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1 Determinant lines

1.1 (Fredholm operators). Let XY be real Banach spaces and denote
their dual spaces by X*, Y*. A bounded linear operator D : X — Y is called
Fredholm if it has a closed image and if its kernel and cokernel (the quotient
space Y/im D) are finite dimensional. Equivalently, there exists a bounded
linear operator T": Y — X such that the operators T'D —idx and DT — idy
are compact. The Fredholm index of a Fredholm operator D : X — Y is

the integer
index(D) := dim(ker D) — dim(coker D).

Denote by £(X,Y) the space of bounded linear operators from X to Y, by
F(X,Y) C L(X,Y) the space of Fredholm operators, and, for k € Z, by
Fe(X,Y) C F(X,Y) the space of Fredholm operators of index k. Thus
Fi(X,Y) is an open subset of £(X,Y) with respect to the norm topology
and is invariant under addition of compact operators. If D € F(X,Y) and
T e F(Y, Z) are Fredholm operators then

index(7'D) = index(7") + index(D).

If D: X — Y is a bounded linear operator then D has a closed image if and
only if its dual operator D* : Y* — X* has a closed image and, in this case,

(ker D)* = X*/imD", (Y/imD)* = ker D*.

Hence D € Fi.(X,Y) if and only if D* € F_,(Y*, X*).



1.2 (Determinant lines). The determinant line of a Fredholm operator
D € F(X,Y) is the one dimensional real vector space defined by
det(D) := A" (ker D*) @ A" (ker D).
If dim(ker D) = k > 0 and dim(coker D) = ¢ > 0 then an element of det(D)
can be written in the form
0:= Wi NNy @ (T Ao+ Ay)

where z1,...,2; € ker D and yj,...,y; € ker D*. This element is nonzero
if and only if the vectors xy,...,zr; € X form a basis of ker D and the
covectors yi,...,y; € Y* form a basis of ker D*. If dim(coker D) = 0 then
det(D) = A™*(ker D), if dim(ker D) = 0 then det(D) = A™*(ker D*), and
if dim(ker D) = dim(coker D) = 0 then det(D) = R.

1.3 (Product). The product of two bounded linear operators Dy : X; — Y}
and Dy : Xy — Y5 is the bounded linear operator

D1XD22X1XX2—>S/1X}/2,

defined by (D X Ds)(z1,x9) := (D11, Daxs) for 1 € X7 and zy € Xy If
D¢ and D, are Fredholm operators, then so is D; X Dy and the Fredholm
index of Dy x Dy is the sum of the Fredholm indices of D; and D,. Define
the isomorphism

PDy.0, ¢ det(Dy) ® det(Dy) — det(Dy x Dy)
as follows. For i = 1,2 let

k; := dim(ker D;), Tit, ..., Tik, € ker Dj,

¢; := dim(ker D;), Yi1s- -5 Yie, € ker Dy
Abbreviate
0, := (yfg N ANY) @ (w0 A Nagy,) € det(Dy) (2)
and define
Py, (61 @ Bs) = (—1)index(Dy)-dim(coker D2)
(O.50) A A OG5 A (W10, 0) A A (37,,0)) (3)

@ ((211,0) A+ A (@18, 0) A (0,22.1) A+ A (0,2,) ).

It is obvious from the definition that pp, p, is well defined and is a vector
space isomorphism.



Lemma 1.4. Fori=1,2,3 let X;,Y; be Banach spaces, D; € F(X;,Y;) be a
Fredholm operator, and & € det(D;). Then

PDyxD2,D5(PD1,D, (01 ® 02) @ 03) = pp, DyxDs (01 @ ppyxpy (2 ®63))  (4)

and
Ppy,py (02 ® 0y) = (—1)PaexPUindex(D2) p (5 1 (6 © 65))). (5)

Here the isomorphism R : det(D; x Ds) — det(Dy x Dy) is induced by the
Banach space isomorphisms X1 X Xo — Xo X X1 : (21,22) — (22,71) and
Vi XYy = Yo X Y1 i (y1,92) = (Y2, 41)-

