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1 The cotangent bundle of the two-sphere
Identify the cotangent bundle of the 2-sphere with the manifold
175 = {{+in e C*|I¢| = 1, (&, m) = 0}. (1.1)

The canonical symplectic form on T*S? is the restriction of the standard
symplectic form wy = 377, d&; A dn; on C? to T*S>.

Lemma 1.1 (Dehn Twist). Define the map 7 : T*S* — T*S? by
7(&m) = (€1

for (&,m) € T*S?, where || = ||, & := —¢ in the case n =0, and

S/ _Lln!< -i)
§+1|n,| = exp< W) f—|—1|n| (1.2)

in the case n # 0. Then T is a symplectomorphism (called the Dehn twist ).

Proof. Equation (1.2)) can be written in the form

¢ = —cos 2l £ _ sin 2m|n)| n
1+ 42 VI+ 42 ) Inl’ 13)

n =sin | ————— | || — cos QW—W n.
V1+4n? V' 1+4[n?



This shows that 7 is a diffeomorphism. Now abbreviate

fe T a2 25y
ST TP (1 + 4fnf2)*2
Then 7} = |n|sin(0)& — cos(0)n; and & = — cos(0)&; — |n|~ ' sin(f)n;. Thus
Zj(”h'ﬁjdﬁj — 77]2-61”7@') n; cos(0)
nf® 7]

Using » &—1= doi&imi=0and ), §d§ =37, (§id77z' + Th'dfz') =0 we find

- (&minjdn; — n2&dn;
S lde] = sin(0) 2i,(&in m| T; 5 idni)

- 1

+ cos*(6) Z n:d&; + |n| cos*(0)do

df = = —|nldé.

do.

d¢l = — cos(0)d¢&; + sin(6) + & sin(0)do —

+ || sin2(6)do

= 0052(9) Z nzd& — sin2(9) Z fzdm + |77|d9

= Zﬁidfi —df
Thus the difference >, nid&} — >, mid¢; is exact and so 7 : T*5? — T*5% is a
symplectomorphism. This proves Lemma 1.1} O
Lemma 1.2. The set
X = {z:$+iyEC3||x|2—|yl2:1, <x,y>:0}, (1.4)

is a complex submanifold of C3, the map ¢ : X — T*S? defined by
Wz +iy) = |z| e +ilxly (1.5)

for x + iy € X is a symplectomorphism with the inverse

CHEFI) = AN, A= \/g (1 + 1+ 4|ny2), (1.6)
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and the symplectomorphism ¢ := 1= o701 of X is given by ¢(z,y) = (2/, /)
for z=x+1iy € X, where 2’ = —x, y' =0 in the case y = 0 and

Ly ( 2mi|x|[y| > < T .Y )
—+i==—exp|—T—F——5 | | — +i= (1.7)
[yl >+ ly[* ) \lz| ~ y]

in the case y # 0.



Proof. We prove that the map ¢: X — T*S? in ([1.5)) is a diffeomorphism
with the inverse given by ([1.6)). Let x + iy € X with y # 0 and let

E4in = u(z +iy) € C?
be given by so that £ = |z|~'z and = |z|y. Then
=1, (&m={ry =0
and so £ + in € T*S?. Moreover, |n| = |z||y| and hence

1+ 4fn* =1+ 4|z[*|y|?
=1+ 4ly[* + 4Jy|*
= (1+2[y[*)
= (|2°] + |y[*)*.

(1.8)

This shows that

A= 1 (1 VI IE) = 50+ fef o+ ) = o

in (1.5). Thus the map ¢: X — T*S? is bijective and its inverse is given
by (1.6)). Moreover, both ¢ and ! are smooth and so ¢ is a diffeomorphism.
That ¢ is a symplectomorphism follows from the identity

Znid& = Z|x|yzd|%| = Zyidx,-.

Here the last equation holds because ), y;x; = 0 on X.

Now let ¢ : X — C? be the map defined by (1.7). Let z + iy € X and
let o' + iy := ¢(z + iy) € C3. We prove first that

|2 = |zl W'l =1lyl, o' +iy eX.

