inner product γ on W such that

g −Πg = qΛ(γ).

We shall see in Corollary 9.9 below that, if Φ ∈ Λ4W ∗ is a positive Cayley-form
and g = gΦ ∈ S2Λ2W ∗ is given by

gΦ(u, v;x, y) :=
ι(v)ι(u)Φ ∧ ι(y)ι(x)Φ ∧ Φ

vol
, vol :=

Φ ∧ Φ

14
,

then
gΦ = 6qΛ(γ) + 7Φ

for a unique inner product γ ∈ S2W ∗, and the volume form of γ is indeed vol.
Thus, in particular, we have ΠgΦ = 7Φ.
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Remark 7.29. The space S2S2W ∗ of symmetric bilinear forms on S2W can be
identified with the space of multi-linear maps σ : W 4 → R that satisfy

(7.30) σ(u, v;x, y) = σ(x, y;u, v) = σ(v, u;x, y).

Denote by S2
0S

2W ∗ the subspace of all σ ∈ S2S2W ∗ that satisfy the algebraic
Bianchi identity (7.26). Then

S2S2W ∗ = S4W ∗ ⊕ S2
0S

2W ∗,

where

dim S2W = 36, dim S2S2W = 666,(7.31)

dim S4W = 330, dim S2
0S

2W = 336.(7.32)

The projection Π : S2S2W ∗ → S4W ∗ is given by the same formula as above.
Thus

(σ −Πσ)(u, v;x, y) = 2
3σ(u, v;x, y)− 1

3σ(v, x;u, y)− 1
3σ(x, u; v, y).

There is a natural quadratic map qS : S2W ∗ → S2S2W ∗ given by(
qS(γ)

)
(u, v;x, y) := γ(u, v)γ(x, y).

Polarizing the quadratic map qΛ : S2W ∗ → S2Λ2W ∗ one obtains a linear map
T : S2S2W ∗ → S2Λ2W ∗ given by(

Tσ
)
(u, v;x, y) := σ(u, x; v, y)− σ(u, y; v, x)

such that qΛ = T ◦ qS . The image of T is the subspace S2
0Λ2W ∗ of solutions

of the algebraic Bianchi identity (7.26) and its kernel is the subspace S4W ∗. A
pseudo-inverse of T is the map S : S2Λ2W ∗ → S2S2W ∗ given by(

Sg
)
(u, v;x, y) := 1

3

(
g(u, x; v, y) + g(u, y; v, x)

)
whose kernel is Λ4W ∗ and whose image is S2

0S
2W ∗. Thus

TSg = g −Πg, STσ = σ −Πσ

for g ∈ S2Λ2W ∗ and σ ∈ S2S2W ∗. Given g ∈ S2Λ2W ∗ and γ ∈ S2W ∗, we have

g −Πg = qΛ(γ) ⇐⇒ Sg = (1−Π)qS(γ).

Namely, if qΛ(γ) = g−Πg, then Sg = S(g−Πg) = SqΛ(γ) = qS(γ)−ΠqS(γ),
and if (1−Π)qS(γ) = Sg, then (1−Π)g = TSg = T (1−Π)qS(γ) = qΛ(γ).
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8 The group G2

Let V be a 7–dimensional real Hilbert space equipped with a cross product and
let φ ∈ Λ3V ∗ be the associative calibration defined by (2.8). We orient V as in
Lemma 3.4 and denote by ∗ : ΛkV ∗ → Λ7−kV ∗ the associated Hodge ∗–operator
and by ψ := ∗φ ∈ Λ4V ∗ the coassociative calibration. Recall that V is equipped
with an associator bracket via (4.1), related to ψ via (4.9), and with a coassociator
bracket (4.22).

The group of automorphisms of φ will be denoted by

G(V, φ) := {g ∈ GL(V ) : g∗φ = φ} .

By Lemma 2.20, we have G(V, φ) ⊂ SO(V ) and hence, by (2.8),

G(V, φ) = {g ∈ SO(V ) : gu× gv = g(u× v) ∀u, v ∈ V } .

For the standard structure φ0 on R7 in Example 2.15 we denote the structure group
by G2 := G(R7, φ0). By Theorem 3.2, the group G(V, φ) is isomorphic to G2 for
every nondegenerate 3–form on a 7–dimensional vector space.

Theorem 8.1. The group G(V, φ) is a 14–dimensional simple, connected, simply
connected Lie group. It acts transitively on the unit sphere and, for every unit vector
u ∈ V , the isotropy subgroup Gu := {g ∈ G(V, φ) : gu = u} is isomorphic to
SU(3). Thus there is a fibration

SU(3) ↪→ G2 −→ S6.

Proof. As we have observed in Step 4 in the proof of Lemma 3.4, the group
G = G(V, φ) has dimension at least 14, as it is an isotropy subgroup of the action
of the 49–dimensional group GL(V ) on the 35–dimensional space Λ3V ∗. Since
G ⊂ SO(V ), by Lemma 2.20, the group acts on the unit sphere

S := {u ∈ V : |u| = 1} .

Thus, for every u ∈ S, the isotropy subgroup Gu has dimension at least 8. By
Lemma 2.18, the group Gu preserves the subspace Wu := u⊥, the symplectic form
ωu, and the complex structure Ju on Wu given by ωu(v, w) = 〈u, v × w〉 and
Juv = u × v. Hence, Gu is isomorphic to a subgroup of U(Wu, ωu, Ju) ∼= U(3).
Now consider the complex valued 3–form θu ∈ Λ3,0W ∗u given by

θu(x, y, z) := φ(x, y, z)− iφ(u× x, y, z) = φ(x, y, z)− iψ(u, x, y, z)

for x, y, z ∈ Wu. (See (4.1) and (4.9) for the last equality.) This form is nonzero
and is preserved by Gu. Hence, Gu is isomorphic to a subgroup of SU(Wu, ωu, Ju).
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Since SU(Wu, ωu, Ju) ∼= SU(3) is a connected Lie group of dimension 8 and Gu

has dimension at least 8, it follows that

Gu
∼= SU(Wu, ωu, Ju) ∼= SU(3).

In particular, dim Gu = 8 and so dim G ≤ dim Gu + dim S = 14. This implies
dim G = 14 and, since S is connected, G acts transitively on S. Thus we have
proved that there is a fibration SU(3) ↪→ G → S. It follows from the homotopy
exact sequence of this fibration that G is connected and simply connected and that
π3(G) ∼= Z. Hence, G is simple.

Here is another proof that G is simple. Let g := Lie(G) denote its Lie algebra
and, for every u ∈ S, let gu := Lie(Gu) denote the Lie algebra of the isotropy
subgroup. Then, for every ξ ∈ g, we have ξ ∈ gu if and only if u ∈ ker ξ. Since
every ξ ∈ g is skew-adjoint, it has a nontrivial kernel and hence belongs to gu for
some u ∈ S.

Now let I ⊂ g be a nonzero ideal. Then, by what we have just observed, there is
an element u ∈ S such that I ∩ gu 6= {0}. Thus I ∩ gu is a nonzero ideal in gu and,
since gu is simple, this implies gu ⊂ I . Next we claim that, for every v ∈ u⊥, there
is an element ξ ∈ I such that ξu = v. To see this, choose any element η ∈ gu ⊂ I
such that ker η = 〈u〉. Then there is a unique element w ∈ u⊥ such that ηw = v.
Since G acts transitively on S there is an element ζ ∈ g such that ζu = w. Hence,
ξ = [η, ζ] ∈ I and ξu = ηζu = ηw = v. This proves that dim(I/gu) ≥ 6; hence,
dim I ≥ 14, and hence I = g. This proves Theorem 8.1.

We examine the action of the group G(V, φ) on the space

S :=

{
(u, v, w) ∈ V :

|u| = |v| = |w| = 1,
〈u, v〉 = 〈u,w〉 = 〈v, w〉 = 〈u× v, w〉 = 0

}
.

Let S ⊂ V denote the unit sphere. Then each tangent space TuS = u⊥ carries a
natural complex structure v 7→ u× v. The space S is a bundle over S whose fiber
over u is the space of Hermitian orthonormal pairs in TuS. Hence, S is a bundle of
3–spheres over a bundle of 5–spheres over a 6–sphere and therefore is a compact
connected simply connected 14–dimensional manifold.

Theorem 8.2. The group G(V, φ) acts freely and transitively on S .

Proof. We give two proofs of this result. The first proof uses the fact that the
isotropy subgroup Gu ⊂ G := G(V, φ) of a unit vector u ∈ V is isomorphic
to SU(3) and the isotropy subgroup in SU(3) of a Hermitian orthonormal pair is
the identity. Hence, G acts freely on S . Since G and S are compact connected
manifolds of the same dimension, this implies that G acts transitively on S .
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For the second proof we assume that φ = φ0 is the standard structure on
V = R7. Given (u, v, w) ∈ S , define g : R7 → R7 by

ge1 = u, ge2 = v, ge3 = u× v, ge4 = w

ge5 = w × u, ge6 = w × v, ge7 = w × (u× v).

By construction g preserves the cross product and the inner product. Hence, g ∈ G2.
Moreover, g is the unique element of G2 that maps the triple (e1, e2, e4) to (u, v, w).
This proves Theorem 8.2.

Corollary 8.3. The group G(V, φ) acts transitively on the space of associative
subspaces of V and on the space of coassociative subspaces of V .

Proof. This follows from Theorem 8.2, Lemma 4.7, and Lemma 4.26.

Remark 8.4. Let Λ ⊂ V be an associative subspace and define H := Λ⊥ and
GΛ := {g ∈ G(V, φ) : gΛ = Λ}. Then every h ∈ SO(H) extends uniquely to an
element g ∈ GΛ (choose (u, v, w) ∈ S such that u, v, w ∈ H) and the action of g
on Λ is induced by the action of h on Λ+H∗ under the isomorphism in Remark 4.27.
Hence the map GΛ → SO(H) : g 7→ g|H is an isomorphism and so the associative
Grassmannian L := {Λ ⊂ V : Λ is an associative subspace} is diffeomorphic to
the homogeneous space G(V, φ)/SO(H) ∼= G2/SO(4), by Corollary 8.3. Since
Λ ⊂ V is associative if and only if H := Λ⊥ is coassociative (see Lemma 4.26), L
also is the coassociative Grassmannian.

Theorem 8.5. There are orthogonal splittings

Λ2V ∗ = Λ2
7 ⊕ Λ2

14,

Λ3V ∗ = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

where dim Λkd = d and

Λ2
7 := {ι(u)φ : u ∈ V } =

{
ω ∈ Λ2V ∗ : ∗(φ ∧ ω) = 2ω

}
,

Λ2
14 :=

{
ω ∈ Λ2V ∗ : ψ ∧ ω = 0

}
=
{
ω ∈ Λ2V ∗ : ∗(φ ∧ ω) = −ω

}
,

Λ3
1 := 〈φ〉,

Λ3
7 := {ι(u)ψ : u ∈ V } ,

Λ3
27 :=

{
ω ∈ Λ3V ∗ : φ ∧ ω = 0, ψ ∧ ω = 0

}
.

Each of the spaces Λkd is an irreducible representation of G(V, φ) and the represen-
tations Λ2

7 and Λ3
7 are both isomorphic to V , Λ2

14 is isomorphic to the Lie algebra
g(V, φ) := Lie(G(V, φ)) ∼= g2, and Λ3

27 is isomorphic to the space of traceless
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symmetric endomorphisms of V . The orthogonal projections π7 : Λ2V ∗ → Λ2
7 and

π14 : Λ2V ∗ → Λ2
14 are given by

π7(ω) = 1
3ω + 1

3 ∗ (φ ∧ ω) = 1
3 ∗
(
ψ ∧ ∗(ψ ∧ ω)

)
,(8.6)

π14(ω) = 2
3ω −

1
3 ∗ (φ ∧ ω) = ω − 1

3 ∗
(
ψ ∧ ∗(ψ ∧ ω)

)
.(8.7)

Proof. For u ∈ V denote by Au ∈ so(V ) the endomorphism Auv := u× v. Then
the Lie algebra g := Lie(G) of G = G(V, φ) is given by

g = {ξ ∈ End(V ) : ξ + ξ∗ = 0, Aξu + [Au, ξ] = 0 ∀u ∈ V } .

Step 1. There is an orthogonal decomposition

so(V ) = g⊕ h, h := {Au : u ∈ V }

with respect to the inner product 〈ξ, η〉 := −1
2 tr(ξη) on so(V ).

The group G acts on the space so(V ) of skew-adjoint endomorphisms by
conjugation and this action preserves the inner product. Both subspaces g and h are
invariant under this action, because gAug−1 = Agu for all u ∈ V and g ∈ G. If
ξ = Au ∈ g ∩ h, then 0 = LAuφ = 3ι(u)ψ (see equation (4.19)) and hence u = 0.
This shows that g∩ h = {0}. Since dim g = 14, dim h = 7, and dim so(V ) = 21,
we have so(V ) = g ⊕ h. Moreover, g⊥ is another G–invariant complement of g.
Hence h is the graph of a G–equivariant linear map g⊥ → g. The image of this map
is an ideal in g and hence must be zero. This shows that h = g⊥.

