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We correct two mistakes in [2]. The first concerns the exponential decay in
the proof of [2, Theorem 7.4] (see Section 2 below) and the second concerns the
bubbling argument in the proof of [2, Theorem 9.1] (see Section 3 below).

The analysis deals with the small ε limit of the self-duality equations

∂tA− dAΨ + ∗s(∂sA− dAΦ −Xs(A)) = 0,
∂tΦ − ∂sΨ − [Φ,Ψ] + ε−2 ∗ FA = 0,

(1)

A(s+ 1, t) = f∗A(s, t), Φ(s+ 1, t) = f∗Φ(s, t), Ψ(s+ 1, t) = f∗Ψ(s, t), (2)

lim
t→±∞

A(s, t) = A±(s), lim
t→±∞

Φ(s, t) = Φ±(s), lim
t→±∞

Ψ(s, t) = 0, (3)

Here P → Σ is a nontrivial SO(3) bundle over a compact oriented 2-manifold
(with area form), f : P → P is an SO(3)-equivariant lift of an area preserving
diffeomorphism h : Σ → Σ, Pf and Σh denote the respective mapping tori, and
∗s denotes a family of Hodge ∗-operators on Σ associated to a smooth family
of complex structures Js such that Js+1 = h∗Js. Xs : A(P ) → Ω1(Σ, gP )
denotes a smooth family of Hamiltonian vector fields associated to Hamiltonian
functions Hs : A(P ) → R that are determined by the holonomy. They are
gauge invariant and are smooth with respect to the C0-topology on A(P ). We
have A(s, t) ∈ A(P ) and Φ(s, t),Ψ(s, t) ∈ Ω0(Σ, gP ). The limit connections
a± = A± + Φ± ds ∈ Aflat(Pf , H) are H-flat as in [1, Proposition 4.4].

For a connection A ∈ A(P ) with sufficiently small curvature we denote by
H1

A := ker dA∩ker dA∗s the space of harmonic 1-forms in Ω1(Σ, gP ) with respect
to the connection A and the Hodge ∗-operator ∗s, and by πA : Ω1(Σ, gP ) → H1

A

the projection associated to the Hodge decomposition

Ω1(Σ, gP ) = H1
A ⊕ im dA ⊕ im ∗s dA.

This is well defined whenever FA is sufficiently small (in the L∞-norm). The
value of the parameter s is understood from the context. When a connection
A(s) + Φ(s) ds on Pf is given we abbreviate ∇sα := ∂sα(s) + [Φ(s), α(s)].
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1 A priori estimates

In preparation for the corrections in the proof of [2, Theorem 9.1] we need a
stronger version of [2, Theorem 7.1].

Remark 1.1. The assertion of [2, Theorem 7.1] continues to hold if the hy-
pothesis ‖Bt‖L∞ + ε‖C‖L∞ ≤ c0 is replaced by the weaker inequality

sup
(s,t)∈Ω

‖Bt(s, t)‖L2(Σ) + ε sup
(s,t)∈Ω

‖C(s, t)‖L2(Σ) ≤ c0. (4)

All the estimates in the proof of [2, Theorem 7.1] continue to hold under this
assumption. To see this consider, as an example, the inequality

|f0| ≤ v0 + c1u0

on page 617. A key term in f0 is the expression 〈Bt, ∗[Bt∧C]〉. We can estimate
this term by the product ‖Bt‖L2(Σ) ‖Bt‖L4(Σ) ‖C‖L4(Σ) and use the fact that,

by (4), the first factor is bounded by c0. Moreover, the inequality (4) implies∥∥FA(s,t)

∥∥
L2(Σ)

≤ εc0. This and the Sobolev embedding W 1,2(Σ) ↪→ L4(Σ) imply

uniform estimates of the form

‖φ‖L4(Σ) ≤ c1 ‖dAφ‖L2(Σ) ,

‖α‖L4(Σ) ≤ c1

(
‖α‖L2(Σ) + ‖dAα‖L2(Σ) + ‖dA ∗s α‖L2(Σ)

)

for all (s, t) ∈ Ω, φ ∈ Ω0(Σ, gP ), and α ∈ Ω1(Σ, gP ) (see [2, Lemma 7.6]).
Applying this to φ = C and α = Bt we obtain

‖Bt‖L4(Σ) ‖C‖L4(Σ) ≤ c1
√
u0v0

and this leads to the required estimate. The term 〈Bt, ∗sd
2Xs(A)(Bt, Bt)〉 can

be estimated by ‖Bt‖2
L4(Σ) ≤ v0 + c2u0. A crucial observation is that the cubic

terms in f0 do not involve derivatives. The arguments in the subsequent steps for
the estimates of the higher derivatives are similar (see for example the inequality
|f1| ≤ v1 + c−1

3 (ε−1v0 + ε−2u0) on page 618).

