Functional Analysis – Lecture script

Prof. D. Salamon

February 12, 2007

Coordinating: Lukas Lewark

Writing: Urs Fuchs, Saša Parađ, Andrin Schmidt

Correcting: Philipp Arbenz, David Umbricht, Dominik Staub, Thomas Rast

If you want to be informed in case of a new version or if you find any mistakes please write to llewark@student.ethz.ch.

Warning: We are sure there are lots of mistakes in these notes. Use at your own risk! Corrections would be appreciated and can be sent to mitschriften@vmp.ethz.ch; please always state what version (look in the Id line below) you found the error in. For further information see:

http://wmp.ethz.ch/wiki/index.php/Vorlesungsmitschriften

\$Id: fa.tex 1894 2007-02-12 15:05:18 charon\$

${\bf Contents}$

0	Introduction				
1	Bas	ic Notions	2		
	1.1	Finite dimensional vector spaces	2		
	1.2	Linear Operators	5		
	1.3	Infinite dimensional vector spaces	6		
	1.4	The Theorem of Arzela-Ascoli	8		
	1.5	The Baire Category Theorem	12		
	1.6	Dual spaces	15		
	1.7	Quotient spaces	21		
2	Functional Analysis 22				
	2.1	Basics	22		
	2.2	Product spaces	25		
	2.3	Extension of bounded linear functionals	29		
	2.4	Reflexive Banach Spaces	34		
3	The weak and weak* topologies 38				
	3.1	The weak topology	38		
	3.2	The weak* topology	40		
	3.3	Ergodic measures	50		
4	Compact operators and Fredholm theory 56				
	4.1	Compact operators	56		
	4.2	Fredholm operators	60		
5	Spectral Theory				
	5.1	Eigenvectors	65		
	5.2	Integrals	66		
	5.3	Compact operators on Banach spaces	73		
	5.4	Spectral Measure	78		
6	Unl	bounded operators	84		
Τn	dex		89		

0 Introduction 25.10.2006

0 Introduction

Remark: Functional Analysis can be viewed as a combination of linear algebra and topology:

Linear Algebra	Topology	Functional Analysis
vector spaces	metric spaces	normed vector spaces
linear maps	continuous maps	continuous linear maps
subspaces	closed subsets	closed subspaces

The vector spaces concerned in Functional Analysis generally have infinite dimension.

1 Basic Notions 25.10.2006

1 Basic Notions

1.1 Finite dimensional vector spaces

Definition: A normed vector space is a pair $(X, \| \cdot \|)$ where X is a vector space (we consider only real spaces) and $X \to [0, \infty), x \mapsto \|x\|$ is a norm, i.e.

- 1. $||x|| = 0 \iff x = 0$
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\| \ \forall x \in X, \lambda \in \mathbb{R}$
- 3. $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in X$

Remark: A norm induces a *metric* on the vector space, by d(x,y) := ||x-y||.

Definition: A Banach space is a complete normed vector space (X, ||.||), i.e. every Cauchy sequence in (X, d) converges.

Definition: Two norms $\|\cdot\|_1, \|\cdot\|_2$ on a real vector space X are called *equivalent*, if

$$\exists c > 0 \ \forall x \in X : \frac{1}{c} \|x\|_1 \le \|x\|_2 \le c \|x\|_1.$$

Example:

1.
$$X = \mathbb{R}^n, x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad 1$$

$$||x||_{\infty} := \max\{|x_i| \mid 1 \le i \le n\}$$

2. (M, \mathcal{A}, μ) measure space

$$L^p(\mu) = \{ f : M \to \mathbb{R} \mid f \text{ measurable }, \int_M |f|^p d\mu < \infty \} /_{\sim}$$

where \sim means equal almost everywhere.

$$||f||_p := \left(\int_M |f|^p d\mu\right)^{\frac{1}{p}}, 1 \le p < \infty$$

 $(L^p(\mu),\|\cdot\|_p)$ is a Banach space, and if $M=\{1,\ldots,n\}$ we get Example 1.

3. Let M be a locally compact and hausdorff topologic space.

$$C_c(M) := \{ f : M \to \mathbb{R} \mid f \text{ is continuous and has compact support} \}$$

$$||f||_{\infty} := \sup_{m \in M} \{|f(m)|\}$$

Combine 2. and 3.:

Let $\mathcal{B} \subset 2^M$ be the Borel σ -Algebra and $\mu : \mathcal{B} \to [0, \infty]$ a Radon measure. Then one can define $||f||_p$, $||f||_\infty$ for all $f \in C_c(M)$. These two norms are not equivalent, because there are Cauchy sequences converging in $||\cdot||_\infty$ which are not convergent in $||\cdot||_p$, e.g.

$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n = \begin{cases} \left(\frac{1}{n}\right)^{\frac{1}{p}} & x \in [0, n] \\ 0 & \text{otherwise} \end{cases}$$

Basic Notions 25.10.2006

4.

$$X = C_b^k(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid f \in C^k \text{ and}$$

$$\sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f(x)| < \infty \forall \alpha = (\alpha_1, \dots \alpha_n) \in \mathbb{N}^n \}$$

$$\|f\|_{c^k} := \sup_{|\alpha| \le k} \sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f(x)| = \sup_{|\alpha| \le k} \|\partial^{\alpha} f\|_{\infty}$$

with $|\alpha| := \alpha_1 + \ldots + \alpha_n$.

The normed vector space $(C_b^k(\mathbb{R}^n), \|.\|_{c^k})$ is called *Sobolev space*.

Lemma 1: Let X be a finite dimensional vector space. \Rightarrow Any two norms on X are equivalent.

Proof: w.l.o.g. $X = \mathbb{R}^n$

Let $e_1, \ldots, e_n \in X$ be the standard basis of X. Let $\mathbb{R}^n \to \mathbb{R} : x \mapsto ||x||$ be any norm and

$$c := \sqrt{\sum_{i=1}^{n} \|e_i\|^2}$$

$$\Rightarrow ||x|| = ||\sum_{i=1}^{n} x_i e_i|| \tag{1}$$

$$\leq \sum_{i=1}^{n} \|x_i e_i\| \tag{2}$$

$$= \sum_{i=1}^{n} |x_i| \|e_i\| \quad \text{by Cauchy-Schwarz}$$
 (3)

$$\leq \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} \|e_i\|^2}$$
(4)

$$= c||x||_2 \tag{5}$$

That proves one half of the inequality.

It follows that the function $\mathbb{R}^n \to \mathbb{R} : x \mapsto ||x||$ is continuous with respect to the Euclidian norm on \mathbb{R}^n :

$$|||x|| - ||y||| \le ||x - y|| \le c||x - y||_2$$

The set $S^n := \{x \in \mathbb{R}^n \mid ||x||_2 = 1\}$ is compact with respect to the Euclidian norm.

$$\Rightarrow \exists x_0 \in S \forall x \in S^n : ||x|| \ge ||x_0|| =: \delta > 0$$
$$\Rightarrow \forall x \in \mathbb{R}^n : \frac{x}{||x||_2} \in S^n$$

and so

$$\left\| \frac{x}{\|x\|_2} \right\| \ge \delta$$

and therefore

$$||x|| \ge \delta ||x||_2$$

Which is the other half of the inequality.

Lemma 2: Every finite dimensional vector space $(X, \|\cdot\|)$ is complete.

Proof: True for $(\mathbb{R}^n, \|\cdot\|_2)$.

- \Rightarrow true for \mathbb{R}^n with any norm.
- \Rightarrow true for any finite dimensional vector space.

Basic Notions 25.10.2006

Lemma 3: Let $(X, \|\cdot\|)$ be any normed vector space and $Y \subset X$ a finite dimensional linear subspace.

 $\Rightarrow Y$ is a closed subset of X.

Proof: Y is a finite dimensional normed vector space. $\stackrel{\text{Lemma 2}}{\Rightarrow} Y \text{ is complete.}$

$$(y_n)_{n\in\mathbb{N}}\subset Y,\quad \lim_{n\to\infty}y_n=y\in X$$

 $\stackrel{Y \text{ complete}}{\Rightarrow} y \in Y$ $\Rightarrow Y$ is closed.

Theorem 1: Let $(X, \|.\|)$ be a normed vector space and $B := \{x \in X \mid \|x\| \le 1\}$ be the unit ball. Then

$$\dim(X) < \infty \iff B \text{ is compact.}$$

Proof of Theorem 1, "⇒": Let e_1, \ldots, e_n be a basis of X and define $T: \mathbb{R}^n \to X$ by $T\xi := \sum_{i=1}^n \xi_i e_i$ \Rightarrow The function $\mathbb{R}^n \to \mathbb{R}: \xi \mapsto \|T\xi\|$ is a norm on \mathbb{R}^n

$$\overset{\text{Lemma 1}}{\Rightarrow} \exists c > 0 \ \forall \xi \in \mathbb{R}^n : \max_{i=1,\dots,n} |\xi_i| \le c ||T\xi||$$

Let $(x^{\nu})_{\nu \in \mathbb{N}} \in B$ be any sequence and denote $\xi^{\nu} = (\xi_1^{\nu}, \dots, \xi_n^{\nu}) := T^{-1}x^{\nu}$

$$\Rightarrow |\xi_i^{\nu}| \le c ||T\xi^{\nu}|| = c ||x^{\nu}|| \le c$$

 $\stackrel{\text{Heine-Borel}}{\Rightarrow} (\xi^{\nu})_{\nu \in \mathbb{N}} \text{ has a convergent subsequence } (\xi^{\nu_k})_{k \in \mathbb{R}, \nu_1 < \nu_2 < \dots}$

 $\Rightarrow (\xi_i^{\nu_k})_{k \in \mathbb{N}}$ converges in \mathbb{R} for $i = 1, \dots, n$

 $\Rightarrow x^{\nu_k} = \xi_1^{\nu_k} e_1 + \ldots + \xi_n^{\nu_k} e_n$ converges; so B is sequentially compact.

We use that on metric spaces sequential compactness and compactness defined by existence of finite subcoverings are equivalent; that will be proven in Theorem 2.

Lemma 4: $0 < \delta < 1, (X, \|\cdot\|)$ a normed vector space, $Y \subseteq X$ a closed subspace.

$$\Rightarrow \exists x \in X \text{ so that } \|x\| = 1, \inf_{y \in Y} \|x - y\| > 1 - \delta$$

Proof: Let $x_0 \in X \setminus Y$. Denote

$$d := \inf_{y \in Y} ||x_0 - y|| > 0$$

 $(d > 0 \text{ because } Y \text{ is closed.}) \exists y_0 \in Y \text{ so that } ||x_0 - y_0|| < \frac{d}{1 - \delta}$ Let $x := \frac{x_0 - y_0}{\|x_0 - y_0\|} \implies \|x\| = 1$

$$\|x - y\| = \left\| \frac{x_0 - y_0}{\|x_0 - y_0\|} - y \right\| = \frac{1}{\|x_0 - y_0\|} \|x_0 - \underbrace{y_0 - \|x_0 - y_0\|y\|}_{\geq d} \ge \frac{d}{\|x_0 - y_0\|} > 1 - \delta$$

1 Basic Notions 26.10.2006

Proof of Theorem 1, "\Leftarrow": Suppose dim(X) = ∞ We construct a sequence $x_1, x_2 \dots$ in B so that

$$||x_i - x_j|| \ge \frac{1}{2} \forall i \ne j$$

Then $(x_i)_{i\in\mathbb{N}}$ has no convergent subsequence.

We construct by induction sets $\{x_1, \ldots, x_n\} \subset B$ so that $||x_i - x_j|| \ge \frac{1}{2} \forall i \ne j$

n = 1: pick any vector $x \in B$.

 $n \geq 1$: Suppose x_1, \ldots, x_n have been constructed.

Define

$$Y := \operatorname{span}\{x_1, \dots, x_n\} = \left\{ \sum_{i_1}^n \lambda_i x_i \mid \lambda_i \in \mathbb{R} \right\} \subsetneq X$$

 $\Rightarrow Y$ is closed.

So by Lemma 4 $\exists x_{n+1} \in X$ so that

$$||x_{n+1}|| = 1, ||x_{n+1} - y|| \ge \frac{1}{2} \ \forall y \in Y$$

$$\Rightarrow ||x_{n+1} - x_i|| \ge \frac{1}{2} \ \forall i = 1, \dots, n$$

This completes the inductive construction of the sequence.

1.2 Linear Operators

 $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ normed vector spaces.

Definition: A linear operator $T: X \to Y$ is called *bounded* if $\exists c > 0 \forall x \in X: \|Tx\|_Y \le c\|x\|_X$

The number $||T|| := \sup_{x \in X, x \neq 0} \frac{||Tx|||_Y}{||x||_X}$ is called the *norm* of T.

Notation: $\mathcal{L}(X,Y) := \{T : X \to Y \mid T \text{ is a bounded linear operator}\}$ is a normed vector space, and complete whenever Y is complete. (Analysis II)

Lemma 5: $T: X \to Y$ linear operator. Equivalent are

- i. T is bounded
- ii. T is continuous
- iii. T is continuous at 0.

Proof: i. \Rightarrow ii. $||Tx - Ty||_Y \le ||T|| ||x - y||_X \Rightarrow$ Lipschitz continuous

ii. \Rightarrow iii. trivial

iii. \Rightarrow i. $\varepsilon = 1 \Rightarrow \exists \delta > 0 \, \forall x \in X$:

$$\begin{aligned} \|x\|_X &\leq \delta \Rightarrow \|Tx\|_Y \leq 1 \\ 0 &\neq x \in X \Rightarrow \left\| \frac{\delta x}{\|x\|_X} \right\|_X = \delta \\ &\Rightarrow \left\| \frac{\delta Tx}{\|x\|_X} \right\|_Y \leq 1 \\ &\Rightarrow \|Tx\|_Y \leq \underbrace{\frac{1}{\delta}}_{c} \|x\|_X \end{aligned}$$

Lemma 6: Let X, Y be normed vector spaces of finite dimension \Rightarrow every linear operator $T: X \to Y$ is bounded.

Proof: Choose a basis $e_1, \ldots e_n \in X$.

a)

$$c_1 := \sum_{i=1}^n \|Te_1\|_Y$$

b) The map

$$\mathbb{R}^n \to \mathbb{R} : (x_1, \dots x_n) \to \left\| \sum_{i=1}^n x_i e_i \right\|_{Y}$$

is a norm on \mathbb{R}^n . By Lemma 1, $\exists c_2 > 0$ so that

$$\max_{i=1,\dots n} |x_i| \le c_2 \left\| \sum_{i=1}^n x_i e_i \right\|_X \quad \forall (x_1,\dots x_n) \in \mathbb{R}^n$$

a)&b) $\Rightarrow \forall x = \sum_{i=1}^{n} x_i e_i \in X$ we have

$$||Tx||_{Y} = \left\| \sum_{i=1}^{n} x_{i} T e_{i} \right\|_{Y} \le \sum_{i=1}^{n} |x_{i}| \cdot ||Te_{i}||_{Y}$$

$$\le (\max_{i} |x_{i}|) \cdot \sum_{i=1}^{n} ||Te_{i}||_{Y} = c_{i} \max |x_{i}| < c_{1} c_{2} ||x||_{X}$$

What for infinite dimensions?

Infinite dimensional vector spaces

Example 1: Let $X = C^1([0,1];X), ||x||_X := \sup_{0 \le t \le 1} |f(t)|, Y = \mathbb{R}$ and $Tx := \dot{x}(0)$. T is linear and not bounded. This is not a Banach space.

Example 2: X infinite dimensional.

 $\exists \{e_i\}_{i\in I} \text{ basis of } X \text{ with } ||e_i|| = 1 \,\forall i \in I \text{ (the axiom of choice is needed to prove}$ this for any vector space).

Choose sequence i_1, i_2, \ldots

Define
$$c_i := \begin{cases} k, i = i_k \\ 0, i \notin \{i_1, i_2, \ldots\} \end{cases}$$

Define $T: X \to \mathbb{R}$ by

$$T\left(\underbrace{\sum_{i \in I} \lambda_i e_i}_{\text{finite sum}}\right) = \sum_{i \in I} \lambda_i c_i$$
$$Te_{i_k} = \lambda_{i_k} = k$$

We found three incidences where finite and infinite dimensional space differ:

- Compactness of the unit ball (see Theorem 1)
- Completeness (see Lemma 2)
- Boundedness of Linear Functionals (see Lemma 6 and Example 1)

Definition: A metric space (M, d) is called *totally bounded* if

$$\forall \varepsilon > 0 \ \exists x_1, \dots, x_m \in M : M = \bigcup_{i=1}^m B_{\varepsilon}(x_i)$$

where

$$B_{\varepsilon}(x) := \{ x' \in M \mid d(x, x') < \varepsilon \}$$

1 Basic Notions 26.10.2006

Theorem 2: Let (M, d) be a metric space. Equivalent are:

i. Every sequence has a convergent subsequence (sequential compactness).

ii. Every open cover has a finite subcover (compactness).

iii. (M, d) is totally bounded and complete.

Proof: i. \Rightarrow ii.:

 $\mathcal{T}(M,d) \subset 2^M$ set of open subsets of M.

Let $\mathcal{U} \subset \mathcal{T}(M,d)$ be an open cover of M.

Step 1

$$\exists \varepsilon > 0 \ \forall x \in M \ \exists U \in \mathcal{U} \text{ so that } B_{\varepsilon}(x) \subset U$$

Suppose $\forall \varepsilon > 0 \ \exists x \in M \ \forall U \in \mathcal{U} \text{ so that } B_{\varepsilon}(x) \not\subset U.$

Pick $\varepsilon = \frac{1}{n}$

$$\Rightarrow \exists x_n \in M \ \forall U \in \mathcal{U} : B_{\frac{1}{n}}(x_n) \not\subset U$$

By i. \exists convergent subsequence $x_{n_k} \to x \in M$.

Choose $U \in \mathcal{U}$ so that $x \in U$; choose $\varepsilon > 0$ so that $B_{\varepsilon} \subset U$.

Choose k so that $d(x, x_{n_k}) < \frac{\varepsilon}{2}$ and $\frac{1}{n} < \frac{\varepsilon}{2}$.

$$\Rightarrow B_{\frac{1}{n_k}}(x_{n_k}) \subset B_{\frac{\varepsilon}{2}}(x_{n_k}) \subset B_{\varepsilon}(x) \subset U$$

 \Rightarrow contradiction.

Step 2 \mathcal{U} has a finite subcover.

Suppose not.

Let $\varepsilon > 0$ be as in Step 1.

Construct sequences $x_1, x_2, \ldots \in M$ and $U_1, U_2, \ldots \in \mathcal{U}$ so that

$$B_{\varepsilon}(x_n) \subset U_n$$
 and $x_n \notin U_1, \dots U_{n-1}$

 x_n can be chosen like that because otherwise the $U_1, \ldots U_{n-1}$ would form a finite subcover.

Pick any $x_i \in M$.

By Step 1 $\exists U_i \in \mathcal{U}$ so that $B_{\varepsilon}(x_i) \subset U_i$.

Suppose x_1, \ldots, x_n and U_1, \ldots, U_n have been found.

 $\Rightarrow U_1 \cup U_2 \cup \ldots \cup U_n \neq M$

 $\Rightarrow x_{n+1} \in M \setminus (U_1 \cup U_2 \cup \ldots \cup U_n)$

By Step 1 $\exists U_{n+1} \in \mathcal{U}$ so that $B_{\varepsilon}(x_{n+1}) \subset U_{n+1}$

Given the sequences $(x_k)_{k\in\mathbb{N}}, (U_k)_{k\in\mathbb{N}}$ we observe:

For $k < n : B_{\varepsilon}(x_k) \subset U_k, x_n \notin U_k$

So $d(x_n, x_k) \geq \varepsilon$

 $\Rightarrow d(x_k, x_n) \ge \varepsilon \, \forall k \ne n$

 \Rightarrow There is no convergent subsequence.

ii. \Rightarrow iii.:

Assume every open cover has a finite subcover.

a. Take

$$\mathcal{U} := \{ B_{\varepsilon}(x) \mid x \in M \}$$

Then $\exists x_1, \dots x_m \in M$ so that

$$\bigcup_{i=1}^{m} B_{\varepsilon}(x_i) = M$$

So M is totally bounded.

1 Basic Notions 26.10.2006

b. (M, d) is complete:

Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence.

Assume $(x_n)_{n\in\mathbb{N}}$ does not converge.

 \Rightarrow (x_n) has no convergent subsequence.

 \Rightarrow (x_n) has no limit point.

 $\Rightarrow \forall \xi \in M \ \exists \varepsilon(\xi) > 0 \text{ so that the set } \{n \in \mathbb{N} \mid x_n \in B_{\varepsilon(\xi)}(\xi)\} \text{ is finite.}$

Take $\mathcal{U} := \{B_{\varepsilon(\xi)}(\xi) \mid \xi \in M\}.$

Then \mathcal{U} has no finite subcover.

iii. \Rightarrow i.:

Assume (M, d) is totally bounded and complete.

Let $(x_n)_{n\in\mathbb{N}}$ be any sequence in M.

Claim: There is a sequence of infinite subsets

$$\mathbb{N} \supset T_0 \supset T_1 \supset \dots$$

such that $d(x_n, x_m) \leq 2^{-k} \, \forall x_n, x_m \in T_k$.

Cover M by finitely many balls

$$\bigcup_{i=1}^{m} B_{\frac{1}{2}}(\xi_i) = M$$

 $\Rightarrow \exists i \text{ so that the set } \{n \in \mathbb{N} \mid x_n \in B_{\frac{1}{2}}(\xi_i)\} =: T_0 \text{ is infinite.}$

Then $\forall n, m \in T_0$ we have

$$d(x_n, x_m) \le d(x_n, \xi_i) + d(\xi_i, x_m) < 1$$

Suppose T_{k-1} has been constructed.

Cover M by finitely many balls

$$M = \bigcup_{i=1}^{m} B_{\frac{1}{2^{k+1}}}(\xi_i)$$

Then $\exists i$ so that the set

$$T_k := \{ n \in T_{k-1} \mid x_n \in B_{\frac{1}{2^{k+1}}}(\xi_i) \}$$

is infinite.

 $\Rightarrow \forall n, m \in T_k$:

$$d(x_n, x_m) < d(x_n, \xi_i) + d(\xi_i, x_m) < \frac{1}{2^k}$$

Claim $\Rightarrow \exists$ convergent subsequence.

Pick $n_1 < n_2 < \dots$ so that $n_k \in T_k$.

 $\Rightarrow n_l, n_k \in T_k \ \forall l \ge k$

 $\Rightarrow d(x_{n_k}, x_{n_l}) \le \frac{1}{2^k} \, \forall l \ge k$

 \Rightarrow The sequence $(x_k)_{k\in\mathbb{N}}$ is Cauchy.

 $\stackrel{M \text{ complete}}{\Rightarrow}$ The sequence converges.

1.4 The Theorem of Arzela-Ascoli

Definition: (M,d) metric space. A subset $D \subset M$ is called *dense* if

$$\forall x \in M \ \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap D \neq \emptyset$$

Definition: A metric space (M, d) is called *separable* if it contains a countable dense subset.

Corollary: Every compact metric space (M, d) is separable.

Proof: Given $n \in \mathbb{N}$.

$$\exists \xi_1, \dots \xi_n \in M : M = \bigcup_{i=1}^n B_{\frac{1}{n}}(\xi_i)$$

Define

$$D_n := \{\xi_1, \dots \xi_n\}$$

Define

$$D = \bigcup_{i=1}^{\infty} D_n \subset M$$

D is countable.

Given $x \in M, \varepsilon > 0$, pick $n \in \mathbb{N}$ so that $\frac{1}{n} < \varepsilon$. Then $\exists \xi \in D_n$ so that $x \in B_{\frac{1}{n}}(\xi)$.

$$\Rightarrow x \in B_{\varepsilon}(\xi), \xi \in D \quad \Rightarrow \quad B_{\varepsilon}(x) \cap D \neq \emptyset$$

So D is dense.

Exercise: (X, d_X) compact metric space, (Y, d_Y) complete metric space and

$$C(X,Y) := \{ f : X \to Y \mid f \text{ continuous} \}$$

$$d(f,g) := \sup_{x \in X} d_Y(f(x), g(x)) < \infty \ \forall f, g \in C(X, Y)$$

Show that (C(X,Y),d) is a complete metric space.

This is exercis 1a) on Series 2.

Definition: A subset $\mathcal{F} \subset C(X,Y)$ is called *equicontinuous* if

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \forall x, y \in X \,\forall f \in \mathcal{F} : d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon$$

Theorem 3 (Arzela-Ascoli): (X, d_X) compact metric space and (Y, d_Y) complete metric space, $\mathcal{F} \subset C(X, Y)$. Equivalent are:

- i. \mathcal{F} is compact.
- ii. \mathcal{F} is closed, equicontinuous and $\mathcal{F}(x) := \{f(x) \mid f \in \mathcal{F}\} \subset Y$ is compact for every $x \in X$.

Proof: i. \Rightarrow ii.:

- \mathcal{F} is closed (every compact set in a metric space is closed).
- Fix $x \in X$. Then the evaluation map $\operatorname{ev}_x : \mathcal{F} \to Y, \operatorname{ev}_x(f) := f(x)$ is continous. So $\operatorname{ev}_x(\mathcal{F}) = \mathcal{F}(x)$ is compact.
- Pick $\varepsilon > 0$. $\exists f_1, \dots, f_m \in \mathcal{F}$ so that $\mathcal{F} \subset \bigcup_{i=1}^m B_{\varepsilon}(f_i)$ Choose $\delta > 0$ so that $\forall i \forall x, x' \in X$:

$$d_X(x, x') < \delta \Rightarrow d_Y(f_i(x), f_i(x')) < \varepsilon$$

Given $f \in \mathcal{F}$ choose i so that $d(f, f_i) < \varepsilon$. Now for x, x' with $d_X(x, x') < \delta$:

$$d_Y(f(x), f(x')) \leq \underbrace{d(f(x), f_i(x))}_{<\varepsilon} + \underbrace{d(f_i(x), f_i(x'))}_{<\varepsilon} + \underbrace{d(f_i(x'), f(x'))}_{<\varepsilon} < 3\varepsilon$$

ii. \Rightarrow i.:

To Show: \mathcal{F} is compact. Let $f_n \in \mathcal{F}$ be any sequence.

We know that X is separable, i.e. there is countable dense subset $D \subset X$ with D in the form $D = \{x_1, x_2, \ldots\}$.

Claim 1 There is a subsequence $g_i := f_{n_i}$ so that the sequence $g_i(x_k) \in Y$ converges as $i \to \infty$ for every $k \in \mathbb{N}$.

Proof of Claim 1 $\mathcal{F}(x_i)$ is compact and $f_n(x_1) \in \mathcal{F}(x_i)$. Thus there is a subsequence $(f_{n_{1,i}})_i$ so that $(f_{n_{1,i}}(x_1))_i$ converges. By the same argument there is a subsequence $(f_{n_{2,i}})_i$ of $(f_{n_{1,i}})_i$ so that $(f_{n_{2,i}}(x_2))_i$ converges. Induction: There is a sequence of subsequences $(f_{n_{k,i}})_{i=1}^{\infty}$ so that

- $(f_{n_{k,i}}(x_k))_{i=1}^{\infty}$ converges as $i \to \infty$.
- $(f_{n_{k+1,i}})_{i=1}^{\infty}$ is a subsequence of $(f_{n_{k,i}})_i$ for every $k \in \mathbb{N}$.

Define $g_i := f_{n_{i,i}}$, that is the Diagonal sequence construction. This satisfies $g_i(x_k)$ converges for all $k \in \mathbb{N}$ as $i \to \infty$. But we want more: Namely, convergence in the whole of X, not only D, and uniform convergence.

Claim 2: $(g_i)_i$ is a Cauchy sequence in C(X,Y).

With Claim 2:

Since C(X,Y) is complete the sequence g_i converges. Since \mathcal{F} is closed, its limit belongs to \mathcal{F} .

Proof of Claim 2:

• Choose $\varepsilon > 0$ and $\delta > 0$ as in the definition of equicontinuity, i.e.

Condition 1

$$\forall x, x' \in X \forall f \in \mathcal{F}: d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) < \varepsilon$$

• Since D is dense in X we have

$$X = \bigcup_{k=1}^{\infty} B_{\delta}(x_k)$$

By Theorem 2

Condition 2

$$\exists m \in \mathbb{N} : \quad X = \bigcup_{k=1}^{m} B_{\delta}(x_k)$$

• Since $(g_i(x_k))_{i=1}^{\infty}$ is Cauchy for every $k \in \{1, \dots n\}$:

Condition 3

Condition 4

$$\exists N \in \mathbb{N} \forall i, j > N \forall k \in \{1, \dots m\} : d_Y(g_i(x_k), g_j(x_k)) < \varepsilon$$

We prove: $i, j \geq N \Rightarrow d(g_i, g_j) < 3\varepsilon$. Remember that

$$d(g_i, g_j) := \sup_{x \in X} d_Y(g_i(x), g_j(x))$$

Fix an element $x \in X$.

By Condition $2 \exists k \in \{1, \dots n\}$ so that $d_X(x, x_k) < \delta$.

By Condition 1

$$\forall i \in \mathbb{N} : d_Y(g_i(x), g_i(x_k)) < \varepsilon$$

$$i, j \ge N \Rightarrow d_Y(g_i(x), g_j(x)) \le$$

$$d_Y(g_i(x), g_i(x_k)) + d_Y(g_i(x_k), g_j(x_k)) + d_Y(g_i(x_k), g_j(x))$$

And this is, by Condition 3 and 4, smaller than $\varepsilon + \varepsilon + \varepsilon = 3\varepsilon$.

Looking closely at the proof, one can weaken the three condition of the theorem of Arzéla-Ascoli.

Theorem 3' (Arzéla-Ascoli revisited): Let (X, d_X) be compact, (Y, d_Y) complete metric spaces and $\mathcal{F} \subset C(X, Y)$. Equivalent are

- (i) \mathcal{F} has a compact closure.
- (ii) \mathcal{F} is equicontinuous and $\mathcal{F}(x) \subset Y$ has a compact closure $\forall x \in X$.

Proof: $\overline{\mathcal{F}}$ is the closure of \mathcal{F} in C(X,Y). From (i) it follows that $\overline{\mathcal{F}}(x) = \overline{\mathcal{F}(x)} \forall x \in X$.

- $\overline{\mathcal{F}}(x) \subset \overline{\mathcal{F}(x)}$ is always true and an exercise.
- $\overline{\mathcal{F}}(x) \supset \overline{\mathcal{F}(x)}$. Proof:

Let $y \in \overline{\mathcal{F}(x)} \Rightarrow \exists$ sequence $y_k \in \mathcal{F}(x), y_k \to y$.

 $\Rightarrow \exists f_k \in \mathcal{F} \text{ so that } f_k(x) = y_k.$

 $\Rightarrow f_k$ has a convergent subsequence $f_{k_i} \to f \in C(X,Y)$ where $f_{k_i} \in \mathcal{F}$ and $f \in \overline{\mathcal{F}}$.

So
$$y = f(x) \in \overline{\mathcal{F}}(x)$$
.

"(i) \Rightarrow (ii)" \mathcal{F} is equicontinuous by Theorem 4 for $\overline{\mathcal{F}}$.

 $\overline{\mathcal{F}(x)} = \overline{\mathcal{F}}(x)$ which is compact by Theorem 3.

"(ii) \Rightarrow (i)" Claim 1 and Claim 2 in Theorem 3 only use (ii) in Theorem 3. So every sequence in \mathcal{F} has a Cauchy subsequence.

Lemma 7: Let (M,d) be a complete metric space, $A \subset M$ any subset. Equivalent are

- (i) A has a compact closure.
- (ii) Every sequence in A has a Cauchy subsequence.

Proof: " $(i) \Rightarrow (ii)$ " follows directly from the definitions.

"(ii) \Rightarrow (i)". Let $x_n \in \overline{A}$ be any sequence $\Rightarrow \exists a_n \in A$ so that $d(x_n, a_n) < \frac{1}{n}$. $\Rightarrow \exists$ Cauchy subsequence $(a_{n_i})_{i=1}^{\infty}$. $\Rightarrow (x_{n_i})_{i=1}^{\infty}$ is Cauchy. Because (M, d) is complete $\Rightarrow (x_{n_i})$ converges (to another element of \overline{A}).

Special case: $Y = \mathbb{R}^n$, (X, d_X) compact metric space. $\mathfrak{X} = C(X, \mathbb{R}^n)$ is a normed vector space.

$$||f|| := \sup_{x \in X} |f(x)|_{\mathbb{R}^n}$$

Theorem 4': Let $\mathcal{F} \subset C(X, \mathbb{R}^n)$. Equivalent are

- (i) \mathcal{F} has a compact closure.
- (ii) \mathcal{F} is equicontinuous and bounded.

Proof: Theorem 3' (A subset of \mathbb{R}^n has a compact clousre if and only if it is bounded). So condition (ii) in Theorem 4' implies Condition (ii) in Theorem 3' with $Y = \mathbb{R}^n$. Moreover an unbounded subset of $C(X, \mathbb{R}^n)$ cannot be compact.

Theorem 4: Let $\mathcal{F} \subset C(X, \mathbb{R}^n)$. Equivalent are

- (i) \mathcal{F} is compact.
- (ii) \mathcal{F} is closed, bounded and equicontinuous.

Proof: Corollary of Theorem 4'.

This again highlights the difference between finite and infinite dimensional vector spaces, as far as compactness is concerned.

1.5 The Baire Category Theorem

Example for an open and dense set: $\mathbb{Q} \subset \mathbb{R}$. Let $\mathbb{Q} = \{x_1, x_2, \ldots\}$. Let

$$U := \bigcup_{k=1}^{\infty} \left(x_k - \frac{\varepsilon}{2^k}, x_k + \frac{\varepsilon}{2^k} \right)$$

$$\mu^{\text{Leb}}(U) \le \sum_{k=1}^{\infty} \frac{2\varepsilon}{2^k} = 2\varepsilon$$

U is open and dense.

Theorem 5: Let (M, d) be a complete metric space.

(i) If $U_1, U_2, U_3, \ldots \subset M$ is a sequence of open and dense subset then

$$D := \bigcap_{i=1}^{\infty} U_i$$

is dense in M.

(ii) $M \neq \emptyset$ and $A_1, A_2, A_3, \ldots \subset M$ is a sequence of closed subsets so that

$$M = \bigcup_{i=1}^{\infty} A_i$$

Then $\exists i$ so that A_i contains an open ball.

Example:

1. $M = \mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x\}$ and \mathbb{R} complete; so \mathbb{R} uncountable.

2.
$$M = \mathbb{Q} = \bigcup_{x \in \mathbb{O}} \{x\}$$
 is not complete.

The proof is not so hard. It depends on one ingenious observation which has many important consequences.

Proof:

(i) Let $x \in X$ and $\varepsilon > 0$. To show: $B_{\varepsilon}(x) \cap D \neq \emptyset$. Let $B := B_{\varepsilon}(x) = \{ y \in M \mid d(x,y) < \varepsilon \}$. Since U_i is dense $B \cap U_i \neq \emptyset$. Choose $x_1 \in B \cap U_1$. $B \cap U_1$ open $\Rightarrow \exists \varepsilon_1 > 0, \varepsilon_1 \leq \frac{1}{2}$ so that

$$\overline{B_{\varepsilon_1}(x_1)} \subset B \cap U_1$$

Since U_2 is dense, $B_{\varepsilon_1}(x_1) \cap U_2 \neq \emptyset$. Choose $x_2 \in B_{\varepsilon_1}(x_1) \cap U_2$. Because $B_{\varepsilon_1}(x) \cap U_2$ is open, $\exists x_2 > 0$ so that

$$\overline{B_{\varepsilon_2}(x_2)} \subset B_{\varepsilon_1}(x_1) \cap U_2$$

and $0 < \varepsilon_2 \le \frac{1}{4}$.

By Induction one gets a sequence

$$x_k \in M, 0 < \varepsilon_k \le \frac{1}{2^k}$$

so that

$$\overline{B_{\varepsilon_k}(x_k)} \subset B_{\varepsilon_{k-1}}(x_{k-1}) \cap U_k$$

In particular $x_k \in B_{\varepsilon_{k-1}}(x_{k-1})$, i.e.

$$d(x_k, x_{k-1}) < \varepsilon_{k-1} \le \frac{1}{2^{k-1}}$$

So x_k is a Cauchy sequence in M, which converges, because M is complete. Let $x^* := \lim_{k \to \infty} x_k$. Note:

$$\overline{B_{\varepsilon_1}(x_1)} \supset \overline{B_{\varepsilon_2}(x_2)} \supset \overline{B_{\varepsilon_3}(x_3)} \supset \dots$$

So $x_{\ell} \in \overline{B_{\varepsilon_k}(x_k)} \forall \ell \geq k$ and thus $x^* \in \overline{B_{\varepsilon_k}(x_k)} \subset U_k \forall k$. So $x^* \in D = \bigcap_{k=1}^{\infty} U_k$. Also $x^* \in \overline{B_{\varepsilon_k}(x_i)} \subset B$ so $B \cap D \neq \emptyset$.

(ii) Let $U_i := M \setminus A_i$, open. Suppose (by contradiction) that A_i does not contain any open ball for every i. So U_i is open and dense. By (i) $\bigcap_{i=1}^{\infty} U_i$ is dense; thus $M \setminus \bigcup_{i=1}^{\infty} A_i \neq \emptyset \Rightarrow M \neq \bigcup_{i=1}^{\infty} A_i$.

Reminder Let $A \subset M$, then $A^{\circ} = \operatorname{int}(A) = \{x \in M \mid \exists \varepsilon > 0 \text{ such that } B_{\varepsilon}(x) \subset A\}$ is the *interior* of A.

Definition:

- Let (M,d) be a metric space. $A\subset M$ is called *nowhere dense* if \overline{A} has empty interior.
- $A \subset M$ is said to be of 1st category in the sense of Baire if $A = \bigcup_{i=1}^{\infty} A_i$, where $A_i \subset M$ is nowhere dense.
- $A \subset M$ is said to be of 2nd category if it is not of the 1st category.
- $A \subset M$ is called *residual* if $M \setminus A$ is of the 1st category.

Notation: cat(A) = 1 or 2.

Example:

- $\mathbb{Z} \subset \mathbb{R}$ is nowhere dense.
- $\mathbb{Q} \subset \mathbb{R}$ is of the 1st category.

Rules:

- 1. If $A \subset B$: $cat(B) = 1 \Rightarrow cat(A) = 1$
- $2. \cot(A) = 2 \Rightarrow \cot(B) = 2$
- 3. $A = \bigcup_{i=1}^{\infty} A_i$, $cat(A_i) = 1 \Rightarrow cat(A) = 1$

Lemma 8: (M,d) complete metric space, $R \subset M$. Equivalent are:

- (i) R is residual
- (ii) $R \supset \bigcap_{i=1}^{\infty} U_i$ with U_i open, dense.

Proof:

(i) \Rightarrow (ii) R residual, $A := M \setminus R \Rightarrow \operatorname{cat}(A) = 1$

$$\Rightarrow A = \bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} \overline{A_i}$$

where A_i is nowhere dense. Then $U_i := M \setminus \overline{A_i}$ is open and dense.

$$\Rightarrow R = M \setminus A \supset M \setminus \left(\bigcup_{i=1}^{\infty} \overline{A_i}\right) = \bigcap \left(M \setminus \overline{A_i}\right) = \bigcap U_i$$

(ii) \Rightarrow (i) Assume $U_i \subset M$ open, dense and $\bigcap_{i=1}^{\infty} U_i \subset R$

$$A := M \setminus R \Rightarrow R = M \setminus \bigcap U_i = \bigcup (M \setminus U_i)$$

with $M \setminus U_i$ nowhere dense $\forall i \in \mathbb{N} \Rightarrow \operatorname{cat}(A) = 1$.