Step 2. Λ2
14 is the orthogonal complement of Λ2

7

By equation (4.41) in Lemma 4.37 we have u∗ ∧ ψ = ∗ι(u)φ for all u ∈ V .
Hence, u∗ ∧ ω ∧ ψ = ω ∧ ∗ι(u)φ and this proves Step 2.

Step 3. The isomorphism so(V ) → Λ2V ∗ : ξ 7→ ωξ := 〈·, ξ·〉 is an SO(V )–
equivariant isometry and maps g onto Λ2

14

That the isomorphism ξ 7→ ωξ is an SO(V )–equivariant isometry follows
directly from the definitions. The image of h under this isomorphism is obviously
the subspace Λ2

7. Hence, by Step 1, the orthogonal complement of Λ2
7 is the image

of g under this isomorphism. Hence, the assertion follows from Step 2.

Step 4. Let ω ∈ Λ2V ∗. Then ψ ∧ ω = 0 if and only if ∗(φ ∧ ω) = −ω.

Define the operators Q : Λ2V ∗ → Λ2V ∗ and R : Λ2V ∗ → Λ1V ∗ by

Qω := ∗(φ ∧ ω), Rω := ∗(ψ ∧ ω)
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for ω ∈ Λ2V ∗. Then Q is self-adjoint and R∗ : Λ1V ∗ → Λ2V ∗ is given by the
same formula R∗α = ∗(ψ ∧ α) for α ∈ Λ1V ∗. Both operators are G–equivariant.
Moreover, R∗R = Q + id by equation (4.60) in Lemma 4.37. Hence, Rω = 0
if and only if Qω = −ω. (Note also that the operator R∗R vanishes on Λ2

14 by
equation (4.60) and has eigenvalue 3 on Λ2

7 by (4.52).) This proves Step 4.
One can rephrase this argument more geometrically as follows. The action of

G on Λ2
14 is irreducible by Step 3. Hence, Λ2

14 is (contained in) an eigenspace of
the operator Q. Moreover, the operator Q is traceless. To see this, let e1, . . . , e7 be
an orthonormal basis of V and denote by e1, . . . , e7 the dual basis of V ∗. Then the
2–forms eij := ei ∧ ej with i < j form an orthonormal basis of Λ2V ∗ and we have∑

i<j

〈eij , ∗(φ ∧ eij)〉 =
∑
i<j

(eij ∧ eij ∧ φ)(e1, . . . , e7) = 0.

By equation (4.49) in Lemma 4.37, the operator Q has eigenvalue 2 on the 7–
dimensional subspace Λ2

7. Since dim Λ2V ∗ = 21, it follows that Q has eigenvalue
−1 on the 14–dimensional subspace Λ2

14. This gives rise to another proof of
equation (4.60) and completes the second proof of Step 4.

Step 5. The subspaces Λ3
1, Λ3

7, and Λ3
27 form an orthogonal decomposition of Λ3V ∗

and dim Λ3
d = d.

That dim Λ3
d = d for d = 1, 7 is obvious. Since ∗ι(u)ψ = −u∗ ∧ φ, it follows

that Λ3
1 is orthogonal to Λ3

7. Moreover, for every ω ∈ Λ3V ∗, we have

φ ∧ ω = 0 ⇐⇒ u∗ ∧ φ ∧ ω = 0 ∀u ∈ V ⇐⇒ ω ⊥ Λ3
7

and
ψ ∧ ω = 0 ⇐⇒ ω ⊥ Λ3

1.

Hence, Λ3
27 is the orthogonal complement of Λ3

1 ⊕ Λ3
7. Since dim Λ3V ∗ = 35, this

proves Step 5.

Step 6. The subspaces Λ2
7, Λ2

14, Λ3
1, Λ3

7, Λ3
27 are irreducible representations of the

group G = G(V, φ).

The irreducibility of Λ3
1 and Λ2

7
∼= Λ3

7 is obvious and for Λ2
14 it follows from

Step 3. We also point out that Λ3
7 is the tangent space of the orbit of φ under

the action of SO(V ). The space Λ3
27 can be identified with the space of traceless

symmetric endomorphisms S : V → V via S 7→ LSφ by Theorem 8.8 below. That
it is an irreducible representation of G(V, φ) is shown in [Bry87]. This proves
Step 6. Equations (8.6) and (8.7) follow directly from the definitions and (4.60).
This proves Theorem 8.5.
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Theorem 8.8. The linear map

End(V )→ Λ3V ∗ : A 7→ LAφ

(see Remark 4.16) restricts to a G(V, φ)–equivariant isomorphism from the space
of traceless symmetric endomorphisms of V onto Λ3

27.

Proof. We follow the exposition of Karigiannis in [Kar09, Section 2]. Define the
linear map Λ3V ∗ → End(V ) : η 7→ Sη by

(8.9) 〈u, Sηv〉 :=
ι(u)φ ∧ ι(v)φ ∧ η

4vol

for η ∈ Λ3V ∗ and u, v ∈ V . This map has the following properties.

Step 1. Let A ∈ End(V ). Then

(8.10) SLAφ = 1
2(A∗ +A) + 1

2 tr(A)1.

In particular, Sφ = 3
21.

For t ∈ R define gt := eAt and φt := g∗t φ. Then φt ∈ Λ3V ∗ is a nondegenerate
3–form compatible with the inner product

〈u, v〉t := 〈gtu, gtv〉

on V and the volume form volt ∈ Λ7V ∗ given by

volt := g∗t vol = det(gt)vol.

Hence,
ι(u)φt ∧ ι(u)φt ∧ φt = 6|u|2tvolt

for all u ∈ V and all t ∈ R. Differentiate this equation with respect to t at t = 0 and
use the identity 0 = ι(u)(ι(u)φ∧ φ∧ η) = ι(u)φ∧ ι(u)φ∧ η− ι(u)φ∧ φ∧ ι(u)η
for η ∈ Λ3V ∗ to obtain

3ι(u)φ ∧ ι(u)φ ∧ LAφ = 12〈u,Au〉vol + 6|u|2 tr(A)vol.

Divide this equation by 12vol and use the definition of SLAφ in equation (8.9) to
obtain

〈u, SLAφu〉 = 〈u,Au〉+ 1
2 tr(A)|u|2.

Since SLAφ is a symmetric endomorphism, this proves equation (8.10). Now take
A = 1 and use the identities L1φ = 3φ and tr(1) = 7 to obtain S3φ = SL1φ = 9

21.
This proves Step 1.
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Step 2. Let v ∈ V . Then Sι(v)ψ = 0.

It follows from equation (4.47) in Lemma 4.37 that

(8.11)
ι(u)φ ∧ α ∧ ψ

vol
=
α ∧ ∗u∗

vol
= 3α(u)

for all u ∈ V and all α ∈ V ∗. Take α := ι(w)ι(v)φ = φ(v, w, ·) to obtain

(8.12) 3φ(u, v, w) =
ι(u)φ ∧ ι(w)ι(v)φ ∧ ψ

vol
.

Interchange u and v to obtain

(8.13) − 3φ(u, v, w) =
ι(w)ι(u)φ ∧ ι(v)φ ∧ ψ

vol
.

Now contract the vector w with the 8–form ι(u)φ ∧ ι(v)φ ∧ ψ = 0 to obtain

0 = ι(w)
(
ι(u)φ ∧ ι(v)φ ∧ ψ

)
= ι(w)ι(u)φ ∧ ι(v)φ ∧ ψ

+ ι(u)φ ∧ ι(w)ι(v)φ ∧ ψ
+ ι(u)φ ∧ ι(v)φ ∧ ι(w)ψ

= ι(u)φ ∧ ι(v)φ ∧ ι(w)ψ.

Here the last step follows from (8.12) and (8.13). Thus we have proved that

(8.14) ι(u)φ ∧ ι(v)φ ∧ ι(w)ψ = 0 for all u, v, w ∈ V.

Hence, Sι(w)ψ = 0 for all w ∈ V by definition of Sη. This proves Step 2.

Step 3. Let S = S∗ ∈ End(V ) be a self-adjoint endomorphism. Then

(8.15) ∗ LSφ = tr(S)ψ − LSψ.

It suffices to prove this for self-adjoint rank 1 endomorphisms. Let u ∈ V and
define S := uu∗. Then tr(S) = |u|2 and LSφ = u∗ ∧ ι(u)φ. Hence,

∗LSφ = ∗
(
u∗ ∧ ι(u)φ)

= ∗
(
u∗ ∧ ∗(u∗ ∧ ψ)

)
= ι(u)(u∗ ∧ ψ)

= |u|2ψ − u∗ ∧ ι(u)ψ

= tr(S)ψ − LSψ.

Here the third step uses the identity u∗ ∧ ∗α = (−1)k−1 ∗ ι(u)α in Remark 4.14
with k = 5 and α = u∗ ∧ ψ. This proves Step 3.
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Step 4. Let S = S∗ ∈ End(V ) and T = T ∗ ∈ End(V ) be self-adjoint endomor-
phisms. Then

(8.16) 〈LSφ,LTφ〉 = 2 tr(ST ) + tr(S) tr(T ).

It suffices to prove this for self-adjoint rank 1 endomorphisms. Let u, v ∈ V
and define S := uu∗ and T := vv∗. Then tr(S) = |u|2, tr(T ) = |v|2, tr(ST ) =
〈u, v〉2, LSφ = u∗ ∧ ι(u)φ, LTφ = v∗ ∧ ι(v)φ. Hence, by Step 3,

〈LSφ,LTφ〉vol = LSφ ∧ ∗LTφ
= LSφ ∧

(
tr(T )ψ − LTψ

)
= |v|2u∗ ∧ ι(u)φ ∧ ψ − u∗ ∧ ι(u)φ ∧ v∗ ∧ ι(v)ψ

= |v|2ι(u)φ ∧ ∗ι(u)φ− u∗ ∧ v∗ ∧ ι(u)φ ∧ ι(v)ψ

=
(
3|u|2|v|2 − 2|u× v|2

)
vol

=
(
|u|2|v|2 + 2〈u, v〉2

)
vol.

Here the fourth step follows from (4.41) and the fifth step follows from (4.43)
and (4.56). This proves Step 4.

Step 5. Let S = S∗ ∈ End(V ) be a self-adjoint endomorphism and let u ∈ V .
Then 〈ι(u)ψ,LSφ〉 = 0.

It suffices to prove this for rank 1 endomorphisms. Let v ∈ V and define
S := vv∗. Then ∗LSφ = tr(S)ψ − LSψ = |v|2ψ − v∗ ∧ ι(v)ψ by Step 3, so

ι(u)ψ ∧ ∗LSφ = |v|2ι(u)ψ ∧ ψ − ι(u)ψ ∧ v∗ ∧ ι(v)ψ = 0.

Here the last equation follows from (4.40) and (4.48).

Step 6. Define

Endsym
0 (V ) := {S ∈ End(V ) : S = S∗, tr(S) = 0} .

Then the map A 7→ LAφ restricts to G(V, φ)–equivariant isomorphism

Endsym
0 (V )→ Λ3

27 : S 7→ LSφ.

That the map A 7→ LAφ is G(V, φ)–equivariant follows directly from the
definitions. Now let S ∈ Endsym

0 (V ). Then by Step 4

LSφ ∧ ψ
vol

= 〈LSφ, φ〉 = 1
3〈LSφ,L1φ〉 = tr(S) = 0.
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Moreover, ∗ι(u)ψ = −u∗∧φ by (4.42) and so u∗∧LSφ∧φ = −〈LSφ, ι(u)ψ〉 = 0
for all u ∈ V by Step 5. This shows that LSφ ∧ φ = 0 and LSφ ∧ ψ = 0, and so
LSφ ∈ Λ3

27. Moreover, SLSφ = S for all S ∈ Endsym
0 (V ) by Step 1. Thus the map

Endsym
0 (V )→ Λ3

27 : S 7→ LSφ is injective. Since Endsym
0 (V ) and Λ3

27 both have
dimension 27, this proves Step 6 and Theorem 8.8.

The above proof of Theorem 8.8 does not use the fact that the G(V, φ)–repre-
sentation Endsym

0 (V ), and hence also Λ3
27, is irreducible. Moreover, we have not

included a proof of this fact in these notes (although it is stated in Theorem 8.5).
Assuming irreducibility, the proof of Theorem 8.8 can be simplified as follows.

Proof of Theorem 8.8 assuming Endsym
0 (V ) is irreducible. Since

LAφ =
d

dt

∣∣∣∣
t=0

exp(tA)∗φ,

it is clear that the map End(V )→ Λ3V ∗ : A 7→ LAφ is G(V, φ)–equivariant. Its
kernel is Lie(G(V, φ)) and hence its restriction to Endsym

0 (V ) is injective. Now
the composition of the map Endsym

0 (V ) → Λ3V ∗ : A → LAφ with the orthogo-
nal projection onto Λ3

1, respectively Λ3
7, is G(V, φ)–equivariant by Step 5 in the

proof of Theorem 8.5. This composition cannot be an isomorphism for dimen-
sional reasons, and hence must vanish by Schur’s Lemma, because the G(V, φ)–
representations Endsym

0 (V ), Λ3
1, and Λ3

7 are all irreducible. Thus the image of
Endsym

0 (V ) under the map A 7→ LAφ is perpendicular to Λ3
1 and Λ3

7, and hence is
equal to Λ3

27.

