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1 Complex Lie groups

Lemma 1.1. Let G be a connected Lie group and A : g→ g be a linear map
on its Lie algebra g := Lie(G). Then the following are equivalent.

(i) For all ξ ∈ g and g ∈ G we have A(gξg−1) = g(Aξ)g−1.

(ii) For all ξ, η ∈ g we have A[ξ, η] = [Aξ, η] = [ξ, Aη].

Proof. To prove that (i) implies (ii) differentiate the itentity

A(exp(tξ)η exp(−tξ)) = exp(tξ)(Aη) exp(−tξ)

with respect to t at t = 0. To prove the converse choose a path g : [0, 1]→ G
such that g(0) = 1l and an element ξ ∈ G. Define the maps η, ζ : [0, 1]→ g
by η(t) := g(t)−1ξg(t) and ζ(t) := g(t)−1(Aξ)g(t). Then

∂t(Aη) + [g−1ġ, Aη] = 0, ∂tζ + [g−1ġ, ζ], Aη(0) = Aξ = ζ(0).

Here the first equation follows from (ii). It follows that Aη(t) = ζ(t) for all t.
This proves Lemma 1.1.

Definition 1.2. A complex Lie group is a Lie group G equipped with the
structure of a complex manifold such that the structure maps

G×G→ G : (g, h) 7→ gh, G→ G : g 7→ g−1

are holomorphic.

Proposition 1.3. Let G be a connected Lie group. Assume that the Lie
algebra g := Lie(G) is equipped with a complex structure g→ g : ξ 7→ iξ and
define the almost complex structure J on G by

Jgv := (ivg−1)g

for v ∈ TgG. Then the following are equivalent.

(i) (G, J) is a complex Lie group.

(ii) The Lie bracket g× g→ g : (ξ, η) 7→ [ξ, η] is complex bilinear, i.e.

[iξ, η] = [ξ, iη] = i[ξ, η]

for all ξ, η ∈ g.
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Proof. For ξ ∈ g define the vector fields Xξ, Yξ ∈ Vect(G) by

Xξ(g) := ξg, Yξ(g) := gξ.

We prove that

JXξ = Xiξ, (LXηJ)Xξ = X[iξ,η]−i[ξ,η], LYξJ = 0. (1)

Here the first equation is obvious from the definitions. The second equation
follows from the first and the identities [Xξ, Xη] = X[ξ,η] and

(LXηJ)Xξ = LXη(JXξ)− JLXηXξ = [JXξ, Xη]− J [Xξ, Xη]

for ξ, η ∈ g. To prove the last equation in (1) note that

Jgh(vh) = (Jgv)h

for all g, h ∈ G and v ∈ TgG. Hence the diffeomorphism G → G : g 7→ gh
is holomorphic for every h ∈ G. Differentiating with respect to h gives
LYξJ = 0 for every ξ ∈ g. Thus we have proved (1).

That (i) implies (ii) follows immediately from (1). Conversely assume (ii)
and denote by NJ the Nijenhuis tensor of J . Then, for all ξ, η ∈ g,

NJ(Xξ, Xη) = [Xξ, Xη] + J [JXξ, Xη] + J [Xξ, JXη]− [JXξ, JXη]

= [Xξ, Xη] + J [Xiξ, Xη] + J [Xξ, Xiη]− [Xiξ, Xiη]

= X[ξ,η] + JX[iξ,η] + JX[ξ,iη] −X[iξ,iη]

= X[ξ,η]+i[iξ,η]+i[ξ,iη]−[iξ,iη]

= 0.

Here the second and fourth equations follow from (1) and the last equation
follows from (ii). Since the vector fields Xξ span the tangent bundle this
shows that NJ = 0 and so J is integrable. By Lemma 1.1 it follows also
from (ii) that g−1(iξ)g = i(g−1ξg) for all ξ ∈ g and g ∈ G and hence

Jgv := (ivg−1)g = g(ig−1v) (2)

for g ∈ G and v ∈ TgG. This implies that the multiplication map is holo-
morphic. Since the the multiplication map is a submersion, the preimage of
the neutral element 1 ∈ G is a complex submanifold of G × G and it is the
graph of the map g 7→ g−1. Hence this map is holomorphic as well. This
proves Proposition 1.3.
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Theorem 1.4. Let G be a compact Lie group and Gc be a complex Lie group
with Lie algebras g := Lie(G) and gc = Lie(Gc). Let ι : G → Gc be a Lie
group homomorphism. Then the following are equivalent.

(i) For every complex Lie group H and every Lie group homomorphism
ρ : G→ H there is a unique holomorphic homomorphism ρc : Gc → H such
that ρ = ρc ◦ ι.
(ii) ι is injective, its image ι(G) is a maximal compact subgroup of Gc, the
quotient Gc/ι(G) is connected, and the differential dι(1) : g → gc maps g
onto a totally real subspace of gc.

Proof. See pages 31 and 33.

A Lie group homomorphism

ι : G→ Gc

that satisfies the equivalent conditions of Theorem 1.4 is called a complex-
ification of G. By the universality property in part (i) of Theorem 1.4, the
complexification (Gc, ι) of a compact Lie group G is unique up to canonical
isomorphism.

Theorem 1.5. Every compact Lie group admits a complexification, unique
up to canonical isomorphism.

Proof. See page 33.

Theorem 1.6 (Cartan). Let ι : G → Gc be a complexification of a com-
pact Lie group. Then every compact subgroup of Gc is conjugate in Gc to a
subgroup of ι(G).

Proof. See page 33.

Theorem 1.7 (Mumford). Let ι : G → Gc be a complexification of a
compact Lie group. Identify G with the image of ι and denote

g := Lie(G), gc := Lie(Gc).

Let ζ ∈ gc such that exp(ζ) = 1. Then there exist elements p, p+ ∈ Gc such
that

p−1ζp ∈ g, lim
t→∞

exp(itζ)p exp(−itζ) = p+.

Proof. See page 34.
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2 First existence proof

The archetypal example of a complexification is the inclusion of U(n) into
GL(n,C). Polar decomposition gives rise to a diffeomorphism

φ : U(n)× u(n)→ GL(n,C), φ(g, η) := exp(iη)g. (3)

This example extends to every Lie subgroup of U(n).

Theorem 2.1. Let G ⊂ U(n) be a Lie subgroup with Lie algebra g ⊂ u(n).
Then the set

Gc := {exp(iη)g | g ∈ G, η ∈ g} ⊂ GL(n,C)

is a complex Lie subgroup of GL(n,C) and the inclusion of G into Gc satisfies
condition (ii) in Theorem 1.4.

Proof. The proof has ten steps.

Step 1. Gc is a closed submanifold of GL(n,C).

This follows from the fact that (3) is a diffeomorphism.

Step 2. 1l ∈ Gc and T1lG = g⊕ ig =: gc.

For ξ, η ∈ g consider the curve γ(t) := exp(itη) exp(tξ) ∈ Gc. It satisfies
γ̇(0) = ξ + iη. Hence gc ⊂ T1lG

c and both spaces have the same dimension.

Step 3. TkG
c = kgc for every k ∈ Gc.

Both spaces have the same dimension, so it suffices to prove that TkG
c ⊂ kgc.

Let φ be the diffeomorphism (3). Fix an element (g, η) ∈ G× g and let

k := φ(g, η) = exp(iη)g ∈ Gc.

Then, for every ξ̂ ∈ g, we obviously have dφ(g, η)(gξ̂, 0) = exp(iη)gξ̂ ∈ kgc.
Now let η̂ ∈ g. We must prove that dφ(g, η)(0, η̂) ∈ kgc. To see this consider
the map γ : R2 → Gc defined by

γ(s, t) := φ(g, t(η + sη̂)) = exp(it(η + sη̂))g

and denote ξ := γ−1∂sγ and η := γ−1∂tγ. Then η(s, t) = g−1i(η + sη̂)g ∈ gc

for all s, t and ∂tξ = ∂sη + [ξ, η], ξ(s, 0) = 0. Since η(s, t) ∈ gc this implies
ξ(s, t) ∈ gc for all s, t and, in particular, dφ(g, η)(0, η̂) = γ(0, 1)ξ(0, 1) ∈ kgc.
This proves Step 3.
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Step 4. Let a ∈ GL(n,C). Then a ∈ Gc if and only if there exists a smooth
path α : [0, 1]→ GL(n,C) satisfying α(0) ∈ G, α(1) = a, and α(t)−1α̇(t) ∈ gc

for every t.

To prove that the condition is necessary let a = exp(iη)h ∈ Gc be given.
Then the path α(t) := exp(itη)h satisfies the requirements of Step 4. To
prove the converse suppose that α : [0, 1] → GL(n,C) is a smooth curve
satisfying α(0) ∈ G, α(1) = a, and α(t)−1α̇(t) ∈ gc for all t. Consider the set

I := {t ∈ [0, 1] |α(t) ∈ Gc} .

This set is nonempty, because 0 ∈ I. It is closed because Gc is a closed subset
of GL(n,C), by Step 1. To prove it is open, denote η(t) := α(t)−1α̇(t) ∈ gc

and consider the vector fields Xt on Cn×n given by Xt(A) := Aη(t). By
Step 3, these vector fields are all tangent to Gc. Hence every solution of the
differential equation Ȧ(t) = A(t)η(t) that starts in Gc remains in Gc on a
sufficiently small time interval. In particular this holds for the curve t 7→ α(t)
and so I is open. Thus I = [0, 1] and hence a = α(1) ∈ Gc.