In the case y = 0 this follows directly from the definition. Thus assume y # 0.
Since the vectors |z| 'z and |y| 'y in R? are orthonormal it follows from (1.7))
that the vectors |z|~'2" and |y| ™'y are also orthonormal. This implies

(@ y)=0 PI=lz, W=yl
hence |2|? — |y/|> = 1, and so 2’ + iy’ € X.
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We prove that 1o ¢ = 7o Let z + iy € X with y # 0 and define
iy =ge+iy),  C+ini=detiy), g = +iy).
Then ¢ = ||~z and n = |z|y and so it follows from (1.8)) that

o= oxp [ -2 _ o (_ 2mi|xz||y| ) '
V1 +4[n)? |z + [y[?
Since £ +in' = (2’ + 1y') and (2’ +iy') = ¢(x + iy), this implies

0| = 12"lly'] = l=[ly| = In| (1.9)
and
/A ) Ty 7]
¢tit = +i—=—a|—+i—|=—alf+i~]. (1.10)
A Y [yl 7]
Here the second equality follows from ((1.7]). It follows from equations (1.9))
and ([1.10) and the definition of 7 in (1.2)) that ¢’ + i’ = 7(£ +in). Thus
vod(z+iy) =& +in =7({+in) =7 ou(x +iy)
for all z + iy € X withy # 0. So ¢ 0 ¢ = 7 o and this proves Lemmal[l.2, [

Remark 1.3. The manifold X in Lemmall.2)is the regular fiber X = 771(1)
of the Lefschetz fibration 7 : C* — C given by

m(2) =22+ 22 + 23

for z = (21, 29, 23) € C3. The Dehn twist ¢ : X — X in (1.7)) is the mono-
dromy around the unit circle in this Lefschetz fibration. More precisely, the
parallel transport diffeomorphisms ¢; : 771(1) — 77 1(e?™) are given by

oy (x4 iy) = e™ (u(t) +iv(t))

u(t) v _ exp ( 27Tit|xHy|) ( Ty ) (1.11)

—_—— — l_
[yl [z +1y[* ) \ ||yl

for t € R and = + iy € X with y # 0. This can be seen by noting that the
function w(t) := e~ ™z(t) satisfies the equation w = 7i(—w + A\w), where the
coefficient \ := |z(¢)|72 is independent of ¢. For ¢t =1 one obtains the dif-
feomorphism ¢ = ¢; : X — X in Lemma We emphasize that ¢ is a
symplectomorphism but is not holomorphic.



A third model for the cotangent bundle of the 2-sphere is the total space
of the second tensor power of the tautological line bundle over CP* or, equiva-
lently, the resolution of the singularity 22 + 4% + 22 = 0 in C?. Define

2? +y? 422 =0,

7 = (x,y,2 [a:b]) € C* x CP'| bz +iy) —az =0,
alx —iy) + bz =0
J A, u € C such that
= (2,2 [a:b) € C* x CP'| z+4iy = Aa, z = \b,
x — iy = pb, —z = pa

(1.12)

This is a complex submanifold of C* x CP' and hence it inherits a nat-
ural Kéhler structure from the ambient manifold (with the standard sym-
plectic form on C?® and the Fubini-Study form on CP'). However, in con-
trast to the manifolds 7%S? in and X in (1.4)) where the zero section
(n=0 in and y =0 in (1.4)) is a Lagrangian submanifold, the zero
section x =y = z = 0 in the manifold Z in is a holomorphic sphere
with self-intersection number —2. Stereographic projection gives rise to an
explicit diffeomorphism from Z to T*S2.

Lemma 1.4. For (z,y,z,[a:b]) € Z define the pair
Sy oo B) = (En) €RS xRS

by
1 2Re(ab) Im(x)
—— | omm(a) |, — {1 . 1.13
TR Tl (vt A W )

Then 7: Z — T*S? is an orientation preserving diffeomorphism. Its inverse
is given by 371 (§,n) = (z,y, 2; [& +1& 0 1+ &) with (z,y,2) = =& x 0+ in.
Proof. The square of the tautological line bundle over CP is the quotient

E = {(a,b,w) € C’|(a,b) # (0,0)}/~, (a,b,w) ~ (Aa, \b, \"%w).