Theorem 6 (Baire Category Theorem): Let (M,d) be a complete metric space and $M \neq \emptyset$. Then

- (i) cat(M) = 2
- (ii) If $A \subset M$, then $cat(A) = 1 \Rightarrow cat(M \setminus A) = 2$
- (iii) If $A \subset M$, then $cat(A) = 1 \Rightarrow M \setminus A$ is dense
- (iv) $\emptyset \neq U \subset M$ open $\Rightarrow Cat(U) = 2$
- (v) $A = \bigcup_{i=1}^{\infty} A_i$, A_i closed with $A_i^{\circ} = \emptyset \Rightarrow A^{\circ} = \emptyset$
- (vi) $U = \bigcap_{i=1}^{\infty} U_i$ with $U_i \subset M$ open and dense $\Rightarrow U$ is dense in M

Proof:

- (i) Suppose $\operatorname{cat}(M) = 1 \Rightarrow M = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$ A_i is nowhere dense \Rightarrow (by Thm 5) one of the $\overline{A_i}$ contains an open ball. Contradiction.
- (ii) $cat(M \setminus A \cup A) = cat(M) = 2 \Rightarrow cat(M \setminus A) = 2$ using the above rules.
- (iii) Lemma 8 and Theorem 5 (ii)
- (iv) $U \subset M$ open, nonempty $\Rightarrow U$ contains an open ball $\Rightarrow M \setminus U$ is not dense. $\Rightarrow \operatorname{cat}(U) = 2$
- (v) $A = \bigcup_{i=1}^{\infty} A_i \text{ closed } A_i^{\circ} = \emptyset \Rightarrow \text{cat}(A) = 1 \Rightarrow \text{(by (iv))} A \text{ does not contain an open ball} \Rightarrow A^{\circ} = \emptyset$
- (vi) Theorem 5 (i)

Exercise: Even if (M, d) is not complete, we have (iii) \Leftrightarrow (iv) \Leftrightarrow (vi) An Application of Baire's theorem is the following

Theorem 7 (Banach 1931):

 $\mathcal{R} := \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous and nowhere differentiable}\}$

is residual in C([0,1]).

Proof: Denote

$$U_n := \left\{ f \in C([0,1]) \left| \sup_{\substack{0 < |h| \le 1 \\ t+h \in [0,1]}} \left| \frac{f(t+h) - f(t)}{h} \right| > n \quad \forall t \in [0,1] \right\}$$

Claim 1 $\mathcal{R} \supset \bigcap_{i=1}^{\infty} U_n$

Claim 2 U_n is open \rightarrow . Exercise.

Claim 3 U_n is dense.

Proof of Claim 3 Fix $n \in \mathbb{N}$. Let $g \in C([0,1])$ and $\varepsilon > 0$.

To show: $B_{\varepsilon}(g) \cap U_n \neq \emptyset$

By Weierstrass there is a polynomial $p: \mathbb{R} \to \mathbb{R}$ such that

$$||g - p|| = \sup_{t \in [0,1]} |g(t) - p(t)| < \varepsilon/2$$

We must find an $f \in U_n$ such that $||f - p|| < \varepsilon/2$. Trick: Define $z : \mathbb{R} \to \mathbb{R}$ by $z_{\lambda}(t) := \lambda z(\frac{t}{\lambda^2})$

 $|\dot{z}(t)|=1$ and $|z_{\lambda}(t)|=\frac{1}{\lambda}$ Idea: Choose $f(t)=p(t)+z_{\lambda}(t)$ then $\|f-p\|=\|z_{\lambda}|=\lambda$

$$\left|\frac{f(t+h)-f(t)}{h}\right| \geq \underbrace{\left|\frac{z(t+h)-z(t)}{h}\right|}_{\geq \frac{1}{\lambda} \text{ if h is small}} - \underbrace{\left|\frac{p(t+h)-p(t)}{h}\right|}_{\leq \sup_{t \in [0,1]} \left|\frac{d}{dt}p(t)\right| = :c}$$

$$\geq \frac{1}{\lambda} - c > n \text{ if } \lambda \text{ is small} \Rightarrow f \in U_n$$

Proof of Claim 2 See Zehnder's notes.

1.6 Dual spaces

Let $(X, \|\cdot\|)$ be a Banach space. Three examples for dual spaces:

Example 1: If X = H is a *Hilbert space*, i.e. there is an inner product $H \times H \to \mathbb{R} : (x,y) \mapsto \langle x,y \rangle$ so that

$$||x|| = \sqrt{\langle x, x \rangle}$$

Each $x \in H$ determines a bounded linear functional $\Lambda_x : H \to \mathbb{R}$ via

$$\Lambda_x(y) := \langle x, y \rangle$$

The map $H \to H^* : x \mapsto \Lambda_x$ is a Banach space isometry, i.e. a bilinear map preserving the norms, so $H \cong H^*$. The difficult part of the proof is that (1) is onto (Proof in Measure and Integration).

Example 2: Let (M, \mathcal{A}, μ) be a σ -finite measure space and

$$X = L^p(\mu) = \left\{ f : M \to \mathbb{R} \mid \int_M |f|^p d\mu < \infty \right\} / \sim$$

and

$$||f||_p = \left(\int_M |f|^p d\mu\right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

In the measure and integration course it was shown that

$$X^* \cong L^q(\mu), \quad 1 < q \le \infty, \quad \frac{1}{p} + \frac{1}{q} = 1$$

More precisely the map

$$L^q(\mu) \to L^p(\mu)^* : g \mapsto \Lambda_g$$

$$\Lambda_g(f) := \int_M f g \, \mathrm{d}\mu$$

is a Banach space isometry. Again it's easy to prove that

$$||g||_q = ||\Lambda_g|| = \sup_{0 \neq f \in L^p} \frac{\left| \int_M fg \, \mathrm{d}\mu \right|}{||f||_p}$$

and the hard part is that

$$\forall \Lambda \in L^p(\mu)^* : \exists g \in L^q(\mu) \text{ so that } \Lambda = \Lambda_g.$$

Proof in Measure and Integration.

Example 3: Let (M,d) be a compact metric space. Consider $X=C(M)=\{f:M\to\mathbb{R}\mid f\text{ is continuous}\}$. Let

$$||f|| := \sup_{p \in M} |f(p)|$$

That X is a Banach space is already known from Analysis I & II.

$$X^* = \{\text{All real Borelmeasures on } M\} =: \mathcal{M}$$

Let $\mathcal{B} \subset 2^M$ be the Borel σ -Algebra and a σ -additive $\lambda : \mathcal{B} \to \mathbb{R}$ a real (Borel) measure.

Define $\varphi_{\lambda}: C(M) \to \mathbb{R}$ by

$$\varphi_{\lambda}(f) := \int_{M} f \, \mathrm{d}\lambda$$

Easy: φ_{λ} is bounded and $\|\varphi_{\lambda}\| = \|\lambda\| = |\lambda|(M)$.

The map $\mathcal{M} \to C(M)^* : \lambda \to \varphi_{\lambda}$ is linear. But why is this map surjective?

Exercise with Hints:

1. $\mathcal{U} \subset M$ open $\Rightarrow \mathcal{U}$ is σ -compact.

$$U = \bigcup_{n=1}^{\infty} K_n, \quad K_n := \{ x \in M \mid B_{\frac{1}{n}}(x) \subset U \}$$

- 2. Every finite Borel measure $\mu: \mathcal{B} \to [0, \infty)$ is a Radon measure because of 1.
- 3. Riesz Representation Theorem

$$\varphi:C(M)\to\mathbb{R}$$

positive linear functional, i.e. if $f \in C(M)$ and $f > 0 \Rightarrow \varphi(f) > 0$, e.g.

$$\varphi(f) = \int_{M} f \, \mathrm{d}\mu$$

4. For every bounded linear functional $\varphi: C(M) \to \mathbb{R}$ there are two positive linear functionals $\varphi^{\pm}: C(M) \to \mathbb{R}$, s.t. $\varphi = \varphi^{+} - \varphi^{-}$.

Hint: For f > 0 define

$$\psi(f) := \sup \{ \varphi(f_1) - \varphi(f_2) \mid f_1 + f_2 = f, f_1, f_2 \in C(M), f_1 \ge 0, f_2 \ge 0 \}$$

$$\psi(f) \in \mathbb{R}_0^+. \text{ Claim: } \psi(f + g) = \psi(f) + \psi(g).$$

For $f: M \to \mathbb{R}$ continuous define $f^{\pm}(x) := \max\{\pm f(x), 0\} \Rightarrow f = f^+ - f^-, f^{\pm}$ continuous and nonnegative.

Define $\psi(f) := \psi(f^{+}) - \psi(f^{-})$.

To show: $\psi: C(M) \to \mathbb{R}$ is bounded and linear.

$$f \geq 0 \Rightarrow \psi(f) \geq |\varphi(f)|, \quad \varphi^{\pm} := \frac{1}{2}(\psi \pm \varphi)$$

 φ^{\pm} are positive.

Definition: Let (M,d) be a metric space. A completion of (M,d) is triple (M^*, d^*, ι) where

- 1. (M^*, d^*) is a complete metric space
- 2. $\iota: M \to M^*$ is an isometric embedding i.e. $d^*(\iota(x), \iota(y)) = d(x, y) \quad \forall x, y \in M$
- 3. The image $\iota(M)$ is dense subset of M^* .

Definition: $(M_1, d_1), (M_2, d_2)$ metric spaces A map $\phi: M_1 \to M_2$ is called an *isometry*, if it is bijective and $d_2(\phi(x), \phi(y)) = d_1(x, y) \quad \forall x, y \in M$.

Theorem 8:

- (i) Every metric space (M, d) admits a completion.
- (ii) If (M_1, d_1, ι_1) and (M_2, d_2, ι_2) are completions of (M, d), then there exists a unique isometry $\phi: M_1 \to M_2$ such that $\phi \circ \iota_1 = \iota_2$

Proof:

- (i) Uniqueness → Exercise, the standard uniqueness proof for objects with universal property.
- (ii) Existence

Construction 1 $M^* := \{\text{Cauchy sequence in M}\}/_{\sim}$

$$\begin{aligned} &(x_n) \sim (y_n) \Leftrightarrow \lim_{n \to \infty} d(x_n, y_n) = 0 \\ &\iota(x) := \{ [(x_n)] \text{ where } x_i = x \quad \forall i \in \mathbb{N} \} \\ &d^*([(x_n)], [(y_n)]) := \lim_{n \to \infty} d(x_n, y_n). \end{aligned}$$

See Topology lecture.

Construction 2 Let $BC(M, \mathbb{R}) := \{ f : M \to \mathbb{R} \mid f \text{ is continuous and bounded} \}$ and $||f|| = \sup_{x \in M} |f(x)|$.

Fact: $BC(M, \mathbb{R})$ is a banach space.

Fix a point $x^* \in M$. For every $x \in M$ define the function $f_x : M \to \mathbb{R}$ by $f_x(y) := d(x,y) - d(x^*,y)$

- (a) f_x is continuous.
- (b) f_x is bounded because $|d(x,y) d(x^*,y)| \le d(x,x^*)$.
- (c) $i: M \to BC(M, \mathbb{R}): x \to f_x$ is an isometric embedding. For all $x, x' \in M$ we have:

$$d(f_x, f_{x'}) = ||f_x - f_{x'}|| \tag{6}$$

$$= \sup_{y \in M} |f_x(y) - f_{x'}(y)| \tag{7}$$

$$= \sup_{y \in M} |f_x(y) - f_{x'}(y)|$$

$$= \sup_{y \in M} |d(x, y) - d(x', y)|$$
(8)

$$= d(x, x') \text{ (set } y = x') \tag{9}$$

Now define $M^* := \operatorname{closure}(\{f_x \mid x \in M\})$ in $B(M, \mathbb{R}), d(f, g) :=$ ||f-g|| and $\iota(x) := f_x$.

Exercise: The completion of a normed vector space is a Banachspace. Hints: Let $(X, \|\cdot\|)$ be a normed vector space and define the metric on X by $d(x,y) := \|x-y\| \quad \forall x,y \in X$

- 1. Let (X', d', ι) be a completion of (X, d). Then there is a unique pair of vector space structure and norm on X' such that
 - (i) $X \to X'$ is linear
 - (ii) $\|\iota(x)\|' = \|x\| \quad \forall x \in X$
 - (iii) $d'(x', y') = ||x' y'||' \quad \forall x', y' \in X'$
- 2. If $(X_1, \|\cdot\|_1, \iota_1)$ and $(X_2, \|\cdot\|_2, \iota_2)$ are two completions of $(X, \|\cdot\|)$ then the isometry $\phi: X_1 \to X_2$ in Theorem 9(ii) is linear.

Example: $X = C([0, 1]) \ni f$

$$||f|| := \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}} \quad 1 \le p < \infty$$

The completion of $(X, \|\cdot\|_p)$ is $L^p([0,1])$ with respect to the Lebesgue measure on [0,1].

More general: Replace [0,1] by a locally compact Hausdorff space M and Lebesgue by a Radonmeasure.

Exercise: $(X, \|\cdot\|)$ normed vector space.

The functions $X \to \mathbb{R} : x \to ||x||, X \times X \to X : (x,y) \to x+y$ and $\mathbb{R} \times X \to X : (\lambda,x) \mapsto \lambda x$ are continuous.

Let M be any set. Then $B(M,X) = \{f : M \to X \mid \text{ f is bounded}\}\$

with $||f|| := \sup_{x \in M} |f(x)| < \infty$ is a normed vector space.

 $X \text{ complete} \Rightarrow B(M, X) \text{ is complete.}$

(M,d) metric space $\Rightarrow BC(M,X) := \{f: M \to X \mid \text{ f is continuous and bounded} \}$ is a closed subspace of B(M,X). Recapitulation:

- 1. Any two norms on a finite dim. vector space are equivalent (Lemma 1).
- 2. Every finite dimensional normed vector space is complete (Lemma 2).
- 3. Every finite dimensional subspace of a normed vector space is closed (Lemma 3).
- 4. A normed vector space $(X, \|\cdot\|)$ is finite dimensional if and only if the unit ball $B := \{x \in X \mid \|x\| \le 1\}$ (resp. the unit sphere $S := \{x \in X \mid \|x\| = 1\}$) is compact (Theorem 1).
- 5. $(X, \|\cdot\|), (Y, \|\cdot\|)$ normed vector space $A: X \to Y$ linear operator. X is finite dimensional \Leftrightarrow Every linear operator $A: X \to Y$ is bounded (Lemma 6).

Definition: $\mathcal{L}(X,Y) := \{A : X \to Y \mid A \text{ is linear and bounded}\}$

$$||A|| := \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Ax||_Y}{||x||_X}$$

Theorem 9: Let X, Y, Z be normed vector spaces.

- (i) $\mathcal{L}(X,Y)$ is a normed vector space.
- (ii) Y complete $\Rightarrow \mathcal{L}(X,Y)$ is complete.
- (iii) $A \in \mathcal{L}(X,Y), B \in \mathcal{L}(Y,Z) \Rightarrow BA \in \mathcal{L}(X,Z)$ and $||BA|| \le ||B|| ||A||$ (*)

Moreover the map $\mathcal{L}(X,Y) \times \mathcal{L}(Y,Z) \to \mathcal{L}(X,Z)$, $(A,B) \mapsto BA$ is continuous.

Proof:

(i) Verify axioms.

(iii) $||BAx||_Z \le ||B|| ||Ax||_Y \le ||B|| ||A|| ||x||_X$ This implies (*). Moreover: $||B_2A_2 - B_1A_1|| \stackrel{(*)}{\le} ||B_2 - B_1|| ||A_2|| + ||B_1|| ||A_2 - A_1||$ Now do $\varepsilon, \delta \dots$

(ii) Assume Y is complete. Let $(A_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in $\mathcal{L}(X,Y)$.

$$||A_n x - A_m x||_Y \le ||A_n - A_m|| ||x||_X$$

This shows: For each $x \in X$ the sequence $(A_n x)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y.

Because Y is complete the sequence $(A_n x)_{n \in \mathbb{N}}$ converges for every $x \in X$. Define $A: X \to Y$ by $Ax := \lim_{n \to \infty} A_n x \Rightarrow A$ is linear.

Claim: A is bounded and A_n converges to A in $\mathcal{L}(X,Y)$.

Proof: Let $\varepsilon > 0$. There $\exists n_0 \in \mathbb{N}$ such that

$$\forall m, n \in \mathbb{N} : n, m \ge n_0 \Rightarrow ||A_n - A_m|| < \varepsilon$$

Hence for $n, m \ge n_0$:

$$||A_n x - A_m x||_Y = ||A_n x - \lim_{n \to \infty} A_m x||_Y$$

$$= \lim_{n \to \infty} ||A_n x - A_m x||_Y$$

$$\leq \lim_{n \to \infty} ||A_n - A_m|| ||x||_X$$

$$\leq \varepsilon ||x||_X$$

So

$$||Ax||_Y \le ||Ax - A_nx||_Y + ||A_nx||_Y$$

 $\le \varepsilon ||x||_X + ||A_n|| ||x||_X$
 $= (\varepsilon + ||A_n||) ||x||_X$

So A is bounded and $||A|| \leq ||A_n|| + \varepsilon$, moreover

$$||A_n - A|| := \sup_{x \neq 0} \frac{||A_n x - Ax||_Y}{||x||_X} \le \varepsilon$$

Example: $Y = \mathbb{R}$

 $X^* := \mathcal{L}(X, \mathbb{R})$ is a Banach space with the norm $||A|| := \sup_{x \neq 0} \frac{|Ax|}{||x||_X} X^*$ is called the *dual space* of X.

Example: $(L^p)^* = L^q$ where $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. See the Measure and Integration lecture for the proof.

Theorem 10: Let X be a normed vector space, Y Banach space. Let $(A_i)_{i\in\mathbb{N}}$ be a sequence of bounded linear operators such that $\sum_{i=1}^{\infty}\|A_i\|<\infty$ Then the sequence $S_n:=\sum_{i=1}^n A_i$ converges in $\mathcal{L}(X,Y)$. The limit is denoted by $\sum_{i=1}^{\infty} A_i = \lim_{n\to\infty} \sum_{i=1}^n A_i$

Proof: $s_n := \sum_{i=1}^{\infty} ||A_i|| < \infty$ converges in \mathbb{R} .

$$||S_n - S_m|| = ||\sum_{i=m+1}^n A_i|| \le \sum_{i=m+1}^n ||A_i|| = s_n - s_m$$

 $\Rightarrow S_n$ is a Cauchy Sequence in $\mathcal{L}(X,Y)$.

 $\stackrel{\text{Thm } 9}{\Rightarrow} S_n$ converges.

Example: X = Y Banach space, $\mathcal{L}(X) := \mathcal{L}(X, X)$ Suppose $f(z) = \sum_{i=0}^{\infty} a_i z^i$ is a convergent power series with convergence radius

$$R := \frac{1}{\limsup_{n \to \infty} |a_n|^{\frac{1}{n}}} > 0$$

Let $A \in \mathcal{L}(X)$ be a bounded linear operator with ||A|| < R. Then $\sum_{i=0}^{\infty} |a_i| ||A^i|| \le$ $\sum_{i=0}^{\infty} |a_i| ||A||^i < \infty \stackrel{\text{Thm } 10}{\Rightarrow} \text{ the limit } f(A) := \sum_{i=0}^{\infty} a_i A^i = \lim_{n \to \infty} \sum_{i=0}^n a_i A^i$

Remark: Works also with $a_i \in \mathbb{C}$ if X is a complex Banach space.

Example: $f(z) = \sum_{i=0}^{\infty} z^{i} = \frac{1}{1-z}$

Corollary: $||A|| < 1 \Rightarrow 1 - A$ is bijective with inverse

$$(1-A)^{-1} = \sum_{i=0}^{\infty} A^i \in \mathcal{L}(X)$$

Proof: $S_n := 1 + A + A^2 + ... + A^n$ $||A|| < 1 \stackrel{\text{Thm } 10}{\Rightarrow}$ The sequence S_n converges. $S_{\infty} := \lim_{n \to \infty} S_n = \sum_{i=0}^{\infty} A^i$

$$S_n(1-A) = (1-A)S_n$$

= $1 + A + A^2 + \dots + A^n - A - \dots - A^{n+1}$
= $1 - A^{n+1} \longrightarrow 1$

$$\Rightarrow S_{\infty}(1-A) = (1-A)S_{\infty} = 1$$

Theorem 11: X Banach space, $A \in \mathcal{L}(X) \Rightarrow$

- (i) The limit $r_A := \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}} = \inf_{n > 0} \|A^n\|^{\frac{1}{n}} \le \|A\|$ exists. (It's called the *Spectral radius* of A.)
- (ii) $r_A < 1 \Rightarrow \sum_{i=0}^{\infty} ||A^i|| < \infty$ and $\sum_{i=0}^{\infty} A^i = (1-A)^{-1}$

Proof:

(i) Let $\alpha := \inf_{n>0} ||A||^{\frac{1}{n}}$. Let $\varepsilon > 0$. $\exists m \in \mathbb{N} \quad \|A^m\|^{\frac{1}{m}} < \alpha + \varepsilon$ $c := \max\{1, ||A||, \dots, ||A^{m-1}||\}$

Write an integer n > 0 in the form n = km + l $k \in \mathbb{N}_0, l \in \{0, 1, \dots m-1\}$

$$||A^n||^{\frac{1}{n}} = ||(A^m)^k A^l||^{\frac{1}{n}}$$
 (10)

$$\leq \|A^m\|^{\frac{k}{n}} \|A^l\|^{\frac{1}{n}}$$
 (11)

$$\leq c^{\frac{1}{n}}(\alpha + \varepsilon)^{\frac{km}{n}}$$
 (12)

$$= c^{\frac{1}{n}}(\alpha + \varepsilon)^{1 - \frac{l}{n}} \tag{13}$$

$$\xrightarrow{n \to \infty} \quad \alpha + \varepsilon \tag{14}$$

$$\Rightarrow \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \|A^n\|^{\frac{1}{n}} \le \alpha + 2\varepsilon$$
$$\Rightarrow \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}} = \alpha$$

(ii)
$$r_A < 1$$
. Choose $\alpha \in \mathbb{R} : r_A < \alpha < 1 \Rightarrow \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \|A^n\|^{\frac{1}{n}} < \alpha \Rightarrow \|A^n\| < \alpha^n \Rightarrow \sum_{i=0}^{\infty} \|A^i\| < \infty \overset{\text{Thm } 10}{\Rightarrow} \text{(ii)}$

1.7 Quotient spaces

Definition: Let X normed vector space, $Y \subset X$ closed subspace.

$$\begin{array}{l} x+Y:=\{x+y\mid y\in Y\}\subset X\\ x+Y=x'+Y\Leftrightarrow x'-x\in Y\Leftrightarrow:x\sim x'\\ X/Y:=X/_{\sim}=\{x+Y\mid x\in X\} \end{array}$$

Notation: [x] := x + Y for the equivalence class of $x \in X$

Remark: X/Y is a normed vector space with

$$||[x]||_{X/Y} := \inf_{y \in Y} ||x + y||_X$$

Exercise:

- 1. $\|\cdot\|_{X/Y}$ is a norm
- 2. X Banach space, Y closed subspace $\Rightarrow X/Y$ is a Banach space.

2 Functional Analysis

2.1 Basics

Theorem 1 (Uniform Boundedness): Let X be a Banach space, Y a normed vector space and I an arbitrary set. Let $A_i \in \mathcal{L}(X,Y)$ for $i \in I$ and assume $\forall x \in X : \sup_{i \in I} ||A_i(x)|| < \infty$.

The conclusion says that $\exists c > 0$ such that $\sup_{i \in I} ||A_i x|| \leq c \ \forall x \in X$ with $||x|| \leq 1$.

Lemma 1: (M,d) complete metric space $M \neq \emptyset$, I any set. $f_i: M \to \mathbb{R}$ continuous for $i \in I$. Assume $\sup_{i \in I} |f_i(x)| < \infty \ \forall x \in M \Rightarrow \exists$ open ball $B \subset M$ such that

$$\sup_{x \in B} \sup_{i \in I} |f_i(x)| < \infty$$

Proof of Lemma 1: Denote

 $A_{n,i} := \{x \in M \mid |f_i(x)| \le n\} \text{ for } n \in \mathbb{N} \text{ and } i \in I.$

$$A_n := \bigcap_{i \in I} A_{n,i} = \{ x \in M \mid \sup_{i \in I} |f_i(x)| \le n \}$$

 $\Rightarrow \forall x \in M \ \exists n \in \mathbb{N} \text{ such that } x \in A_n, \text{ i.e. } M = \bigcup_{n=1}^{\infty} A_n.$

Now $A_{n,i} = f_i^{-1}([-n,n])$ is closed. So A_n is closed. So $\exists n \in \mathbb{N}$ such that $\operatorname{int}(A_n) \neq \emptyset$

$$\Rightarrow \exists x_0 \in \operatorname{int}(A_n)$$

 $\exists \varepsilon > 0 \text{ such that}$

$$B_{\varepsilon}(x_0) = \{ x \in M \mid d(x, x_0) < \varepsilon \subset A_n \}$$

Proof of Theorem 1: Set $M := X, f_i(x) := ||A_i x||$, so $f_i : X \xrightarrow{A_i} Y \xrightarrow{||\cdot||} \mathbb{R}$. So f_i is continuous for every $i \in I$.

So f_i is continuous for every $i \in I$. $\sup_{i \in I} |f_i(x)| < \infty \ \forall x \in X \xrightarrow{\text{Lemma 1}} \exists \text{ ball } B = B_{\varepsilon}(x_0) \subset X \text{ with } x_0 \in X, \varepsilon > 0$ such that

$$c := \sup_{i \in I} \sup_{x \in B} ||A_i x|| < \infty$$

 $\Rightarrow \forall i \in I \ \forall x \in X \text{ we have } ||x - x_0|| \le \varepsilon \Rightarrow ||A_i x|| \le c.$

Let $x \in X$ with ||x|| = 1.

Then $||(x_0 + \varepsilon \cdot x) - x_0|| = \varepsilon$

Hence $||A_i(x_0 + \varepsilon x)|| \le c$ so

$$||A_ix|| = \frac{1}{\varepsilon}||A_i(x_0 + \varepsilon x) - A_ix_0|| \le \frac{1}{\varepsilon}||A_i(x_0 + \varepsilon x)|| + \frac{1}{\varepsilon}||A_ix_0|| \le \frac{c + c}{\varepsilon}$$

Theorem 2 (Banach-Steinhaus): X Banach space, Y normed vector space $A_i \in \mathcal{L}(X,Y), i=1,2,3,\ldots$

- (i) Assume the sequence $(A_i x)_{i=1}^{\infty}$ converges in Y for every $x \in X$. Then:
 - $\sup_{i\in\mathbb{N}} ||A_i|| < \infty$
 - $\exists A \in \mathcal{L}(X,Y)$ such that $Ax = \lim_{i \to \infty} A_i x$, $||A|| \le \liminf_i ||A_i||$
- (ii) Assume Y is complete and
 - $\sup_{i\in\mathbb{N}}\|A_i\|<\infty$
 - \exists dense subset $D \subset X$ such that $(A_i x)_{i=1}^{\infty}$ converges for every $x \in D$

Then $(A_i x)_i$ converges for all $x \in X$

Proof:

1. Since $(A_i x)_i$ converges we have

$$\sup_{i \in \mathbb{N}} \|A_i x\| < \infty \, \forall x \in X \quad \Rightarrow \quad \sup_{i \in \mathbb{N}} \|A_i\| < \infty$$

Define $A: X \to Y$ by $Ax := \lim_{i \to \infty} A_i x$. This operator is linear. Why is A bounded?

$$||Ax|| = \lim_{i \to \infty} ||A_i x|| = \liminf_{i \to \infty} ||A_i x|| \le \underbrace{\liminf_{i \to \infty} ||A_i||}_{\text{i} \to \infty} ||x||$$

2. Let $x \in X$. Need to show that $(A_i x)_{i=1}^{\infty}$ is Cauchy. Let $\varepsilon > 0$.

Denote $c := \sup_{i \in \mathbb{N}} ||A_i|| < \infty$.

Choose $y \in D$ such that $||x - y|| < \frac{\varepsilon}{4c}$.

Choose $n_0 \in \mathbb{N}$ so that $\forall i, j \geq n_0 : ||A_i - A_j|| < \frac{\varepsilon}{2}$

$$\Rightarrow \forall i, j \ge n_0: \quad ||A_i x - A_j x|| \quad \le \quad ||A_i x - A_i y|| + ||A_i y - A_j y|| + ||A_j y - A_j x||$$

$$< \quad ||A_i|| ||x - y|| + ||A_i - A_j|| ||y|| + ||A_j|| ||x - y||$$

$$< \quad \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4}$$

$$< \quad \varepsilon$$

Example 1: $l^{\infty} = \{\text{bounded sequences} \in \mathbb{R}\}, x \in l^{\infty} \text{ with } x = (x_1, x_2, x_3, \ldots) = (x_i)_{i=i}^{\infty}.$

$$X := \{x = (x_i)_i \in l^{\infty} \mid \exists n \in \mathbb{N} \text{ such that } x_i = 0 \ \forall i \ge n\}$$

Define

$$A_n: X \to X \text{ by } A_n x = (x_1, 2x_2, 3x_3, \dots, nx_n, 0, \dots)$$

 $\Rightarrow \lim_{n\to\infty} A_n x = Ax$ where $Ax = (x_1, 2x_2, 3x_3, \ldots)$.

But $||A_n|| = n \to \infty$. Completeness of the domain is missing here.

So the assumption that X is complete cannot be removed in Theorem 1 or Theorem 2.

Example 2: X Banach space, Y, Z normed vector spaces and $B: X \times Y \to Z$ bilinear. Equivalent are:

- (i) B is continuous
- (ii) The functions $X \to Z : x \mapsto B(x,y)$ is continuous $\forall y \in Y$ and the function $Y \to Z : y \mapsto B(x,y)$ is continuous $\forall x \in X$.
- (iii) $\exists c > 0 \ \forall x \in X \ \forall y \in Y : ||B(x,y)|| \le c||x|| \cdot ||y||$

This is exercise 2 on Sheet 4.

Theorem 3 (Open Mapping Theorem): X, Y Banach spaces. $A \in \mathcal{L}(X, Y)$ surjective $\Rightarrow A$ is open, i.e. if $U \in X$ is an open set then $AU \subset Y$ is open.

Corollary (Inverse Operator Theorem): X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$ bijective $\Rightarrow A^{-1}$ is bounded, i.e. $A^{-1} \in \mathcal{L}(X, Y)$.

Proof: A open $\Leftrightarrow A^{-1}$ continuous $\Leftrightarrow A^{-1}$ bounded.

Example 3: X as in example 1; X is not complete. Define $B: X \to X$ by $Bx := (x, \frac{1}{2}x_2, \frac{1}{3}x_3, \ldots)$. Then $||Bx|| \le ||x||$, so B bounded. $B^{-1} = A$, as in example 1, is not bounded.

Lemma 2: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$ surjective $\Rightarrow \exists \delta > 0$ such that $\{y \in Y \mid ||y|| < \delta\} \subset \{Ax \mid x \in X, ||x|| < 1\}$ (*)

Remark: (*) means $\forall y \in Y \exists x \in X \text{ such that } Ax = y \text{ and } ||x|| \leq \frac{1}{\delta} ||y|| \ (**)$

Exercise: $(*) \Leftrightarrow (**)$ Use (*) to prove the Corollary.

Proof (Lemma 2 \Rightarrow **Theorem 3):** Let $U \subset X$ be open, and $y_0 \in AU \Rightarrow \exists x_0 \in U$ such that $y_0 = Ax_0 \stackrel{(U \text{ open})}{\Longrightarrow} \exists \varepsilon > 0$ such that $B_{\varepsilon}(x_0) \subset U$. Claim: $B_{\delta\varepsilon}(y_0) \subset AU$. Let

$$y \in B_{\delta\epsilon}(y_0) \quad \Rightarrow \quad \left\| \frac{y - y_0}{\varepsilon} \right\| < \delta$$

 $\exists x \in X \text{ such that } ||x|| < 1 \text{ and } Ax = \frac{y - y_0}{\varepsilon} \quad \Rightarrow \quad x_0 + \varepsilon x \in B_{\varepsilon}(x_0) \subset U$ $A(x_0 + \varepsilon x) = y_0 + \varepsilon Ax = y \Rightarrow y \in AU.$

Proof of Lemma 2:

Step 1 $\exists r > 0$ so that

$$\{y \in Y \mid ||y|| < r\} \subset \overline{\{Ax \mid x \in X, ||x|| < 1\}}$$

Proof of Step 1:

Let

$$B := \{x \in X \mid \|x\| < \frac{1}{2}\}$$

$$C := AB = \{Ax \mid x \in X, \|x\| < \frac{1}{2}\}$$

Note that

1.
$$nC = \{ny \mid y \in C\} = \{Ax \mid x \in X, ||x|| < \frac{1}{2}\}$$

$$2. \ y, y' \in C \Rightarrow y - y' \in 2C$$

3.
$$y, y' \in \overline{C} \Rightarrow y - y' \in \overline{2C}$$

4.
$$\overline{nC} = n\overline{C}$$

$$X = \bigcup_{n=1}^{\infty} nB$$

$$\stackrel{A \text{ onto }}{\Rightarrow} Y = AX$$

$$= \bigcup_{n=1}^{\infty} nAB$$

$$= \bigcup_{n=1}^{\infty} nC$$

$$= \bigcup_{n=1}^{\infty} \overline{nC}$$

By Baire: $\exists n \in \mathbb{N} : (\overline{nC})^{\circ} \neq \varnothing \Rightarrow (\overline{C})^{\circ} \neq \varnothing$

$$\exists y_0 \in Y \ \exists r > 0 : B_r(y_0) \subset \overline{C}$$

So if $y \in Y$ and ||y|| < r then $y_0 + y \in \overline{C}$.

Thus
$$\forall y \in Y$$
 with $||y|| < r$ we have $y = \underbrace{y_0 + y}_{\in \overline{C}} - \underbrace{y_0}_{\in \overline{C}} \in 2\overline{C}$

$$\Rightarrow \{y \in Y \mid ||y|| < r\} \subset \overline{2C}$$

Step 2 (*) holds with $\delta = \frac{r}{2}$. Proof:

Let $y \in Y$ with $||y|| < \frac{r}{2}$.

To Show: $\exists x \in X$ so that Ax = y and ||x|| < 1.

Denote

$$B_k := \{ x \in X \mid ||x|| < \frac{1}{2^k} \} \quad k = 1, 2, 3, \dots$$

(**) Then, by Step 1,

$$\left\{ y \in Y \mid \|y\| < \frac{r}{2^k} \right\} \subset \overline{AB}_k \quad k = 1, 2, 3, \dots$$

Since $y \in Y$ and $||y|| < \frac{r}{2}$, by (**) with k = 1:

$$\exists x_1 \in X : ||x_1|| < \frac{1}{2}, ||y - Ax_1|| < \frac{r}{4}$$

and by (**) with k=2

$$\exists x_2 \in X : ||x_2|| < \frac{1}{4}, ||y - Ax_1 - Ax_2|| < \frac{r}{8}$$

So, by induction, using (**), there is a sequence $(x_k)_k \in X$ so that

$$||x_k|| < \frac{1}{2^k} \quad ||y - Ax_1 - \dots - Ax_k|| < \frac{r}{2^{k+1}}$$

We have

$$\sum_{k=1}^{\infty} ||x_k|| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

By Chapter 1, the limit

$$x := \lim_{n \to \infty} \sum_{i=1}^{n} x_i = \sum_{i=1}^{\infty} x_i$$

exists and ||x|| < 1. Since

$$\left\| y - A \sum_{i=1}^{k} x_i \right\| < \frac{r}{2^k} \to \infty$$

we have proved Lemma 2.

2.2 Product spaces

Example 4: Let X be a Banach space and X_1, X_2 both closed linear subspaces. Assume $X = X_1 + X_2$ and $X_1 \cap X_2 = \{0\}$; these subspaces are called transverse subspaces. We say X is the direct sum of X_1 and X_2 and write

$$X = X_1 \oplus X_2$$

Every vector in X can be written as sum of a vector in X_1 and one in X_2 in a unique way (Linear Algebra).

Define $A: X_1 \times X_2 \to X$ by $A(x_1, x_2) := x_1 + x_2$. If X, Y are normed vector spaces, then $X \times Y := \{(x, y) \mid x \in X, y \in Y\}$ is again a normed vector space with

$$||(x,y)|| := ||x|| + ||y||$$

for $(x,y) \in X \times Y$. Other possibilities are

$$||(x,y)||_{\infty} := \max\{||x||, ||y||\}$$

$$\|(x,y)\|_p := (\|x\|^p + \|y\|^p)^{\frac{1}{p}}, \quad 1 \le p \le \infty$$

- All these norms are equivalent.
- X, Y Banach spaces $\Rightarrow X \times Y$ is a Banach space for any of these norms.

These are exercises.

Return to Example 4: X_1, X_2 are closed subsets of a complete space, hence complete. So $X_1 \times X_2$ is complete by the exercise above and A is a operator between Banach spaces.

• A is bounded and linear, because

$$||A(x_1, x_2)|| = ||x_1 + x_2|| \le ||x_1|| + ||x_2||$$

- A is surjective because $X = X_1 + X_2$
- A is injective because $X_1 \cap X_2 = \emptyset$.

By the open mapping theorem (Theorem 3) A^{-1} is bounded

$$\Rightarrow \exists c > 0: \ \forall x_1 \in X_1 \ \forall x_2 \in X_2: \|x_1\| + \|x_2\| \le c\|x_1 + x_2\|$$

So the projections $\pi_1: X \to X_1, \ \pi_2: X \to X_2$ are bounded.

Example 5: X = Y = C([0,1]) with supnorm. $Ax = \dot{x} A$ is only defined on a subset of X namely on

$$D := \{x \in X \mid x \text{ is continuously differentiable}\} =: C^1([0,1])$$

 $D \subset X, A : D \to Y.$

Definition: Let X, Y be Banach spaces.

 $D \subset X$ linear subspace, a linear operator $A: D \to Y$ is called *closed* if its graph $\Gamma = \operatorname{graph}(A) := \{(x,Ax) \mid x \in D\}$ is a closed subspace of $X \times Y$, i.e. for any sequence $(x_n)_{n \in \mathbb{N}}$ in D and $(x,y) \in X \times Y$ we have:

$$\begin{cases} x_n \to x \\ Ax_n \to y \end{cases} \Rightarrow x \in D \text{ and } y = Ax$$

Example 5:

$$\begin{array}{ll} x_n \in \hat{C}^1([0,1]) & \lim_{n \to \infty} \sup_{0 \le t \le 1} |x_n(t) - x(t)| = 0 \quad \text{and} \\ x,y \in C([0,1]) & \lim_{n \to \infty} \sup_{0 \le t \le 1} |\dot{x}_n(t) - y(t)| = 0 \\ \Rightarrow x \in C^1 \text{ and } \dot{x} = y, \text{ so the operator in Example 5 is closed.} \end{array}$$

Exercise: The graph norm on D is defined by $||x||_A := ||x||_X + ||Ax||_Y$ Prove that $(D, ||\cdot||_A)$ is complete if and only if A is closed.

Example 5: The graph norm on $C^1([0,1])$ is

$$||x||_A = \sup_{0 \le t \le 1} |x(t)| + \sup_{0 \le t \le 1} |\dot{x}(t)|$$

The standard norm in C^1 .

What if D = X?

Theorem (Closed Graph Theorem): X, Y Banach spaces $A: X \to Y$ linear operator. Equivalent are:

- (i) A is bounded
- (ii) A has a closed graph

Proof:

(i)
$$\Rightarrow$$
 (ii) $X \ni x_n \to x$ and $Y \ni Ax_n \to y$

$$\stackrel{A \text{ continuous}}{\Longrightarrow} Ax_n \to Ax$$
Uniqueness of the limit $Ax = y$

(ii) \Rightarrow (i) $\Gamma := \operatorname{graph}(A) \subset X \times Y$, Γ is a Banach space.

Define $\pi: \Gamma \to X$ by $\pi(x,y) = x$

 $\Rightarrow \pi$ is a bounded linear operator with norm = 1.

 π is injective.

 π is surjective (because $D \subset X$).