Step 5. If a ∈ Gc and ξ ∈ gc then a−1ξa ∈ gc.

Choose α : [0, 1]→ Gc as in Step 4 and denote

ζ(t) := α(t)−1ξα(t), η(t) := α(t)−1α̇(t).

Then
ζ̇ + [η, ζ] = 0, ζ(0) = α(0)ξα(0)−1 ∈ gc.

Here the second assertion holds because α(0) ∈ G. Since η(t) ∈ gc for all t
this implies that ζ(t) ∈ gc for all t and, in particular, a−1ξa = ζ(1) ∈ gc.

Step 6. If a ∈ Gc and ξ ∈ gc then aξa−1 ∈ gc.

The linear map ξ 7→ a−1ξa maps gc to itself, by Step 5, and it is injective.
Hence the map gc → gc : ξ 7→ a−1ξa is bijective and this proves Step 6.

Step 7. If a, b ∈ Gc then ab ∈ Gc.

Choose two curves α, β : [0, 1] → Gc as in Step 4 with α(0), β(0) ∈ G and
α(1) = a, β(1) = b. Then the curve γ := αβ : [0, 1]→ GL(n,C) satisfies

γ−1γ̇ = β−1β̇ + β−1(α−1α̇)β, γ(0) ∈ G.

By Step 5, γ(t)−1γ̇(t) ∈ gc for all t and hence, by Step 4, ab = γ(1) ∈ Gc.
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Step 8. If a ∈ Gc then a−1 ∈ Gc.

Let α as in Step 4 and denote γ(t) := α(t)−1. Then γ(0) ∈ G and

γ−1γ̇ = α
d

dt
α−1 = −α̇α−1 = α(−α−1α̇)α−1.

By Step 6, γ(t)−1γ̇(t) ∈ gc for all t and hence, by Step 4, a−1 = γ(1) ∈ Gc.

Step 9. Gc is a complex Lie subgroup of GL(n,C).

Gc is a complex submanifold of GL(n,C) by Step 3 and is a subgroup of
GL(n,C) by Step 7 and Step 8.

Step 10. G is a maximal compact subgroup of Gc.

Let H ⊂ Gc be a subgroup such that G ( H. Choose an element h ∈ H \G.
Since H ⊂ Gc, there is a pair (g, η) ∈ G × g such that h = exp(iη)g. since
G ⊂ H and H is a subgroup of Gc we have

P := exp(iη) ∈ H.

The matrix P is Hermitian and positive definite. Since h /∈ G we also have
P /∈ G. But this implies η 6= 0 and so at least one eigenvalue of P is not
equal to 1. Hence the sequence

P k = exp(ikη) ∈ H, k = 1, 2, 3, . . .

has no subsequence that converges to an element of GL(n,C). Thus H is not
compact and this proves Theorem 2.1.

The tangent space of the submanifold Gc ⊂ GL(n,C) in Theorem 2.1 at
the identity element is obviously equal to T1lG

c = g⊕ ig = gc. Since Gc is a
Lie subgroup of GL(n,C), the curve t 7→ exp(−iη) exp(iη + tiη̂) lies in Gc,
for every pair η, η̂ ∈ g, and hence

A(η)η̂ :=
d

dt

∣∣∣∣
t=0

exp(−iη) exp(iη + tiη̂) ∈ gc.

It turns out that A ∈ Ω1(g, gc) is a flat connection 1-form that satisfies
A(η)η̂ = iη̂ whenever η and η̂ commute. Conversely, Theorem 3.6 below
shows that, for any Lie algebra g, the connection A is uniquely determined
by these conditions and that the group multiplication on G×g can be recon-
structed from A. This gives rise to an intrinsic construction of a complexified
Lie group for any compact Lie group G that does not rely on an embedding
into the unitary group.
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3 Second existence proof

The second existence proof applies to compact connected Lie groups in the
intrinsic setting.

Definition 3.1. Let X be a connected smooth manifold and g be a Lie
algebra. A flat connection A ∈ Ω1(X, g) is called an infinitesimal group
law if it satisfies the following conditions.

(Monodromy) The monodromy representation of A is trivial, i.e. for any
two smooth paths γ : [0, 1]→ X and ζ : [0, 1]→ g we have

ζ̇ + [A(γ)γ̇, ζ] = 0, γ(0) = γ(1) =⇒ ζ(0) = ζ(1).

(Parallel) A(x) : TxX → g is a vector space isomorphism for every x ∈ X.

(Complete) The vector fields Yξ ∈ Vect(X) defined by

A(x)Yξ(x) = ξ

are complete, i.e. for every smooth path R→ g : t 7→ ξ(t) the solutions
of the differential equation γ̇(t) = Yξ(t)(γ(t)) exist for all time.

Example 3.2. Let G be a Lie group with Lie algebra g := T1G = Lie(G).
Then the 1-form A ∈ Ω1(G, g) defined by

A(g)v := g−1v

is an infinitesimal group law. The vector fields Yξ are given by Yξ(g) = gξ
and the curvature FA ∈ Ω2(X, g) is

FA(Yξ, Yη) = dA(Yξ, Yη) + [AYξ, AYη]

= LYξ(AYη)− LYη(AYξ) + A[Yξ, Yη] + [ξ, η]

= A[Yξ, Yη] + [ξ, η]

= 0

for ξ, η ∈ g. Thus the connection is flat. The (Monodromy) condition holds
because, for any path g : [0, 1]→ G, the solutions of the equation

ξ̇ + [g−1ġ, ξ] = 0

have the form ξ(t) = g(t)−1ξ0g(t).
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Example 3.3. Let g be a Lie algebra. Then there is a unique flat connection
A ∈ Ω1(g, g) such that

[ξ, ξ̂] = 0 =⇒ A(ξ)ξ̂ = ξ̂ (4)

for all ξ, ξ̂ ∈ g. In general, this connection is not an infinitesimal group
law. The idea behind this example is as follows. If we have a Lie group G
with Lie algebra g we might attempt to reconstruct the group multiplication
locally as an operation m : g×g→ g such that exp(ξ) exp(η) = exp(m(ξ, η)).
While this is not possible globally in most cases, the associated connection
A(ξ)ξ̂ := exp(−ξ)d exp(ξ)ξ̂ does exist globally and satisfying (4).

To prove uniqueness note that a connection A ∈ Ω1(g, g) is flat if and
only if every smooth map γ : R2 → g satisfies the equation

∂s(A(γ)∂tγ)− ∂t(A(γ)∂sγ) + [A(γ)∂sγ,A(γ)∂tγ] = 0. (5)

If in addition the connection satisfies (4) then, with γ(s, t) := t(ξ + sξ̂), we
obtain

A(γ)∂tγ = ξ + sξ̂, A(γ)∂sγ = A(t(ξ + sξ̂))tξ̂.

Setting s = 0 we find that the function ζ(t) := A(tξ)tξ̂ satisfies the differential
equation

ζ̇ + [ξ, ζ] = ξ̂, ζ(0) = 0. (6)

Thus

A(ξ)ξ̂ = ζ(1) =

∫ 1

0

exp(−tad(ξ))ξ̂ dt =
∞∑
k=0

(−1)k

(k + 1)!
ad(ξ)kξ̂,

where ad(ξ) := [ξ, ·]. Conversely, let A ∈ Ω1(g, g) be defined by this for-

mula. If [ξ, ξ̂] = 0 then ζ(t) = tξ̂ is the unique solution of the differential

equation (6) and so A(ξ)ξ̂ = ζ(1) = ξ̂. To prove that A is flat we fix three

elements ξ, ξ̂1, ξ̂2 ∈ g, define ζj : [0, 1]→ g as the solutions of (6) with ξ̂ = ξ̂j,
and define ζij : [0, 1]→ g as the solution of the linearized equation

ζ̇ij + [ξ, ζij] + [ξ̂i, ζj] = 0, ζij(0) = 0.

Then A(ξ)ξ̂j = ζj(1) and (dA(ξ)ξ̂i)ξ̂j = ζij(1). Moreover,

ζ̇ + [ξ, ζ] = 0, ζ := ζ12 − ζ21 + [ζ1, ζ2],

so η ≡ 0 and thus A is flat.
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Theorem 3.4. Let X be a connected smooth manifold, g be a Lie algebra,
and A ∈ Ω1(X, g) be an infinitesimal group law. Fix an element 1 ∈ X.
Then there is a unique Lie group structure on X with unit 1 such that

A(x)v = A(1)x−1v

for x ∈ X and v ∈ TxX. Moreover, the map A(1) : T1X = Lie(X)→ g is a
Lie algebra isomorphism.

Proof. The proof has seven steps. The first step constructs an analogue Φ of
the map G→ Aut(g) : g 7→ Ad(g−1) (see Example 3.2).

Step 1. There is a unique function Φ : X → Aut(g) satisfying

Φ(1) = id, (dΦ(x)v)ξ + [A(x)v,Φ(x)ξ] = 0 (7)

for all x ∈ X, v ∈ TxX, and ξ ∈ g.

