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Abstract
This is an exposition of the Donaldson geometric flow on the space
of symplectic forms on a closed smooth four-manifold, representing a
fixed cohomology class. The original work appeared in [IJ.

1 Introduction

For any closed symplectic four-manifold (M, w) it is an open question whether
the space of symplectic forms on M representing the same cohomology class
as w is connected. By Moser isotopy a positive answer to this question is
equivalent to the assertion that every symplectic form in the cohomology
class of w is diffeomorphic to w via a diffeomorphism that is isotopic to
the identity. In the case of the projective plane it follows from theorems
of Gromov and Taubes that a positive answer is equivalent to the assertion
that a diffeomorphism is isotopic to the identity if and only if it induces the
identity on homology. In the case of the four-torus a positive answer is a
longstanding conjecture in symplectic topology. This is part of the circle of
questions around the uniqueness problem in symplectic topology as discussed
in [5]. A remarkable geometric flow approach to the uniqueness problem in
dimension four was explained by Donaldson in a lecture in Oxford in the
spring of 1997 (attended by the second author) and written up in [I]. The
purpose of this expository paper is to explain some of the details.
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The starting point of Donaldson’s approach is the obervation that the
space of diffecomorphism of a hyperKahler surface M can be viewed as an
infinite-dimensional hyperKahler manifold, that the group of symplectomor-
phisms associated to a preferred symplectic structure w acts on the right
by hyperKahler isometries, and that this group action is generated by a hy-
perKéahler moment map. In analogy to the finite-dimensional setting one can
then study the gradient flow of the square of the hyperKahler moment map.
Pushing w forward under the diffeomorphisms of M one obtains a geometric
flow on the space ., of symplectic forms in the cohomology class a := [w].
It turns out that this geometric flow is well defined for each symplectic four-
manifold (M, w) equipped with a Riemannian metric g that is compatible
with w. It is the gradient flow of the energy functional

2 p+ 2
0= [ el e @
with respect to a suitable metric on .#,. To describe this metric, we recall
the well known observation (also used in [2]) that for every positive rank-3
subbundle AT C A*T* M and every positive volume form dvol € Q*(M) there
is a unique Riemannian metric on M with volume form dvol such that A™
is the bundle of self-dual 2-forms (Theorem [A.I). Second, every p € .7,
determines an involution R? : Q?*(M) — Q?(M) which sends p to —p and
acts as the identity on the orthogonal complement of p with respect to the
exterior product; it is given by R°1 := 7 — 2;—/A\gp and preserves the pairing.
Thus every p € ., determines a unique Riemannian metric ¢ on M with the
same volume form as ¢ such that 7 is self-dual with respect to g if and only
if RPT is self-dual with respect to ¢” (Theorem . For p € .7, denote by

P QF(M) — Q4F(M) the Hodge *-operator of g°. Then the Donaldson
metric on the infinite-dimensional manifold ., is given by

|Uﬂﬁ::t/‘A/\*PA, d\=p,  *’\is exact, (2)
M

for p € T,7, = im(d : Q' (M) — Q*(M)) (see Definition . Now the
differential of the energy functional & : ., — R at a point p € .7, is the
linear map p — [, ©” A p where the 2-form ©° € Q*(M) is given by

1
or =2 _2|P

u  2lu

2

pAp

u = . 3

P 2dvol )

This is the pointwise orthogonal projection of the 2-form u™! x p onto the
orthogonal complement of p with respect to the exterior product.
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The negative gradient flow of the energy functional & : ., — R in (|1))
with respect to the Donaldson metric has the form

Op = d *P dO7, (4)
where ©7 € Q?(M) is given by (3] (Proposition [3.4). This is the Donaldson

geometric flow. The purpose of the present paper is to explain some of
the geometric properties of this flow, and to give an exposition of the nec-
essary background material. This includes a discussion of the Riemannian
metrics ¢” which is relegated to Appendix [A] The Donaldson geometric flow
in the original hyperKéhler moment map setting is explained in Section [2]
for general symplectic four-manifolds it is discussed in Section [3, and the
Hessian of the energy functional is examined in Section [4]

The motivation for this study is the dream that the solutions of can be
used to settle the uniqueness problem for symplectic structures in dimension
four in some favourable cases such as hyperKéhler surfaces or the complex
projective plane. This is backed up by the observations that the symplectic
form w is the unique absolute minimum of & (Corollary and the Hessian
of & at w is positive definite (Corollary. For M = CP? we prove that the
Fubini-Study form is the only critical point (Proposition . The present
exposition also includes a proof of Donaldson’s observation that higher criti-
cal points cannot be strictly stable in the hyperKéhler setting (Theorem |4.5)).
Local existence and uniqueness and regularity for the solutions of are es-
tabished in the followup paper [3] for which the present paper provides the
necessary background. Key problems for future research include long-time
existence and to show that the solutions cannot escape to infinity.

Sign Conventions. Let (M, w) be a symplectic manifold and let G be a
Lie group with Lie algebra g := Lie(G) that acts covariantly on M by sym-
plectomorphisms. Denote the infinitesimal action by g — Vect(M) : £ — Xe.
We use the sign convention [X, Y] := W X — VxY for the Lie bracket of vec-
tor fields so the infinitesimal action is a Lie algebra homomorphism. We
use the sign convention ((Xpy)w = dH for Hamiltonian vector fields so the
map C*°(M) — Vect(M) : H — Xy is a Lie algebra homomorphism with
respect to the Poisson bracket {F,G} := w(Xp, X¢). The group action is
called Hamiltonian if there is a G-equivariant moment map p : M — g*
such that X is the Hamiltonian vector field of He := (u1,§) for £ € g. If g is
equipped with an invariant inner product it is convenient to write o : M — g.

Acknowledgement. Thanks to Simon Donaldson for many enlightening
discussions.



2 The Moment Map Picture

Throughout this section M denotes a closed hyperKahler surface with sym-
plectic forms wy,wsy, w3 and complex structures Ji, Jo, J3. Thus each J; is
compatible with w;, the resulting Riemannian metric

<'> > = wi('? Jl)
is independent of 7, and the complex structures satisfy the quaternion rela-

tions J;J; = —J;J; = Ji for every cyclic permutation 4,7,k of 1,2,3. Let
(S,0) be a symplectic four-manifold that is diffeomorphic to M and define

f is a diffeomorphism and } (5)

o . .
= {f . S - M‘ the 2—fOI'H1 f*{,ul — 0 iS exact

This space need not be connected. Assume it is nonempty. (Whether this
implies that (.5, o) is symplectomorphic to (M, w; ) is an open question.) Then
the space .Z is a C'! open set in the space of all smooth maps from S to M
and can be viewed formally as an infinite-dimensional hyperKahler manifold.
Its tangent space at f € . is the space of vector fields along f and will be
denoted by Ty % = Q°(S, f*T'M). The three complex structures are given by

Tp% — T F f|—> sz and the three symplectic forms are given by

~ o A
Q(fr, fo) = /wi(fl,fg) dvol,,  dvol, =2 . d (6)
S
for ]?1, J?g € Ty.%. The group
¢ = Symp(S,0) := {¢ € Diff(5) | ¢*'o = 0} (7)

of symplectomorphism of (S,c) acts contravariantly on .% by composition
on the right. This group action preserves the hyperKéahler structure of .%.
The quotient space % /¥ is homeomorphic to the space .# of all symplectic
forms on M that are cohomologous to w; and diffeomorphic to ¢ via the
homeomorphism % /¥4 — . : [f] = (f~!)*o. The action of the subgroup

4, := Ham(S, o) (8)

of Hamiltonian symplectomorphisms is Hamiltonian for all three symplectic
forms on .%. This is the content of the next proposition. We identify the
Lie algebra of ¢, with the space of smooth real valued functions on S with
mean value zero and its dual space with the quotient Q°(S)/R via the L?
inner product associated to the volume form dvol,.
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Proposition 2.1 (Moment Map). The map

. f*wi No

o F Q0 ; :
/"Ll ‘/’ — (5)7 /J”L(f) dVOlo-

is a moment map for the covariant action
f%xf%ﬁ:(cp,f)r%focp_l
with respect to the symplectic form €2;.