 $\stackrel{\text{Thm } 3}{\Longrightarrow} \pi^{-1} : X \to \Gamma \text{ is bounded } \Rightarrow \exists c > 0 \text{ such that } \|\pi^{-1}(x)\|_A \le c\|x\|_X$ But $\|\pi^{-1}(x)\|_A = \|(x, Ax)\|_A = \|x\|_X + \|Ax\|_Y \Rightarrow \|Ax\|_Y \le c\|x\|_X \ \forall x \in X. \ \Box$

Example 6 (Hellinger-Toeplitz-Theorem): H Hilbert space

 $A: H \to H$ linear operator which is symmetric,

i.e. $\langle x, Ay \rangle = \langle Ax, y \rangle \ \forall x, y \in H \Rightarrow A$ is bounded.

Proof: To show: A is closed.

 $H \ni x_n$ sequence. Assume $x_n \to x \in H$,

 $Ax_n \to y \in H$.

To show: Ax = y.

$$\langle y, z \rangle = \lim_{n \to \infty} \langle Ax_n, z \rangle = \lim_{n \to \infty} \langle x_n, Az \rangle = \langle x, Az \rangle \quad \forall z \in H$$

$$\Rightarrow \langle y - Ax, z \rangle = 0 \quad \forall z \in H \stackrel{z = y - Ax}{\Rightarrow} \|y - Ax\| = 0 \Rightarrow y = Ax$$

Example 5: $A: D \to Y$ is closed but not bounded:

$$x_n(t) = t^n \quad ||x_n|| = \sup_{t \in [0,1]} |x_n(t)| = 1$$

 $||Ax_n|| = ||\dot{x}_n|| = \sup_{t \in [0,1]} |\dot{x}_n(t)| = n \to \infty$

Definition: $A:D\subset X\to Y$ is called *closable*, if there is an operator $A':D'\to Y$ $D\subset D'$ such that A' is closed and $A'|_D=A$.

Remark: Let $\Gamma := \{(x, Ax) \mid x \in D\} := \operatorname{graph}(A)$

A is closable

 $\Leftrightarrow \overline{\Gamma}$ is the graph of a closed operator

 $\Leftrightarrow \pi : \overline{\Gamma} \to X \text{ is injective}$

 $\Leftrightarrow D \ni x_n \to 0, Ax_n \to y \text{ implies } y = 0$

Example 7: Let $X = L^2([0,1])$, D = C([0,1]), $Y = \mathbb{R}$. Let $A: D \to Y, x \mapsto x(0)$ is not closable.

Example 8: $X=L^2(\mathbb{R})$ $D=\{x\in L^2(\mathbb{R})\mid \exists c>0\quad \forall\, |t|>c:\, x(t)=0\}$ $Y=\mathbb{R}$ $Ax=\int_{-\infty}^{\infty}x(t)dt$

$$x_n(t) := \begin{cases} \frac{1}{n} & |t| \le n \\ 0 & |t| > n \end{cases}$$

$$||x_n||_{L^2}^2 = \frac{2}{n} \quad Ax_n = 2$$

Example 9: "Every differential operator is closable." Let $\Omega \subset \mathbb{R}^n$ be an open subset.

$$C_0^{\infty} = \{ f : \Omega \to \mathbb{R} \mid f \text{ is smooth, supp}(f) \text{ is compact} \}$$

with

$$\operatorname{supp}(f) := \{ x \in \Omega \mid \exists x_n \in \Omega \text{ such that } f(x_n) \neq 0, x_n \to x \}$$
$$= \operatorname{cl}_{\Omega}(\{ x \in \Omega \mid f(x) \neq 0 \})$$

 $C_0^{\infty}(\Omega) \subset L^p(\Omega)$. We know:

- 1. $C_c(\Omega) = \{f : \Omega \to \mathbb{R} \mid f \text{ continuous}, f \text{ has cpct support}\}\$ is dense in $L^p(\Omega)$.
- 2. $C_0^{\infty}(\Omega)$ is dense in $C_c(\Omega)$, i.e.

$$\forall f \in C_c(\Omega) \ \exists K \in \Omega, K \text{ compact } \exists f_n \in C_0^{\infty}(\Omega)$$

such that

$$\operatorname{supp}(f_n) \subset K, \quad \lim_{n \to \infty} \sup_{x \in \Omega} |f_n(x) - f(x)| = 0$$

Let $X = Y = L^p(\Omega)$.

Let $D := C_0^{\infty}(\Omega) \subset X$.

Define $A: D \to Y$ by $(Af)(x) = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha} f(x)$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$, $\alpha_i \leq 0$ and $|\alpha| := \alpha_1 + \dots + \alpha_n$.

$$\partial^{\alpha} := \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \dots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$$

Let $a_{\alpha}: \Omega \to \mathbb{R}$ be smooth.

Claim A is closable.

Proof: Integration by parts: $f, g \in C_0^{\infty}(\Omega)$

$$\Rightarrow \int_{\Omega} g(Af) d\mu = \sum_{\alpha} \int_{\Omega} g \cdot a_{\alpha} \delta^{\alpha} f d\mu$$

$$= \sum_{\alpha} (-1)^{|\alpha|} \int_{\Omega} \delta^{\alpha} (a_{\alpha}g) \cdot f d\mu$$

$$= \int_{\Omega} \left(\sum (-1)^{|\alpha|} \delta^{\alpha} (a_{\alpha}g) \right) \cdot f d\mu$$

$$= \int_{\Omega} (Bg) \cdot f d\mu$$

Let $(0,g) \in \overline{\operatorname{Graph}(A)} \subset L^p(\Omega) \times L^p(\Omega)$

To show: g = 0

 $\exists f_k \in C_0^{\infty}(\Omega)$ sequence such that $(f_k, Af_k) \xrightarrow{L^p \times L^p} (0, g)$, i.e.

$$\lim_{k \to \infty} ||f_k||_{L^p} = 0 = \lim_{k \to \infty} ||Af_k - g||_{L^p}$$

 $\Rightarrow \forall \phi \in C_0^{\infty}(\Omega)$:

$$\int_{\Omega} \phi g \, d\mu = \lim_{k \to \infty} \int_{\Omega} \phi(A f_k) \, d\mu$$
$$= \lim_{k \to \infty} \int_{\Omega} (B \phi) \cdot f_k \, d\mu$$
$$= 0$$

because

$$\left| \int_{\Omega} (B\phi) f_k \, \mathrm{d}\mu \right| \leq \underbrace{\|B\phi\|_{L^q}}_{<\infty} \underbrace{\|f_k\|_{L^p}}_{\to 0}$$

where $\frac{1}{p} + \frac{1}{q} = 1$ for 1 .

$$\int_{\Omega} \phi g \, \mathrm{d}\mu = 0 \quad \forall \phi \in \underbrace{C_0^{\infty}(\Omega)}_{\text{dense in } L^q(\Omega)}$$

$$\Rightarrow \int_{\Omega} \phi g \, \mathrm{d}\mu = 0 \quad \forall \phi \in L^q(\Omega) \quad \Rightarrow \quad g = 0 \text{ almost everywhere}$$

$$\Rightarrow \int_{\Omega} \phi g \, \mathrm{d}\mu = \int_{\Omega} |g|^p \, \mathrm{d}\mu$$

$$\phi := (\operatorname{sign}(g))|g|^{p-1} \in L^q(\Omega)$$

2.3 Extension of bounded linear functionals

Theorem 5 (Hahn-Banach): X normed vector space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . $Y \subset X$ linear subspace $\phi: Y \to \mathbb{F}$ linear and c > 0 such that $|\phi(y)| \le c||y|| \ \forall y \in Y$ $\Rightarrow \exists \Phi: X \to \mathbb{F}$ linear such that

- 1. $\Phi|_{Y} = \phi$
- $2. |\Phi(x)| \le c||x|| \ \forall x \in X.$

Question: If we replace the target \mathbb{F} by another Banach space Z over \mathbb{F} , i.e. $\phi: Y \to Z$ bounded linear operator. $\exists ?\Phi: X \to Z$ bounded linear operator, $\Phi|_Y = \phi$.

Answer: No!

Example: $X = l^{\infty}$, $Y := c_0 =: Z$, $\mathbb{F} = \mathbb{R}$, $\phi = \mathrm{id}: Y \to Z$ does not extend!

Lemma 3: Let X, Y, ϕ, c as in Theorem 5 with $\mathbb{F} = \mathbb{R}$. Let $x_0 \in X \setminus Y$ and denote

$$Z := Y \oplus \mathbb{R} x_0 = \{ y + \lambda x_0 \mid y \in Y, \lambda \in \mathbb{R} \}$$

Then $\exists \psi : Z \to \mathbb{R}$ linear so that

- a. $\psi|_Y = \phi$
- b. $|\psi(x)| \le c||x|| \forall x \in Z$

Proof: Need to find a number $a \in \mathbb{R}$ so as to define

$$\psi(x_0) := a \tag{1}$$

Then

$$\psi(y + \lambda x_0) = \phi(y) + \lambda a \,\forall y \in Y \text{ and } \lambda \in \mathbb{R}$$
 (2)

 ψ is well-defined by (2), because $x_0 \notin Y$. Moreover $\psi|_Y = \phi$. To show: a can be chosen such that

$$|\phi(y) + \lambda a| \le c||y + \lambda x_0|| \ \forall y \in Y \ \forall \lambda \in \mathbb{R}$$
 (3)

(3) is equivalent to

$$|\phi(y) + a| < c||y + x_0|| \ \forall y \in Y \tag{4}$$

- $(3) \Rightarrow (4)$ is obvious.
- $(4) \Rightarrow (3)$ ok for $\lambda = 0$.

$$\lambda \neq 0: |\phi(y) + \lambda a| = |\lambda| \cdot |\phi\left(\frac{y}{\lambda}\right) + a| \stackrel{(4)}{\leq} c|\lambda| \|\frac{y}{\lambda} + x_0\| = c\|y + \lambda x_0\|$$

(4) is equivalent to

$$-c\|y + x_0\| \le \phi(y) + a \le c\|y + x_0\| \forall y \in Y$$

$$\Leftrightarrow -\phi(y) - c\|y + x_0\| \le a \forall y \in Y \\ a \le c\|y + x_0\| - \phi(y) \forall y \in Y \Leftrightarrow$$

$$\phi(y') - c\|y' - x_0\| \le y' \in Y \\ a \le c\|y + x_0\| - \phi(y) \forall y \in Y$$
(5)

Is there a real number $a \in \mathbb{R}$ such that (5) holds, i.e.

$$\sup_{y' \in Y} (\phi(y') - c \|y' - x_0\| \le a \le \inf_{y \in Y} (c \|y + x_0\| - \phi(y))$$

This is true iff

$$\phi(y') - c\|y' - x_0\| \stackrel{(6)}{\leq} c\|y + x_0\| - \phi(y)\forall y, y' \in Y$$
 (6)

Proof: of (6)

$$\phi(y) + \phi(y') = \phi(y+y') \le c||y+y'|| = c||y+x_0+y'-x_0|| \le c||y+x_0|| + c||y'-x_0||$$

Definition: Let \mathcal{P} be a set. A partial order on \mathcal{P} is a relation \leq (i.e. a subset of $\mathcal{P} \times \mathcal{P}$, we write $a \leq b$ instead of $(a,b) \in \leq$.) That satisfies:

- \leq is reflective, i.e. $a \leq a \forall a \in \mathcal{P}$
- \leq is transitive, i.e. $\forall a, b, c \in \mathcal{P}$ we have $a \leq b, b \leq c \Rightarrow a \leq c$
- \leq is anti-symmetric, i.e. $\forall a, b \in \mathcal{P}$: $a \leq b, b \leq a \Rightarrow a = b$

Definition: (\mathcal{P}, \leq) partially ordered set (POS). A subset $\mathcal{C} \subset \mathcal{P}$ is called a *chain* if it is totally ordered, i.e.

$$a, b \in \mathcal{C} \Rightarrow a \leq b \text{ or } b \leq a$$

Definition: (\mathcal{P}, \leq) POS, $\mathcal{C} \subset \mathcal{P}, a \in \mathcal{P}$ a is called the *supremum* of \mathcal{C} if

- 1. $\forall c \in \mathcal{C} : c \leq a$
- 2. $\forall b \in \mathcal{P} : (c \leq b \ \forall c \in \mathcal{C} \Rightarrow a \leq b)$

Definition: (\mathcal{P}, \leq) POS, $a \in \mathcal{P}$. a is called a maximal element of \mathcal{P} if $\forall b \in \mathcal{P}$ we have $a \leq b \Rightarrow b = a$

Lemma Zorn's Lemma: Let (\mathcal{P}, \leq) be a POS such that every chain $\mathcal{C} \subset \mathcal{P}$ has a supremum. Let $a \in \mathcal{P} \Rightarrow$ There exists a maximal element $b \in \mathcal{P}$ such that $a \leq b$.

Remark: Zorn's Lemma is equivalent to the axiom of choice.

Proof of Theorem 5: Let X, Y, ϕ, c be given as in Theorem 5. Define

$$\mathcal{P} := \{(Z,\psi) \mid \quad Z \subset X \text{ linear subspace},$$

$$Y \subset Z,$$

$$\psi : Z \to \mathbb{R} \text{ linear},$$

$$\psi|_Y = \phi,$$

$$|\psi(x)| \le c ||x|| \forall x \in Z$$
 }

$$(Z, \psi) \le (Z', \psi') :\Leftrightarrow Z \subset Z', \quad \psi'|_Z := \psi$$

Note that this is a partial order and every chain $\mathcal{C} \subset \mathcal{P}$ has a supremum $Z_0 := \bigcup_{(Z,\psi)\in\mathcal{C}} Z \ni x$.

- $(Z, \psi) \subset \mathcal{P}$ is maximal $\Leftrightarrow Z = X$ by Lemma 3
- $(Y, \psi) \in \mathcal{P} \Rightarrow \exists$ maximal element
- $(X, \Phi) \in \mathcal{P}$ such that $(Y, \phi) \leq (X, \Phi)$

Proof of Theorem 5 for $\mathbb{F} = \mathbb{C}$: X complex normed vector space, $Y \subset X$ complex linear subspace

 $\phi: Y \to \mathbb{C}$ such that $|\phi(y)| \le c||y|| \quad \forall y \in Y$

Fact: $\phi: Y \to \mathbb{C}$ is complex linear

$$\Leftrightarrow \phi \text{ is real lin. and } \phi(iy) = i\phi(y) \quad \forall y \in Y$$
 (1)

Write $\phi(y) = \phi_1(y) + i\phi_2(y)$ where $\phi_1(y), \phi_2(y) \in \mathbb{R}$

Then $\phi_1, \phi_2: Y \to \mathbb{R}$ real linear and

$$i\phi(y) = i\phi_1(y) - \phi_2(y) \quad \phi(iy) = \phi_1(iy) + i\phi_2(iy)$$

$$\Rightarrow \phi \text{ satisfies } (1) \Leftrightarrow \phi_2(y) = -\phi_1(iy) \quad \phi_1(y) = \phi_2(iy) \, \forall y \in Y$$
(2)

We have $|\phi_1(y)| \leq |\phi(y)| \leq c||y|| \stackrel{\text{Thm 5}}{\Rightarrow} \mathbb{F} = \mathbb{R} \exists \Phi_1 : X \to \mathbb{R}$ \mathbb{R} -linear

 $\Phi_1|_Y = \phi_1 \quad |\Phi_1(x)| \le c||x|| \quad \forall x \in X$

Define
$$\Phi: X \to \mathbb{C}$$
 by $\Phi(x) := \Phi_1(x) - i\Phi_1(ix) \Rightarrow$

1. Φ is complex linear

2. If
$$y \in Y$$
 then $\Phi(y) = \phi_1(y) - i\phi_1(iy) = \phi(y)$

3. Let
$$x \in X$$
. Suppose $\Phi(x) \neq 0$
Then $\frac{\Phi(x)}{|\Phi(x)|} \in S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$
so $\exists \theta \in \mathbb{R}$ such that $e^{i\theta} = \frac{\Phi(x)}{|\Phi(x)|}$
 $\Rightarrow \Phi(e^{-i\theta}x) = e^{-i\theta}\Phi(x) = |\Phi(x)| \in \mathbb{R}$
 $\Rightarrow |\Phi(x)| = |e^{-i\theta}\Phi(x)| = |\Phi(e^{-i\theta}x)| = |\Phi_1(e^{-i\theta}x)| \leq c||e^{-i\theta}x|| = c||x||$

Definition: X real vector space. A function $p: X \to \mathbb{R}$ is called *seminorm* if

1.
$$p(x+y) \le p(x) + p(y) \quad \forall x, y \in X$$

2.
$$p(\lambda x) = \lambda p(x) \quad \forall \lambda > 0, \forall x \in X$$

Theorem 5': X real vector space, $p: X \to \mathbb{R}$ seminorm

 $Y\subset X$ linear subspace, $\phi:Y:\to\mathbb{R}$ linear

Then \exists linear map $\Phi: X \to \mathbb{R}$ such that $\Phi|_Y = \phi$ and $\Phi(x) \leq p(x) \quad \forall x \in X$

v.a C

Sketch of Proof Theorem 5': As in Lemma 3: $Z := Y \oplus \mathbb{R}x_0, \quad x_0 \notin Y$

$$\Rightarrow \phi(y') + \phi(y) = \phi(y + y') \le p(y + y') \le p(y + x_0) + p(y' - x_0)$$

 $\Rightarrow \phi(y') - p(y' - x_0) \le p(y + x_0) - \phi(y) \quad \forall y, y' \in Y$

 $\Rightarrow \exists a \in \mathbb{R} \text{ such that } \phi(y) - p(y - x_0) \le a \le p(y + x_0) - \phi(y) \quad \forall y \in Y$

$$\Rightarrow \phi(y) - p(y - \lambda x_0) \le \lambda a \le p(y + \lambda x_0) - \phi(y) \quad \forall y \in Y, \forall \lambda > 0$$

 $\Rightarrow \phi(y) - \lambda a \le p(y - \lambda x_0)$ and $\phi(y) + \lambda a \le p(y + \lambda x_0)$ $\forall y \in Y, \forall \lambda > 0$

 $\Rightarrow \underbrace{\phi(y) + ta}_{:=\psi(y + tx_0)} \le p(y + tx_0) \quad \forall t \in \mathbb{R}, \forall y \in Y$

i.e. $\psi(x_0) = a$ so $\exists \psi : Z \to \mathbb{R} \psi|_Y = \phi \quad \psi(x) \le p(x) \quad \forall x \in Z$

For the remainder of the proof, argue as in Theorem 5 using Zorns lemma. \Box

Remark: Theorem 5' implies Theorem 5 with $\mathbb{F} = \mathbb{R}$, p(x) = c||x||

Notation: X normed vector space over $\mathbb{F} = \mathbb{R}, \mathbb{C}$ $X^* := \mathcal{L}(X, \mathbb{F})$ Each element of X^* is a bounded \mathbb{F} -linear functional $\phi : X \to \mathbb{F}$. We write:

- $x^* \in X^*$ instead of $\phi: X \to \mathbb{F}$
- $\langle x^*, x \rangle \in \mathbb{F}$ instead of $\phi(x)$

Remark: Theorem 5 says, if $Y \subset X$ is a linear subspace and $y^* \in Y^*$ then $\exists x^* \in X^*$ such that $x^*|_Y = y^*$ and $\|x^*\|_{X^*} = \|y^*\|_{Y^*}$

Definition: $Y \subset X$ linear subspace of a normed vector space X. The annihilator of Y is the (closed) subspace $Y^{\perp} \subset X^*$ defined by $Y^{\perp} := \{x^* \in X^* \mid \langle x^*, y \rangle = 0 \, \forall y \in Y\}$

Exercise:

- 1. $Y^* \cong X^*/Y^{\perp}$
- 2. $(X/Y)^* \cong Y^{\perp}$ if Y is closed
- 3. For $Z \subset X^*$, define $^{\perp}Z := \{x \in X \mid \langle x^*, x \rangle = 0 \, \forall x^* \in Z\}$ Prove that $^{\perp}(Y^{\perp}) \cong Y$ whenever Y is a closed subspace of X.

Theorem 6: X normed vector space, $A, B \subset X$ convex, $\operatorname{int}(A) \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$

 $\Rightarrow \exists x^* \in X^*, \exists c \in \mathbb{R} \text{ such that } \langle x^*, x \rangle < c \ \forall x \in A \text{ and } \langle x^*, x \rangle \geq c \ \forall x \in B$

Proof:

Case 1: $B = \{0\}$ Let $x_0 \in \text{int}(A)$ and define $p: X \to \mathbb{R}$ by

$$p(x) := \inf\{t > 0 \mid x_0 + \frac{x}{t} \in A\}$$

So $x_0 + \frac{x}{t} \in A$ for t > p(x) and $x_0 + \frac{x}{t} \notin A$ for t < p(x)

- 1. $p(\lambda x) = \lambda p(x) \, \forall \lambda > 0$
- 2. $p(x+y) \le p(x) + p(y)$ Given $\varepsilon > 0 \exists s, t > 0 : s \le p(x) + \varepsilon, t \le p(x) + \varepsilon$ $\Rightarrow x_0 + \frac{x}{s} \in A$ $x_0 + \frac{y}{t} \in A$ $\Rightarrow x_0 + \frac{x+y}{s+t} = \frac{s}{s+t} \left(x_0 + \frac{x}{s} \right) + \frac{t}{t+s} \left(x_0 + \frac{y}{t} \right) \in A \text{ (A convex)}$ $p(x+y) \le s + t \le p(x) + p(y) + 2\varepsilon \forall \epsilon > 0$
- 3. Choose $\delta > 0$ such that $B_{\delta}(x_0) \subset A$ so $p(x) \leq \frac{\|x\|}{\delta} \, \forall x \in X$

4.
$$x_0 + x \in A \Rightarrow p(x) \le 1$$
 $x_0 + x \notin A \Rightarrow p(x) \ge 1$
Choose $Y := \mathbb{R}x_0 \ \phi(\lambda x_0) := -\lambda$
Check: $-1 = \phi(x_0) \le 0 \le p(x_0)$ $1 = \phi(-x_0) \le p(-x_0)$ (because $0 \notin A$) $\stackrel{\text{Thm } 5}{\Rightarrow} \exists \Phi : X \to \mathbb{R}$ such that $\Phi(x) \le p(x) \ \forall x \in X$, $\Phi(x_0) = -1$ (i.e. $\Phi|_Y = \phi$) and $x \in A \Rightarrow \Phi(x) \le 0$:
Namely $x \in A \Rightarrow p(x - x_0) \le 1$
So if $x \in A$ then $\Phi(x - x_0) \le p(x - x_0) \le 1 = \Phi(-x_0) \Rightarrow \Phi(x) \le 0$
 \Rightarrow Assertion with $x^* = \Phi, c = 0$
 Φ is bounded by $3 :: \Phi(x) \le p(\pm x) \le \frac{\|x\|}{\delta}$

Case 2: A arbitrary

$$\begin{split} K &:= \{a-b \mid a \in A \, b \in B\} \Rightarrow K \text{ convex, int}(K) \neq \varnothing, \, 0 \notin K \\ &\stackrel{\text{Case } 1}{\Rightarrow} \exists x^* \in X^* \text{ such that } \langle x^*, x \rangle \leq 0 \, \forall x \in K \\ &\Rightarrow \langle x^*, a \rangle \leq \langle x^*, b \rangle \quad \forall a \in A, b \in B \\ c &:= \sup_{a \in A} \langle x^*, a \rangle < \infty \text{ (because } B \neq \varnothing) \\ &\Rightarrow \langle x^*, a \rangle \leq c \leq \langle x^*, b \rangle \quad \forall a \in A, b \in B \end{split}$$

Theorem 7: X normed vector space over $\mathbb{F} = \mathbb{R}, \mathbb{C}$ $Y \subset X$ linear subspace, $x_0 \in X \setminus \overline{Y}$ Let $\delta := d(x_0, Y) = \inf_{y \in Y} ||x_0 - y|| > 0$ $\Rightarrow \exists x^* \in X^*$ such that $||x^*|| = 1$, $\langle x^*, x_0 \rangle = \delta$, $\langle x^*, y \rangle = 0 \quad \forall y \in Y$

Note: Hypotheses of Theorem 6 are satisfied with $A = B_{\delta}(x_0)$, B = Y

Proof: Denote $Z := \{ y + \lambda x_0 \mid y \in Y, \lambda \in \mathbb{F} \} = Y \oplus \mathbb{F} x_0$ Define $\Psi : Z \to \mathbb{F}$ by $\Psi(y + \lambda x_0) := \lambda \delta \quad \forall y \in Y, \lambda \in \mathbb{F} \Rightarrow$

- 1. Ψ is well-defined and linear because $x_0 \notin Y$
- 2. $\Psi(y) = 0 \,\forall y \in Y$
- 3. $\Psi(x_0) = \delta$
- 4. $\sup_{x \in Zz \neq 0} \frac{|\Psi(x)|}{\|x\|} = 1$

$$\sup_{(y,\lambda)\neq(0,0)} \frac{|\Psi(y+\lambda x_0)|}{\|y+\lambda x_0\|} = \sup_{(y,\lambda)\neq(0,0)} \frac{|\lambda|\delta}{\|y+\lambda x_0\|} = \sup_{0\neq\lambda,y} \frac{\delta}{\|\frac{y}{\lambda} + x_0\|}$$
$$= \sup_{y\in Y} \frac{\delta}{\|x_0 + y\|} = \frac{\delta}{\inf_{y\in Y} \|x_0 - y\|} = 1$$

$$\overset{\text{Thm 5}}{\Rightarrow} \exists x^* \in X^* \text{ such that } ||x^*|| = 1 \text{ and } \langle x^*, x \rangle = \Psi(x) \, \forall x \in Z \\ \langle x^*, x_0 \rangle = \Psi(x_0) = \delta \quad \langle x^*, y \rangle = \Psi(y) = 0 \, \forall y \in Y$$

Corollary 1: X normed vector space, $Y \subset X$ linear subspace, $x \in X$. Equivalent are:

- (i) $x \in \overline{Y}$
- (ii) For every $x^* \in X^*$ we have: $\langle x^*, y \rangle = 0 \ \forall y \in Y$ implies $\langle x^*, x \rangle = 0$

Proof:

$$\begin{array}{ll} (i) \Rightarrow (ii) & x = \lim_{n \to \infty} y_n \quad y_n \in Y \\ \langle x^*, y \rangle = 0 \ \forall y \in Y \\ \Rightarrow \langle x^*, x \rangle = \lim_{n \to \infty} \langle x^*, y_n \rangle = 0 \\ (ii) \Rightarrow (i): \\ x \notin \overline{Y} \stackrel{\mathrm{Thm}}{\Rightarrow} {}^7 \ \exists x^* \in X^* : \langle x^*, y \rangle = 0 \ \forall y \in Y \quad \langle x^*, x \rangle \neq 0 \end{array} \quad \Box$$

Corollary 2: X normed vector space, Y linear subspace Y is dense $\Leftrightarrow Y^{\perp} = \{0\}$

Proof: Corollary 1.

Corollary 3: X normed vector space, $0 \neq x_0 \in X \Rightarrow \exists x^* \in X^*$ such that $||x^*|| = 1$, $\langle x^*, x_0 \rangle = ||x_0||$

Proof: Theorem 7 with $Y = \{0\}, \delta = ||x_0||$

2.4 Reflexive Banach Spaces

X real Banach space

 $X^* := \mathcal{L}(X, \mathbb{R})$

 $X^{**} := \mathcal{L}(X^*, \mathbb{R})$

Example: Every element $x \in X$ determines a bounded linear functional $\phi_x : X^* \to \mathbb{R}$ by $\phi_x(x^*) := \langle x^*, x \rangle$.

Bounded because $|\phi_x(x^*)| \leq ||x^*|| \cdot ||x||$ hence

$$\|\phi_x\| := \sup_{x^* \neq 0} \frac{\phi_x(x^*)}{\|x^*\|} \le \|x\|$$

In fact: $\|\phi_x\| = \|x\|$, because $\forall x \neq 0 \ \exists x^* \in X^*$ such that $\|x^*\| = 1$ and $\langle x^*, x \rangle = \|x\|$ (Cor 3). We have proved:

Lemma 4: The map $\iota: X \to X^{**}$ defined by

$$\iota(x)(x^*) := \langle x^*, x \rangle$$

is an isometric embedding.

Definition: A Banach space X is called *reflexive* if the canonical embedding $\iota: X \to X^{**}$ (defined in Lemma 4) is bijective.

Example 1: X = H Hilbert space $\Rightarrow H \cong H^* \cong H^{**}$ so H is reflexive.

Example 2: (M, \mathcal{A}, μ) measure space, p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow L^p(\mu)^* \cong L^q(\mu), L^q(\mu)^* \cong L^p(\mu)$. So $L^p(\mu)$ is reflexive for p > 1.

$$p = 1 : L^{1}([0,1])^{*} = L^{\infty}([0,1])$$
$$L^{\infty}([0,1])^{*} \supsetneq L^{1}([0,1])$$

so $L^1([0,1])$ is not reflexive.

Example 3:

$$c_0 := \{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \lim_{n \to \infty} x_n = 0 \}$$
$$\|x\| = \sup_{n \in \mathbb{N}} |x_n|$$
$$(c_0)^* \cong \ell^1, (\ell^1)^* = \ell^\infty \not\supseteq c_0$$

so c_0, ℓ^1, ℓ^∞ are not reflexive

Theorem 8: Let X be a Banach space.

- X is reflexive $\Leftrightarrow X^*$ is reflexive
- suppose X is reflexive and $Y \subset X$ be a closed linear subspace $\Rightarrow Y, X/Y$ are reflexive

Proof:

1. "X reflexive $\Rightarrow X^*$ reflexive":

Let $\psi: X^{**} \to \mathbb{R}$ be a bounded linear functional. Need to show: $\exists x^* \in X^*$ such that

$$\psi(x^{**}) = \langle x^{**}, x^* \rangle \, \forall x^{**} \in X^{**}$$

Consider the diagram

$$X \xrightarrow{\iota} X^{**} \xrightarrow{\psi} \mathbb{R}$$

Denote $x^* := \psi \circ \iota : X \to \mathbb{R}$.

Let $x^{**} \in X$ and denote $x := \iota^{-1}(x^{**}) \in X$. Then

$$\psi(x^{**}) = \psi(\iota(x)) = \langle x^*, x \rangle = \langle \iota(x), x^* \rangle = \langle x^{**}, x^* \rangle.$$

2. " X^* reflexive $\Rightarrow X$ reflexive":

Assume X^* is reflexive, but X is not reflexive. Then $\iota(X) \subsetneq X^{**}$. Pick an element $x_0^{**} \in X^{**} \setminus \iota(X)$.

Fact: $\iota(X)$ is a closed subspace of X^{**} , because $\iota(X)$ is complete by Lemma 4. $\Rightarrow \exists$ bounded linear functional $\psi: X^{**} \to \mathbb{R}$ such that:

(i)
$$\psi(x^{**}) = 0 \ \forall x^{**} \in \iota(X)$$
, and

(ii)
$$\psi(x_0^{**}) = 1$$

X reflexive $\Rightarrow \exists x^* \in X^*$ such that

$$\psi(x^{**}) = \langle x^{**}, x^* \rangle \forall x^{**} \in X^{**}$$

$$\Rightarrow \langle x^*, x \rangle = \langle \iota(x), x^* \rangle = 0 \forall x \in X$$

$$x^* = 0$$

$$1 = \psi(x_0^{**}) \stackrel{(3)}{=} \langle x_0^{**}, x^* \rangle = 0$$

Contradiction.

3. "Y is reflexive":

Let $\pi: X^* \to Y^*$ be the bounded linear map

$$\pi(x^*) := x^*|_Y$$

By Hahn-Banach π is surjective. Let $y^{**} \in Y^{**}$. Consider the diagram

$$X^* \xrightarrow{\pi} V^* \xrightarrow{y^{**}} \mathbb{R}$$

Let $x^{**} := y^{**} \circ \pi : X^* \to \mathbb{R}$. Then, because X is reflexive, $\exists y \in X$ such that $\iota(y) = x^{**}$.

 $\Rightarrow \forall x^* \in Y^{\perp}$. We have $\pi(x^*) = 0$ and so

$$\langle x^*, y \rangle = \langle \iota(y), x^* \rangle = \langle x^{**}, x^* \rangle = y^{**}, \pi(x^*) = 0$$

To show: $\langle y^{**}, y^* \rangle = \langle y^*, y \rangle \forall y^* \in Y^*$

Given $y^* \in Y^*$ choose $x^* \in X^*$ such that $\pi(x^*) = y^*$

$$\begin{array}{rcl} \langle y^*,y\rangle & = & \langle \pi(x^*),y\rangle \\ \langle y^{**},y^*\rangle & = & \langle y^{**},\pi(x^*)\rangle \\ & = & \langle x^{**},x^*\rangle \\ & = & \langle \iota(y),x^*\rangle \\ & = & \langle x^*,y\rangle \\ & = & \langle y^*,y\rangle \end{array}$$

4. "Z = X/Y reflexive":

Denote by $\pi: X \to X/Y$ the canonical projection, ie.

$$\pi(x) = [x] = x + Y \forall x \in X$$

Define the bounded linear operator $T:Z^*\to Y^\perp$ by $Tz^*:=z^*\circ\pi:X\to\mathbb{R}$ Note:

- (a) im $T \subset Y^{\perp}$ because ker $\pi = Y$
- (b) In fact im $T = Y^{\perp}$ and T is an isometric isomorphism (Exercise 1,b)). Let $z^{**} \in Z^{**}$. Consider the composition

$$Y^{\perp} \xrightarrow{T^{-1}} Z^* \xrightarrow{z^{**}} \mathbb{R}$$

This is a bounded linear functional on $Y^{\perp} \subset X^*$, so by Hahn-Banach: $\exists x^{**} \in X^{**}$ such that

$$\langle x^{**}, x^* \rangle = \langle z^{**}, T^{-1}x^* \rangle \forall x^* \in Y^{\perp} \tag{7}$$

$$\langle x^{**}, z^* \circ \pi \rangle = \langle z^{**}, z^* \rangle \forall z^* \in Z^*$$
 (8)

 $\overset{(X \text{ reflexive})}{\Rightarrow} \exists x \in X \text{ such that } \iota(x) = x^{**}$

Denote $z := \pi(x) = [x] \in Z$

$$\Rightarrow \forall z^* \in Z^* : \quad \langle z^{**}, z^* \rangle \quad \stackrel{(7)}{=} \quad \langle x^{**}, z^* \circ \pi \rangle$$

$$= \quad \langle \iota(x), z^* \circ \pi \rangle$$

$$= \quad \langle z^* \circ \pi, x \rangle$$

$$= \quad \langle z^*, \pi(x) \rangle$$

$$= \quad \langle z^*, z \rangle$$

Remark: $Y^* \cong X^*/Y^{\perp}$

$$(X^*/Y^{\perp})^* \cong (Y^{\perp})^{\perp} \cong^{\perp} (Y^{\perp})$$

because X is reflexive.

Recall A Banach space X is called *separable* if \exists countable dense subset $D \subset X$.

Remark: Suppose there is a sequence e_1, e_2, e_3, \ldots such that the subspace

$$Y := \operatorname{span}\{e_i \mid i \in \mathbb{N}\} = \left\{ \sum_{i=1}^n \lambda_i e_i \mid n \in \mathbb{N}, \lambda_i \in \mathbb{R} \right\}$$

is dense in X. $\Rightarrow X$ is separable. Indeed the set $D := \{\sum_{i=1}^n \lambda_i e_i \mid n \in \mathbb{N}, \lambda_i \in \mathbb{Q}\}$ is countable and dense.

Theorem: X Banach space

- (i) X^* separable $\Rightarrow X$ separable.
- (ii) X separable and reflexive $\Rightarrow X^*$ separable.

Proof:

(i) Let $D=\{x_1^*,x_2^*,x_3^*,\ldots\}$ be a dense, countable subset of X^* . Assume w.l.o.g that $x_n^*\neq 0 \ \forall n\in\mathbb{N}$ such that

$$||x_n|| = 1, |\langle x_n^*, x_n \rangle| \ge \frac{1}{2} ||x_n^*||$$

Denote $Y = \text{span}\{x_n \mid n \in \mathbb{N}\}\$

Claim: Y is dense in X

By Hahn-Banach

$$Y \text{ is dense} \Leftrightarrow Y^{\perp} = \{0\}$$

Let $x^* \in Y^{\perp} \subset X^*$. Because D dense in X^* :

$$\Rightarrow \exists n_1, n_2, n_3, \ldots \to \infty$$
 such that $\lim_{i \to \infty} ||x_{n_i}^* - x^*|| = 0$

Now:

$$||x_{n_i}^*|| \le 2|\langle x_{n_i}^*, x_{n_i} \rangle| = 2|\langle x_{n_i}^* - x^*, x_{n_i} \rangle| \le ||x_{n_i}^* - x^*|| = 0$$

so $x^* = \lim_{i \to \infty} x_{n_i}^* = 0$ so $Y^{\perp} = 0$ so Y is dense in X so X is separable.

(ii) X reflexive and separable $\Rightarrow X^{**} = \iota(X)$ separable $\Rightarrow X^*$ is separable \Box

Example:

(i) c_0 separable.

 $c_0^* = \ell^1$ separable.

 $(\ell^1)^* = \ell^{\infty}$ not separable.

(ii) (M, d) compact metric space X = C(M) separable

$$X^* = \mathcal{M} = \{ \text{finite Borel measures on } M \}$$

not separable, except when M is a finite set.

(iii) $X = L^p(\Omega)$ with Lebesgue-measure $1 \le p < \infty$. $\emptyset \ne \Omega \subset \mathbb{R}^n$ open $\Rightarrow X$ is separable. $L^{\infty}(\Omega)$ is not separable.

3 The weak and weak* topologies

3.1 The weak topology

Definition: A topological vector space is a pair (X, \mathcal{U}) , where X is a (real) vector space and \mathcal{U} is a topology such that the maps

$$X \times X \to X \quad (x,y) \mapsto x + y$$

and

$$\mathbb{R} \times X \to X \quad (\lambda, x) \mapsto \lambda x$$

are continuous.

Definition: A topological vector space (X, \mathcal{U}) is called *locally convex*, if $\forall x \in X \ \forall U \in \mathcal{U}, x \in U \ \exists V \in \mathcal{U}$ such that $x \in V \subset U \ V$ convex.

Lemma 1: X topological vector space, $K \subset X$ convex $\Rightarrow \overline{K}$, $\operatorname{int}(K)$ are convex

Proof:

- (i) $\operatorname{int}(K)$ is convex $x_0, x_1 \in \operatorname{int}(K), \quad 0 < \lambda < 1$ To show: $x_{\lambda} = (1 - \lambda)x_0 + \lambda x_1 \in \operatorname{int}(K)$ \exists open set $U \subset X$ such that $0 \in U$ and $x_0 + U \subset K$, $x_1 + U \subset K$
- (ii) \overline{K} is convex $x_0, x_1 \in \overline{K}, \ 0 < \lambda < 1$ To show: $x_\lambda \in \overline{K}$. Let $U \subset X$ be an open set with $x_\lambda \in U$ $W := \{(y_0, y_1) \in X \times X \mid (1 - \lambda)y_0 + \lambda y_1 \in U\}$ $\Rightarrow W \subset X \times X$ is open, $(x_0, x_1) \in W$. \exists open sets $U_0, U_1 \subset X$ such that: $x_0 \in U_0, x_1 \in U_1 \quad U_0 \times U_1 \subset W$ $x_0, x_1 \in \overline{K}$ $\Rightarrow y_0 \in U_0 \cap K \quad \exists y_1 \in U_1 \cap K$ $\Rightarrow y_\lambda := (1 - \lambda)y_0 + \lambda y_1 \in K \cap U$, so $K \cap U \neq \emptyset$ Hence $x_\lambda \in \overline{K}$.

