Functional Analysis — Lecture script

Prof. D. Salamon
February 12, 2007

Coordinating: Lukas Lewark
Writing: Urs Fuchs, Sasa Parad, Andrin Schmidt
Correcting: Philipp Arbenz, David Umbricht, Dominik Staub, Thomas Rast

If you want to be informed in case of a new version or if you find any mistakes
please write to 1lewark@student.ethz.ch.

Warning: We are sure there are lots of mistakes in these notes. Use at your own

risk! Corrections would be appreciated and can be sent tomitschriften@vmp.ethz. ch;
please always state what version (look in the Id line below) you found the error

in. For further information see:

http://vmp.ethz.ch/wiki/index.php/Vorlesungsmitschriften

$Id: fa.tex 1894 2007-02-12 15:05:18 charon$


mailto:llewark@student.ethz.ch
mailto:mitschriften@vmp.ethz.ch
http://vmp.ethz.ch/wiki/index.php/Vorlesungsmitschriften

Contents

‘0 Introduction

1 Basic Notions
1.1 Finite dimensional vector space§ ..................
1.2 Linear Operators . . . . . . . . . .. ... .

2 Functional Analysis
21 Basics . . . . ... ..
2.2 Product Spaces . . . . ...
2.3 Extension of bounded linear functionals . . . . . . ..
2.4 Reflexive Banach Spaces . . . . . . o oo oo
3 The weak and weak* topologies
3.1 The weak topology . . . . . . ... ... ... .....
3.2 The weak™® topology . . . . ... ... ... ......
3.3 Ergodic MEASUTES .« .« o o o e e
4 Compact operators and Fredholm theory
4.1 Compact operators . . . . . . . . ... ...
4.2 Fredholm operators‘ ....................
5 Spectral Theory
5.1 Bigenvectors . . . . .o ovovv oo
52 Imtegrals . . . . . . . . .. ...
5.3  Compact operators on Banach spaces. . . . .. .. ..
5.4 Spectral Measure . . . . . . .o
6 Unbounded operators \

Indeg

ii

1.5 The Baire Category Theorem . . . . .. ... ... ..
1.6 Dual space§ ........................
1.7 Quotient spaces . . . . . . . ... ...

38
38
40
50

56
56
60

65
65
66
73
78

84

89



0 Introduction 25.10.2006

0 Introduction

Remark: Functional Analysis can be viewed as a combination of linear alge-
bra and topology:

Linear Algebra | Topology Functional Analysis
vector spaces metric spaces normed vector spaces
linear maps continuous maps | continuous linear maps
subspaces closed subsets closed subspaces

The vector spaces concerned in Functional Analysis generally have infinite di-
mension.
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1 Basic Notions

1.1 Finite dimensional vector spaces

Definition: A normed vector space is a pair (X, || -||) where X is a vector
space (we consider only real spaces) and X — [0,00), 2z — ||z| is a norm, i.e.

Lz =0 <= =0
2. Azl = A - |jz|| Ve e X, A eR

3l +yll < llzll + [lyll Ve, y € X

Remark: A norm induces a metric on the vector space, by d(z,y) := ||z —y||-

Definition: A Banach space is a complete normed vector space (X, |.|), i.e.
every Cauchy sequence in (X, d) converges.

Definition: Two norms || - |1, || - ||2 on a real vector space X are called equiv-
alent, if

1
Jde>0Ve € X : E||x|\1 <zll2 < ¢||z|-

Example:

1. X =R" 2= (x1,...,7,) ER"

n v
lllp = (leilp) , l<p<oo

i=1
[|z|loo := max{|x;| | 1 < i< n}

2. (M, A, ;1) measure space

LP(u) ={f: M — R | f measurable 7/M|f|”d,u < 00}/~

where ~ means equal almost everywhere.

1l = (/M prdu> T i<p<oo

(LP (), |l - ||p) is a Banach space, and if M = {1,...,n} we get Example
1.

3. Let M be a locally compact and hausdorff topologic space.

Co(M):={f: M — R | f is continuous and has compact support}
[flloe := sup {|f(m)[}
meM

Combine 2. and 3.:

Let B C 2™ be the Borel o-Algebra and u : B — [0, 0] a Radon measure.
Then one can define || f||,, || f]le for all f € C.(M). These two norms are
not equivalent, because there are Cauchy sequences converging in || + ||
which are not convergent in | - ||,, e.g.

0 otherwise

fRDR fn:{u)i z € [0,n)
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4.
X=CIR") ={f:R" - R|fecCFand
sup |09 f(z)] < ocoVa = (o, ... a,) € N"}
zeR™
[fllex := sup sup [0 f(z)] = sup [|0° o
ja| <k z€R" ol <k
with |a] == a1 + ... + an.

The normed vector space (Cff(R™), ||.||.+) is called Sobolev space.

Lemma 1: Let X be a finite dimensional vector space.
= Any two norms on X are equivalent.