Given x ∈ X and ξ ∈ g choose a smooth path γ : [0, 1]→ X with endpoints
γ(0) = 1 and γ(1) = x, let ζ : [0, 1] → g be the unique solution of the
differential equation

ζ̇ + [A(γ)γ̇, ζ] = 0, ζ(0) = ξ, (8)

and define Φ(x)ξ := ζ(1). The (Monodromy) axiom guarantees that ζ(1) is
independent of the choice of the path γ. The resulting function Φ is obviously
smooth and satisfies (7).

Step 2. For any two smooth paths β, γ : [0, 1]→ X we have

β(0) = β(1), A(γ)γ̇ = A(β)β̇ =⇒ γ(0) = γ(1).

Assume without loss of generality that β(0) = β(1) = 1. Choose a smooth
path [0, 1] → X : λ 7→ xλ such that x0 = 1 and x1 = γ(0). For λ ∈ [0, 1] let
γλ : [0, 1]→ X be the solution of the differential equation

A(γλ(t))∂tγλ(t) = A(β(t))∂tβ(t), γλ(0) = xλ.

Then λ 7→ γλ is a smooth homotopy from β to γ. We observe that

A(γλ(t))∂λγλ(t) = Φ(γ0(t))A(xλ)∂λxλ, (9)

where Φ is as in Step 1. Namely, both the left and right hand side of (9),
as functions of t, satisfy the differential equation ζ̇ + [A(γ0)γ̇0, ζ] = 0 with
initial condition ζ(0) = A(xλ)∂λxλ. It follows from (9) with t = 1 that
A(γλ(1))∂λγλ(1) = A(xλ)∂λxλ for all λ. Since γ0(1) = x0 = 1 we obtain
γλ(1) = xλ = γλ(0) for all λ. This proves Step 2.
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Step 3. For any four smooth paths β0, β1, γ0, γ1 : [0, 1] → X satisfying
β0(0) = β1(0) and β0(1) = β1(1) and A(γj)γ̇j = A(βj)β̇j we have

γ0(0) = γ1(0) ⇐⇒ γ0(1) = γ1(1).

Assume without loss of generality that γj and βj are constant near the
endpoints and that β0(0) = β1(0) = 1 and γ0(0) = γ1(0). Define β :
[0, 1] → X by β(t) := β0(2t) for 0 ≤ t ≤ 1/2 and β(t) := β1(2 − 2t) for
1/2 ≤ t ≤ 1. Let γ : [0, 1] → X be the unique solution of the differen-
tial equation A(γ)γ̇ = A(β)β̇ with initial condition γ(0) = γ0(0). Then
γ0(t) = γ(t/2) for 0 ≤ t ≤ 1. Moreover, since β(0) = β(1) = 1, it follows
from Step 2 that γ(1) = γ(0) = γ0(0) = γ1(0). Hence γ1(t) = γ((1 − t)/2).
with t = 1 we obtain that γ1(1) and γ0(1) both agree with γ(1/2). This
proves Step 3.

Step 4. There is a unique smooth map

X ×X → X : (x, y) 7→ φx(y) = ψy(x)

such that φx(1) = x and φ∗xA = A for every x ∈ X. Moreover, φx and ψy
are diffeomorphisms for all x, y and ψ1 = φ1 = id.

Fix an element x ∈ X. It follows from Step 3 that, for every smooth path
β : [0, 1]→ X with β(0) = 1, the endpoint of the path γ : [0, 1]→ X, defined
by

A(γ)γ̇ = A(β)β̇, γ(0) = x, (10)

depends only on the endpoint of β. Hence there is a well defined map
φx : X → X satisfying

φx(β(1)) = γ(1)

whenever β(0) = 1 and γ is given by (10). Since the solutions of a differ-
ential equation depend smoothly on the initial condition and the parameter
it follows that the map (x, y) 7→ φx(y) is smooth. (Namely, choose a local
smooth family of paths βy : [0, 1] → X with βy(0) = 1 and βy(1) = y.) It
follows directly from the construction that φx(1) = x and φ∗xA = A for every
x. That φx is a diffeomorphism follows by reversing the roles of the pairs
(1, β) and (x, γ) to construct an inverse. That ψy is a diffeomorphism follows
by interchanging 1 and y and reversing β. That φ1 is the identity is obvious
from the definition (we get γ = β when x = 1). That ψ1 is the identity
follows by choosing β(t) ≡ 1. Uniqueness is left as an exercise. This proves
Step 4.
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Step 5. The map (x, y) 7→ φx(y) = ψy(x) =: xy in Step 4 defines a Lie
group structure on X with unit 1.

It suffices to prove associativity, i.e.

φx(φy(z)) = ψz(ψy(x)) (11)

for x, y, z ∈ X. That 1 is the unit follows then from the fact that φ1 = ψ1 = id
and that every element has an inverse follows from the fact that φx and ψy
are diffeomorphisms. The inverse map x 7→ φ−1

x (1) is smooth by Step 4.
To prove (11) we fix x, y, z ∈ X and choose paths β, γ : [0, 1] → X

with endpoints β(0) = γ(0) = 1 and β(1) = y, γ(1) = z. Define the paths
β′, γ′, γ′′ : [0, 1]→ X by

A(β′)β̇′ = A(β)β̇, A(γ′′)γ̇′′ = A(γ′)γ̇′ = A(γ)γ̇,

and

β′(0) = x, γ′(0) = y, γ′′(0) = β′(1) = φx(y) = ψy(x).

We claim that
φx(φy(z)) = γ′′(1) = ψz(ψy(x)).

To prove the first identity note that γ′(1) = φy(z) and so the catenation β#γ′

(first β then γ′) runs from 1 to φy(z). The catenation β′#γ′′ is the lift of this
path starting at x and hence ends at γ′′(1) = φx(φy(z)), by definition of φx
in the proof of Step 4. On the other hand γ′′ is also the lift of γ starting at
ψy(x) and hence ends at γ′′(1) = ψz(ψy(x)), by definition of ψz in the proof
of Step 4. This proves Step 5.

Step 6. The map A(1) : T1X = Lie(X)→ g is a Lie algebra homomorphism
and satisfies A(x)xv = A(1)v for x ∈ X and v ∈ T1X.

The formula A(x)xv = A(1)v with xv := dφx(1)v follows immediately from
the fact that φ∗xA = A and φx(1) = x. This formula shows that the vector
fields Yξ ∈ Vect(X) in Definition 3.1 satisfy ξ = A(x)Yξ(x) = A(1)x−1Yξ(x).
Hence

Yξ(x) = xv, v := A(1)−1ξ ∈ Lie(X).

The map Lie(X)→ Vect(X) that assigns to every tangent vector v ∈ Lie(X)
the left invariant vector field x 7→ xv is a Lie algebra anti-homomorphism.
Since A is flat we have

0 = FA(Yξ, Yη) = dA(Yξ, Yη) + [AYξ, AYη] = A[Yξ, Yη] + [ξ, η].

12



Hence the map g → Vect(X) : ξ 7→ Yξ is also a Lie algebra anti-homomor-
phism and so A(1) is a Lie algebra isomorphism. This completes the proof
of the existence statement.

Step 7. The Lie group structure on X is uniquely determined by A and 1.

Let X × X → X : (x, y) 7→ xy be a Lie group structure with unit 1 such
that A(x)v = A(1)x−1v for x ∈ X and v ∈ TxX. Fix two elements x, y ∈ X,
choose a path β : [0, 1] → X such that β(0) = 1 and β(1) = y, and define
γ(t) := xβ(t). Then A(γ)γ̇ = A(1)γ−1γ̇ = A(1)β−1β̇ = A(β)β̇. Hence the
Lie group structure on X agrees with the one constructed in Step 5. This
proves Theorem 3.4.

Lemma 3.5. Let g be a Lie algebra with an inner product 〈·, ·〉 such that

〈ξ, [η, ζ]〉 = 〈[ξ, η], ζ〉

for all ξ, η, ζ ∈ g. Fix an element η ∈ g and let ξ : R → g be a solution of
the second order differential equation

ξ̈ + [η, [η, ξ]] = 0, ξ(0) = 0. (12)

Then |ξ(t)| ≥ |t| |ξ̇(0)| for every t ∈ R.

Proof. We have

d

dt

(
|ξ̇|2 − |[ξ, η]|2

)
= 2〈ξ̇, ξ̈〉+ 2〈[ξ̇, η], [η, ξ]〉 = 0.

Since ξ(0) = 0 this implies |ξ̇(t)|2 = |ξ̇(0)|2 + |[ξ(t), η]|2 ≥ |ξ̇(0)|2 for all
t ∈ R. Moreover, it follows from (12), by taking the inner product with ξ
and integrating by parts, that

0 =

∫ t

0

〈ξ(s), ξ̈(s) + [η, [η, ξ(s)]]〉 ds

= 〈ξ(t), ξ̇(t)〉 −
∫ t

0

(
|ξ̇(s)|2 + |[ξ(s), η]|2

)
ds

≤ 〈ξ(t), ξ̇(t)〉 − t|ξ̇(0)|2.