Proof. Fori=1,2,3 let
ki, l;, Tits o Tiks Yits- - Yis,
be as in (1) and let
O = (Yig, N NY;p) @ (Tin Ao Agy,) € det(D;)
as in (2). Then
(—1)imdex(Ds) dim(coker D) (index(D1)index(D2) dim(coker Ds)
* PD1xDs,Ds (PDl,D2(91 ® 02) ® Q3>
= ((0,0,30,) A+ A (0,0,35.)
A0, s 0) A+ A (0,95,1,0) A (7, 0,0) A+ A (311,0,0))
@ ((211,0,0) A+ A (210,0,0) A (0,5,1,0) A -+ A (0, 2245, 0)
A(0,0,250) A+ A (0, o,xg,kg))
_ (1 yimdex(D2) dim(coker Dy)+index(D1) (dim(coker Dz)+dim(coker Ds))
* PDy x D, Ds (91 ® pp,,ps (02 ® 93))-

In each step we have used equation (3) twice. This proves (4). Equation (5)
follows from the fact that

(_ 1)index(D2) dim(coker D1) (_ 1)index(D1) dim(coker D3) (_ 1)index(D1)-index(D2)

( . 1)dim(ker D) dim(ker D2)+dim(coker D1) dim(coker D2)

This proves Lemma 1.4. ]



2 The isomorphisms

Let X and Y be Banach spaces and D : X — Y be a Fredholm operator.
Let N be a positive integer and ® : RN — Y be a linear map. Define the
operator D@ ® : X x RN — Y, by

(D @ ®)(z,¢) := Dx + (.
Then D & @ is a Fredholm operator and index(D & ®) = index(D) + N.

Theorem 2.1. Let Y be a Banach space. There exists a unique family of
vector space isomorphisms

tpo : det(D) — det(D & @),

one for each pair (D, ®) (consisting of a Fredholm operator D € F(X,Y),
defined on a Banach space X, and a linear map ® € L(RYN,Y), defined on
RY for some integer N > 0), satisfying the following axioms.
(Determinant) Let D € F(X,Y), ® € LIRN)Y), and g € GL(RY). Then
the following diagram commutes

det(g)

det(D) det(D) . (6)

LD,@Q\L l/LD,i)

det(D @ &g) —2~ det(D @ @)

Here T, is induced by idx x g: X x RN — X xRN andidy : Y =Y.
(Normalization) Let D € F(X,Y) and ® € L(R,)Y) and y := 1 € Y.
Let 0 = (yy A+ ANyp) @ (xy A -+ Axy) € det(D), where xq, ..., x5 € ker D
and y3,...,y; € ker D*. Then the following holds.

() If ¢ € X and D +y =0 then

wo(0) = (v A Ay) @ ((1,0) A+ A (2, 0) A (€, 1)). (7)
(b) If (yi,y) =1 and (y;,y) =0 for i > 2 then
wa(0) = (=1)"(y; A Ays) @ ((21,0) A+ A (2, 0)). (8)

(Stabilization) Let D € F(X,Y) and ®; € LRY:)Y) fori = 1,2. Define
Dy & Py : RN = RV 5 RM™ =V by (1 & P2)(C1, C2) := P11 + oo for
¢ €RM and (&, € RN, Then D @® (&, @ ®y) = (D ® 1) ® Py and

LD, ®16®2 = LDG®1,05 O LD,d; - (9)
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Proof. That the isomorphisms ¢p g, if they exist, are uniquely determined
by the (Normalization) and (Stabilization) axioms is obvious. We prove
existence in five steps. The first two steps explain the construction of the
isomorphisms ¢p ¢. The number m in equation (10) below is the decrease in
the dimension of the cokernel, and N —m is the increase in the dimension of
the kernel, one encounters in replacing D by D & .

Step 1. Let D € F(X,Y) and ® € L(RN,Y). Then
m =N — dim (¢~ 'im D) = dim(ker D*) — dim(ker D* Nker ®*)  (10)
and there is a basis (i, ...,(xy € RN and vectors &pq1, ..., En € X such that
D¢ 4 ¢ =0, j=m+1,... N (11)

First, dim (®~'im D) = dim(ker ®) + dim(im D N im ®). Subtracting this

from N gives m = dim(im ®) — dim(im D Nim ®) = dim (—22 ) and so

. imD +im® . Y . Y
m = dim (T) = dim <imD> — dim (m) - (12)

This implies (10). Now choose a basis (i, ..., (y of RY such that the vectors
Cnsty- -+, Cy form a basis of the subspace ®~'(im D). Then, for j > m,
®(; € im D and so there is a & € X such that D¢; + ®¢; = 0.