Proof. The infinitesimal covariant action of a smooth function H : S — R
with mean value zero on .% is given by the vector field on .% which assigns to
each f € .Z the vector field —df o Xy € Ty.% along f. Here Xy € Vect(S5) is
the Hamiltonian vector field on S associated to H and is determined by the
equation «(Xpg)o = dH. The minus sign appears because composition on the
right defines a contravariant action of ¢, and the covariant action is given
by composition with ¢! on the right. By Cartan’s formula, the differential
of the map p; : # — Q°(S) in (9) at f in the direction f € T;.F is given by

a; == wi(f,df-) € Q'(9). (10)

Now contract the vector field f — —df o Xy on .% with the symplectic
form €2; to obtain

~

Qu=df o X, ) = [ wiF.df o Xu)dvol,

S

= /(L(XH)ai)dvolg
S

= /ai A (X g )dvol,
S

= /ozi ANdH N o
S

= HdOéz No
S

= / Hdyp; (f)f dvol,.
S

The last term is the differential of the function .# — R : f +— (u;(f), H) 2
at f in the direction f. This proves Proposition . ]
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The norm squared of the moment map in the hyperKahler setting is the
function & := (||| + || p2l|” + || 3]|?), where the norm on the (dual of the)
Lie algebra is associated to an invariant inner product. In the case at hand
the invariant inner product is the L? inner product on Q°(S) and the norm
squared of the moment map is the energy functional & : .% — R given by

E(f) = 1/f]H-Pdvol g, o= L WiNe (11)
T fg e T el

We next examine the negative gradient flow lines of & with respect to the
hyperKahler metric on .%, given by

<ﬁ,fg>L2 = /S<‘]?1,J/C\2> dvol, for fl,ﬁ €T 7.

Proposition 2.2 (Gradient Flow). An isotopy R — F : ¢t — f; is a
negative L? gradient flow line of the energy functional & : F — R in if
and only if it satisfies the partial differential equation

. ft*wl- No

3
atft = Z Jidft o XHW H = ) L(XHit)U = dHj. (12)
i=1

dvol,

Proof. The differential of the energy functional & : % — R at f € F in the
direction f € T}.% is given by

s6NF = Y (dm(Fm(h)
Z§1 A
= Qi(—df o Xp,, )

=

= - 23; (df o Xu, T)

Here H; := p;(f) € Q°(S) is as in (1)), the second equation follows from
Proposition[2.1] and the third equation follows from the fact that w; = (J;-, -).
Hence the L? gradient of & is given by

3
gradé(f) = = > Jidf o Xy, (13)

i—1
and this proves Proposition [2.2] O



The energy functional and the L? metric on .# are invariant under
the action of the full group ¢ of all symplectomorphisms of (S,¢) and so
is the negative gradient flow . To eliminate the action of the infinite-
dimensional symplectomorphism group it is convenient to replace the solu-
tions t — f; of equation by paths of symplectic forms ¢ — p; on M

obtained by pushing forward the symplectic form ¢ on S by the diffeomor-
phisms f; : S — M.

Proposition 2.3 (Pushforward Gradient Flow). Let R — % : t — f;
be a solution of and define the symplectic form p; € Q*(M) by

Pt = (ft_l)*a

fort € R. Then p; is cohomologous to wy for all t and the path t — p;
satisfies the partial differential equation

3
i N\
e =— D d(dK 0 J), K= TP g () = (). (14)

— © 7 dvol,’ !
Proof. Differentiate the equation f;p; = o using Cartan’s formula to obtain

0= fiOwpr + dB, Be = pe(Oufr, dfy) € Q'(S). (15)
Since f; satisfies it follows that

3
B = > p(Jidfs o Xy, dfy-)
i=1

3
- Z pt(dft © XHit7 ‘]zptdft)
=1

3

= Z U(XHit7 ft*szt)

i=1

3
= Y dHyo fJ!"
i=1

3
= > fr(dK o).
=1

Here the last equation follows from the fact that H; = Ko f; = ff K. Now
insert the formula 5, = >, f; (dK!* o J!*) into equation to obtain ([14)).
This proves Proposition [2.3] O



Equation is the Donaldson Geometric Flow in the hyperKahler
setting. It can be interpreted as the gradient flow of the pushforward energy
functional on the space .7, of all symplectic forms on M representing the
cohomology class a := [w;] with respect to a suitable Riemannian metric.
(See Definition [3.2]below.) The energy functional and the Riemannian metric
on ., are independent of the choice of the symplectic four-manifold (5, o).

Proposition 2.4 (Pushforward Energy). Let f € F and define
pi= (") € Q*(M).

Then

_ 20t

E(p) / dvol, (16)
[p* P = 1o ?

where p*t = %(p + xp) are the self-dual and anti-self-dual parts of p and

dvol := %wi A w; 1s the volume form of the hyperKdhler metric.

Proof. Define

dvol, pAp
= dvol, == —— 17
T el YT T (17)
and R P A
Wi 1% Wi o
’ dvol,’ JK dvol,

as in and (1I). Then
u p—
= 5 Zwai, 2|p+]2 = 2 Z|Kip|27 |p+|2 _ \p |2 — 2. (18)

Divide and integrate to obtain

2 G - USSR dvol — [ 2 STIE?I? dvol
m P2 —=p7|? T M§Z‘ I dvol = M§Z‘ / Yo
3
1
= 53 [P av, = ().
i=1 Y5

This proves Proposition [2.4] O

The energy functional & : ., — R in (16]) is well defined for symplectic
forms on any closed oriented Riemannian four-manifold M. Moreover, the
space ., carries a natural Riemannian metric which in the hyperKéhler case
agrees with the pushforward of the L? metric on .% . Thus the Donaldson
geometric flow extends to the general setting as explained in the next section.

8



3 General Symplectic Four-Manifolds

Let M be a closed oriented Riemannian four-manifold. Denote by ¢ the
Riemannian metric on M, denote by dvol € Q*(M) the volume form of g,
and let x : QF(M) — Q47%(M) be the Hodge *-operator associated to the
metric and orientation. Fix a cohomology class a € H?*(M;R) such that
a® > 0 and consider the space

Ya::{pGQQ(M)|dp:O,p/\p>O, [p] = a}

of symplectic forms on M representing the class a. This is an infinite-
dimensional manifold and the tangent space of ., at any element p € .7,
is the space of exact 2-forms on M. The next proposition is of preparatory
nature. It summarizes the properties of a family of Riemannian metrics g”
on M, one for each nondegenerate 2-form p (and for each fixed background
metric g). These Riemannian metrics will play a central role in our study of
the Donaldson geometric flow.

