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1 Complex Lie groups

Lemma 1.1. Let G be a connected Lie group and A : g — g be a linear map
on its Lie algebra g := Lie(G). Then the following are equivalent.

(i) For all € € g and g € G we have A(gég™") = g(A)g~'.
(ii) For all £,m € g we have A€, n] = [A&,n] = [£, An].

Proof. To prove that (i) implies (ii) differentiate the itentity

A(exp(t&)nexp(—t§)) = exp(t§)(An) exp(—t§)

with respect to t at ¢ = 0. To prove the converse choose a path g : [0,1] — G
such that ¢(0) = 1 and an element £ € G. Define the maps 7,¢ : [0,1] — g

by n(t) == g(t)'&g(t) and ((t) == g(t) "' (AE)g(t). Then
O(An) + 979, An) =0,  9C+[97'9,¢l,  An(0) = A& = ((0).

Here the first equation follows from (ii). It follows that An(t) = ((t) for all t.
This proves Lemma [1.1] O

Definition 1.2. A complex Lie group is a Lie group G equipped with the
structure of a complex manifold such that the structure maps

GxG—>G:(g,h)sgh, G—oGigrrg
are holomorphic.

Proposition 1.3. Let G be a connected Lie group. Assume that the Lie
algebra g := Lie(G) is equipped with a complex structure g — g : £ — i€ and
define the almost complex structure J on G by

Jyv = (ivg™)g

forv e T,G. Then the following are equivalent.
(i) (G, J) is a complex Lie group.
(ii) The Lie bracket g x g — g : (§,n) — [&,n] is complex bilinear, i.e.

[ig, n] = [¢,in] = i[¢, 1]

for all &, n € g.



Proof. For £ € g define the vector fields X¢, Y € Vect(G) by

Xe(g) =89,  Yelg) = g&

We prove that
JXe=Xie,  (Lx,))Xe = Xpea-itgmy Ly J =0 (1)

Here the first equation is obvious from the definitions. The second equation
follows from the first and the identities [X¢, X, | = X, and

([’Xn‘])Xf = ‘CXn(‘]XE) - JEXnXg = [JX&,XU] - J[Xg,Xn]
for £, € g. To prove the last equation in (1)) note that
Jgn(vh) = (Jyv)h

for all g,h € G and v € T,G. Hence the diffeomorphism G = G : g — gh
is holomorphic for every h € G. Differentiating with respect to h gives
Ly, J =0 for every § € g. Thus we have proved .

That (i) implies (ii) follows immediately from (1. Conversely assume (ii)
and denote by N; the Nijenhuis tensor of J. Then, for all £,7 € g,

NJ(XEaXn) = [XﬁvXn] + J[JX&XW] + J[X£7 JXn] - [JXfa JXU]
= [Xe, Xy] + J[Xie, Xy + J[Xe, Xiy] — [Xie, Xiy)]
= Xiew) + J Xjig) + I Xjgin) — Xiiein)

= Xl m]+ilit, ]+H[€, in]— [i&,in]
= 0.

Here the second and fourth equations follow from and the last equation
follows from (ii). Since the vector fields X, span the tangent bundle this
shows that Ny = 0 and so J is integrable. By Lemma [I.1] it follows also
from (ii) that g=!(i&)g = i(g~'¢g) for all £ € g and g € G and hence

Jgv = (ivg~")g = g(ig~'v) (2)

for g € G and v € T;G. This implies that the multiplication map is holo-
morphic. Since the the multiplication map is a submersion, the preimage of
the neutral element 1 € G is a complex submanifold of G x G and it is the
graph of the map ¢ + ¢~!. Hence this map is holomorphic as well. This
proves Proposition [1.3] 0



Theorem 1.4. Let G be a compact Lie group and G¢ be a complex Lie group
with Lie algebras g := Lie(G) and g° = Lie(G°). Let v : G — G° be a Lie
group homomorphism. Then the following are equivalent.

(i) For every complex Lie group H and every Lie group homomorphism
p: G — H there is a unique holomorphic homomorphism p¢: G — H such
that p = p°o .

(ii) ¢ is injective, its image 1(G) is a mazimal compact subgroup of G, the
quotient G¢/1(G) is connected, and the differential di(1) : g — g maps g
onto a totally real subspace of g°.

Proof. See pages [31] and O

A Lie group homomorphism
t:G—G°

that satisfies the equivalent conditions of Theorem is called a complex-
ification of G. By the universality property in part (i) of Theorem the
complexification (G, ¢) of a compact Lie group G is unique up to canonical
isomorphism.

Theorem 1.5. Fvery compact Lie group admits a complexification, unique
up to canonical isomorphism.

Proof. See page |33 O

Theorem 1.6 (Cartan). Let ¢« : G — G° be a complexification of a com-
pact Lie group. Then every compact subgroup of G¢ is conjugate in G° to a

subgroup of 1(G).
Proof. See page |33| n

Theorem 1.7 (Mumford). Let ¢« : G — G° be a complexification of a
compact Lie group. Identify G with the image of ¢ and denote

g := Lie(G), g° := Lie(G°).

Let ¢ € g° such that exp(¢) = 1. Then there exist elements p,pt € G such
that

pipeg,  lim exp(it()pexp(—it() = p*.

Proof. See page [34] O



2 First existence proof

The archetypal example of a complexification is the inclusion of U(n) into
GL(n,C). Polar decomposition gives rise to a diffeomorphism

¢ :U(n) x u(n) — GL(n,C), o(g,n) = exp(in)g. (3)
This example extends to every Lie subgroup of U(n).

Theorem 2.1. Let G C U(n) be a Lie subgroup with Lie algebra g C u(n).
Then the set

G :={exp(in)g|g € G, n € g} C GL(n,C)
is a complex Lie subgroup of GL(n, C) and the inclusion of G into G¢ satisfies
condition (ii) in Theorem [1.4)
Proof. The proof has ten steps.
Step 1. G° is a closed submanifold of GL(n,C).
This follows from the fact that is a diffeomorphism.
Step 2. 1 € G° and T1G = g ® ig =: g°.
For £,m € g consider the curve y(t) := exp(itn) exp(t§) € G°. It satisfies
4(0) = € +in. Hence g° C T3G¢ and both spaces have the same dimension.
Step 3. T, G° = kg° for every k € G°.

Both spaces have the same dimension, so it suffices to prove that T,G¢ C kg°.
Let ¢ be the diffeomorphism (3). Fix an element (g,n) € G x g and let

k= ¢(g,n) = exp(in)g € G*.

Then, for every & € g, we obviously have do(g, n)(gg, 0) = exp(in)gge kge.
Now let ) € g. We must prove that d¢(g,n)(0,7) € kg®. To see this consider
the map ~ : R? — G¢ defined by

v(s,t) := ¢(g,t(n + s7)) = exp(it(n + s7))g

and denote £ := 7y 19,y and n := v 19yy. Then n(s,t) = g~ 'i(n + s0)g € g°
for all s,t and 0,§ = d,n + [, 1], £(s,0) = 0. Since n(s,t) € g this implies
(s, t) € g° for all s,t and, in particular, d¢(g,n)(0,7) = v(0,1)£(0,1) € kg°.
This proves Step 3.



Step 4. Let a € GL(n,C). Then a € G° if and only if there exists a smooth
path « : [0,1] = GL(n, C) satisfying «(0) € G, (1) = a, and a(t)'a(t) € g°
for every t.

To prove that the condition is necessary let a = exp(in)h € G° be given.
Then the path «a(t) := exp(itn)h satisfies the requirements of Step 4. To
prove the converse suppose that « : [0,1] — GL(n,C) is a smooth curve
satisfying «(0) € G, a(1) = a, and «(t)"'&(t) € g° for all t. Consider the set

I:={te|0,1]]at) € G}.