Step 2. Let D € F(X,Y) and ® € LRYN,Y) and denote

k :=dim(ker D), (:=dim(coker D), m:= N —dim (® 'im D) <.

Then there is a unique isomorphism tp e : det(D) — det(D & ®) satisfying
the following condition. Let (;,&; be as in Step 1 and let § € det(D). Choose
Zi,...,2 € ker D and yj,...,y; € ker D* such that

0= A Ayp) @ (m A Axy),  DYi=0 for j>m. (13
Then

LD@(@) = (_1)k det(@,---,CN) ) (?JZ/\"'A?J;H) (14)
® ((x1,0) A+ A (2, 0) A (Gt ) A+ A (€, ) -

If k=0, £ =m, or m = N then the relevant empty wedge products in (13)
and (14) are understood as the real number one.
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Choose vectors & and (; as in Step 1 and fix an element § € det(D); if
D is bijective choose # = 1 € R = det(D). Then there exist elements
1, ...,xp € ker D and yq,...,y, € ker D* such that

0=y, N ANyi) @ (zy A Aag).

Here the first, respectively the second, wedge product is understood as the
real number one whenever k = 0, respectively ¢ = 0. If £ > m then, by (10),

dim(ker D* Nker <I>*) =f{—-—m>0

and hence the y; can be chosen such that ®*y; = 0 for j = m+1,...,{. With
this understood, we must prove that the right hand side of equation (14) is
independent of the choice of the z; and yj.

We prove first that § = 0 if and only if the right hand side of (14) vanishes.
Indeed, 6 # 0 if and only if the z; and the y; are linearly independent.
Moreover, the right hand side of (14) is nonzero if and only if

(a) the vectors xy,. ..,z are linearly independent,
(b) the vectors 7, .+,...,y; are linearly independent, and
(c) the vectors ®*yj, ..., ®*y* are linearly independent.

Since ®*y; = 0 for j > m, conditions (b) and (c) hold if and only if the
vectors y7,...,y; are linearly independent. Hence (a), (b), and (c) hold if
and only if 6 # 0. (Here the empty set of vectors is linearly independent by
definition, the empty wedge product is equal to one, and the determinant of
the empty matrix is equal to one.) This shows that # = 0 if and only if the
right hand side of (14) vanishes.

Next we prove that the right hand side of (14) is independent of the
choice of the x; and y;. By what we have just shown, we may assume ¢ # 0.
Then the vectors xy,...,z; form a basis of ker D, the vectors y;, ,,...,y;
form a basis of ker D* N ker ®*, and the vectors y7,...,y; form a basis of
ker D*. (One or more of these bases may be empty.) Replacing z; by A;z;
and y; by u;y;, where Ay -+ Agpug - - - pre = 1, leaves the right hand side of (14)
unchanged. Moreover, replacing z; by z; + zj for j' # j, or y; by y; + ¥}
for j/ # 7 < m, or for j' # j with j, 7' > m, also leaves the right hand side
of (14) unchanged. So does any odd permutation of the z;, or the y;, j > m,
or the y;, 7 < m, followed by a sign change in one of the basis vectors. Now
any two bases x; of ker D and y; of ker D* with ®7yr = 0 for j > m are
related by a finite sequence of such elementary operations. Hence the right
hand side of (14) is independent of the choice of the x; and yj, as claimed.
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This shows that the formula (14) defines a vector space isomorphism
tpo @ det(D) — det(D & @) for every tuple &ni1,..., &N, C1y--.,Cy as in
Step 1. It remains to prove that this isomorphism is independent of the
choice of the ¢; and ;. If £ = 0 then D is injective and hence ¢; is uniquely
determined by (; for j > m. If k > 0 then ¢; is uniquely determined by (;
up to addition by an element of ker D. Since the vectors xy,...,z; form a
basis of ker D (when 6 # 0), this shows that the right hand side of (14) is
independent of the choice of the §;. Now the (; must be chosen such that
®¢; € im D for j > m. Any two such bases of R are related by finitely
many of the following elementary operations.

e Multiply one of the (; by a nonzero real number.

e Permute the (; for j > m.

e Permute the (; for j < m.

e Replace (; by (; + (j;, where j' # j and j, ;" > m.

e Replace (; by (; + (-, where j' # j and j < m.