Let X be a real vector space

Let \mathcal{F} be a set of linear functions $f: X \to \mathbb{R}$

 $\Rightarrow x_{\lambda} + U \subset K \Rightarrow x_{\lambda} \in int(K)$

Let $\mathcal{U}_{\mathcal{F}} \subset 2^X$ be the weakest topology such that $f \in \mathcal{F}$ is continuous w.r.t. $\mathcal{U}_{\mathcal{F}}$ If $\mathcal{F} \ni f : X \to \mathbb{R}$ we have for $a < b \{ x \in X \mid a < f(x) < b \} \in \mathcal{U}_{\mathcal{F}}$

Let $\mathcal{V}_{\mathcal{F}} \subset 2^X$ be the set of all subsets of the form

$$V := \{ x \in X \mid a_i < f_i(x) < b_i \quad i = 1, \dots, m \} \quad f_i \in \mathcal{F}, a_i, b_i \in \mathbb{R}$$
 for $i = 1, \dots, m$

Lemma 2:

(i) Let
$$U \subset X$$
. Then $U \in \mathcal{U}_{\mathcal{F}}$ if and only if $\forall x \in U \exists V \in \mathcal{V}_{\mathcal{F}}$ such that $x \in V \in U$ (*)

- (ii) $(X, \mathcal{U}_{\mathcal{F}})$ is a locally convex topological vector space
- (iii) A sequence $x_n \in X$ converges to $x_0 \in X$ if and only if $f(x_0) = \lim_{n \to \infty} f(x_n) \, \forall f \in \mathcal{F}$
- (iv) $(X, \mathcal{U}_{\mathcal{F}})$ is Hausdorff if and only if $\forall x \in X, x \neq 0 \exists f \in \mathcal{F}$ such that $f(x) \neq 0$.

Proof:

(i) Exercise with hint:

Define
$$\mathcal{U}'_{\mathcal{F}} := \{ U \subset X \mid (*) \}$$

Prove:

- (a) $\mathcal{U}_{\mathcal{F}}'$ is a topology
- (b) Each $f \in \mathcal{F}$ is continuous w.r.t. $\mathcal{U}'_{\mathcal{F}}$
- (c) If $\mathcal{U} \subset 2^X$ is another topology such that each $f \in \mathcal{F}$ is continuous w.r.t. \mathcal{U} then $\mathcal{U}'_{\mathcal{F}} \subset \mathcal{U}$
- (ii) Each $V \in \mathcal{V}_{\mathcal{F}}$ is convex
 - scalar multiplication is continuous:

$$\begin{array}{l} \lambda_0 \in \mathbb{R}, \, x_0 \in X \\ \text{Choose } V \in \mathcal{V}_{\mathcal{F}} \text{ such that } \lambda_0 x_0 \in V \, \exists \delta > 0 \text{ such that} \\ (\lambda_0 - \delta) x_0, \, (\lambda_0 + \delta) x_0 \in V \text{ and } \delta \neq \pm \lambda_0 \\ \Rightarrow U := \frac{1}{\lambda_0 - \delta} V \cap \frac{1}{\lambda_0 + \delta} V \in \mathcal{V}_{\mathcal{F}} \\ \text{If } x \in U \text{ and } |\lambda - \lambda_0| < \delta \text{ then } \lambda x \in V \text{ (because } V \text{ is convex)} \end{array}$$

• addition is continuous:

$$\begin{array}{l} x_0,\ y_0\in X,\ x_0+y_0\in W,\ W\in\mathcal{V}_{\mathcal{F}}\\ \text{Define }U:=\frac{1}{2}W+\frac{x_0-y_0}{2}\quad V:=\frac{1}{2}W+\frac{y_0-x_0}{2}\\ \Rightarrow U,\ V\in\mathcal{V}_{\mathcal{F}},\ x_0\in U,\ y_0\in V\\ x\in U,\ y\in V\Rightarrow x+y\in W \end{array}$$

(iii) Assume $x_n \stackrel{\mathcal{U}_{\mathcal{F}}}{\to} x_0$

Let
$$f \in \mathcal{F}$$
, $\varepsilon > 0$. Denote $U := \{x \in X \mid |f(x) - f(x_0)| < \varepsilon\} \in \mathcal{V}_{\mathcal{F}}$
 $x_0 \in U \Rightarrow \exists n_0 \in \mathbb{N} \ n \geq n_0 : x_n \in U$
 $\Rightarrow \forall n \geq n_0 |f(x) - f(x_0)| < \varepsilon$

Assume $f(x_n) \to f(x_0) \, \forall f \in \mathcal{F}$ Let $U \in \mathcal{U}_{\mathcal{F}}$ with $x \in U \stackrel{(i)}{\Rightarrow} \exists V \in \mathcal{V}_{\mathcal{F}}$ with $x_0 \in V \in U$ $V = \{x \in X \mid a_i < f_i(x_i) < b_i \quad i = 1, \dots, m\}$ $\Rightarrow a_i < f_i(x_0) < b_i \quad i = 1, \dots, m$ $\Rightarrow \exists n_0 \in \mathbb{N} \quad \forall i \in \{1, \dots, m\} \, \forall n \geq n_0 : a_i < f_i(x_n) < b_i$ $\Rightarrow \forall n \geq n_0 \, x \in V \subset U$

(iv) Exercise without hints

Example 1: I any set, $X = \mathbb{R}^I := \{x : I \to \mathbb{R}\} \ni \{x_i\}_{i \in I}$ is a vector space. "product space". $\pi_i : X \to \mathbb{R}$ projection $\pi_i(x) = x(i)$ linear map $\mathcal{U} \subset 2^X$ weakest topology such that each π_i is continuous

Example 2: X Banach space

$$\mathcal{F} := \{ \varphi : X \to \mathbb{R} \mid \varphi \text{ is bounded and linear} \} = X^*$$

Let \mathcal{U}^w be the weakest topology such that each bounded linear functional is continuous w.r.t. \mathcal{U}^w

Facts:

- a) $\mathcal{U}^s\subset 2^X$ strong topology; induced by the norm; $\mathcal{U}^w\subset 2^X$ weak topology: $\mathcal{U}^w\subset \mathcal{U}^s$
- b) (X, \mathcal{U}^w) is a locally convex vector space
- c) A sequence $x_n \in X$ converges to $x_0 \in X$ if and only if $\langle x^*, x_0 \rangle = \lim_{n \to \infty} \langle x^*, x_n \rangle \quad \forall x^* \in X^*$

Notation: $x_n \to x_0 \text{ or } x_0 = \text{w-} \lim_{n \to \infty} x_n$

Example 3: Let X be a Banach space, $\mathcal{L}(X,\mathbb{R})$ dualspace Let $\mathcal{U}^{w^*} \subset 2^{X^*}$ be the weakest topology on X^* such that each linear functional of the form $X^* \to \mathbb{R} \, x^* \to \langle x^*, x \rangle$ is continuous (in this case $\mathcal{F} = i(X) \subset X^{**}$) Facts:

- a) $\mathcal{U}^s \subset 2^{X^*}$ strong topology $\mathcal{U}^w \subset 2^{X^*}$ weak topology $\Rightarrow \mathcal{U}^{w^*} \subset \mathcal{U}^w \subset \mathcal{U}^s$
- b) (X^*, \mathcal{U}^{w^*}) is a locally convex topological vector space
- c) A sequence $x_n^* \in X^*$ converges to x_0^* in the weak*-topology if and only if $\langle x_0^*, x \rangle = \lim_{n \to \infty} \langle x_n^*, x \rangle \quad \forall x \in X$

Notation: $x_n^* \stackrel{w^*}{\rightharpoonup} x_0^*$ or $x_0^* = w^* - \lim_{n \to \infty} x_n^*$

Remark: Suppose the sequence $\langle x^*, x_n \rangle$ converges $\forall x^* \in X^*$ Does this imply that x_n converges weakly? No, denote $\varphi(x^*) = \lim_{n \to \infty} \langle x^*, x_n \rangle$ Then $\varphi: X \to \mathbb{R}$ is linear and continuous x_n converges weakly $\Leftrightarrow \varphi \in i(X) \subset X^{**}$

Exercise: Find an example

Lemma 3: X Banach space, $K \subset X$ convex Assume: K is closed w.r.t. the strong topology \Rightarrow K is weakly closed

Proof: Let $x_0 \in X \setminus K$, $K \neq \emptyset$ $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x_0) \cap K = \emptyset$

Chap. II Thm 6 $\exists x^* \in X^*, \exists c \in \mathbb{R} \text{ such that } \langle x^*, x \rangle < c \quad \forall x \in B_{\varepsilon}(x_0) \text{ and } \langle x^*, x \rangle \geq c \quad \forall x \in K$ $\Rightarrow U := \{x \in X \mid \langle x^*, x \rangle < c\} \text{ weakly open and } x_0 \in U, U \cap K = \emptyset$

Lemma 4 (Mazur): x_i sequence, $x_i
ightharpoonup x_0 \Rightarrow \forall \varepsilon > 0 \,\exists \lambda_1, \dots, \lambda_n \in \mathbb{R}$ $\lambda_i \geq 0$ $\sum_{i=1}^n \lambda_i = 1$ $||x_0 - \sum_{i=1}^n \lambda_i x_i|| < \varepsilon$

Proof: $K := \{\sum_{i=1}^n \lambda_i x_i \mid n \in \mathbb{N}, \lambda_i > 0, \sum_{i=1}^n \lambda_i = 1\}$ convex Lemma 1 the strong closure \overline{K} of K is convex Lemma 3 \overline{K} is weakly closed $\Rightarrow x_0 \in \overline{K}$

Lemma 5: X Banach space, ∞ -dimensional $S := \{x \in X \mid ||x|| = 1\}$ $B := \{x \in X \mid ||x|| \le 1\}$ $\Rightarrow B$ is the weak closure of S.

Proof: $x_0 \in B, U \in \mathcal{U}^w$ and $x_0 \in U$ $\Rightarrow U \cap S \neq \emptyset$. Choose ε_i, x_i^* such that $V := \{x \in X \mid |\langle x_i^*, x_0 - x \rangle| < \varepsilon_i\} \subset U$ $V \supset E := \{x \in X \mid \langle x_i^*, x_0 - x \rangle = 0\}$ nontrivial affine subspace, $E \cap S \neq \emptyset$

Example: $X = l^1 \ni x_n$ sequence, $l^1 \ni x_0$ Then $x_n \rightharpoonup x_0 \Leftrightarrow x_n \rightarrow x_0 \quad ||x_n - x_0||_1 \rightarrow 0$

3.2 The weak* topology

Theorem 1 (Banach Alaoglu, sequentially): X separable Banach space \Rightarrow every bounded sequence $x_n^* \in X^*$ has a weak*-convergent subsequence.

Proof: $D = \{x_1, x_2, x_3, \ldots\} \subset X$ dense, countable.

$$c := \sup_{n \in \mathbb{N}} \|x_n^*\| < \infty$$

$$\Rightarrow |\langle x_n^*, x_1 \rangle| \le \|x_n^*\| \cdot \|x_1\| \le c \|x_1\|$$

$$\Rightarrow \exists \text{ subsequence}(x_{n_{i-1}})_{i=1}^{\infty}$$

such that $\langle x_{n_{i,1}}^*, x_1 \rangle$ converges. The sequence $\langle x_{n_{i,1}}^*, x_2 \rangle \in \mathbb{R}$ is bounded

 \exists further subsequence $(x_{n_{i,2}}^*)_{i=1}^{\infty}$ such that $\langle x_{n_{i,2}}^*, x_2 \rangle$ converges.

 $\Rightarrow \exists$ sequence of subsequences $(x_{n_{i,k}})_{i=1}^{\infty}$ such that

- $(x_{n_{i}}^*)_i$ is a subsequence of $(x_{n_{i}}^*)_i$
- the limit $\lim_{i\to\infty}\langle x_{n_{i,k}}^*, x_k\rangle$ exists for every $k\in\mathbb{N}$

 $Diagonal\ Subsequence$

 $x_{n_i}^* := x_{n_{i,i}}^*$ $\Rightarrow (x_{n_i}^*)_{i=1}^{\infty}$ is a subsequence of $(x_n^*)_{n=1}^{\infty}$ and the limit $\lim_{i \to \infty} \langle x_{n_i}^*, x_k \rangle$ exists for every $k \in \mathbb{N}$.

 \Rightarrow By Chapter II, Thm 2 (Banach-Steinhaus) with $Y = \mathbb{R}, \exists x^* \in X^*$ such that

$$\langle x^*, x \rangle = \lim_{i \to \infty} \langle x_{n_i}^*, x \rangle \forall x \in X$$

So $x_{n_i}^* \rightharpoonup x^*$

Example 1: (M,d) compact metric space with $M \neq \emptyset$, $\mathcal{B} \subset 2^M$ Borel σ algebra. X := C(M) separable

 $X^* :\cong \{ \text{real Borel measures} \mu : \mathcal{B} \to \mathbb{R} \}$

 $f: M \to M \ homeomorphism.$

A Borel measure $\mu: \mathcal{B} \to [0, \infty)$ is called an f-invariant Borel probability measure if

- $\mu(M) = 1$
- $B \in \mathcal{B} \Rightarrow \mu(f(B)) = \mu(B)$

 $\mathcal{M}(f) := \{f\text{-invariant Borel prob. meas. on } M\} \subset X^*$

Fact 1: $\mu \in \mathcal{M}(f)$

 $\Rightarrow \|\mu\| = |\mu|(M) = \mu(M) = 1$

Fact 2: $\mathcal{M}(f)$ is convex \Rightarrow Exercise.

Fact 3: $\mathcal{M}(f) \neq \emptyset$

Proof: Fix an element $x \in M$. Define the Borel-measure $\mu_n : \mathcal{B} \to \mathbb{R}$

$$\int_{M} u \, d\mu_n := \frac{1}{n} \sum_{k=0}^{n-1} u(f^k(x)) \forall \ u \in C(M)$$

where $f^k := \underbrace{f \circ f \circ \ldots \circ f}_{k} \Rightarrow \|\mu_n\| \le 1$, $\mu_n \ge 0 \Rightarrow (Thm1) \exists \text{ weak}^* \text{ convergent}$

subsequence $\mu_{n_i} \rightharpoonup \mu$

Claim: $\mu \in \mathcal{M}(f)$

 $\mu \ge 0$ $\int_{M} u \, d\mu = \lim_{n \to \infty} \int_{M} u \, d\mu_{n_i} \ge 0 \, \forall u \ge 0$

$$\mu(M) = \int_{M} 1 \, \mathrm{d}\mu = \lim_{i \to \infty} \int_{M} 1 \, \mathrm{d}\mu_{n_{i}} = 1$$

$$\mu(f(B)) = \mu(B) \forall B \in \mathcal{B}$$

$$\int_{M} u \circ f \, \mathrm{d}\mu = \lim_{i \to \infty} \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} u(f^{k}(x)) = \lim_{i \to \infty} \frac{1}{n_{i}} \sum_{k=1}^{n_{i}-1} u(f^{k}(x))$$

$$\int_{M} u \circ f \, \mathrm{d}\mu = \int_{M} u \, \mathrm{d}f_{*}\mu \, \forall u \in C(M)$$

$$\Rightarrow f_{*}\mu(B) = \mu(B) \forall B \in \mathcal{B}$$
and $f_{*}\mu(B) = \mu(f^{-1}(B))$

Example 2: $X = \ell^{\infty}$, elements of X are bounded sequences $x = (x_i)_{i=1}^{\infty} \in \mathbb{R}$. $||x||_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$

Definition: $\phi_n: X \to \mathbb{R}$ by $\phi_n(x) := x_n$ and $\|\phi_n\| = 1$

Exercise: Show that $\phi_n \in X^*$ has no weak*-convergent subsequence, ie. for all subsequences $n_1 < n_2 < n_3 < \ldots : \exists x \in X = \ell^{\infty}$ such that the sequence $(\phi_{n_i}(x))_{i=1}^{\infty} \in \mathbb{R}$ does not converge.

Theorem 2 (Banach-Alaoglu, general form): X Banach space \Rightarrow the unit ball $B^* := \{x^* \in X^* \mid ||x^*|| \le 1\}$ in the dual space is weak* compact.

Remark: X^* with the weak* topology is Hausdorff. $\Rightarrow B^*$ is weak*-closed. Prove it directly without using Thm 2.

Theorem 3 (Tychonoff): Let I be any index set and, for each $i \in I$, let K_i be a compact topological space $\Rightarrow K := \prod_{i \in I} K_i$ is compact wrt the product topology.

Remark: $K = \{x = (x_i)_{i \in I} \mid x_i \in K_i\}$ $\pi_i : K \to K_i$ canonical projection product topology := weakest topology on K wrt which each π_i is continuous.

Proof Thm 3 \Rightarrow **Thm 2:** I = X. $K_x := [-\|x\|, \|x\|] \subset \mathbb{R}$

$$K := \prod_{x \in X} K_x = \{ f : X \to \mathbb{R} \mid |f(x)| \le ||x|| \forall x \in X \} \subset \mathbb{R}^X$$
$$L := \{ f : X \to \mathbb{R} \mid f \text{ is linear} \} \subset \mathbb{R}^X$$

- By Thm 3: K is compact
- L is closed with respect to the product topology. For $x,y\in X,\lambda\in\mathbb{R},$ the functions

$$\phi_{x,y}: \mathbb{R}^X \to \mathbb{R}, \psi_{x,\lambda}: \mathbb{R}^X \to \mathbb{R}$$

given by $\phi_{x,y}(f) := f(x+y) - f(x) - f(y)$ and $\psi_{x,\lambda} := f(\lambda x) - \lambda f(x)$ are continuous wrt product topology. So

$$L = \bigcap_{x,y} \phi_{x,y}^{-1}(0) \cap \bigcap_{x,\lambda} \psi_{x,\lambda}^{-1}(0)$$

is closed $\Rightarrow K\cap L=B^*$ is compact. Product topology on $K\cap L=\text{weak*-topology}$ on X^*

Definition: K any set. A set $\mathcal{A} \subset 2^K$ is called FiP if $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow A_1 \cap \ldots \cap A_n \neq \emptyset$. A set $\mathcal{B} \subset 2^K$ is called maximal FiP if \mathcal{B} is FiP and $\forall \mathcal{A} \subset 2^K$ we have

 $\mathcal{B} \subset \mathcal{A} \text{ and } \mathcal{A} \text{ FiP} \Rightarrow \mathcal{A} = \mathcal{B}$

Fact 1: If $\mathcal{A} \subset 2^K$ is FiP, then $\exists \mathcal{B} \subset 2^K$ max FiP such that $\mathcal{A} \subset \mathcal{B}$ (Zorn's Lemma)

Fact 2: Let $\mathcal{B} \subset 2^K$ is max FiP, then:

- (i) $B_1, \ldots, B_n \in \mathcal{B} \Rightarrow B_1 \cap \ldots \cap B_n \in \mathcal{B}$
- (ii) $C \in K, C \cap B \neq \emptyset \forall B \in \mathcal{B} \Rightarrow C \in \mathcal{B}$

Fact 3: Let K be a topological space. Then K is compact if and only if every FiP collection $\mathcal{A} \subset 2^K$ of closed subsets satisfies $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$

Proof of Tychonoff's theorem: $K = \prod_i K_i$. Let $\mathcal{A} \subset 2^K$ be a FiP collection of closed sets. By Fact $1 \exists \max$ FiP collection $\mathcal{B} \subset 2^K$ with $\mathcal{A} \subset \mathcal{B}$ (not each $B \in \mathcal{B}$ needs to be closed).

To show: $\bigcap_{B \in \mathcal{B}} \overline{B} \neq \emptyset$

Step 1: Construction of an element $x \in K$.

Fix $i \in I$. $\pi_i : K \to K_i$ projection. Denote $\mathcal{B}_i := \{\pi_i(B) \mid B \in \mathcal{B}\} \subset 2^{K_i} \Rightarrow \mathcal{B}_i$ is FiP (if $B_1, \ldots, B_n \in \mathcal{B}$ then $\pi_i(B_1) \cap \ldots \cap \pi(B_n) \supset \pi_i(B_1 \cap \ldots \cap B_n) \neq \emptyset$)

$$(K_i \text{ compact,Fact } 3) \Rightarrow \overline{\pi_i(B)} \neq \varnothing$$

Pick $x_i \in \bigcap_{B \in \mathcal{B}} \overline{\pi_i(B)}$ Choose $x = (x_i)_{i \in I} \in K$ (Axiom of Choice).

Step 2: $x \in \overline{B} \quad \forall B \in \mathcal{B}$

Let $U \in K$ be open with $x \in U$.

To show: $U \cap B \neq \emptyset \quad \forall B \in \mathcal{B} \ U$ open, $x \in U \Rightarrow (!) \exists$ finite set $J \subset I$ \exists open sets $U_i \subset K_i, i \in J$ such that $x \in \bigcap_{i \in J} \pi_i^{-1}(U_i) \subset U$ (like Lemma 2 (i)).

$$\begin{aligned} x_i &= \pi_i(x) \in U_i \cap \overline{\pi_i(B)} \forall i \in J, \forall B \in \mathcal{B} \\ \overset{(U_i \text{ open})}{\Rightarrow} U_i \cap \pi_i(B) &\neq \varnothing \forall i \in J \forall B \in \mathcal{B} \\ &\Rightarrow \pi_i^{-1}(U_i) \cap B \neq \varnothing \forall i \in J \forall B \in \mathcal{B} \\ \overset{(\text{Fact } 2)}{\Rightarrow} \pi_i^{-1}(U_i) \in \mathcal{B} \forall i \in J \\ \overset{(\text{Fact } 2)}{\Rightarrow} \bigcap_{i \in J} \pi_i^{-1}(U_i) \in \mathcal{B} \\ & \bigcap_{i \in J} \pi_i^{-1}(U_i) \cap B \neq \varnothing \forall B \in \mathcal{B} \\ & \Rightarrow U \cap B \neq \varnothing \forall B \in \mathcal{B} \end{aligned}$$

Theorem 4: X separable Banach space, $K \subset X^*$. Equivalent are:

- (i) K is weak* compact
- (ii) K is bounded and weak* closed
- (iii) K is sequentially weak* compact
- (iv) K is bounded and sequentially weak* closed

Exercise: $\mathcal{M}(f)$ as in example $1 \Rightarrow \mathcal{M}(f)$ is weak* compact.

Proof of Thm 4: Exercise.

(i) \Leftrightarrow (Thm 2) (ii): use uniform boundedness (Chapter II, Thm 1) (ii) \Rightarrow (Thm 1) (iii) \Rightarrow (definitions) (iv) \Rightarrow (ii) Given $x^* \in \text{weak}^*$ closure(K). Need to prove \exists sequence $x_n^* \in K$ with $x_n^* \rightharpoonup x^*$. Then, by (iv), $x^* \in K$

Theorem 5: X Banach space, $E \subset X^*$ linear subspace Assume $E \cap B^*$ is weak*-closed, where $B^* := \{x^* \in X^* \mid \|x^*\| \le 1\}$ Let $x_0^* \in X^* \setminus E$. Let δ be such that $0 < \delta < \inf_{x^* \in E} \|x_0^* - x^*\|$ $\Rightarrow \exists x_0 \in X$ such that $\langle x_0^*, x_0 \rangle = 1$, $\langle x^*, x_0 \rangle = 0$ $\forall x^* \in E$, $\|x_0\| \le \frac{1}{\delta}$

Remark 1: E is closed Let $x_n^* \in E$ and $x_n^* \to x^* \in X^*$ $\exists c > 0$ such that $||x_n^*|| \le c \quad \forall n \in \mathbb{N}$ $\Rightarrow \frac{x_n^*}{c} \in E \cap B^*$ $\Rightarrow \frac{x^*}{c} \in E \cap B^* = E \cap B^* \Rightarrow x^* \in E$ E closed $\Rightarrow \exists \delta > 0$ as in the hypothesis of Theorem 5

Remark 2: B^* is closed in the weak*-topology. Hence each closed ball $\{x^* \in X^* \mid ||x^* - x_0^*|| \le r\}$ is weak*-closed.

Proof:

Step 1 There is a sequence of finite sets $S_n \subset B = \{x \in X \mid ||x|| \le 1\}$ satisfying the following condition for every $x^* \in X^*$:

$$\left\| x^* - x_0^* \right\| \le n\delta$$

$$\max_{x \in S_k} |\langle x^* - x_0^*, x \rangle| \le \delta k$$
for $k = 0, \dots, n - 1$

$$\Rightarrow x^* \notin E$$
(*)

Proof of Step 1: n = 1 Choose $S_0 = \emptyset$

Then (*) holds for n=1

 $n \ge 1$: Assume S_0, \ldots, S_{n-1} have been constructed such that (*) holds.

To show: There is a finite set $S_n \subset B$ such that (*) holds with n replaced by n+1

For any finite set $S \subset B$ denote

$$E(S) := \left\{ x^* \in E \middle| \begin{array}{l} \|x^* - x_0^*\| \le \delta(n+1) \\ \max_{x \in S_k} |\langle x^* - x_0^*, x \rangle| \le \delta k \forall k = 0, \dots n - 1 \\ \max_{x \in S} |\langle x^* - x_0^*, x \rangle| \le \delta n \end{array} \right\}$$

To show: \exists finite set $S \subset B$ such that $E(S) = \emptyset$ Suppose, by contradiction, that $E(S) \neq \emptyset$, for every finite set $S \subset B$

a) The set $K:=\{x^*\in E\mid \|x^*-x_0^*\|\leq \delta(n+1)\}$ is weak*-compact. Let $R:=\|x_0\|+\delta(n+1)$ Then $\|x^*\|\leq R\quad \forall x^*\in K$ so $K\subset E\cap RB^*=R(E\cap B^*)=:E_R$ E_R is weak*-closed. So $K=\underbrace{E_R}$ $\bigcap\{x^*\in X^*\mid \|x^*-x_0^*\|\leq \delta(n+1)\}$ weak*cl. by ass. weak*-closed by Rem. 2

K is weak*-closed and bounded $\overset{\text{Thm }}{\Rightarrow}$ 2 K is weak*-compact.

b) E(S) is weak*-closed for every S E(S) is the intersection of K with the weak*-closed subsets $\{x^* \in X^* \mid \max_{x \in S_k} |\langle x^* - x_0^*, x \rangle| \leq \delta k\} \quad k = 0, \dots, n-1$ $\{x^* \in X^* \mid \max_{x \in S} |\langle x^* - x_0^*, x \rangle| \leq \delta n\}$

c)
$$S^i \subset B$$
 finite set for $i \in I$, I finite

$$\bigcap_{i \in I} E(S^i) = E\left(\bigcup_{i \in I} S^i\right) \neq \emptyset \text{ by assumption.}$$
 Let $\mathcal{S} := \{S \subset B \mid S \text{ finite } \}$ Then by c), the collection $\{E(S) \mid S \in \mathcal{S}\}$ is

FIP and by b) it consists of weak*-closed subsets of K.

By a)
$$K$$
 is weak*-compact $\Rightarrow \bigcap_{S} E(S) \neq \emptyset$

By a)
$$K$$
 is weak*-compact $\Rightarrow \bigcap_{S \in \mathcal{S}} E(S) \neq \emptyset$
Let $x^* \in \bigcap_{S \in \mathcal{S}} E(S) \Rightarrow x^* \in E, ||x^* - x_0^*|| \leq \delta(n+1),$

 $\max_{x \in S_k} |\langle x^* - x_0^*, x \rangle| \leq \delta k \; k = 0 \dots n - 1 \text{ and } |\langle x^* - x_0^*, x \rangle| \leq \delta n \quad \forall x \in B$ i.e. $||x^* - x_0^*|| \leq \delta n$ This contradicts (*)

Step 2 Construction of x_0

Choose a sequence $x_i \in B$ which runs successively through all points of the set

$$S = \bigcup_{i=1}^{\infty} \frac{1}{n} S_r$$

Then
$$\lim_{n\to\infty} ||x_i|| = 0$$

Define a linear operator $T: X^* \to c_0$ by $Tx^* := (\langle x^*, x_i \rangle)_{i \in \mathbb{N}}$

Claim: For every $x^* \in E$ there is an $i \in \mathbb{N}$ such that $|\langle x^* - x_0^*, x_i \rangle| \geq \delta$

Let
$$x^* \in E$$
 and choose $n \ge \frac{\|x^* - x_0^*\|}{\delta} \Rightarrow \|x^* - x_0^*\| \le \delta n$

Step 1
$$\exists k \leq n-1 \exists x \in S_k$$
 such that $|\langle x^* - x_0^*, x \rangle| > \delta k$ $\Rightarrow |\langle x^* - x_0^*, \frac{x}{k} \rangle| > \delta \Rightarrow \exists i$ such that $x_i = \frac{x}{k}$ The claim shows: $||Tx^* - Tx_0^*|| > \delta$ $\forall x^* \in E$ $\Rightarrow Tx_0^* \notin \overline{TE}$

$$\Rightarrow |\langle x^* - \overline{x_0}, \frac{x}{k} \rangle| > \delta \Rightarrow \exists i \text{ such that } x_i = \frac{x}{k}$$

The claim shows:
$$||Tx^* - Tx_0^*|| > \delta \quad \forall x^* \in E$$

$$\Rightarrow Tx_0^* \notin \overline{TE}$$

The claim shows.
$$||Tx^* - Tx_0|| > 0$$
 $\forall x \in E$
 $\Rightarrow Tx_0^* \notin \overline{TE}$
Chap II, Thm 7 $\Rightarrow \exists \alpha \in c_0^* = l^1 \text{ such that } \langle \alpha, Tx_0^* \rangle = 1 \langle \alpha, Tx^* \rangle = 0 \quad \forall x^* \in E$
 $\|\alpha\|_1 \leq \frac{1}{\delta}$
Define $x_0 := \sum_{i=1}^{\infty} \alpha_i x_i \in X$

$$\|\alpha\|_1 \le \frac{1}{\delta}$$

Define
$$x_0 := \sum_{i=1}^{\infty} \alpha_i x_i \in X$$
.

Note 1 $\sum_{i=1}^{\infty} \|\alpha_i x_i\| \leq \sum_{i=1}^{\infty} |\alpha_i| < \infty$ So by Chapter I Theorem 10, the sequence $\sum_{i=1}^{\infty} \alpha_i x_i$ converges as $n \to \infty$

Note 2

a)
$$\langle x_0^*, x_0 \rangle = \sum_{i=1}^{\infty} \alpha_i \langle x_0^*, x_i \rangle = \langle \alpha, Tx_0^* \rangle = 1$$

b)
$$\langle x^*, x_0 \rangle = \langle \alpha, Tx^* \rangle = 0 \quad \forall x^* \in E$$

c)
$$||x_0|| \le \sum_{i=1}^{\infty} |\alpha_i| = ||\alpha||_1 \le \frac{1}{\delta}$$

Corollary 1: Let X be a Banach space and $E \subset X$ a linear subspace.

Let
$$B^* := \{x^* \in X^* \mid ||x^*|| = 1\}$$

Equivalent are:

- (i) E is weak*-closed
- (ii) $E \cap B^*$ is weak*-closed
- (iii) $(^{\perp}E)^{\perp} = E$

Exercise: X Banach space, $\iota: X \to X^{**}$ canonical embedding $\Rightarrow \iota(X)$ is weak*-dense in X^{**}

Proof of Corollary 1: (i) \Rightarrow (ii) obvious (ii) \Rightarrow (iii) $E \subset (^{\perp}E)^{\perp}$ by definition ($^{\perp}E = \{x \in X \mid \langle x^*, x \rangle = 0 \,\forall x^* \in E\}$) ($^{\perp}E)^{\perp} \supset E$: Let $x_0^* \notin E$ $\xrightarrow{\text{Thm } 5} \exists x_0 \in X$ such that $\langle x_0^*, x_0 \rangle = 1$ $\langle x^*, x_0 \rangle = 0 \,\forall x^* \in E$ $\Rightarrow x_0 \in ^{\perp}E, \, \langle x_0^*, x_0 \rangle \neq 0 \Rightarrow x_0^* \notin (^{\perp}E)^{\perp}$ (iii) \Rightarrow (i) $E = (^{\perp}E)^{\perp} = \bigcap_{x \in ^{\perp}E} \underbrace{\{x^* \in X^* \mid \langle x^*, x \rangle = 0\}}_{\text{weak}^*\text{-closed}}$

Corollary 2: X Banach space, $\varphi: X^* \to \mathbb{R}$ linear Equivalent are:

- (i) φ is continuous w.r.t. weak*-topology
- (ii) $\varphi^{-1}(0) \in X^*$ is weak*-closed
- (iii) $\exists x \in X \, \forall x^* \in X^* \quad \varphi(x^*) = \langle x^*, x \rangle$

Proof: $(iii) \Rightarrow (i)$ definition of weak*-topology $(i) \Rightarrow (ii)$ definition of continuity $(ii) \Rightarrow (iii)$ w.l.o.g $\varphi \neq 0$ $E := \varphi^{-1}(0) \subset X^*$ is weak*-closed Choose $x_0^* \in X^*$ such that $\varphi(x_0^*) = 1$, so $x_0^* \notin E$ $\xrightarrow{\text{Thm } 5} \exists x_0 \in X$ such that $\langle x_0^*, x_0 \rangle = 1 \ \langle x^*, x_0 \rangle = 0 \quad \forall x^* \in E$ Let $x^* \in X^*$ $\Rightarrow x^* - \varphi(x^*)x_0^* \in E$ $\Rightarrow \langle x^* - \varphi(x^*)x_0^*, x_0 \rangle = 0$ $\Rightarrow \langle x^*, x_0 \rangle = \varphi(x^*)\langle x^*, x_0 \rangle = \varphi(x^*)$

Corollary 3: X Banach space, $\iota: X \to X^{**}$ canonical embedding $S:=\{x\in X\mid \|x\|=1\}$ The weak*-closure of $\iota(S)\in X^{**}$ is $B^{**}=\{x^{**}\in X^{**}\mid \|x\|\leq 1\}$

Proof: $K := \text{weak}^* \text{ closure of } \iota(S)$

- 1. $K \subset B^{**}$ because B^{**} is closed
- 2. K is convex:

Key fact: $\iota: \underbrace{X} \to \underbrace{X^{**}}$ is continuous weak top weak*-top Hence $\iota(B) \subset K: x \in B \ U \subset X^{**}$ weak* open, $\iota(x) \in U$ $\Rightarrow \iota^{-1}(U) \subset X$ weakly open and $x \in \iota^{-1}(U)$ $\Rightarrow \iota^{-1}(U) \cap S \neq \emptyset$ $\Rightarrow U \cap \iota(S) \neq \emptyset \Rightarrow \iota(x) \in K$

So K is the weak*-closure of the convex set $\iota(B) \stackrel{\text{Lemma 1}}{\Rightarrow} K$ is convex

3. $B^{**} \subset K$ $x_0^{**} \notin K \Rightarrow \exists \text{ weak*-continuous linear functional } \varphi: X^{**} \to \mathbb{R} \text{ such that } \sup_{\substack{x^{**} \in K \\ \text{Cor 2} \\ \Rightarrow \exists x_0^* \in X^* \text{ such that } \phi(x^{**}) = \langle x^{**}, x_0^* \rangle \\ \Rightarrow \langle x_0^{**}, x_0^* \rangle > \sup_{\substack{x^{**} \in K \\ x^{**} \in K}} \langle x^{**}, x_0^* \rangle \geq \sup_{\substack{x \in S \\ x \in S}} \langle x_0^*, x \rangle = \|x_0^*\| \Rightarrow \|x_0^{**}\| > 1 \Rightarrow x_0^{**} \notin B^{**}$

Lemma 6: X normed vector space

(i) If $x_1^*, \ldots, x_n^* \in X^*$ are linearly independent, then $\exists x_1, \ldots, x_n \in X$ such that

$$\langle x_i^*, x_j \rangle = \delta_{ij}$$

(ii) If $x_1^*, \dots, x_n^* \in X$ are lin. indep., then

$$X_0 := \{ x \in X \mid \langle x_i^*, x \rangle = 0, i = 1, \dots, n \}$$

is a closed subspace of codimension n and $X_0^\perp=\operatorname{span}\{x_1^*,\dots,x_n^*\}$

Proof:

(i) for $n \Rightarrow$ (ii) for n: $\forall x \in X$ we have: $x - \sum_{i=1}^{n} \langle x_i^*, x \rangle x_i \in X_0$ This shows: $X = X_0 \oplus \operatorname{span}\{x_1, \dots, x_n\}$ and, moreover $x^* \in X_0^{\perp}$

$$\Rightarrow 0 = \langle x^*, x - \sum_{i} \langle x_i^*, x \rangle x_i \rangle$$

$$= \langle x^*, x \rangle - \sum_{i} \langle x_i^*, x \rangle \cdot \langle x^*, x_i \rangle$$

$$= \langle x^* - \sum_{i=1}^n \langle x^*, x_i \rangle x_i^*, x \rangle \forall x \in X$$

$$\Rightarrow x^* = \sum_{i=1}^n \langle x^*, x_i \rangle x_i^* \in \operatorname{span}\{x_1^*, \dots, x_n^*\}$$

(ii) for $n \Rightarrow$ (i) for n+1: Let $x_1^*, \ldots, x_{n+1}^* \in X^*$ be lin. indep. for $i=1,\ldots,n+1$ denote $X_i:=\{x\in X\mid \langle x_j^*,x\rangle=0,j\neq i\}$

$$\overset{\text{(i) for } n}{\Rightarrow} X_i^{\perp} = \operatorname{span}\{x_j^* \mid j \neq i\}$$

$$\Rightarrow x_i^* \notin X_i^{\perp} \Rightarrow \exists x_i \in X_i \text{ such that } \langle x_i^*, x_i \rangle = 1$$

$$\Rightarrow \langle x_j^*, x_i \rangle = \delta_{ij}$$

Remark 1: Converse if $x_i, \ldots, x_n \in X$ are lin. indep., then $\exists x_1^*, \ldots, x_n^* \in X^*$ such that $\langle x_i^*, x_j \rangle = \delta_{ij}$

Remark 2: $x_1^*, \ldots, x_n^* \in X^*$ lin indep, $c_1, \ldots, c_n \in \mathbb{R}$ $\Rightarrow \exists x \in X$ such that $\langle x_i^*, x \rangle = c_i$ (namely: $x = \sum_{i=1}^n c_i x_i$ with x_i as in Lemma 6).

Lemma 7: X normed vector space, $x_1^*, \ldots, x_n^* \in X^*, c_1, \ldots, c_n \in \mathbb{R}, M \geq 0$. Equivalent are:

(i) $\forall \varepsilon > 0 \exists x \in X \text{ such that }$

$$\langle x_i^*, x \rangle = c_i, i = 1, \dots, n \quad ||x|| \leq M + \varepsilon$$

(ii) $\forall \lambda_1, \ldots, \lambda_n \in \mathbb{R}$ we have

$$\left|\sum_{i=1}^{n} \lambda_{i} c_{i}\right| \leq M \left\|\sum_{i=1}^{n} \lambda_{i} x_{i}^{*}\right\|$$

Proof: $(i) \Rightarrow (ii)$: $x = x_{\varepsilon} \in X$ as in (i). Then

$$\begin{aligned} |\sum_{i} \lambda_{i} c_{i}| &= |\sum_{i} \lambda_{i} \langle x_{i}^{*}, x_{\varepsilon} \rangle| \\ &= |\langle \sum_{i} \lambda_{i} x_{i}^{*}, x_{\varepsilon} \rangle| \\ &= \|\sum_{i} \lambda_{i} x_{i}^{*}\| \cdot \|x_{\varepsilon}\| \\ &= (M + \varepsilon) \|\sum_{i} \lambda_{i} x_{i}^{*}\| \ \forall \varepsilon > 0 \end{aligned}$$

 $(ii) \Rightarrow (i)$:

Assume x_1^*, \dots, x_n^* lin indep (w.l.o.g)

Choose $x \in X$ such that $\langle x_i^*, x \rangle = c_i \forall i$ (Remark 2). X as in Lemma 6.

$$\inf_{\xi \in X_0} \|x + \xi\| = \sup_{0 \neq x^* \in X_0^{\perp}} \frac{|\langle x^*, x \rangle|}{\|x^*\|}$$
(by Lemma 6)
$$= \sup_{\lambda_i \in \mathbb{R}} \frac{|\langle \sum \lambda_i x_i^*, x \rangle|}{\|\sum_i \lambda_i x_i^*\|}$$

$$= \sup_{\lambda_i} \frac{|\sum_i \lambda_i c_i}{|\sum_i \lambda_i x_i^*|}$$

$$\leq M$$

Theorem 6: X Banach space. Equivalent are:

- (i) X is reflexive
- (ii) The unit ball $B := \{x \in X \mid ||x|| \le 1\}$ is weakly compact
- (iii) Every bounded sequence in X has a weakly convergent subsequence

Proof: $\iota: X \to X^{**}$ is an isomorphism from X with the weak topology to X^{**} with the weak*topology.