The last inequality holds for t ≥ 0. Hence

|ξ(t)|2 = 2

∫ t

0

〈ξ(s), ξ̇(s)〉 ds ≥ 2

∫ t

0

s|ξ̇(0)|2 ds = t2|ξ̇(0)|2

for t ≥ 0. Since equation (12) is time reversible, this proves Lemma 3.5.
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Theorem 3.6. Let G be a compact connected Lie group with Lie algebra
g := Lie(G) and denote Gc := G × g and gc := g ⊗R C = g ⊕ ig. Then the
following holds.

(i) There is a unique flat connection A1 ∈ Ω1(g, gc) such that, for all η, η̂ ∈ g,
we have

[η, η̂] = 0 =⇒ A1(η)η̂ = iη̂ (13)

(ii) If A1 is as in (i) then the 1-form A ∈ Ω1(Gc, gc) defined by

A(g, η)(v, η̂) := g−1v + g−1(A1(η)η̂)g

is an infinitesimal group law.

(iii) Suppose Gc is equipped with the Lie group structure associated to the
infinitesimal group law in A in (ii) via Theorem 3.4. Then Gc is a complex
Lie group and, for g, h ∈ G and ξ, η ∈ g,

[ξ, gηg−1] = 0 =⇒ (g, ξ) · (h, η) = (gh, ξ + gηg−1). (14)

(iv) The inclusion G→ Gc : g 7→ ι(g) := (g, 0) satisfies (ii) in Theorem 1.4.

Proof. First assume that A1 satisfies the requirements of (i). Let η, η̂ ∈ g
and define ζ : R→ gc by ζ(t) := A1(tη)tη̂. Then

ζ̇ + [iη, ζ] = iη̂, ζ(0) = 0. (15)

(Apply equation (5) to the function (s, t) 7→ t(η + sη̂) and set s = 0.) Thus
we must define A1(η)η̂ := ζ(1) where ζ : R → g is the unique solution
of (15). That this 1-form satisfies (13) follows from the fact that ζ(t) := itη̂
satisfies (15) whenever η and η̂ commute. That it is flat follows from the
same argument that was used in Example 3.3. This proves (i).

We prove (ii). First we observe that A is flat. Namely the g-connection
A0 on G defined by A0(g)v := g−1v is flat by Example 3.2 and A1 is flat
by (i). Hence, for two tangent vectors wj = (vj, η̂j) ∈ T(g,η)(G× g), j = 1, 2,
we obtain

FA(w1, w2) = dA(w1, w2) + [A(g, η)w1, A(g, η)w2]

= dA0(v1, v2) + g−1dA1(η̂1, η̂2)g

+ [g−1A1(η̂2)g, g−1v1]− [g−1A1(η̂1)g, g−1v2]

+ [g−1v1 + g−1(A1(η)η̂1)g, g−1v2 + g−1(A1(η)η̂2)g]

= FA0(v1, v2) + g−1FA1(η̂1, η̂2)g

= 0.
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For the (Monodromy) axiom it suffices to consider curves based at 1. It is
obviously satisfied for curves in G and hence follows from the fact that the
connection A is flat and that every based curve in Gc is homotopic to one
in G. The (Parallel) and (Complete) axioms follow from the inequality

|η̂| ≤ |Im(A1(η)η̂)| . (16)

This inequality shows that the linear map A(g, η) : T(g,η)G
c → gc is invertible

for every pair (g, η) ∈ G× g. It also shows that, for every curve ζ : R→ gc,
the solutions [0, T ]→ Gc : t 7→ (g(t), η(t)) of the differential equation

g(t)−1ġ(t) + g(t)−1(A1(η(t))η̇(t))g(t) = ζ(t)

satisfy sup0≤t≤T |η(t)− η(0)| ≤ cT , where c := sup0≤t≤T |Imζ(t)|. Hence the
solutions must exist for all time. To prove (16) consider the imaginary part
ξ := Im(ζ) of a solution ζ : [0, 1]→ gc of equation (15). It satisfies the second
order differential equation

ξ̈ + [η, [η, ξ]] = 0, ξ(0) = 0, ξ̇(0) = η̂.

By Lemma 3.5 every solution of this equation satisfies |ξ(1)| ≥ |η̂| and this
is equivalent to (16). Thus we have proved (ii).

We prove (iii). That Gc is a complex Lie group follows from Proposi-
tion 1.3. Now let g, h ∈ G and ξ, η ∈ g such that [ξ, gηg−1] = 0. Choose
a smooth path α : [0, 1] → G such that α(0) = 1 and α(1) = h and define
β, γ : [0, 1] → G × g by β(t) := (α(t), tη) and γ(t) := (gα(t), ξ + tgηg−1).
Then β(0) = (1, 0), γ(0) = (g, ξ), and A(β)β̇ = α−1α̇ + iα−1ηα = A(γ)γ̇.
Hence γ(t) = (g, ξ) · β(t) for all t. With t = 1 we obtain equation (14),
namely (gh, ξ + gηg−1) = (g, ξ) · (h, η). This completes the proof of (iii).

We prove (iv). First, it follows from (14) that the embedding ι : G→ Gc,
given by ι(g) := (g, 0), is a Lie group homomorphism. Second, the image
of the differential dι(1) : g → gc is a totally real subspace of gc = g ⊕ ig.
Third, ι(G) = G × {0} is a maximal compact subgroup of Gc. To see this,
let H ⊂ Gc be a subgroup such that G ( H. Then H contains an element of
the form (g, ξ) with ξ 6= 0. Hence, by (14), the pair (1, ξ) = (g, ξ) · (g−1, 0)
is also an element of H and hence, so is (1, kξ) for every integer k ≥ 1.
This sequence has no convergent subsequence and so H is not compact. This
proves Theorem 3.6.

15



4 Hadamard’s theorem

Theorem 4.1 (Hopf-Rinow). Let M be a connected Riemannian manifold
and denote by d : M ×M → [0,∞) the distance function associated to the
Riemannian metric. Fix a point p0 ∈M . Then the following are equivalent.

(i) The geodesics starting at p0 exist for all time.

(ii) For every p1 ∈M there exists a geodesic γ : [0, 1]→M such that

γ(0) = p0, γ(1) = p1, L(γ) :=

∫ 1

0

|γ̇(t)| dt = d(p0, p1).

(iii) Every closed and bounded subset of (M,d) is compact.

(iv) (M,d) is a complete metric space.

Proof. See [11, Theorems 2.57 and 2.58].

A connected Rimannian manifold satisfying the conditions of Theorem 4.1
is called complete. In such a manifold any two points can be joined by a
(minimal) geodesic. If, in addition, M is simply connected and has non-
positive sectional curvature, then Hadamard’s theorem asserts that any two
points can be joined by a unique geodesic.

Theorem 4.2 (Hadamard). Let M be a complete, connected, simply con-
nected Riemannian manifold with nonpositive sectional curvature. Then, for
every p ∈M , the exponential map expp : TpM →M is a diffeomorphism.

Proof. (Explained to me by Urs Lang.) There are three steps. The first step
asserts that there are no conjugate points. We denote by ∇ the Levi-Civita
connection and by R ∈ Ω2(M,End(TM)) the Riemann curvature tensor.

Step 1. If γ : [0, 1]→M is a smooth curve and X : [0, 1]→ TM is a vector
field along γ (i.e. X(t) ∈ Tγ(t)M for all t) satisfying the Jacobi equation

∇t∇tX +R(X, γ̇)γ̇ = 0 (17)

and the boundary conditions X(0) = 0, X(1) = 0 then X ≡ 0.

We have
d

dt
〈∇tX,X〉 = |∇tX|2 + 〈∇t∇tX,X〉 = |∇tX|2 − 〈R(X, γ̇)γ̇, X〉

and hence ∫ 1

0

(
|∇tX|2 − 〈R(X, γ̇)γ̇, X〉

)
dt = 0.

Since 〈R(X, γ̇)γ̇, X〉 ≤ 0 everywhere, we obtain ∇tX ≡ 0 and hence X ≡ 0.
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Step 2. The differential d expp(v) : TpM → Texpp(v)M of the exponential
map is bijective for every v ∈ TpM .

Let v̂ ∈ TpM be a tangent vector such that d expp(v)v̂ = 0. Define the map
γ : R2 →M and the vector field X : R2 → TM along γ by

γ(s, t) := expp(t(v + sv̂)), X(s, t) := ∂sγ(s, t) = d expp(t(v + sv̂))tv̂.

Then

∇t∇tX = ∇t∇t∂sγ
= ∇t∇s∂tγ
= ∇s∇t∂tγ −R(∂sγ, ∂tγ)∂tγ

= −R(X, ∂tγ)∂tγ.

Here the second equation follows from the fact that the Levi-Civita con-
nection is torsion free, the third equation follows from the definition of the
Riemann curvature tensor, and the last equation from the fact that the curve
t 7→ γ(s, t) is a geodesic for every s. Since X(0, 0) = 0 and X(0, 1) = 0, by
assumption, it follows from Step 1 that X(0, t) = 0 for all t. By choosing t
small we find that v̂ = 0.