None of these operations change the right hand side of equation (14) and this
proves Step 2.

Step 3. The isomorphisms tp ¢ in Step 2 satisfy the (Determinant) axiom.

Let D € F(X,Y) and ® € L(RY,Y) and choose &;,(; as in Step 1. Let
6 € det(D) and choose z1,...,x; € ker D and yf,...,y; € ker D* such
that (13) holds. Let g € GL(RY). Then it follows from equation (14), with
® replaced by ®g and (; replace by g~'¢;, that

Lpg(0) = (_1)k det(g—Cry ..., Cn) ’ (y; ARRRRA y;"Hrl)

® ((1,0) A A (2, 0) A (€1, 9 Cmr) A A (€, g )

= (=1)*™ det(g) det(Cr, . ) yr AN AN yn)

® ((21,0) A+ A (25, 0) A (Emp1s 9 Gmpa) A= A (Evy 97Cw))
= det(g) - Tg_l(LD@(@)).
This proves Step 3.

Step 4. The isomorphisms tp e in Step 2 satisfy the (Normalization) axiom.
Equation (7) follows from (14) with m = 0, N = 1 by taking (; := 1 and
& = &. Equation (8) follows from (14) with m = N = 1 by taking ¢; := 1.
This proves Step 4.



Step 5. The isomorphisms tp e in Step 2 satisfy the (Stabilization) aziom.

Assume first that Ny = 1. Thus let ® : RY — Y and ¥ : R — Y be linear
maps and choose (; and &; as in Step 1. Define

yn+1 = V1 ey, =0V RV 5y, B¢ = BC + Cnyn

for ¢ = (¢, (ny1) € RY x R = R¥*L. There are two cases to consider.
Case 1. yyi1 € im D +im ®.
In this case ker D* Nker ®* = ker D* N ker ®* and

m:= N — dim(@flim D) =N+1- dim(iiflim D).
Choose ény41 € X and ¢ € RY such that D&y, + ®C + ynyo1 = 0 and define
Go=(¢,0) e RN for 1<j< N,  (yepi=(C,1) € RVFL

Then DE; + &)Zj =0for j =m+1,...,N + 1. Fix a nonzero element
6 € det(D) and choose bases z1,...,x; of ker D and yf,...,y; of ker D*
such that (13) holds for ®, and hence also for ®. Since

det(gl, - 7ZN+1) = det(@, . ,CN)

and L
D¢ = ¢ forj=1,...,m,

it follows from equation (14) that

det((y*, 5@/>j 3'=1,... m)
tpa(0) = (=)™ L (Y A A )
be det (i, ..., Cny1) o

® ((21,0) A~ A (2, 0) A (§msr, Crr1) A e A (§N+1,EN+1))

B <_1) Cth(Cla...,CNSU7 ' (yz : Ay:ﬂ_l)

® ((#1,0,0) A== A (28,0,0) A (€mias Gmra, 0) A=+ A (En, (v, 0)
A (§N+1,C71))

= tpae,w (tp,e(0)).

Here 0 is the zero vector in RV *1. This proves the assertion in Case 1.
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Case 2. yyi1 ¢ im D + im O.
Let m := N — dim(@*lim D) as before. Then

®HimD =0 mD, m+1=N+1-dim(®'imD).
Define &; € RN*! by

~ ((jao)a fOI‘j: 1,...,m,
Cj:: (07...,0,1)7 f()1"j:7n_|_17
(¢j-1,0), forj=m+2,...,N+1.

Fix a nonzero element 6 € det(D) and choose bases 1, ...,z of ker D and
yi,...,y; of ker D* such that (13) holds for ¢ and
1

(Y5, yns1) :{ 0, for j=m+2,...,°

det ((y*, CAISZQ g =1, m+1>
_ 9 — _1 k(m—H) J — J ']JN .

LD’(I)< ) ( ) det(Cl?"'?CN+1) _ ( _

@ ((@1,0) A+ A (2,0) A (Gt Gugz) A+ A (€ Cvan))

Yo A A Yso)

_ (_1>k+N—m(_1>k det(Cb‘“?CN) . (yz A /\y;kn+2)

® ((21,0,0) A+ A (25,0,0) A (Emt1, Gna1, 0) A=+ A (En, (v, 0))
= D33,V (LD,<I>(9))-
Here the second step follows from the fact that
det(Cr, .-, Cnpn) = (=D)N "™ det(Cy, -, )
and the last step follows from the fact that
k+ N —m = dim(ker (D & ®)).