Corollary 1.2. Let Ω ⊂ C be an open set and K ⊂ Ω be a compact subset.
Then for every constant c0 > 0, there exist constants ε0 > 0 and c > 0 such
that the following holds. If 0 < ε ≤ ε0 and Ξ = A+ Φ ds+ Ψ dt is a connection
on Ω × Σ that satisfies (1) and (4) then

‖Bt‖L∞(K×Σ) + ε ‖C‖L∞(K×Σ) ≤ c
(
‖Bt‖L2(Ω×Σ) + ε ‖C‖L2(Ω×Σ)

)
.

Proof. By Remark 1.1, the connection Ξ satisfies (7.4) in [2, page 615]. The
assertion follows by taking p = ∞. More precisely, (7.4) asserts that

‖Bt‖L∞(K×Σ) + ε ‖dAC‖L∞(K×Σ) ≤ c
(
‖Bt‖L2(Ω×Σ) + ε ‖C‖L2(Ω×Σ)

)
.

Since C + ε−2 ∗ FA = 0, it follows from (4) that ‖FA‖L2(Σ) ≤ εc0, hence
‖C‖L4(Σ) ≤ c1‖dAC‖L2(Σ), hence ‖FA‖L4(Σ) ≤ εc2 and, by [2, Lemma 7.6],
‖C‖L∞(Σ) ≤ c3‖dAC‖L4(Σ) ≤ c4‖dAC‖L∞(Σ).
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The next a priori estimate is an adaptation of [3, Lemma 9.1] to the present
context. It is needed in the bubbling analysis in Section 3.

Lemma 1.3. There is a constant δ0 > 0 with the following significance. Let
Ω ⊂ R2 be an open set and K ⊂ Ω be a compact subset. Then, for every c0 > 0
and every p ≥ 2, there are positive constants ε0 and c such that the following
holds. If 0 < ε ≤ ε0 and the maps A : Ω → A(P ) and Φ,Ψ : Ω → Ω0(Σ, gP )
satisfy (1) and

‖∂tA− dAΨ‖L∞(Ω×Σ) ≤ c0, ‖FA‖L∞(Ω×Σ) ≤ δ0, (5)

then ∫

K

(
‖FA‖p

L2(Σ) + εp ‖∇sFA‖p
L2(Σ) + εp ‖∇tFA‖p

L2(Σ)

)
≤ cε2p, (6)

sup
K

(
‖FA‖L2(Σ) + ε ‖∇sFA‖L2(Σ) + ε ‖∇tFA‖L2(Σ)

)
≤ cε2−2/p. (7)

The proof uses the following estimate. Denote by Br(z) ⊂ C the open ball
of radius r centered at z and abbreviate Br := Br(0).

Lemma 1.4 ([3]). Let u : BR+r → R be a C2-function and f, g : BR+r → R

be continuous such that

f ≤ g + ∆u, u ≥ 0, f ≥ 0, g ≥ 0.

Then ∫

BR

f ≤
∫

BR+r

g +
4

r2

∫

BR+r\BR

u.

Proof of Lemma 1.3. As in [2, Lemma 7.6] one can show that there exist con-
stants δ0 > 0 and c1 > 0 such that every A ∈ A(P ) with ‖FA‖L∞(Σ) ≤ δ0
satisfies the inequalities

‖φ‖ ≤ c1 ‖dAφ‖ ,
‖dA (∗sdXs(A)α + ∗̇sα)‖ ≤ c1 (‖α‖ + ‖dAα‖ + ‖dA ∗s α‖)

for s ∈ R, φ ∈ Ω0(Σ; gP ), and α ∈ Ω1(Σ; gP ). Here and in the following all
norms are L2-norms on Σ.