 $U \subset X$ weakly open $\Leftrightarrow \iota(U) \subset X^{**}$ is weak*-open.

(i) \Rightarrow (ii) $\iota(B)$ is the unit ball in X^{**} , hence is weak*compact (Thm 2), so B is weakly compact.

(i) \Rightarrow (iii) X separable and reflexive $\Rightarrow X^*$ separable (Chapter II, Thm 9). $(x_n) \in X$ bounded sequence $\Rightarrow \iota(x_n) \in X^{**}$ is a bounded sequence. So, by Thm 1, $\iota(x_n)$ has a weak*-convergent subsequence $\iota(x_{n_i})$ $\Rightarrow x_{n_i}$ converges weakly.

(i)
$$\Rightarrow$$
(iii): The nonseparable case Let $x_n \in X$ be a bounded sequence. Denote $Y := \overline{\left\{\sum_{n=1}^N \lambda_n x_n \mid N \in \mathbb{N}, \lambda_n \in \mathbb{R}\right\}}$

 $\Rightarrow Y$ is separable and reflexive (Chapter II, Thm 8)

 $\Rightarrow x_n$ by separable case has a subsequence x_{n_i} converging weakly in Y,ie.

$$\exists x \in Y \forall y^* \in Y^* : \langle y^*, x \rangle = \lim_{i \to \infty} \langle y^*, x_{n_i} \rangle$$

$$\overset{\text{by Hahn-Banach}}{\Rightarrow} \forall x^* \in X^* : \langle x^*, x \rangle = \lim_{i \to \infty} \langle x^*, x_{n_i} \rangle$$

(ii) \Rightarrow (i) Let $x^{**} \in X^{**}, x^{**} \neq 0$.

Claim: For every finite set $S \subset X^*$ there exists an $x \in X$ such that

$$\langle x^*, x \rangle = \langle x^{**}, x^* \rangle \ \forall x^* \in S \quad ||x|| < 2||x^{**}||$$

 $S := \{S \subset X^* \mid S \text{ finite subset}\}\ \text{and}\ K(S) := \{x \in X \mid ||x|| \le 2||x^{**}||, \langle x^{**}, x^* \rangle = 1\}$ $\langle x^*, x \rangle \forall x^* \in S$

Note:

- K(S) is a weakly closed subset of $cB = \{x \in X \mid ||x|| \le c\}$ where c = $2||x^{**}||$.
- cB is weakly compact, by (ii).
- The collection $\{K(S) \mid S \in \mathcal{S}\}$ is FiP, because

$$K(S_1) \cap \ldots \cap K(S_n) = K(S_1 \cup \ldots \cup S_n) \neq \emptyset \Rightarrow \bigcap_{S \in S} K(S) \neq \emptyset$$

$$\Rightarrow \exists x \in X \text{ such that} \langle x^*, x \rangle = \langle x^{**}, x^* \rangle \forall x^* \in X^*$$

Proof of claim:

Write $S = \{x_1^*, \dots, x_n^*\}, c_i := \langle x^{**}, x_i^* \rangle$.

$$|\sum_{i} \lambda_i c_i| = |\sum_{i} \lambda_i \langle x^{**}, x_i^* \rangle| = |\langle x^{**}, \sum_{i} \lambda_i x_i^* \rangle| \le ||x^{**}|| \cdot ||\sum_{i} \lambda_i x_i^*||$$

Assumption of Lemma 7 holds with $M = ||x^{**}|| > 0$ Choose $\varepsilon = ||x^{**}|| > 0$.

(iii) \Rightarrow (i) Let $x_0^{**} \in X^{**}, ||x_0^{**}|| \le 1$. Denote $E := \{x^* \in X^* \mid \langle x_0^{**}, x^* \rangle = 0\}$ and $B^* := \{x^* \in X^* \mid ||x^*|| \le 1\}$ Claim 1: $E \cap B^*$ is weak*closed.

Claim 1 $\overset{\text{by Cor 1}}{\Rightarrow}$ E is weak*-closed $\overset{\text{by Cor 2}}{\Rightarrow}$

$$\exists x_0 \in X \forall x^* \in X^* : \langle x_0^{**}, x^* \rangle = \langle x^*, x_0 \rangle \Rightarrow x_0^{**} = \iota(x_0)$$

So $\iota: X \to X^{**}$ is surjective.

Claim 2: $\forall x_1^*, \dots, x_n^* \in X^*, \exists x \in X \text{ such that}$

$$\langle x_i^*, x \rangle = \langle x_0^{**}, x_i^* \rangle, i = 1, \dots, n \quad ||x|| \le 1$$

Proof of Claim 2 Denote $U_m := \{x^{**} \in X^{**} \mid |\langle x^{**} - x_0^{**}, x_i^* \rangle| < \frac{1}{m}; i = 1, \dots, n \}$

 $\Rightarrow x_0^{**} \in U_m, U_m$ is weak*open. Moreover $||x_0^{**}|| \le 1$.

Recall the weak*closure of $\iota(S), S := \{x \in X \mid ||x|| = 1\}$ is the closed unit ball in X^{**} (Cor 3). $\Rightarrow U_m \cap \iota(S) \neq \emptyset$ $\exists x_m \in X \text{ such that}$

$$||x_m|| = 1$$
 $|\langle x_i^*, x_m \rangle - \langle x_0^{**}, x_i^* \rangle| < \frac{1}{m}$ $i = 1, \dots, n$

 \Rightarrow by (iii) \exists weakly convergent subsequence $x_{m_k} \rightharpoonup x$.

 $\Rightarrow ||x|| \leq 1$ and

$$\langle x_i^*, x \rangle = \lim_{k \to \infty} \langle x_i^*, x_{m_k} \rangle = \langle x_0^{**}, x_i^* \rangle \quad i = 1, \dots n$$

Proof of Claim 1 Let $x_0^* \in \text{weak*closure of } E \cap B^*$. We must prove that $x_0^* \in E \cap B^*$. Clearly $||x_0^*|| \le 1$. So it remains to prove $\langle x_0^{**}, x_0^* \rangle = 0$

Step 1 Let $\varepsilon > 0$. Then \exists sequences $x_n \in X, n \ge 1, x_n^* \in X^*$ such that

- (1) $||x_n|| \le 1, ||x_n^*|| \le 1, \langle x_0^{**}, x_n^* \rangle = 0$
- (2) $\langle x_i^*, x_n \rangle = \langle x_0^{**}, x_i^* \rangle$ i = 0, ..., n-1
- (3) $|\langle x_n^* x_0^*, x_i \rangle| < \varepsilon \quad i = 1, \dots, n$

Proof of Step 1 Induction n = 1: a) By Claim 2, $\exists x_1 \in X$ such that $||x_1|| \le$ $1, \langle x_0^*, x_1 \rangle = \langle x_0^{**}, x_0^* \rangle$ b) Because $x_0^* \in \text{weak*closure } (E \cap B^*) \exists x_1^* \in E \cap B^*$ such that $|\langle x_1^* - x_0^*, x_1 \rangle| \leq \varepsilon$ \Rightarrow (1),(2),(3) hold for n = 1.

 $n \geq 1$: Suppose x_i, x_i^* have been constructed for $i = 1, \ldots, n$.

a) By Claim 2,

$$\exists x_{n+1} \in X : \langle x_i^*, x_{n+1} \rangle = \langle x_0^{**}, x_i^* \rangle \quad i = 0, \dots, n \quad ||x_{n+1}|| \le 1$$

b)
$$\exists x_{n+1}^* \in E \cap B^*$$
 such that $|\langle x_{n+1}^* - x_0^*, x_i \rangle| \leq \varepsilon, i = 1, \dots, n$

Step 2 $\langle x_0^{**}, x_0^* \rangle = 0$

By (iii) ∃ weakly convergent subsequence

$$x_{n_i} \rightharpoonup x_0 \in X \quad ||x_0|| \le 1$$

$$\Rightarrow \text{ by Lemma } 4 \ \exists m \in \mathbb{N} \ \exists \lambda_1, \dots, \lambda_m \ge 0$$

$$(4) \ \sum_{i=1}^m \lambda_i = 1 \quad \|x_0 - \sum_{i=1}^m \lambda_i x_i\| < \varepsilon$$

(4)
$$\sum_{i=1}^{m} \lambda_i = 1 \quad ||x_0 - \sum_{i=1}^{m} \lambda_i x_i|| < \varepsilon$$

a)
$$\langle x_m^*, x_0 \rangle = \lim_{i \to \infty} \langle x_m^*, x_{n_i} \rangle = \lim_{i \to \infty} \langle x_0^{**}, x_m^* \rangle = 0$$

$$\begin{aligned} |\langle x_0^{**}, x_0^* \rangle| & \stackrel{\text{(by a)}}{\leq} & \left| \langle x_0^{**}, x_0^* \rangle - \left\langle x_M^*, \sum_i^m \lambda_i x_i \right\rangle \right| + \left| \left\langle x_m^*, \sum_{i=1}^m \lambda_i x_i - x_o \right\rangle \right| \\ & \leq & \sum_i \lambda_i \underbrace{\left| \langle x_0^{**}, x_0^* \rangle - \langle x_m^*, x_i \rangle\right|}_{\leq \varepsilon \text{by (3)}} + \underbrace{\left\| \sum_i^m \lambda_i x_i - x_0 \right\|}_{\leq (3) \text{ by (4)}} \end{aligned}$$

 \leq

Ergodic measures

(M,d) compact metric space, $f:M\to M$ homeomorphism $\mathcal{M}(f) := \{f\text{-invariant Borel probability measure } \mu : \mathcal{B} \to [0, \infty)\}$ $\mathcal{B} \subset 2^M$ Borel σ -algebra, $\mu(M) = 1$, $\mu(f(E)) = \mu(E) \quad \forall E \in \mathcal{B}$ We know: $\mathcal{M}(f)$ nonempty, convex, weak*-compact.

Definition: An f-invariant Borel-measure $\mu \in \mathcal{M}(f)$ is called *ergodic*, if $\forall \Lambda \in \mathcal{B} \quad \Lambda = f(\Lambda) \Rightarrow \mu(\Lambda) \in \{0, 1\}$

Example: $M = S^2$ $\delta_N(\Lambda) = \begin{cases} 1 & N \in \Lambda \\ 0 & N \notin \Lambda \end{cases}$ $\delta_S(\Lambda) = \begin{cases} 1 & S \in \Lambda \\ 0 & S \notin \Lambda \end{cases}$ where N stands for north pole and S for south pole

Definition: X vectorspace, $K \subset X$ convex

 $x \in K$ is called an *extremal point* of K, if the following holds:

$$\begin{cases} x_0, x_1 \in K \\ x = (1 - \lambda)x_0 + \lambda x_1 \\ 0 < \lambda < 1 \end{cases} \Rightarrow x_0 = x_1 = x$$

Lemma 8: $\mu \in \mathcal{M}(f)$ extremal point $\Rightarrow \mu$ is ergodic

Proof: Suppose not.

 $\Rightarrow \exists \Lambda \in \mathcal{B} \text{ such that } \Lambda = f(\Lambda), \ 0 < \mu(\Lambda) < 1$ Define $\mu_0, \mu_1 : \mathcal{B} \to [0, \infty)$ by $\mu_0(E) := \frac{\mu(E \setminus \Lambda)}{1 - \mu(\Lambda)}$ $\mu_1(E) = \frac{\mu(E \cap \Lambda)}{\mu(\Lambda)}$ $\mu_0, \, \mu_1 \in \mathcal{M}(\{), \quad \mu_0 \neq \mu, \, \mu_1 \neq \mu$ $\mu = (1 - \lambda)\mu_0 + \lambda\mu_1 \quad \lambda = \mu(\Lambda)$ $\Rightarrow \mu$ is not extreme

Theorem 7 (Krein-Milman): X locally convex topological T2 vectorspace $K \subset X$ nonempty, compact, convex

E := set of extremal points of K

 $C := \text{convex hull of E} := \{ \sum_{i=1}^{m} \lambda_i e_i \mid e_i \in E \ \lambda_i \ge 0 \ \sum_{i=1}^{m} \lambda_i = 1 \}$ $\Rightarrow \overline{C} = K \text{ (in particular } C \neq \emptyset)$

Corollary: Every homeomorphism of a compact metric space has an ergodic measure

Proof: Apply Theorem 7 to the case $X = C(M)^*$ with weak*-topology and $K = \mathcal{M}(f)$

Proof of Theorem 7:

Step 1 $A, B \subset X$ nonempty, disjoint, convex sets, A open $\Rightarrow \exists$ continuous linear functional $\varphi: X \to \mathbb{R}$ such that $\varphi(a) < \inf_{b \in B} \varphi(b) \quad \forall a \in A$

Proof of Step 1: Hahn-Banach as in Chapter II Theorem 6

Step 2 $\forall x \in X, x \neq 0$ \exists linear functional $\varphi: X \to \mathbb{R}$ with $\varphi(x) \neq 0$ Proof: Choose an open convex neighborhood $A \subset X$ of 0 such that $x \notin A$. Denote $B = \{x\}$. Now apply Step 1.

Step 3 $E \neq \emptyset$

Proof:

A nonempty compact convex subset $K' \subset X$ is called a face of K if

$$x \in K', x_0, x_1 \in K$$

$$K' \subset K \text{ and } x = (1 - \lambda)x_0 + \lambda x_1$$

$$0 < \lambda < 1$$

$$0 = \{K \subset X \mid K \text{ is nonempty, compact, convex}\}$$

 \mathcal{K} is partially ordered by $K' \subset K \stackrel{\text{def}}{\Leftrightarrow} K'$ is a face of K

- $K \preccurlyeq K$
- $K \leq K'$, $K' \leq K \Rightarrow K' = K$
- $K'' \preceq K', K' \preceq K \Rightarrow K'' \preceq K$

If $\mathcal{C} \subset \mathcal{K}$ is a chain, then $K_0 := \bigcap_{C \in \mathcal{C}} C \in \mathcal{K}$!

Because of the FIP characterisation of compactness we have $K_0 \neq \emptyset$ Zorns Lemma implies: For every $K \in \mathcal{K}$, there is a minimal element $K_0 \in \mathcal{K}$ such that $K_0 \leq K$

Claim: $K_0 = \{pt\}$

Suppose $K_0 \ni x_0, x_1 \quad x_0 \neq x_1$

Step $2 \Rightarrow \exists \varphi : X \to \mathbb{R}$ continuous linear such that $\varphi(x_1 - x_0) > 0$ so $\varphi(x_0) < \varphi(x_1)$ $K_1 := K_0 \cap \varphi^{-1}(\sup_{x \in K_0} \varphi(x)) \in \mathcal{K} \Rightarrow K_1 \preccurlyeq K_0 \text{ and } K_0 \neq K_1 \text{ since } x_0 \in K_0 \setminus K_1$

So K_0 is not minimal. Contradiction.

Claim $\Rightarrow K_0 = \{x_0\} \Rightarrow x_0 \in E \text{ (by definition of face)}$

Step 4 $K = \overline{C}$ Clearly $\overline{C} \subset K$ Suppose $\overline{C} \subsetneq K$, let $x_0 \in K \setminus \overline{C}$

Step $1 \Rightarrow \exists \varphi : X \to \mathbb{R}$ continuous linear such that $\varphi(x_0) > \sup_{\overline{C}} \varphi$

 $K_0 := K \cap \varphi^{-1}(\sup_{\kappa} \varphi)$ is a face of K and $K_0 \cap \overline{C} = \emptyset$

Step $\stackrel{3}{\Rightarrow} K_0$ has an extremal point e

 $\Rightarrow e$ is extremal point of K

Contradiction, because $e \notin \overline{C}$

(M,d) compact metric space

 $f: M \to M$ homeomorphismus, $\mu \in \mathcal{M}(f)$ ergodic

 $u: M \to \mathbb{R}$ continuous, $x \in M$

Question: $\frac{1}{n} \sum_{k=0}^{n-1} u(f^k(x)) \stackrel{?}{\to} \int_M u \, d\mu$

Theorem (Birkhoff): $\forall u \in C(M) \exists \Lambda \in \mathcal{B} \text{ such that } f(\Lambda) = \Lambda \ \mu(\Lambda) = 1$ $\int_{M} u \, d\mu = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} u(f^{k}(x)) \quad \forall x \in \Lambda$ Without proof

Theorem 8 (von Neumann): (M,d) compact metric space, $f: M \to M$ homeomorphismus, $\mu \in \mathcal{M}(f)$ ergodic, 1

$$\Rightarrow \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} u(f^k(x)) - \int_M u \, d\mu \right\|_{L^p} = 0$$

Theorem 9 (Abstract Ergodic Theorem): X Banach space, $T \in \mathcal{L}(X)$, $c \ge$

Assume $||T^n|| \le c \quad \forall n \in \mathbb{N}$ Denote $S_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k \in \mathcal{L}(X)$

Then the following holds:

- (i) For $x \in X$ we have: $(S_n x)_{n \in \mathbb{N}}$ converges $\Leftrightarrow (S_n x)_{n \in \mathbb{N}}$ has a weakly convergent subsequence.
- (ii) The set $Z := \{x \in X \mid S_n x \text{ converges}\}\$ is a closed linear subspace of X

$$Z = \operatorname{Ker}(1 - T) \oplus \overline{\operatorname{Im}(1 - T)}$$

If X is reflexive Z = X

(iii) Define $S: Z \to Z$ by $S(x+y) := x \quad x \in \ker(1-T), \ y \in \overline{\mathrm{Im}(1-T)}$ Then $Sz := \lim_{n \to \infty} S_n z \quad \forall z \in Z \text{ and } ST = TS = S^2 = S, ||S|| \le c$

Proof of Theorem 9 \Rightarrow **Theorem 8** $X = L^p(\mu) Tu := u \circ f$

$$\int_{M} |u \circ f|^{p} d\mu = \int_{M} |u|^{p} d\mu, \text{ so } ||Tu||_{p} = ||u||_{p}$$

$$||T|| = 1 \quad \forall k \in \mathbb{N}$$

$$||T|| = 1 \quad \forall k \in \mathbb{N}$$

$$(S_n u)(x) = \frac{1}{n} \sum_{i=1}^{n-1} u(f^k(x))$$

$$(S_n u)(x) = \frac{1}{n} \sum_{i=1}^{n-1} u(f^k(x))$$
To show: $\lim_{n \to \infty} \|S_n u - \int_M u \, d\mu\|_{L^p(\mu)} = 0$

Equivalently Claim 1: $(Su)(x) = \int_M u \, d\mu \quad \forall x \in M$

(By Theorem 9 we have $S_n u \to Su$ in $L^p(\mu)$)

Claim 2: $Tv = v \Rightarrow v \equiv \text{const.}$

Claim 2 \Rightarrow Claim 1: $Su \in \text{Ker}(1-T) \Rightarrow Su \equiv c$

$$c = \int_{M} Su \, d\mu = \lim_{n \to \infty} \int_{M} S_{n} u \, d\mu = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \int_{M} u \circ f^{k} \, d\mu = \int_{M} u \, d\mu$$

Proof of Claim 2:

 $v: M \to \mathbb{R}$ measurable, $\int_M |v|^p d\mu < \infty$

 $[v] \in L^p(\mu)$ $T[v] = [v] \Leftrightarrow v \circ f = v$ almost everywhere

 $E_0 := \{x \in M \mid v(x) \neq v(f(x))\}$ measure zero

$$\Rightarrow E := \bigcup_{k \in \mathbb{N}} f^k(E_0) \quad \mu(E) = 0$$

$$\begin{array}{l} M \setminus E = \Lambda_0 \cup \Lambda_+ \cup \Lambda_- \\ \Lambda_0 = \{x \in M \mid v(x) = c\} \quad \Lambda_\pm = \{x \in M \mid \pm v(x) > c\} \text{ where } c := \int_M v \, d\mu \\ \Rightarrow \Lambda_0, \Lambda_\pm \ f - \text{invariant}, \ \mu(\Lambda_0) + \mu(\Lambda_+) + \mu(\Lambda_-) = 1 \\ \mu \ \text{ergodic} \\ \Rightarrow \quad \mu(\Lambda_0) = 1 \\ \text{because otherwise: } \mu(\Lambda_+) = 1 \text{ so } \int_M v \, d\mu > c \\ \text{or } \mu(\Lambda_-) = 1 \text{ so } \int_M v \, d\mu < c \end{array} \qquad \square$$
 Let $A \in \mathcal{L}(X,Y)$.

Definition: The *dual operator* of A is the bounded linear operator $A^* \in \mathcal{L}(Y^*, X^*)$ defined by $\langle A^*y^*, x \rangle := \langle y^*, Ax \rangle$ for $y^* \in Y^*$ and $x \in X$, ie.

$$X \xrightarrow{A} Y \xrightarrow{y^*} \mathbb{R}$$

Remark: $||A^*|| = ||A||$

Proof:

$$\begin{split} \|A^*\| &= \sup_{y^* \neq 0} \frac{\|A^*y^*\|}{\|y^*\|} \\ &= \sup_{y^* \neq 0} \sup_{x \neq 0} \frac{\langle A^*y^*, x \rangle}{\|x\| \cdot \|y^*\|} \\ &= \sup_{\substack{y^* \neq 0 \\ x \neq 0}} \frac{\langle y^*, Ax \rangle}{\|y^*\| \cdot \|x\|} \\ &\text{by Hahn-Banach} &\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \\ &= \|A\| \end{split}$$

Proof of Thm 9: X is space. $T \in \mathcal{L}(X), c \ge 1, ||T^k|| \le c, k = 0, 1, 2, ...$ Denote $S_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$

Step 1

$$||S_n|| \le c, ||S_n(1 - T)| \le \frac{1+c}{n}$$

Proof

$$||S_n|| \le \frac{1}{n} \sum_{k=0}^{n-1} ||T^k|| \le c$$

$$S_n(\mathbb{1} - T) = \frac{1}{n} \sum_{k=0}^{n-1} T^k - \frac{1}{n} \sum_{k=1}^n T^k = \frac{1}{n} (\mathbb{1} - T^n)$$

Step 2 $\forall x, \xi \in X \text{ with } Tx = x \text{ we have } ||x|| \le c||x + \xi - T\xi||.$

Proof
$$x = Tx = T^2x = \dots \Rightarrow S_n x = x \ \forall n \in \mathbb{N}$$
.
Also, by Step 1, $\lim_{n \to \infty} \|S_n(\xi - T\xi)\| = 0$
$$\Rightarrow \|x\| = \lim_{n \to \infty} \underbrace{\|S_n(x + \xi - T\xi)\|}_{\leq c\|x + \xi - T\xi\|} \leq c\|x + \xi - T\xi\|$$

Step 3

$$x \in \ker(\mathbb{1} - T), y \in \overline{\operatorname{im}(\mathbb{1} - T)} \Rightarrow ||x|| \le c||x + y||$$

Proof

$$\exists \xi_n \in X \text{ such that } \xi_n - T\xi_n \to y$$

$$\Rightarrow \text{ by Step 2 } ||x|| \le c||x + \underbrace{\xi_n - T\xi_n}_{\to y}||$$

$$\stackrel{n\to\infty}{\Longrightarrow} \|x\| \le c\|x+y\|$$

Step 4 $\ker(\mathbb{1}-T) \cap \overline{\operatorname{im}(\mathbb{1}-T)} = \{0\}$ and the subspace $X_0 := \ker(\mathbb{1}-T) \oplus \overline{\operatorname{im}(\mathbb{1}-T)}$ is closed

Proof For $x \in \ker(\mathbb{1} - T) \cap \overline{\operatorname{im}(\mathbb{1} - T)}$ choose y := -x in Step $3 \Rightarrow x = 0$ Let $z_n \in X_0, z = \lim_{n \to \infty} z_n \in X$.

Write $z_n = x_n + y_n, x_n \in \ker(\mathbb{1} - T), y_n \in \overline{\operatorname{im}(\mathbb{1} - T)}$

$$\overset{\text{by Step 3}}{\Rightarrow} \|x_n - x_m\| \le c \|z_n - z_m\|$$
$$\Rightarrow x_n \text{ is Cauchy}$$

 $\Rightarrow \text{ The limits exist and } x := \lim_{n \to \infty} x_n \in \ker(\mathbb{1} - T), \\ y := \lim_{n \to \infty} y_n \in \overline{\operatorname{im}(\mathbb{1} - t)}, \\ z = x + y \in X_0$

Step 5 Let $z = x + y \in X_0$ where $x \in \ker(\mathbb{1} - T), y \in \overline{\operatorname{im}(\mathbb{1} - T)}$. $\Rightarrow S_n \in X_0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} S_n z = x$

Proof

a)
$$x = Tx \Rightarrow S_n x = x \in X_0$$

b) Choose $\xi_k \in X$ such that $\xi_k - T\xi_k \to y$. Then

$$S_n y = \lim_{k \to \infty} S_n (\mathbb{1} - T) \xi_k$$

$$= \lim_{k \to \infty} \underbrace{(\mathbb{1} - T) S_n \xi_k}_{\in \operatorname{im}(\mathbb{1} - T)}$$

$$\in \operatorname{im}(\mathbb{1} - T)$$

c) By Step 1,

$$||S_n(\xi T \xi)|| \le \frac{1+c}{n} ||\xi|| \forall \xi \in X$$
 So $S_n y \to 0 \ \forall y \in \text{im}(\mathbbm{1}-T)$

$$\Rightarrow$$
 (by Ch II, Thm 2 (ii)) $S_n y \to 0 \forall y \in \overline{\operatorname{im}(\mathbb{1} - T)}$
 $\Rightarrow S_n z = x + S_n y \to x.$

Step 6 Let $x, z \in X$. Equivalent are

(i)
$$\lim_{n\to\infty} S_n z = x$$

(ii) \exists subsequence $n_1 < n_2 < n_3 < \dots$ such that

$$w - \lim_{i \to \infty} S_{n_i} z = x$$

(iii)
$$Tx = x, z - x \in \overline{\operatorname{im}(1 - T)}$$

$$\begin{array}{ll} \textbf{Proof} & \text{(iii)} \stackrel{\text{by Step 5}}{\Rightarrow} \text{(i)} \stackrel{\text{obvious}}{\Rightarrow} \text{(ii)}. \\ \text{(ii)} \Rightarrow \text{(iii)} \end{array}$$

$$\langle x^*, Tx - x \rangle = \langle T^*x^* - x^*, x \rangle$$

$$\stackrel{\text{by (ii)}}{=} \lim_{i \to \infty} \langle T^*x^* - x^*, S_{n_i}z \rangle$$

$$= \lim_{i \to \infty} \langle x^*, \underline{T - 1} \rangle S_{n_i}z \rangle$$

$$= 0 \quad \forall x^* \in X^* \text{ by Step 1}$$

 \Rightarrow by Hahn-Banach Tx - x = 0. Suppose $x^* \in (\operatorname{im}(\mathbb{1} - T))^{\perp}$

$$\Rightarrow \langle x^*, \xi - T\xi \rangle = 0 \ \forall \xi \in X$$

$$\Rightarrow \langle x^* - T^*x^*, \xi \rangle = 0 \forall \xi$$

$$\Rightarrow x^* = T^*x^* = (T^*)^2 x^* \cdots, x^* = S_{n_i}^* x^* \forall i$$

$$\langle x^*, z - x \rangle \stackrel{(ii)}{=} \lim_{i \to \infty} \langle x^*, z - S_{n_i} z \rangle$$

$$= \lim_{i \to \infty} \langle x^* - S_{n_i}^* x^*, z \rangle = 0$$

So $z - x \in {}^{\perp} ((\operatorname{im}(\mathbbm{1} - T))^{\perp}) = \operatorname{\overline{im}}(\mathbbm{1} - T)$. Step 6 Theorem 9. $X_0 = X$ in the reflexive case.

4 Compact operators and Fredholm theory

4.1 Compact operators

Lemma 1: X, Y Banach spaces, $K \in \mathcal{L}(X, Y)$. Equivalent are:

- (i) If $x_n \in X$ is a bounded sequence then $Kx_n \in Y$ has a convergent subsequence
- (ii) If $S \subset X$ is a bounded subset then \overline{KS} is a compact subset of Y.
- (iii) The set $\overline{\{Kx \mid ||x|| \leq 1\}} \subset Y$ is compact. The operator K is called *compact* if it satisfies these equivalent conditions.

Proof: (i) \Rightarrow (ii):

To Show: Every sequence in KS has a Cauchy subsequence (see Ch I, Lemma 7). Let $y_n \in KS$. Choose $x_n \in S$ such that $y_n = Kx_n$.

 $\Rightarrow x_n$ is a bounded subsequence $\stackrel{(i)}{\Rightarrow} Kx_n$ has a convergent subsequence $Kx_{n_i} = y_{n_i} \Rightarrow y_{n_i}$ is Cauchy.

(ii) \Rightarrow (iii): take $S := \{x \in X \mid ||x|| \le 1\}$

(iii) \Rightarrow (i): $x_n \in X$ bounded. Choose c > 0 such that $||x_n|| \le c \forall n$

 $\stackrel{(iii)}{\Rightarrow} K \frac{x_n}{c}$ has a convergent subsequence $\Rightarrow K x_n$ has a convergent subsequence

Example 1: $T: X \to Y$ surjective, dim $Y = \infty \Rightarrow T$ not compact. (open mapping theorem) $\{Tx \mid ||x|| < 1\} \supset \{y \in Y \mid ||y|| \le \delta\}$ for some $\delta > 0$ not compact.

Example 2: $K \in \mathcal{L}(X,Y)$, im K finite dimensional $\Rightarrow K$ is compact.

Example 3: $X = C^1([0,1]), Y = C^0([0,1]), K : X \to Y$ obvious inclusion $\Rightarrow K$ is compact. Arzela-Ascoli.

Example 4: $X = Y = \ell^p, 1 \le p \le \infty$ $\lambda_1, \lambda_2, \ldots \in \mathbb{R}$ bounded. $Kx := (\lambda_1 x_1, \lambda_2 x_2, \lambda_3 x_3, \ldots)$

$$K \text{ compact} \Leftrightarrow \lim_{n \to \infty} \lambda_n = 0$$

(exercise).

Theorem 1: X, Y, Z Banach spaces

(i) $A \in \mathcal{L}(X,Y), B \in \mathcal{L}(Y,Z)$

A compact or B compact \Rightarrow BA is compact

- (ii) $K_{\nu} \in \mathcal{L}(X,Y)$ compact $\nu = 1, 2, 3, ..., K \in \mathcal{L}(X,Y)$ such that $\lim_{\nu \to \infty} ||K_{\nu} K|| = 0 \Rightarrow K$ is compact.
- (iii) K compact $\Leftrightarrow K^*$ is compact.

Proof: (i): Exercise

(ii): $x_n \in X$ bounded, $c := \sup_{n \in \mathbb{N}} ||x_n|| < \infty$

Diagonal Sequence Argument: \exists subsequence x_{n_i} such that $(K_{\nu}x_{n_i})_{i=1}^{\infty}$ is Cauchy for every $\nu \in \mathbb{N}$.

Claim: $(Kx_{n_i})_{i=1}^{\infty}$ is Cauchy.

 $\varepsilon > 0$. Choose ν such that $||K_{\nu} - K|| < \frac{\varepsilon}{3c}$.

Choose $N \forall i, j \geq N : ||K_{\nu} x_{n_i} - K_{\nu} x_{n_j}|| < \frac{\varepsilon}{3}$.

$$\stackrel{i,j \geq N}{\Rightarrow} \|Kx_{n_i} - Kx_{n_j}\| \leq \underbrace{\|(K - K_{\nu})x_{n_i}\|}_{<\|K - K_{\nu}\| \cdot \|x_{n_i}\| < \frac{\varepsilon}{3}\|} + \underbrace{\|K_{\nu}x_{n_i} - K_{\nu}x_{n_j}\|}_{<\frac{\varepsilon}{3}} + \underbrace{\|(K_{\nu} - K)x_{n_j}\|}_{<\frac{\varepsilon}{3}} < \varepsilon$$

(iii): K compact $\Rightarrow K^*$ compact.

Denote $M := \overline{\{Kx \mid ||x|| \le 1\}} \subset Y$.

M is a nonempty compact metric space. For $y^* \in Y^*$ denote $f_{y^*} := y^*|_M \in C(M)$. Let $\mathcal{F} := \{f_{y^*} \mid ||y^*|| \leq 1\} \subset C(M)$.

Note:

$$||f_{y^*}|| := \sup_{y \in M} |f_{y^*}(y)|$$

$$= \sup_{y \in M} \langle y^*, y \rangle$$

$$= \sup_{\|x\| \le 1} \langle y^*, Kx \rangle$$

$$= \sup_{\|x\| \le 1} \langle K^* y^*, x \rangle$$

$$= \|K^* y^*\|$$

 \mathcal{F} is bounded

$$f = f_{y^*} \in \mathcal{F} \Rightarrow ||f|| = ||K^*y^*|| \le ||K^*|| \cdot \underbrace{||y^*||}_{\le 1} \le ||K||$$

 \mathcal{F} is equicontinuous

 $f = f_{y^*} \in \mathcal{F}, y^* \in Y^*, ||y^*|| \le 1.$

$$\Rightarrow |f(y_1) - f(y_2)| = |\langle y^*, y_1 - y_2 \rangle| \\ \leq ||y^*|| ||y_1 - y_2|| \\ \leq ||y_1 - y_2||$$

Arzela-Ascoli $\Rightarrow \overline{\mathcal{F}}$ is compact in $C(M) \stackrel{!}{\Rightarrow} K^*$ is compact. $y_n^* \in Y^*, ||y^*|| \leq 1$ $\Rightarrow f_n := y_n^*|_M \in \mathcal{F} \Rightarrow f_n$ has a convergent subsequence f_{n_i} $||K^*y_{n_i}^*|| = ||f_{n_i} - f_{n_j}|| \Rightarrow (K^*y_{n_i}^*)_{i=1}^*$ is a Cauchy sequence $\Rightarrow K^*y_{n_i}^*$ converges. K^* compact $\Rightarrow K$ compact K^* compact.

$$X \xrightarrow{K} Y$$

$$\downarrow^{\iota_X} \qquad \qquad \downarrow^{\iota_Y}$$

$$X^{**} \xrightarrow{K^{**}} Y^{**}$$

 $\stackrel{(i)}{\Rightarrow} \iota_Y \circ K = K^{**} \circ \iota_X : X \to Y^{**} \text{ is compact.}$

If $x_n \in X$ is bounded $\Rightarrow \iota_Y(Kx_n)$ has a convergent subsequence $\Rightarrow Kx_n$ has a convergent subsequence.