Denote the equivalence class of a triple (a,b,w) under the action of C*
by [a : b;w] := {(Aa, A\b, \"2w) | A € C*}. The line bundle E is diffeomorphic
to Z via the diffeomorphism [a : b;w| — (z,y, 2, [a : b]) given by

R -a, s

5w, Yy = 5 W z = —iabw. (1.14)

Note that b(z + iy) = —a?biw = az and a(z — iy) = ab*iw = —bz.

X
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Now think of the complex plane as a subspace of the space of quaternions
and denote by 1i,j,k the standard generators of the imaginary quaternions
so that ij = —ji = k and i = j2 = k* = —1. For (a,b) € C?\ {0} define the
quaternion ¢ € H by

¢ = qla,b) = %((a+z§>(1—i)+(a—b>(j+k)). (1.15)
Then a calculation shows that |g|? = |a|* + |[b|* and
qig = 2Re(ab)i+ 2Im(ab)j + (|b]* — |a|?)k,
qjq = Re(62 — a2)i — Im(a2 + bz)j — 2Re(ab) k,
qkq = Im(b2 — a2)i + Re(a2 + b2)j — QIm(ab)k.
When (a,b) € C? is a unit vector, the coordinates of ¢ig define the element
of 52 that correspond to the point a/b in the Riemann sphere under the stere-
ographic projection from the south pole, and the vectors ¢jg and —gkgq form a

positive orthonormal basis of the cotangent space of S? at the point £ = ¢ig.
Thus a complex number w = s + it determines a tangent vector

1 = 3q(a,b) (wj)q(a,b)
%q(a, b)(sj — tk)q(a, b)
= Re(3(0* — a®)w)i — Im(3(a® + b*)w)j — Re(abw)k.

This gives rise to a vector bundle isomorphism from E to T*S? which cov-
ers the inverse of the stereographic projection S? — CP' and sends an ele-
ment [a : b;w] to the pair (&,7) = (£(a,b), n(a, b;w)) € T*S?, defined by

1 2Re(ab) Re(1(0* — a*)w)
= ——— | 2Im(adb) |, n:=| —Im(i(a®+b*)w)
|al* + [b]> 16| — |al? —Re(abw)

If (z,y, 2, [a : b]) is the element of Z corresponding to the point [a : b;w] € F

under the diffeomorphism in (1.14)), then n(a,b; w) = (Im(x), Im(y), Im(2)).
The inverse map sends a point (£,7) € T*S? to (z,y, 2,[a : b]) € Z with

[a:b] = [6 +i& 1+ &3,

x = &3n2 — Eam + I,

y = &ns — &+ ine,

z =& — &g + 1.

This proves Lemma [I.4] O

(1.16)



2 The Atiyah flop

The set
X = {(z,y,2,t) e C!|2* + ¢y + 2> + 1 =0} (2.1)

is a complex submanifold of C*, holomorphically diffeomorphic to C3, the
projection 7 : X — C given by 7(x,y, z,t) :=t is a Lefschetz fibration, the
fiber over t = 1 is the manifold X in , and the monodromy around the
unit circle is the Dehn twist in Lemma[T.1] Now consider the singular variety

S = {(w,y,z,t)E(C4’3:2+y2+z2+t2:0}. (2.2)
Blow up the origin to obtain a smooth manifold

b(x+iy) —a(z +1it) =0,
a(x —iy) +b(z —it) =0 } - (23)

Z = {(az,y,z,t, [a:b]) € C* x CP!

Lemma 2.1. The projection
Z—-C:(x,y,z,t[a:b])— 7m(z,y,2,t ]a:b]) =t (2.4)
18 a holomorphic submersion.