Proposition 3.1 (Symplectic Forms and Riemannian Metrics).
Fiz a nondegenerate 2-form p € Q*(M) such that p A p > 0 and define the
function w : M — (0,00) by . Then there exists a unique Riemannian
metric g° on M that satisfies the following conditions.

(1) The volume form of g° agrees with the volume form of g.

(ii) The Hodge *-operator x° : QY (M) — Q3(M) associated to g is given by
_ pAx(pAA)

B u

for X € QY (M) and by *"o(X)p = —p A g(X,-) for X € Vect(M).
(iii) The Hodge x-operator ** : Q*(M) — Q*(M) associated to g° is given by
wAp
dvol,””

P
for w € Q*(M). The linear map R* : Q*(M) — Q*(M) is an involution
that preserves the exterior product, acts as the identity on the orthogonal
complement of p with respect to the exterior product, and sends p to —p.

(iv) Let w € Q*(M) be a nondegenerate 2-form and let J : TM — TM be an
almost complex structure such that g = w(-,J:). Define the almost complex
structure J* by p(JP-,-) := p(-,J-) and define the 2-form w? € Q*(M) by
wP = RPw. Then g = w’(-, JP-) and so w’ is self-dual with respect to g°.

Proof. See Theorem [A.2] O

%\ (19)

*”w =R *x Rw, RPw :=w —

(20)



Definition 3.2. Fach nondegenerate 2-form p € Q*(M) with p* > 0 deter-
mines an inner product (-,-), on the space of exact 2-forms defined by

(p1,p2), ::/MMA*%, d\i=p;,  *’\ €imd. (21)

These inner products determine a Riemannian metric on the infinite-dimen-
stonal manifold .7, called the Donaldson metric.

The Donaldson geometric flow on a general symplectic four-manifold is
the negative gradient flow of the energy functional & : ., — R in (|16)
with respect to the Donaldson metric in Definition [3.2] A central geometric
ingredient in this flow is the following map © : Q2. (M) — Q*(M). Tts

domain is the space Q2 (M) := {p € Q*(M)|p A p > 0} of nondegenerate

2-forms compatible with the orientation and the map is given by

— OF — 2_122 .:dVOIP
O(p) := 06" il I 2 U= o

Proposition 3.3 (The Map 0). Let p € Q2 (M) and define u € Q°(M)

ndg

and ©° € Q*(M) by ([22). Then the following holds.

(i) ©7 is the pointwise orthogonal projection of the 2-form u™! * p onto the
orthogonal complement of p with respect to the wedge product. In particular

(22)

" ANp=0. (23)

(ii) The 2-form ©° can be written as

2pT ot 2 pI2pT + [pt |20~
SO T Vit N s e o o
u u u
(iii) The square of ©F is given by
2ot 2|1 ,—12
orner= ATy (25)
u

Thus ©° AN ©F < 0 with equality if and only if p is self-dual.
(iv) Let p; : R — Q2

nag(M) be a smooth path with py = p and O;pt|i=0 = P.
Then

d P+ D 2
Ll g PP 5 (26)

©:= dt|,_, u

P
u
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(v) Assume the hyperKdhler case. Then

3
1 w; A\ p
© E <KZ w; 2(KZ) p), K ool (27)

i=1
and
3
Ao’ = *”ZdKf o J!, p(JE- ) == p(-, ). (28)
i=1
Proof. 1t follows directly from the definition of ©” in that @2 Ap =10
and this proves part (i).
To prove part (ii), denote by II : Q*(M) — Q*(M) the pointwise or-
thogonal projection onto the orthogonal complement of p with respect to the
wedge product. Thus

TAPp 2
I(r)=71— p for 7 € Q*(M).
() =70 (M)

Since xp = pT — p~ = 2pT — p it follows from part (i) that

@"zH(s{):H(%).

This proves the first equation in . The second equation in follows by
direct calculation, using the identity 2u = |pT|* — |p~|?. This proves part (ii).
To prove part (iii), use the last term in equation to obtain
14 + + +14 - — +12| ,— |2
A + A 2
PN VI A A i WAV N T T Y

ut u3

This proves equation and part (iii).
To prove part (iv) choose a smooth path R — 7, : ¢t — p; such that
po = p and Oypili—o = p. Define
Pt N\ .0 pADp o 0

6:= | o

T Rdvel T |, dvol = ot

Then, by part (iii) of Proposition , we have

~

. pAp . u

RPp = =p— —p.
p dvolpp p up
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Hence
x’p= R’ x R°p

. pAxRPp
N
LT vl (29)
o u_ pAxp - pfu
XL dvol, * w P

This implies

. B
=5

Pt
Uy

2
Pt)

* Pt 1
=0 Ut 2

0 Uxp  pAxp pa 1yp2
SRt r T e At N
xp 1 p|2 o
~ w 2lul?
I N VRPN
B v ||

Here the third step follows from and the last step uses the identities
p|2 = |pT]*+ |p7|? and 2u = [p*|* — |p~|* in (L8)). This proves part (iv).
Equation follows from (24) and the identities

i 2
sk || —g

To prove , define
wl = w; — Kfp, i=1,2,3.

+

u

Then wf (-, Jf-) = g* by part (iv) of Proposition (3.1 and hence
*’(No J) = AAw!
for all A € Q'(M) and all i. Take A\ = dK? to obtain

1
*P(dKP o JI) =dK! N =d (Kipwi — 5(K5)2p> :

Take the sum over all ¢ and use equation to obtain (28)). This proves
part (v) and Proposition O
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Proposition 3.4 (The Gradient of the Energy).
(1) The differential of the energy functional & : %, — R at p € %, and its
gradient with respect to the Donaldson metric are given by

6= [ & np
M
grad&’(p) = —d +” dO”.

(30)

(ii) Assume the hyperKdhler case. Then

1 i w; N\ p
== g K*2dvol K==
2/ : K7 dvoly, ¢ dvol,’

/ Z(Kﬁwz—— ~)p)Ap7 (31)

gradé (p Zd (dKL o J),  p(Jl-) = p(-, Jiv).
=1

Proof. Let p € 4, and define u := dVOI” . Then, by equation ([18]),

) 2 A
&(p) — Vol(M) = —|p+|2 T e :/ PRXP
M 2= o] M 2u
Choose a path R — .%, : t — p; and define
u,zpt/\/)t ﬁ':(?u:pt/\ﬁt 59
£ Ddvol ? PO T Tqvel 0 PTG
Then
d d A A P, 1 pe]? .
_(g"(pt) = — Py P :/ —pt P —/ — & uthOI
dt dt M 2Ut M Uy M 2 Uy

*x0; A D 1 2
= /—pt pt—/ =2 Pt/\ﬁt:/ O A .
M Uy M2 |u M

t
This proves the formula for 6& (p). Now let p € T,.%, and choose A € Q' (M)
such that d\ = p and *”\ € imd. Then

p—/ @”/\dA——/ d@”/\Az(—d*”d@P,ﬁ}p.

This proves part (i). In part (ii) the first equatlon in follows from
Proposition | the second equation follows from and and the
third equation follows from and . This proves Proposition . n

13



By part (i) of Proposition a smooth path R — %, : t — p; is a
negative gradient flow line of & with respect to the Donaldson metric if and
only if it satisfies the partial differential equation

dvol,,
Pt Ut = dvol . (32)

Equation is the Donaldson Geometric Flow. By part (ii) of Propo-
sition it agrees with the geometric flow in the hyperKahler case.