Lemma 2: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$

- (i) $(\operatorname{Im} A)^{\perp} = \operatorname{Ker} A^*$ $^{\perp}(\operatorname{Im} A^*) = \operatorname{Ker} A$
- (ii) A^* injective $\Leftrightarrow \operatorname{Im} A$ dense in Y
- (iii) A injective $\Leftrightarrow \operatorname{Im} A^*$ is weak* dense in X^*

Proof:

(i) Let
$$y^* \in Y^*$$

 $y^* \in (\operatorname{Im} A)^{\perp} \Leftrightarrow \underbrace{\langle y^*, Ax \rangle}_{\langle A^*y^*, y \rangle} = 0 \quad \forall x \in X \Leftrightarrow A^*y^* = 0$

Let
$$x \in X$$
. Then $x \in {}^{\perp}$ (Im A^*) \Leftrightarrow

$$\underbrace{\langle A^*y^*, x \rangle}_{=\langle y^*, Ax \rangle} = 0 \quad \forall y^* \in Y^* \overset{\text{Hahn-Banach}}{\Leftrightarrow} Ax = 0$$

- (ii) A^* injective \Leftrightarrow Ker $A^* = 0 \stackrel{(i)}{\Leftrightarrow} (\operatorname{Im} A)^{\perp} = 0$ \Leftrightarrow Im A is dense in Y (Chap. II, Cor. 2 of Theorem 7)
- (iii) A injective \Leftrightarrow Ker $A=0 \Leftrightarrow \underbrace{(\ ^{\perp}\text{Im}\,A^{*})^{\perp}}_{\text{weak}^{*}\text{ closure of }\text{Im}\,A^{*}}=X^{*}$

Example 1:
$$X = Y = H = l^2$$

 $Ax := (x_1, \frac{x_2}{2}, \frac{x_3}{3}, ...)$ $X^* = Y^* \cong H$
 $A^* = A$ injective, $\text{Im } A \neq H$ $(\frac{1}{n})_{n=1}^{\infty} \in l^2 \setminus \text{Im } A$

Example 2: $X = l^1$, $Y = c_0$, $A : l^1 \to c_0$ inclusion $A^* : l^1 \to l^{\infty}$ inclusion, $\operatorname{Im} A^* = l^1 \subset l^{\infty}$ not dense $A^{**} : (l^{\infty})^* \to l^{\infty}$ not injective. When is $\operatorname{Im} A \stackrel{?}{=} {}^{\perp}(\operatorname{Im} A^*)$ or $\operatorname{Im} A^* \stackrel{?}{=} (\operatorname{Ker} A)^{\perp}$

Theorem 2: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$ Equivalent are:

- (i) $\operatorname{Im} A$ is closed in Y
- (ii) $\exists c \ge 0 \, \forall x \in X \inf_{A\xi=0} \|x+\xi\| \le c \|Ax\|$
- (iii) Im A^* is weak*-closed in X^*
- (iv) $\operatorname{Im} A^*$ is closed in X^*

(v)
$$\exists c \geq 0 \, \forall y^* \in Y^* \inf_{A^*\eta^*=0} \|y^* + \eta^*\| \leq c \|A^*y^*\|$$

If these equivalent conditions are satisfied, then: Im $A = {}^{\perp}(\operatorname{Ker} A^*)$, Im $A^* = (\operatorname{Ker} A)^{\perp}$

Lemma 3:
$$X, Y$$
 Banach spaces, $A \in \mathcal{L}(X, Y), \varepsilon > 0$
Assume $\{y \in Y \mid \|y\| < \varepsilon\} \subset \overline{\{Ax \mid \|x\| < 1\}}$
Then: $\{y \in Y \mid \|y\| < \frac{\varepsilon}{2}\} \subset \{Ax \mid \|x\| < 1\}$

Proof: Chapter II, Lemma 2, Step 2

Remark 1: In Chapter II we proved: $A \text{ surjective} \stackrel{\text{Baire}}{\Rightarrow} (*) \stackrel{\text{Lemma } 3}{\Rightarrow} A \text{ is open}$

Remark 2: $(*) \Rightarrow A$ is surjective

```
Proof of Theorem 2 (i)\Rightarrow(ii) Denote X_0 := X/\operatorname{Ker} A, Y_0 := \operatorname{Im} A
A induces an operator A_0: X_0 \to Y_0 by A_0[x] := Ax
Note: [x_1] = [x_2] \Rightarrow x_1 - x_2 \in \text{Ker } A \Rightarrow Ax_1 = Ax_2, so A_0 is well defined
A_0 is a bijective, linear operator
open mapping thm A_0^{-1}: Y_0 \to X_0 bounded \Rightarrow \exists c \geq 0 \ \forall x \in X: \inf_{A\xi=0} \|x+\xi\| = \|[x]\|_{X/\operatorname{Ker} A} \leq c\|A_0[x]\| = c\|Ax\|
(ii) \Rightarrow (iii) Claim: \operatorname{Im} A^* = (\operatorname{Ker} A)^{\perp} = \bigcap_{x \in \operatorname{Ker} A} \{x^* \in X^* \mid \langle x^*, x \rangle = 0\}
Let x^* \in (\operatorname{Ker} A)^{\perp} i.e. \langle x^*, x \rangle = 0 \quad \forall x \in \operatorname{Ker} A
Define \psi: \operatorname{Im} A \to \mathbb{R} \quad \psi(Ax) := \langle x^*, x \rangle well defined
\psi is bounded: \forall \xi \in \operatorname{Ker} A:
|\psi(Ax)| = |\langle x^*, x + \xi \rangle| \le ||x^*|| ||x + \xi||
so |\psi(Ax)| \le ||x^*|| \inf_{A\xi=0} ||x+\xi|| \stackrel{(ii)}{\le} c||x^*|| ||Ax||
Hahn-Banach \exists y^* \in Y^* such that \langle y^*, y \rangle = \psi(y) \quad \forall y \in \operatorname{Im} A
\Rightarrow \langle A^*y^*, x \rangle = \langle y^*, Ax \rangle = \psi(Ax) = \langle x^*, x \rangle \quad \forall x \in X
\Rightarrow A^*y^* = x^* \in \operatorname{Im} A^*
(iii)⇒(iv) obvious
(iv) \Rightarrow (v) follows from (i) \Rightarrow (ii) with A^* instead of A
(v) \Rightarrow (i) Case 1:A* is injective
If \exists c > 0 \,\forall y^* \in Y^* \,||y^*|| \le c ||A^*y^*||, then A is surjective
Claim: A satisfies (*) in Lemma 3 with \varepsilon = \frac{1}{c}
(Then by Lemma 3, A is surjective)
Proof of the claim: Denote K := \overline{\{Ax \mid ||x|| < 1\}} closed, convex, nonempty
To show: y_0 \in Y \setminus K \Rightarrow ||y_0|| \ge \varepsilon
Let y_0 \in Y \setminus K Chap. II, Thm 6 \exists y_0^* \in Y^* such that \langle y_0^*, y_0 \rangle > \sup_{y \in K} \langle y_0^*, y \rangle
\Rightarrow \|A^* y_0^*\| = \sup_{\|x\| < 1} \langle A^* y_0^*, x \rangle = \sup_{\|x\| < 1} \langle y_0^*, Ax \rangle = \sup_{y \in K} \langle y_0^*, y \rangle < \langle y_0^*, y_0 \rangle \le \|y_0^*\| \|y_0\|\Rightarrow \|y_0\| > \frac{\|A_0^* y_0^*\|}{\|y_0^*\|} \ge \frac{1}{c} = \varepsilon
```

Case 2: A^* not injective

Denote
$$Y_0 := \overline{\operatorname{Im} A^*} \quad Y_0^* \cong Y^*/(\operatorname{Im} A)^{\perp} = Y^*/\operatorname{Ker} A^*$$
 $A_0 : X \to Y_0 \quad A_0^* : Y_0^* = Y^*/\operatorname{Ker} A^* \to X^*$
 A_0^* is the operator induced by A^*
By (v) we have: $\|[y^*]\|_{Y^*/\operatorname{Ker} A^*} \leq c\|A^*y^*\|$
 $\Rightarrow A_0^*$ satisfies the hypotheses of Case 1
 $\Rightarrow A_0$ is surjective $\operatorname{Im} A = \operatorname{Im} A_0 = Y_0 = \overline{\operatorname{Im} A} \Rightarrow \operatorname{Im} A$ is closed
 $\Rightarrow \operatorname{Im} A = {}^{\perp} ((\operatorname{Im} A)^{\perp}) = {}^{\perp} (\operatorname{Ker} A^*)$

Corollary: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$

- (i) A is surjective if and only if $\exists c > 0 \,\forall y^* \in Y^* \, ||y^*|| \leq c ||A^*y^*||$
- (ii) A^* is surjective if and only if $\exists c > 0 \, \forall x \in X \, ||x|| \le c ||Ax||$

Proof:

- (i) A is surjective \Leftrightarrow Im A closed and Im A dense \Leftrightarrow (v) in Theorem 2 and Ker $A^*=0$
- (ii) A^* is surjective \Leftrightarrow Im A^* weak* closed and Im A^* weak* dense \Leftrightarrow (ii) in Theorem 2 and Ker A=0

Remark 1: X, Y, Z Banach spaces, $A \in \mathcal{L}(X, Y), B \in \mathcal{L}(Z, Y)$, Im $B \subset \text{Im } A$ $\Rightarrow \exists T \in \mathcal{L}(Z, X) AT = B$ (Douglas Factorization) Hint: $T := A^{-1}B : Z \to X$ is closed

59

Remark 2: $A \in \mathcal{L}(X,Y), B \in \mathcal{L}(X,Z)$

Equivalent are:

(i) $\operatorname{Im} B^* \subset \operatorname{Im} A^*$

(ii)
$$\exists c \ge 0 \, \forall x \in X ||Bx|| \le c ||Ax||$$

Hint for the proof:B = id see Corollary (ii)

(i) \Rightarrow (ii) Douglas Factorization (when A^* is injective)

(ii)⇒(i) Prove that

 $x^* \in \operatorname{Im} A^* \Leftrightarrow \exists c \geq 0 \, \forall x \in X \, |\langle x^*, x \rangle| \leq c \|Ax\|$ as in Proof of Theorem 2

Remark 3: X reflexive, $A \in \mathcal{L}(X,Y)$, $B \in \mathcal{L}(Z,Y)$

Equivalent are:

(i) $\operatorname{Im} B \subset \operatorname{Im} A$

(ii) $\exists c \ge 0 \, \forall y^* \in Y^* \, ||B^*y^*|| \le c ||A^*y^*||$

Hint for the proof: (ii) $\stackrel{\text{Rem }}{\Leftrightarrow} 2 \operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$

Example: X reflexive cannot be removed in Remark 3:

$$X=c_0, Y=l^2, Z=\mathbb{R}$$
 $A:X\to Y$ $Ax:=\left(\frac{x_n}{n}\right)_{n=1}^\infty$ $B:Z\to Y$ $Bz:=\left(\frac{z}{n}\right)_{n=1}^\infty\in l^2$ A,B satisfy (ii) in Remark 3, but not (i)

4.2 Fredholm operators

Definition: X, Y Banach spaces and $A \in \mathcal{L}(X, Y)$. ker $A := \{x \in X \mid Ax = 0\}$, im $A := \{Ax \mid x \in X\}$. Define coker A := Y/A. A is called a Fredholm operator if

- \bullet im A is a closed subspace of Y
- \bullet ker A and coker A are finite dimensional

The Fredholm index of A is the integer $index(A) := dim \ker A - dim \operatorname{coker} A$.

Lemma 3: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$ dim coker $A < \infty \Rightarrow \operatorname{im} A$ closed.

Proof: dim coker $A < \infty \Rightarrow \exists y_1, \dots, y_m \in Y$ such that $[y_i] \in Y \setminus \text{im } A$ form a basis

$$\Rightarrow Y = \operatorname{im} A \oplus \operatorname{span}\{y_1, \dots, y_m\}$$

Denote
$$X := X \times \mathbb{R}^m, (x, \lambda) \in X$$

$$||(x,\lambda)||_X := ||x||_X + ||\lambda||_{\mathbb{R}^m}.$$

Define
$$A: X \to Y$$
 by $A(x, \lambda) := Ax + \sum_{i=1}^{m} \lambda_i y_i$

 $\Rightarrow A \in \mathcal{L}(X,Y)$. A is surjective and $\ker A = \ker A \times \{0\}$.

$$\overset{\text{Thm2}}{\Rightarrow} \exists c \geq 0 \forall x \in X : \inf_{A \xi = 0} \|x + \xi\|_X \leq c \|Ax\|_Y$$

i.e.

$$\forall x \in X \forall \lambda \in \mathbb{R}^m : \inf_{A\xi=0} \|x + \xi\|_X + \|\lambda\|_{\mathbb{R}^m} \le c \|Ax + \sum_{i \in I} \lambda_i y_i\|_Y$$
$$\Rightarrow \inf_{A\xi=0} \|x + \xi\|_X \le c \|Ax\|_Y \overset{\text{Thm2}}{\Rightarrow} \text{im } A \text{ closed}$$

Remark: Y Banach space, $Y_0 \subset Y$ linear subspace, $\dim Y/Y_0 < \infty \not\Rightarrow Y_0$ is closed.

Lemma 4: X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$

A Fredholm $\Leftrightarrow A^*$ is Fredholm.

In this case: $index(A^*) = -index(A)$.

Proof: By Thm 2 im A closed \Leftrightarrow im A^* closed. In this case we have $\operatorname{im}(A^*) = (\ker(A))^{\perp}$ and $\ker(A^*) = (\operatorname{im}(A))^{perp}$. Hence

$$(\ker A)^* \cong X^*/(\ker A)^{\perp} = X^*/(\operatorname{im} A^*) = \operatorname{coker}(A^*)$$

$$(\operatorname{coker} A)^* = (Y/\operatorname{im} A)^* \cong (\operatorname{im} A)^{\perp} = \ker(A^*)$$

 \Rightarrow dim coker(A^*) = dim ker(A) dim ker(A^*) = dim coker(A)

Example 1: X, Y finite dimensional \Rightarrow Every linear operator $A: X \to Y$ is Fredholm and index $(A) = \dim X - \dim Y$.

Proof: $\dim X = \dim \ker A + \dim \operatorname{im} A$ (by Linear Algebra)

Example 2: X, Y arbitrary Banach spaces, $A \in \mathcal{L}(X, Y)$ bijective $\Rightarrow A$ Fredholm and index(A) = 0

Example 3: Hilbert spaces $X = Y = H = \ell^2 \ni x = (x_1, x_2, \ldots)$

Define $A_k: H \to H$ by $A_k x := (x_{k+1}, x_{k+2}, \ldots)$ shift $\Rightarrow A_k$ is Fredholm and index $(A_k) = k$

 $H \cong H^*$ with $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$. So $A^* : H \to H$ is defined by $\langle x, A^* y \rangle := \langle Ax, y \rangle$.

 $A_k^*y = (0,\ldots,0)k, x_1, x_2,\ldots$ so $A_k^*y =: A_{-k}y$, where A_{-k} is Fredholm and index $(A_{-k}) = -k$.

Lemma (Main Lemma) 5: X, Y Banach spaces and $D \in \mathcal{L}(X, Y)$. Equivalent are:

- (i) D has a closed image and a finite dimensional kernel.
- (ii) \exists Banach space Z and \exists compact operator $K \in \mathcal{L}(X, Z)$ and $\exists c \leq 0$ such that $\forall x \in X \ \|x\|_X \leq c (\|Dx\|_Y + \|Kx\|_Z)$

Proof: (i) \Rightarrow (ii): $Z := \mathbb{R}^m$ $m := \dim \ker D < \infty$. Choose an isomorphism $\Phi : \ker D \to \mathbb{R}^m$. Hahn-Banach \exists bounded linear operator $K : X \to \mathbb{R}^m$ such that $Kx = \Phi x \forall x \in \ker D$. Define $D : X \to Y \times \mathbb{R}^m$ by D : x := (Dx, Kx) $\Rightarrow \operatorname{im} D = \operatorname{im} D \times \mathbb{R}^m$ closed and $\ker D = \{0\} \stackrel{Thm2}{\Rightarrow} \exists c \leq 0 \forall x \in X$ with $\|x\|_X \leq c\|D : x\|_{Y \times \mathbb{R}^m} = c(\|Dx\|_Y + \|Kx\|_{\mathbb{R}^m})$ (ii) \Rightarrow (i):

Claim 1 Every bounded sequence in $\ker D$ has a convergent subsequence. $(\Rightarrow \dim \ker D < \infty,$ by Chapter I, Thm 1)

Proof of Claim 1 Let $x_n \in \ker D$ be a bounded sequence $\stackrel{K \text{ compact}}{\Rightarrow} \exists$ subsequence $(x_{n_i})_{i=1}^{\infty}$ such that $(Kx_{n_i})_i$ converges $\Rightarrow (Dx_{n_i})_i$ and $(Kx_{n_i})_i$ are Cauchy sequences $\Rightarrow (x_{n_i})_i$ is Cauchy, because

$$||x_{n_i} - x_{n_j}|| \le c||Dx_{n_i} - Dx_{n_j}|| + c||Kx_{n_i} - Kx_{n_j}||$$

 $X \stackrel{\text{complete}}{\Rightarrow} (x_{n_i}) \text{ converges.}$

(*)

Claim 2 $\exists C > 0 \forall x \in X : \inf_{D\xi=0} ||x+\xi|| \le C||Dx||$ (By Thm 2, this implies that im D is closed).

Proof of Claim 2 Suppose not. $\Rightarrow \forall n \in \mathbb{N} \exists x_n \in X \text{ such that } \inf_{D\xi=0} ||x_n + \xi|| > n||Dx_n||.$

Without loss of generality we can assume $\inf_{D\xi=0} ||x_n+\xi|| = 1$ and $1 \le ||x_n|| \le 2$ $\Rightarrow ||Dx_n|| < \frac{1}{n}$ so \Rightarrow

- a) $Dx_n \to 0$
- b) \exists subsequence $(x_{n_i})_i$ such that (Kx_{n_i}) converges
- $\Rightarrow (Dx_{n_i})_i$ and $(Kx_{n_i})_i$ are Cauchy
- $\stackrel{(*)}{\Rightarrow} (x_{n_i})_i$ is Cauchy
- $\Rightarrow (x_{n_i})$ converges. Denote $x := \lim_{i \to \infty} x_{n_i}$

$$\Rightarrow Dx = \lim_{i \to \infty} Dx_{n_i} \stackrel{a)}{=} 0 \text{ and } 1 = \inf_{D\xi = 0} ||x_{n_i} + \xi|| \le ||x_{n_i} - x||$$

Theorem 3: (another characterization of Fredholm operators) X, Y Banach spaces, $A \in \mathcal{L}(X, Y)$ bounded linear operator. Equivalent are:

- (i) A is Fredholm
- (ii) $\exists F \in \mathcal{L}(Y, X)$ such that $1_X FA, 1_Y AF$ are compact.

Proof: $(i)\Rightarrow(ii)$:

 $X_0 := \ker A \subset X$ is finite dimensional. So \exists a closed subspace $X_1 \subset X$ such that $X = X_0 \oplus X_1$.

 $Y_1 := \operatorname{im} A \subset Y$ is a closed subspace of finite codimension. So \exists finite dimensional subspace $Y_0 \subset Y$ such that $Y = Y_0 \oplus Y_1$.

Consider the operator $A_1 := A|_{X_1} : X_1 \to Y_1$. Then $A \in \mathcal{L}(X_1, Y_1)$ and A_1 is bijective. $\stackrel{\text{open mapping}}{\Rightarrow} A_1^{-1} \in \mathcal{L}(Y_1, X_1)$

Define $F: Y \to X$ by $F(y_0 + y_1) := A_1^{-1} y_1$ for $y_0 \in Y_0, y_1 \in Y_1$.

Then $F \in \mathcal{L}(Y, X)$:

$$FA(x_0 + x_1) = FA_1x_1 = x_1$$

 $AF(y_0 + y_1) = AA_1^{-1}y_1 = y_1$

 $\Rightarrow 1_X-FA=\Pi_{X_0}:X\cong X_0\oplus X_1\to X_0\subset X$ and $1_Y-AF=\Pi_{Y_0}:Y\cong Y_0+Y_1\to Y_0\subset Y$ compact

 $(ii) \Rightarrow (i)$:

 $K := 1_X - FA \in \mathcal{L}(X, Y)$ compact

$$\Rightarrow \|x\|_{X} = \|FAx + Kx\|_{X} \\ \leq \|FAx\|_{X} + \|Kx\|_{X} \\ \leq \|F\| \cdot \|Ax\|_{Y} + \|Kx\|_{X} \\ \leq c(\|Ax\|_{Y} + \|Kx\|_{X})$$

where $C := \max\{1, ||F||\}$

 $\overset{Lemma5}{\Rightarrow}$ A has a finite dimensionl kernel and a closed image.

 $L:=1_Y-AF\in\mathcal{L}(Y)\text{ compact}\overset{Thm1}{\Rightarrow}L^*\text{ is compact and }y^*=L^*y^*+F^*A^*y^*\forall y^*\in V^*$

 \Rightarrow with $c := \max\{1, ||L||\}$ we have

 $\|y^*\| \leq c(\|A^*y^*\|\|L^*y^*\|) \overset{lemma5}{\Rightarrow} \dim \ker A^* < \infty \text{ with } \dim \ker A^* = \dim \operatorname{coker} A.$

Theorem 4: X, Y, Z Banach spaces,

 $A \in \mathcal{L}(X,Y), B \in \mathcal{L}(Y,Z)$ Fredholm operators

 $\Rightarrow BA \in \mathcal{L}(X,Z)$ is a Fredholm operator and index $(BA) = \operatorname{index}(A) + \operatorname{index}(B)$

Proof: By Theorem 3, $\exists F \in \mathcal{L}(Y,X)$, $\exists G \in \mathcal{L}(Z,Y)$ such that $1_X - FA$, $1_Y - AF$, $1_Y - GB$, $1_Z - BG$ are compact \Rightarrow

a)
$$1_X - FGBA = \underbrace{1_X - FA}_{\text{compact}} + F(\underbrace{1_Y - GB}_{\text{compact}})A$$
 compact by Theorem 1

b)
$$1_Z - BAFG = 1_Z - BG + B(1_Y - GB)A$$
 is compact

 $\Rightarrow BA$ is Fredholm by Theorem 3.

Proof of the index formula:

```
A_0: \ker BA/\ker A \to \ker B \quad [x] \to Ax
B_0: Y/\operatorname{im} A \to \operatorname{im} B/\operatorname{im} BA \quad [y] \to [By]
\Rightarrow A_0 \text{ is injective, } B_0 \text{ is surjective}
\operatorname{im} A_0 = \operatorname{im} A \cap \ker B
\operatorname{coker} A_0 = \ker B/(\operatorname{im} A \cap \ker B)
\ker B_0 = \{[y] \in Y/\operatorname{im} A \mid By \in \operatorname{im} BA\}
= \{[y] \in Y/\operatorname{im} A \mid \exists x \in X \text{ such that } By = BAx\}
= \{[y] \in Y/\operatorname{im} A \mid \exists x \in X \text{ such that } y - Ax \in \ker B\} = (\operatorname{im} A + \ker B)/\operatorname{im} A
\cong \ker B/(\operatorname{im} A \cap \ker B) = \operatorname{coker} A_0
\Rightarrow 0 = \dim \ker B_0 - \dim \operatorname{coker} A_0 - \dim \operatorname{coker} B_0 + \dim \ker A_0
= \operatorname{index} A_0 + \operatorname{index} B_0
= \dim(\ker BA/\ker A) - \dim \ker B + \dim \operatorname{coker} A - \dim \operatorname{im} B/\ker BA
= \dim \ker BA - \dim \ker A - \dim \ker B + \dim \operatorname{coker} A - \dim \operatorname{im} B/\ker BA
= \dim \ker BA - \dim \operatorname{coker} A - \dim \operatorname{im} B/\operatorname{coker} A - \dim \operatorname{im} B/\operatorname{im} B/\operatorname{i
```

Theorem 5 (Stability): X, Y Banach spaces, let $D \in \mathcal{L}(X, Y)$ be a Fredholm operator

- (i) $\exists \varepsilon > 0$ such that $\forall P \in \mathcal{L}(X,Y)$ we have $\|P\| < \varepsilon \Rightarrow D + P$ is Fredholm and $\mathrm{index}(D+P) = \mathrm{index}(D)$
- (ii) If $K \in \mathcal{L}(X,Y)$ is a compact operator, then D+K is Fredholm and $\mathrm{index}(K+P)=\mathrm{index}(D)$

Proof: (i) By Lemma 5, \exists Banach space Z, \exists compact operator $L \in \mathcal{L}(X,Z)$, $\exists c > 0$ such that $\|x\| \leq c(\|Dx\| + \|Lx\|) \quad \forall x \in X$ (because im D closed, dim $\ker D < \infty$) Suppose $P \in \mathcal{L}(X,Y)$ with $\|P\| < \frac{1}{c}$ Then $\|x\| \leq c(\|Dx\| + \|Lx\|) \leq c(\|(D+P)x\| + \|Px\| + \|Lx\|) \leq c(\|(D+P)x\| + \|Lx\|) + c\|P\| \|x\| \Rightarrow (1-c\|P\|) \|x\| \leq c(\|(D+P)x\| + \|Lx\|) \Rightarrow \|x\| \leq \frac{c}{1-c\|P\|} (\|(D+P)x\| + \|Lx\|)$ Lemma 5 D + P has a closed image and a finite dimensional kernel (provided $\|P\| < \frac{1}{c}$) (coker D)* = $(Y/\dim D)^* = (\operatorname{im} D)^{\perp} = \ker D^*$ dim $\ker(D+P)^* < \infty$ for $\|P\| = \|P^*\|$ sufficiently small

(by the same argument as for D + P)

$$X = X_0 \oplus X_1 \quad X_0 = \ker D, \ Y = Y_0 \oplus Y_1 \quad Y_1 = \operatorname{im} D$$

$$P_{ji} : X_i \hookrightarrow X \xrightarrow{P} Y \xrightarrow{\pi_j} Y_j$$
Then $P(x_0 + x_1) = \underbrace{P_{00}x_0 + P_{01}x_1}_{\in Y_0} + \underbrace{P_{10}x_0 + P_{11}x_1}_{\in Y_1}$

$$P = \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix} \quad D = \begin{pmatrix} 0 & 0 \\ 0 & D_{11} \end{pmatrix}$$

 $D_{11}: X_1 \to Y_1$ is bijective $\Rightarrow 1 + D_{11}^{-1} P_{11}$ is bijective as well for $||P_{11}||$ small.

```
\Rightarrow D_{11} + P_{11} is bijective for ||P|| small.
Let x = x_0 + x_1  x_0 \in X_0, x_1 \in X_1. Then:
(D+P)x = 0 \Leftrightarrow P_{00}x_0 + P_{01}x_1 = 0, P_{10}x_0 + (P_{11} + D_{11})x_1 = 0
\Leftrightarrow x_1 = -(D_{11} + P_{11})^{-1} P_{10} x_0, (P_{00} - P_{01}(D_{11} + P_{11})^{-1} P_{10}) x_0 = 0
Denote A_0 := P_{00} - P_{01}(D_{11} + P_{11})^{-1}P_{10} : X_0 \to Y_0
Then \ker(D+P) = \{x_0 - (D_{11} + P_{11})^{-1} P_{10} x_0 \mid x_0 \in \ker A_0\}
so dim \ker(D+P)=dim \ker A_0
Let x = x_0 + x_1  x_0 \in X_0, x_1 \in X_1 y = y_0 + y_1  y_0 \in Y_0, y_1 \in Y_1
Then: y = (D + P)x \Leftrightarrow y_0 = P_{00}x_0 + P_{01}x_1, y_1 = P_{10}x_0 + (D_{11} + P_{11})x_1
\Leftrightarrow y_0 = P_{00}x_0 + P_{01}(D_{11} + P_{11})^{-1}(y_1 - P_{10}x_0), \ x_1 = (D_{11} + P_{11})^{-1}(y_1 - P_{10}x_0)
\Leftrightarrow y_0 = A_0 x_0 + P_{01} (D_{11} + P_{11})^{-1} y_1, \ x_1 = (D_{11} + P_{11})^{-1} (y_1 - P_{10} x_0)
Hence y \in \text{im}(D+P) \Leftrightarrow y_0 - P_{01}(D_{11} + P_{11})^{-1}y_1 \in \text{im } A_0
                                                                                                                      (*)
This implies \operatorname{coker} A_0 \cong \operatorname{coker} (D+P)!
Indeed, choose a subspace Z \subset Y_0 \subset Y such that Y_0 = \operatorname{im} A_0 \oplus Z
Then by (*) Y = \text{im}(D+P) \oplus Z
\operatorname{im}(D+P) \cap Z = 0:
y = y_0 + y_1 \in \text{im}(D+P) \cap Z, then y_0 - P_{01}(D_{11} + P_{11})^{-1}y_1 \in \text{im } A_0, y_1 = 0
so y_0 \in Z \cap \text{im } A \text{ so } y_0 = 0, y_1 = 0
Given y = y_0 + y_1 \in Y, write
y_0 - P_{01}(D_{11} + P_{11})^{-1}y_1 = A_0x_0 + z \quad z \in \mathbb{Z}, then
(y_0 - z) + y_1 = y - z \stackrel{(*)}{\in} \operatorname{im}(D + P)
Hence \operatorname{index}(D+P) = \operatorname{index} A_0 = \dim X_0 - \dim Y_0
= \dim \ker D - \dim \operatorname{coker} D = \operatorname{index} D
(ii) By Theorem 3 \exists T \in \mathcal{L}(X,Y) such that 1_X - TD, 1_Y - DT compact
\Rightarrow 1_X - T(D+K), \, 1_Y - (D+K)T compact \overset{\text{Thm }}{\Rightarrow} 3 D+K Fredholm
\mathcal{F}_k := \{ A \in \mathcal{L}(X;Y) \mid A \text{ Fredholm}, \text{ index } A = k \}
open subset of \mathcal{L}(X,Y) by (i)
 \bigcup \mathcal{F}_k =: \mathcal{F}(X, Y) = \{ \text{Fredholm operators } X \to Y \}
We have proved D + tK \in \mathcal{F}(X,Y) \quad \forall t \in \mathbb{R}
Consider the map \gamma: \mathbb{R} \to \mathcal{F}(X,Y) t \to D + tK
\gamma is continuous
So I_k := \gamma^{-1}(\mathcal{F}_k) = \{t \in \mathbb{R} \mid \text{index}(D+K) = k\} is open \forall k \in \mathbb{Z}
\Rightarrow \mathbb{R} = \bigcup_{k \in \mathbb{Z}} I_k \text{ disjoint union}
\Rightarrow each I_k is open and closed
\exists k \in \mathbb{Z} \text{ such that } I_k = \mathbb{R} \Rightarrow \operatorname{index}(D) = k = \operatorname{index}(D + K)
```

Example: X Banach space, $K \in \mathcal{L}(X)$ compact $\Rightarrow 1 - K$ Fredholm and index $(1 - K) = 0 \Rightarrow \dim \ker(1 - K) = \dim \operatorname{coker}(1 - K)$

Fredholm alternative

Either the equation x - Kx = y has a unique solution $\forall y \in Y$ or the homogeneous equation x - Kx = 0 has a nontrivial solution

Application to integral equations like $x(t) + \int_0^1 k(t,s)x(s) ds = y(t)$ $0 \le t \le 1$

Remark: We well prove in Chapter V: $\exists m \geq 0$ such that: $\operatorname{index}(1-K)^m = \operatorname{index}(1-K)^{m+1}$ By Theorem 4 this implies $m \operatorname{index}(1-K) = (m+1)\operatorname{index}(1-K)$ so it follows also $\operatorname{index}(1-K) = 0$

Spectral Theory 5

Eigenvectors 5.1

For this whole chapter: X complex Banach space and $\|\lambda x\| = |\lambda| \|x\| \forall \lambda \in \mathbb{C}$. $\mathcal{L}(X,Y) = \{A: X \to Y \mid A \text{ complex linear bounded}\}, X^* = \mathcal{L}(X,\mathbb{C}) \text{ and }$ $\mathcal{L}(X) := \mathcal{L}(X, X).$ Let $A \in \mathcal{L}(X)$:

$$\lambda \in \mathbb{C} \ eigenvalue \Leftrightarrow \exists x \in X \quad x \neq 0 \quad Ax = \lambda x$$

Definition: Let X complex Banach space and $A \in \mathcal{L}(x)$. The spectrum of A is the set

$$\sigma(A) := \{ \lambda \in \mathbb{C} \mid \lambda \cdot 1 - A \text{ is not bijective} \} = P\sigma(A) \cup R\sigma(A) \cup C\sigma(A)$$

$$P\sigma(A) = \{\lambda \in \mathbb{C} \mid \lambda 1 - A \text{ is not injective}\}$$

$$R\sigma(A) = \{\lambda \in \mathbb{C} \mid \lambda 1 - A \text{ is injective and } \overline{\operatorname{im}(\lambda 1 - A)} \neq X\}$$

$$C\sigma(A) = \{\lambda \in \mathbb{C} \mid \lambda 1 - A \text{ is injective and } \overline{\operatorname{im}(\lambda 1 - A)} = X, \operatorname{im}(\lambda 1 - A) \neq X\}$$

$$\rho(A) := \mathbb{C} \setminus \sigma(A) = \{\lambda \in \mathbb{C} \mid \lambda 1 - A \text{ is bijective}\}$$

point spectrum residual spectrum continuous spectrum resolvent set

Remark: X real Banach space, $A \in \mathcal{L}(X)$ bounded real linear operator. spectrum of A: $\sigma(A) := \sigma(A_{\mathbb{C}})$

 $A_{\mathbb{C}}: X_{\mathbb{C}} \to X_{\mathbb{C}}$ complexified operator

$$X_{\mathbb{C}} = X \times X = X \oplus iX \ni x + iy$$

 $A_{\mathbb{C}}(x+iy) := Ax + iAy$

Example 1: $X = \ell_{\mathbb{C}}^2 \ni (x_1, x_2, x_3, \ldots)$ and $\lambda = (\lambda_1, \lambda_2, \ldots)$ bounded sequence in \mathbb{C} . Set $Ax := (\lambda_1 x_1, \lambda_2, x_2, \ldots), P\sigma(A) = \{\lambda_1, \lambda_2, \ldots\}, \sigma(A) = \overline{P\sigma(A)}$

Example 2:
$$X = \ell_{\mathbb{C}}^2, \mathbb{D} := \{z \in \mathbb{C} \mid |z| \leq 1\}$$

$$Ax := (x_2, x_3, \dots) \quad Bx := (0, x_1, x_2, \dots)$$

$$P\sigma(A) = \operatorname{int}(\mathbb{D}) \qquad P\sigma(B) = \varnothing$$

$$R\sigma(A) = \varnothing \qquad R\sigma(B) = \operatorname{int}(\mathbb{D})$$

$$C\sigma(A) = S^1 \qquad C\sigma(B) = S^1$$

$$\sigma(A) = \qquad \mathbb{D} \qquad = \sigma(B)$$

Lemma 1: $A \in \mathcal{L}(X)$. Then $\sigma(A^*) = \sigma(A)$.

Proof:

$$(\lambda 1 - A)^* = \lambda 1 - A^*$$

Claim

$$A$$
 bijective $\Leftrightarrow A^*$ bijective $(A^{-1})^* = (A^*)^{-1}$

A bijective
$$\Leftrightarrow$$
 im A closed $\overline{\operatorname{im} A} = X$ ker $A = 0$

$$\stackrel{ChIV,Thm2,Lemma2}{\Leftrightarrow} \operatorname{im} A^* \text{ weak*closed} \text{ ker } A^* = 0 \text{ im } A^* \text{ weak*dense}$$

$$\Leftrightarrow A^* \text{ bijective}$$

$$\begin{array}{lcl} \langle (A^{-1})^*x^*,y\rangle & = & \langle x^*,A^{-1}y\rangle \\ & = & \langle A^*(A^*)^{-1}x^*,A^{-1}y\rangle \\ & = & \langle (A^*)^{-1}x^*,AA^{-1}y\rangle \\ & = & \langle (A^*)^{-1}x^*,y\rangle \forall y\in X, \forall x^*\in X^* \end{array}$$

$$\Rightarrow (A^{-1})^* x^* = (A^*)^{-1} x^* \forall x^* \in X^*$$

Remark:

- a) $P\sigma(A^*) \subset P\sigma(A) \cup R\sigma(A)$ $R\sigma(A^*) \subset P\sigma(A) \cup C\sigma(A)$ $C\sigma(A^*) \subset C\sigma(A)$
- b) $P\sigma(A) \subset (A^*) \cup R\sigma(A^*)$ $R\sigma(A) \subset P\sigma(A^*)$ $C\sigma(A) \subset P\sigma(A^*) \cup C\sigma(A^*)$

5.2 Integrals

Lemma 2: X Banach space, $x : [a, b] \to X$ continuous

(*)
$$\Rightarrow \exists ! \xi \in X \forall x^* \in X^* : \langle x^*, \xi \rangle = \int_a^b \langle x^*, x(t) \rangle \, \mathrm{d}t$$

Notation: $\int_a^b x(t) dt := \xi$ is called the *Integral of x*.

Proof (exercise with hint): Define $\xi_n := \sum_{k=0}^{2^n-1} \frac{b-a}{2^n} x(a + \frac{k(b-a)}{2^n})$ $\delta_n := \sup_{|s-t| \leq \frac{b-a}{2^n}} \|x(t) - x(s)\| \to 0$

Show that: $\|\xi_{n+m} - \xi_n\| \le (b-a)\delta_n \forall m > 0 \Rightarrow \xi_n$ is Cauchy. Denote $\xi := \lim_{n \to \infty} \xi_n$ and check (*).

Remark:

1.
$$\int_{a}^{b} x(t) dt + \int_{b}^{c} x(t) dt = \int_{a}^{c} x(t) dt$$

2.
$$\int_{a}^{b} x(t) + y(t) dt = \int_{a}^{b} x(t) dt + \int_{a}^{b} y(t) dt$$

3.
$$\phi: [\alpha, \beta] \to [a, b]$$
 C^1 -map
$$x: [a, b] \to X \text{ continuous. Then } \int\limits_{\phi(\alpha)}^{\phi(\beta)} x(t) \, \mathrm{d}t = \int\limits_{\alpha}^{\beta} x(\phi(s)) \dot{\phi}(s) \, \mathrm{d}s$$

4. If $x:[a,b]\to X$ is continuously differentiable, then $\int_a^b \dot{x}(t)\,\mathrm{d}t=x(b)-x(a)$

5.
$$A \in \mathcal{L}(X,Y)$$
 and $x:[a,b] \to X$ continuous. Then $\int_a^b Ax(t) dt = A \int_a^b x(t) dt$

6.
$$\|\int_{a}^{b} x(t) dt\| \le \int_{a}^{b} \|x(t)\| dt$$

Proof: By definition: $\forall x^* \in X^*$.

$$\left| \langle x^*, \int_a^b x(t) \, \mathrm{d}t \rangle \right| = \left| \int_a^b \langle x^*, x(t) \, \mathrm{d}t \right|$$

$$\leq \int_a^b |\langle x^*, x(t) \rangle| \, \mathrm{d}t$$

$$\leq \int_a^b \|x^*\| \cdot \|x(t)\| \, \mathrm{d}t$$

$$= \|x^*\| \cdot \int_a^b \|x(t)\| \, \mathrm{d}t$$

Now use:

$$\left\| \int_{a}^{b} x(t) dt \right\| = \sup_{x^* \neq 0} \frac{\left| \int_{a}^{b} \langle x^*, x(t) \rangle dt}{\|x^*\|}$$

Notation: Let X be a Banach space, $\Omega \subset \mathbb{C}$ an open subset, $f: \Omega \to X$ a continuous map, and $\gamma: [a,b] \to \Omega$ be continuously differentiable.

Denote:
$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t))\dot{\gamma}(t) dt \in X$$

Remark:

$$\left\| \int_{\gamma} f(z) dz \right\| \le l(\gamma) \cdot \sup a \le t \le b \|f(\gamma(t))\|$$

$$l(\gamma) = \int_{a}^{b} |\dot{\gamma}| dt$$

Definition: $\Omega \subset \mathbb{C}$ open set. X complex Banach space, $f:\Omega \to X$ is called holomorphic if the limit $f'(z):=\lim_{\mathbb{C}\ni h\to 0}\frac{f(z+h)-f(z)}{h}$ exists for every $z\in\Omega$ and the map $f':\Omega\to X$ is continuous.

Lemma 3: X,Y complex Banach spaces. $\Omega \in \mathbb{C}$ open set. $A \in \mathcal{L}(X,Y)$ continuous. Equivalent are:

- (i) A is holomorphic
- (ii) For every $x\in X$ and every $y^*\in Y^*$ the function $\Omega\to\mathbb{C}:z\mapsto \langle y^*,A(z)x\rangle$ is holomorphic
- (iii) Proof $\overline{B}_r(z_0) = \{z \in \mathbb{C} \mid |z z_0| \le r\} \subset \Omega$ then $A(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{A(z)}{z z_0} dz$, where $\gamma(t) := z_0 + r \cdot e^{2\pi i t}, 0 \le t \le 1$.

Exercise: $A: \Omega \to X$ holomorphic $\Rightarrow A$ is C^{∞} and

$$\frac{A^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{A(z)}{(z - z_0)^{n+1}} dz \quad \gamma \text{ as in (iii)}$$

Proof: of Lemma 3 (i)⇒(ii): obvious

(ii)⇒(iii): Cauchy integral formula of Complex Analysis.

(iii)⇒(i): usual argument from Complex Analysis.

Denote $B := \frac{1}{2\pi i} \int_{\gamma} \frac{A(z)}{(z-z_0)^2} dz$ with γ as in (iii).

Claim For 0 < |h| < r and $c := \sup_{|z-z_0| < r} ||A(z)||$ we have

$$\|\frac{1}{h}(A(z_0+h)-A(z))-B\| \le \frac{c|h|}{r(r-|h|)}$$

This implies $A'(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{A(z)}{(z-z_0)^2} dz$.

Continuity of A': Exercise.