Step 3. The exponential map expp : TpM → M is a covering, i.e. it is
surjective and, for every continuous path γ : [0, 1]→M and every v0 ∈ TpM
with γ(0) = expp(v0) there is a unique continuous path v : [0, 1]→ TpM such
that v(0) = v0 and γ(t) = expp(v(t)) for every t.

That the map expp : TpM → M is surjective follows immediately from the
Hopf-Rinow theorem. By Step 2 we may consider the space TpM with the
pullback metric under the map expp. Thus expp is a local isometry for this
metric and so the rays t 7→ tv are geodesics in TpM for this metric (because
they are mapped to geodesics in M under expp). Now we can apply the Hopf-
Rinow theorem again to the pullback metric and obtain that it is complete
(use the implication (i) =⇒ (iv) in Theorem 4.1). This implies the covering
property by a standard open and closed argument (given γ, let I ⊂ [0, 1]
be the set of all t such that the lift exists on the interval [0, 1]. Then I is
obvious nonempty and open. That I is closed follows from completeness of
TpM with the pullback metric). This proves Step 3.

By Step 3, the map expp : TpM →M is a universal covering of M . Since
M is simply connected, this implies that expp is a diffeomorphism. This
proves Theorem 4.2.
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5 Cartan’s fixed point theorem

Theorem 5.1 (Cartan). Let M be a complete connected simply connected
Riemannian manifold with nonpositive sectional curvature. Let G be a com-
pact Lie group that acts on M by isometries. Then there exists a point p ∈M
such that gp = p for every g ∈ G.

Proof. The proof has three steps and follows the argument given by Bill
Casselmann in [1]. The second step is Serre’s uniqueness result for the cir-
cumcentre of a bounded set in a semi-hyperbolic space.

Step 1. Let m ∈M and v ∈ TmM and define

p0 := expm(−v), p1 := expm(v).

Then

2d(m, q)2 +
d(p0, p1)2

2
≤ d(p0, q)

2 + d(p1, q)
2

for every q ∈M .

By Theorem 4.2 the exponential map expm : TmM →M is a diffeomorphism.
Hence

d(p0, p1) = 2|v|.

Now let q ∈M . Then there is a unique tangent vector w ∈ TmM such that

q = expm(w), d(m, q) = |w|.

Moreover, the exponential map is expanding (e.g. [11, Theorem 4.112]). Thus

d(p0, q) ≥ |w + v|, d(p1, q) ≥ |w − v|.

Hence

d(m, q)2 = |w|2

=
|w + v|2 + |w − v|2

2
− |v|2

≤ d(p0, q)
2 + d(p1, q)

2

2
− d(p0, p1)2

4
.

This proves Step 1.
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Step 2. For p ∈ M and r ≥ 0 denote by B(p, r) ⊂ M the closed ball of
radius r centered at p. Let Ω ⊂M be a nonempty bounded set and define

rΩ := inf {r > 0 | there exists a p ∈M such that Ω ⊂ B(p, r)}

Then there exists a unique point pΩ ∈M such that Ω ⊂ B(pΩ, rΩ).

We prove existence. Choose a sequence ri > rΩ and a sequence pi ∈M such
that

Ω ⊂ B(pi, ri), lim
i→∞

ri = rΩ.

Choose q ∈ Ω. Then d(q, pi) ≤ ri for every i. Since the sequence ri is
bounded and M is complete, it follows that pi has a convergent subsequence,
still denoted by pi. Its limit pΩ := limi→∞ pi satisfies Ω ⊂ B(pΩ, rΩ).

We prove uniqueness. Let p0, p1 ∈M such that Ω ⊂ B(p0, rΩ)∩B(p1, rΩ).
Since the exponential map expp : TpM → M is a diffeomorphism, by The-
orem 4.2, there exists a unique vector v0 ∈ Tp0M such that p1 = expp0(v0).

Denote the midpoint between p0 and p1 by m := expp0
(

1
2
v0

)
. Then it follows

from Step 1 that

d(m, q)2 ≤ d(p0, q)
2 + d(p1, q)

2

2
− d(p0, p1)2

4

≤ r2
Ω −

d(p0, p1)2

4

for every q ∈ Ω. Since supq∈Ω d(m, q) ≥ rΩ, by definition of rΩ, it follows
that d(p0, p1) = 0 and hence p0 = p1. This proves Step 2.

Step 3. We prove Theorem 5.1.

Let q ∈ M and consider the group orbit Ω := {gq | g ∈ G}. Let rΩ ≥ 0 and
pΩ ∈M be as in Step 2. Then

Ω ⊂ B(pΩ, rΩ).

Since G acts on M by isometries, this implies

Ω = gΩ ⊂ B(gpΩ, rΩ)

for every g ∈ G. Hence it follows from the uniqueness statement in Step 2
that gpΩ = pΩ for every g ∈ G. This proves Step 3 and Theorem 5.1.
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6 Cartan decomposition

Throughout this section we assume the following.

(C) Gc is a complex Lie group with Lie algebra gc and G ⊂ Gc

is a maximal compact Lie subgroup such that the quotient Gc/G
is connected and g := Lie(G) is a totally real subspace of gc, i.e.
gc = g⊕ ig.

If G is any compact connected Lie group then the complex Lie group Gc

constructed in Theorem 3.6 satisfies condition (C). If G ⊂ U(n) is a (not nec-
essarily connected) Lie subgroup then the complex Lie group Gc ⊂ GL(n,C)
constructed in Theorem 2.1 satisfies condition (C).

Theorem 6.1 (Cartan). Assume (C). Then the map

G× g→ Gc : (g, η) 7→ exp(iη)g

is a diffeomorphism. In particular, Gc/G is simply connected.

Proof. See page 23.

6.2. Assume (C). Define the quotient space Gc/G by

Gc/G := {[k] | k ∈ Gc} , [k] := kG = {kg | g ∈ G} .

The tangent space of Gc/G at [k] is the quotient of the tangent spaces

T[k]G
c/G =

TkG
c

TkkG
=

TkG
c

{kξ | ξ ∈ g}
.

Throughout we use the notation

Re(ζ) := ξ, Im(ζ) := η

for ζ = ξ + iη ∈ gc with ξ, η ∈ g. Thus the equivalence class of a tangent
vector [ζ] ∈ T[k]G

c/G is uniquely determined by Im(ζ). Now choose an
invariant inner product 〈·, ·〉g on g and define a Riemannian metric on Gc/G
by

〈[kζ], [kζ ′]〉 := 〈η, η′〉g , ζ, ζ ′ ∈ g, η := Im(ζ), η′ := Im(ζ ′).

It is sometimes convenient to leave out the square bracket when writing [kζ]
with ζ ∈ ig. Thus we write kiη ∈ T[k]G

c/G instead of [kiη]. In particular,
we use this notation to avoid any possible confusion with the Lie bracket.
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Lemma 6.3. Assume (C). Then the following holds.

(i) The geodesics in Gc/G have the form

γ(t) = [k0 exp(itη)]

for k0 ∈ Gc and η ∈ g.

(ii) The Riemann curvature tensor on Gc/G is given by

R(kiξ, kiη)kiζ = ki[[ξ, η], ζ]

for k ∈ Gc and ξ, η, ζ ∈ g. Thus Gc/G has nonpositive sectional curvature.

Proof. The proof has three steps. The first step gives a formula for the
Levi–Civita connection on Gc/G.

Step 1. Let k : R→ Gc and ξ : R→ gc be smooth curves and denote

γ(t) := [k(t)] ∈ Gc, X(t) := [k(t)ξ(t)] ∈ Tγ(t)G
c/G.

Then

∇tX(t) = [k(t)η(t)], η(t) := ξ̇(t) + [Re(k(t)−1k̇(t), ξ(t)].

To prove that the formula is well defined we must choose a smooth map
g : R→ G and replace k, ξ, η by

k̃ := kg, ξ̃ := g−1ξg, η̃ := ∂tξ̃ + [Re(k̃−1∂tk̃), ξ̃]

and show that
η̃ = gηg−1.

We must then show that the connection is Riemannian, i.e.

∂t 〈X, Y 〉 = 〈∇tX, Y 〉+ 〈X,∇tY 〉

for ant two vector fields along a curve γ, and that it is torsion free, i.e.

∇s∂tγ = ∇t∂sγ

for any smooth map γ : R2 → Gc/G of two variables. These assertions follow
easily by direct calculations which are left to the reader.
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Step 2. We prove (i).

A smooth curve γ(t) = [k(t)] is a geodesic in Gc/G if and only if ∇tγ̇ ≡ 0.
By Step 1 this is equivalent to the differential equation

∂tIm(k−1∂tk) + [Re(k−1∂tk), Im(k−1∂tk)] = 0. (18)

A function k : R → Gc satisfies this equation if and only if it has the form
k(t) = k0 exp(itη)g(t) for some k0 ∈ Gc, η ∈ g, and g : R→ G.

Step 3. We prove (ii).

Choose maps γ : R2 → Gc and ζ : R2 → gc and denote

ξ := k−1∂sk, η := k−1∂t,

and

γ := [k], X := [kξ] = ∂sγ, Y := [kη] = ∂tγ, Z := [kζ].

Then ∂sη − ∂tξ + [ξ, η] = 0 and

∇sZ = [kζs], ζs := ∂sζ + [Re(ξ), ζ],

∇tZ = [kζt], ζt := ∂tζ + [Re(η), ζ].