Proof. 1f (z,y, z,t) is a nonzero vector in .S, then one of the complex num-
bers z,y, z is nonzero. If x # 0, then the vector (Z,y, 2, t) with

Lt
1’:——’ y:Z:O
i

is tangent to S at (z,y, z,t) and projects onto t under the derivative of .
If b # 0, then the curve (z(t),y(t), 2(¢),t, [a : b]) € U with

iat at

z(t) = 5 y(t) = — z(t) =it

passes through (0,0,0,0,[a: b]) and satisfies x(¢)? + y(t)* + 2(t)* +t>* =0
as well as b(z +1iy) —a(z+1it) =0 and a(zr —iy) + b(z —it) =0. Ifa=1
and b = 0, then the curve (z(t), y(t), 2(t),¢,[1 : 0]) € U with

x(t) = it, y(t) =t, z(t) = —it

satisfies the same conditions. This proves Lemma [2.1] ]
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The central fiber of the fibration 7 : Z — C in (2.3) and (2.4) is the
manifold Z, := Z in ([1.12)) which is diffeomorphic to 7*S? by Lemma . By
Lemmal2.1]the fibration Z admits a trivialization C x Z — Z. For t € C\{0}
denote the fiber of Z over t by

Zy = {(a:,y,z)6@3’x2+y2+22+t2:0}. (2.5)
Lemma 2.2. Fiz a constant € > 0. Then there exists a collection of diffeo-
morphisms 1y : Z — Zy satisfying the following conditions.
(I) The map
CxZ—=Z:(t(z,y,2 ;b)) — (29,2, t,[d : V]) (2.6)
defined by (', y', 2, [a’ : V]) := (z,y, 2, [a:b]) for t =0 and by

(', 7)) = wt(x,y,z, [a : D]),
b = { [z + iy" (2 + izé], zf |z’ + iy.’|2 + |2 + iLt|2 # 0, (2.7)
=2/ +it: 2’ — 1Y), if |- +it]* + |2’ —iy|* #0,
fort # 0 is a diffeomorphism.
(IT) Let (z,vy, 2, [a; b)) € Z such that |x|*+|y|*+|2]* > € and let t € C\ {0}.
Define r := |t|, choose 0 € R such that t = rel?, and define

2 2 4 2
N _\/¢ P P+ PP A .

le2 +ly? + |27

Then ('Y, 2') = Yz, y, 2 is given by
>\+)\_1 A=t
Proof. The map (2.9) is obtained by parallel transport in the fibration Z in
Lemma along the paths r +— 7¢' on the complement of the set

Ci={(z,y,2,t,[a: b)) € Z||xf + |yl + |2 = |t} -
Here the fiber Z; is identified with the fiber X2 of the fibration X in ({2.1])

in the canonical way, the set C corresponds to the zero sections of the fibers
under the identifications with 7%S2, and parallel transport is understood
with respect to the symplectic connection on X determined by the standard
symplectic form on C3. The proof of Lemma then follows by choosing
a suitable symplectic connection form on Z which agrees with the standard

symplectic form on C? (with the coordinates (z,y, z)) outside of a sufficiently
small neighborhood of the sphere C' := {(0,0,0,0)} x CP' C Z. O]

(', 7)) = (2,9, 2) + e**
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Lemma 2.3. Fort € C\{0} let ¢, : Z — Z, be the trivialization of Lemmal[2.5,
let I, be the standard complex structure on Z;, and define

Jt = w:lt - /int(Z)-

Let J be the standard complex structure on Z and let 7 : Z — Z be a
Dehn twist, localized near the (—2)-sphere C = {(0,0,0)} x CP' C Z, under
the identification of Z with T*S? in Lemma . Then there exists a smooth
family of diffeomorphisms C\ {0} — Diffo(Z) : t — ¢y with uniform compact
support such that, for every t € C\ {0}, the diffeomorphism ¢y : Z — Z 1is
smoothly isotopic to the identity with uniform compact support and

ord, =1 J_s.