This set is nonempty, because 0 € I. It is closed because G¢ is a closed subset
of GL(n,C), by Step 1. To prove it is open, denote n(t) := a(t)"*a(t) € g°
and consider the vector fields X; on C"*" given by X;(A) := An(t). By
Step 3, these vector fields are all tangent to G¢. Hence every solution of the
differential equation A(t) = A(t)n(t) that starts in G® remains in G on a
sufficiently small time interval. In particular this holds for the curve t — «a(t)
and so  is open. Thus I = [0, 1] and hence a = a(1) € G°.

Step 5. If a € G¢ and & € g° then a™'¢a € g.
Choose a : [0,1] — G as in Step 4 and denote

((t) = alt)a(t), () :=a(t) " ad).
Then .
C+[n¢=0,  ¢(0)=a(0)fa(0)™ € g

Here the second assertion holds because a(0) € G. Since n(t) € g° for all ¢
this implies that ((t) € g¢ for all ¢ and, in particular, a~'¢a = ((1) € g°.

Step 6. If a € G¢ and £ € g° then afa™ € g°.

The linear map & — o *&a maps g° to itself, by Step 5, and it is injective.
Hence the map g¢ — g¢: € — a~'&a is bijective and this proves Step 6.

Step 7. If a,b € G° then ab € G°.

Choose two curves «, 5 : [0,1] — G as in Step 4 with «(0),5(0) € G and
a(l) = a, B(1) = b. Then the curve v := af : [0,1] — GL(n, C) satisfies

v =871+ @B, 4(0) € G
By Step 5, y(t)714(t) € g¢ for all ¢ and hence, by Step 4, ab = (1) € G°.
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Step 8. If a € G¢ then a™! € GC.
Let « as in Step 4 and denote ¥(t) := «(t)~'. Then v(0) € G and

d
g = aaofl = —aa ' =a(—ata)a™t

By Step 6, y(t)714(t) € g¢ for all t and hence, by Step 4, a=* = (1) € G
Step 9. G¢ is a complex Lie subgroup of GL(n,C).

G¢ is a complex submanifold of GL(n,C) by Step 3 and is a subgroup of
GL(n,C) by Step 7 and Step 8.

Step 10. G is a maximal compact subgroup of G€.

Let H C G° be a subgroup such that G C H. Choose an element h € H\ G.
Since H C G¢, there is a pair (g,n) € G x g such that h = exp(in)g. since
G C H and H is a subgroup of G we have

P :=exp(in) € H.

The matrix P is Hermitian and positive definite. Since h ¢ G we also have
P ¢ G. But this implies 7 # 0 and so at least one eigenvalue of P is not
equal to 1. Hence the sequence

P* = exp(ikn) € H, k=1,2,3,...

has no subsequence that converges to an element of GL(n, C). Thus H is not
compact and this proves Theorem [2.1] O

The tangent space of the submanifold G¢ C GL(n,C) in Theorem [2.1] at
the identity element is obviously equal to T7G¢ = g & ig = g°. Since G is a
Lie subgroup of GL(n,C), the curve t +— exp(—in)exp(in + tin) lies in G,
for every pair 1,7 € g, and hence

- d ) ) N .
A= —| exp(—in)exp(in + tin) € g°.

dt|,_g

It turns out that A € Q!(g,g¢) is a flat connection 1-form that satisfies
A(n)n = in whenever n and 7 commute. Conversely, Theorem below
shows that, for any Lie algebra g, the connection A is uniquely determined
by these conditions and that the group multiplication on G x g can be recon-
structed from A. This gives rise to an intrinsic construction of a complexified
Lie group for any compact Lie group G that does not rely on an embedding
into the unitary group.



3 Second existence proof

The second existence proof applies to compact connected Lie groups in the
intrinsic setting.

Definition 3.1. Let X be a connected smooth manifold and g be a Lie
algebra. A flat connection A € Q'(X, g) is called an infinitesimal group
law if it satisfies the following conditions.

(Monodromy) The monodromy representation of A is trivial, i.e. for any
two smooth paths v : [0,1] — X and ¢ : [0,1] — g we have

CH[AMA, =0, 7(0)=~(1) = ¢(0) = ¢(1).
(Parallel) A(z):T,X — g is a vector space isomorphism for every = € X.

(Complete) The vector fields Ye € Vect(X) defined by

Az)Ye(x) = €

are complete, i.e. for every smooth path R — g : ¢t — £(t) the solutions
of the differential equation ¥(t) = Yeq)(v(t)) exist for all time.

Example 3.2. Let G be a Lie group with Lie algebra g := T1G = Lie(G).
Then the 1-form A € QY(G, g) defined by

Algl = g0

is an infinitesimal group law. The vector fields Y, are given by Y¢(g) = ¢¢
and the curvature Fy € Q*(X, g) is

= Ly (AY) = Ly, (AYe) + AlYe, V| + [€,1)]
= A[Y&Y;?] + [5777]
=0

for £,m € g. Thus the connection is flat. The (Monodromy) condition holds
because, for any path ¢ : [0,1] — G, the solutions of the equation

E+lg7'9.6] =0
have the form £(t) = g(t)&og(t).



Example 3.3. Let g be a Lie algebra. Then there is a unique flat connection
A € Q'(g, g) such that

~ ~ o~

§,€] =0 = A()E =€ (4)

for all 5,5 € g. In general, this connection is not an infinitesimal group
law. The idea behind this example is as follows. If we have a Lie group G
with Lie algebra g we might attempt to reconstruct the group multiplication
locally as an operation m : g x g — g such that exp(§) exp(n) = exp(m(&,n)).
While this is not possible globally in most cases, the associated connection
A(€)€ = exp(—¢£)dexp(&)€ does exist globally and satisfying .

To prove uniqueness note that a connection A € Q'(g,g) is flat if and
only if every smooth map ~ : R? — g satisfies the equation

Os(A(7)0ry) — 0:(A(7)0s7) + [A(7)0s7, A(7)9y] = 0. (5)

If in addition the connection satisfies then, with (s, t) := ¢(& + sg), we
obtain

AMOy =E+5E,  AM)Dyy = A(H(E + sE))EE.

Setting s = 0 we find that the function ((t) := A(tﬁ)tgsatisﬁes the differential
equation

. ~

C+16¢=¢, ¢(0) =0. (6)
Thus

A = ¢(1) = / exp(—tad(€))Edi = 3

k=0

where ad(§) := [£,-]. Conversely, let A € Q'(g,g) be defined by this for-

~

mula. If [£,&] = 0 then ((f) = t£ is the unique solution of the differential
equation () and so A(f)gz ¢(1) = E To prove that A is flat we fix three
elements &, &, &, € g, define ¢ :[0,1] — g as the solutions of () with = Ej,
and define ¢;; : [0, 1] — g as the solution of the linearized equation

éij + (&, G5l + [@, ¢l =0, G;;(0) = 0.
Then A(€)€; = ¢;(1) and (dA(€)&)E; = ¢;(1). Moreover,

(+[E.¢ =0, ¢:=Ca—Cu + 1[G,
so n = 0 and thus A is flat.



Theorem 3.4. Let X be a connected smooth manifold, g be a Lie algebra,
and A € QY (X, g) be an infinitesimal group law. Fiz an element 1 € X.
Then there is a unique Lie group structure on X with unit 1 such that

Alx)v = A1)z~
forx € X and v € T, X. Moreover, the map A(1) : T1 X = Lie(X) — g is a
Lie algebra isomorphism.

Proof. The proof has seven steps. The first step constructs an analogue ® of
the map G — Aut(g) : ¢ — Ad(g™") (see Example [3.2)).