Now let A, Φ, Ψ satisy the hypotheses of the lemma and define

Bs := ∂sA− dAΦ, Bt := ∂tA− dAΨ, C := ∂tΦ − ∂sΨ − [Φ,Ψ]. (8)

Then the proof of [2, Theorem 7.1] shows that

ε2 (∇s∇sC + ∇t∇tC) = d∗s

A dAC − 2 ∗ [Bt ∧ Bt] + ∗[∗sXs(A) ∧Bt]

− ∗ dA (∗sdXs(A)Bt + ∗̇sBt) .
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Hence, with ∆ := ∂2/∂s2 + ∂2/∂t2 the standard Laplacian, we have

∆ ‖C‖2
= 2 ‖∇sC‖2

+ 2 ‖∇tC‖2
+ 2〈∇s∇sC + ∇t∇tC,C〉

= 2ε−4 ‖dA ∗s Bt‖2
+ 2ε−4 ‖dABt‖2

+ 2ε−2 ‖dAC‖2

− 4ε−2〈C, ∗[Bt ∧Bt]〉 + 2ε−2〈C, ∗[∗sXs(A) ∧ Bt]〉
− 2ε−2〈C, ∗dA (∗sdXs(A)Bt + ∗̇sBt)〉

≥ δ

ε2
‖C‖2 − c

ε2
‖C‖ .

The last inequality holds for ε ≤ ε0, with ε0 sufficiently small, and suitable
positive constants δ and c, depending only on δ0, c0, and c1 (as well as the

metrics on Σ and the vector fields Xs). Since 2∆ ‖C‖p ≥ p ‖C‖p−2
∆ ‖C‖2

for
p ≥ 2, this implies

‖C‖p ≤ c

δ
‖C‖p−1

+
2ε2

pδ
∆ ‖C‖p

.

Using the inequality ab ≤ ap/p + bq/q with 1/p + 1/q = 1, a := c/δ and

b := ‖C‖p−1
we obtain bq = ‖C‖p

, and hence

‖C‖p ≤ cp

δp
+

2ε2

δ
∆ ‖C‖p

. (9)

By Lemma 1.4, this implies that

∫

BR(z)

‖C‖p ≤ π(R+ r)2cp

δp
+

8ε2

r2δ

∫

BR+r(z)

‖C‖p
.

for every z ∈ C and every pair of positive real numbers R and r such that
BR+r(z) ⊂ Ω. Now observe that ε2 ‖C‖ = ‖FA‖ ≤ δ0Vol(Σ) and use the last
inequality repeatedly, with R replaced by R + r, R + 2r, . . . , R + (p − 1)r, to
obtain the estimate

∫
BR(z) ‖C‖

p ≤ cp for every z ∈ C such that BR+pr(z) ⊂ Ω.

Now choose R and r such that BR+pr(z) ⊂ Ω for every z ∈ K. Cover K by
finitely many balls of radius R to obtain

∫

K

‖FA‖p
= ε2p

∫

K

‖C‖p ≤ cK,pε
2p. (10)

It follows from (9) that the function z 7→ ‖C(z)‖p
+ cp |z − z0|2 /8δp−1ε2 is

subharmonic in Ω for every z0 ∈ C. Hence, by the mean value inequality
and (10), we have

sup
K

‖FA‖ = ε2 sup
K

‖C‖ ≤ cK,pε
2−2/p (11)

for a suitable constant cK,p. It follows from (10) and (11) that every connection
Ξ = A + Φ ds + Ψ dt on Ω × P that satisfies (1) and (5) also satisfies (4) in
every compact subset of Ω and hence, by Corollary 1.2, satisfies the hypotheses
of [2, Theorem 7.1]. Hence it follows from [2, Theorem 7.1] with p = ∞ that,
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for every open set U with cl(U) ⊂ Ω, there is a constant cU such that every
conection Ξ on Ω × P that satisfies (1) and (5) also satisfies the estimates

ε ‖∇sBt‖L∞(U×Σ) + ε ‖∇tBt‖L∞(U×Σ) ≤ cU ,

ε ‖C‖L∞(U×Σ) + ε2 ‖∇sC‖L∞(U×Σ) + ε2 ‖∇tC‖L∞(U×Σ) ≤ cU , (12)

‖C‖L2(U×Σ) + ε ‖∇sC‖L2(U×Σ) + ε ‖∇tC‖L2(U×Σ) ≤ cU .