This proves the assertion in Case 2.
Thus we have proved the (Stabilization) axiom for Ny = 1. The general
case follows from the case Ny = 1 by induction. This proves Theorem 2.1. [
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3 Compatibility with products

Theorem 3.1. Let Dy : X1 — Y7 and Dy : Xy — Y5 be Fredholm operators
and ®; : RN = Y] and @, : RN? = Y, be linear maps. Then
PDyo®1,Ds3®s (LDy,@, (61) @ LDy 0, (62))
_ (_1)Nlil’1deX(D2) . R(LD1><D2,<I>1><<I>2 (le’D2(91 ® 92)))

for 61 € det(Dy) and 6, € det(Ds). Here pp, p, and pp,ee, D,ed, Are as
in 1.5, the isomorphisms tp, o, and Lp,xp, o, x», are those of Theorem 2.1,
and the isomorphism

R:det((Dy x Dy) ® (1 X ®3)) — det((Dy @ @1) x (D2 @ ®5))  (16)

(15)

15 tnduced by the identity on Y, X Yo and the isomorphism
(X1 X Xp) X (RM x RM) —  (X; x RM) x (X5 x RM?)
((Ihxz), (Cla Qz)) — (1U17C1;$2;C2)-
Proof. For ¢ = 1,2 define

k; := dim(ker D;), ¢; := dim(coker D;), m; := N; — dim(®; 'im D;),

choose Ti1y---5 Tik; € ker D,L', y’?,l? . ,yz& € ker D:, fi,m¢+17 c. ;fi,Ni € Xi7
and a basis (1, ..., N, € RYi such that

D& i + @G =0, @;‘yzj =0 forj=m; +1,...,N;,
and denote
0; := (yzei ARRRWA yzl) ® (a:m ARRRWAY xzkl) € det(D;).
Then, by equation (3) in 1.3,
PD1.D, (01 ® 02)
= (=)E ((0,50,) A A 0,430 A (Wl 0) A A1,0))  (17)
® ((:cm, 0)A - A (1, 0) A (0,221) A+ A (0,x2,k2))

and for i = 1,2, by equation (14) in Step 2 in the proof of Theorem 2.1,

0,(0;) = (—1)* yi, AN Ay
LDw(I)z( ) ( ) det(Ci,la o 7Ci,Ni) (yz,& yz,mﬁ—l) (18)
® ((%‘,1, 0) A= A @igeys 0) A (&imit1s Gimos1) A= A (&ns,s Cz‘,N,-))-
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Abbreviate
X=X, xRN, Di:=D,ad,: X; =Y,
/k\i = dim(ker lA)Z) =k; + N; — m,, ZZ = dim(coker ﬁz) =/{;, —m,;.
Then, by equation (18),
0; = ip. o, (0:) € det(ﬁ-)

= (—1)km
( ) det(CzJa SR 7§2,N1‘)

where EE\Z‘J == ({EL]‘,O) for j == 1,...,]{32‘ and /x\i,ki-l-j == (gi,mi-l—j;Ci,mi-l-j) for
J=1...,Ny—=my, and y;;, = y;,, ., for j =1,...,4; —m;. Hence it follows

from (17) that

P, (0 ©B2)
— (_1)(E17Z1)22(_1>k1m1 (_1)k2m2

det(Ci1,-- -5 Ciuvy) det(Cz,h . C2,N2)
((o B A AOLT30) A, 0) Ao A @r,l,m)
& (@130 A A @7,0) A ) Ao A (053,7,))
1) (k1—€14+N1)(l2— m2)( 1)k1m1(_1)k2m2 (19)
. det(<y1]7 1C1]>]jl 1,.., m1) det(<y2]7q)2<2]>]]’ 1,..., )
det(Cra, -5 Ciny) det(Ca,1,- -5 Cone)

’ ((07 y;,ég) /\ T /\ (07 y;,mg+1) /\ (yi€17 0) /\ T /\ (yim1+17 0))
® ((xl,la 07 07 0) ARERNA (:El,k’u Oa 07 0)