Hence we obtain

R(X, Y )Z = ∇s∇tZ −∇t∇sZ = [kρ],

where

ρ = ∂sζt + [Re(ξ), ζt]− ∂tζs − [Re(η), ζs]

= [Re(∂sη), ζ] + [Re(ξ), [Re(η), ζ]]

− [Re(∂tξ), ζ]− [Re(η), [Re(ξ), ζ]]

= −[Re([ξ, η]), ζ]− [ζ, [Re(ξ),Re(η)]]

= [[Im(ξ), Im(η)], ζ].

Thus we have R(X, Y )Z = kiIm(ρ) = ki[[Im(ξ), Im(η)], Im(ζ)] and the sec-
tional curvature is 〈R(X, Y )Y,X〉 = − |[Im(ξ), Im(η)]|2 ≤ 0. This proves
Lemma 6.3.
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Proof of Theorem 6.1. Assume (C). We prove in four steps that the map

G× g→ Gc : (g, η) 7→ exp(iη)g

is a diffeomorphism.

Step 1. If η ∈ g and exp(iη) ∈ G then [ξ, η] = 0 for every ξ ∈ g.

Define γ : R2 → Gc/G by

γ(s, t) := [exp(isξ) exp(itη)].

By Lemma 6.3 the curve t 7→ γ(s, t) is a geodesic for every s, and by assump-
tion it is periodic with period 1. Denote

X(s, t) := ∂sγ(s, t) ∈ Tγ(s,t)G
c/G.

Since t 7→ γ(s, t) is a geodesic for every s we have that X satisfies the Jacobi
equation (17). Since X(s, t + 1) = X(s, t) we obtain, as in the proof of
Theorem 4.2, that X satisfies

0 =

∫ 1

0

∂t 〈∇tX,X〉 dt

=

∫ 1

0

(
|∇tX|2 + 〈∇t∇tX,X〉

)
dt

=

∫ 1

0

(
|∇tX|2 − 〈R(X, ∂tγ)∂tγ,X〉

)
dt

for every s. Since Gc/G has nonpositive sectional curvature, by Lemma 6.3,
we deduce that the function 〈R(X, ∂tγ)∂tγ,X〉 vanishes identically. With
s = t = 0 we have X(0, 0) = [iξ] and ∂tγ(0, 0) = [iη] and hence

0 = 〈R(iξ, iη)iη, iξ〉 = − |[ξ, η]|2 .

Here the last equation follows from Lemma 6.3 (ii). This proves Step 1.

Step 2. If η ∈ g and exp(iη) ∈ G then η = 0.

This is the only place in the proof where we use the fact that G is a max-
imal compact subgroup of Gc. Suppose by contradiction that η 6= 0. Then
exp(itη) /∈ G for small t and hence

0 < λ := inf {t > 0 | exp(itη) ∈ G} ≤ 1.
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Moreover, [ξ, η] = 0 for all ξ ∈ g by Step 1 and so [ζ, iη] = 0 for all ζ ∈ gc.
Denote by Gc

0 the identity component of Gc. Then g−1iηg = iη for all g ∈ Gc
0

and hence exp(itη)g = g exp(itη) for all t ∈ R and all g ∈ Gc
0. In particular,

this holds for t = λ/2 and so the element

h := exp(iλη/2) ∈ Gc
0 \G

commutes with every element of Gc
0. Since h2 ∈ G ∩Gc

0 this shows that

H := (G ∪ hG) ∩Gc
0 = (G ∩Gc

0) ∪ h(G ∩Gc
0)

is a compact subgroup of Gc. Next we will use the fact that the Rieman-
nian manifold Gc/G is connected and geodesically complete by Lemma 6.3.
Thus the Hopf–Rinow theorem asserts that any two elements in Gc/G can
be joined by a geodesic and so the map G× g→ Gc : (u, ξ) 7→ exp(iξ)u is
surjective. Hence Gc has finitely many connected components. Since G is a
maximal compact subgroup of Gc, it then follows from the Cartan–Iwasawa–
Malcev Theorem in [3, Thm 14.1.3] that there exists an element g ∈ Gc such
that g−1Hg ⊂ G. Thus g−1(G ∩Gc

0)g ⊂ G ∩Gc
0 and g−1hg ∈ G ∩Gc

0, and
hence h ∈ g(G ∩Gc

0)g−1 = G ∩Gc
0 in contradiction to the fact that h /∈ G.

This proves Step 2.

Step 3. Gc/G is simply connected.

Suppose not. Then, by the usual variational argument, there exists a noncon-
stant geodesic γ : [0, 1]→ Gc/G based at γ(0) = γ(1) = [1]. By Lemma 6.3
the geodesic has the form

γ(t) = [exp(itη)]

for some η ∈ g. Since γ(1) = [1] we have exp(iη) ∈ G and hence η = 0 by
Step 2. Thus the geodesic is constant, a contradiction. This proves Step 3.

Step 4. The map G× g→ Gc : (g, η) 7→ exp(iη)g is a diffeomorphism.

By assumption the quotient manifold Gc/G is connected, by Step 3 it is
simply connected, and by Lemma 6.3 it is complete and has nonpositive sec-
tional curvature. Hence Step 4 follows from Hadamard’s theorem. Namely,
the exponential map

T[1]G
c/G→ Gc/G : [iη] 7→ [exp(iη)]

(the Riemannian and Lie group meanings of the term coincide in this case)
is a diffeomorphism by Theorem 4.2, and this is equivalent to Step 4. This
proves Theorem 6.1.
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7 Matrix factorization

Theorem 7.1. Assume (C) on page 20 and let ξ ∈ g such that exp(ξ) = 1.
Then, for every g ∈ Gc, there exists a pair p, p+ ∈ Gc such that

lim
t→∞

exp(itξ)p exp(−itξ) = p+, pg−1 ∈ G.

Proof. See page 30.

The proof uses the fact that every compact Lie group embedds into U(n)
for some integer n ∈ N and relies on the next four lemmas.

Lemma 7.2. Assume (C) on page 20 and let ξ ∈ g such that exp(ξ) = 1.
Then the set

P :=
{
p ∈ Gc | the limit lim

t→∞
exp(itξ)p exp(−itξ) exists in Gc

}
(19)

is a Lie subgroup of Gc with Lie algebra

p :=
{
ζ ∈ gc | the limit lim

t→∞
exp(itξ)ζ exp(−itξ) exists in gc

}
. (20)

Proof. Assume G ⊂ U(n) and Gc ⊂ GL(n,C). Then iξ is a Hermitian matrix
with eigenvalues in 2πZ. Consider a decomposition Cn = E1 ⊕ E2 ⊕ · · · ⊕ Ek
into eigenspaces Ej ⊂ Cn of iξ with eigenvalues λj and choose the ordering
such that λ1 < λ2 < · · · < λk. Write a matrix ζ ∈ gc ⊂ gl(n,C) in the form

ζ =


ζ11 ζ12 · · · ζ1k

ζ21 ζ22 · · · ζ2k

...
...

. . .
...

ζk1 ζk2 · · · ζkk

 , ζij ∈ Hom(Ej, Ei).

Then

exp(itξ)ζ exp(−itξ) =


ζ11 e(λ1−λ2)tζ12 · · · e(λ1−λk)tζ1k

e(λ2−λ1)tζ21 ζ22 · · · e(λ2−λk)tζ2k

...
...

. . .
...

e(λk−λ1)tζk1 e(λk−λ2)tζk2 · · · ζkk

 .

Thus ζ ∈ p if and only if ζ ∈ g and ζij = 0 for i > j. Likewise, g ∈ P if
and only if g ∈ Gc and gij = 0 for i > j. Hence P is a closed subset of Gc.
Since every closed subgroup of a Lie group is a Lie subgroup, this proves
Lemma 7.2.

25



Lemma 7.3. Let N ∈ N. There exist real numbers

β0(N), β1(N), . . . , β2N−1(N)

such that βν(N) = 0 when ν is even and, for k = 1, 3, 5, . . . , 4N − 1,

2N−1∑
ν=0

βν(N) exp

(
kνπi

2N

)
=

{
i, if 0 < k < 2N,
−i, if 2N < k < 4N.

(21)

Proof. Define λ := exp( πi
2N

) and consider the Vandermonde matrix

Λ :=


λ λ3 λ5 . . . λ2N−1

λ3 λ9 λ15 . . . λ6N−3

λ5 λ15 λ25 . . . λ10N−5

...
...

...
. . .

...

λ2N−1 λ6N−3 λ10N−5 · · · λ(2N−1)2

 ∈ CN×N .

Its complex determinant is

detc(Λ) = λ(2N−1)(N−1)
∏

0≤i<j≤N−1

(
λ4j − λ4i

)
.

Since λ is a primitive 4Nth root of unity, the numbers λ4i, i = 0, . . . , N − 1,
are pairwise distinct. Hence Λ is nonsingular. Hence there exists a unique
vector z = (z1, z3, . . . , z2N−1) ∈ CN such that∑

0<ν<2N
ν odd

exp

(
kνπi

2N

)
zν = i, k = 1, 3, . . . , 2N − 1. (22)

The numbers zν also satisfy the equation∑
0<ν<2N
ν odd

exp

(
(2N − k)νπi

2N

)
zν = −

∑
0<ν<2N
ν odd

exp

(
kνπi

2N

)
zν = i

for k = 1, 3, . . . , 2N − 1 and hence they are real.
Define βν(N) := zν for ν = 1, 3, . . . , 2N − 1 and βν(N) := 0 for ν even.