Proof: w.lo.g X =R"
Let e1,...,e, € X be the standard basis of X.
Let R" — R : z — ||z|| be any norm and

=z = 1) weill (1)
i=1

n

< ZHIzezH (2)
i=1
n

= Z|xl|||el|| by Cauchy-Schwarz (3)
i=1

SENDIENDI BTk (4)

i=1 i=1
= cllzl2 ()

That proves one half of the inequality.
It follows that the function R® — R : 2 — ||z|| is continuous with respect to the
Euclidian norm on R"™:

Mzl =Nyl < llz =yl < ellz = ylla

The set S™ := {x € R" | ||z||2 = 1} is compact with respect to the Euclidian
norm.
= dxg € SV € 8™ ||lz|| > ||zo|| =0 >0

:>VxeR"~ieS”

Al

and so

‘ x

lll2 |l —

and therefore

]l = 6]l
Which is the other half of the inequality. O
Lemma 2: Every finite dimensional vector space (X, || - ||) is complete.
Proof: True for (R™, || - |2).
= true for R™ with any norm.
= true for any finite dimensional vector space. O
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Lemma 3: Let (X, || -|) be any normed vector space and ¥ C X a finite
dimensional linear subspace.
=Y is a closed subset of X.

Proof: Y is a finite dimensional normed vector space.
Lemma 2

=" 7Y is complete.
(yn)nEN cy, lim y, =y € X
n—oo

Y complete
=

yeyY
=Y is closed. O

Theorem 1: Let (X, ||.]|) be a normed vector space and B := {z € X | ||z|| < 1}
be the unit ball. Then

dim(X) < oo <= B is compact.

Proof of Theorem 1, “=": Let ej,...,e, be a basis of X and define
T:R"— X by T¢:= Y1 | &ey
= The function R” — R : { — ||T¢] is a norm on R”

Lemma 1

= Je>0VEeR": Inax 1&i| < c||T¢||
i=1,...,n
Let (2¥),en € B be any sequence and denote £ = (&Y,...,&%) =T 1o
= & < el T¢"]| = cllz”]| < e

Heine-Borel

= (") ven has a convergent subsequence (§7%)keRr vy <va<...
= (& )ken converges in R fori=1,...,n
= o =¢Fe; + ...+ ke, converges; so B is sequentially compact.

We use that on metric spaces sequential compactness and compactness defined
by existence of finite subcoverings are equivalent; that will be proven in Theorem

2. O
Lemma 4: 0 < § < 1, (X,| -]|) a normed vector space, Y C X a closed
subspace.

= Jo € X so that ||z|| =1, inf ||z —y|| >1—-9
yey

Proof: Let 2p € X \ Y. Denote

d := inf — >0
yngIIxo yl|

(d > 0 because Y is closed.) Jyp € Y so that ||zg — yoll < %5
Let x:= o= = |z| =1

= Teo=vol
o=y = l‘o—yo_yH _
l[z0 — yol|
d
7o =0l 20 = yo — lwo = wollyl > ———= >1-94
0= Yoll —— llzo— ol
cYy
>d
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Proof of Theorem 1, “«<”: Suppose dim(X) = oo
We construct a sequence 1,25 ... in B so that

1 . .
zi — ;] > Vi #7J

Then (z;);en has no convergent subsequence.
We construct by induction sets {z1,...,2z,} C B so that ||z; — a;]| > Vi # j
n = 1: pick any vector z € B.

n > 1: Suppose x1,...,x, have been constructed.

Define

Y :=span{xy,...,x,} = {Z)\m i GR} X
i1

=Y is closed.
So by Lemma 4 Jx,,4+1 € X so that

1
|1zns1ll = L lleni —yl 2 5 ¥y €Y

1.
:>Hxn+1—xi||Z§Vz=1,...,n

This completes the inductive construction of the sequence. O

1.2 Linear Operators

(X, |- 1x), (Y, ]l - ly) normed vector spaces.

Definition: A linear operator T : X — Y is called bounded if 3¢ > 0Vx € X :
[Tzlly < cllzlx
[Ty

GRS is called the norm of T.

The number ||T]| := SUPgc x 240 l

Notation: L(X,Y) :={T : X — Y | T is a bounded linear operator} is a
normed vector space, and complete whenever Y is complete. (Analysis IT)

Lemma 5: T : X — Y linear operator. Equivalent are
i. T is bounded
ii. T"is continuous

iii. T is continuous at 0.

Proof: i. = ii. ||[Txz — Ty|ly < ||T||||lz — y||x = Lipschitz continuous
ii. = iii. trivial
ifl. i e=1=3>0vVrec X:

zllx <6 = [Tzly <1

0#zeX = ESIH =
]l x X
0Tz
= |[|l—| <1
Izl x Iy

1
= Telly < 5 llzllx
—~

C
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Lemma 6: Let X,Y be normed vector spaces of finite dimension = every
linear operator T : X — Y is bounded.