We close this section with the proof of a well-known formula for the differential
of the map that assigns to a nondegenerate 3–form its coassociative calibration.
Let V be a seven-dimensional real vector space, abbreviate Λk := ΛkV ∗ for
k = 0, 1, . . . , 7, and define

P = P(V ) :=
{
φ ∈ Λ3

∣∣φ is nondegenerate
}
.

This is an open subset of Λ3 and it is diffeomorphic to the homogeneous space
GL(7,R)/G2. Namely, if φ0 ∈ P is any nondegenerate 3–form then the map
GL(V ) → P : g 7→ (g−1)∗φ0 descends to a diffeomorphism from the quotient
space GL(V )/G(V, φ0) to P . Define the map Θ : P → Λ4 by

(8.17) Θ(φ) := ∗φφ.

Here ∗φ : Λ3 → Λ4 denotes the Hodge ∗–operator associated to the inner product
and orientation determined by φ.
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Theorem 8.18. The map Θ : P → Λ4 in (8.17) is a GL(V )–equivariant local
diffeomorphism, it restricts to a diffeomorphism onto its image on each connected
component of P , and its derivative at φ ∈ P is given by

(8.19) dΘ(φ)η = ∗φ
(

4
3π1(η) + π7(η)− π27(η)

)
for η ∈ Λ3. Here πd : Λ3 → Λ3

d denotes the projection associated to the orthogonal
splitting Λ3 = Λ3

1 ⊕ Λ3
7 ⊕ Λ3

27 in Theorem 8.5 determined by φ.

Proof. That P has two connected components distinguished by the orientation
of V follows from the fact that GL(V ) has two connected components. That
the restriction of Θ to each connected component of P is bijective follows from
Theorem 4.30 and that it is a diffeomorphism then follows from equation (8.19) and
the inverse function theorem.

Thus it remains to prove (8.19). Since Θ is GL(V )–equivariant, it satisfies

(8.20) Θ(g∗φ) = g∗Θ(φ)

for φ ∈ P and g ∈ GL(V ). Fix a nondegenerate 3–form φ ∈ P , denote by
ψ := Θ(φ) = ∗φφ its coassociative calibration, and differentiate equation (8.20) at
g = 1 in the direction A ∈ End(V ) to obtain

(8.21) dΘ(φ)LAφ = LAψ.

Now let η ∈ Λ3 and denote ηd := πd(η) for d = 1, 7, 27. By Theorem 8.5 and
Theorem 8.8 there exists a real number λ, a vector u ∈ V , and a traceless symmetric
endomorphism S : V → V such that

η1 = 3λφ, η7 = 3ι(u)ψ, η27 = LSφ.

Since L1φ = 3φ and L1ψ = 4ψ, it follows from equation (8.21) that

(8.22) dΘ(φ)η1 = λdΘ(φ)L1φ = λL1ψ = 4λψ = 4
3 ∗φ (3λφ) = 4

3 ∗φ η1.

Now define Au ∈ End(V ) by Auv := u× v for v ∈ V . Then

LAuφ = 3ι(u)ψ = η7, LAuψ = ∗φ(3ι(u)ψ) = ∗φη7

by (4.18) and (4.19). Hence, it follows from equation (8.21) that

(8.23) dΘ(φ)η7 = dΘ(φ)LAuφ = LAuψ = ∗φη7.

Moreover it follows from equations (8.15) and (8.21)

(8.24) dΘ(φ)η27 = dΘ(φ)LSφ = LSψ = − ∗φ LSφ = − ∗φ η27.

With this understood, equation (8.19) follows from (8.22), (8.23), and (8.24). This
proves Theorem 8.18.
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9 The group Spin(7)

Let W be an 8–dimensional real Hilbert space equipped with a positive triple cross
product and let Φ ∈ Λ4W ∗ be the Cayley calibration defined by (6.14). We orient
W so that

Φ ∧ Φ > 0

and denote by ∗ : ΛkW ∗ → Λ8−kW ∗ the associated Hodge ∗–operator. Then Φ is
self-dual, by Remark 6.21. Recall that, for every unit vector e ∈W , the subspace

Ve := e⊥

is equipped with a cross product

u×e v := u× e× v

and that

Φ = e∗ × φe + ψe, φe := ι(e)Φ ∈ Λ3W ∗, ψe := ∗(e∗ ∧ φe) ∈ Λ4W ∗,

(see Theorem 6.15). The orientation of W is compatible with the decomposition
W = 〈e〉 ⊕ Ve (see Remark 6.21).

The group of automorphisms of Φ will be denoted by

G(W,Φ) := {g ∈ GL(W ) : g∗Φ = Φ} .

By Theorem 7.8, we have G(W,Φ) ⊂ SO(W ) and hence

G(W,Φ) = {g ∈ SO(W ) : gu× gv × gw = g(u× v × w) ∀u, v, w ∈W} .

For the standard structure Φ0 on R8 in Example 5.32 we denote the structure group
by Spin(7) := G(R8,Φ0). By Theorem 7.12, the group G(W,Φ) is isomorphic to
Spin(7) for every positive Cayley-form on an 8–dimensional vector space.

Theorem 9.1. The group G(W,Φ) is a 21–dimensional simple, connected, sim-
ply connected Lie group. It acts transitively on the unit tangent bundle of the
unit sphere and, for every unit vector e ∈ W , the isotropy subgroup Ge :=
{g ∈ G(W,Φ) : ge = e} is isomorphic to G2. Thus there is a fibration

G2 ↪→ Spin(7) −→ S7.

Proof. The isotropy subgroup Ge is obviously isomorphic to G(Ve, φe) and hence
to G2. We prove that G(W,Φ) acts transitively on the unit sphere. Let u, v ∈ W
be two unit vectors and choose a unit vector e ∈W which is orthogonal to u and
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v. By Theorem 8.1, the isotropy subgroup Ge acts transitively on the unit sphere
in Ve. Hence, there is an element g ∈ Ge such that gu = v. That G(W,Φ) acts
transitively on the set of pairs of orthonormal vectors now follows immediately from
Theorem 8.1. In particular, there is a fibration G2 ↪→ Spin(7) −→ S7. It follows
from the homotopy exact sequence of this fibration and Theorem 8.1 that Spin(7)
is connected and simply connected, and that π3(Spin(7)) ∼= Z. Hence, Spin(7) is
simple. This proves Theorem 9.1.

Lemma 9.2. Abbreviate

G := G(W,Φ), g := Lie(G) ⊂ so(W ).

The homomorphism ρ : G(W,Φ)→ SO(g⊥) is a nontrivial double cover. Hence,
Spin(7) is isomorphic to the universal cover of SO(7).

Proof. Define
I := {ξ ∈ g : [ξ, so(W )] ⊂ g} .

If ξ ∈ I and η ∈ g, then [[ξ, η], ζ] = −[[η, ζ], ξ]− [[ζ, ξ], η] ∈ g for all ζ ∈ so(W ),
and so [ξ, η] ∈ I . Thus I is an ideal in g. Since so(W ) is simple, we have I ( g.
Since g is simple, we have I = {0}. This implies im ad(ξ) 6⊂ g for 0 6= ξ ∈ g.
Since ad(ξ) : so(W ) → so(W ) is skew-adjoint, this implies g⊥ 6⊂ ker ad(ξ) for
0 6= ξ ∈ g. This means that the infinitesimal adjoint action defines an isomorphism
g→ so(g⊥). Hence, the adjoint action gives rise to a covering map G→ SO(g⊥).
Since G is connected and simply connected, this implies that G is the universal
cover of SO(g⊥) ∼= SO(7) and this proves Lemma 9.2.

We examine the action of the group G(W,Φ) on the space

S :=
{

(u, v, w, x) ∈W
∣∣u, v, w, u× v × w, x are orthonormal

}
.

The space S is a bundle of 3–spheres over a bundle of 5–spheres over a bundle
of 6–spheres over a 7–sphere. Hence, it is a compact connected simply connected
21–dimensional manifold.

Theorem 9.3. The group G(W,Φ) acts freely and transitively on S .

Proof. Since Spin(7) acts transitively on S7 with isotropy subgroup G2, the result
follows immediately from Theorem 8.2.

Corollary 9.4. The group G(W,Φ) acts transitively on the space of Cayley sub-
spaces of W .

Proof. This follows directly from Lemma 6.25 and Theorem 9.3.
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Remark 9.5. For each Cayley subspace H ⊂W choose the orientation such that

volH := Φ|H

is a positive volume form and denote by Λ+H∗ the space of self-dual 2-forms (as
in Remark 4.27), by πH : W → H the orthogonal projection, and by

GH := {g ∈ G(W,Φ) : gH = H}

the isotropy subgroup. Fix a Cayley subspace H ⊂W . Then there is a unique
orientation preserving GH -equivariant isometric isomorphism

TH : Λ+H∗ → Λ+(H⊥)∗.

It is given by

(9.6) THω := −1
2

(
∗(Φ ∧ π∗Hω)

)
|H⊥ for ω ∈ Λ+H∗

and its inverse is (TH)−1 = TH⊥ . If ω1, ω2, ω3 is a standard basis of Λ+H∗ and
τi ∈ Λ+(H⊥)∗ is defined by τi := THωi for i = 1, 2, 3, then the Cayley calibration
Φ can be expressed in the form

(9.7) Φ = π∗HvolH + π∗H⊥volH⊥ −
3∑
i=1

π∗Hωi ∧ π∗H⊥τi.

To see this, choose a standard basis of W as in Example 7.3 such that the vectors
e0, e1, e2, e3 form a basis of H , the vectors e4, e5, e6, e7 form a basis of H⊥, and

ω1 = e01 + e23, ω2 = e02 − e13, ω3 = e03 + e12,

τ1 = e45 + e67, τ2 = e46 − e57, τ3 = e47 + e56.

That such a basis exists follows from Theorem 7.12 and Theorem 9.3. It follows
also from Theorem 9.3 that a pair (h, h′) ∈ SO(H) × SO(H⊥) belongs to the
image of the homomorphism GH → SO(H)× SO(H⊥) if and only if the induced
automorphisms of Λ+H∗ and Λ+(H⊥)∗ are conjugate under TH . Hence the map

GH → SO(H)×SO(Λ+H∗) SO(H⊥) : g 7→ [g|H , g|H⊥ ]

is a Lie group isomorphism. Hence, dim GH = 9 and so the Cayley Grassman-
nian

H := {H ⊂W : H is a Cayley subspace} ,

which is diffeomorphic to the homogeneous space G(W,Φ)/GH , has dimension 12.
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Theorem 9.8. There are orthogonal splittings

Λ2W ∗ = Λ2
7 ⊕ Λ2

21,

Λ3W ∗ = Λ3
8 ⊕ Λ3

48,

Λ4W ∗ = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35,

where dim Λkd = d and

Λ2
7 :=

{
ω ∈ Λ2W ∗ : ∗(Φ ∧ ω) = 3ω

}
= {u∗ ∧ v∗ − ι(u)ι(v)Φ : u, v ∈W} ,

Λ2
21 := {ωξ : ξ ∈ g}

=
{
ω ∈ Λ2W ∗ : ∗(Φ ∧ ω) = −ω

}
=
{
ω ∈ Λ2W ∗ : 〈ω, ι(u)ι(v)Φ〉 = ω(u, v) ∀u, v ∈W

}
,

Λ3
8 := {ι(u)Φ : u ∈W} ,

Λ3
48 :=

{
ω ∈ Λ3W ∗ : Φ ∧ ω = 0

}
,

Λ4
1 := 〈Φ〉,

Λ4
7 := {LξΦ : ξ ∈ so(W )} ,

Λ4
27 :=

{
ω ∈ Λ4W ∗ : ∗ω = ω, ω ∧ Φ = 0, ω ∧ LξΦ = 0∀ξ ∈ so(W )

}
,

Λ4
35 :=

{
ω ∈ Λ4W ∗ : ∗ω = −ω

}
.

Here g := Lie(G(W,Φ)) and, for ξ ∈ so(W ), the 4–form LξΦ ∈ Λ4W ∗ and the
2–form ωξ ∈ Λ2W ∗ are defined by LξΦ := d

dt

∣∣
t=0

exp(tξ)∗Φ and ωξ := 〈·, ξ·〉.
Each of the spaces Λkd is an irreducible representation of G(W,Φ).

Proof. By Theorem 9.1, G := G(W,Φ) is simple and so the action of G on g
by conjugation is irreducible. Hence, the 21–dimensional subspace Λ2

21 must be
contained in an eigenspace of the operator ω 7→ ∗(Φ ∧ ω) on Λ2W ∗. We prove that
the eigenvalue is −1. To see this, we choose a unit vector e ∈ W and an element
ξ ∈ g with ξe = 0. Let

Ve := e⊥

and denote by ιe : Ve →W and πe : W → Ve the inclusion and orthogonal projec-
tion and by ∗e : ΛkV ∗e → Λ7−kV ∗e the Hodge ∗–operator on the subspace. Then

∗(e∗ ∧ π∗eαe) = π∗e ∗e αe ∀ αe ∈ ΛkV ∗e .

Moreover, the alternating forms

φe := ι∗e(ι(e)Φ), ψe := ι∗eΦ
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are the associative and coassociative calibrations of Ve. Since ξe = 0, we have
ωξ = π∗e ι

∗
eωξ and, by Theorem 8.5,

ψe ∧ ι∗eωξ = 0, ∗e(φe ∧ ι∗eωξ) = −ι∗eωξ.