Note that the last inequality is equivalent to (6) for p = 2.
Now consider the function u : U → R defined by

u(s, t)2 :=
1

2

(
‖C(s, t)‖2 + ε2 ‖∇sC(s, t)‖2 + ε2 ‖∇tC(s, t)‖2

)

Again all norms are L2-norms on Σ. In the following we shall assume, for
simplicity, that the Hodge ∗-operator ∗s = ∗ is independent of s and that
Xs = 0 for all s. Then, as in the proof of [2, Theorem 7.1], we have

∆u2 = ε−2 ‖dAC‖2
+ ‖∇sC‖2

+ ‖∇tC‖2
+ ‖dA∇sC‖2

+ ‖dA∇tC‖2

+ ε2 ‖∇s∇sC‖2
+ ε2 ‖∇t∇tC‖2

+ 2ε2 ‖∇s∇tC‖2

− 2ε2〈C, [∇sC,∇tC]〉 − 2ε−2〈C, ∗[Bt ∧Bt]〉
− 4〈∇sC, ∗[Bt ∧ ∇sBt]〉 − 4〈∇tC, ∗[Bt ∧ ∇tBt]〉
+ 〈dA∇sC, [Bs, C]〉 + 〈dA∇tC, [Bt, C]〉
− 〈∇sC, ∗[Bs ∧ ∗dAC]〉 − 〈∇tC, ∗[Bt ∧ ∗dAC]〉.

For ε sufficiently small it follows that

∆u2 ≥ δ

ε2
u2 − c

ε2
u

with suitable positive constants δ and c. To see this examine the last eight
terms in the formula for ∆u2 and use (12). Now it follows as in (9) that

up ≤ c

δ
up−1 +

2ε2

pδ
∆up

for p ≥ 2. By (11) and (12), we have u ≤ c′/ε for some constant c′. Hence we
can argue as above to show that, for every compact subset K ⊂ U , there is a
constant cK,p > 0 such that

∫
K
up ≤ cK,p and supK up ≤ cK,pε

−2. This proves
the lemma.

2 Exponential decay

The estimate f ′′ ≥ ρ2f in [2, page 623] does not follow from the preceding
inequalities. To prove it one needs the following refinement of [2, Lemma 7.5].
All norms are understood on [0, 1]×Σ. Norms without subscript are L2-norms.
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Lemma 2.1. Assume all H-flat connections on Pf are nondegenerate. Then
there are positive constants δ0, ε0, and c such that the following holds. If A+Φ ds
is a connection on Pf satisfying

‖FA‖L∞ + ‖∂sA− dAΦ −Xs(A)‖L∞ ≤ δ0

and 0 < ε ≤ ε0 then

‖α‖2 + ‖φ‖2 + ‖ψ‖2 ≤ c
(
‖∗s∇sα− ∗sdXs(A)α − ∗sdAφ− dAψ‖2

+ ε2
∥∥∇sψ − ε−2dAα

∥∥2
+ ε2

∥∥∇s ∗s φ+ ε−2dA ∗s α
∥∥2
)

(13)

for every infinitesimal connection α+ φ ds on Pf and every ψ ∈ Ω0(Σh, gPf
).

Proof. Suppose not. Then there are sequences εν → 0 and Aν + Φν ds ∈ A(Pf )
such that ‖FAν

‖L∞ +‖∂sAν − dAν
Φν −Xs(Aν)‖L∞ → 0 and (13) does not hold

with c = ν, ε = εν , A = Aν , Φ = Φν . The estimate (13) is gauge invariant.
Hence, by Uhlenbeck’s weak compactness theorem [6, 7], we may assume that
the sequence Aν + Φν ds is bounded in W 1,p (for some p > 3). Passing to a
subsequence, if necessary, we may assume that it converges, weakly in W 1,p and
strongly in L∞, to an H-flat connection A+Φ ds ∈ Aflat(Pf , H). Since A+Φ ds
is nondegenerate there are positive constants ν0 and c0 such that

‖α0‖ ≤ c0 ‖πAν
(∂sα0 + [Φν , α0] − dXs(Aν)α0)‖

for every path α0(s) ∈ H1
Aν(s) such that α0(s+ 1) = f∗α0(s) and every ν ≥ ν0.