A (5177711—!—17 Cl,ml—i—l; Oa O) ARERNA (SI,NU Cl,Nl; 07 0)
A (0, 0; xz,l, 0) A A (0, O; 1’27k2, O)

A (0,05 €2 mo+15 C2mat1) A= A (0,05 & n,y C2,N2))-

This is an explicit expression for the left hand side of equation (15).
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To compute the right hand side of equation (15), abbreviate
%Z: kﬁl—l—l{fg, ZI: El—i—gz, ’hv’Ll = m1+m2, NZ: N1—|—N2,
X=X, xXo, Y=Y, xYs, Di=D;xDy, &:=0P x P
and

~ (214,0), for j=1,...,k,
o (O X2 j— kl) fOIj:k1+1,...,l€1+l€2,

\

-

9 = le,Dg (81 ® 02)
_ (_1)(k1—€1)€2<_1)(€1 mi)ma (y~ A gf) ® (gl A A EEE)

(yikJ,O), for j=1,...,my,

— ) 0,955 ), forj=mi+1,...,m+my,

Yi (YT jomy, 0); for j=mi+ma+1,... 01 +my,

L (O7y;7j 51)’ forj:€1+m2—|—1,...,€1—|—€2,

(Cl,jao)a fOl“j = 17"'7m17

G (0,Coj—mi), forj=mi+1,...,m1+my,

7 (Clj—ms,0), for j=mi+mo+1,..., Ny +my,
OCQJ Nl)? forj:N1+m2+1,...,N1+N2,

)

=)

(
(13 —ms,0), for j=my+mo+1,..., Ny + my,
(Oggj Nl) forj:N1+m2+1,...,N1+N2,

Here the last equation follows from (17). Since 13@7] + 5135] —0and 57 =0
for j > m, it follows from (18) that

km det((fyjaq)CJ >jj’ 1,..., )
det(Cl, . ,CN)

: (g; JAERIAN ym+1) ® ((Zglu 0) ARERRA (flw ) (§m+1; Cerl) (€N7 CN))
( 1)(k1 41)52( 1)(f1—m1)m2(_1)(k1+k2)(m1+m2)(_1)(1\71 my)mo

- 5(0) — (_1)(k1—€1)f2(_1)(51—m1)m2(_1)

'd ((yik,ja D1C1j)jj0=1,... ) det((?h];qb@;)gy 1., m2)
det(Crs -+, C1n) det(Ca,15 - - -, G2,y
) ((O y%,eg) - A (0, y§m2+1) (yfel70) ARRRNAN (yimlﬂao))
® (((21,1,0),(0,0)) A -+ A ((21,,0),(0,0))
A ((0,22,1), (0,0)) A= -+ A((0, $2k2) (0,0))
) A
) A

A ((E1mi+15 Climi+1), ( 0) A (€135 C1.v ), (0,0))
((0,0), (Sa,ma+15 Coimar1) A ((0,0), (b2.3z, Cova))) -
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This implies

R (hs,az@)

(_1>(k1*€1)€2(_1>(€17m1)m2(_1)(k1+k2)(m1+m2)(_1>(N17m1)m2

det(Ciay .-, Ciny) det(Ca1,- -5 Cony)
: ((07 ?J;,EQ) ARERRA (07 ?J;,m2+1> A (yiep 0) ARERNA (yim1+17 0))
® ((21,1,0;0,0) A -+ A (z1,,0;0,0)
A (0,0;221,0) A--- A (0,05 224,,0)
A (Etmat1, Cuma+150,0) A= A (§1,35 C1,v5 0, 0)

A (07 0; g2,m2+17 C2,m2+1) JARRRNA (07 0; 52,]\/27 <2,N2)> <2O>
— (_1)(1471—@)42(_1)(Z1—m1)m2(_1>(k1+k2)(m1+m2)(_1)(N1—m1)(m2+k2)

det(Crs -+ -5 C1wy) det(Ca,1, - -+, C2,v,)
) ((0> ?J;,@) A=A (0, ?J;,m2+1) N (?/izlv 0) A-e A (?ff,mﬁh 0))
® ((21,1,0;0,0) A+ -+ A (z1,4,,0;0,0)
A (Emi+1s Clmg 150, 0) A+ A (€185 Civg 3 0, 0)
A (0,0;221,0) A--- A (0,05 224,,0)