Step 1. There is a unique function ® : X — Aut(g) satisfying
(1) =id,  (d®(x)v)§ + [A(z)v, ®(x)¢] = 0 (7)
forallz e X, veT,X, and £ € g.

Given z € X and £ € g choose a smooth path v : [0,1] = X with endpoints
7(0) = 1 and (1) = z, let ¢ : [0,1] — g be the unique solution of the
differential equation

CH[AMY. =0, ¢0)=¢, (8)

and define ®(x)¢ := ((1). The (Monodromy) axiom guarantees that ((1) is
independent of the choice of the path . The resulting function ® is obviously
smooth and satisfies .

Step 2. For any two smooth paths 5,7~ : [0,1] = X we have

B(0) = B(1), A(y)y=AB)B = 7(0) = ~(1).

Assume without loss of generality that 5(0) = (1) = 1. Choose a smooth
path [0,1] = X : A — x, such that xy = 1 and z; = (0). For A € [0, 1] let
7a : [0,1] = X be the solution of the differential equation

A ()0 () = AB()9B(E),  (0) = .
Then A\ — 7, is a smooth homotopy from [ to . We observe that

A (0)0ama(t) = P(0(1)) A(2)Ora, (9)

where ® is as in Step 1. Namely, both the left and right hand side of @D,
as functions of t, satisfy the differential equation ¢ + [A(y0)%0,¢] = 0 with
initial condition ((0) = A(z))d\xy. It follows from (9) with ¢ = 1 that
A(7a(1)0xya(1) = A(zr)0xxy for all A, Since (1) = 9 = 1 we obtain
YA(1) = 25 = 7,(0) for all A. This proves Step 2.
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Step 3. For any four smooth paths Bo, B1,%, 7 : [0,1] — X satisfying
Bo(0) = B1(0) and Bo(1) = Bi(1) and A(13)3; = A(8;)8; we have

Y0(0) = 71(0) — Yo(1) = 7 (1).

Assume without loss of generality that -, and f; are constant near the
endpoints and that [y(0 ) = (1(0) = 1 and 7(0) = 71(0). Define g :
0,1] = X by B(t) := Bo(2t) for 0 <t <1/2 and S(t) = B1(2 — 2t) for
1/2<t<1. Let v : [0,1] — X be the unique solution of the differen-
tial equation A(y)y = A(B)S with initial condition v(0) = ~¢(0). Then
Yo(t) = v(t/2) for 0 <t < 1. Moreover, since 5(0) = (1) = 1, it follows
from Step 2 that v(1) = 7(0) = v(0) = 71(0). Hence v (t) = v((1 — t)/2).
with ¢ = 1 we obtai (1) and ~o(1) both agree with ~(1/2). This
proves Step 3.

= —
||
d/—\

h

Step 4. There is a unique smooth map
X xX =X (2,y) = da(y) = ¥y(2)

such that ¢,(1) = x and ¢ptA = A for every x € X. Moreover, ¢, and 1,
are diffeomorphisms for all x,y and 1, = ¢ = id

Fix an element z € X. It follows from Step 3 that, for every smooth path
B :10,1] = X with 8(0) = 1, the endpoint of the path « : [0,1] — X, defined
by

A(y)y = AB)B,  ~(0) =z, (10)
depends only on the endpoint of 5. Hence there is a well defined map
¢, » X — X satistying

6.(8(1)) = 7(1)

whenever §(0) = 1 and + is given by . Since the solutions of a differ-
ential equation depend smoothly on the initial condition and the parameter
it follows that the map (z,y) — ¢.(y) is smooth. (Namely, choose a local
smooth family of paths 3, : [0,1] — X with 3,(0) = 1 and £,(1) = y.) It
follows directly from the construction that ¢,(1) = x and ¢F A = A for every
x. That ¢, is a diffeomorphism follows by reversing the roles of the pairs
(1, 8) and (x,7) to construct an inverse. That 1, is a diffeomorphism follows
by interchanging 1 and y and reversing . That ¢; is the identity is obvious
from the definition (we get v = § when x = 1). That 1 is the identity
follows by choosing 5(t) = 1. Uniqueness is left as an exercise. This proves
Step 4.
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Step 5. The map (x,y) — ¢.(y) = ¢,(x) =: xy in Step 4 defines a Lie
group structure on X with unit 1.

It suffices to prove associativity, i.e.

Ge(@y(2)) = Y=ty () (11)

for z,y, 2 € X. That 1 is the unit follows then from the fact that ¢; = ¢, = id
and that every element has an inverse follows from the fact that ¢, and ),
are diffeomorphisms. The inverse map x — ¢, (1) is smooth by Step 4.

To prove we fix x,y,z € X and choose paths §,v : [0,1] — X
with endpoints 5(0) = v(0) = 1 and B(1) = y, v(1) = z. Define the paths
B9 9" [0,1] = X by

AN =AB)B, AW =AW = A,

and

B0)=z,  Y0)=y, 10)=p5(1) = ¢.(y) = ¢y ().

We claim that

G2 (0y(2)) = 7" (1) = =ty (2)).
To prove the first identity note that 4'(1) = ¢,(z) and so the catenation S#~
(first /5 then ') runs from 1 to ¢,(z). The catenation '#~" is the lift of this
path starting at = and hence ends at 7"(1) = ¢,(¢,(2)), by definition of ¢,
in the proof of Step 4. On the other hand +” is also the lift of v starting at
¢, () and hence ends at v"(1) = v, (¢, (z)), by definition of ¢, in the proof
of Step 4. This proves Step 5.
Step 6. The map A(1) : Ty X = Lie(X) — g is a Lie algebra homomorphism
and satisfies A(x)zv = A(1)v forx € X andv € T1 X.
The formula A(z)zv = A(1)v with zv := d¢,(1)v follows immediately from
the fact that ¢! A = A and ¢,(1) = z. This formula shows that the vector
fields Yz € Vect(X) in Definition [3.1] satisfy & = A(z)Ye(x) = A(1)z~Ye(z).
Hence

Ye(z) = v, v = A(1)7*¢ € Lie(X).

The map Lie(X) — Vect(X) that assigns to every tangent vector v € Lie(X)
the left invariant vector field x + zv is a Lie algebra anti-homomorphism.
Since A is flat we have
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Hence the map g — Vect(X) : £ — Y is also a Lie algebra anti-homomor-
phism and so A(1) is a Lie algebra isomorphism. This completes the proof
of the existence statement.

Step 7. The Lie group structure on X is uniquely determined by A and 1.

Let X x X — X : (z,y) — xy be a Lie group structure with unit 1 such
that A(z)v = A(1)x~'v for z € X and v € T, X. Fix two elements x,y € X,
choose a path 3 : [0,1] — X such that 5(0) = 1 and (1) = y, and define

v(t) := zB(t). Then A(y)y = A(1)y % = A(1)8718 = A(B)S. Hence the
Lie group structure on X agrees with the one constructed in Step 5. This

proves Theorem [3.4] O

Lemma 3.5. Let g be a Lie algebra with an inner product (-,-) such that

(& In, CI) = (I&;ml. ©)

for all £,m,( € g. Fix an element n € g and let £ : R — g be a solution of
the second order differential equation

E+[nnel=0 &0)=0. (12)
Then |£(t)| > |t| [£(0)] for every t € R.
Proof. We have

© (6P~ llemP) = 26,6 + 2 nl. ln. ) = 0.
Since £(0) = 0 this implies [£(t)[> = |£(0)]> + |[€(t),n]|> > |£(0)]? for all

t € R. Moreover, it follows from , by taking the inner product with &
and integrating by parts, that

0 = [0 €+ b ds
< (€(1),£(0) = tlE(0).
The last inequality holds for ¢ > 0. Hence

|§(7f)|2=2/O (5(8)75(8)>d822/0 sI€(0)|* ds = £2|¢(0)?

for t > 0. Since equation is time reversible, this proves Lemma . ]

= (€080~ [ (EOP+IiEs)P) ds
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Theorem 3.6. Let G be a compact connected Lie group with Lie algebra
g := Lie(G) and denote G¢ := G x g and g° .= g®r C = g @ ig. Then the
following holds.