Proof. For t € C\ {0} we have Z;, = Z_; and denote by ¢, : Z; — Z_; the
identity map, so y(x,y,z2) = (z,y,2) € Z_; for (x,y,2) € Z;. We empha-
size that the map (x,y, z,t) — (x,y, z, —t) is a holomorphic diffeomorphism
of §\ {0} and so induces a holomorphic diffeomorphism of Z\ C, however,
it does not extend to Z. It follows from equation in Lemma that

Lt O wft = wt on {(xawa? [CL : b]) S Z ‘ ‘I|2 + |y|2 + |Z‘2 2 8} :
Thus the diffeomorphism
T ::@bt_lob_togb_t:Z—)Z

is equal to the identity on the subset |z|*> + |y|* + |2|*> > . By Lemma
and Remark it is a Dehn twist, localized near the (—2)-sphere C' C Z.
Moreover, for all t € C\ {0}, we have 7, o 7_; = id and

Tt*Jt = witl/*_t(d}t_l)*‘]t = ¢itbitjt - ,lvbit-[—t - J—t-
Now fix an element t, € C\ {0} and take
T 1= Ty, Q=T 0T

for t € C\ {0}. Then, for every t € C\ {0}, we have ¢;J, = 7°7)J, = 7" J_4
and ¢; is smoothly isotopic to the identity. An explicit isotopy with uniform
compact support is given by ¢ 1= 7,,(s) © Ty,, Where v, : [0,1] = C\ {0} is
a smooth curve satisfying +,(0) = —ty and (1) = ¢. If 7 is any other Dehn
twist about C, choose a smooth isotopy [0, 1] — Diff(Z) : s — 1, with uni-
form compact support joining ¢y = 73, to ¥1 = 7 and take ¢ ; := T,,(5) © Vs.
This proves Lemma [2.3] ]



3 Teichmiiller space of K3

For an oriented smooth manifold M of even dimension denote by _# (M)
the space of almost complex structures that are compatible with the orien-
tation, by Zino(M) C (M) the subspace of integrable almost complex
structures with vanishing real first Chern class, and by Diffy(M) the group
of diffeomorphisms of M that are isotopic to the identity.

Lemma 3.1. Let M be a K3 surface, i.e. a closed oriented simply connected
smooth four-manifold with Zio(M) # 0. Then the Teichmiiller space

Fo(M) := _Fine,0(M)/Diffo (M)
1s not Hausdorff.

Proof. Let J € Jinto(M) be a complex structure that admits an embedded
holomorphic sphere C' C M with self-intersection number —2. An explicit
example (taken from [I]) is the manifold

3 20,2 L2y
Zi:lzi(zi ZO) 0, }UU/N7

M =< [2:21: 29 : 23] € CP?
{[0 i ) 5+ |z2f? + ]2l 0

(wla Wa, U)3) € W7
b(wy + iwg) —aws =0,
a(wy — iwy) + bws = 0

where W is the set of all vectors w = ((1\/1 — (%, (/1 — (2, G/1 =)
in C® with ¢; € C and 37 ,|G|*> < 1/2, and the equivalence relation is given
by [20: 21 ¢ 22 1 23] & (w1, wo, ws) iff 0 < [21]> + |22)* + |23]> < |20/%/2 and

2
w; = 2 1—(ﬁ) for i = 1,2,3.

20 20

U:= (wl,wg,wg, [CL : b]) € (CB X CPI

In any such example a neighborhood U of C' is holomorphically diffeomor-
phic to a neighborhood of the curve C' C Z in Lemma by a theorem
of Grauert. Let 7 : M — M denote the Dehn twist about C' induced
by such a diffeomorphism. Then, by Lemma there exists a smooth
family of complex structures C — Jinto(M) : t — J; and a smooth family
of diffeomorphisms C\ {0} — Diffo(M) : t — ¢; such that ¢;J, = 7*J_; for
all t € C\{0}. Thus limy;J; = J and lim;_,o ¢} J; = limy_o 7 J_y = 7°J.
Since the homology class A := [C] € Hy(M;Z) is effective for J and the
class — A is effective for 7*J, the complex structures J and 7*.J do not repre-
sent the same equivalence class in Z5(M). This proves Lemma [3.1] O
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