Proof of Claim

$$\begin{split} \frac{1}{h}(A(z_0+h)-A(z_0)) - B &\stackrel{(iii)}{=} & \frac{1}{2\pi i} \int_{\gamma} \frac{1}{h} (\frac{1}{z-z_0-h} - \frac{1}{z-z_0}) - \frac{1}{(z-z_0)^2} A(z) \, \mathrm{d}z \\ &= & \frac{1}{2\pi i} \int_{\gamma} \frac{h}{(z-z_0)^2 (z-z_0-h)} A(z) \, \mathrm{d}z \\ &\Rightarrow & \| \frac{1}{h} (A(z_0+h)-A(z_0)) - B \| \\ &\leq & \frac{1}{2\pi} l(\gamma) \sup_{0 \leq t \leq 1} \frac{|h| \|A(\gamma(t))\|}{|\gamma(t)-z_0|^2 |\gamma(t)-z_0-h|} \\ &\leq & \frac{|h|}{r} \sup_{0 \leq t \leq 1} \frac{\|A(\gamma(t))\|}{|re^{2\pi i t} - h|} \leq \frac{c|h|}{r(r-|h|)} \end{split}$$

Lemma 4: $A \in \mathcal{L}(X) \Rightarrow \rho(A) \subset \mathbb{C}$ is open, the function $\rho(A) \to \mathcal{L}(X) : \lambda \mapsto (\lambda 1 - A)^{-1} =: R_{\lambda}(A)$ is holomorphic, and

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A)\forall \lambda, \mu \in \rho(A)$$

Proof: Proof of (*)

$$(\lambda 1 - A)(R_{\lambda}(A) - R_{\mu}(A))(\mu 1 - A) = (\mu 1 - A) - (\lambda 1 - A) = (\mu - \lambda) \cdot 1 \Rightarrow (*)$$

 $\rho(A)$ is open:

(*)

 $\lambda \in \rho(A), |\mu - \lambda| \|(\lambda 1 - A)^{-1}\| < 1 \overset{ChI, Thm11}{\Rightarrow} 1 + (\mu - \lambda)(\lambda 1 - A)^{-1} \text{ is bijective,}$ where $(\mu - \lambda) = (\mu 1 - A)(\lambda 1 - A)^{-1} \Rightarrow \mu 1 - A \text{ bijective } \Rightarrow \mu \in \rho(A)$

Also.
$$\|(\mu 1 - A)^{-1} - (\lambda 1 - A)^{-1}\| \leq \frac{\|\mu - \lambda\| \|(\mu 1 - A)^{-1}\|^2}{1 - \|\mu - \lambda\| \|(\lambda 1 - A)^{-1}\|} \text{ Continuity}$$

$$(*) \Rightarrow \lim_{\mu \to \lambda} \frac{R_{\mu}(A) - R_{\lambda}(A)}{\mu - \lambda} = -R_{\lambda}(A)^2$$

$$\stackrel{Continuity}{\Rightarrow} \lambda \mapsto R_{\lambda}(A) \text{ is holomorphic.}$$

Theorem 1: Let $A \in \mathcal{L}(X)$, then

1.
$$\sigma(A) \neq \emptyset$$
 and

2.
$$\sup_{\lambda \in \sigma(A)} |\lambda| = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}} = \inf_{n \in \mathbb{N}} ||A^n||^{\frac{1}{n}} =: r_A$$

(Spectral radius, Chapter I, Theorem 11)

Proof:

1.
$$\sup_{\substack{\lambda \in \sigma(A) \\ \text{Let } \lambda \in \mathbb{C} \text{ with } |\lambda| > r_A \Rightarrow r_{\lambda^{-1}A} < 1}} \text{Let } \lambda \in \mathbb{C} \text{ with } |\lambda| > r_A \Rightarrow r_{\lambda^{-1}A} < 1$$

$$2. \ r_A \leq \sup_{\lambda \in \sigma(A)} |\lambda|$$

$$R(z) := \begin{cases} (z^{-1}1 - A)^{-1} & z \neq 0, \frac{1}{z} \in \rho(A) \\ 0 & z = 0 \end{cases}$$

$$R : \Omega \to \mathcal{L}(X) \quad \Omega = \{\frac{1}{z} \mid z \in \rho(A)\} \cup \{0\} \}$$
Fact: Ω open and $R : \Omega \to \mathcal{L}(X)$ is holomorphic
Proof: Lemma 4 and removal of singularity for holom. $\Omega \setminus \{0\} \to \mathbb{C}$
Or for small z :
$$R(z) = z(1 - zA)^{-1} = \sum_{i=1}^{\infty} z^{k+1} A^k \text{ (Chap. I, Thm. 11)}$$

$$\Rightarrow \frac{R^{(n)}(0)}{n!} = A^{n-1}$$
Cauchy integral formula
$$A^{n-1} = \frac{1}{2\pi i} \int_{\gamma} \frac{R(z)}{z^{n+1}} dz \qquad (1)$$

$$\gamma = \frac{1}{r} e^{2\pi i t} t \in [0, 1] \text{ provided } \{z \in \mathbb{C} \mid |z| \leq \frac{1}{r}\} \subset \Omega$$
If $r > \sup_{\lambda \in \sigma(A)} |\lambda| \text{ then (2) holds, so}$

$$\|A^{n-1}\| = \left\| \frac{1}{2\pi i} \int_{\gamma} \frac{R(z)}{z^{n+1}} dz \right\| \leq l(\gamma) \sup_{|z| = \frac{1}{r}} \frac{\|R(z)\|}{2\pi |z^{n+1}|}$$

$$= l(\gamma) \frac{r^n}{2\pi \frac{1}{r}} \sup_{|z| = \frac{1}{r}} \|(z^{-1}1 - A)^{-1}\| = r^n \sup_{|\lambda| = r} (\lambda 1 - A)^{-1}\|$$

$$\Rightarrow \|A^{n-1}\| \leq cr^n \Rightarrow \|A^n\| \leq cr^{n+1} \Rightarrow \|A^n\|^{\frac{1}{n}} \leq r \underbrace{(cr)^{\frac{1}{n}}}_{-1}$$

$$\Rightarrow \|A^{n-1}\| \le cr^n \Rightarrow \|A^n\| \le cr^{n+1} \Rightarrow \|A^n\|^{\frac{1}{n}} \le r \underbrace{(cr)^{\frac{1}{n}}}_{\to 1}$$
$$\Rightarrow \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}} \le r \quad \forall r > \sup_{\lambda \in \sigma(A)} |\lambda|$$

H complex (real inner product) Hilbert space $||ix|| = ||x|| \forall x \in H \Leftrightarrow$ $\langle ix, iy \rangle = \langle x, y \rangle \, \forall x, y \in H$

recover inner product from norm: $\langle x, y \rangle = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$

 $\Leftrightarrow \langle ix, y \rangle + \langle x, iy \rangle = 0 \quad \forall x, y \in H$

Define the Hermitian inner product:

$$H \times H \to \mathbb{C}(x,y) \to \langle x,y \rangle_{\mathbb{C}} \text{ by } \langle x,y \rangle_{\mathbb{C}} := \langle x,y \rangle + i \langle ix,y \rangle$$

a) real bilinear

b)
$$\langle x, y \rangle_{\mathbb{C}} = \overline{\langle x, y \rangle}_{\mathbb{C}}$$

c)
$$\langle x, \lambda y \rangle_{\mathbb{C}} = \lambda \langle x, y \rangle_{\mathbb{C}}, \ \langle \lambda x, y \rangle_{\mathbb{C}} = \overline{\lambda} \langle x, y \rangle_{\mathbb{C}}$$

d)
$$|\langle x, y \rangle_{\mathbb{C}}| \le ||x|| ||y||$$

e)
$$||x|| = \sqrt{\langle x, x \rangle_{\mathbb{C}}}$$

Proof: Exercise

 $H^* := \{ \varphi : H \to \mathbb{C} \mid \varphi \text{ complex, linear} \}$ Define $\iota : H \to H^* \quad \langle \iota(x), y \rangle_{H^*, H} := \langle x, y \rangle_{\mathbb{C}}$

Riesz Representation Theorem: $\iota: H \to H^*$ isometric isomorphism

Warning: ι is anti-linear: $\iota(\lambda x) = \overline{\lambda}\iota(x) \quad \forall x \in H \, \forall \lambda \in \mathbb{C}$

The Hilbert space adjoint of a linear operator $A: H \to H$ is the operator $A^*: H \to H$ defined by $\langle A^*x, y \rangle_{\mathbb{C}} := \langle x, Ay \rangle_{\mathbb{C}} \, \forall x, y \in H$

Remark:

(i)
$$A_{\text{new}}^* = \iota^{-1} \circ A_{\text{old}}^* \circ \iota$$

(ii)
$$(\lambda A)_{\text{old}}^* = \lambda A_{\text{old}}^* \quad (\lambda A)_{\text{new}}^* = \overline{\lambda} A_{\text{new}}^*$$

(iii)
$$\sigma(A_{\text{old}}^*) = \sigma(A)$$
 $\sigma(A_{\text{new}}^*) = \overline{\sigma(A)}$

Proof:
$$\bar{\lambda}1 - A^*_{\text{new}} \stackrel{\text{(i)}}{=} \iota^{-1}(\lambda 1 - A^*_{\text{old}})\iota$$
 bijective $\Leftrightarrow \lambda 1 - A^*_{\text{old}}$ bijective $\stackrel{\text{Lemma 1}}{\Leftrightarrow} \lambda 1 - A$ bijective

Definition: H complex Hilbertspace

An operator $A \in \mathcal{L}(H)$ is called *normal*, if $AA^* = A^*A$, *selfadjoint*, if $A = A^*$ and *unitary*, if $AA^* = A^*A = I$.

Example 1:
$$H = l_{\mathbb{C}}^2$$
, $Ax = (\lambda_1 x_1, \lambda_2 x_2, ...)$
 $\lambda_n \in \mathbb{C}$, $\sup_{n \in \mathbb{N}} |\lambda_n| < \infty$
 $A = A^* \Leftrightarrow \lambda_n \in \mathbb{R}$
Because $A^*x = (\overline{\lambda_1} x_1, \overline{\lambda_2} x_2, ...)$
 $\langle x, y \rangle_{\mathbb{C}} = \sum_{n=1}^{\infty} \overline{x_n} y_n$
A is normal

Example 2:
$$H = l_{\mathbb{C}}^2$$

 $Ax = (x_2, x_3, ...)$ $A^*x = (0, x_1, x_2, ...) \Rightarrow AA^* \neq A^*A$

Example 3: $selfadjoint \Rightarrow normal$

 $\begin{array}{l} A \text{ unitary } (\|Ax\| = \|x\| \, \forall x \in H) \text{ isomorphism} \Rightarrow A \text{ normal, because} \\ \langle x, A^*Ax \rangle = \|Ax\|^2 = \|x\|^2 \Leftrightarrow \langle y, A^*Ax \rangle = \langle y, x \rangle \quad \forall x, y \in H \\ \Leftrightarrow A^*A = 1 \quad A \quad A^* = 1 \quad A^* = A^{-1} \\ \text{In Example 2 we have } \|A^*x\| = \|x\| \text{ but } A^* \neq A^{-1} \text{ } (A^* \text{ is not onto)} \end{array}$

Lemma 5: H complex Hilbert space, $A \in \mathcal{L}(H)$

Equivalent are:

- (i) A is normal
- (ii) $||Ax|| = ||A^*x|| \quad \forall x \in H$

Proof:

(i)
$$\Rightarrow$$
(ii) $||Ax||^2 = \langle Ax, Ax \rangle_{\mathbb{C}} = \langle x, A^*Ax \rangle_{\mathbb{C}} = \langle x, AA^*x \rangle_{\mathbb{C}}$
= $\langle A^*x, A^*x \rangle_{\mathbb{C}} = ||A^*x||^2$

(ii)
$$\Rightarrow$$
(i) Same argument gives $\langle x, A^*Ax \rangle_{\mathbb{C}} = \langle x, AA^*x \rangle_{\mathbb{C}} \quad \forall x \in H$
 $\Rightarrow \langle y, A^*Ax \rangle_{\mathbb{C}} = \langle y, AA^*x \rangle_{\mathbb{C}} \quad \forall x, y \in H$
 $\Rightarrow A^*A = AA^*$

Theorem 2: H complex Hilbert space, $A \in \mathcal{L}(H)$ normal \Rightarrow

(i)
$$\sup_{\lambda \in \sigma(A)} |\lambda| = ||A||$$

(ii)
$$A = A^* \Rightarrow \sigma(A) \subset \mathbb{R}$$

Proof:

(i) Claim:
$$\|A^n\| = \|A\|^n \quad \forall n \in \mathbb{N}$$
 (Then (i) follows from Theorem 1) $n = 2$: $\|A\|^2 = \sup_{x \neq 0} \frac{\|Ax\|^2}{\|x\|^2} = \sup_{x \neq 0} \frac{\langle x, A^*Ax \rangle}{\|x\|^2}$

$$\stackrel{\text{CS}}{\leq} \sup_{x \neq 0} \frac{\|A^*Ax\|^2}{\|x\|^2} \stackrel{\text{Lemma 5}}{=} \sup_{x \neq 0} \frac{\|A^2x\|}{\|x\|^2} = \|A^2\|$$

$$\Rightarrow \|A^2\|^2 \stackrel{\text{normal}}{\leq} \|A^2\| \stackrel{\text{always}}{\leq} \|A\|^2$$
 $n = 2^m \text{ Induction } \|A^{2^m}\| = \|A\|^{2^m}$
 $n \text{ arbitrary:}$

$$\|A\|^n = \frac{\|A\|^{2^m}}{\|A\|^{2^m-n}} = \frac{\|A^{2^m}\|}{\|A\|^{2^m-n}} \le \frac{\|A^n\| \|A^{2^m-n}\|}{\|A\|^{2^m-n}} \le \|A^n\|$$

(ii) Assume
$$A = A^*$$
, let $\lambda \in \mathbb{C} \setminus \mathbb{R}$
To show: $\lambda \in \rho(A)$
Claim: $\|\lambda x - Ax\|^2 \ge (\operatorname{Im} \lambda)^2 \|x\|^2$
Claim $\stackrel{\operatorname{Chap.\ IV\ Thm\ 2}}{\Rightarrow} \lambda 1 - A$ injective, im $(\lambda 1 - A)$ closed $\stackrel{A = A^*}{\Rightarrow} \overline{\lambda} 1 - A^*$ injective, so $\lambda 1 - A$ bijective Proof of Claim: $\|\lambda x - Ax\|^2 = \langle \lambda x - Ax, \lambda x - Ax \rangle_{\mathbb{C}}$
 $= \overline{\lambda} \lambda \langle x, x \rangle_{\mathbb{C}} - \lambda \langle Ax, x \rangle_{\mathbb{C}} - \overline{\lambda} \langle x, Ax \rangle_{\mathbb{C}} + \langle Ax, Ax \rangle_{\mathbb{C}}$
 $= |\lambda|^2 \|x\|^2 - 2(\operatorname{Re} \lambda) \langle x, Ax \rangle_{\mathbb{C}} + \|Ax\|^2 = (\operatorname{Im} \lambda)^2 \|x\|^2 + (\operatorname{Re} \lambda)^2 \|x\|^2 - 2(\operatorname{Re} \lambda)^2 \|x\|^2 + \|(\operatorname{Re} \lambda)x - Ax\| \ge (\operatorname{Im} \lambda)^2 \|x\|^2$

Theorem 3: H complex Hilbert space, $A = A^* \in \mathcal{L}(H)$ selfadjoint. Then

a)
$$R\sigma(A) = \emptyset$$
 and

b) (1)
$$\sup \sigma(A) = \sup_{\|x\|=1} \langle x, Ax \rangle$$

(2)
$$\inf \sigma(A) = \inf_{\|x\|=1} \langle x, Ax \rangle$$

(3)
$$||A|| = \sup_{||x||=1} |\langle x, Ax \rangle|$$

Proof:

a)
$$R\sigma(A) = \emptyset$$

$$\lambda \notin P\sigma(A) \quad \Leftrightarrow \quad \lambda 1 - A \text{ injective}$$

$$\Leftrightarrow \quad H = \ker(\lambda 1 - A)^{\perp}$$

$$= \quad \{x \in H \mid \langle x, \xi \rangle = 0 \forall \xi \in \ker(1 - A)\}$$

$$= \quad \overline{\operatorname{im}(1 - A)}$$

$$\Leftrightarrow \quad \lambda \in C\sigma(A)$$

$$(1)\Rightarrow(2)$$
 replace A by $-A$.

...

 $(1)\&(2) \Rightarrow (3)$

$$||A|| \stackrel{Thm2}{=} \sup_{\lambda \in \sigma(A)} |\lambda|$$

$$= \max\{\sup \sigma(A), -\inf \sigma(A)\}$$

$$\stackrel{(1),(2)}{=} \sup_{||x||=1} |\langle x, Ax \rangle|$$

Proof of (1) Assume wlog

$$\langle x, Ax \rangle \ge 0 \ \forall x \in H$$

(replace A by $A + ||A|| \cdot 1$). Claim 1: $(4) \Rightarrow \sigma(A) \subset [0, \infty)$ Claim 2: $(4) \Rightarrow ||A|| = \sup_{||x||=1} \langle x, Ax \rangle$

Claims $1\&2 \Rightarrow (1)$

$$\sup_{\|x\|=1} \langle x,Ax\rangle = \|A\| \text{ by Claim 2}$$

$$= \sup_{\lambda \in \sigma(A)} |\lambda| \text{ by Thm 2}$$

$$= \sup_{\sigma(A)} \sigma(A) \text{ by Claim 1}$$

Proof of Claim 1 Let $\varepsilon > 0$. Then $\forall x \in H$:

$$\varepsilon \|x\|^{2} \stackrel{(4)}{\leq} \varepsilon \|x\|^{2} + \langle x, Ax \rangle$$

$$= \langle x, \varepsilon x + Ax \rangle$$

$$\leq \|x\| \cdot \|\varepsilon x + Ax\|$$

$$\Rightarrow \varepsilon \|x\| \leq \|\varepsilon x + Ax\| \forall x \in H$$

 $\varepsilon 1 + A$ is injective and has a closed image (see Chapter IV). $\stackrel{A=A^*}{\Rightarrow} \varepsilon 1 + A$ is bijective $\Rightarrow -\varepsilon \notin \sigma(A)$

Proof of Claim 2 Let $a:=\sup_{\|x\|=1}\langle x,Ax\rangle \leq \|A\|$ (Cauchy-Schwarz). To show: $\|A\|\leq a$.

For $x, y \in H$ we have

$$\langle y,Ax\rangle = \frac{1}{4}(\langle x+y,A(x+y)\rangle - \langle x-y,A(x-y)\rangle)$$
 \Rightarrow For $||x|| = ||y|| = 1$:
$$-a \le -\frac{1}{4}a||x-y||^2 \le -\frac{1}{4}\langle x-y,A(x-y)\rangle \le \langle y,Ax\rangle$$

$$\le \frac{1}{4}\langle x+y,A(x+y)\rangle \le \frac{1}{4}a||x+y|| \le a$$

$$\Rightarrow |\langle y,Ax\rangle| \le a \forall x,y \in H \text{ and } ||x|| = ||y|| = 1$$

$$\Rightarrow ||A|| = \sup_{\substack{||x||=1, \\ ||y||=1}} |\langle y,Ax\rangle| \le a$$

Remark: Given any operator $T \in \mathcal{L}(H)$ we have

$$||T||^2 = \sup_{\|x\|=1} ||Tx||^2$$

$$= \sup_{\|x\|=1} \langle Tx, Tx \rangle$$

$$= \sup_{\|x\|=1} \langle x, T^*Tx \rangle$$

$$\leq ||T^*T||$$

$$\leq ||T^*|||T||$$

$$\leq ||T||^2$$

$$\leq ||T||^2$$

$$\leq ||T||^2$$

$$\leq ||T||^2$$

$$\Rightarrow \|T\|^2 \sup_{\|x\|=1} \langle x, T^*Tx \rangle \stackrel{\text{Thm 3 for } A=T^*T}{=} \|T^*T\|$$

 $||T|| = \sqrt{||T^*T||}$. We can use this to compute ||T||.

5.3 Compact operators on Banach spaces

X complex Banach space, $A \in \mathcal{L}(X)$ bounded, complex linear.

Facts

a)
$$\ker(\lambda \mathbb{1} - A) \subset \ker(\lambda \mathbb{1} - A)^2 \subset \ker(\lambda \mathbb{1} - A)^3 \subset \dots$$

b)
$$\ker(\lambda \mathbb{1} - A)^m = \ker(\lambda \mathbb{1} - A)^{m+1}$$

$$\Rightarrow \ker(\lambda \mathbb{1} - A)^m = \ker(\lambda \mathbb{1} - A)^{m+k} \forall k \ge 0$$

Notation: $E_{\lambda} := E_{\lambda}(A) := \bigcup_{m=1}^{\infty} \ker(\lambda \mathbb{1} - A)^m$

Theorem 4: $A \in \mathcal{L}(X)$ compact

- (i) If $\lambda \in \sigma(A)$, $\lambda \neq 0$, then $\lambda \in P\sigma(A)$ and dim $E_{\lambda} < \infty$. Hence $\exists m \in \mathbb{N}$ such that $\ker(\lambda \mathbb{1} - A)^m = \ker(\lambda \mathbb{1} - A)^{m+1}$.
- (ii) Eigenvalues of A can only accumulate at 0, ie

$$\forall \lambda \in \sigma(A), \lambda \neq 0, \exists \varepsilon > 0 \forall \mu \in \mathbb{C}:$$

 $0 < |\mu - \lambda| < \varepsilon \Rightarrow \mu \in \rho(A)$

Proof:

(i) If $\lambda \neq 0 \Rightarrow \lambda \mathbb{1}$ Fredholm, index = 0. $\stackrel{ChIV}{\Rightarrow} \lambda \mathbb{1} - A$ Fredholm, index = 0 $\stackrel{Thm5A \text{ cpct}}{\Rightarrow}$ either $\lambda \mathbb{1} - A$ is bijective $(\lambda \notin \sigma(A))$ or $\lambda \mathbb{1} - A$ is not injective $(\lambda \in P\sigma(A))$. Moreover: $\dim(\ker(\lambda \mathbb{1} - A)^m) < \infty \forall m \in \mathbb{N}$, because $(\lambda \mathbb{1} - A)^m = \sum_{k=0}^m \binom{m}{k} \lambda^k (-A)^{m-k} = \lambda^m \mathbb{1} + \text{cpct}$ Let $K := \lambda^{-1}A$ and $E_n = \ker(\mathbb{1} - K)^n = \ker(\lambda \mathbb{1} - A)^n$.

To show: $\exists m \text{ such that } E_m = E_{m+1}.$ Suppose not. Then $E_n \subsetneq E_{n+1} \forall n \in \mathbb{N}$

 $\overset{ChIILemma4}{\Rightarrow} \forall n \in \mathbb{N} \exists x_n \in E_n \text{ such that}$

$$||x_n|| = 1$$
 $\inf_{x \in E_{n-1}} ||x_n - x|| \ge \frac{1}{2}$

Now: for m < n we have

$$Kx_m \in E_m \subset E_{n-1}$$
 $x_n - Kx_n \in E_{n-1}$

$$\Rightarrow ||Kx_n - Kx_m|| = ||x_n - \underbrace{(x_n - Kx_n + Kx_m)}_{\in E_{n-1}}|| \ge \frac{1}{2}$$

So $(Kx_n)_n$ has no convergent subsequence: contradiction!

(ii) Let $\lambda \in \sigma(A), \lambda \neq 0$.

$$\stackrel{(i)}{\Rightarrow} \exists m \in \mathbb{N} \text{ such that } \ker(\lambda 1 - A)^m = \ker(\lambda 1 - A)^{m+1}$$

$$\Rightarrow X = \ker(\underbrace{\lambda 1 - A}_{=:X_0})^m \oplus \operatorname{im}(\underbrace{\lambda 1 - A}_{=:X_1})^m$$

This is an exercise (use Hahn-Banach).

 $AX_0 \subset X_0 \quad AX_1 \subset X_1.$

Note: $(\lambda 1 - A)^m : X_1 \to X_1$ is bijective

$$\stackrel{\text{open mapping}}{\Rightarrow} \exists c > 0 \forall x_1 \in X_1$$

$$||x_1|| \le c||(\lambda 1 - A)^m x_1||$$

Choose $\varepsilon > 0$ such that for all $\mu \in \mathbb{C}$:

$$|\lambda - \mu| < \varepsilon \Rightarrow \|(\lambda 1 - A)^m - (\mu 1 - A)^m\| < \frac{1}{c}$$

$$\Rightarrow (\mu 1 - A)^m : X_1 \to X_1 \text{ is bijective for } |\lambda - \mu| < \varepsilon$$

$$(\mu 1 - A)^m : X_0 \to X_0 \text{ is bijective for } \mu \neq \lambda$$

The rest by induction. X_0 is finite dimensional. $A|_{X_0} \cong$

$$\Rightarrow (\mu 1 - A)^m : X \to X$$
 only true if bijective!

$$\Rightarrow \mu 1 - A : X \to X$$
 is bijective.

 ${\cal H}$ real or complex Hilbert space

Notation: $\langle ., . \rangle$ real or Hermitian inner product.

Definition: A collection of vectors $\{e_i\}_{i\in I}$ in H is called an *orthonormal basis* if

$$\langle e_i, e_j \rangle = \delta_{ij}$$

$$H = \overline{\operatorname{span}\{e_i \mid i \in I\}}$$

Remark 1: (2) holds if and only if

(1)

(2)

$$\forall x \in H : \langle x, e_i \rangle = 0 \forall i \in I \Rightarrow x = 0$$

Remark 2: H separable $\Leftrightarrow I$ is finite or countable

Remark 3: $x \in H, \{e_i\}_{i \in I}$ ONB

$$\Rightarrow x = \sum_{i \in I} \langle e_i, x \rangle e_i \quad ||x||^2 = \sum_{i \in I} |\langle e_i, x \rangle|^2$$

Theorem 5: H real or complex Hilbert space. $A = A^* \in \mathcal{L}$ selfadjoint, compact. $\Rightarrow A$ admits an ONB $\{e_i\}_{i \in I}$ of eigenvectors

$$Ae_i = \lambda_i e_i, \lambda_i \in \mathbb{R}$$
 $Ax = \sum_{i \in I} \lambda_i \langle e_i, x \rangle e_i$

Proof:

Step 1

$$Ax = \lambda x$$
 $x \neq 0$ $Ay = \mu y$ $y \neq 0$ and $\lambda \neq \mu$
 $\Rightarrow \langle x, y \rangle = 0$

proof

$$(\lambda - \mu)\langle x, y \rangle = \langle \lambda x, y \rangle - \langle x, \mu y \rangle$$
$$= \langle Ax, y \rangle - \langle x, Ay \rangle$$

Step 2 $\ker(\lambda 1 - A)^m = \ker(\lambda 1 - A) \forall m \ge 1$

proof

$$\lambda \in \mathbb{R} \quad \lambda \in P\sigma(A) \quad (\lambda 1 - A)^2 x = 0$$
$$\Rightarrow 0 = \langle x, (\lambda 1 - A)^2 x \rangle$$
$$= \langle (\lambda 1 - A)x, (\lambda 1 - A)x \rangle = \|\lambda x - Ax\|^2$$

Step 3

(*)

$$\langle x, y \rangle = 0 \forall y \in \ker(\lambda 1 - A) \forall \lambda \in \mathbb{R} \Rightarrow x = 0$$

$$H_0 := \{ x \in H \mid (*) \} \quad H_0 \neq 0 \quad \Rightarrow A|_{H_0} \neq 0$$

$$\Rightarrow ||A|_{H_0}|| \in \sigma(A|_{H_0}) \text{ or } -||A|_{H_0}|| \in \sigma(A|_{H_0})$$

 $\Rightarrow A|_{H_0}$ has a nonzero eigenvalue, eigenvector. This is also an eigenvector of A: contradiction!

Definition: A C^* -algebra is a complex Banach space \mathcal{A} equipped with

- an assoziative, distributive product $\mathcal{A} \times \mathcal{A} \to \mathcal{A} : (a, b) \to ab$ with a unit $1 \in \mathcal{A}$ such that $||ab|| \le ||a|| \, ||b||$
- a complex anti-linear involution $\mathcal{A} \to \mathcal{A} : a \to a^*$ such that $(ab)^* = b^*a^*, 1^* = 1$, and $||a^*|| = ||a||$

Remark: antilinear: $(\lambda a)^* = \overline{\lambda} a^*$, involution: $a^{**} = a$

Example 1: H complex Hilbert space, then $\mathcal{L}(H)$ is a C^* -algebra

Example 2: $A \in \mathcal{L}(H)$

 $\begin{array}{ll} \mathcal{A}:= \text{smallest } C^*\text{-algebra containing } A \\ A=A^*, \, p(\lambda):=a_0+a_1\lambda+\ldots+a_n\lambda^n \quad a_k\in\mathbb{C} \\ p(A):=a_0+a_1A+\ldots+a_nA^n \quad p(A)^*=\overline{a_0}+\overline{a_1}A+\ldots+\overline{a_n}A^n \\ (pq)(A)=p(A)q(A) \\ \mathcal{A}:= \text{closure}(\{p(A)\mid p:\mathbb{R}\to\mathbb{C}) \end{array}$

Example 3: Σ compact metric space $C(\Sigma) := \{ f : \Sigma \to \mathbb{C} \mid f \text{ continuous} \}$ $C^*\text{-Algebra, sup-norm, involution: } f \to \overline{f}$

Goal: $A = A^*, \ \Sigma = \sigma(A) \Rightarrow A \cong C(\Sigma) : p(A) \leftarrow p$

75

Theorem 6: H complex Hilbert space, $A = A^* \in \mathcal{L}(H)$ selfadjoint $\Sigma := \sigma(A) \subset (\mathbb{R})$

 \Longrightarrow There is a unique bounded linear operator

$$C(\Sigma) \to \mathcal{L}(H): f \to f(A)$$
 (*)

such that
$$(fg)(A) = f(A)g(A)$$
, $\mathbb{1}_{\mathbb{R}}(A) = \mathbb{1}_H$ (1)

$$\overline{f}(A) = f(A)^* \tag{2}$$

$$f(\lambda) = \lambda \,\forall \lambda \in \Sigma \Rightarrow f(A) = A \tag{3}$$

Denote $\Phi_A(f) := f(A)$

Then (*) is the operator $\Phi_A: C(\Sigma) \to \mathcal{L}(H)$

(1):
$$\Phi_A(fg) = \Phi_A(f)\Phi_A(g) \quad \Phi_A(1) = 1$$

(2):
$$\Phi_A(\overline{f}) = \Phi_A(f)^*$$

(3):
$$\Phi_A(id:\Sigma\to\Sigma\subset\mathbb{C})=A$$

Lemma 6: H complex Hilbert space, $A \in \mathcal{L}(H)$ $p(\lambda) = \sum_{k=0}^{n} a_k \lambda^k a_k \in \mathbb{C}$ complex polynomial \Rightarrow

(i)
$$p(A)^* = \overline{p}(A^*), \ \overline{p}(\lambda) = \sum_{k=0}^n \overline{a_k} \lambda^k, \ (pq)(A) = p(A)q(A)$$

(ii)
$$\sigma(p(A)) = p(\sigma(A)) = \{p(\lambda) \mid \lambda \in \sigma(A)\}\$$

(iii)
$$A = A^* \Rightarrow ||p(A)||_{L^{\infty}(\sigma(A))} = \sup_{\lambda \in \sigma(A)} |p(\lambda)|$$

Proof:

(i) Exercise

(ii)
$$\lambda \in \sigma(A)$$
, to show $p(\lambda) \in \sigma(p(A))$
The polynomial $t \to p(t) - p(\lambda)$ vanishes at $t = \lambda$
 \exists polynomial q such that $p(t) - p(\lambda) = (t - \lambda)q(t)$
 $\Rightarrow p(A) - p(\lambda)1 = (A - \lambda 1)q(A) = q(A)(A - \lambda 1)$
 $\Rightarrow p(A) - p(\lambda)1$ is not bijective $\Rightarrow p(\lambda) \in \sigma(p(A))$

$$\mu \in \sigma(p(A)) \Rightarrow \exists \lambda \in \sigma(A) : \mu = p(\lambda)$$

$$n := \deg(p) \Rightarrow p(t) - \mu = a(t - \lambda_1) \dots (t - \lambda_n) \quad a \neq 0$$

$$p(A) - \mu 1 = a(A - \lambda_1 1) \dots (A - \lambda_n 1) \text{ not bijective}$$

$$\Rightarrow \exists i \text{ such that } A - \lambda_i 1 \text{ not bijective}$$

$$\Rightarrow \lambda_i \in \sigma(A), \ p(\lambda_i) - \mu = 0$$

Remark 1: If $p(\lambda) = q(\lambda) \,\forall \lambda \in \sigma(A)$, then p(A) = q(A) i.e. the operator p(A) only depends on the restriction $p|_{\sigma(A)}$

Remark 2: Why is $P(\Sigma) := \{p|_{\Sigma} \mid p : \mathbb{R} \to \mathbb{C} \text{ polynomial} \}$ dense in $C(\Sigma)$? Stone-Weierstrass:

- $P(\Sigma)$ is a subalgebra of $C(\Sigma)$
- $P(\Sigma)$ separates points (i.e. $\forall x, y \in \Sigma, x \neq y \exists p \in P(\Sigma) \text{ s.t. } p(x) \neq p(y)$)
- $p \in P(\Sigma) \Rightarrow \overline{p} \in P(\Sigma)$
- $\Rightarrow P(\Sigma)$ is dense in $C(\Sigma)$

Proof of Theorem 6:

1. Existence: Given $f \in C(\Sigma)$, construct $f(A) \in \mathcal{L}(H)$ By Remark 2, \exists sequence $p_n \in P(\Sigma)$ such that $\lim_{n \to \infty} \|f - p_n\|_{L^{\infty}(\Sigma)} = 0$ p_n is a Cauchy sequence in $C(\Sigma)$ Lemma 6 (iii) $\Rightarrow p_n(A)$ is a Cauchy sequence in $\mathcal{L}(H)$ $\|p_n(A) - p_m(A)\| = \|p_n - p_m\|_{L^{\infty}(\Sigma)}$ $\Rightarrow p_n(A)$ converges in $\mathcal{L}(H)$ Define $f(A) := \lim_{n \to \infty} p_n(A)$ (This is the only way of defining f(A), so we have proved uniqueness)

2. f(A) is well-defined If $q_n \in P(\Sigma)$ is another sequence converging uniformly to f, then $\|p_n(A) - q_n(A)\| = \|p_n - q_n\|_{L^{\infty}(\Sigma)} \to 0$ So $\lim_{n \to \infty} p_n(A) = \lim_{n \to \infty} q_n(A)$

- 3. f is linear, continuous and satisfies (1), (2), (3)
 - $p_n \to f$, $q_n \to q$ $\Rightarrow p_n q_n \to fg$, $p_n + q_n \to f + g$ $\Rightarrow (fg)(A) = \lim_{n \to \infty} p_n q_n(A) = \lim_{n \to \infty} p_n(A) \lim_{n \to \infty} q_n(A) = f(A)g(A)$ Same for addition and for f(tA) = tf(A)
 - $f \to f(A)$ bounded, indeed $||f(A)|| = ||f||_{L^{\infty}(\Sigma)} = \sup_{\lambda \in \sigma(A)} |f(\lambda)|$ True for $f = p \in P(\Sigma)$; $p_n \to f$ $\Rightarrow ||f(A)|| = \lim_{n \to \infty} ||p_n(A)|| = \lim_{n \to \infty} ||p_n||_{L^{\infty}(\Sigma)}$
 - (2) and (3) (2) obvious, (3) true for polynomials, take limits

Theorem 7: Let $A = A^* \in \mathcal{L}(H)$, $\Sigma := \sigma(A) \subset \mathbb{R}$ and $f \in C(\Sigma) \Rightarrow$

(i)
$$\sigma(f(A)) = f(\sigma(A))$$

(ii)
$$||f(A)|| = ||f||_{L^{\infty}(\Sigma)}$$

(iii)
$$Ax = \lambda x \Rightarrow f(A)x = f(\lambda)x$$

(iv)
$$AB = BA \Rightarrow f(A)B = Bf(A)$$

(v) If
$$f(\Sigma) \subset \mathbb{R}$$
 then $f(A) = f(A)^*$

(vi)
$$f \ge 0 \Leftrightarrow \langle x, f(A)x \rangle \ge 0 \, \forall x \in H$$

Proof:

- (ii) already proved, also follows from (i)
- (iii) true for polynomials, hence true in the limit
- (iv) true for polynomials, take the limit
- (v) Use Theorem 3: $\inf f(\Sigma) = \inf \sigma(f(A)) = \inf \langle x, f(A)x \rangle$
- (vi) $\sigma(f(A) \subset f(\Sigma))$ Let $\mu \notin f(\Sigma)$ Define $g(\lambda) := \frac{1}{f(\lambda) - \mu}, \lambda \in \Sigma$ $\Rightarrow g(f - \mu) = (f - \mu)g = 1$ $\Rightarrow g(A)(f(A) - \mu 1) = 1 = (f(A) - \mu 1)g(A)$ $\Rightarrow f(A) - \mu$ bijective, i.e. $\mu \notin \sigma(f(A))$

$$f(\Sigma) \subset \sigma(f(A))$$
 Let $\lambda \in \Sigma = \sigma(A)$. Claim: $f(\lambda) \in \sigma(f(A))$ Suppose not $\Rightarrow f(\lambda)1 - f(A)$ is bijective Pick a sequence of polynomials $p_n \in P(\Sigma)$ such that $\|p_n - f\|_{L^{\infty}(\Sigma)} \to 0$ $\Rightarrow f(\lambda)1 - f(A) = \lim_{n \to \infty} (p_n(\lambda)1 - p_n(A))$ (in norm topology) $\Rightarrow p_n(\lambda)1 - p_n(A)$ is bijective for n large $p_n(\lambda) \notin \sigma(p_n(A))$, this contradicts Lemma 6 (ii)

5.4 Spectral Measure

Let $A = A^* \in \mathcal{L}, \Sigma = \sigma(A) \subset \mathbb{R}$. We have defined

 $C(\Sigma) = \{\text{continuous functions } f: \Sigma \to \mathbb{C} \}$

 $B(\Sigma) = \{\text{bounded measurable functions } f: \Sigma \to \mathbb{C} \}$

 $F(\Sigma) = \{ \text{bounded functions} f : \Sigma \to \mathbb{C} \}$

$$||f|| := \sup_{\lambda \in \Sigma} |f(\lambda)|$$

Remark 1: $C(\Sigma) \subset B(\Sigma) \subset F(\Sigma)$ closed subspace and $F(\Sigma)$ is a Banachspace.

Remark 2: We take a sequence $f_n \in F(\Sigma)$ bp-converges to $f \in F(\Sigma)$ iff

$$\sup_{n \in \mathbb{N}} ||f_n|| < \infty, \quad f(\lambda) = \lim_{n \to \infty} f_n(\lambda) \forall \lambda \in \Sigma$$

We write

$$f = \text{bp-lim}_{n \to \infty} f_n$$

- 1. $B(\Sigma)$ is closed under bp-convergence.
- 2. $C(\Sigma)$ is bp-dense in $B(\Sigma)$.

Therefore

Remark 3: $B(\Sigma)$ is the smallest C^* -subalgebra in $F(\Sigma)$ so that

- 1. $C(\Sigma) \subset B(\Sigma)$
- 2. $B(\Sigma)$ is bp-closed.

Recall from Theorem 6 that $\exists !$ continuous C^* -homomorphism $\Phi_A:C(\Sigma)\to \mathcal{L}(H)$ so that

$$\Phi_A(\mathrm{id}) = A$$

Theorem 8: $\exists ! C^*$ -homomorphism $\Psi_A : B(\Sigma) \to \mathcal{L}(H)$ such that

- 1. If $f(\lambda) = \lambda \forall \lambda \in \Sigma$ then $\Psi_A(f) = A$.
- 2. $\|\Psi_A(f)\| \leq \|f\| \forall f \in B(\Sigma)$
- 3. $f = \text{bp-lim}_{n \to \infty} f_n \quad \Rightarrow \quad \Psi_A(f) x = \lim_{n \to \infty} \Psi_A(f_n) x \forall x \in H$

Remark: Let $A_n \in \mathcal{L}(H)$ and $A \in \mathcal{L}(H)$. We say A_n converges strongly to A if

$$Ax = \lim_{n \to \infty} A_n x \quad \forall x \in H$$

 A_n converges in norm to A if

$$\lim_{n \to \infty} ||A - A_n|| = 0$$

Fact Norm convergence \Rightarrow Strong convergence.

Proof of Theorem 8, only sketch:

Existence

1. For every $x \in H$ there is a unique real Borel measure μ_x on Σ such that

$$\langle x, \Phi_A(f)x \rangle_{\mathbb{C}} = \int_{\Sigma} f \, \mathrm{d}\mu_x \quad \forall f \in C(\Sigma)$$

Namely

 $\{\text{real Borel measures on }\Sigma\}=C(\Sigma,\mathbb{R})^*$

$$= \{\phi: C(\Sigma) \to \mathbb{C} \mid \phi \text{ complex linear}, \phi \text{ bounded}, \phi(\overline{f}) = \overline{\phi(f)} \forall f\}$$

That was discussed in detail when we introduced the dual space.

Therefore for every bounded complex linear function $\phi: C(\Sigma) \to \mathbb{C}$ with $\phi(\overline{f}) = \overline{\phi(f)} \exists !$ real Borel-measure μ on Σ so that

$$\phi(f) = \int_{\Sigma} f \, \mathrm{d}\mu \quad \forall f \in C(\Sigma)$$

Example $\phi_x(f) := \langle x, \Phi_A(f)x \rangle$.

(a)

$$\begin{array}{rcl} \phi_x(\overline{f}) & = & \langle x, \Phi_A(\overline{f}) x \rangle \\ & = & \langle x, \Phi(f)^* x \rangle \\ & = & \langle \Phi_A(f) x, x \rangle \\ & = & \overline{\langle x, \Phi_A(f) x \rangle} \\ & = & \overline{\phi_x(f)} \end{array}$$

(b)

$$\begin{aligned} |\phi_x(f)| &= |\langle x, \Phi_A(f)x \rangle| \\ &\leq \|x\| \cdot \|\Phi_A(f)x\| \\ &\leq \|\Phi_A(f)\| \cdot \|x\|^2 \end{aligned}$$
 by Theorem 7 $= \|f\| \cdot \|x\|^2$

This concludes the proof of the first statement: Choose μ_x so that

$$\phi_x(f) = \int_{\Sigma} f \, \mathrm{d}\mu_x \quad \forall f \in C(\Sigma)$$

2. $\exists !$ complex linear operator $\Psi_A : B(\Sigma) \to \mathcal{L}(H)$ so that $\|\Psi_A f\| \leq \|f\| \forall f \in B(\Sigma)$ and

$$\langle x, \Psi_A(f)x \rangle_{\mathbb{C}} = \int_{\Sigma} f \, \mathrm{d}\mu_x \quad \forall f \in B\Sigma$$

Namely: Let $f: \Sigma \to \mathbb{R}$ be bounded and measurable. The map $H \times H \to \mathbb{R}$,

$$(y,x) \mapsto \frac{1}{4} \left(\int_{\Sigma} f \, \mathrm{d}\mu_{x+y} - \int_{\Sigma} f \, \mathrm{d}\mu_{x-y} \right)$$

is bilinear and symmetric and bounded (which we will not verify).