(i) There is a unique flat connection A; € Q' (g, g°) such that, for alln,n € g,
we have

=0 = Ali=iy (13)
(ii) If Ay is as in (i) then the 1-form A € QY(G€, g°) defined by

Ag,n)(v,7) == g~ v+ g~ (Ai(n)7)g
is an infinitesimal group law.
(iii) Suppose G is equipped with the Lie group structure associated to the

infinitesimal group law in A in (ii) via Theorem|3.4. Then G¢ is a complex
Lie group and, for g,h € G and £,n € g,

&g =0 = (9.9 (b)) =(gh&+gng ).  (14)
(iv) The inclusion G — G : g — 1(g) == (g,0) satisfies (ii) in Theorem [1.4].

Proof. First assume that A; satisfies the requirements of (i). Let 7,7 € g
and define ¢ : R — g° by ((t) := A;(tn)tn. Then

C+lind=im,  ¢(0)=0. (15)

(Apply equation (5)) to the function (s,t) — t(n + s7) and set s = 0.) Thus
we must define A;(n)n := ((1) where ¢ : R — g is the unique solution
of (17). That this 1-form satisfies follows from the fact that ((t) := ity
satisfies whenever 1 and 77 commute. That it is flat follows from the
same argument that was used in Example [3.3] This proves (i).

We prove (ii). First we observe that A is flat. Namely the g-connection
Ay on G defined by Ag(g)v := g lv is flat by Example and A; is flat
by (i). Hence, for two tangent vectors w; = (v,7;) € T4 (G x @), j = 1,2,
we obtain

Fa(wi,we) = dA(w, w2) + [A(g, n)wi, A(g, n)ws]
= dAo(vy,v2) + 97 dAL (T, 72)g
+lg A1) g, g7 on] = (97 AT g, 97 oo
+lg or + g7 (Au()) g, 9~ s + 97 (Av(n)7R2) ]

= FA()(Ula U2) + QleAl (ﬁh 772)9
0.
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For the (Monodromy) axiom it suffices to consider curves based at 1. It is
obviously satisfied for curves in G and hence follows from the fact that the
connection A is flat and that every based curve in G¢ is homotopic to one
in G. The (Parallel) and (Complete) axioms follow from the inequality

7l < [m(As(n))] - (16)

This inequality shows that the linear map A(g,n) : T{y,,G® — g¢ is invertible
for every pair (g,n) € G x g. It also shows that, for every curve ¢ : R — g¢,
the solutions [0, 7] — G®: t — (g(t),n(t)) of the differential equation

g(t) 7 g(t) + g(&) " (Ar(n(1)0(t))g(t) = ¢(t)

satisfy supg<,<p |n(t) —n(0)| < T, where ¢ := supy<,<r |[Im{(t)|. Hence the
solutions must exist for all time. To prove consider the imaginary part
¢ :=Im(¢) of asolution ¢ : [0,1] — g° of equation (15). It satisfies the second
order differential equation

E+mél=0,  £0)=0  £0)=7

By Lemma [3.5] every solution of this equation satisfies [(1)| > |7] and this
is equivalent to (L6]). Thus we have proved (ii).

We prove (iii). That G¢ is a complex Lie group follows from Proposi-
tion . Now let g,h € G and &,n € g such that [£, gng~'] = 0. Choose
a smooth path « : [0,1] — G such that a(0) = 1 and «(1) = h and define
B,y 00,1 = G x g by B(t) = (a(t), tn) and (t) := (ga(t),€ + tgng ™).
Then 8(0) = (1,0), 7(0) = (9,€), and A(B)8 — a~'a + ia "o = A(3)5.
Hence v(t) = (g,&) - B(t) for all . With t = 1 we obtain equation (14)),
namely (gh, &+ gng™t) = (g,&) - (h,n). This completes the proof of (iii).

We prove (iv). First, it follows from that the embedding ¢ : G — G¢,
given by ¢(g) := (g,0), is a Lie group homomorphism. Second, the image
of the differential di(1) : g — g° is a totally real subspace of g¢ = g @ ig.
Third, «(G) = G x {0} is a maximal compact subgroup of G¢. To see this,
let H C G¢ be a subgroup such that G C H. Then H contains an element of
the form (g,&) with £ # 0. Hence, by (14)), the pair (1,£) = (¢,&) - (¢7*,0)
is also an element of H and hence, so is (1,k¢) for every integer k > 1.
This sequence has no convergent subsequence and so H is not compact. This
proves Theorem [3.6] O
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4 Hadamard’s theorem

Theorem 4.1 (Hopf-Rinow). Let M be a connected Riemannian manifold
and denote by d : M x M — [0,00) the distance function associated to the
Riemannian metric. Fix a point pg € M. Then the following are equivalent.
(1) The geodesics starting at py exist for all time.

(i) For every p1 € M there exists a geodesic 7y : [0,1] — M such that

A0 =po. AW =p  L(y) = / 5(0)] dt = d(po, ).

(iii) Every closed and bounded subset of (M,d) is compact.
(iv) (M, d) is a complete metric space.
Proof. See [11, Theorems 2.57 and 2.58]. O

A connected Rimannian manifold satisfying the conditions of Theorem [4.1]
is called complete. In such a manifold any two points can be joined by a
(minimal) geodesic. If, in addition, M is simply connected and has non-
positive sectional curvature, then Hadamard’s theorem asserts that any two
points can be joined by a unique geodesic.

Theorem 4.2 (Hadamard). Let M be a complete, connected, simply con-
nected Riemannian manifold with nonpositive sectional curvature. Then, for
every p € M, the exponential map exp, : T,M — M is a diffeomorphism.

Proof. (Explained to me by Urs Lang.) There are three steps. The first step
asserts that there are no conjugate points. We denote by V the Levi-Civita
connection and by R € Q*(M,End(T'M)) the Riemann curvature tensor.

Step 1. Ify:[0,1] — M is a smooth curve and X : [0,1] — T'M is a vector
field along v (i.e. X(t) € TywyM for all t) satisfying the Jacobi equation

ViViX + R(X,73)y =0 (17)
and the boundary conditions X (0) =0, X (1) =0 then X = 0.
We have
d -
7 (VX X) = [UX[" + (VX X) = VX[ — (R(X.9)%. X)
and hence

1
| O9XE = (. 4)3.0) de o
0
Since (R(X,5)7, X) < 0 everywhere, we obtain V,X = 0 and hence X = 0.
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Step 2. The differential dexp,(v) : T,M — Tep ()M of the exponential
map 1s bijective for every v € T, M.

Let v € T,M be a tangent vector such that dexp,(v)v = 0. Define the map
v : R? — M and the vector field X : R?> — T'M along ~ by

v(s,t) := exp,(t(v + sv)), X(s,t) := 0s7y(s,t) = dexp,(t(v + sv))tv.
Then

ViiX = ViVidsy
= ViVi0yy
= ViVi0yy — R(0s7, 0ry)Ory
= —R(X,0:7)0.

Here the second equation follows from the fact that the Levi-Civita con-
nection is torsion free, the third equation follows from the definition of the
Riemann curvature tensor, and the last equation from the fact that the curve
t — ~y(s,t) is a geodesic for every s. Since X(0,0) = 0 and X (0,1) = 0, by
assumption, it follows from Step 1 that X (0,t) = 0 for all t. By choosing ¢
small we find that v = 0.