Corollary 3.5. (i) A symplectic form p € Z, is a critical point of the energy
functional & : %, — R in if and only if the 2-form ©F is closed.

(ii) Suppose w € Z, is compatible with the background metric g. Then w is
the unique absolute minimum of the energy functional & : %, — R.

+2
Pt
U

2 +
0tpt = d *" d@t, @t = & —

Uy

(iii) Assume the hyperKdhler case. Then p € %, is a critical point of the
energy functional & : %, — R if and only if Z§:1 dK! o J/ =0.

Proof. Part (i) follows from equation (30)) in Proposition [3.4 To prove (ii)
observe that a symplectic form w € ., is compatible with the metric g if and
only if it is self-dual. Moreover, every self-dual symplectic form is harmonic
and the class a has a unique harmonic representative. Since

ot|?
/ |p+|2 - |2dV012/Mdv01::Vol(M)

for all p € Ya, with equality if and only if p~ = 0, this proves (ii). Part (iii)
follows from (i) and equation (28) in Proposition [3.3 O

The next proposition is an observation of Donaldson [I] which asserts
that the energy controls the L' norm of p.

Proposition 3.6 (Donaldson’s L' Estimate). Every p € .¥, satisfies

ol < VAED VOID),  ci= [ prp=ta M) 69

Proof. By the Cauchy—Schwarz inequality,

2 2
dvol < / 2y )? dvol) / L dvol
(/M|p| ) ( M (|p | a ) m TP =12

ot + 1p~ 2
</M R
= c(&(p) — Vol(M)).
This proves Proposition |3.6| O]
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Remark 3.7. (i) Donaldson’s conjectural program involves a proof of long-
time existence for all initial conditions, a proof that solutions cannot escape
to infinity, and a proof that higher critical points can be bypassed, i.e. that
they cannot be local minima. In those cases where this program can be car-
ried out it would then follow that the space .7, is connected, which is an
open question for all closed four-manifolds M and all cohomology classes a
that can be represented by symplectic forms (see [5]). Short time existence
and regularity, as well as long time existence for initial conditions sufficiently
close to the absolute minimum, are established in [3].

(ii) In many situations (including certain Kéhler classes on the K3-surface)
a theorem of Seidel [0}, [7, [§] asserts the existence of symplectomorphisms of
(M,w) that are smoothly, but not symplectically, isotopic to the identity.
This implies the existence of noncontractible loops in .%,. Hence, if the
analytic difficulties in Donaldson’s geometric flow approach can be settled, it
would follow that in these cases the energy functional & : .¥, — R must have
critical points of index one, assuming that they are nondegenerate. Many
other examples of nontrivial cohomology classes in .7, of all degrees were
found by Kronheimer [4] using Seiberg—Witten theory.

(iii) By an observation of Donaldson [I] higher critical points of & (not equal

to the absolute minimum) cannot be strictly stable in the hyperKéahler case.
We include a proof of this result in Section |4 (Theorem [4.5]).

Proposition 3.8. Let M = CP? be the complex projective plane with its
standard Kdahler metric, let wps be the Fubini—Study form, and define

a = wrs] € H*(M;R).

Then wrs 1s the only critical point, and the absolute minimum, of the energy
functional & : .7, — R in (16).

Proof. That wgg is the unique absolute minimum of & follows from part (ii)
of Corollary[3.5] Now let p € ., be any critical point of &. Then ©7 is closed
by part (i) of Proposition and ©” A p = 0 by part (i) of Proposition [3.3]
Since H?(M;R) is one-dimensional, this implies that ©7 is exact. Hence it
follows from part (iii) of Proposition [3.3| that

210t 2| ,—12 dvol
O—/ @p/\@p——/ 2"l [® |3|p | dvolgs, P
Cp? Cp2 Uu dVOlFS

This shows that p~ = 0. Thus p is self-dual and hence is harmonic. Since
[p] = a = [wrs] and wgs is also a harmonic 2-form it follows that p = wps. O
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4 The Hessian

The infinite-dimensional manifold .#, is an open set in an affine space. Hence
the Hessian of & is well defined for every p € .%, as the second derivative
F6,(p) = ;—;hzoéa(pt) along a curve R — .7, : t — p; satisfying py = p,
%|t:0pt = p, and %hzopt =0.

Theorem 4.1. Let p € .#,. Then the following holds.

(i) The Hessian of & at p is the quadratic form ¢, : T,%, — R given by
|

u

p#p
u

#5)= [ 8np B

5. (34)

As a linear operator the Hessian is the map T,y — T,y 1 p— —d +° do.
(ii) Assume the hyperKdhler case and define

(2

w! = w; — K;p. 35
i P

dvol,’
Let p € T,.,, choose X € Vect(M) such that —du(X)p = p, define
5 (Wi —Kip) Ap ~  (du(X)wi) Ap

K; = ) Hj = —7—F—, 36
dvol, dvol, (36)
and let © be as in (34). Then
3 13
0= Kuw --Y K2, 37
; -3 ; D (37)

~ 1
H,(p) = Kidvol, — =KpAp . 38
9= [ (Reavor, 312 05) (39)
Moreover, if p is a critical point of &, then
3
A7) = / S WX, X, + Vi, X) dvol,
M i—y
s (39)
:/ Z <Hi2dvolp + w;(X, VXKZ-X)> dvol,,.
M =
Here V denotes the Levi-Civita connection of the hyperKdhler metric and X g

denotes the Hamiltonian vector field of a function F' : M — R with respect
to p, i.e. (Xp)p=dF.

Proof. See page [21]. m
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In [3] it is shown that, for every p € .%,, the quadratic form in is the
covariant Hessian of & with respect to the Donaldson metric in Definition [3.2]
The proof of Theorem [4.1] relies on the following two lemmas.

Lemma 4.2. Let p and w be symplectic forms on M and define

WAp

= P=w— Kp.
dvol,” TR

Then, for every vector field X € Vect(M),

(X)) Ap+w” A (X)p =0, (40)
(de(X)w)ANp  wP ANdu(X)p
dvol, o, LxK. (41)

If w is self-dual and J is the almost complex structure such that w(-,J-) is
the background Riemannian metric on M, then

L(X)w) A p=—+"1(JX)p. (42)
Proof. Equation follows by direct computation, i.e.

(L(X)w)Ap = UX)(wAp) —wAuUX)p
= Kuy(X)dvol, —w A u(X)p
= —(w—Kp) Au(X)p.

Now differentiate equation and use the identity dw” = —dK Ap to obtain

0 = d((«(X)w) Ap+w AuX)p)
(du(X)w) Ap+w’ Adu(X)p—dK NpAu(X)p
= (d(X)w) Ap+w’ ANdu(X)p—dK A o(X)dvol,
(du(X)w) A p+w? Adu(X)p — (L(X)dK)dvol,.
This proves . Now suppose w is compatible with the almost complex
structure J and w(-, J-) is the background Riemannian metric. Define the

almost complex structure J? by p(J?-,-) := p(-,J-). Then ¢” = w?(-, J-) by
part (iv) of Theorem [A.2] Hence it follows from and Lemma that

(X)) Ap=—w’ AN(X)p=—+"((X)po JP) = —«"1(JX)p.
This proves equation and Lemma O
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The identities in Lemma[4.2] are needed to establish the next result which
relates equations and and is a key step in the proof of Theorem .
It is shown in [3] that the last two integrals in equation below arise from
the Levi-Civita connection of the Donaldson metric in Definition [3.2] on the
infinite-dimensional manifold .%,. They vanish for critical points of &. Both
sides of equation (43)) agree with the covariant Hessian of & at an arbitrary
element p € .7, (see [3]).