These numbers satisfy (21) for k = 1, 3, . . . , 2N − 1 by (22). That equa-
tion (21) also holds for k = 2N + 1, 2N + 3, . . . , 4N − 1 follows from the fact
that exp(kπi) = −1 whenever k is odd. This proves Lemma 7.3.
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Lemma 7.4. Let m ∈ N and N := 2m. There exist real numbers

α0(N), α1(N), . . . , α2N−1(N)

such that αν(N) = 0 when ν is even and, for every k ∈ {0, 1, . . . , 2N − 1},

2N−1∑
ν=0

αν(N) exp

(
kνπi

N

)
=


i, if 1 ≤ k ≤ N − 1,
−i, if N + 1 ≤ k ≤ 2N − 1,

0, if k = 0 or k = N.
(23)

Proof. The proof is by induction on m. For m = 1 and N = 2m = 2 choose
α1(2) := 1/2 and α3(2) := −1/2. Then

3∑
ν=0

αν(2) exp

(
kνπi

2

)
=

ik − (−i)k

2
=


i, for k = 1,
−i, for k = 3,

0, for k = 0, 2.

Now let m ∈ N and define N := 2m. Assume, by induction, that the num-
bers αν(N), ν = 0, 1, . . . , 2N − 1, have been found such that (23) holds for
k = 0, 1, . . . , 2N − 1. Let βν(N), ν = 0, 1, . . . , 2N − 1, be the constants of
Lemma 7.3. Define

α2N+ν(N) := αν(N), β2N+ν(N) := −βν(N),

for ν = 0, 1, 2, . . . , 2N − 1 and

αν(2N) :=
αν(N) + βν(N)

2
, ν = 0, 1, 2, . . . , 4N − 1. (24)

Then
4N−1∑
ν=0

αν(2N) exp

(
kνπi

2N

)
= Ak +Bk,

where

Ak :=
1

2

4N−1∑
ν=0

αν(N) exp

(
kνπi

2N

)
,

Bk :=
1

2

4N−1∑
ν=0

βν(N) exp

(
kνπi

2N

)
.
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Since α2N+ν(N) = αν(N), we have

Ak =
1

2

4N−1∑
ν=0

αν(N) exp

(
kνπi

2N

)

=
1 + exp(kπi)

2

2N−1∑
ν=0

αν(N) exp

(
kνπi

2N

)

=
1 + (−1)k

2

2N−1∑
ν=0

αν(N) exp

(
kνπi

2N

)
.

If k is odd then the right hand side vanishes. If k is even it follows from the
induction hypothesis that

Ak =
2N−1∑
ν=0

αν(N) exp

(
(k/2)νπi

N

)
=


i, for k = 2, 4, . . . , 2N − 2,
−i, for k = 2N + 2, . . . , 4N − 2,

0, for k = 0, 2N.

Since β2N+ν(N) = −βν(N), we have

Bk =
1

2

2N−1∑
ν=0

βν(N)

(
exp

(
kνπi

2N

)
− exp

(
k(2N + ν)πi

2N

))

=
1− exp(kπi)

2

2N−1∑
ν=0

βν(N) exp

(
kνπi

2N

)

=
1− (−1)k

2

2N−1∑
ν=0

βν(N) exp

(
kνπi

2N

)
.

If k is even then the right hand side vanishes. If k is odd it follows from
Lemma 7.3 that

Bk =
2N−1∑
ν=0

βν(N) exp

(
kνπi

2N

)
=

{
i, if k = 1, 3, . . . , 2N − 1,
−i, if k = 2N + 1, . . . , 4N − 1.

Combining the formulas for Ak and Bk we find

Ak +Bk =


i, for k = 1, 2, 3, . . . , 2N − 1,
−i, for k = 2N + 1, 2N + 2, . . . , 4N − 1,

0, for k = 0, 2N,

and this proves Lemma 7.4.
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Lemma 7.5. Assume (C) on page 20 and let ξ ∈ g such that exp(ξ) = 1.
Then, for every η ∈ g, there exists a pair ζ, ζ+ ∈ gc such that

lim
t→∞

exp(itξ)ζ exp(−itξ) = ζ+, ζ − iη ∈ g.

Proof. Assume without loss of generality that G ⊂ U(n) and Gc ⊂ GL(n,C).
Let Cn = E1 ⊕ · · · ⊕ Ek and λ1 < · · · < λk be as in Lemma 7.2. Then

λi − λj = 2πmij, mij ∈ Z,

with mij > 0 for i > j and mij < 0 for i < j. Choose m ∈ N such that

N := 2m > mk1 =
λk − λ1

2π
.

Choose α0, . . . , α2N−1 ∈ R as in Lemma 7.4. Let

η =


η11 η12 · · · η1k

η21 η22 · · · η2k

...
...

. . .
...

ηk1 ηk2 · · · ηkk

 ∈ g,

where ηij ∈ Hom(Ej, Ei). Define

ζ := iη −
2N−1∑
ν=0

αν exp
(
− ν

2N
ξ
)
η exp

( ν

2N
ξ
)
∈ gc.

Then, for i > j, we have

ζij = iηij −
2N−1∑
ν=0

αν exp
( ν

2N
i(λi − λj)

)
ηij

=

(
i−

2N−1∑
ν=0

αν exp

(
mijνπi

N

))
ηij

= 0.

The last equation follows from Lemma 7.4 and the fact that 1 ≤ mij ≤ N − 1
for i > j. Since ζij = 0 for i > j it follows from the proof of Lemma 7.2 that
ζ ∈ p. Moreover, by construction iη − ζ ∈ g. This proves Lemma 7.5.

29



Proof of Theorem 7.1. Let P ⊂ Gc and p ⊂ gc be defined by (19) and (20)
(see Lemma 7.2). We prove in three steps that, for every g ∈ Gc, there exists
a p ∈ P such that pg−1 ∈ G.

Step 1. The set

A :=
{
g ∈ Gc | ∃ p ∈ P such that pg−1 ∈ G

}
is (relatively) closed in Gc.

Let gi ∈ A be a sequence which converges to an element g ∈ Gc. Then there
exists a sequence pi ∈ P such that ui := pig

−1
i ∈ G. Since G is compact there

exists a subsequence (still denoted by ui) which converges to an element
u ∈ G. Since P is a closed subset of Gc, by Step 1 in the proof of Lemma 7.4,
we have p := ug = limi→∞ uigi = limi→∞ pi ∈ P. Hence pg−1 = u ∈ G and
hence g ∈ A. This proves Step 1.

Step 2. The function f : P × g→ Gc, defined by

f(p, u) := pu

for p ∈ P and u ∈ G, is a submersion.

Let p ∈ P and u ∈ G and denote g := f(p, u) = pu. Let ĝ ∈ TgGc and denote

ζ̃ := p−1ĝu−1 = u(g−1ĝ)u−1 ∈ gc. (25)

Let η ∈ g be the imginary part of ζ̃ so that ζ̃ − iη ∈ g. By Lemma 7.5, there
exists an element ζ ∈ p such that ζ − iη ∈ g and hence ζ̃ − ζ ∈ g. Define

p̂ := pζ, û :=
(
ζ̃ − ζ

)
u.

Then p̂ ∈ TpP, û ∈ TuG, and

df(p, u)(p̂, û) = p̂u+ pû = pζ̃u = ĝ.

Here the last equation follows from (25). Thus we have proved that the
differential df(p, u) : TpP × TuG → TpuG

c is surjective for every p ∈ P and
every u ∈ G. Hence f is a submersion and this proves Step 2.

Step 3. A = Gc.

The set A contains G by definition. By Step 1 it is closed and by Step 2 it
is the image of a submersion and hence is open. Since Gc is homeomorphic
to G × g (see Theorem 6.1) and A contains G ∼= G × {0}, it follows that A
intersects each connected component of Gc in a nonempty open and closed
set. Hence A = Gc. This proves Step 3 and Theorem 7.1.

30



8 Proof of the main theorems

Proof of Theorem 1.4 “(ii) =⇒ (i)”. Assume (C) on page 20. (In the nota-
tion of Theorem 1.4 the map ι is the inclusion of G into Gc.) Then the
quotient Gc/G is simply connected by Theorem 6.1. Let H be a complex Lie
group with Lie algebra h := Lie(H) and let

ρ : G→ H

be a Lie group homomorphism. We use the following two basic facts to
construct the homomorphism ρc : Gc → H that extends ρ.

Fact 1. Since Gc/G is connected there exists, for every a ∈ Gc, a smooth
path α : [0, 1]→ Gc such that α(0) ∈ G and α(1) = a.

Fact 2. Since Gc/G is simply connected, any two paths α0, α1 : [0, 1]→ Gc as
in Fact 1 can be joined by a smooth homotopy {αs}0≤s≤1 satisfying αs(0) ∈ G
and αs(1) = a for every s ∈ [0, 1].