Step 3. The exponential map exp, : T,M — M is a covering, i.e. it is
surjective and, for every continuous path vy : [0,1] — M and every vy € T,M
with v(0) = exp,(vo) there is a unique continuous path v : [0,1] — T,M such
that v(0) = vy and y(t) = exp,(v(t)) for everyt.

That the map exp, : T,M — M is surjective follows immediately from the
Hopf-Rinow theorem. By Step 2 we may consider the space T,,M with the
pullback metric under the map exp,. Thus exp, is a local isometry for this
metric and so the rays t — tv are geodesics in T, M for this metric (because
they are mapped to geodesics in M under exp,). Now we can apply the Hopf-
Rinow theorem again to the pullback metric and obtain that it is complete
(use the implication (i) = (iv) in Theorem [4.1]). This implies the covering
property by a standard open and closed argument (given =, let I C [0,1]
be the set of all ¢ such that the lift exists on the interval [0,1]. Then [ is
obvious nonempty and open. That I is closed follows from completeness of
T,M with the pullback metric). This proves Step 3.

By Step 3, the map exp,, : T,M — M is a universal covering of M. Since
M is simply connected, this implies that exp, is a diffeomorphism. This

proves Theorem [4.2] ]
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5 Cartan’s fixed point theorem

Theorem 5.1 (Cartan). Let M be a complete connected simply connected
Riemannian manifold with nonpositive sectional curvature. Let G be a com-
pact Lie group that acts on M by isometries. Then there exists a point p € M
such that gp = p for every g € G.

Proof. The proof has three steps and follows the argument given by Bill
Casselmann in [I]. The second step is Serre’s uniqueness result for the cir-
cumcentre of a bounded set in a semi-hyperbolic space.

Step 1. Let m € M and v € T,,M and define

Po = exp,,(—v), p1 = exp,,(v).

Then )
d (po » P1 )

2d(m, q)* + 5

S d(p(b Q)2 + d(pla Q)2
for every q € M.

By Theorem 4.2 the exponential map exp,, : T,,, M — M is a diffeomorphism.
Hence

d(po, p1) = 2vl.
Now let ¢ € M. Then there is a unique tangent vector w € T}, M such that

q = exp,,(w), d(m,q) = |w|.

Moreover, the exponential map is expanding (e.g. [T, Theorem 4.112]). Thus

d(po,q) = lw+vf,  d(p1,q) = [w — .
Hence
d(m,q)* = |w|’
- lw+vl2;\w—v| o
< AP0, @)* +d(p1,a)*  dlpo,p1)*
= 2 4

This proves Step 1.
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Step 2. Forp € M and r > 0 denote by B(p,r) C M the closed ball of
radius r centered at p. Let Q C M be a nonempty bounded set and define

rq = inf {r > 0| there ezists a p € M such that Q C B(p,r)}

Then there ezists a unique point po € M such that Q@ C B(pq,Tq).

We prove existence. Choose a sequence r; > rq and a sequence p; € M such
that

Q C B(pi,mi), zlggon =rg.
Choose ¢ € Q. Then d(q,p;) < r; for every i. Since the sequence r; is
bounded and M is complete, it follows that p; has a convergent subsequence,
still denoted by p;. Its limit pg := lim,_ ., p; satisfies Q C B(pq, rq)-

We prove uniqueness. Let pg, p1 € M such that Q C B(pg, rq) N B(p1,7rq).
Since the exponential map exp, : T,M — M is a diffeomorphism, by The-
orem , there exists a unique vector vy € Tp, M such that p; = exp, (vo).
Denote the midpoint between py and p; by m := exp,, (%vo). Then it follows
from Step 1 that

d 24 d(py,q)? d 2
d(m.q)? < (Po, q) -QF (p1,9)° (pOlel)

d(p07p1)2
4

< rgy—

for every ¢ € Q. Since sup,cq d(m,q) > rq, by definition of rq, it follows
that d(po,p1) = 0 and hence py = p;. This proves Step 2.

Step 3. We prove Theorem [5.1]

Let ¢ € M and consider the group orbit  := {gq|g € G}. Let rq > 0 and
pa € M be as in Step 2. Then

Q C B(pa,Ta).
Since G acts on M by isometries, this implies
Q= gQ C B(gpa, ra)
for every g € G. Hence it follows from the uniqueness statement in Step 2

that gpq = pq for every g € G. This proves Step 3 and Theorem [5.1] ]
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6 Cartan decomposition

Throughout this section we assume the following.

(C) G is a complex Lie group with Lie algebra g¢ and G C G°
is a mazximal compact Lie subgroup such that the quotient G¢/G
is connected and g := Lie(G) is a totally real subspace of g°, i.e.

g° =g dig.

If G is any compact connected Lie group then the complex Lie group G¢
constructed in Theorem [3.6]satisfies condition (C). If G C U(n) is a (not nec-
essarily connected) Lie subgroup then the complex Lie group G¢ C GL(n, C)
constructed in Theorem satisfies condition (C).

Theorem 6.1 (Cartan). Assume (C). Then the map
G xg—= G (g,m) — exp(in)g

is a diffeomorphism. In particular, G¢/G is simply connected.

Proof. See page [23] m
6.2. Assume (C). Define the quotient space G¢/G by
G¢/G = {[k]| k € G}, [k] .= kG = {kg|g € G}.

The tangent space of G¢/G at [k] is the quotient of the tangent spaces

T, G¢ T, G°

TG/ =706 = telcea)

Throughout we use the notation

Re(¢):=¢,  Im(¢) =17

for ( =& +in € g¢ with &, € g. Thus the equivalence class of a tangent
vector [(] € TjG¢/G is uniquely determined by Im(¢). Now choose an
invariant inner product (-,-), on g and define a Riemannian metric on G¢/G

by
(K¢l [KCT) == (1), (¢ €9, n:=Im(), 7 :=Im().

It is sometimes convenient to leave out the square bracket when writing [k(]
with ¢ € ig. Thus we write kin € TjG°/G instead of [kin]. In particular,
we use this notation to avoid any possible confusion with the Lie bracket.
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Lemma 6.3. Assume (C). Then the following holds.
(i) The geodesics in G¢/G have the form

v(t) = [ko exp(itn)]

for kg € G° and n € g.

(ii) The Riemann curvature tensor on G°/G is given by

R(Ki&, kin)ki¢ = Ki[[€, 1], (]
for k€ G¢ and &,m,¢ € g. Thus G°/G has nonpositive sectional curvature.

Proof. The proof has three steps. The first step gives a formula for the
Levi-Civita connection on G¢/G.

Step 1. Let k: R — G° and & : R — g° be smooth curves and denote
V() =[k®)] € G X(t) = [k(t)E(1)] € Ty G/G.
Then

VX(1) = [kn(0)],  0(t) = &) + [Re(k(t) k(1) £(1)):

To prove that the formula is well defined we must choose a smooth map
g : R — G and replace k, &, n by

ki=kg, E:=g7 g,  7:=0E+ [Re(k'0k), €]

and show that
n=gng "

We must then show that the connection is Riemannian, i.e.
0 (X,Y) = (VX,Y) + (X, V}Y)
for ant two vector fields along a curve v, and that it is torsion free, i.e.
ViO0ry = Vi0sy

for any smooth map «y : R? — G¢/G of two variables. These assertions follow
easily by direct calculations which are left to the reader.
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Step 2. We prove (i).

A smooth curve (t) = [k(t)] is a geodesic in G¢/G if and only if V;§ = 0.
By Step 1 this is equivalent to the differential equation

OIm(k~'9,k) + [Re(k~'9;k), Im(k~'9,k)] = 0. (18)

A function k£ : R — G€ satisfies this equation if and only if it has the form
k(t) = koexp(itn)g(t) for some ky € G, n € g, and g : R — G.