Lemma 4.3. Let p € .4, let p € T,.7, be an exact 2-form, let K;, [A(i, FAIZ be
as i equations and in Theorem [4.1, and let X € Vect(M) be any
vector field such that —du(X)p = p. Then

’ 3
~ ~ _
/M ; <[—[l2 T Wi (X’ vXKiX)> dVOlP = /M ZZ:; (devolp - §Ki2p2)
> 3
i / Z(L(XK")%) A (UX)p) Ao+ / Zwi (X, Vx Xk, )dvol,.
M= M =y

Here V is the Levi-Clivita connection of the Kdhler metric and X, is the
Hamiltonian vector field of K; associated to p so that 1(Xg,)p = dK;.

Proof. Equation can be written in the form
/ ZHdeol / Z (K2dvol — —K2p/\ p)
-/ Z<L<XK,.>%> N AR ()

/Zwl [ Xk, X])dvol,.

To prove this formula we first observe that
LxK; = H, - K, (45)
for i =1, 2,3 by equation in Lemma This implies

3 3 3
/ > HEdvol, = / Zf{fdvolp— / > (LxK;)*dvol,
M iy ; i—1
3
+2/ Z J(Lx K;)dvol,.

18
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Define

Then equation shows that is equivalent to the identity

3

B = /M S X ) A G(X)p) AP,

= / Zwi(X,[XKi,X])dVOIp,
M i—y

3
D= / > (LxK;)* dvol,,
M =

3
E = / > Hy(LxK;) dvol,.
M =

A+B+C+ D =2E.

To prove this, we first observe that

A

| S 5EH @0 A7
_/MZKidKZ-/\(L(X)P)/\ﬁ

_ /M > KilXi)o) A (X)) A

B [ 30Xk i~ Kip) A (X00) A7

Hence A+ B = F' + (G, where

(48)



Since (X, )t(X)p = —LxK; and (w; — K;p) A p = Kdvol , we have

F = / ZIA(i(EXKi)dvolp
_ / Z (LX) — (LxK?) dvol,

Here we have used equation . To sum up, we have proved that
A+B+D=D+F+G=E+G.
Thus it remains to prove that C' = E — (G. To see this, observe that
ULxy, X)dvol, = p AN i(Lx, X)p=p A Lx, (((X)p)

and, by Cartan’s formula,
L, (UX)p) = (X )u(X)p + o( X, )d(X)p = —d(Lx K;) — o(Xk,)P.
Since w; (X, [Xk,, X])dvol, = —(4(X)w;) A ULxy, X)dvol,, this implies
wi(X, Xk, X])dvol, = (1(X)w;) A p A (d(EXKZ-) + L(XKi)ﬁ>

for © = 1,2, 3. Integrate over M and take the sum over ¢ to obtain

= / iwi(X’ [(Xk,, X])dvol,
/Z Jwi) A p A d(LxK;) /Z Jw;) A p A u(Xk,)p
/Z X)wi) A p) AﬁXKJr/Z X)wi) A p Au(Xg)p
_ /M Z (L K )dvol, — /M ;w—mm<L<X>p>m<xm>ﬁ

=F-G.

Here the penultimate equation follows from the definition of ]TIZ and from
equation in Lemma. Thus A+ B+ D=FE+Gand C =F — (G, as
claimed, and this completes the proof of Lemma [4.3] O
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Proof of Theorem[.1. Consider the map ., — Q*(M) : p — ©° in (22).
By part (iv) of Proposmon its derivative at p in the direction p is given
by the 2-form O in . Hence equation . ) for the Hessian follows from
the formula for the differential of the energy functional & in .

Next we prove equation and in the hyperKahler case. The 2-

forms wf = w; — K;p = RPw; span the space of self-dual 2-forms with respect
to g* by part (iii) of Proposition 3.1} Hence it follows from that

1 3
i=1

This proves and (38 @ Alternatively, these two equations can be derived
from the fact that ©7 is given by equation in the hyperkahler case.

~

Namely, choose a smooth path p, € S, such that py = p and %|t:0pt = p.
Then —|t oK = K;. Differentiate to obtain that © = %|t:0@”f is given
by (37) and inserte this formula into to obtain (38)).

Next observe that the two integrals in (39)) agree because

/ﬁfdvolp = /Hd Jw; /\p—/ L(X)wi/\dﬁi/\p
M M

= /L(X)wi/\L(Xﬁi)dvolp:/ wi(X, Xz )dvol,.
M M

2
AR Zm pt
[Aad/ i) 'LL

Here the first equation follows from the definition of the function H; in (136)
and the third equation follows from the fact that Xp is its Hamiltonian
vector field with respect to p.

Now suppose that p € .7, is a critical point of the energy functional &

n . Then
3 3 3
ZP<J1XKN ) = ZP(XKm sz) = ZdKZ © sz =0
=1 1=1

i=1
by part (iii) of Corollary . Hence Z?Zl Ji Xk, = 0 and this implies

3

3
S IV Xk, =0, > Xk )w; =0. (49)
i=1

i=1
Thus the last two integrals in equation vanish and so the right hand

side of equation (38) agrees with the right hand side of equation by
Lemma [4.3] This proves Theorem [4.1] O
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Corollary 4.4. If p = w € .7, s self-dual, then
) = [ 1P avol
M

forall p e T, .
Proof. This follows from (34) withu =1, |pT|*=|w|* =2, and ¢’ =g. O

Theorem 4.5 (Donaldson). Assume the hyperKdhler case and a := [w;].
If p € A, is a critical point of & and p # w, then the Hessian J¢, is not
positive definite.

Proof. The proof has four steps.

Step 1. Let p € O3y, (M) and define J{ by p(J/-,-) := p(-, Ji) fori=1,2,3.

Then the first order differential operator D : QY (M) — Q°(M,R*) defined by

D e <d*p/\ d+" (Ao JV) dxF(Xo Jy) d*P(AOJ§)>

dvol ’ dvol ’ dvol ’ dvol (50)

for X € QY (M) is a Fredholm operator of Fredholm index by — 4.
By part (iv) of Proposition [3.1| the 2-forms

wi N\ p

P
Wi

= i=1,2,3,

dvol,

form a basis of the space of self-dual 2-forms with respect to ¢g” and they
satisfy w?(-, J’-) = g for i = 1,2,3. Hence, for A € Q' (M), twice the
self-dual part of d\ with respect to ¢g” is the 2-form

w! A dA

P
dvol w

3
d)\ + *Pd)\ = Z
=1

Hence the self-duality operator
QY M) — QUM) & Q55 (M) X (&N, dA + +d))

of g* is isomorphic to the operator D’ : QY(M) — Q°(M,R*) given by

D'y = d*P N W) ANdXN wh AdXN wh A dA
’ dvol > dvol = dvol ' dvol '
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Hence D’ is a Fredholm operator of index b; — 4. Since w! A X = x*(A o JF)
by Lemma [A.4] we have

d+" (No J) —wl Nd\ = (dw?) A .

Hence D — D’ is a zeroth order operator and therefore is a compact oper-
ator between the appropriate Sobolev completions. Hence D is a Fredholm
operator of index b; — 4. This proves Step 1.