Now the assertions of [1, Lemmata 7.3 and 7.4] continue to hold for connec-
tions A+Φ ds on Pf such that ‖FA‖L∞ is sufficiently small and the constants in
these lemmata depend continuously on ‖∂sA− dAΦ‖L∞ . Since ‖FAν

‖L∞ tends
to zero, the sequence ‖Xs(Aν)‖L∞ is bounded and so is ‖∂sAν − dAν

Φν‖L∞ .
Hence, by [1, Lemma 7.4], there is a constant c > 0 such that

‖α‖2 ≤ c
(
‖∗s∇sα− ∗sdXs(Aν)α− ∗sdAν

φ− dAν
ψ‖2

+ ε2
∥∥∇sψ − ε−2dAν

α
∥∥2

+ ε2
∥∥∇s ∗s φ+ ε−2dAν

∗s α
∥∥2
)

for every infinitesimal connection α + φ ds on Pf and every ψ ∈ Ω0(Σh, gPf
).

Here ∇s := ∂s + [Φν , ·]. Combining this with [1, Lemma 7.3] we find that the
connection Aν + Φν ds satisfies (13) for ν ≥ ν0 and some constant c > 0. This
contradicts our assumption on the sequence Aν + Φν ds and so the lemma is
proved.

Proof of [2, Theorem 7.4]. Let A+Φ ds+Ψ dt be a solution of (1-3) and let
Bs, Bt, C be given by (8). Assume

ε−1 ‖FA‖L∞(Σh×R) + ‖Bt‖L∞(Σh×R) ≤ c0,

ε−1 ‖FA‖L2(Σh×[0,∞)) + ‖Bt‖L2(Σh×[0,∞)) ≤ δ.
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Then, by Corollary 1.2, there is a constant c1 > 0 such that

ε−1 ‖FA‖L∞(Σh×{t}) + ‖∂sA− dAΦ −Xs(A)‖L∞(Σh×{t}) ≤ c1δ (14)

for t ≥ 1. Define

f(s) :=
1

2

∫ 1

0

(
‖Bt(s, t)‖2

L2(Σ,∗s) + ε2 ‖C(s, t)‖2
L2(Σ,∗s)

)
dt.

Then

f ′′(s) = 2 ‖∇sBt − dXs(A)Bt − dAC‖2
+ 2ε−2 ‖dABt‖2

− 3〈C, ∗s[Bt ∧ Bt]〉 + 〈∗sd
2Xs(A)(Bt, Bt), Bt〉.

(See [2, page 622].) By (14), the connection A(·, t) + Φ(·, t) ds ∈ A(Pf ) satisfies
the requirements of Lemma 2.1 for t ≥ 1 and δ sufficiently small. Applying
the estimate (13) to the triple α := Bt, φ := C, ψ := 0 and using the identity
∇s ∗s C + ε−2dA ∗s Bt = 0, we obtain

‖Bt‖2
+ ‖C‖2 ≤ c2

(
‖∇sBt − dXs(A)Bt − dAC‖2

+ ε−2 ‖dABt‖
)
.

(The mistake in [2] is the factor ε2 in front of ‖C‖2 in this inequality; it can
be removed because of the improved inequality in Lemma 2.1.) Combining
this with the identity for f ′′(s) and the fact that ‖Bt‖L∞ ≤ c1δ we obtain the
desired inequality f ′′(t) ≥ ρ2f(t) for t ≥ 1 and ρ > 0 sufficiently small. With
this understood the proof proceeds as in [2]. 2

3 Bubbling analysis

The assertion in [2, page 634] that the limit connection Ξ0 represents a non-
constant holomorphic sphere S2 → M(P ) does not seem to follow from the
argument in [2]. A modified bubbling argument will result in a nonconstant
holomorphic sphere but only proves a weaker estimate. More precisely, we
prove the following theorem instead of [2, Theorem 9.1].

Theorem 3.1. Let a± ∈ Aflat(Pf , H) and assume that either H ∈ Hreg
0 and

µH(a−, a+) ≤ 3, or CSH(a−) − CSH(a+) < 8π2. Then there exist positive
constants ε0 and c0 such that

ε−1 ‖FA‖L∞ + ‖∂tA− dAΨ‖L∞ ≤ c0 (15)

for every solution A, Φ, Ψ of (1-3) with 0 < ε ≤ ε0.