Step 3. We prove (ii).
Choose maps 7 : R? — G¢ and ¢ : R? — g¢ and denote

€=k 'k, n:=k10,

7= [k]a X = [ké] - as’% Y= []Wl] - at'% Z = [kd
Then 0sn — 0, + [§,n] = 0 and

VSZ = [sz]a Cs = asC + [Re(f), C]a
ViZ = [kGil, G = 0 + [Re(n), ¢].

Hence we obtain

R(X,Y)Z = VNiZ — ViNuZ = k),

where
p = 0sG+[Re(§), ] — (s — [Re(n), ¢
= [Re(0sn), (] + [Re(§), [Re(n), ¢]]
— [Re(8:€), ¢] — [Re(n), [Re(§), C]]

= —[Re([&,n]), ¢] = [¢, [Re(¢), Re(n)]]

= [[m(¢), Im(n)], ¢].
Thus we have R(X,Y)Z = kilm(p) = ki[[Im(§), Im(n)], Im(¢)] and the sec-
tional curvature is (R(X,Y)Y, X) = — [[Im(¢),Im(n)]|> < 0. This proves
Lemma [6.3] n
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Proof of Theorem[6.1] Assume (C). We prove in four steps that the map
G xg— G°:(g,n) — exp(in)g
is a diffeomorphism.
Step 1. Ifn € g and exp(in) € G then [{,n] = 0 for every £ € g.
Define v : R? — G¢/G by
V(s,t) == [exp(is¢) exp(itn)].

By Lemmal6.3| the curve ¢ — (s, t) is a geodesic for every s, and by assump-
tion it is periodic with period 1. Denote

X(s,t) := 0s7(s,t) € Ty(&t)GC/G.

Since t — (s, t) is a geodesic for every s we have that X satisfies the Jacobi
equation (I7). Since X (s, + 1) = X(s,t) we obtain, as in the proof of
Theorem that X satisfies

1
0 = /@(VtX,X) dt
0
1
_ /(|th|2+<vtth,X>) dt
0

- /0 (VX[ = (R(X, 07)0ry, X)) dt

for every s. Since G¢/G has nonpositive sectional curvature, by Lemma [6.3]
we deduce that the function (R(X,0;v)0yy, X) vanishes identically. With
s =1t =0 we have X(0,0) = [i¢] and 0;7(0,0) = [in] and hence

0 = (R(i€, in)in,i&) = —|[&,n[*.
Here the last equation follows from Lemma (ii). This proves Step 1.
Step 2. Ifn € g and exp(in) € G then n = 0.

This is the only place in the proof where we use the fact that G is a max-
imal compact subgroup of G°. Suppose by contradiction that n # 0. Then
exp(itn) ¢ G for small ¢ and hence

0 < A:=inf{t > 0] exp(itn) € G} < 1.
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Moreover, [£,17] = 0 for all £ € g by Step 1 and so [(,in] = 0 for all ¢ € g°.
Denote by G§ the identity component of G¢. Then g~ting = in for all g € G
and hence exp(itn)g = gexp(itn) for all t € R and all g € G§. In particular,
this holds for t = A/2 and so the element

h:=exp(i\n/2) € G5\ G
commutes with every element of G§. Since h? € G N G§ this shows that
H:=(GUAG)NG{=(GNGG) URGNGH)

is a compact subgroup of G¢. Next we will use the fact that the Rieman-
nian manifold G¢/G is connected and geodesically complete by Lemma .
Thus the Hopf-Rinow theorem asserts that any two elements in G¢/G can
be joined by a geodesic and so the map G x g — G°: (u,§) — exp(i)u is
surjective. Hence G¢ has finitely many connected components. Since G is a
maximal compact subgroup of G¢, it then follows from the Cartan-Iwasawa—
Malcev Theorem in [3, Thm 14.1.3] that there exists an element g € G¢ such
that g7'Hg C G. Thus ¢ (GNG§)g € GNGS and g 'hg € GN G, and
hence h € g(GNG§)g~' = GNG§ in contradiction to the fact that h ¢ G.
This proves Step 2.

Step 3. G¢/G is simply connected.
Suppose not. Then, by the usual variational argument, there exists a noncon-
stant geodesic v : [0, 1] — G¢/G based at v(0) = (1) = [1]. By Lemma
the geodesic has the form

7(t) = [exp(itn)]

for some n € g. Since (1) = [1] we have exp(in) € G and hence n = 0 by
Step 2. Thus the geodesic is constant, a contradiction. This proves Step 3.

Step 4. The map G x g — G°: (g,n) — exp(in)g is a diffeomorphism.

By assumption the quotient manifold G°/G is connected, by Step 3 it is
simply connected, and by Lemma|6.3|it is complete and has nonpositive sec-
tional curvature. Hence Step 4 follows from Hadamard’s theorem. Namely,
the exponential map

Ty G/G = G°/G : [in] = [exp(in)]

(the Riemannian and Lie group meanings of the term coincide in this case)
is a diffecomorphism by Theorem [£.2] and this is equivalent to Step 4. This
proves Theorem [6.1] ]
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7 Matrix factorization

Theorem 7.1. Assume (C) on page 20| and let £ € g such that exp(§) = 1.
Then, for every g € G¢, there exists a pair p,pt € G¢ such that

tlim exp(ité)pexp(—ité) = p™, pg ' €G.
—00
Proof. See page [30] m

The proof uses the fact that every compact Lie group embedds into U(n)
for some integer n € N and relies on the next four lemmas.

Lemma 7.2. Assume (C) on page (20| and let £ € g such that exp(§) = 1.
Then the set

P:= {p € G| the limit tlim exp(ité)p exp(—it) exists in Gc} (19)
—00
1s a Lie subgroup of G with Lie algebra
pi= {C € g°| the limit thm exp(it€)( exp(—it&) exists in gc} : (20)
—00

Proof. Assume G C U(n) and G¢ C GL(n,C). Then i¢ is a Hermitian matrix
with eigenvalues in 27Z. Consider a decomposition C" = E1 @ Ey @ -+ @D Ey,
into eigenspaces F; C C" of i§ with eigenvalues \; and choose the ordering
such that A\; < Ay < -+ < A, Write a matrix ¢ € g¢ C gl(n,C) in the form

¢ G2 - G
Ga1 Co2 -+ Cok
Ce1 G2 = Gk
Then
Ci1 eMi=A)te o et

. . eP2=Atey, C22 R e
exp(i€)C exp(—it€) = |

e(Ak—M)tCkl e(Ak—Az)tckQ Cuk

Thus ¢ € p if and only if ¢ € g and (;; = 0 for ¢ > j. Likewise, g € P if
and only if g € G® and g;; = 0 for ¢ > j. Hence P is a closed subset of G°.
Since every closed subgroup of a Lie group is a Lie subgroup, this proves

Lemma [7.2] O
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Lemma 7.3. Let N € N. There exist real numbers

Bo(N), B1(N), ..., Banv-1(N)
such that 5,(N) =0 when v is even and, for k =1,3,5,...,4N — 1,

2N—-1
kvmi) i, f0 <k <2N,
ZBV(N)GXP<2N)_{ i, if2N <k < 4N. (21)

v=0

Proof. Define \ := eXp(z%) and consider the Vandermonde matrix

A A3 A D
SN N\
A= P A5 A NN Ny
)\21;/—1 )\6];7—3 )\10}\7—5 . /\(21\;—1)2

Its complex determinant is

detc(A) _ )\(2N—1)(N—1) H ()\4]' . )\41) )

0<i<j<N—1

Since \ is a primitive 4Nth root of unity, the numbers \* i =0,..., N —1,
are pairwise distinct. Hence A is nonsingular. Hence there exists a unique

vector z = (21, 23,...,23n_1) € CV such that
Y ex MUY i k=13, 2N -1 (22)
p 2N v — b T Yy ey .
O0<v<2N

v odd
The numbers z, also satisfy the equation

Z exp ((2]\7 2—]\7;)V7r1> 7 = _ Z exp (k2yN7n) i

O<v<2N O<v<2N
v odd v odd

for k=1,3,...,2N — 1 and hence they are real.