Define $\Psi_A(f)$ by

$$\langle y, \Psi_A(f)x \rangle := \frac{1}{4} \left(\int_{\Sigma} f \, d\mu_{x+y} - \int_{\Sigma} f \, d\mu_{x-y} \right)$$

$$\Rightarrow \langle x, \Psi_A(f)x \rangle = \int_{\Sigma} f \, d\mu_x \le \|f\| \cdot \|x\|^2$$

$$\Rightarrow \|\Phi_A(f)\| = \sup_{\|x\|=1} |\langle x, \Psi_A(f)x \rangle \le \|f\|$$

This is the end of the proof of step 2.

Proof: For $f = f_1 + if_2 : \Sigma \to \mathbb{C}$ bounded measurable define $\Psi_A(f) := \Psi_A(f_1) + i\Psi_A(f_2)$

Exercise: $\Psi_A: B(\Sigma) \to \mathcal{L}(H)$ is a C*-algebra homomorphism

1. $f_n \stackrel{\text{bp}}{\to} f \Rightarrow \Psi_A(f_n) \to \Psi_A(f)$ By Lebesgue dominated convergence: $\lim_{n \to \infty} \langle x, \Psi_A(f_n) x \rangle = \lim \int_{\Sigma} f_n \, d\mu_x = \int_{S} igmaf \, d\mu_x = \langle x, \Psi_A(f) x \rangle \forall x \in H$ $\Rightarrow \langle y, \Psi_A(f) x \rangle = \lim_{n \to \infty} \langle y, \Psi_A(f_n) x \rangle \quad \forall x, y \in H$

Also:
$$\|\Psi_A(f)x\|^2 = \langle x, \Psi_A(f)^*\Psi_A(f)x \rangle = \langle x, \Psi_A(\overline{f}f)x \rangle = \lim_{n \to \infty} \langle x, \Psi_A(\overline{f}_n f_n)x \rangle = \lim_{n \to \infty} \|\Psi_A(f_n)x\|^2 \stackrel{\text{Chap. III}}{\Rightarrow} \Psi_A(f)x = \lim_{n \to \infty} \Psi_A(f_n)x \quad \forall x \in H$$
Here we use: If $\xi_n \in H$ and $\xi \in H$, $\lim_{n \to \infty} \langle x, \xi_n \rangle = \langle y, \xi \rangle \quad \forall y \in H$, $\lim_{n \to \infty} \|\xi_n\| = \|\xi\|$ then $\lim_{n \to \infty} \|\xi_n - \xi\| = 0$. Apply this to $\xi_n := \Psi_A(f_n)x$

Uniqueness: $C(\Sigma)$ is bp-dense in $B(\Sigma)$

Exercise:

- (i) $f \geq 0 \Rightarrow \Psi_A(f) \geq 0$, i.e. $\langle x, \Psi_A(f)x \rangle \geq 0$ and $\Psi_A(f)$ selfadjoint
- (ii) $Ax = \lambda x \Rightarrow \Psi_A(f)x = f(\lambda)x$
- (iii) $AB = BA \Rightarrow \Psi_A(f)B = B\Psi_A(f)$

Notation: $f(A) := \Psi_A(f)$

Theorem 6: "continuous functional calculus" Theorem 8: "measurable functional calculus"

Remark:

1. Recall $\langle x, \Psi_A(f)x \rangle = \int_{\Sigma} f \, d\mu_x$

2. f continuous $\Rightarrow \|\Psi_A(f)\| = \|f\|$

3. f bounded measurable $\Rightarrow \|\Psi_A(f)\| = \|f\|$

Warning: $B(\Sigma) \neq L^{\infty}(\Sigma, \mu_x)$

Literature: Reed-Simon

Spectral projections

Let $\Omega \subset \Sigma$ be a Borel set. Define

$$\chi_{\Omega}(\lambda) := \left\{ \begin{array}{ll} 1 & \lambda \in \Omega \\ 0 & \lambda \in \Sigma \setminus \Omega \end{array} \right.$$

Then $\chi_{\Omega} \in B(\Sigma)$ and $\chi_{\Omega}^2 = \chi_{\Omega} = \overline{\chi_{\Omega}} \Rightarrow$ The operator $P_{\Omega} := \Psi_A(\chi_{\Omega})$ is an orthogonal projection: $P_{\Omega}^2 = P_{\Omega} = P_{\Omega}^*$

Corollary: The orthogonal projections $P_{\Omega} \in \mathcal{L}(H)$ satisfy the following conditions:

- (i) $P_{\varnothing} = 0$ $P_{\Sigma} = 1$
- (ii) $P_{\Omega_1 \cap \Omega_2} = P_{\Omega_1} P_{\Omega_2}$
- $\begin{array}{ll} \text{(iii)} & \Omega = \bigcup_{i=1}^{\infty} \Omega_{i} & \Omega_{l} \cap \Omega_{k} = \varnothing \, k \neq l \\ & \Rightarrow P_{\Omega} x = \lim_{n \to \infty} \sum_{k=1}^{n} P_{\Omega_{k}} x & \forall x \in H \end{array}$

Proof: Theorem 8

 $\Sigma \subset \mathbb{R}$ compact set

 $\mathcal{B}(\Sigma) \subset 2^{\Sigma}$ Borel σ -algebra

The map $B(\Sigma) \to \mathcal{L}(H)$ satisfying the axioms of the corollary above, is called a projection valued measured on Σ . The projection valued measure of the corollary is called the spectral measure of A

Remark: From the spectral measure we can recover the operator A via

$$\mu_x(\Omega) = \langle x, P_{\Omega} x \rangle$$
 and $\langle x, f(A) x \rangle = \int_{\Sigma} f \, d\mu_x$

Example: A compact and self-adjoint

$$\Sigma = {\lambda_0, \lambda_1, \ldots}, \ \lambda_n \to \lambda_0 = 0$$

 $E_n:=\ker(\lambda_n 1-A),\, P_n\in (H)$ orthogonal projection onto E_n $f(A)x=\sum_{n=0}^\infty f(\lambda_n)P_nx$

"
$$P_{\Omega} = \sum_{\lambda_n \in \Omega} P_n \delta_{\lambda_n}$$
" (not convergent in the norm)

Definition: $x \in H$ is called *cyclic for A*, if $\overline{\text{span}\{x, Ax, \ldots\}} = H$

Theorem 9: $A = A \in \mathcal{L}(H), x \in H$ cyclic

 $\Rightarrow \exists$ Hilbert space isometry (unitary operator) $U: H \to L^2(\Sigma, \mu_x)$ such that

$$(UAU^{-1}f)(\lambda) = \lambda f(\lambda)$$

Proof:
$$\mu_x$$
 Borel measure on Σ defined by $\int_{\Sigma} f \, d\mu_x = \langle x, f(A)x \rangle_{\mathbb{C}} \quad \forall f \in C(\Sigma)$ Claim: \exists isometric isomorphism $U: H \to L^2(\Sigma, \mu_x)$ such that $H \xrightarrow{A} H$

$$U \downarrow \qquad \qquad \downarrow U \quad (\Lambda f)(\lambda) = \lambda f(\lambda)$$

$$L^2 \longrightarrow L^2$$

Define $T: C(\Sigma) \to H$ by $Tf := \Phi_A(f)x$

$$||Tf||^2 = ||\Phi_A(f)x||^2 = \langle \Phi_A(f)x, \Phi_A(f)x \rangle$$

$$= \langle x, \Phi_A(f)^* \Phi_A(f) x \rangle = \langle x, \Phi_A(\overline{f}) \Phi_A(f) x \rangle \tag{*}$$

$$= \langle x, \Phi_A(\overline{f}f)x \rangle = \int_{\Sigma} \overline{f}f \, d\mu_x = \int_{\Sigma} |f|^2 \, d\mu_x = ||f||_{L^2}^2$$

Recall: $C(\Sigma)$ dense in $L^2(\Sigma, \mu_x)$

 $\stackrel{(*)}{\Rightarrow} T$ extends uniquely to an isometric embedding $T: L^2(\Sigma, \mu_x) \to H$

Claim: T is surjective: $f(\lambda) = \lambda^n \Rightarrow \Phi_A(f) = A^n \Rightarrow Tf = A^n x$

Hence $A^n x \in \operatorname{im} T \, \forall n \in \mathbb{N}$

 $\stackrel{\times}{\Rightarrow} \stackrel{\text{cyclic}}{\Rightarrow} \text{im } T \supset \text{span}\{A^n x\} \text{ is dense in } H$

Moreover $||Tf||_H = ||f||_{L^2} \forall f$, so T is injective and has a closed image $\Rightarrow T$ is bijective $U := T^{-1}$

To show: $UAU^{-1} = \Lambda$ or equivalently $AT = T\Lambda$

$$ATf = A\Phi_A(f)x = \Phi_A(id)\Phi_A(f)x = \Phi_A(idf)x = T(idf) = T\Lambda f$$

Remark: In general, if $A = A^* \in \mathcal{L}(H)$ and H is separable \exists orthogonal decomposition $H = \bigoplus_k H_k$ such that $AH_k = H_k$ and $A|_{H_k}$ admits a cyclic vector.

Exercise: A compact and selfadjoint \Rightarrow

 \exists cyclic $x \in H \Leftrightarrow$ every eigenspace of A is 1-dimensional Similar to the following example:

Example 1:
$$A = A^* \in \mathbb{C}^{n \times n}$$
 $A^* = \overline{A}^T$, $\langle x, y \rangle = \sum_{i=1}^n \overline{x_i} y_i$

 \exists ONB $e_1, \dots e_n$ of eigenvectors of A; $Ae_j = \lambda_j e_j \lambda_j \in \mathbb{R}$

Assume $\lambda_j \neq \lambda_k$ for $k \neq j$, then (LA) $x = \sum_{i=1}^n e_i$ is cyclic.

$$A^k x = \sum_{i=1}^n \lambda_i^k e_i$$

$$\Sigma = \{\lambda_1, \dots, \lambda_n\}$$
 $f(A)\xi = \sum_{i=1}^n f(\lambda_i) \langle e_i, \xi \rangle e_i$

$$C(\Sigma) = L^2(\Sigma) \cong \mathbb{C}^n$$

 μ_x is defined by

$$\int_{\Sigma} f \, d\mu_x = \langle x, f(A)x \rangle \sum_{i=1}^n f(\lambda_i) \langle e_i, x \rangle \langle x, e_i \rangle = \sum_{i=1}^n f(\lambda_i)$$

$$\Rightarrow \mu_x = \sum_{i=1}^n \delta_{\lambda_i}$$

$$U: H = \mathbb{C}^n \to \mathbb{C}^n = L^2 \quad U\xi = (\langle e_i, \xi \rangle)_{i=1}^n$$

$$U: H = \mathbb{C}^n \to \mathbb{C}^n = L^2 \quad U\xi = (\langle e_i, \xi \rangle)_{i=1}^n$$

 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

Example 2:
$$H = l^2(\mathbb{Z}) = \{ x = (x_n)_{n \in \mathbb{Z}} \mid \sum_{n = -\infty}^{\infty} |x_n|^2 < \infty \}$$

$$(Lx)_n = x_{n+1} \quad (L^*x)_n = x_{n-1}$$

$$A = L + L^*$$
 selfadjoint $\sigma(A) = [-2, 2]$ and $H = H^{\text{ev}} \oplus H^{\text{odd}}$

where $H^{\text{ev}} := \{x \mid x_{-n} = x_n\}$ and $H^{\text{odd}} := \{x \mid x_{-n} = -x_n\}$ are invariant under A

$$(Ax)_n = x_{n-1} + x_{n+1} \\ x^{\text{ev}} := (\dots 0, \underbrace{1}_{=x_0^{\text{ev}}}, 0 \dots) \text{ and } x^{\text{odd}} := (\dots 0, 0, -1, \underbrace{0}_{=x_0^{\text{odd}}}, 1, 0, 0 \dots) \text{ cyclic vectors}$$
 for $A|_{H^{\text{ev}}}, A|_{H^{\text{odd}}}$ Define $U: H \to L^2([0,1])$ by $(Ux)(t) := \sum_{n=-\infty}^{\infty} x_n e^{2\pi i n t}$ $(ULx)(t) = e^{-2\pi i t}(Ux)(t) \quad (UL^*x)(t) = e^{2\pi i t}(Ux)(t)$ $(UAU^{-1}f)(t) = 2\cos(2\pi t)f(t)$ A multiplication operators on $L^2([-2,2], \mu_1) \times L^2([-2,2], \mu_2)$

6 Unbounded operators

X,Y Banach spaces, $D\subset X$ dense, $A:D\to Y$ closed graph For $x\in D,\ \|x\|_A:=\|x\|_X+\|Ax\|_Y$ graph norm Then $(D,\|\cdot\|_A)$ is a Banach space and $A:D\to Y$ is bounded

In Spectral theory one studies $\lambda 1 - A : D \to X$ where X Banach space, $D \subset X$ dense subspace and $A : D \to X$ linear

Recapitulation

- 1. $\operatorname{graph}(A) := \{(x, Ax) \mid x \in D\} \subset X \times X$ $A \operatorname{closed} \stackrel{\operatorname{def}}{\Rightarrow} \operatorname{graph}(A) \text{ is a closed subspace of } X \times X$
- 2. $B: \mathrm{dom}(B) \to X$ is an $\mathit{extension}$ of A, if $\mathrm{dom}(A) \subset \mathrm{dom}(B)$ and $B|_{\mathrm{dom}}(A) = A$
- 3. A is closable, if A admits a closed extension
- 4. A is closable $\Leftrightarrow \overline{\operatorname{graph}(A)}$ is a graph i.e. $(0,y) \in \overline{\operatorname{graph}(A)} \Rightarrow \underline{y=0}$ Denote by \overline{A} the smallest closed extension of A, $\operatorname{graph}(\overline{A}) = \overline{\operatorname{graph}(A)}$
- 5. $\Omega \subset \mathbb{R}^n$ open, $X = L^p(\Omega)$ $1 <math>D := C_0^{\infty}(\Omega)$, $A: D \to X$ differential operator $\Rightarrow A$ is closable

Adjoint Operator

 $A:\operatorname{dom}(A)\Rightarrow X$ densly defined linear operator on a Banach space. The adjoint operator $A^*:\operatorname{dom}(A^*)\to X^*$ is defined as follows: $\operatorname{dom}(A^*):=\{y^*\mid\exists c>0\ \forall x\in\operatorname{dom}(A)\ |\langle y^*,Ax\rangle|\leq c\|x\|\}$ For $y^*\in\operatorname{dom}(A^*)$ the linear functional $\operatorname{dom}(A)\to\mathbb{R}\ x\to\langle y^*,Ax\rangle \text{ is bounded }\Rightarrow\exists x^*\in X^*\text{ such that }\langle x^*,x\rangle=\langle y^*,Ax\rangle\ \forall x\in\operatorname{dom}(A)$ Define $A^*y^*:=x^*$ Note that $\langle A^*y^*,x\rangle=\langle y^*,Ax\rangle\quad x\in\operatorname{dom}(A),\ y^*\in\operatorname{dom}(A^*)$

Remark 1: Let $y^* \in X^*$, then $\exists c \geq 0 \, \forall x \in \text{dom}(A) \, |\langle y^*, Ax \rangle| \leq c \|x\|$ $\Leftrightarrow \exists x^* \in X^* \text{ sucht that } \langle x^*, x \rangle = \langle y^*, Ax \rangle$ In this case we have $y^* \in \text{dom}(A^*), x \in \text{dom}(A)$

Remark 2: $(y^*, x^*) \in \operatorname{graph}(A^*) \Leftrightarrow \langle x^*, x \rangle = \langle y^*, Ax \rangle \, \forall x \in \operatorname{dom}(A)$ $\Leftrightarrow \langle (-x^*, y^*), (x, Ax) \rangle = 0 \, \forall x \in \operatorname{dom}(A) \Leftrightarrow (-x^*, y^*) \in (\operatorname{graph}(A))^{\perp}$ Hence $\operatorname{graph}(A^*) \subset X^* \times X^* \cong (X \times X)^*$ is always weak*-closed

Remark 3: $A \text{ closable} \Rightarrow \operatorname{graph}(A)^{\perp} = \overline{\operatorname{graph}(A)}^{\perp} = \operatorname{graph}(\overline{A})^{\perp}$ $\stackrel{\operatorname{Rem. 2}}{\Rightarrow} \overline{A}^* = A^*$

Lemma 1: X reflexive, $A: \text{dom}(A) \to X$ densely defined linear operator. Then

- (i) A^* is closed
- (ii) A closable \Leftrightarrow dom(A*) is dense in X*
- (iii) $A \text{ closable} \Rightarrow \overline{A}^* = A^* \text{ and}$ $X \supset \text{dom}(\overline{A}) \xrightarrow{\overline{A}} X$ $\iota \downarrow \qquad \qquad \downarrow \iota$ $X^{**} \supset \text{dom}(A^{**}) \xrightarrow{A^{**}} X^{**}$

Proof: Define $J: X \times X \to X \times X$ by J(x,y) = (-y,x)Then by Remark 2, graph $(A^*) = (J \operatorname{graph}(A))^{\perp} = J^* \operatorname{graph}(A)^{\perp}$ $J^*(x^*,y^*) = (y^*,-x^*)$

- (iii) $(J * \operatorname{graph}(A^*))^{\perp} = \operatorname{graph}(A^{**})$ and $(J^* \operatorname{graph}(A^*))^{\perp} = (\operatorname{graph}(A)^{\perp})^{\perp} = \iota_{X \times X}(^{\perp}(\operatorname{graph}(A)^{\perp})) = \iota_{X \times X}(\overline{\operatorname{graph}(A)})$
- (ii) Assume $\operatorname{dom}(A^*)$ is dense Let $(0, y) \in \operatorname{graph}(A) \Rightarrow \exists x_n \in \operatorname{dom}(A)$ such that $x_n \to 0$, $Ax_n \to y$ $\Rightarrow \forall y^* \in \operatorname{dom}(A^*)$ we have $\langle y^*, y \rangle = \lim_{n \to \infty} \langle y^*, Ax_n \rangle = \lim_{n \to \infty} \langle A^*y^*, x_n \rangle = 0$ $\xrightarrow{\operatorname{dom}(A^*) \text{ dense}} y = 0$

Proof: of Lemma 1 (continued) X Banach space, $A: \text{dom}(A) \to X$ linear, $\text{dom}(A) \subset X$ dense supspace, X reflexive. $A \text{ closable} \Rightarrow \text{dom}(A^*)$ is dense in X^* .

- 1. $\operatorname{graph}(A)^{\perp} = \{(x^*, y^*) \in X^* \times X^* \mid \langle x^*, x \rangle + \langle y^*, Ax \rangle = 0\} \forall x \in \operatorname{dom}(A) = \{(-A^*y^*, y^*) \mid y^* \in \operatorname{dom}(A^*)\}$
- 2. $\overline{\operatorname{graph}(A)} =^{\perp} (\operatorname{graph}(A)^{\perp})$
- 3. $(x,y) \in \overline{\operatorname{graph}(A)}$ $\stackrel{?}{\Leftrightarrow} \langle x^*, x \rangle + \langle y^*, y \rangle = 0 \forall (x^*, y^*) \in \operatorname{graph}(A)^{\perp}$ $\stackrel{?}{\Leftrightarrow} \langle -A^*y^*, x \rangle + \langle y^*, y \rangle = 0 \forall y^* \in \operatorname{dom}(A^*)$
- 4. Because X is reflexive we have: $\overline{\operatorname{dom}(A^*)} = X^* \Leftrightarrow^{\perp} \operatorname{dom}(A^*) = 0$.
- 5. $y \in^{\perp} \operatorname{dom}(A^*)$ $\Rightarrow \langle y^*, y \rangle = 0 \forall y^* \in \operatorname{dom}(A^*)$ $\stackrel{3}{\Rightarrow} (0, y) \in \overline{\operatorname{dom}(A)}$ $\stackrel{A \text{ closable}}{\Rightarrow} y = 0$

Remark 1: The spectrum of an unbounded operator $A: \text{dom}(A) \subset X \to X$ is defined exactly as in the bounded case:

$$\begin{split} \rho(A) &:= \{\lambda \in \mathbb{C} \mid \lambda 1 - A : \operatorname{dom}(A) \to X \text{ is bijective} \} \\ \sigma(A) &= \mathbb{C} \setminus \rho(A) \\ P\sigma(A) &= \{\lambda \mid \lambda 1 - A \text{ not injective} \} \\ R\sigma(A) &= \{\lambda \mid \lambda 1 - A \text{ injective}, \underline{\operatorname{im}(\lambda 1 - A)} \neq X \} \\ C\sigma(A) &= \{\lambda \mid \lambda 1 - a \text{ injective}, \underline{\operatorname{im}(\lambda 1 - A)} = X, \operatorname{im}(\lambda 1 - A) \neq X \} \end{split}$$

Remark 2: X reflexive, $A : dom(A) \to X$ closed, densely defined.

$$im A^{\perp} = \ker A^* \quad {}^{\perp}(im A^*) = \ker A
\overline{im A} = {}^{\perp}(\ker A^*) \quad \overline{im A^*} = (\ker A)^{\perp}$$

Remark 3:

$$\rho(A) = \rho(A^*) \quad C\sigma(A) = C\sigma(A^*)$$

$$R\sigma(A) \subset P\sigma(A^*) \quad R\sigma(A^*) \subset P\sigma(A)$$

$$P\sigma(A) \cup R\sigma(A) = P\sigma(A^*) \cup R\sigma(A^*)$$

Example 1: $X = \ell_{\mathbb{C}}^2 \ni x = (x_1, x_2, x_3, \ldots)$ $D := \{x \in \ell^2 \mid \sum_{n=1}^{\infty} n^2 |x_n|^2 < \infty \}$ $Ax := (2x_2, 3x_3, \ldots)$ $A : D \to \ell^2$ closed. $P\sigma(A) = \mathbb{C} \ni \lambda$ $x_{\lambda} = (\lambda, \frac{\lambda^2}{2!}, \frac{\lambda^3}{2!}, \ldots) \in D$ $Ax_{\lambda} = \lambda x_{\lambda}$.

Example 2: $Ax := (x_1, 2x_2, 3x_3, \ldots)$. Eigenvectors: $e_n := (0, \ldots, 0, \overbrace{1}^n, 0, \ldots)$ $Ae_n = ne_n \quad P\sigma(A) = \sigma(A) = \mathbb{N}$

Lemma 2: X complex Banach space. $D \subset X$ dense subset. $A: D \to X$ closed operator. Assume $\lambda_0 \in \rho(A)$ (then $R_{\lambda_0}(A) := (\lambda_0 1 - A)^{-1} : X \to D \subset X$ is bounded, cf. Closed Graph Theorem). Then the following holds:

- i) If $\lambda \in \mathbb{C} \setminus \{\lambda_0\}$ then $\ker(\lambda 1 A) = \ker(\frac{1}{\lambda_0 \lambda} 1 R_{\lambda_0}(A))$ $\operatorname{im}(\lambda 1 A) = \operatorname{im}(\frac{1}{\lambda_0 \lambda} 1 R_{\lambda_0}(A))$
- ii) $\sigma(A) = \{\lambda \in \mathbb{C} \setminus \lambda_0 \mid \frac{1}{\lambda_0 \lambda} \in \sigma(R_{\lambda_0}(A))\}$. Same for $P\sigma, R\sigma, C\sigma$.
- iii) $\rho(A)$ is open, the map $\rho(A) \to \mathcal{L}(X,D) : \lambda \mapsto R_{\lambda}(A)$ is holomorphic, and $R_{\mu}(A) R_{\lambda}(A) = (\lambda \mu)R_{\lambda}(A)R_{\mu}(A)\forall \lambda, \mu \in \rho(A)$. Here D is equipped with the graph norm of A: $||x||_{D} := ||x||_{X} + ||Ax||_{X}$ for $x \in D$.

Proof: $\lambda \neq \lambda_0$.

$$\lambda 1 - A = \lambda_0 1 - A + (\lambda - \lambda_0) 1
= (\lambda_0 1 - A)(1 + (\lambda - \lambda_0) R_{\lambda_0}(A))
\stackrel{(*)}{=} (\lambda - \lambda_0)(\lambda_0 1 - A)(\frac{1}{\lambda - \lambda_0} 1 + R_{\lambda_0}(A))
= (\lambda_0 - \lambda)(\lambda_0 1 - A)(\frac{1}{\lambda_0 - \lambda} 1 - R_{\lambda_0 - \lambda} 1 - R_{\lambda_0}(A))
\lambda 1 - A \Rightarrow (i), (ii)$$

Proof of (iii) $|\lambda - \lambda_0| \cdot ||R_{\lambda_0}(A)|| < 1 \Rightarrow 1 \cdot (\lambda - \lambda_0)R_{\lambda_0}(A)$ bijective $\stackrel{(*)}{\Rightarrow} \lambda 1 - A = (1 - (\lambda - \lambda_0)R_{\lambda_0}(A))(\lambda_0 1 - A) : D \to X$ is bijective Hence $\rho(A)$ is open.

$$R_{\lambda}(A) \stackrel{(*)}{=} \frac{1}{\lambda_0 - \lambda} R_{\lambda_0} \left(\frac{1}{\lambda_0 - \lambda} 1 - R_{\lambda_0}(A) \right)^{-1}$$

So $\rho(A) \to \mathcal{L}(X,D) : \lambda \mapsto R_{\lambda}(A)$ is holomorphic.

Definition: A closed, densely defined unbounded operator $A: \text{dom}(A) \subset X \to X$ is said to have a *compact resolvent* if $\rho(A) \neq \emptyset$ and $R_{\lambda}(A): X \to X$ is compact $\forall \lambda \in \rho(A)$.

Remark 4: $\lambda_0 \in \rho(A)$ $R_{\lambda_0}(A)$ compact. $\Rightarrow R_{\lambda}(A)$ compact $\forall \lambda \in \rho(A)$, because

$$R_{\lambda}(A) = \underbrace{R_{\lambda_0}}_{\text{compact}} \underbrace{(1 + (\lambda_0 - \lambda)R_{\lambda}(A))}_{bounded}$$

Remark 5: Suppose $\rho(A) \neq \emptyset$ and let D := dom(A) be equipped with a graph norm. Then:

A has a compact resolvent \Leftrightarrow the inclusion $D \to X$ is compact

Remark 6: $A: D = \text{dom}(A) \to X$ closed, densely defined.

 $X^0 := X \quad ||x||_0 = ||x||_X$

 $X^{1} := D = \operatorname{dom}(A) \quad ||x||_{1} := ||x||_{X} + ||Ax||_{X}$ $X^{2} := \{x \in D \mid Ax \in X_{1}\} \quad ||x||_{2} := ||x|| + ||Ax|| + ||A^{2}x||$

 $X^3 := \{x \in D \mid Ax \in X_2\}$ and so on with

 $\ldots \subset X^3 \subset X^2 \subset X^1 \subset X^0.$

Assume $\rho(A) \neq \emptyset$, let $\lambda_0 \in \rho(A)$ and denote $T := \lambda_0 1 - A$. Then $T : X^{k+1} \to \emptyset$ X^k is an isomorphism for all K and

Moreover: $(\lambda 1 - A)^m : X^m \to X^0$ and $\ker(\lambda 1 - A)^m \subset X^\infty = \bigcup_{m=1}^\infty X^m$. And: if the inclusion $X^1 \to X^0$ is compact, then $X^{k+1} \to X^k$ is compact $\forall k$.

Lemma 3: $A: dom(A) \to X$ closed, densely defined, compact resolvent \Rightarrow

- (i) $\sigma(A) = P\sigma(A)$
- (ii) The space $E_{\lambda}(A) := \bigcup_{m=1}^{\infty} \ker(\lambda 1 A)^m$ is finite dimensional $\forall \lambda \in \sigma(A)$.
- (iii) $\sigma(A)$ is discrete.

Proof: Let $\lambda_0 \in \rho(A)$ and denote $K := R_{\lambda_0}(A) \in \mathcal{L}(X)$. Let $\lambda \in \sigma(A) \Rightarrow \lambda \neq \emptyset$

 λ_0 and $\mu := \frac{1}{\lambda_0 - \lambda} \in \sigma(K)$ Moreover: $\mu \neq 0$ and $E_{\lambda}(A) = E_{\mu}(K)$ finite dimensional. $\Rightarrow (i), (ii)$ see Ch IV.

Let
$$\lambda_n \in \sigma(A)$$
 $\lambda_n \neq \lambda_m \forall n \neq m$
 $\Rightarrow \mu_n := \frac{1}{\lambda_0 - \lambda} \in \sigma(K)$

$$\stackrel{\text{Ch IV}}{\Rightarrow} \mu_n \to 0 \quad |\lambda_n| \to \infty.$$

X = H Hilbert space and $dom(A) \subset H$ dense subset

 $A: dom(A) \to H$ closed linear operator.

Definition: The *Hilbert space adjoint* of A is the (closed, densely defined) operator A^* : dom $(A^*) \to H$ given by dom $(A^*) := \{ y \in H \mid \exists c \geq 0 \forall x \in A^* \}$ $\operatorname{dom}(A), |\langle y, Ax \rangle| \leq c \|x\|$ with $A^*y := z$, where $z \in H$ is the unique vector with $\langle z, x \rangle = \langle y, Ax \rangle$.

Remark 7: $A \text{ closed} \Rightarrow A^{**} = A$

Definition:

- a) A is called self-adjoint if $A^* = A$, ie. $dom(A^*) = dom(A)$ and $A^x = A$ $Ax \forall x \in \text{dom}(A)$
- b) A is called *symmetric* if $\langle x, Ay \rangle = \langle Ax, y \rangle \forall x, y \in \text{dom}(A)$.

Remark 8: A symmetric \Rightarrow dom $(A) \subset$ dom (A^*) and $A^*|_{\text{dom}(A)} = A$.

Lemma 4: $A: dom(A) \to H$ densely defined, self-adjoint \Rightarrow

- i) $\sigma(A) \subset \mathbb{R}$
- ii) If in addition, A has a compact resolvent, then $\sigma(A) = P\sigma(A)$ is discrete subset of \mathbb{R} and H has a ONB of eigenvectors of A.

Proof: Easy exercise.

Exercise 1: $A \in \mathcal{L}(X), U \subset \mathbb{C}$ open, $\sigma(A) \subset U$ $f: U \to \mathbb{C}$ holomorphic, γ a path in U around $\sigma(A)$

$$f(A) := \frac{1}{2\pi i} \int_{\gamma} f(\lambda)(\lambda 1 - A)^{-1} d\lambda$$

Prove:

(i)
$$fg(A) = f(A)g(A), 1(A) = 1 id(A) = A$$

(ii) $\sigma(A) = \sigma_0 \cup \sigma_1 \ \sigma_0, \sigma_1 \text{ compact and disjoint}$ $f(\lambda) = \begin{cases} 0 \ \lambda \in U_0 \\ 1 \ \lambda \in U_1 \end{cases}$ where U_0, U_1 are disjoint open sets, U_i containing σ_i $\Rightarrow P := f(A)$ satisfies $P^2 = P$ PA = AP $X_0 := \ker P$ $X_1 := \operatorname{im} P$, so $X = X_0 \oplus X_1$ and $\sigma(A|_{X_i}) = \sigma_i$

What is $W^{1,p}([0,1])$?

$$W^{1,p}([0,1]) := \{ f : [0,1] \to \mathbb{R} | f \text{ cont. } \exists g \in L^p([0,1]) : f(x) = f(0) + \int_0^x g(t) \, dt \, \forall x \}$$
$$\|f\|_{W^{1,p}} := \left(\int_0^1 |f(x)|^p \, dx + \int_0^1 |g(x)|^p \, dx \right)^{\frac{1}{p}}$$

Fact: $f \in W^{1,p} \Rightarrow f$ is differentiable almost everywhere and $\dot{f}(x) = g(x)$ for almost all $x \in [0,1]$

Warning: f almost everywhere differentiable $\dot{f} \in L^p \Rightarrow f \in W^{1,p}$ (Cantor-function)

Remark: $g \in L^1$, $\int_0^x g(t) dt = 0 \,\forall x \in [0,1] \Rightarrow g \equiv 0$ a.e. (measure and integration)

Definition: A function $f:[0,1]\to\mathbb{R}$ is said to have bounded variation if $\operatorname{Var}_{[0,1]} f < \infty$ where

$$\operatorname{Var}_{[0,x]} f := \sup_{0 = t_0 < t_1 < \dots t_n = x} \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)|$$

 $\sin(\frac{1}{x})$ is not of bounded variation

$$\begin{array}{l} \varphi_f(u) = \lim_{\delta \to 0} \sum_{i=0}^{m-1} u(t_i) (f(t_{i+1}) - f(t_i)) = \int_0^1 u \, df = \int u \, d\mu_f \\ \text{where } 0 = t_0 < t_1 < \ldots < t_m = 1 \text{ and } \delta := \max_i |t_{i+1} - t_i| \end{array}$$

Exercise 2: $BV := \{f : [0,1] \to \mathbb{R} \mid f \text{ is of bounded variation and right continuous}\}$ $||f||_{BV} := |f(0)| + \operatorname{Var}_{[0,1]} f$ Prove BV is a Banach space

Exercise 3: Every (right continuous) function of bounded variation is the difference of two monotone (right continuous) functions.

Hint: Denote $F(x) := |f(0)| + \text{Var}_{[0,x]} f$

Show that $F\pm f$ are monotone, right continuous. $f^\pm:=\frac{F\pm f}{2}$ $f=f^+-f^-$

$$f^{\pm} := \frac{F \pm f}{2}$$
 $f = f^{+} - f^{-}$

Exercise 4:

- a) $f:[0,1]\to\mathbb{R}$ monotone, right continuous, $f(0)\geq 0$ $\exists!$ Borel measure μ_f on [0,1] such that $\mu_f([0,x]) = f(x)$
- b) $f \in BV \Rightarrow \exists!$ Borel measure μ_f such that $\mu_f([0,x]) = f(x) \quad \forall x \in [0,1]$
- c) $f(x) = \int_0^x g(t) dt \, \forall x \in [0, 1], g \in L^1$ $\Rightarrow \mu_f(E) = \int_E g \, d\lambda \leftarrow \text{Lebesgue measure}$ hint for a): construct outer measure ν_f , $\nu_f((a,b)) = \lim_{t \nearrow b} f(t) - f(a) \leadsto \nu_f(\text{open sets})$

Exercise 5*: $f \in BV, F(x) := |f(0)| + \operatorname{Var}_{[0,x]} f \Rightarrow$

(i)
$$|\mu_f| = \mu_F$$

(ii)
$$f(x) = \int_0^x g(t) dt \Rightarrow F(x) = \int_0^x |g(t)| dt$$

Hint: (i)
$$\Rightarrow$$
 (ii) $P := \{g > 0\}$ $N := \{g < 0\}$
 $\Rightarrow |\mu_f|(E) = \mu_f(E \cap P) - \mu_f(E \cap N) = \int_{E \cap P} g - \int_{E \cap N} g = \int_E |g|$ (*)
 $\Rightarrow F(x) = \mu_F([0,x]) \stackrel{(i)}{=} |\mu_f|([0,x]) \stackrel{(*)}{=} \int_0^x |g|$
Proof of (i): Easy $\mu_F([0,x]) \leq |\mu_F|([0,x])$
Hard " \geq "

Exercise 6: $f \in BV$. Equivalent are:

- (i) $\mu_f \ll \lambda$
- (ii) $\exists g \in L^1([0,1])$ such that $f(x) = \int_0^x g(t) dt$
- (iii) f(0) = 0 and f is absolutely continuous i.e. $\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall n \in \mathbb{N} \, 0 \leq s_1 < t_1 < s_2 < t_2 < \ldots < s_n < t_n \leq 1$

$$\sum_{i=1}^{n} |t_i - s_i| < \delta \Rightarrow \sum_{i=1}^{n} |f(t_i) - f(s_i)| < \varepsilon$$

Hint: First assume f is monotone

Remark:

- a) f abs. continuous $\Leftrightarrow f$ is diff. a.e., $f \in L^1$ and $f(x) = f(0) + \int_0^x \dot{f}(t) dt \, \forall x$
- b) $W^{1,p}([0,1]) = \{f : [0,1] \to \mathbb{R} \mid f \text{ abs. continuous, } f \in L^p\}$ $\|f\|_{W^{1,p}} = \left(\|f\|_p^p + \|\dot{f}\|_p^p\right)^{\frac{1}{p}}$

Lemma: p > 1 The inclusion $W^{1,p}([0,1]) \to C([0,1])$ is a compact operator

Proof:
$$|f(t) - f(s)| = |\int_{s}^{t} \dot{f}(v) dv| \le \int_{s}^{t} |\dot{f}(v)| dv \le \left(\int_{s}^{t} |\dot{f}(v)|^{p} dv\right)^{\frac{1}{p}} |t - s|^{\frac{1}{q}}$$

 $\frac{1}{p} + \frac{1}{q} = 1$
 $|f(t) - f(s)| \le ||\dot{f}||_{L^{p}} |t - s|^{\frac{1}{q}}$

 \Rightarrow The set $\{f \in W^{1,p} \mid ||f||_{W^{1,p}} \leq 1\}$ is bounded and equicontinuous, so the result follows from Arzéla-Ascoli

Example:
$$H=L^2([0,1],\mathbb{C}) \quad \langle f,g \rangle = \int_0^1 \overline{f}g \, dt$$
 $D:=\{f\in W^{1,2}([0,1]) \mid f(0)\in \mathbb{R}, f(1)\in \mathbb{R}\}$ $Af:=i\dot{f}$

Exercise 7: A is selfadjoint, $\sigma(A) = 2\pi \mathbb{Z}$

Index

Symbols	FiP
C^* -algebra	Fredholm index
1st category 13 2nd category 13	G
A	graph norm
absolutely continuous	H Hahn-Banach
Baire Category Theorem	Hilbert space adjoint 87 holomorphic 67 homeomorphism 41 I Integral of x 66 interior 13 isometry 17
C	K
chain 30 closable 27, 84 closed 26 compact operator 56	Krein-Milman 51 L locally convex 38
$\begin{array}{c} {\rm compact\ resolvent} & 86 \\ {\rm completion} & 17 \\ {\rm convergence} \\ {\rm in\ norm} & 79 \\ {\rm strong} & 79 \\ {\rm convex} & 32 \\ {\rm cyclic\ for\ } A & 81 \\ \end{array}$	$\begin{array}{cccc} \mathbf{M} & & & & & & & \\ \text{maximal element} & & & & & 30 \\ \text{maximal FiP} & & & & 43 \\ \text{metric} & & & & 2 \\ \mathbf{N} & & & & & \end{array}$
D	Neumann, Theorem of von52
dense .8 Diagonal Subsequence .41 direct sum .25 dual operator .53 dual space .19	norm .5 normal .70 normed vector space .2 nowhere dense .13
E	orthonormal basis
$\begin{array}{ccc} \text{eigenvalue} & & 65 \\ \text{equicontinuous} & & 9 \\ \text{equivalent} & & 2 \\ \text{ergodic} & & 50 \\ \text{extension of } A & 84 \\ \text{extremal point} & & 50 \\ \end{array}$	${\bf P}$ partial order
F	R
face	reflexive 34 residual 13

\mathbf{S}

self-adjoint
selfadjoint
seminorm31
separable
Sobolev space
spectral measure of A
Spectral radius
spectrum
strong convergence
supremum30
symmetric87
T
topological vector space38
totally bounded
transverse subspaces
U
Uniform Boundedness
unitery 70