Step 2. Let p € %, \ {w1}. Then at least one of the functions

p  Wi\p
i dvol,,’

i=1,23,

15 nonconstant.

Suppose by contradiction that K? is constant for i = 1,2, 3. Since p — w; is
exact, we have

/devo]p:/ wz/\p:/ wi/\wlz{ 2V01<M), le:L
M Y Y 0, if1=2,3,

and hence K7 = 2 and K§ = K = 0. This implies

u = 2u, Us = us = 0, U= ((1;;(;11”, U = w(;\j(\){).
Hence it follows from that
0<|p|?
— ’p+|2 2u
= %i ui — 2u (51)
i=1
= 2u(u —1)

Hence v > 1 and

/udvol—/ dvolp—/ dvol = Vol(M).
M M M

This shows that © = 1, hence p~ = 0 by , and therefore p = w;. This
proves Step 2.
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Step 3. Let p € %, \ {wi} be a critical point of &. Then there exists a
1-form X € QY(M) such that

d¥A=0, A= (Aos)=0, j=1,23 (52)
and the exact 2-forms
Po = dA\, p; = d(Xo JY), j=1,2,3. (53)

are linearly independent.

By part (iii) of Corollary [3.5] we have
3
> dK! o J! =0.
i=1

Hence the function
hi= (0, K}, K§ K§): M —R*
is L? orthogonal to the image of the operator
D: QY M) — Q°(M,R?Y)
in Step 1, i.e.

3 3
(h,D)\>L2:—/ ZdKf/\*p()\oJf):/ Z(dKfoJf)A*pAzo
M= M =1

for all A € Q'(M). Since h is nonconstant by Step 2, this shows that the
cokernel of D has dimension greater than four. Since D is a Fredholm op-
erator of index b; — 4 by Step 1, its kernel has dimension greater than b;.
The kernel of D is a quaternionic vector space and each nonzero element
A € ker D determines a four-dimensional quaternionic subspace

Vi :=span{\, Ao J ;Ao JY Ao J§} C ker D.

Denote by
Hy, (M) :={Ae€ Q' (M)]|drx=0,d+" X=0}

the space of harmonic 1-forms with respect to g”. This space has dimension
zero when M is a K3-surface and dimension four when M is a four-torus.
Since ker D is a quaternionic vector space of dimension 4k with & > 2, it
has a four-dimensional quaternionic subspace that is transverse to Hy,(M).
Thus there exists a nonzero element A € ker D such that V\ N H glp(M )=0.
(See Lemma [B.1]) This proves Step 3.
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Step 4. Let p € .7, \ {w:1} be a critical point of & and let X € Q*(M) and p;
for j =0,1,2,3 be as in Step 3. Then

3
> A(py) = 0.
j=0

Choose X € Vect(M) such that ¢(X)p = —A. Then
fo= —di(X)p, B = —du(X)po J) = —di(J;X)p, =123
For i,7 = 1,2,3 define
7. . ddX)wi) Ap 7. . (Al X)wi) Ap.

0i -—

Jr

dvol,

By equation in Lemma , we have

(de(Y)wi) N p = —d(wi Ae(Y)p) = —d " ((Y)p) 0 J)

dvol,

for every vector field Y € Vect(M). Apply this formula to the vector fields
Y = X and Y = J;X and use Step 3 to obtain Hj; = 0 for j =0,1,2,3 and
1 =1,2,3. Hence, by equation in Theorem , we have

3
Hy(n) =3 [ X, ¥, X,
1=1
3

H,(p5) = Z/Mwi<JjX7 Vi o (J5X))dvol,
=1

for y =1,2,3. Hence

3 3

AOESY /M (X, J;JidVx, X)) dvol,

Jj=1 3,j=1

3
=> / (X, J;Vx, ., X)dvol,
i=1 /M '
= —(Po)
This proves Step 4 and Theorem [4.5] O
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Theorem is an infinite-dimensional analogue of a general observation
about finite-dimensional hyperKé&hler moment maps. Let (M, w;, J;) be a
hyperKéhler manifold, let G be a compact Lie group that acts on M by
hyperKahler isometries, and for x € M let L, : ¢ — T, M denote the in-
finitesimal action of the Lie algebra g = Lie(G). Suppose g is equipped
with an invariant inner product and the group action is Hamiltonian for
each w;. For i = 1,2,3 let u; : M — g be an equivariant moment map so
that (dp;(x)7, &) = wi(L,€, ) for € € g and ¥ € T, M. Then the gradient of
the function &€ := £ 3", |pl|? is given by grad€(z) = 32, JiLypi(x). Assume
dim M > 4dim G and let © € M be a critical point of £ such that £(x) # 0.
Then the linear map g* — T, M : (,&,&2,8) = Lo&o + Y, JiL,& is not
injective and hence not surjective. Thus there exists a vector € T, M such
that Lx = 0 and L:J;z = 0 for all i. Denote by H, : T, M — R the Hessian
of & at x. Then a calculation shows that H,(Z) + >, H.(J;iz) = 0. (See
Donaldson [I, Proposition 6].) In the case at hand it would be interesting to
find an exact 2-form p such that H,(p) < 0.

A Four-Dimensional Linear Algebra

Let V' be a 4-dimensional oriented real vector space and let V* := Hom(V,R)
be the dual space. Associated to an inner product g : V' xV — R is the Hodge
s-operator *, : AFV* — A17FV* the volume form dvol, = *,1 € A*V*, and
the space

A ={weANV*
of self-dual 2-forms. By a well known observation (which we learned from [2])
the inner product ¢ is uniquely determined by dvol, and A;. This is the
content of Theorem below. Call a linear subspace A C A*V* positive
if the quadratic form A x A — R : (w, 7) — 425 is positive definite for some
(and hence every) positive volume form dvol € A*V*. Denote by G(V) the
space of all inner products g : V x V' — R, by S(V) the space of 2-forms
p € A?V* such that p A p > 0, and by J(V) the set of linear complex

structures J : V' — V that are compatible with the orientation.

W = *gw}

Theorem A.1l. For every positive volume form dvol € A*V* and every three-
dimensional positive linear subspace A* C A?V* there exists a unique inner
product g on V' such that dvol, = dvol and A = A",

Proof. See page |31 O
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Theorem A.2. Let g € G(V), p e S(V), define u >0 and A € GL(V) by

dvol, pPAp
= dvol, = —— A L) = 4
"= ol vol, 5 9(As) =, (54)
and define the linear map R : N2V* — A2V* by
A
Ro=w— 2 pp for all w € A*V*, (55)
dvol,

Then R is an involution that preserves the exterior product, acts as the iden-
tity on the orthogonal complement of p with respect to the exterior product,
and Rp = —p. Moreover, for every g € G(V), the following are equivalent.

(i) 9(v,w) = u"tg(Av, Aw) for all v,w € V.

(ii) dvoly = dvol, and xgA = u"1p A*,(p A X) for all X € V*.

(iii) dvol; = dvol, and xz(v)p = —p A g(v,-) for allv € V.

(iv) Suppose w € S(V) and J € J(V) satisfy g = w(-, J-). Define w € A*°V*
and J € J(V) by & := Rw and p(J-,-) := p(-,J-). Then §=a(-,J").

(v) dvoly = dvol, and A; = RAJ.