Since Φ = e∗ ∧ π∗eφe + π∗eψe, this gives

∗
(
Φ ∧ ωξ

)
= ∗
(
(e∗ ∧ π∗eφe + π∗eψe) ∧ π∗e ι∗eωξ

)
= ∗
(
e∗ ∧ π∗e (φe ∧ ι∗eωξ)

)
+ ∗π∗e

(
ψe ∧ ι∗eωξ

)
= π∗e ∗e (φe ∧ ι∗eωξ) = −π∗e ι∗eωξ = −ωξ.

By Lemma 9.2 the adjoint action of G on g⊥ ⊂ so(W ) is irreducible, and g⊥

is mapped under ξ 7→ ωξ onto the orthogonal complement of Λ2
21. Hence, the

7–dimensional orthogonal complement of Λ2
21 is also contained in an eigenspace of

the operator ω 7→ ∗(Φ ∧ ω). Since this operator is self-adjoint and has trace zero,
its eigenvalue on the orthogonal complement of Λ2

21 must be 3 and therefore this
orthogonal complement is equal to Λ2

7. It follows that the orthogonal projection
of ω ∈ Λ2W ∗ onto Λ2

7 is given by π7(ω) = 1
4 (ω + ∗(Φ ∧ ω)) . Hence, for every

nonzero vector e ∈W , we have

Λ2
7 =

{
e∗ ∧ u∗ − ι(e)ι(u)Φ : u ∈ e⊥

}
,

Λ2
21 =

{
ω ∈ Λ2W ∗ : 〈ω, ι(e)ι(u)Φ〉 = ω(e, u) ∀u ∈ e⊥

}
.

This proves the decomposition result for Λ2W ∗.

We verify the decomposition of Λ3W ∗. For u ∈ W and ω ∈ Λ3W ∗ we have
the equation

u∗ ∧ Φ ∧ ω = −ω ∧ ∗ι(u)Φ.

Hence, Φ∧ω = 0 if and only if ω is orthogonal to ι(u)Φ for all u ∈W . This shows
that Λ3

48 is the orthogonal complement of Λ3
8. Since Φ is nondegenerate, we have

dim Λ3
8 = 8 and, since dim Λ3W ∗ = 56, it follows that dim Λ3

48 = 48.
We verify the decomposition of Λ4W ∗. The 4–form g∗Φ is self-dual for every

g ∈ G = G(W,Φ), because Φ is self-dual and G ⊂ SO(W ). This implies that
LξΦ is self-dual for every ξ ∈ g = Lie(G). Since SO(W ) has dimension 28 and
the isotropy subgroup G of Φ has dimension 21, it follows that the tangent space
Λ4

7 to the orbit of Φ under the action of G has dimension 7. As Λ4
1 has dimension 1

and the space of self-dual 4–forms has dimension 35, the orthogonal complement
of Λ4

1 ⊕ Λ4
7 in the space of self-dual 4–forms has dimension 27. This proves the

dimension and decomposition statements.
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That the action of G on Λ2
21
∼= g is irreducible follows from the fact that G is

simple. Irreducibility of the action on Λ4
1 is obvious. For Λ3

8
∼= W it follows from

the fact that G acts transitively on the unit sphere in W , and for Λ2
7
∼= g⊥ ∼= Λ4

7

it follows from the fact that the istropy subgroup Ge of a unit vector e ∈ W
acts transitively on the unit sphere in Ve = e⊥. For Λ4

27, Λ4
35, and Λ3

48 we refer
to [Bry87]. This proves Theorem 9.8.

Corollary 9.9. For u, v ∈ W denote ωu,v := ι(v)ι(u)Φ = Φ(u, v, ·, ·). Then, for
all u, v, x, y ∈W we have

∗ (Φ ∧ u∗ ∧ v∗) = ωu,v, ∗ (Φ ∧ ωu,v) = 3u∗ ∧ v∗ + 2ωu,v,(9.10)

〈ωu,v, ωx,y〉 = 3
(
〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉

)
+ 2Φ(u, v, x, y),(9.11)

ωu,v ∧ ωx,y ∧ Φ

vol
= 6
(
〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉

)
+ 7Φ(u, v, x, y).(9.12)

Proof. The first equation in (9.10) is a general statement about the Hodge ∗–opera-
tor in any dimension. Moreover, by Theorem 9.8, the 2–form u∗ ∧ v∗ + ωu,v is an
eigenvector of the operator ω 7→ ∗(Φ ∧ ω) with eigenvalue 3. Hence, the second
equation in (9.10) follows from the first. To prove (9.11), take the inner product of
the second equation in (9.10) with x∗ ∧ y∗ and use the identities

〈ωu,v, x∗ ∧ y∗〉 = Φ(u, v, x, y),(9.13)

〈u∗ ∧ v∗, x∗ ∧ y∗〉 = 〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉,(9.14)

and the fact that the operator ω 7→ ∗(Φ ∧ ω) is self-adjoint. To prove (9.12), we
observe that

ωu,v ∧ ωx,y ∧ Φ

vol
= 〈ωu,v, ∗(Φ ∧ ωx,y)〉

= 〈ωu,v, 3x∗ ∧ y∗ + 2ωx,y〉
= 6
(
〈u, x〉〈v, y〉 − 〈u, y〉〈v, x〉

)
+ 7Φ(u, v, x, y),

where the second equation follows from (9.10) and the last follows from (9.11)
and (9.14). This proves Corollary 9.9.

10 Spin structures

This section explains how a cross products in dimension seven, respectively a triple
cross products in dimension eight, gives rise to a spin structure and a unit spinor
and how, conversely, the cross product or triple cross product can be recovered from
these data. We begin the discussion with spin structures and triple cross products
in Section 10.1 and then move on to cross products in Section 10.2.
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10.1 Spin structures and triple cross products

Let W be an 8–dimensional oriented real Hilbert space. A spin structure on W
is a pair of 8–dimensional real Hilbert spaces S± equipped with a vector space
homomorphism γ : W → Hom(S+, S−) that satisfies the condition

(10.1) γ(u)∗γ(u) = |u|21

for all u ∈W (see [Sal99, Proposition 4.13, Definition 4.32, Example 4.48]). The
sign in S± is determined by the condition

(10.2) γ(e7)∗γ(e6) · · · γ(e1)∗γ(e0) = 1S+

for some, and hence every, positively oriented orthonormal basis e0, . . . , e7 of W
(see [Sal99, page 132]). More precisely, consider the 16–dimensional real Hilbert
space S := S+ ⊕ S− and define the homomorphism Γ : W → End(S) by

Γ(u) :=

(
0 γ(u)

−γ(u)∗ 0

)
for u ∈W.

Then equation (10.1) guarantees that Γ extends uniquely to an algebra isomorphism
from the Clifford algebra C`(W ) to End(S), still denoted by Γ. The complexifi-
cation of S gives rise an algebra isomorphism Γc : C`c(W )→ End(Sc) from the
complexified Clifford algebra C`c(W ) := C`(W )⊗R C to the complex endomor-
phisms of Sc := S ⊗R C (see [Sal99, Proposition 4.33]).

Theorem 10.3. Let W be an oriented 8–dimensional real Hilbert space and abbre-
viate Λk := ΛkW ∗ for k = 0, 1, . . . , 8.

(i) SupposeW is equipped with a positive triple cross product (6.2), let Φ ∈ Λ4 be
the Cayley calibration defined by (6.14), and assume that Φ ∧ Φ > 0. Define
the homomorphism γ : W → Hom(S+, S−) by

(10.4) S+ := Λ0 ⊕ Λ2
7, S− := Λ1

and

(10.5) γ(u)(λ, ω) := λu∗ + 2ι(u)ω

for u ∈ W , λ ∈ R, and ω ∈ Λ2
7. Then γ is a spin structure on W , i.e., it

satisfies (10.1) and (10.2). Moreover, the space S+ = Λ0 ⊕ Λ2
7 of positive

spinors contains a canonical unit vector s = (1, 0) and the triple cross product
can be recovered from the spin structure and the unit spinor via the formula

γ(u× v × w)s = 〈v, w〉γ(u)s− 〈w, u〉γ(v)s+ 〈u, v〉γ(w)s

− γ(u)γ(v)∗γ(w)s
(10.6)

for u, v, w ∈W .
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(ii) Let γ : W → Hom(S+, S−) be a spin structure and let s ∈ S+ be a unit
vector. Then equation (10.6) defines a positive triple cross product on W
and the associated Cayley calibration Φ satisfies Φ ∧ Φ > 0. Since any
two spin structures on W are isomorphic, this shows that there is a one-to-
one correspondence between positive unit spinors and positive triple cross
products on W that are compatible with the inner product and orientation.

Proof. See page 75.

Assume W is equipped with a positive triple cross product (6.2) and that its
Cayley calibration Φ ∈ Λ4W ∗ in (6.14) satisfies Φ ∧ Φ > 0. Recall that, for every
unit vector e ∈ W , there is a normed algebra structure on W , defined by (6.19).
This normed algebra structure can be recovered from an intrinsic product map

m : W ×W → Λ0 ⊕ Λ2
7

(which does not depend on e) and an isomorphism γ(e) : Λ0 ⊕ Λ2
7 → Λ1 (which

does depend on e). The product map is given by

(10.7) m(u, v) =
(
〈u, v〉, 1

2(u∗ ∧ v∗ + ωu,v)
)

for u, v ∈ W and the isomorphism γ(e) is given by (10.5) with u replaced by e.
Here ωu,v := ι(v)ι(u)Φ as in Corollary 9.9.

Lemma 10.8. Let IW : W →W ∗ be the isomorphism induced by the inner product,
so that IW (u) = 〈u, ·〉 = u∗ for u ∈ W . Let γ : W → Hom(S+, S−) and
m : W ×W → S+ be defined by (10.5) and (10.7). Then, for all u, v, e ∈W , we
have

I−1
W (γ(e)m(u, v)) = 〈u, v〉e+ 〈u, e〉v − 〈v, e〉u+ u× e× v,(10.9)

|m(u, v)| = |u||v|, |γ(e)(λ, ω)|2 = |e|2
(
|λ|2 + |ω|2

)
.(10.10)

Proof. Equation (10.9) follows directly from the definitions. Moreover, it follows
from (9.11) that

|m(u, v)|2 = 〈u, v〉2 + 1
4 |u
∗ ∧ v∗|2 + 1

4 |ωu,v|
2 = 〈u, v〉2 + |u ∧ v|2 = |u|2|v|2.

This proves the first equation in (10.10). To prove the second equation in (10.10)
we observe that γ(e)m(e, v) = v and, hence, |γ(e)m(e, v)| = |v| = |m(e, v)|
whenever |e| = 1. Since the map W → Λ0 ⊕ Λ2

7 : v 7→ m(e, v) is bijective, this
proves Lemma 10.8.
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Remark 10.11. If we fix a unit vector e ∈ W and denote v̄ := 2〈e, v〉e − v, then
the product in (6.19) is given by

uv = −〈u, v〉e+ 〈u, e〉v + 〈v, e〉u+ u× e× v = I−1
W (γ(e)m(u, v̄))

for u, v ∈W .

The next lemma shows that the linear map γ(u) : Λ0 ⊕ Λ2
7 → Λ1 is dual to the

map m(u, ·) : W → Λ0 ⊕ Λ2
7 for every u ∈W and that it satisfies equation (10.1).

Lemma 10.12. Let γ : W → Hom(S+, S−) be the homomorphism in (10.4)
and (2.21). Then γ satisfies (10.1) and

(10.13) γ(u)∗v∗ = m(u, v) =
(
〈u, v〉, 1

2(u∗ ∧ v∗ + ωu,v)
)

for all u, v ∈W .

Proof. For u ∈W , λ ∈ R, ω ∈ Λ2
7, and v ∈W we compute

〈γ(u)(λ, ω), v∗〉 = 〈λu∗ + 2ι(u)ω, v∗〉
= λ〈u, v〉+ 2〈ω, u∗ ∧ v∗〉
= λ〈u, v〉+ 1

2 〈ω, ωu,v + u∗ ∧ v∗〉 .

The last equation follows from the fact that

π7(u∗ ∧ v∗) = 1
4(u∗ ∧ v∗ + ωu,v).

This proves (10.13). With this understood, the formula γ(u)∗γ(u) = |u|21 follows
directly from (10.10). This proves Lemma 10.12.

Combining the product map m with the triple cross product we obtain an
alternating multi-linear map τ : W 4 → Λ0 ⊕ Λ2

7 defined by

τ(x, u, v, w) = 1
4

(
m(u× v × w, x)−m(v × w × x, u)

+m(w × x× u, v)−m(x× u× v, w)
)
.

(10.14)

This map corresponds to the four-fold cross product (see Definition 5.33) and has
the following properties (see Theorem 5.35).

Lemma 10.15. Let χ : W 4 → Λ2
7 denote the second component of τ . Then, for all

u, v, w, x ∈W , we have

τ(x, u, v, w) = (Φ(x, u, v, w), χ(x, u, v, w)) ,

Φ(x, u, v, w)2 + |χ(x, u, v, w)|2 = |x ∧ u ∧ v ∧ w|2.
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Proof. That the first component of τ is equal to Φ follows directly from the defini-
tions. Moreover, for u, v, w, x ∈W , we have

2χ(x, u, v, w) = (u× v × w)∗ ∧ x∗ + ωu×v×w,x

− (v × w × x)∗ ∧ u∗ − ωv×w×x,u
+ (w × x× u)∗ ∧ v∗ + ωw×x×u,v

− (x× u× v)∗ ∧ w∗ − ωx×u×v,w.