Define 5,(N) := z, for v = 1,3,...,2N — 1 and (,(N) := 0 for v even.
These numbers satisfy for k = 1,3,...,2N — 1 by . That equa-
tion also holds for k = 2N +1,2N +3,...,4N — 1 follows from the fact
that exp(k7mi) = —1 whenever k is odd. This proves Lemma O
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Lemma 7.4. Let m € N and N := 2™. There exist real numbers
Oé()(N), ozl(N), N OézN_l(N)

such that a,,(N) = 0 when v is even and, for every k € {0,1,...,2N — 1},

IN-1 i i, f1<k<N-1,
Za,,(N)exp( v ): —i, fN+1<k<2N-—1, (23)
v=0 0, ifk=0o0ork=N.

Proof. The proof is by induction on m. For m =1 and N = 2™ = 2 choose
a1(2) :=1/2 and a3(2) := —1/2. Then

3 . sk (_n\k i, for k = 1,
ZQV(Q) exp (k];m) =1 é 1 =< —i, for k=3,
v=0 0, for k=0,2.

Now let m € N and define N := 2™. Assume, by induction, that the num-
bers a,,(N), v = 0,1,...,2N — 1, have been found such that holds for
k=0,1,...,2N — 1. Let 8,(N), v =0,1,...,2N — 1, be the constants of
Lemma [7.3 Define

a2N+V(N) = aV(N)7 52N+V(N) = _/BV(N)’
forv =0,1,2,...,2N — 1 and

ay(N) + B, (N)

a,(2N) = 5 , v=0,1,2,...,4N — 1. (24)
Then
i kvmi
J(2N =A By,
where

1! kvmi
B, = §ZBV(N)eXp(2N).



Since agn 4+, (V) = o, (N), we have

4N—-1

1 kvmi
A, = §VZ:()QV(N)6XP<2N>

_ 14 exp(kmi) 2§1 0, (N) exp (kmri)

2 = 2N
1+ (—1)* Eay kvri
- LU e ().

If k is odd then the right hand side vanishes. If k is even it follows from the
induction hypothesis that

2N-1 (k/2)vi i, fork=2,4,...,2N — 2,
Ak_Za,,(N)eXp(T)— —i, for k=2N+2,...,4N -2,
v=0 0, for k=0,2N.

Since fon v (N) = —5,(N), we have

2N—-1

= L o oo () e (235

v=0

o 2N—1 .
_ 1—ex2p(k:7n) Z B,(N) exp <k:1/7r1)
v=0

2N

1= (=1 iy kvri
= —5 VZ:O ﬁ,,(N)exp( N )

If k£ is even then the right hand side vanishes. If k is odd it follows from
Lemma [7.3] that

2N—-1
kvmi i, itk=1,3,...,2N —1,
Be= ZOWN)QXI’( 2]\/)_{ —i, ifk=2N+1,... 4N — 1.

Combining the formulas for Ay and By we find

i, fork=1,2,3,...,2N — 1,
Ak+Bk: —1, fOI'I{?:2N+]_,2N+2,,4N—17
0, for k=0,2N,

and this proves Lemma [7.4] O
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Lemma 7.5. Assume (C) on page and let £ € g such that exp(§) = 1.
Then, for every n € g, there exists a pair (,(*T € g° such that

lim exp(it§)Cexp(—it§) = ¢, (—ineg

Proof. Assume without loss of generality that G C U(n) and G¢ C GL(n, C).
Let C" =FE, @ - ® Ep and \; < --- < \; be as in Lemma [7.2] Then

)\i — )‘j = 27Tmij, mij c Z,
with m;; > 0 for ¢ > j and m;; <0 for ¢ < 5. Choose m € N such that

A — A
N::2m>mk1: k2 1.
s

Choose ay, ..., aon—1 € R as in Lemma [7.4] Let

M1 M2 - Mk
M1 T2z -+ Mg

n= . . . €g,
N1 M2 - Nkk

where 7;; € Hom(E}, E;). Define
2N-1

(:=in— Z v, exXp (—%f) 7 exp (%5) €g-.
v=0

Then, for ¢ > j, we have

2N—-1

. V 3
Cij = in; — Z o, eXp <W1(/\l - AJ)) Nij
v=0

2l my; Ui
— <i— Z al,exp( Z}V )) Nij

v=0
= 0.

The last equation follows from Lemma|7.4)and the fact that 1 < m;; < N — 1
for i > j. Since ¢;; = 0 for ¢ > j it follows from the proof of Lemma [7.2] that
¢ € p. Moreover, by construction in — ¢ € g. This proves Lemma [7.5] O
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Proof of Theorem[7.1. Let P C G® and p C g° be defined by and
(see Lemma . We prove in three steps that, for every g € G€, there exists
a p € P such that pg~* € G.

Step 1. The set
A:={g € G°|Ipe€P such that pg~"' € G}
is (relatively) closed in G°.

Let g; € A be a sequence which converges to an element g € G¢. Then there
exists a sequence p; € P such that u; := p;g; !¢ G. Since G is compact there
exists a subsequence (still denoted by u;) which converges to an element
u € G. Since P is a closed subset of G, by Step 1 in the proof of Lemma[7.4]
we have p := ug = lim; oo u;g; = lim;_,oo p; € P. Hence pg~! = v € G and
hence g € A. This proves Step 1.

Step 2. The function f: P x g — G¢, defined by
f(p,u) = pu
forp € P and u € G, is a submersion.
Let p € P and u € G and denote ¢ := f(p,u) = pu. Let g € T,G° and denote
Ci=pgut =u(g ' gu" € ¢°, (25)

Let € g be the imginary part of Zso that E— in € g. By Lemma , there
exists an element ( € p such that ( —in € g and hence ( — ¢ € g. Define

p=p¢  u:= <Z—C> u.
Then p € T,P, u € T,,G, and

1

df (p,w)(p,u) = pu + pu = pu =7.
Here the last equation follows from (25). Thus we have proved that the
differential df (p,u) : T,P x T,,G — T,,G° is surjective for every p € P and
every u € G. Hence f is a submersion and this proves Step 2.
Step 3. A = G°“.

The set A contains G by definition. By Step 1 it is closed and by Step 2 it
is the image of a submersion and hence is open. Since G¢ is homeomorphic
to G x g (see Theorem and A contains G = G x {0}, it follows that A

intersects each connected component of G in a nonempty open and closed
set. Hence A = G°. This proves Step 3 and Theorem [7.1] O
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8 Proof of the main theorems

Proof of Theorem[1.4] “(ii) = (i)”. Assume (C) on page [20] (In the nota-
tion of Theorem the map ¢ is the inclusion of G into G¢.) Then the
quotient G¢/G is simply connected by Theorem . Let H be a complex Lie
group with Lie algebra b := Lie(H) and let

p:G—H

be a Lie group homomorphism. We use the following two basic facts to
construct the homomorphism p¢: G¢ — H that extends p.

Fact 1. Since G°/G is connected there exists, for every a € G°, a smooth
path o : [0,1] — G such that «(0) € G and a(1) = a.

Fact 2. Since G¢/G is simply connected, any two paths ag, oy : [0,1] — G as
in Fact 1 can be joined by a smooth homotopy {as}o<s<1 satisfying as(0) € G
and ag(1) = a for every s € [0, 1].