(vi) dvoly = dvol, and *gw = R *, Rw for all w € A*V*,

Proof. See page |32 O
The proofs of both theorems are based on the following six lemmas.
Lemma A.3. For every g € G(V) and every v € V
*gL(v)dvoly = —g(v, ), *g9(v, -) = t(v)dvoly.
Proof. Direct verification for the standard structures on V = R*. [

Lemma A.4. Let w € S(V), g € G(V), J € J(V). The following are
equivalent.

(1) w(v, Jw) = g(v,w) for allv,w € V.
(ii) dvol, = dvol, and *,(w AX) = —Xo J for all A € V*.

Proof. That (i) implies (ii) follows by direct verification for the standard
structures on V' = C?. We prove that (ii) implies (i). Assume w, g, J sat-
isfy (ii) and let v € V. Then, by Lemma and (ii),

g(v,-) = — #4 1(v)dvol, = — %4 (w A 1(v)w) = t(v)wo J = w(v, J).
Hence w, g, J satisfy (i). This proves Lemma |A .4} O
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A symplectic form w € S(V) is called compatible with the inner
product g € G(V) (respectively compatible with the complex struc-
ture J € J(V)) if there exists a J € J(V) (respectively a g € G(V')) such
that the equivalent conditions (i) and (ii) in Lemma are satisfied.

Lemma A.5. Letw € S(V) and g € G(V). The following are equivalent.
(1) w is compatible with g.
(ii) dvol, = dvol, and w € A}.

Proof. That (i) implies (ii) follows by direct verification for the standard
structures on V = C?. To prove the converse, consider the standard in-
ner product and orientation on the quaternions V' = H with coordinates
r = 2o + iry + jro + kag. Define

wj := dxg A\ dw; + dx; N dxy

for 1 = 1,2,3 and 4, j, k a cyclic permutation of 1,2, 3. If w satisfies (ii), then
w:Ztiwi, tiER, Zt?zl

Hence w is compatible with the inner product and the complex structure
J = tll + tgj + t3k
(acting on H on the left). This proves Lemma [A.5 O

Lemma A.6. Let p € S(V) and g € G(V). If u and A are defined by (54),
then
det(A) = u®.

Proof. Assume V = R* with the standard inner product and standard ori-
entation. Denote the coordinates on R* by z = (z9, 1, 72, 23) and write

p= Z pijdz; N\ dxj, pij + pji = 0.

i<j
The nondegeneracy and orientation condition on p asserts that

U = po1P23 + Po2p31 + pozpiz > 0. (56)
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In the standard basis of R* the linear operator A is represented by the matrix

0 Po1 P02 Po3
A | P O P2 —pm | (57)
—pPo2 —pP12 0 P23
—poz P31 —p23 O

It follows from equation that

Po1 Po2  Po3
det(A) = pordet | —p12 0 pos

p31 —p23 0
Po1  Po2 03
— poz det 0 pi2 —pa
p3t —p23 0O
Po1  Po2  Po3
+ pos det 0  pi2 —pan
—p12 O P23

= po1 (;002/)23/?31 + pospi2p2s + 1)01/333)
+ po2 (Po3p12031 + po1p23ps1 + 002/)31)
+ P03 (P01,023P12 + Po2p31p12 + P03P%2) .

Thus det(A) = u? by and this proves Lemma [A.6] O
Lemma A.7. Let wy,ws,ws € S(V) and Jy, Ja, J3 € GL(V) such that
wa(+, J37) 1= wy, w3 (-, J1v) 1= wa, wi (s Jor) 1= ws. (58)
Then
wi(Jv, w) = w;i(v, Jjw) = wg(v, w) (59)

for every cyclic permutation i, 5,k of 1,2,3 and all v,w € V. Moreover, the
following are equivalent.

(i) wihw; =0 and w; Nw; =wj Aw; for 1 <i<j <3,

(ii) J? = =1 and J;J, = —JpJ; = J; for cyclic permutations i, j, k of 1,2, 3.
If these equivalent conditions are satisfied, then the following holds.

(a) The vectors v, Jyv, Jov, Jsv form a basis of V' for every v € V'\ {0}.
(b) wi(v, Jjw) = wa(v, Jow) = ws(v, Jsw) for v,w € V.

(c) wi(w, Jiv) = w;(v, Jw) fori=1,2,3 and v,w € V.

(d) wi(v, Jjv) #0 fori=1,2,3 andv € V '\ {0}.
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Proof. That implies follows from the skew-symmetry of the w;.
(i) implies (ii). Since ¢(J;v)w; = t(v)wy, it follows from (i) that w; A

L(V)w; = wi A L(v)wr = wi A L(Jjv)w; = —w; A u(Jjv)wy, for v € V' oand every
cyclic permutation 4, j, k of 1,2,3. Hence
wi(Jjv,w) = w(v, Jw) = —w; (v, w). (60)

Second, ws(+, J3JoJ1+) = wi(-, JoJi-) = ws(+, Ji-) = wq, by equation (59)), and
CUQ(', J1J2J3') = —W3(', Jng') = wl(-, Jg) = —Wa, by equation . Hence

J3Jody = 1= —J1JyJs. (61)
Third, by and (60)), w;(-, J2+) = —wi (-, Ji) = —w; and hence
JP=J3=Ji =1 (62)

Fourth, JyJ; = ng = —J1Js, by , and hence JoJ; = —J3 = —J1Js,
by . Multiply this equation by J; and J; on the left and right to obtain
the quaternion relations J;J; = —J;J; = J; for 4,7,k cyclic. This shows
that (i) implies (ii).

(ii) implies (a). Let v € V\{0} and z; € R such that zov+)_, z;J;v = 0.

Then , , ,
0= (;Eo]l - Z xiJi) (xgv + Z :EiJiv> = <Z xf) v
i=1 i=1 i=0

and hence xg = 1 = 29 = 23 = 0.

(ii) implies (b). It follows from equation that, for 7,5,k cyclic,
wi(v, Jiw) = w;i(Jyv, Jiw) = w;(v, JpJiw) = w;(v, J;w).

(ii) implies . It follows from equation that, for 7, 7, k cyclic,
wi(Jjv, w) = wi(J; 0, w) = —w;(v, w).

(ii) implies (c). It follows from equation that, for 7, j, k cyclic,
wi(w, Jv) = wi(w, J;Jyv) = wi(JpJjw,v) = wi(—Jiw,v) = w;(v, J;w).

(ii) implies (d). Fix a nonzero vector v € V. Then w;(v,v) = 0 and,
by and (60]), w1 (v, Jov) = ws(v,v) = 0 and wy (v, J30) = —ws(v,v) = 0.
Since wy is nondegenerate, it follows from (a) that w; (v, Jiv) # 0.

(ii) implies (i). Fix a nonzero vector v € V' and define ¢ : H — V' by
®(x) :== xov + Y, x;J;v. By (a) this is an isomorphism. By (b) and (d),

A= wi (v, J1v) = we(v, Jov) = ws(v, J3v) # 0.
By and , we have ®*w; = A(dxo Adx; +dz; Adxy) for ¢ = 1,2, 3 and
i, 7, k a cyclic permutation of 1,2,3. This shows that (ii) implies (i). O
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Lemma A.8. Assume that Jy, Jo, J3 € J (V) are compatible with g € G(V')
and satisfy J;J; + J;J; =0 fori # j. Then J3s = £J;Js.