Remark 3.2. The assertion of [2, Theorem 8.1] continues to hold if the hy-
pothesis (8.1) is replaced by the weaker inequality (15). To see this, replace the

last inequality in [2, page 625] by ‖Cν‖Lp ≤ cε
2/p−1
ν or, equivalently,

‖FAν
‖Lp ≤ cε1+2/p

ν .
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For p = 2 this follows from the first inequality in [2, page 625, Step 2], for p = ∞
it holds by assumption, and for 2 ≤ p ≤ ∞ it follows by interpolation. Now

replace the constant ε2ν by ε
1+2/p
ν in the following places.

• In the inequality (8.4) on page 626.

• Replace the inequality ‖A′ −A‖Lp ≤ c2ε
2 by ‖A′ −A‖Lp ≤ c2ε

1+2/p in
the middle of page 626.

• In the first two inequalities after (8.9), in the first inequality after (8.10),
and in the first inequality in the proof of Step 5 (page 628).

• In the first inequality on page 629 and in the last inequality before (8.11).

The next theorem is a local version on [2, Theorem 8.1]. It is needed in the
proof of Theorem 3.1. Let Ων ⊂ C be an exhausting sequence of open sets and
sν , εν > 0, δν > 0 be seqences of real numbers such that sν → s0, εν → 0,
δν → 0. Abbreviate ∗νs := ∗sν+δνs and Xνs := δνXsν+δνs.

Theorem 3.3. Let Ξν = Aν + Φν ds + Ψν dt be a sequence of solutions of the
equations

∂tAν − dAν
Ψν + ∗νs(∂sAν − dAν

Φν −Xνs(A)) = 0,
∂tΦν − ∂sΨν − [Φν ,Ψν ] + ε−2

ν ∗ FAν
= 0,

(16)

on Ων × P such that

sup
ν

(
ε−1

ν ‖FAν
‖L2(Ων×Σ) + ‖∂tAν − dAν

Ψν‖L2(Ων×Σ)

)
<∞, (17)

sup
ν

(
ε−1

ν ‖FAν
‖L∞(Ων×Σ) + ‖∂tAν − dAν

Ψν‖L∞(Ων×Σ)

)
<∞.

Then there is a subsequence, still denoted by Ξν , a sequence of gauge transfor-
mations gν : Ων → G(P ), and a connection Ξ0 = A0 + Φ0 ds+ Ψ0 dt on C × P
such that

∂tA0 − dA0
Ψ0 + ∗s0

(∂sA0 − dA0
Φ0) = 0, FA0

= 0,

lim
ν→∞

(
‖g∗νAν −A0‖L∞(K×Σ) + sup

(s,t)∈K

∥∥g−1
ν Bνtgν −B0t

∥∥
L2(Σ)

)
= 0

for every compact subset K ⊂ C. Here we denote Bνt := ∂tAν − dAν
Ψν and

B0t := ∂tA0 − dA0
Ψ0.

Proof. We argue as in the proof of [2, Theorem 8.1, Step 3] and use Lemma 1.3
to obtain sharper estimates. More precisely, for every compact subset K ⊂ C

there is a constant νK > 0 such that, for every (s, t) ∈ K and every ν ≥ νK ,
there is a unique section ην(s, t) ∈ Ω0(Σ, gP ) such that

FA′

ν
= 0, A′

ν := Aν + ∗νsdAν
ην ,
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and
‖dAν

ην‖L∞(Σ) ≤ c1 ‖FAν
‖L∞(Σ) ≤ c2εν . (18)

Choose Φ′
ν(s, t),Ψ′

ν(s, t) ∈ Ω0(Σ, gP ) such that

dA′

ν
∗νs

(
∂sA

′
ν − dA′

ν
Φ′

ν −Xνs(A
′
ν)
)

= dA′

ν
∗νs

(
∂tA

′
ν − dA′

ν
Ψ′

ν

)
= 0.

Note that the sequence Ξ′
ν = A′

ν + Φ′
ν ds + Ψ′

ν dt depends only on ν and not
on the compact set K in question. One proves exactly as in [2, pages 626–627]
that the sequence Ξ′

ν satisfies the estimates

‖Ξ′
ν − Ξν‖1,p,ε;K ≤ cK,pε

1+2/p
ν , (19)

‖B′
νt‖L∞(K×Σ) ≤ cK , (20)

‖B′
νt + ∗νs (B′

νs −Xνs(A
′
ν))‖Lp(K×Σ) ≤ cK,pε

1+2/p
ν , (21)

for every compact set K ⊂ C and every p ≥ 2, with suitable positive constants
cK and cK,p. In addition we wish to prove the estimate

sup
K

‖B′
νt −Bνt‖L2(Σ) ≤ cK

√
εν . (22)