(10.16)

We claim that the four rows on the right agree whenever u, v, w, x are pairwise
orthogonal. Under this assumption the first two rows remain unchanged if we add
to x a multiple of u× v × w. Thus we may assume that x is orthogonal to u, v, w,
and u× v × w. By Theorem 9.3, we may therefore assume that W = R8 with the
standard triple cross product and

u = e0, v = e1, w = e2, x = e4.

In this case a direct computation proves that the first two rows agree. Thus we have
proved that, if u, v, w, x ∈W are pairwise orthogonal, then

τ(x, u, v, w) = m(u× v × w, x).

In this case it follows from (10.10) that

|τ(x, u, v, w)| = |m(u× v × w, x)|
= |x||u× v × w|
= |x||u||v||w|
= |x ∧ u ∧ v ∧ w|.

Since τ is alternating, this proves Lemma 10.15.

Lemma 10.17. Let γ : W → Hom(S+, S−) be the homomorphism in (10.4)
and (10.5). Then γ satisfies (10.2) and (10.6).

Proof. It follows from (10.1) that 〈γ(u)s, γ(v)s〉 = 〈u, v〉 for all u, v ∈W . Hence,
equation (10.6) is equivalent to

Φ(x, u, v, w) = 〈x, u〉〈v, w〉 − 〈x, v〉〈w, u〉+ 〈x,w〉〈u, v〉
− 〈γ(u)∗γ(x)s, γ(v)∗γ(w)s〉

(10.18)

for all x, u, v, w ∈W . Since s = (1, 0) ∈ S+ = Λ0 ⊕ Λ2
7, we have

γ(u)∗γ(x)s = γ(u)∗x∗ =
(
〈u, x〉, 1

2(u∗ ∧ x∗ + ωu,x)
)
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for all u, x ∈W by Lemma 10.12. Hence,

〈γ(u)∗γ(x)s, γ(v)∗γ(w)s〉
= 〈u, x〉〈v, w〉+ 1

4〈u
∗ ∧ x∗ + ωu,x, v

∗ ∧ w∗ + ωv,w〉
= 〈u, x〉〈v, w〉+ 〈u, v〉〈x,w〉 − 〈u,w〉〈x, v〉+ Φ(u, x, v, w).

Here the last equation follows from Corollary 9.9. This shows that the homomor-
phism γ satisfies (10.18) and hence also (10.6).

We prove that γ satisfies (10.2). Choose an orthonormal basis e0, . . . , e7 ofW in
which Φ has the standard form of Example 7.3. Such a basis exists by Theorem 7.12
because Φ is a positive Cayley form, and it is positive because Φ∧Φ > 0. Moreover,
for any quadruple of integers 0 ≤ i < j < k < ` ≤ 7, the following are equivalent.

(a) The term ±eijk` appears in the standard basis.

(b) Φ(ei, ej , ek, e`) = ±1.

(c) ek × ej × ei = ±e`.

(d) −γ(ek)γ(ej)
∗γ(ei)s = ±γ(e`)s.

Here the equivalence of (a) and (b) is obvious, the equivalence of (b) and (c) follows
from the fact that

Φ(ei, ej , ek, e`) = Φ(e`, ek, ej , ei) = 〈ek × ej × ei, e`〉

by (7.2), and the equivalence of (c) and (d) follows from equation (10.6). Examining
the relevant terms in Example 7.3 we find that

γ(e2)γ(e1)∗γ(e0)s = −γ(e3)s,

hence
γ(e4)γ(e3)∗γ(e2)γ(e1)∗γ(e0)s = −γ(e4)s,

hence

γ(e6)γ(e5)∗γ(e4)γ(e3)∗γ(e2)γ(e1)∗γ(e0)s = −γ(e6)γ(e5)∗γ(e4)s = γ(e7)s,

and hence

γ(e7)∗γ(e6)γ(e5)∗γ(e4)γ(e3)∗γ(e2)γ(e1)∗γ(e0)s = s.

Hence, γ satisfies (10.2) and this proves Lemma 10.17.
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Proof of Theorem 10.3. Part (i) follows from Lemma 10.12 and Lemma 10.17. To
prove part (ii) assume γ : W → Hom(S+, S−) is a spin structure, let s ∈ S+ be a
unit vector, and define the multilinear map

(10.19) W 3 →W : (u, v, w) 7→ u× v × w

by (10.6). Then u × v × w = 0 whenever two of the three vectors agree. Hence,
it suffices to verify (6.3) and (6.4) under the assumption that u, v, w are pairwise
orthogonal. In this case we compute

〈u× v × w, u〉 = 〈γ(u× v × w)s, γ(u)s〉
= −〈γ(u)γ(v)∗γ(w)s, γ(u)s〉
= −|u|2〈γ(v)∗γ(w)s, s〉
= −|u|2〈v, w〉 = 0.

and

|u× v × w|2 = |γ(u× v × w)s|2

= |γ(u)γ(v)∗γ(w)s|2

= |u|2|v|2|w|2

= |u ∧ v ∧ w|2.

This shows that the map (10.19) is a triple cross product. To prove that it is positive,
choose a quadruple of pairwise orthogonal vectors e, u, v, w ∈ W such that w is
also orthogonal to e× u× v. Then

γ(e× u× (e× v × w))s = −γ(e)γ(u)∗γ(e× v × w)s

= γ(e)γ(u)∗γ(e)γ(v)∗γ(w)s

= −γ(e)γ(e)∗γ(u)γ(v)∗γ(w)s

= −|e|2γ(u)γ(v)∗γ(w)s

= |e|2γ(u× v × w)s.

Here the first, second, and fifth equalities follow from (10.6) and the third and
fourth equalities follow from (10.1). Thus we have proved that the triple cross
product (10.19) is positive. That the associated Cayley calibration Φ satisfies
Φ ∧ Φ > 0 follows by using a standard basis and reversing the argument in the
proof of Lemma 10.17. This proves Theorem 10.3.
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10.2 Spin structures and cross products

Let V be a 7–dimensional oriented real Hilbert space. A spin structure on V is an
8-dimensional real Hilbert space S equipped with a vector space homomorphism
γ : V → End(S) that satisfies the conditions

(10.20) γ(u)∗ + γ(u) = 0, γ(u)∗γ(u) = |u|21

for all u ∈ V (see [Sal99, Definition 4.32]) and

(10.21) γ(e7)γ(e6) · · · γ(e1) = −1.

for some, and hence every, positive orthonormal basis e1, . . . , e7 of V . Equa-
tion (10.20) guarantees that the linear map γ : V → End(S) extends uniquely to
an algebra homomorphism γ : C`(V )→ End(S) (see [Sal99, Proposition 4.33]).
It follows from (10.21) that the kernel of this extended homomorphism is given by
{x ∈ C`(V ) : εx = x}, where ε := e7 · · · e1 ∈ C`7(V ) for a positive orthonormal
basis e1, . . . , e7 of V (see [Sal99, Proposition 3.34]). Since ε is an odd element of
C`(V ), this implies that the restrictions of γ to both C`ev(V ) and C`odd(V ) are
injective. Since dim C`ev(V ) = dim C`odd(V ) = dim End(S) = 64, it follows
that γ restricts to an algebra isomorphism from C`ev(V ) to End(S) and to a vector
space isomorphism from C`odd(V ) to End(S).

Theorem 10.22. Let V be an oriented 7–dimensional real Hilbert space.

(i) Suppose V is equipped with a cross product and define the homomorphism
γ : V → End(S) by

(10.23) S := R× V, γ(u)(λ, v) := (−〈u, v〉, λu+ u× v)

for λ ∈ R and u, v ∈ V . Then γ is a spin structure on V , i.e., it sat-
isfies (10.20) and (10.21). Moreover, the space S = R × V contains a
canonical unit vector s = (1, 0) and the cross product can be recovered from
the spin structure and the unit spinor via the formula

(10.24) γ(u× v)s = γ(u)γ(v)s+ 〈u, v〉s for u, v ∈ V.

(ii) Let γ : V → End(S) be a spin structure and let s ∈ S be a unit vector.
Then equation (10.24) defines a cross product on V that is compatible with
the inner product and orientation. Since any two spin structures on V are
isomorphic, this shows that there is a one-to-one correspondence between unit
spinors and cross products on V that are compatible with the inner product
and orientation.
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Proof. We prove part (i). Thus assume V is equipped with a cross product that
is compatible with the inner product and orientation, and let γ : V → End(S) be
given by (10.23). Then, for u, v, w ∈ V and λ, µ ∈ R, we have

〈(λ, v), γ(u)(µ,w)〉 = µ〈u, v〉 − λ〈u,w〉+ φ(v, u, w).

This expression is skew-symmetric in (λ, v) and (µ,w) and so γ(u) is skew-adjoint.
Moreover, for u, v, w ∈ V and µ ∈ R, we have

γ(u)γ(v)(µ,w) + 〈u, v〉(µ,w)

= (−〈u, µv + v × w〉,−〈v, w〉u+ u× (µv + v × w)) + 〈u, v〉(µ,w)

= (−〈u× v, w〉, µ(u× v) + u× (v × w)− 〈v, w〉u+ 〈u, v〉w)

= γ(u× v)(µ,w) + (0,−(u× v)× w − 〈v, w〉u+ 〈u,w〉v)

+ (0,−(v × w)× u− 〈u,w〉v + 〈u, v〉w)

= γ(u× v)(µ,w)− 2(0, [u, v, w]).

Here the last equation follows from (4.1). This proves (10.20) by taking v = −u
and (10.24) by taking µ = 1 and w = 0. For the proof of (10.21) it is convenient to
use the standard basis for the standard cross product on V = R7 in Example 2.15.
The left hand side of (10.21) is independent of the choice of the positive orthonormal
basis and we know from general principles that the composition γ(e7) · · · γ(e1)
must equal ±1 (see [Sal99, Prop 4.34]). The sign can thus be determined by
evaluating the composition of the γ(ej) on a single nonzero vector. We leave the
verification to the reader. This proves part (i).

We prove part (ii). Thus assume that γ : V → End(S) is a spin structure
compatible with the orientation and let s ∈ S be a unit vector. Then the map

(10.25) R× V → S : (λ, v) 7→ Ξ(λ, v) := λs+ γ(v)s

is an isometric isomorphism, because |λs+γ(v)s|2 = |λ|2+|v|2 by (10.20) and both
spaces have the same dimension. For u, v ∈ V the first coordinate of Ξ−1γ(u)γ(v)s
is 〈s, γ(u)γ(v)s〉 = −〈u, v〉 and so the second coordinate is the vector u× v ∈ V
that satisfies (10.24). The map V × V → V : (u, v) 7→ u× v is obviously bilinear
and it is skew symmetric because γ(u)γ(v) + γ(v)γ(u) = −2〈u, v〉1 by (10.20).
It satisfies (2.3) and (2.10) because

〈u, u× v〉 = 〈γ(u)s, γ(u× v)s〉 = 〈γ(u)s, γ(u)γ(v)s+ 〈u, v〉s〉 = 0,

γ(u× (u× v))s = γ(u)γ(u× v)s = γ(u)
(
γ(u)γ(v)s+ 〈u, v〉s

)
= γ

(
〈u, v〉u− |u|2v

)
s.

for all u, v ∈ V . Hence, it is a cross product by Lemma 2.9. That it is compatible
with the orientation can be proved by choosing a standard basis as in Example 2.15.
This proves Theorem 10.22.
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We close this section with some useful identities.

Lemma 10.26. Fix a spin structure γ : V → End(S) that is compatible with the
orientation and a unit vector s ∈ S, let V × V → V : (u, v) 7→ u × v be the
cross product determined by (10.24), and let Ξ : R× V → S be the isomorphism
in (10.25). Then the following hold:

(i) The spin structure γ is isomorphic to the spin structure in (10.23) via Ξ, i.e.,
for all λ ∈ R and all u, v ∈ V , we have

(10.27) Ξ−1γ(u)Ξ(λ, v) = (−〈u, v〉, λu+ u× v)

(ii) For all u, v, w ∈ V we have

γ([u, v, w])s+ φ(u, v, w)s+ γ(u)γ(v)γ(w)s

= −〈v, w〉γ(u)s+ 〈w, u〉γ(v)s− 〈u, v〉γ(w)s.
(10.28)

(iii) The associative calibration φ ∈ Λ3V ∗ is given by

(10.29) φ(u, v, w) = −〈s, γ(u)γ(v)γ(w)s〉

and the coassociative calibration ψ = ∗φ ∈ Λ4V ∗ is given by

ψ(u, v, w, x) = −〈s, γ(u)γ(v)γ(w)γ(x)s〉
+ 〈v, w〉〈u, x〉 − 〈w, u〉〈v, x〉+ 〈u, v〉〈w, x〉.