A (0,05 Eamyt1, Cimat1) A+ A (0,062, n,, CZ,NQ))'
Comparing the sign

(_1)(k1—€1+N1)(€2—m2)(_1)k1m1 (_1)k2m2

in equation (19) with the sign

(_1)(k1—i1)€2(_1)(i1—m1)m2(_1>(k1+k2)(m1+m2)(_1)(Nl_ml)m2(_1)(N1_m1)k2
in equation (20) we find
Pby,Ds (51 ® §2> = (_1)N1(k2—£2) R <L[~)§(§)> |

This proves equation (15) and Theorem 3.1. O
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4 Remarks

1. The sign convention in the definition of the product isomorphism pp, p,
in equation (3) in 1.3 follows the book of Seidel [3, page 150].

2. For two Banach spaces X, Y define the set
det(X,Y) :={(D,0)| D € F(X,Y), 0 € det(D)}.

Denote by
F(X,)Y)C F(X,Y)

the set of surjective Fredholm operators and define
det*(X,Y) :={(D,0)| D € F*(X,Y), 0 € det(D)} .

Then det”(X,Y’) has a canonical topology and a canonical structure of a
real line bundle over F*(X,Y). Local trivializations are induced by local
trivializations of the kernel bundle over F*(X,Y).

3. For two Banach spaces X,Y and a linear map ® : RY — Y, the map
det*(X,Y) — det*(X x RN Y) : (D,0) — (D & ®,1p(0)),

determined by the isomorphisms of Theorem 2.1, is a vector bundle homo-
morphism, bijective on each fiber, and is a homeomorphism onto its image.

4. For two Banach spaces X,Y and a linear map ® : RY — Y, define
Up = {D e F(X,Y)|Dade F(X xR",Y)}.
Then the map
det(X,Y)|y, — det* (X x RV Y) : (D,0) = (D@ ®,1p4(0))

determines a topology and vector bundle structure on the restriction of
det(X,Y) to Up. That this vector bundle structure is independent of the
choice of the linear map ® (with the same domain and the same image) fol-
lows from the (Determinant) axiom in Theorem 2.1. That the vector bundle
structures on Ug and Uy agree on the intersection Up N Uy follows from the
(Stabilization) axiom in Theorem 2.1.
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5. Let X and Y be infinite-dimensional Banach spaces. Then F(X,Y) is a
classifying space for K-theory. Let M be a topological space and & € K (M)
be represented by a continuous map M — F(X,Y) : p+— D,. Then the first
Stiefel-Whitney class wy () is determined by the pullback of the determinant
line bundle det(X,Y) — F(X,Y) under the classifying map M — F(X,Y).
Thus wy (€) is nonzero over a loop v : S* — M whenever the determinant lines
det(D. ) form a Mébius strip. When index(D,)) = 0, this is equivalent to
the condition that the mod-2 crossing index of the loop ¢ + D, is nonzero.

6. The isomorphism det(D) — det(D@P) in [I, Exercise A.2.3] has only been
defined when D @ ® is surjective or, equivalently, when m = £ in the notation
of Step 2 in the proof of Theorem 2.1. It differs from the isomorphism of
Theorem 2.1 by the sign

€(D, q)) _ (_1)k€+(§)+€(N—é)7

where (g) = (;) =0 and

k := dim(ker D), ¢ := dim(coker D) = N — dim(®im D).

If &, : RV — Y and ®, : RY — Y are two linear maps such that D @ ®, is
surjective, then (D @ &1, $9) = 1 and hence

e(D, 1 @ Py) - (D@ Py, By) - (D, ) = (—1)" V270,

Thus the stabilization formula (9) in Theorem 2.1 holds for the isomorphism
of [I, Remark A.2.3] whenever N; and Nj + Ny have the same parity. In
this case the isomorphisms of [I, Remark A.2.3] can be used to define a
topology and vector bundle structure on det(X,Y’). However, the resulting
topology on det(X,Y’) will depend on the parity of N and be different from
the topology determined by the isomorphisms of Theorem 2.1.

7. The isomorphisms of Theorem 2.1 agree with the isomorphisms con-
structed by McDuff-Wehrheim [2] in the proof of Proposition 7.4.8 (under
the assumption that ® is injective and D @ & is surjective).
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