To see this recall the identities (8.5-7) from [2]. They have the form

B′
t −Bt = dA′(Ψ′ − Ψ) + ∗sdA∇tη + ∗s[Bt, η],

dA ∗s dA(Ψ′ − Ψ) = dA ∗s Bt − [dABt, η] − [FA,∇tη]

−[(A′ − A) ∧ ([dA∇tη + [Bt, η])] (23)

dA ∗s dA∇tη = −dABt − [dA∇tη ∧ dAη] − [[Bt, η] ∧ dAη]

−2[Bt ∧ ∗sdAη] − [dA ∗s Bt, η]

Here we have dropped the subscript ν. Since

dABt = ∇tFA, dA ∗s Bt = dABs = ∇sFA

we obtain from Lemma 1.3 that, for every compact set K ⊂ C, there is a
constant c′K > 0 such that

sup
K

(
‖dABt‖L2(Σ) + ‖dA ∗s Bt‖L2(Σ)

)
≤ c′K

√
ε.

Hence it follows from (18) and the last equation in (23) that

sup
K

‖dA∇tη‖L2(Σ) ≤ c′′K
√
ε.

Using this estimate and the second equation in (23) we obtain

sup
K

‖dA(Ψ′ − Ψ)‖L2(Σ) ≤ c′′′K

√
ε.
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Combining the last two estimates with the first equation in (23) we obtain (22).
Now Ξ′

ν descends to a sequence

ū′ν : K → M(P )

of approximate holomorphic curves (see (21)) with uniformly bounded deriva-
tives (see (20)). We must prove that the sequence ū′

ν is bounded in W 2,p for
some p > 2. By the elliptic bootstrapping analysis for holomorphic curves
(see [4, Appendix B]), this is equivalent to a W 1,p-bound on ∂̄J (ū′ν). To obtain
such a bound we examine the following formula from [2, page 627]:

B′
t + ∗s(B

′
s −Xs(A

′)) = ∗s∗̇sdAη − [Xs(A), η] − ∗s(Xs(A
′) −Xs(A))

+ [(A′ −A),∇sη] − ∗s[(A
′ −A),∇tη] (24)

−dA′(Ψ′ − Ψ + ∇sη) − ∗sdA′(Φ′ − Φ −∇tη).

To begin with observe that, by Lemma 1.3, we have estimates of the form

∫

K

(
‖dABt‖p

L2(Σ) + ‖dA ∗s Bt‖p
L2(Σ)

)
≤ cK,pε

p.

Carrying the argument in the proof of Lemma 1.3 one step further we obtain
estimates for the second derivatives of the curvature and hence

∫

K

(
‖dA∇sBt‖p

L2(Σ) + ‖dA ∗s ∇sBt‖p
L2(Σ)

)
≤ cK,p;

similarly for ∇t. Differentiate the identities in (23) to obtain

∫

K

(
‖dA∇s∇sη‖p

L2(Σ) + ‖dA∇t∇tη‖p
L2(Σ) + ‖dA∇s∇tη‖p

L2(Σ)

)
≤ cK,p,

∫

K

(
‖dA∇s(Ψ

′ − Ψ)‖p
L2(Σ) + ‖dA∇t(Ψ

′ − Ψ)‖p
L2(Σ)

)
≤ cK,p.

Combining these estimates with (24) we obtain

∫

K

‖∇s(B
′
t + ∗s(B

′
s −Xs(A

′)))‖p
L2(Σ) ≤ cK,p,

and similarly for ∇t. This is the required W 1,p-estimate for ∂̄J(ū′ν). It follows
that ū′ν is bounded in W 2,p and hence has a C1-convergent subsequence. The
limit of this subsequence is the required holomorphic curve in M(P ). The
assertion of the theorem now follows from (22) and the C1-convergence of ū′ν .

Proof of Theorem 3.1. Suppose, by contradiction, that there are sequences εν → 0
and Ξν = Aν + Φν ds+ Ψν dt such that Ξν satisfies (1-3) with ε = εν and

ε−1
ν ‖FAν

‖L∞ + ‖∂tAν − dAν
Ψν‖L∞ → ∞.
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For each ν define the energy density eν : R2 → R by

eν(s, t) := ε−1
ν

∥∥FAν(s,t)

∥∥
L2(Σ)

+
∥∥∂tAν(s, t) − dAν(s,t)Ψν(s, t)

∥∥
L2(Σ,∗s)

.