(10.30)

Proof. Part (i) follows from (10.24) by direct calculation. By (i) the second dis-
played formula in the proof of Theorem 10.22 with µ = 0 can be expressed as

γ(u)γ(v)γ(w)s+ 〈u, v〉γ(w)s

= γ(u× v)γ(w)s− 2γ([u, v, w])s

= −2〈u× v, w〉s− 2γ([u, v, w])s− γ(w)γ(u× v)s

= −2φ(u, v, w)s− 2γ([u, v, w])s− γ(w)γ(u)γ(v)s− 〈u, v〉γ(w)s

= −2φ(u, v, w)s− 2γ([u, v, w])s

+ γ(u)γ(w)γ(v)s+ 2〈w, u〉γ(v)s− 〈u, v〉γ(w)s

= −2φ(u, v, w)s− 2γ([u, v, w])s

− γ(u)γ(v)γ(w)s− 2〈v, w〉γ(u)s+ 2〈w, u〉γ(v)s− 〈u, v〉γ(w)s

for all u, v, w ∈ V and this proves (ii). Part (iii) follows from (ii) by taking
the inner product with s, respectively with γ(x)s (see Lemma 4.8). This proves
Lemma 10.26.
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11 Octonions and complex linear algebra

Let W be a 2n–dimensional real vector space. An SU(n)–structure on W is a
triple (ω, J, θ) consisting of a nondegenerate 2–form ω ∈ Λ2W ∗, an ω–compatible
complex structure J : W →W (so that 〈·, ·〉 := ω(·, J ·) is an inner product), and
a complex multi-linear map θ : Wn → C which has norm 2n/2 with respect to
the metric determined by ω and J . The archetypal example is W = Cn with the
standard symplectic form

ω :=
∑
j

dxj ∧ dyj ,

the standard complex structure J := i, and the standard (n, 0)–form

θ := dz1 ∧ · · · ∧ dzn.

In this section we examine the relation between SU(3)–structures and cross products
and between SU(4)–structures and triple cross products. We also explain the
decompositions of Theorem 8.5 and Theorem 9.8 in this setting.

Theorem 11.1. Let W be a 6–dimensional real vector space equipped with an
SU(3)–structure (ω, J, θ). Then the space V := R ⊕W carries a natural cross
product defined by

(11.2) v × w := (ω(v1, w1), v0Jw1 − w0Jv1 + v1 ×θ w1)

for u = (u0, u1), v = (v0, v1) ∈ R ⊕ W , where v1 ×θ w1 ∈ V is defined by
〈u1, v1 ×θ w1〉 := Re θ(u1, v1, w1) for all u1 ∈W . The associative calibration of
this cross product is

(11.3) φ := e0 ∧ ω + Re θ ∈ Λ3V ∗

and the coassociative calibration is

(11.4) ψ := ∗φ = 1
2ω ∧ ω − e

0 ∧ Im θ ∈ Λ4V ∗.

Moreover, the subspaces Λkd ⊂ ΛkV ∗ in Theorem 8.5 are given by

Λ2
7 = Rω ⊕ {e0 ∧ u∗ − ι(u)Im θ : u ∈W},

Λ2
14 =

{
τ − e0 ∧ ∗W (τ ∧ Re θ) : τ ∈ Λ2W ∗, τ ∧ ω ∧ ω = 0

}
,

Λ3
7 = R · Im θ ⊕

{
u∗ ∧ ω − e0 ∧ ι(u)Re θ : u ∈W

}
,

Λ3
27 = R ·

(
3Re θ − 4e0 ∧ ω

)
⊕
{
e0 ∧ τ : τ ∈ Λ1,1W ∗, τ ∧ ω ∧ ω = 0

}
⊕
{
β ∈ Λ2,1W ∗ + Λ1,2W ∗ : β ∧ ω = 0

}
⊕
{
u∗ ∧ ω + e0 ∧ ι(u)Re θ : u ∈W

}
.
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Proof. For v, w ∈ W we define αv,w ∈ Λ1W ∗ by αv,w := Re θ(·, v, w). Then
|αv,w| = |θ(u, v, w)| = |v||w| whenever u, Ju, v, Jv, w, Jw are pairwise orthogo-
nal and |u| = 1. This implies

(11.5) |αv,w|2 + ω(v, w)2 + 〈v, w〉2 = |v|2|w|2

for all v, w ∈W . (Add to w a suitable linear combination of v and Jv.) It follows
from (11.5) by direct computation that the formula (11.2) defines a cross product
on R ×W . By (11.2) and (11.3), we have φ(u, v, w) = 〈u, v × w〉 so that φ is
the associative calibration of (11.2) as claimed. That φ is compatible with the
orientation of R⊕W follows from the fact that ι(e0)φ = ω and ω ∧ Re θ = 0 so
that ι(e0)φ∧ ι(e0)φ∧φ = e0∧ω3 = 6vol. The formula (11.4) for ψ := ∗φ follows
from the fact that ω ∧ θ = 0 and Im θ = ∗Re θ so that Re θ ∧ Im θ = 4volW . It
remains to examine the subspaces Λkd ⊂ ΛkV ∗ introduced in Theorem 8.5.

The formula for Λ2
7 follows directly from the formula for φ in (11.3) and the

fact that Λ2
7 consists of all 2–forms ι(v)φ for v ∈ R ⊕W . With v = (1, 0) we

obtain ι(v)φ = ω and with v = (0, Ju) we obtain

ι(v)φ = −e0 ∧ ι(Ju)ω + ι(Ju)Re θ = e0 ∧ u∗ − ι(u)Im θ.

Similarly, the formula for Λ3
7 follows directly from the formula for ψ in (11.3) and

the fact that Λ3
7 consists of all 3–forms ι(v)ψ for v ∈ R ⊕W . With v = (−1, 0)

we obtain ι(v)ψ = Im θ and with v = (0,−Ju) we obtain

ι(v)ψ = −(ι(Ju)ω) ∧ ω − e0 ∧ ι(Ju)Im θ = u∗ ∧ ω − e0 ∧ ι(u)Re θ.

To prove the formula for Λ2
14 we choose α ∈ Λ1W ∗ and τ ∈ Λ2W ∗. Then

τ + e0 ∧ α ∈ Λ2
14 if and only if (τ + e0 ∧ α) ∧ ψ = 0. By (11.4), we have

(e0 ∧ α+ τ) ∧ ψ =
(
e0 ∧ α+ τ

)
∧
(

1
2ω ∧ ω − e

0 ∧ Im θ
)

= e0 ∧
(

1
2ω ∧ ω ∧ α− τ ∧ Im θ

)
+ 1

2τ ∧ ω ∧ ω.

The expression on the right vanishes if and only if τ ∧ ω ∧ ω = 0 and ω ∧ ω ∧ α =
2Im θ ∧ τ . Since α ◦ J = 1

2 ∗W (ω ∧ ω ∧ α), the last equation is equivalent to
α = − (∗W (Im θ ∧ τ)) ◦ J = − ∗W (Re θ ∧ τ).

To prove the formula for Λ3
27 we choose τ ∈ Λ2W ∗ and β ∈ Λ3W ∗. Then(

β + e0 ∧ τ
)
∧ φ = e0 ∧ (τ ∧ Re θ − β ∧ ω) + β ∧ Re θ,(

β + e0 ∧ τ
)
∧ ψ = e0 ∧

(
1
2τ ∧ ω ∧ ω + β ∧ Im θ

)
.

Both terms vanish simultaneously if and only if

τ ∧ Re θ = β ∧ ω, β ∧ Re θ = 0, β ∧ Im θ = −1

2
τ ∧ ω ∧ ω.

These equations hold in the following four cases.
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(a) β = 3λRe θ and τ = −4λω with λ ∈ R.

(b) β = 0 and τ ∈ Λ1,1W ∗ with τ ∧ ω ∧ ω = 0.

(c) β ∈ Λ1,2W ∗ + Λ2,1W ∗ with β ∧ ω = 0 and τ = 0.

(d) β = u∗ ∧ ω and τ = ι(u)Re θ with u ∈W .

In case (d) this follows from (ι(u)Re θ) ∧ Re θ = 2 ∗ (Ju)∗ = u∗ ∧ ω ∧
ω. The subspaces determined by these conditions are pairwise orthogonal and
have dimensions 1 in case ((a), 8 in case (b), 12 in case (c), and 6 in case (d).
Thus, for dimensional reasons, their direct sum is the space Λ3

27. This proves
Theorem 11.1.

Theorem 11.6. Let W be an 8–dimensional real vector space equipped with an
SU(4)–structure (Ω, J,Θ). Then the alternating multi-linear map

Φ := 1
2Ω ∧ Ω + Re Θ ∈ Λ4W ∗

is a positive Cayley calibration, compatible with the complex orientation and the
inner product. Moreover, in the notation of Theorem 9.8, we have

Λ2
7 = RΩ⊕

{
τ ∈ Λ2,0 + Λ0,2 : ∗ (Re Θ ∧ τ) = 2τ

}
,

Λ2
21 =

{
τ ∈ Λ1,1 : τ ∧ Ω3 = 0

}
⊕
{
τ ∈ Λ2,0 + Λ0,2 : ∗ (Re Θ ∧ τ) = −2τ

}
.

Proof. We prove that Φ is compatible with the inner product 〈·, ·〉 := Ω(·, J ·) and
the complex orientation on W . The associated volume form is 1

24Ω4. Hence, by
Lemma 7.4, we must show that

(11.7) ωu,v ∧ ωu,v ∧ Φ = 1
4 |u ∧ v|

2Ω4

for all u, v ∈W , where

ωu,v := ι(v)ι(u)Φ = Ω(u, v)Ω− ι(u)Ω ∧ ι(v)Ω + ι(v)ι(u)Re Θ.

To see this, we observe that

(11.8) ι(v)ι(u)Re Θ ∧ ι(u)Ω ∧ ι(v)Ω ∧ Ω2 = (ι(v)ι(u)Re Θ)2 ∧ Re Θ = 0.

If v = Ju, then (11.8) follows from the fact that ι(u)Ω ∧ ι(Ju)Ω is a (1, 1)–form
and ι(Ju)ι(u)Re Θ = 0. If v is orthogonal to u and Ju, then (11.8) follows from
the explicit formulas in Remark 11.9 below. The general case follows from the
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special cases by adding to v a linear combination of u and Ju. Using (11.8) and the
identity ι(u)Ω ∧ ι(v)Ω ∧ Ω3 = 1

4Ω(u, v)Ω4 we obtain

ωu,v ∧ ωu,v ∧ Φ = 1
2Ω(u, v)2Ω4 + 1

2 ι(v)ι(u)Re Θ ∧ ι(v)ι(u)Re Θ ∧ Ω2

− Ω(u, v)ι(u)Ω ∧ ι(v)Ω ∧ Ω3

− 2ι(v)ι(u)Re Θ ∧ ι(u)Ω ∧ ι(v)Ω ∧ Re Θ

= 1
4Ω(u, v)2Ω4 + 1

2 ι(v)ι(u)Re Θ ∧ ι(v)ι(u)Re Θ ∧ Ω2

− 2ι(v)ι(u)Re Θ ∧ ι(u)Ω ∧ ι(v)Ω ∧ Re Θ.

One can now verify equation (11.7) by first considering the case v = Ju and using
ι(Ju)ι(u)Re Θ = 0 (here the last two terms on the right vanish). Next one can
verify (11.7) in the case where v is orthogonal to u and Ju by using the SU(4)–
symmetry and the explicit formulas in Remark 11.9 below (here the first term on
the right vanishes). Finally, one can reduce the general case to the special cases by
adding to v a linear combination of u and Ju.

Now recall from Theorem 9.8 that, for every τ ∈ Λ2W ∗, we have

τ ∈ Λ2
7 ⇐⇒ ∗(Φ ∧ τ) = 3τ,

τ ∈ Λ2
21 ⇐⇒ ∗(Φ ∧ τ) = −τ.

Since Re Θ ∧ Ω = 0, we have

∗ (Φ ∧ Ω) = 1
2 ∗ (Ω ∧ Ω ∧ Ω) = 3Ω

and, hence, RΩ ⊂ Λ2
7. Moreover, Λ2

21 is the image of the Lie algebra g of G(W,Φ)
under the isomorphism

so(W )→ Λ2W ∗ : ξ 7→ ωξ

given by ωξ(u, v) := 〈u, ξv〉. The image of su(W ) under this inclusion is the
subspace

{
τ ∈ Λ1,1W ∗ : τ ∧ Ω3 = 0

}
and, since SU(W ) ⊂ G(W,Φ), this space

is contained in Λ2
21. By considering the standard structure on C4 we obtain

∗(Ω ∧ Ω ∧ τ) = 2τ

for τ ∈ Λ2,0 + Λ0,2. Hence,

∗(Φ ∧ τ) = 1
2 ∗ (Ω ∧ Ω ∧ τ) + ∗(Re Θ ∧ τ) = τ + ∗(Re Θ ∧ τ).

for τ ∈ Λ2,0 + Λ0,2. Since the operator τ 7→ ∗(Re Θ ∧ τ) has eigenvalues ±2 on
the subspace Λ2,0 + Λ0,2 the result follows.
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Remark 11.9. If (Ω, J,Θ) is the standard SU(4)–structure on W = C4 with coor-
dinates (x1 + iy1, . . . , x4 + iy4), then

Re Θ = dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dy1 ∧ dy2 ∧ dy3 ∧ dy4

− dx1 ∧ dx2 ∧ dy3 ∧ dy4 − dy1 ∧ dy2 ∧ dx3 ∧ dx4

− dx1 ∧ dy2 ∧ dx3 ∧ dy4 − dy1 ∧ dx2 ∧ dy3 ∧ dx4

− dx1 ∧ dy2 ∧ dy3 ∧ dx4 − dy1 ∧ dx2 ∧ dx3 ∧ dy4

and

1
2Ω ∧ Ω = dx1 ∧ dy1 ∧ dx2 ∧ dy2 + dx3 ∧ dy3 ∧ dx4 ∧ dy4

+ dx1 ∧ dy1 ∧ dx3 ∧ dy3 + dx2 ∧ dy2 ∧ dx4 ∧ dy4

+ dx1 ∧ dy1 ∧ dx4 ∧ dy4 + dx2 ∧ dy2 ∧ dx3 ∧ dy3.