We define ρc as follows. Let Φ := dρ(1) : g → h be the induced Lie algebra
homomorphism and define Φc : gc → h as the complexification of Φ. Given
an element a ∈ Gc choose α as in Fact 1, let β : [0, 1] → H be the unique
solution of the differential equation

β−1β̇ = Φc(α−1α̇), β(0) = ρ(α(0)), (26)

and define
ρc(a) := β(1).

We prove first that ρc is well defined, i.e. that the endpoint β(1) does not
depend on the choice of the path α. By Fact 2 any two paths α0 and α1

with α0(0), α1(0) ∈ G and α0(1) = α1(1) = a can be joined by a smooth
homotopy [0, 1]2 → Gc : (s, t) 7→ αs(t) = α(s, t) such that αs(0) ∈ G and
αs(1) = a for all s. Define β : [0, 1]2 → H by

β−1∂tβ = Φc(α−1∂tα), β(s, 0) = ρ(α(s, 0)).

We claim that
β−1∂sβ = Φc(α−1∂sα). (27)

To see this, abbreviate

ξ := α−1∂sα, η := α−1∂tα, ξ′ := β−1∂sβ, η′ := β−1∂tβ.
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Then

∂tξ
′ = ∂sη

′ + [ξ′, η′], ∂tΦ
c(ξ) = ∂sΦ

c(η) + [Φc(ξ),Φc(η)].

Moreover, when t = 0 we have dρ(α)αξ = ρ(α)Φξ and hence

ξ′(s, 0) = β(s, 0)−1∂sβ(s, 0) = Φ(α(s, 0)−1∂sα(s, 0)) = Φ(ξ(s, 0)).

Hence both functions t 7→ ξ′(s, t) and t 7→ Φc(ξ(s, t)) satisfy the same initial
value problem and hence agree. This proves (27). It follows that ∂sβ(1, s) = 0
and this shows that ρc is well defined.

We prove that, for a ∈ Gc and ξ ∈ gc,

Φc(a−1ξa) = ρc(a)−1Φc(ξ)ρc(a). (28)

Choose α and β as in the definition of ρc(a) and define

η(t) := α(t)−1ξα(t), η′(t) := β(t)−1Φc(ξ)β(t).

Then Φc(η) and η′ satsify the same differential equation

η̇′ + [β−1β̇, η′] = 0

and the same initial condition and hence have the same endpoints. This
proves equation (28).

We prove that ρc is a group homomorphism. Let a1, a2 ∈ Gc and choose
αj and βj as in the definition of ρc(aj) for j = 1, 2. Then ρc(αj(t)) = βj(t)
for 0 ≤ t ≤ 1 and j = 1, 2. Define

α := α1α2, β := β1β2.

Then

β−1β̇ = β−1
2 β̇2 + β−1

2 β−1
1 β̇1β2

= Φc(α−1
2 α̇2) + ρc(α2)−1Φc(α−1

1 α̇1)ρc(α2)

= Φc(α−1
2 α̇2 + α−1

2 α−1
1 α̇1α2)

= Φc(α−1α̇).

Here we have used (28). It follows that ρc(a1a2) = β(1) = ρc(a1)ρc(a2) and
so ρc is a group homomorphism.
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We prove that ρc is smooth. Consider the commutative diagram

Gc ρc // H

G× g

≈

OO 88pppppppppppp

,

where the map G × g → Gc is the diffeomorphism of Theorem 6.1 and the
map G × g → H is given by (g, η) 7→ exp(iΦc(η))ρ(g) and hence is smooth.
That the differential of ρc at 1 is equal to Φc follows also from this diagram.
Thus we have proved that (ii) implies (i) in Theorem 1.4.

Proof of Theorem 1.5. By Theorem 3.6 (the intrinsic construction for com-
pact connected Lie groups), respectively Theorem 2.1 (for possibly discon-
nected Lie subgroups of U(n)), there is an embedding ι : G→ Gc into a
complex Lie group (diffeomorphic to G × g) that satisfies condition (ii) in
Theorem 1.4. Since (ii) implies (i) in Theorem 1.4, the embedding ι : G→ Gc

satisfies both (i) and (ii) in Theorem 1.4 and hence is a complexification.
Moreover, any two embeddings of G into a complex Lie group that satisfy (i)
in Theorem 1.4 are naturally isomorphic. This proves Theorem 1.5.

Proof of Theorem 1.4 “(i) =⇒ (ii)”. Let ι : G → Gc be an embedding into
a complex Lie group that satisfies (i). By Theorem 1.5 there exists an em-

bedding ι̃ : G→ G̃c into a complex Lie group that satisfies both (i) and (ii).
Since both embeddings satisfy (i), there exists a unique holomorphic Lie

group isomorphism φ : Gc → G̃c such that φ ◦ ι = ι̃. Since the embedding ι̃
satisfies (ii), so does ι. This proves Theorem 1.4.

Proof of Theorem 1.6. Assume (C) on page 20. Let K ⊂ Gc be a compact
subgroup and consider the map

K×Gc/G→ Gc/G : (k, [g]) 7→ [kg].

By definition of the Riemannian metric on Gc/G in 6.2 this is a group action
by isometries. By Theorem 6.1 and Lemma 6.3, the quotient space Gc/G is a
complete connected simply connected Riemannian manifold with nonpositive
sectional curvature. Hence it follows from Theorem 5.1 that the action of
K on Gc/G has a fixed point. Let [g] ∈ Gc/G be such a fixed point. Then
[kg] = [g] for every k ∈ K. In other words, for every k ∈ K there exists an
h ∈ G such that kg = gh. This means that g−1kg ∈ G for every k ∈ K or,
equivalently, g−1Kg ⊂ G. This proves Theorem 1.6.
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Proof of Theorem 1.7. Assume (C) on page 20. Let ζ ∈ gc such that

exp(ζ) = 1.

We prove in three steps that there exist two elements p, p+ ∈ Gc such that
p−1ζp ∈ g and limt→∞ exp(itζ)p exp(−itζ) = p+.

Step 1. There exists an element g ∈ Gc such that g−1ζg ∈ g.

The set S := {exp(sζ) | s ∈ R} is a compact subgroup of Gc. Hence it follows
from Theorem 1.6 that there exists an element g ∈ Gc such that g−1Sg ⊂ G.
Thus g−1ζg = d

ds

∣∣
s=0

g−1 exp(sζ)g ∈ g and this proves Step 1.

Step 2. Let g ∈ Gc and ξ ∈ g such that exp(ξ) = 1. Then there exist two
element q, q+ ∈ Gc such that qg−1 ∈ G and limt→∞ exp(itξ)q exp(−itξ) = q+.

This is the assertion of Theorem 7.1.

Step 3. There exist two elements p, p+ ∈ Gc such that p−1ζp ∈ g and
limt→∞ exp(itζ)p exp(−itζ) = p+.

Let g ∈ Gc be as in Step 1, denote

ξ := g−1ζg ∈ g,

choose q, q+ ∈ Gc as in Step 2, and define

p := gqg−1, p+ := gq+g−1.

Then

p+ = gq+g−1

= lim
t→∞

g exp(itξ)q exp(−itξ)g−1

= lim
t→∞

exp(itgξg−1)(gqg−1) exp(−itgξg−1)

= lim
t→∞

exp(itζ)p exp(−itζ).

Moreover g−1p = qg−1 ∈ G and hence

p−1ζp = (g−1p)−1ξ(g−1p) ∈ g.

Thus p satisfies the requirements of Step 3 and this proves Theorem 1.7.
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Comments on the literature

The group P(ξ) in Lemma 7.2 was introduced by Mumford. In [8, Propo-
sition 2.6] he proved that it is a parabolic subgroup of Gc. If T ⊂ G is a
maximal torus whose Lie algebra contains ξ then there exists a Borel sub-
group B ⊂ Gc such that T ⊂ B ⊂ P(ξ). In this situation B ∩ G = T and
it then follows that the inclusion of G into Gc descends to a diffeomorphism
G/T ∼= Gc/B (see Schmid [12, Lemma 2.4.6]). This implies Theorem 7.1.
The proof of Theorem 7.1 given above uses direct arguments, and does not
rely on the structure theory for Lie groups.

The discussion on page 34 shows that Theorem 1.7 is an easy consequence
of Theorem 7.1 and Cartan’s uniqueness theorem for maximal compact sub-
groups of Gc (see Theorem 1.6). Theorem 1.7 is mentioned in the work
of Ness [10, page 1292] as a consequence of Mumford’s result that P(ξ) is
parabolic. It plays a central role in the study by Kempf and Ness of Mum-
ford’s numerical function and of the Hilbert–Mumford stability criterion for
linear Gc-actions (see [4, 5, 9, 10]). Specifically, Theorem 1.7 is needed in the
proof of the moment-weight inequality (see Ness [10, Lemma 3.1 (iv)] and
Szekelyhidi [13, Theorem 1.3.6]). The moment-weight inequality implies the
necessity of the Hilbert–Mumford criterion for semistability. It also implies
the Kirwan–Ness inequality in [10, Theorem 1.2] (and implicit in [6]), which
asserts that the restriction of the moment map squared to the complexified
group orbit of a critical point attains its minimum at that critical point.
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