By Corollary 1.2, and the time shift invariance of equation (1), this sequence is
unbounded. Passing to a subsequence, we may assume that there is a sequence
wν = (sν , tν) ∈ [0, 1] × R such that eν(wν) → ∞. Applying a time shift,
and passing to a further subsequence, we may assume that wν converges to
w0 = (s0, t0). Using Hofer’s lemma ([2, Lemma 9.3]), we may assume that there
is a sequence of real numbers 0 < ρν < 1/2 such that

sup
|w−wν |≤ρν

eν(w) ≤ 2eν(wν), ρνeν(wν) → ∞.

There are three cases to consider.

Case 1: ενeν(wν) → ∞. In this case a nontrivial instanton on S4 bubbles off.
The argument is standard (see [2, pages 630–631]).

Case 2: ενeν(wν) → 1. In this case a nontrivial instanton on C × Σ bubbles
off. The bubbling analysis relies on an asymptotic analysis of finite energy
solutions of (1) over C×Σ and on the resulting energy quantization. In [2, pages
632–633] this argument is only sketched. In [3, Proposition 11.1] an analogous
argument has been carried out in a situation where the space of connections
on P is replaced by a finite dimensional symplectic manifold equipped with a
Hamiltonian group action. The adaptation of the proof to the present case is
straight forward.

Case 3: ενeν(wν) → 0. In this case a nonconstant holomorphic sphere in the
moduli space M(P ) := Aflat(P )/G(P ) of flat connections bubbles off. Abbrevi-
ate cν := eν(wν) and consider the rescaled sequence

Ãν(w) := Aν(wν + c−1
ν w),

Φ̃ν(w) := c−1
ν Φν(wν + c−1

ν w), Ψ̃ν(w) := c−1
ν Ψν(wν + c−1

ν w).

This triple satisfies (16) and (17) with δν := c−1
ν , εν replaced by ε̃ν := ενcν , and

Ων := Bρνcν
. By assumption, we have

∥∥∥∂tÃν − d eAν
Ψ̃ν

∥∥∥
L2(Σ)

+
1

ε̃ν

∥∥∥F eAν

∥∥∥
L2(Σ)

=
eν(wν + c−1

ν w)

eν(wν)
≤ 2 (25)

for |w| ≤ ρνcν and

∥∥∥∂tÃν(0) − d eAν(0)Ψ̃ν(0)
∥∥∥

L2(Σ)
+

1

ε̃ν

∥∥∥F eAν(0)

∥∥∥
L2(Σ)

= 1. (26)

It follows from (25) and Corollary 1.2 that, for every compact subset K ⊂ C,
there are positive constants νK and cK such that, for every ν ≥ νK ,

∥∥∥∂tÃν − d eAν
Ψ̃ν

∥∥∥
L∞(K×Σ)

+
1

ε̃ν

∥∥∥F eAν

∥∥∥
L∞(K×Σ)

≤ cK . (27)
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Hence Ξ̃ν = Ãν + Φ̃ν ds + Ψ̃ν dt satisfies all the requirements of Theorem 3.3.
The limit connection Ξ0 represents a finite energy holomorphic sphere in the
symplectic quotient M(P ). We prove that it is nonconstant. Namely, by (27)
and Lemma 1.3, we have

lim
ν→∞

1

ε̃ν

∥∥∥F eAν(0)

∥∥∥
L2(Σ)

= 0.

Hence, by Theorem 3.3 and (26),

∥∥∂tA0(0) − dA0(0)Ψ0(0)
∥∥

L2(Σ)
= lim

ν→∞

∥∥∥∂tÃν(0) − d eAν(0)Ψ̃ν(0)
∥∥∥

L2(Σ)
= 1.

This concludes the discussion of case 3.
Since the bubbling in all three cases results in nontrivial instantons, respec-

tively nonconstant holomorphic spheres, we can argue as in [2, pages 624–625]
to obtain a contradiction. Thus the theorem is proved.

One can now use Theorem 3.1 and the strenthened form of [2, Theorem 8.1]
in Remark 3.2 to prove [2, Theorem 9.2].
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