These forms are self-dual. The first assertion in Theorem 11.6 also follows from the
fact that the isomorphism R8 → C4 which sends e0, . . . , e7 to

∂/∂x1, ∂/∂y1, ∂/∂x2, ∂/∂y2, ∂/∂x3,−∂/∂y3,−∂/∂x4, ∂/∂y4

pulls back Φ to the standard form Φ0 in Example 5.32.

Theorem 11.10. Let V be a 7–dimensional real Hilbert space equipped with a cross
product and its induced orientation. Let φ ∈ Λ3V ∗ be the associative calibration
and ψ := ∗V φ ∈ Λ4V ∗ the coassociative calibration. Denote W := R⊕ V and
define Φ ∈ Λ4W ∗ by

Φ := e0 ∧ φ+ ψ.

Then Φ is a positive Cayley-form on W and, in the notation of Theorem 8.5 and
Theorem 9.8, we have

Λ2
7W
∗ =

{
e0 ∧ ∗V (ψ ∧ τ) + 3τ : τ ∈ Λ2

7V
∗} ,

Λ2
21W

∗ =
{
e0 ∧ ∗V (ψ ∧ τ)− τ : τ ∈ Λ2V ∗

}
,

Λ3
8W
∗ = Rφ⊕

{
ι(u)ψ − e0 ∧ ι(u)φ : u ∈ V

}
,

Λ3
48W

∗ = Λ3
27V

∗ ⊕
{
e0 ∧ τ : τ ∈ Λ2

14V
∗}⊕ {3ι(u)ψ + 4e0 ∧ ι(u)φ : u ∈ V

}
,

Λ4
7W
∗ =

{
e0 ∧ ι(u)ψ − u∗ ∧ φ : u ∈ V

}
,

Λ4
27W

∗ =
{
e0 ∧ β + ∗V β : β ∈ Λ3

27V
∗} ,

Λ4
35W

∗ =
{
e0 ∧ β − ∗V β : β ∈ Λ3V ∗

}
.

Proof. By Theorem 5.4, W is a normed algebra with product (5.6). Hence, by
Theorem 5.20, W carries a triple cross product (5.26) and Φ is the associated Cayley
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calibration. By Theorem 7.8, Φ is a Cayley form. By (5.24) the triple cross product
on W satisfies (6.11) with ε = +1 and so is positive (Definition 6.12). Thus, by
Theorem 7.12, Φ is positive.

Recall that, by Theorem 9.8, Λ2
7W
∗ and Λ2

21W
∗ are the eigenspaces of the

operator ∗W (Φ ∧ ·) with eigenvalues 3 and −1 and, by Theorem 8.5, Λ2
7V
∗ and

Λ2
14V

∗ are the eigenspaces of the operator ∗V (φ ∧ ·) with eigenvalues 2 and −1.
With α ∈ Λ1V ∗ and τ ∈ Λ2V ∗ we have

∗W
(
Φ ∧

(
e0 ∧ α+ τ

))
= ∗W

(
e0 ∧

(
ψ ∧ α+ φ ∧ τ

)
+ ψ ∧ τ

)
= e0 ∧ ∗V (ψ ∧ τ) + ∗V (φ ∧ τ) + ∗V (ψ ∧ α)

and, hence,

e0 ∧ α+ τ ∈ Λ2
7W
∗ ⇐⇒

{
∗V (ψ ∧ τ) = 3α,

∗V (φ ∧ τ) + ∗V (ψ ∧ α) = 3τ.

Since ∗V (ψ ∧∗V (ψ ∧ τ)) = τ + ∗V (φ∧ τ), by equation (4.60) in Lemma 4.37, we
deduce that e0∧α+τ ∈ Λ2

7W
∗ if and only if ∗V (φ∧τ) = 2τ and 3α = ∗V (ψ∧τ).

This proves the formula for Λ2
7W
∗. Likewise, we have e0 ∧ α+ τ ∈ Λ2

21W
∗ if and

only if α = −∗V (ψ∧τ). In this case the second equation ∗V (φ∧τ)+∗V (ψ∧α) =
−τ is automatically satisfied.

The formula for the subspace Λ3
8W
∗ follows from the fact that it consists of all

3–forms of the form ι(u)Φ for u ∈W (see Theorem 9.8). Now let τ ∈ Λ2V ∗ and
β ∈ Λ3V ∗. Then e0 ∧ τ + β ∈ Λ3

48W
∗ if and only if

0 = Φ ∧
(
e0 ∧ τ + β

)
= e0 ∧ (φ ∧ β + ψ ∧ τ) + ψ ∧ β

(see again Theorem 9.8). Hence,

e0 ∧ τ + β ∈ Λ3
48W

∗ ⇐⇒

{
φ ∧ β + ψ ∧ τ = 0,

ψ ∧ β = 0.

These conditions are satisfied in the following three cases.

(a) β = 0 and ψ ∧ τ = 0 (or equivalently τ ∈ Λ2
14V

∗).

(b) τ = 0 and φ ∧ β = 0 and ψ ∧ β = 0 (or equivalently β ∈ Λ3
27V

∗).

(c) β = 3ι(u)ψ and τ = 4ι(u)φ with u ∈ V .

In the case (a) this follows from the equations ψ ∧ ι(u)ψ = 0 and

(11.11) 3φ ∧ ι(u)ψ + 4ψ ∧ ι(u)φ = 0
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for u ∈ V . This last identity can be verified by direct computation using the standard
structure on V = R7 with

φ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356 and

ψ0 = −e1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567,

and u := e1 (see the proof of Lemma 4.8). In this case

ι(u)φ0 = e23 − e45 − e67, ι(u)ψ0 = −e247 − e256 + e346 − e357

and so
ψ0 ∧ ι(u)φ0 = 3e234567, φ0 ∧ ι(u)ψ0 = −4e234567.

This proves (11.11). The subspaces determined by the above conditions are pairwise
orthogonal and have dimensions 14 in case (a), 27 in case (b), and 7 in case (c).
Thus, for dimensional reasons, their direct sum is Λ3

48W
∗.

Now Λ4
7W
∗ is the tangent space of the SO(W )–orbit of Φ. For u ∈ V define

the endomorphism Au ∈ so(V ) by Auv := u× v. Then, by Remark 4.16, we have
LAuφ = 3ι(u)ψ and LAuψ = −3u∗ ∧ φ. Hence

e0 ∧ ι(u)ψ − u∗ ∧ φ ∈ Λ4
7W
∗

for all u ∈ V . Since Λ4
7W
∗ has dimension 7, each element of Λ4

7W
∗ has this form.

Next we recall that Λ4
27W

∗ is contained in the subspace of self-dual 4–forms,
and every self-dual 4–form can be written as e0 ∧ β + ∗V β with β ∈ Λ3V ∗. By
Theorem 9.8 we have

e0 ∧ β + ∗V β ∈ Λ4
27W

∗ ⇐⇒

{
β ∧ ∗V φ+ ∗V β ∧ ∗V ψ = 0,

β ∧ ∗V (ι(u)ψ) = ∗V β ∧ ∗V (u∗ ∧ φ) ∀u,
⇐⇒ ψ ∧ β = 0, φ ∧ β = 0

⇐⇒ β ∈ Λ3
27V

∗.

Here the last equivalence follows from Theorem 8.5. This proves the formula
for Λ4

27W
∗. The formula for Λ4

35W
∗ follows from the fact that this subspace

consists of the anti-self-dual 4–forms. This proves Theorem 11.10.

12 Donaldson–Thomas theory

The motivation for the discussion in these notes came from our attempt to under-
stand Riemannian manifolds with special holonomy in dimensions six, seven, and
eight [Bry87, HL82, Joy00] and the basic setting of Donaldson–Thomas theory on
such manifolds [DT98, DS11].
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12.1 Manifolds with special holonomy

Definition 12.1. Let Y be a smooth 7–manifold and X a smooth 8–manifold. A
G2–structure on Y is a nondegenerate 3–form φ ∈ Ω3(Y ); in this case the pair
(Y, φ) is called an almost G2–manifold. An Spin(7)–structure on X is a 4–form
Φ ∈ Ω4(X) which restricts to a positive Cayley-form on each tangent space; in this
case the pair (X,Φ) is called an almost Spin(7)–manifold.

Remark 12.2. An almost G2–manifold (Y, φ) admits a unique Riemannian metric
and a unique orientation that, on each tangent space, are compatible with the
nondegenerate 3–form φ as in Definition 3.1 (see Theorem 3.2). Thus each tangent
space of Y carries a cross product

TyY × TyY → TyY : (u, v) 7→ u× v

such that
φ(u, v, w) = 〈u× v, w〉

for all u, v, w ∈ TyY . Moreover, Theorem 8.5 gives rise to a natural splitting of the
space Ωk(Y ) of k–forms on Y for each k.

Remark 12.3. An almost Spin(7)–manifold (X,Φ) admits a unique Riemannian
metric that, on each tangent space, is compatible with the Cayley-form Φ as in
Definition 7.1 (see Theorem 7.8). Moreover, the positivity hypothesis asserts that
the 8–forms

Φ ∧ Φ, ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ

induce the same orientation whenever u, v ∈ TxX are linearly independent (see
Definition 7.11). Thus each tangent space ofX carries a positive triple cross product

TxX × TxX × TxX → TxX : (u, v, w) 7→ u× v × w

such that
Φ(ξ, u, v, w) = 〈ξ, u× v × w〉

for all ξ, u, v, w ∈ TxX . Moreover, Theorem 9.8 gives rise to a natural splitting of
the space Ωk(X) of k–forms on X for each k.

Every spin 7–manifold admits a G2–structure [LM89, Theorem 10.6]; concrete
examples are S7 (considered as unit sphere in the octonions), S1 × Z where Z is a
Calabi–Yau 3–fold and various resolutions of T 7/Γ where Γ is an appropriate finite
group, see [Joy00]. A spin 8–manifold X admits a Spin(7)–structure if and only if
either χ(/S

+
) = 0 or χ(/S

−
) = 0 [LM89, Theorem 10.7]; concrete examples can be

obtained from almost G2–manifolds, Calabi–Yau 4–folds and various resolutions
of T 8/Γ.
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Definition 12.4. An almost G2–manifold (Y, φ) is called a G2–manifold if φ is
harmonic with respect to the Riemannian metric in Remark 12.2 and we say that φ
is torsion-free. An almost Spin(7)–manifold (X,Φ) is called a Spin(7)–manifold
if Φ is closed (and, hence, harmonic with respect to the Riemannian metric in
Remark 12.3) and we say that Φ is torsion-free.

Remark 12.5. Let (Y, φ) be an almost G2–manifold equipped with the metric of
Remark 12.2. Then φ is harmonic if and only if φ is parallel with respect to the
Levi–Civita connection and hence is preserved by parallel transport. It follows
that the holonomy of a G2–manifold is contained in the group G2 [FG82]. It
also follows that the splitting of Theorem 8.5 is preserved by the Hodge Laplace
operator and hence passes on to the de Rham cohomology. Exactly the same holds
for an almost Spin(7)–manifold (X,Φ) equipped with the metric of Remark 12.3.
The 4–form Φ is closed (and hence harmonic) if and only if it is parallel with
respect to the Levi–Civita connection [Bry87]. Thus the holonomy of a Spin(7)
manifold is contained in Spin(7) and the splitting of its spaces of differential forms
in Theorem 9.8 descends to the de Rham cohomology.

Remark 12.6 (Construction methods). Examples of manifolds with torsion-free G2–
or Spin(7)–structures are much harder to construct. There are however a number
of construction techniques (all based on gluing methods): Joyce’s generalized
Kummer construction for G2– and Spin(7)–manifolds [Joy96b, Joy96c, Joy96a,
Joy00] based on resolving orbifolds of the form T 7/Γ and T 8/Γ; a method of Joyce’s
for constructing Spin(7)–manifolds from real singular Calabi–Yau 4–folds [Joy99];
and the twisted connected sum construction invented by Donaldson, pioneered
by Kovalev [Kov03], and extended and improved by Kovalev–Lee [KL11] and
Corti–Haskins–Nordström–Pacini [CHNP13, CHNP15].