We define p° as follows. Let ® := dp(1) : g — b be the induced Lie algebra
homomorphism and define ®¢: g¢° — h as the complexification of ®. Given
an element a € G¢ choose « as in Fact 1, let 5 : [0,1] — H be the unique
solution of the differential equation

Bl6=a%a"a),  B(0) = p(al0)), (26)
and define
o(a) = B(1).
We prove first that p¢ is well defined, i.e. that the endpoint (1) does not
depend on the choice of the path a. By Fact 2 any two paths oy and oy
with ap(0),a1(0) € G and ag(l) = a1(1) = a can be joined by a smooth
homotopy [0,1]* — G°: (s,t) — as(t) = a(s,t) such that ay(0) € G and
as(1) = a for all s. Define 3 : [0,1)> — H by
5718155 = q)c(aflata)’ 5(57 O) = p(Oé(S, 0))

We claim that
B710,8 = ®°(a ' 0sa). (27)

To see this, abbreviate

Ei=a00,  n=alda, =670, =BT
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Then

0" =0 + (&, n], L&) = 0:2%(n) + [2°(E), 2°(n))].

Moreover, when ¢ = 0 we have dp(a)aé = p(a)PE and hence
¢'(5,0) = B(s,0)710,8(s,0) = ®(a(s,0)'0.a(s,0)) = ®(£(s,0)).

Hence both functions ¢t — £’(s,t) and t — ®°(£(s,t)) satisfy the same initial
value problem and hence agree. This proves (27). It follows that d,3(1,s) =0
and this shows that p° is well defined.

We prove that, for a € G° and ¢ € g°,

(0" ¢a) = pf(a) " @(€)p (a). (28)
Choose a and  as in the definition of p°(a) and define
n(t) = a(t)'€alt),  n'(t) = B(t)PU(E)B(E).
Then ®¢(n) and 7’ satsify the same differential equation
W+ 16718 =0

and the same initial condition and hence have the same endpoints. This
proves equation ([28)).

We prove that p° is a group homomorphism. Let ay,ay € G and choose
a; and f; as in the definition of p°(a;) for j = 1,2. Then p.(cy(t)) = B;(t)
for 0 <t <1andj=1,2. Define

a = ajag, B = 1.
Then
BB = BB+ By B BB
= ©%ay " d) + p*(a) T %(ay ) p(az)

= ®%(ay s + aytatagay)
= o(ata).

Here we have used (28)). It follows that p°(aiaz) = B(1) = p°(a1)p®(az) and
so p© is a group homomorphism.
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We prove that p¢ is smooth. Consider the commutative diagram

(e

Ge—7°

:

Gxg

H,

where the map G x g — G¢ is the diffeomorphism of Theorem [6.1] and the
map G x g — H is given by (g,n) — exp(i®°(n))p(g) and hence is smooth.
That the differential of p® at 1 is equal to ®¢ follows also from this diagram.
Thus we have proved that (ii) implies (i) in Theorem [L.4] O

Proof of Theorem[1.5. By Theorem (the intrinsic construction for com-
pact connected Lie groups), respectively Theorem (for possibly discon-
nected Lie subgroups of U(n)), there is an embedding ¢ : G — G into a
complex Lie group (diffeomorphic to G x g) that satisfies condition (ii) in
Theorem([1.4] Since (i) implies (i) in Theorem|[L.4] the embedding ¢ : G — G¢
satisfies both (i) and (ii) in Theorem and hence is a complexification.
Moreover, any two embeddings of G into a complex Lie group that satisfy (i)
in Theorem are naturally isomorphic. This proves Theorem [I.5] O

Proof of Theorem[1.4] “(i) => (ii)”. Let ¢ : G — G° be an embedding into
a complex Lie group that satisfies (i). By Theorem there exists an em-
bedding 7: G — G¢ into a complex Lie group that satisfies both (i) and (i).
Since both embeddings satisfy (i), there exists a unique holomorphic Lie
group isomorphism ¢ : G — Ge such that ¢ o1 =71. Since the embedding ¢
satisfies (ii), so does ¢. This proves Theorem O

Proof of Theorem[1.6 Assume (C) on page 20l Let K C G® be a compact

subgroup and consider the map
K x G/G — G°/G : (k,[g]) — [kg].

By definition of the Riemannian metric on G¢/G in this is a group action
by isometries. By Theorem and Lemma the quotient space G¢/G is a
complete connected simply connected Riemannian manifold with nonpositive
sectional curvature. Hence it follows from Theorem [5.1] that the action of
K on G¢/G has a fixed point. Let [g] € G°/G be such a fixed point. Then
[kg] = [g] for every k € K. In other words, for every k € K there exists an
h € G such that kg = gh. This means that ¢ *kg € G for every k € K or,
equivalently, g7 K g C G. This proves Theorem O
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Proof of Theorem[1.7. Assume (C) on page 20} Let ¢ € g° such that

exp(C) = 1.

We prove in three steps that there exist two elements p, p™ € G such that
p~(p € g and lim,_., exp(it()p exp(—it() = p*.
Step 1. There exists an element g € G¢ such that g~'(g € g.

The set S := {exp(s(¢) | s € R} is a compact subgroup of G¢. Hence it follows
from Theorem [1.6| that there exists an element g € G such that ¢g='Sg C G.
Thus ¢ 1¢g = % 0 g 'exp(s()g € g and this proves Step 1.

Step 2. Let g € G° and £ € g such that exp(§) = 1. Then there exist two
element q,q" € G such that qg~* € G and lim;_,, exp(it€)qexp(—itf) = ¢ .

This is the assertion of Theorem [7.1]
Step 3. There exist two elements p,pt € G¢ such that p~'(p € g and
lim; 0 exp(it¢)pexp(—it¢) = p™.
Let g € G be as in Step 1, denote
=g 'Cgeu,
choose ¢, ¢t € G¢ as in Step 2, and define

pi=gqs ", pTi=gqtg .

Then
gqt g™
= lim gexp(it€)q exp(—it&)g
— 00
= lim exp(itglg")(gqg ") exp(—itgéy ")
= tlim exp(it()p exp(—it().
—00
Moreover g~ 'p = qg~! € G and hence
pip=(9"'p)E(g7p) € 0.

Thus p satisfies the requirements of Step 3 and this proves Theorem [1.7, [
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Comments on the literature

The group P(£) in Lemma was introduced by Mumford. In [8, Propo-
sition 2.6] he proved that it is a parabolic subgroup of G¢. If T C G is a
maximal torus whose Lie algebra contains £ then there exists a Borel sub-
group B C G° such that T € B C P(§). In this situation BN G = T and
it then follows that the inclusion of G into G¢ descends to a diffeomorphism
G/T = G°/B (see Schmid [I2, Lemma 2.4.6]). This implies Theorem [7.1]
The proof of Theorem [7.1] given above uses direct arguments, and does not
rely on the structure theory for Lie groups.

The discussion on page 34| shows that Theorem [1.7]is an easy consequence
of Theorem and Cartan’s uniqueness theorem for maximal compact sub-
groups of G¢ (see Theorem [1.6)). Theorem is mentioned in the work
of Ness [10, page 1292] as a consequence of Mumford’s result that P(§) is
parabolic. It plays a central role in the study by Kempf and Ness of Mum-
ford’s numerical function and of the Hilbert—Mumford stability criterion for
linear G“-actions (see [4, 5,9, [10]). Specifically, Theorem [1.7]is needed in the
proof of the moment-weight inequality (see Ness [10, Lemma 3.1 (iv)] and
Szekelyhidi [13, Theorem 1.3.6]). The moment-weight inequality implies the
necessity of the Hilbert—Mumford criterion for semistability. It also implies
the Kirwan—Ness inequality in [10, Theorem 1.2] (and implicit in [6]), which
asserts that the restriction of the moment map squared to the complexified
group orbit of a critical point attains its minimum at that critical point.
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