Proof. Fix a unit vector v. Then g(Jv, Jjv) = g(v, J;J;v) = —g(J;v, Jv).
Hence v, Jiv, Jov, Jsv form an orthonormal basis of V' and J; Jov is orthogonal
to v, Jﬂ), JQU. Hence JlJQ’U = :|:J3U. It follows that JlJQ = :|IJ3 ]

Proof of Theorem[A.1 Existence. Fix a basis wy,ws,ws of AT such that
w; A wj = 20;;dvol.
Choose J; € GL(V') such that holds. By Lemma the bilinear map
VxV =R (v,w)— w(v, Jw)

is independent of 7, symmetric, and definite. Assume without loss of gener-
ality that w;(v, Jiv) > 0 for all v € V' \ {0}. (Otherwise, replace the triple
Ji, Ja,ws by —Ji, —Jo, —ws.) Then the inner product g(v, w) := w;(v, J;w) is
compatible with w;. Hence it follows from Lemma that dvol, = dvol,,
and w; € A for i = 1,2,3. Thus dvol, = dvol and A} = A*.

Uniqueness. Let g € G(V) such that AT = A* and dvol; = dvol. By
Lemma [A.5 the symplectic forms wy,ws,ws are compatible with g. Hence
there exist complex structures Jy, Jo, J3 € J (V) such that

i T) = 3.
Thus e _

wi(ss Jjder) = (s Jie) = —wi(e ) = wj(e, Ji)
by and so j;jk = J; for i, j, k cyclic. Hence

Jidi+ Jud; = Ji = JoJidiJ; = Ji — JiJi = 0
for 4, j, k cyclic. By Lemma [A.§]

Js =+, Jy = +Js.
Since ws(v, J3v) > 0 and ws(v, jg,v) > 0 for v # 0, we have jg = J;. Hence
g=ws(, jé) =ws(+, J3) = g.

This proves Theorem [A.T] O
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Proof of Theorem[A 3. That the linear map R : A*V* — A?V* in has
the required properties follows by direct calculation.

We prove that (i) implies (ii). By Lemmal[A.6] det(—A?) = det(A4)? = u?
and hence the inner product g(v,w) := u~'g(Av, Aw) has the volume form

dvol; = dvol, = u™'dvol,,.
Now let A € V* and choose v € V such that g(v,-) = A. Then, by Lemma[A.3]
x5 A = *50(v, ) = 1(v)dvoly = v "t(v)dvol, = u" p A L(v)p. (63)
Since «(v)p = g(Av, -) it follows also from Lemma that
xgL(v)p = 1(Av)dvol, = u ' i(Av)dvol, = u " p A L(Av)p
=u'pAg(A%v, ) = —pAGv,-) = —p A X,

Thus ¢(v)p = #4(p A A) and so xgA = u'p A *4(p A X) by (63). This shows
that g satisfies (ii).

We prove that (ii) implies (iii). Assume g satisfies (ii) and let v € V. Use
the equation v (p A t(v)p) = u=ti(v)dvol, = t(v)dvol, to obtain

x50(v)p = u"tp Axg(p A L(v)p) = p A xgu(v)dvol, = —p A g(v, ).

Here the last step follows from Lemmal[A.3] This shows that g satisfies (iii).
We prove that (iii) implies (iv). Assume g satisfies (iii). Let w € S(V)
and J € J (V) such that w(-, J-) = g. Then, by Lemma[A.4]

dvol,, = dvol,, kg(WAX) =—=XoJ (64)

for every A € V*. Define & and J by & := Rw and p(J-,-) := p(-, J-). Then
WwAw = wAw and so dvolg = dvol, = dvol, = dvol; by (iii). Now let A € V*
and choose v € V such that ¢(v)p = A. Then

AoJ =uw)pod=p,J)=p(Jv,-) = i(Jv)p.
Abbreviate K := %. Then w = w — Kp and so
WAX=wAuv)p— Ki(v)dvol, =w A t(v)p — t(v)(w A p) = —(L(v)w) A p.
By (iii) this implies
(@ AX) = — 53 (p A (0)) = — 53 (p A g(Jv, ) = —i(J)p = —Ao ],
Hence &(-, J-) = § by Lemma . This shows that g satisfies (iv).
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We prove that (iv) implies (v). Assume g satisfies (iv) and choose a
symplectic form w € S(V) that is compatible with g. Then @ := Rw is
compatible with g by (iv), and hence

dvoly = dvolg = dvol,, = dvol,

by Lemma If w e Aj \ {0}, then by Lemma E there is a ¢ > 0 such
that cw is compatible with g, hence cRw is compatible with g by (iv), and
hence cw € Ag by Lemma . This shows that RA] C A; . Since R is an
involution of A2V*, the subspace RA; has dimension three and hence agrees
with Ag . This shows that g satsfies (v).

We prove that (v) implies (vi). The map R : A*V* — A?V* in is an
involution and preserves the exterior product, i.e.

Ro R =id, RoNRT=wAT
for all w,7 € A2V*. By (v) it also satisfies
RA; = A7,
If 7€ A, then RT A Rw=7Aw=0forall we A}, hence Rt Aw = 0 for
every @ € A7, and hence RT € A;. Thus RA, = A5 . It follows that
R*,w= Rw = *zRw, Rx*, 7= —Rr = *zR7

for all w € Af and all 7 € A;. This shows that Rx, = %zR on A*V* and
hence g satisfies (vi).

We prove that (vi) implies (i). Let g € G(V) be any inner product that
satisfies (vi) and let h € G(V') be the inner product defined by the formula

h(v,w) == u 'g(Av, Aw)

in (i). Since we have already proved that (i) implies (vi), the inner products
g and h both satisfy (vi). Thus they have the same volume form and the
same Hodge x-operator on 2-forms. Hence

dvols = dvolp, Ag = A

and so g = h by Theorem[A.1] In other words, every inner product g € G(V)
that satisfies (vi) is given by g(v,w) = u~'g(Av, Aw). This completes the
proof of Theorem [A.2] O
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B Quaternionic Subspaces

Denote by H = R? the quaternions and by Sp(1) = S3 the unit quaternions.
For A € H define V) := {(z,2\) |« € H}. Thus V) is the unique quaternionic
subspace of H? of real dimension four that contains the pair (1, \).

Lemma B.1. Let W C H? be a real linear subspace of real dimension
dim® W < 4. Then there exists an element \ € H such that VAx N W = 0.

Proof. The proof is a standard transversality argument and has two steps.
Step 1. Define f:Sp(1) x H — H? by f(x, ) := (z,2)) for x € Sp(1) and

A € H. Then f is transverse to every real linear subspace of H?.

Let W C H? be a real linear subspace and let (x, \) € Sp(1) x H such that
f(xz,\) € W. We must prove that imdf (z, \) + W = H?. To see this, fix any
pair (§,7n) € H? and define 7 := £ — ({,z)x and X := 27! (n — £X). Then

df (2, N)(@,X) = (€,n) = @ — & TN+ 2X — 1) = —(&,2)(z,2\) € W.
This proves Step 1.
Step 2. We prove the lemma.

Let W C H? be a real linear subspace of real dimension at most four. Then
the set M = f1(W) = {(x,\) € Sp(1) x H| (z,2)\) € W} is a smooth
submanifold of Sp(1) x H of (real) dimension at most three by Step 1. Hence
the projection M — H : (z,\) — A is not surjective by Sard’s theorem.
Hence there exists an element A € H such that M N (Sp(1) x {\}) =0 and
so VAN W = 0. This proves Lemma [B.1] ]
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