12.2 The gauge theory picture

We close these notes with a brief review of certain partial differential equations
arising in Donaldson–Thomas theory [DT98]. We first discuss the gauge theoretic
setting. Let (Y, φ) be a G2–manifold with coassociative calibration ψ := ∗φ and
E → Y a G–bundle with compact semi-simple structure group G. In [DT98]
Donaldson and Thomas introduce a G2–Chern–Simons functional

CSψ : A (E)→ R

on the space of connections on E. The functional depends on the choice of a
reference connection A0 ∈ A (E) satisfying FA0 ∧ ψ = 0 and is given by

(12.7) CSψ(A0 + a) :=
1

2

ˆ
Y

(
〈dA0a ∧ a〉+

1

3
〈a ∧ [a ∧ a]〉

)
∧ ψ
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for a ∈ Ω1(Y,End(E)). The differential of CS has the form

δCSψ(A)a =

ˆ
N
〈FA ∧ a〉 ∧ ψ

for A ∈ A (E) and a ∈ TAA (E) = Ω1(Y,End(E)). Thus a connection A is a
critical point of CSψ if and only if

(12.8) FA ∧ ψ = 0.

By Theorem 8.5 this is equivalent to the equation ∗(FA ∧ φ) = −FA and hence to
π7(FA) = 0. A connectionA that satisfies equation (12.8) is called aG2–instanton.
As in the case of flat connections on 3–manifolds equation (12.8) becomes elliptic
with index zero after augmenting by a suitable gauge fixing condition (which we do
not elaborate on here). The negative gradient flow lines of the G2–Chern–Simons
functional are the 1–parameter families of connections R → A (E) : t 7→ A(t)
satisfying the partial differential equation

(12.9) ∂tA = − ∗ (FA ∧ ψ),

where FA = FA(t) is understood as the curvature of the connection A(t) ∈ A (E)
for a fixed value of t. For the study of the solutions of (12.9) it is interesting to
observe that, by equation (4.60) in Lemma 4.37, every connection A on Y satisfies
the energy identityˆ

Y
|FA|2volY =

ˆ
Y
|FA ∧ ψ|2volY −

ˆ
Y
〈FA ∧ FA〉 ∧ φ.

A smooth solution of (12.9) can also be thought of as connection A on the
pullback bundle E of E over R× Y . The curvature of this connection is given by

FA = FA + dt ∧ ∂tA = FA − dt ∧ ∗(FA ∧ ψ).

Hence, it follows from Theorem 9.8 and Theorem 11.10 that FA satisfies

(12.10) ∗ (FA ∧ Φ) = −FA

or, equivalently, π7(FA) = 0. Conversely, a connection on E satisfying equa-
tion (12.10) can be transformed into temporal gauge and hence corresponds to a
solution of (12.9). It is interesting to observe that equation (12.10) makes sense over
any Spin(7)–manifold. Solutions of (12.10) are called Spin(7)–instantons. This
discussion is completely analogous to Floer–Donaldson theory in 3 + 1 dimensions.
The hope is that one can construct an analogous quantum field theory in dimension
7 + 1. Moreover, as is apparent from Theorem 11.1 and Theorem 11.6, this theory
will interact with theories in complex dimensions 3 and 4. The ideas for the real
and complex versions of this theory are outlined in [DT98, DS11].

88



Remark 12.11. For construction methods and concrete examples of G2–instantons
and Spin(7)–instantons we refer to [Wal13, SEW15, Wal15] and [Tan12, Wal16].

12.3 The submanifold picture

There is an analogue of the G2–Chern–Simons functional on the space of 3–dimen-
sional submanifolds of Y , whose critical points are the associative submanifolds of
Y and whose gradient flow lines are Cayley submanifolds of R× Y [DT98]. This
is the submanifold part of the conjectural Donaldson–Thomas field theory.

More precisely, let (Y, φ) be a G2–manifold with coassociative calibration
ψ = ∗φ and let S be a compact oriented 3–manifold without boundary. Denote by
F the space of smooth embeddings f : S → Y such that f∗φ vanishes nowhere.
Then the group G := Diff+(S) of orientation preserving diffeomorphism of S acts
on F by composition. The quotient space

S := F/G

can be identified with the space of oriented 3–dimensional submanifolds of Y that
are diffeomorphic to S and have the property that the restriction of φ to each tangent
space is nonzero; the identification sends the equivalence class [f ] of an element
f ∈ F to its image f(S).

Given f ∈ F the tangent space of S at [f ] can be identified with the quotient

T[f ]S =
Ω0(S, f∗TY )

{df ◦ ξ : ξ ∈ Vect(S)}
.

If g ∈ G is an orientation preserving diffeomorphism of S, then g∗f := f ◦ g is
another representative of the equivalence class [f ] and the two quotient spaces can
be naturally identified via [f̂ ] 7→ [f̂ ◦ g].

Let us fix an element f0 ∈ F and denote by F̃ the universal cover of F
based at f0. Thus the elements of F̃ are equivalence classes of smooth maps
f̃ : [0, 1] × S → Y such that f̃(0, ·) = f0 and f̃(t, ·) =: ft ∈ F for all t. Thus
we can think of f̃ = {ft}0≤t≤1 as a smooth path in F starting at f0, and two such
paths are equivalent iff they are smoothly homotopic with fixed endpoints. F̃ → F
sends f̃ to f := f̃(1, ·). The universal cover of S is the quotient

S̃ := F̃/G̃

where G̃ denotes the group of smooth isotopies [0, 1]→ Diff(S) : t 7→ gt starting
at the identity. Now the space F̃ carries a natural G̃ –invariant action functional
A : F̃ → R defined by

A (f̃) := −
ˆ

[0,1]×S
f̃∗ψ = −

ˆ 1

0

ˆ
S
f∗t (ι(∂tft)ψ) dt.
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This functional is well defined because ψ is closed and it evidently descends to S̃ .
Its differential is the 1–form δA on F given by

δA (f)f̂ = −
ˆ
S
f∗
(
ι(f̂)ψ

)
This 1–form is G –invariant in that δA (g∗f)g∗f̂ = δA (f)f̂ and horizontal in that
δA (f)dfξ = 0 for ξ ∈ Vect(S). Hence, δA descends to a 1–form on S .

Lemma 12.12. An element [f̃ ] = [{ft}] ∈ F̃ is a critical point of A if and only
if the image of f := f1 : S → Y is an associative submanifold of Y (that is, each
tangent space is an associative subspace).

Proof. We have δA (f) = 0 if and only if ψ(f̂(x), df(x)ξ, df(x)η, df(x)ζ) = 0
for all f̂ ∈ Ω0(S, f∗TY ), all x ∈ S, and all ξ, η, ζ ∈ TxS. This means that
ψ(u, v, w, ·) = 0 for all q ∈ f(S) and all u, v, w ∈ Tqf(S). By definition of
the coassociative calibration ψ in Lemma 4.8 this means that [u, v, w] = 0 for all
u, v, w ∈ Tqf(S) where TqY ×TqY ×TqY → TqY : (u, v, w) 7→ [u, v, w] denotes
the associator bracket defined by (4.1). By Definition 4.6 this means that Tqf(S) is
an associative subspace of TqY for all q ∈ f(S). This proves Lemma 12.12.

The tangent space of F at f carries a natural L2 inner product given by

(12.13)
〈
f̂1, f̂2

〉
L2

:=

ˆ
S
〈f̂1, f̂2〉 f∗φ

for f̂1, f̂2 ∈ Ω0(S, f∗TY ). This can be viewed as a G –invariant metric on F .

Lemma 12.14. The gradient of A at an element f ∈ F with respect to the inner
product (12.13) is given by

grad A (f) =
[df ∧ df ∧ df ]

f∗φ
∈ Ω0(S, f∗TY ),

where [df ∧ df ∧ df ] ∈ Ω3(S, f∗TY ) denotes the 3–form

TxS × TxS × TxS → Tf(x)Y : (ξ, η, ζ) 7→ [df(x)ξ, df(x)η, df(x)ζ].

Proof. The gradient of A at an element f ∈ F is the vector field grad A (f) along
f defined byˆ

S
〈grad A (f), f̂〉f∗φ = −

ˆ
S
f∗
(
ι(f̂)ψ

)
=

ˆ
S
〈[df ∧ df ∧ df ], f̂〉.

Here the last equation follows from the identity

−ψ(f̂ , u, v, w) = ψ(u, v, w, f̂) = 〈[u, v, w], f̂〉

(see equation (4.9) in Lemma 4.8). This proves Lemma 12.14.
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We emphasize that the gradient of A at f is pointwise orthogonal to the image
of df . This is of course a consequence of the fact that the 1–form δA on F and the
inner product on TF are G –invariant. Now a negative gradient flow line of A is a
smooth map

R× S → Y : (t, x) 7→ ut(x)

that satisfies the partial differential equation

(12.15) ∂tut(x) +
[dut(x)e1, dut(x)e2, dut(x)e3]

φ(dut(x)e1, dut(x)e2, dut(x)e3)
= 0

for all (t, x) ∈ R× S and every frame e1, e2, e3 of TxS. Moreover, we require of
course that ut is an embedding for every t and that u∗tφ vanishes nowhere.

Lemma 12.16. Let R × S → Y : (t, x) 7→ ut(x) be a smooth map such that
ut ∈ F for every t. Let ξt ∈ Vect(S) be chosen such that

(12.17) ∂tut(x)− dut(x)ξt(x) ⊥ im dut(x) ∀(t, x) ∈ R× S.

Then the set

(12.18) Σ := {(t, ut(x)) : t ∈ R, x ∈ S}

is a Cayley submanifold of R×Y (that is, each tangent space is a Cayley subspace)
with respect to the Cayley calibration Φ := dt ∧ φ+ ψ if and only if

(12.19) ∂tut(x)− dut(x)ξt(x) +
[dut(x)e1, dut(x)e2, dut(x)e3]

φ(dut(x)e1, dut(x)e2, dut(x)e3)
= 0

for every pair (t, x) ∈ R× S and every frame e1, e2, e3 of TxS.

Proof. Fix a pair (t, x) ∈ R × S and choose a basis e1, e2, e3 of TxS. By Theo-
rem 5.20 (iii) the triple cross product of the three tangent vectors

(0, dut(x)e1), (0, dut(x)e2), (0, dut(x)e3)

of Σ is the pair(
φ(dut(x)e1, dut(x)e2, dut(x)e3),−[dut(x)e1, dut(x)e2, dut(x)e3]

)
.

Since this pair is orthogonal to the three vectors (0, dut(x)ei) and its first component
is nonzero, it follows that our pair is tangent to Σ if and only if it is a scalar multiple
of the pair (1, ∂tut(x)− dut(x)ξt(x)). This is the case if and only if (12.19) holds.
Hence, it follows from Lemma 6.25 that Σ is a Cayley submanifold of R × Y if
and only if u satisfies equation (12.19). This proves Lemma 12.16.

91



Lemma 12.16 shows that every negative gradient flow line of A determines
a Cayley submanifold Σ ⊂ R × Y via (12.18) and, conversely, every Cayley
submanifold Σ ⊂ R× Y , with the property that the projection Σ→ R is a proper
submersion, can be parametrized as a negative gradient flow line of A (for some S).
Thus the negative gradient trajectories of A are solutions of an elliptic equation,
after taking account of the action of the infinite dimensional reparametrization group
G . They minimize the energy

E(u, ξ) := 1
2

ˆ ∞
−∞

ˆ
S

(
|∂tut − dutξt|2 +

∣∣∣∣ [dut ∧ dut ∧ dut]u∗tφ

∣∣∣∣2
)
u∗tφdt

= 1
2

ˆ ∞
−∞

ˆ
S

∣∣∣∣∂tut − dutξt +
[dut ∧ dut ∧ dut]

u∗tφ

∣∣∣∣2u∗tφdt+

ˆ
R×S

u∗ψ.

For studying the solutions of (12.19) it will be interesting to introduce the energy
density ef : S → R of an embedding f ∈ F via

ef (x) :=
det
(
〈df(x)ei, df(x)ej〉i,j=1,2,3

)
φ(df(x)e1, df(x)e2, df(x)e3)2

for every x ∈ S and every frame e1, e2, e3 of TxS. Then ef◦g = ef ◦ g for every
(orientation preserving) diffeomorphism g of S and so the energy

(12.20) E (f) :=

ˆ
S
eff

∗φ

is a G –invariant function on F . Moreover, it follows from Lemma 4.4 that

E (f) =

ˆ
S

∣∣∣∣ [df ∧ df ∧ df ]

f∗φ

∣∣∣∣2f∗φ+

ˆ
S
f∗φ.

If φ is closed, then the last term on the right is a topological invariant. Moreover,
the first term vanishes if and only if f is a critical point of the action functional A .
Thus the critical points of A are also the absolute minima of the energy E (in a
given homology class).

12.4 Outlook: difficulties and new phenomena

These observations are the starting point of a conjectural Floer–Donaldson type
theory in dimensions seven and eight, as outlined in the paper by Donaldson and
Thomas [DT98]. The analytical difficulties one encounters when making this
precise are formidable, including non-compactness phenomena in codimension
four [Tia00] and two in the gauge theory and submanifold theory respectively. The
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work of Donaldson and Segal [DS11] explains that this leads to new geometric phe-
nomena linking the gauge theory and the submanifold theory. It is now understood
that neither the naive approach to counting G2–instantons [DS11, Wal12] nor that
of counting associative submanifolds [Nor13] can work on their own. There are,
however, ideas of how the theories outlined in Section 12.2 and Section 12.3 have
to be combined and extended to obtain new invariants [DS11, HW15].
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