Proof: Choose a basis eq,...e, € X.
a)
c1i=Y [ITer]ly
i=1
b) The map

R - R: (z1,...2,) —

n
E Ti€4
i=1

is a norm on R". By Lemma 1, Jco > 0 so that

X

n

E Ti€

i=1

Y(zy,...z,) € R"

max |z;| < e
1=1,...n

X

a)&b) = Vr =>"  z,e; € X we have

i xiTel-

i=1

ITz|y =

n
<3 Jail - |Teilly
Y i=1

n
< (maxfa;]) - D ITeilly = cimax 2] < ereallz]|x
=1

What for infinite dimensions?

1.3 Infinite dimensional vector spaces

Example 1: Let X = C'([0,1; X), [lz]|x := supy<i<; [f(£)], Y = R and
Tx :=4(0). T is linear and not bounded. This is not a Banach space.

Example 2: X infinite dimensional.

I{e;}ier basis of X with |le;|| = 1Vi € I (the axiom of choice is needed to prove
this for any vector space).

Choose sequence i1, 9, . . .

k=
Detinecii={ 4121 i, )

Define T': X — R by

el el
—_———
finite sum

We found three incidences where finite and infinite dimensional space differ:

e Compactness of the unit ball (see Theorem 1)
e Completeness (see Lemma 2)

e Boundedness of Linear Functionals (see Lemma 6 and Example 1)
Definition: A metric space (M, d) is called totally bounded if

Ve >032q,...,2m €M : M = UBE(%)
i=1
where
B.(z):={2' € M | d(z,2") < e}
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Theorem 2: Let (M,d) be a metric space. Equivalent are:
i. Every sequence has a convergent subsequence (sequential compactness).
ii. Every open cover has a finite subcover (compactness).

iii. (M,d) is totally bounded and complete.

Proof: i = ii:
T(M,d) C 2M set of open subsets of M.
Let U C T(M,d) be an open cover of M.

Step 1
Je > 0Ve € M 3U € U so that B.(z) CU

Suppose Ve > 03z € M VU € U so that B.(z) ¢ U.
Pick € = %

éﬂxneMVUEU:B%(mn)¢U
By i. 3 convergent subsequence z,, — x € M.
Choose U € U so that = € U; choose € > 0 so that B. C U.
Choose k so that d(z,z,,) < 5 and + < £.

= B (wn,) C Bz(wp,) C Be(x) CU
"k

= contradiction.

Step 2 U has a finite subcover.

Suppose not.

Let € > 0 be as in Step 1.

Construct sequences x1, 2o, ... € M and Uy, Us, ... € U so that

B.(x,) C U, and z,, ¢ Uy,... U,

z, can be chosen like that because otherwise the Uy, . ..U, _1 would form a finite
subcover.

Pick any x; € M.

By Step 1 3U; € U so that B-(x;) C U;.

Suppose 1,...,x, and Uy,..., U, have been found.
=U,UlU...UU, #M

= Tp41 EM\(U1UU2U...UUn)

By Step 1 E|Un+1 € U so that Bs(mn+1) C Un+1
Given the sequences (xg)ren, (Uk)ren we observe:
For k <n: B(xy) C Uk, x, ¢ Ug

So d(zp,xr) > €

= d(zg,xn) > eVk #n

= There is no convergent subsequence.

il. = iii.
Assume every open cover has a finite subcover.

a. Take
U:={B.(z) |z € M}

Then Jzq,...x,,, € M so that

So M is totally bounded.
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b. (M,d) is complete:
Let (z)nen be a Cauchy sequence.
Assume (z,,)nen does not converge.
= (x,) has no convergent subsequence.
= (z,) has no limit point.
= V¢ € M Je(§) > 0 so that the set {n € N |z, € B.(¢)(§)} is finite.
Take U := {B.(¢)(€) | £ € M}.
Then U has no finite subcover.

iil. = i

Assume (M, d) is totally bounded and complete.
Let (z)nen be any sequence in M.

Claim: There is a sequence of infinite subsets

NOTyDT1D...

such that d(x,, z,,) < 278 Vo, 2, € Th.
Cover M by finitely many balls

m

UBi) =M

i=1
= Ji so that the set {n € N |z, € B1(&)} =: Tp is infinite.
Then Vn,m € T, we have

Suppose Ty _1 has been constructed.
Cover M by finitely many balls

Then 3¢ so that the set

Ty := {n €Tk—1 |z, € B_a (61)}

PYES

is infinite.
=Vn,m e Ty :
1
d(znaxm) < d(In,&) + d(527zm) < 27]C
Claim = 3 convergent subsequence.
Pick n1 <ng < ... so that n; € T}.
= n,ng €TVl >k
= (T, Tn,) < 5 VI >k

= The sequence (zx)ken is Cauchy.

M complete
= The sequence converges. O

1.4 The Theorem of Arzela-Ascoli

Definition: (M, d) metric space. A subset D C M is called dense if

Vee MVe>0:B:(x)ND # o

Definition: A metric space (M, d) is called separable if it contains a countable
dense subset.

Corollary: Every compact metric space (M, d) is separable.
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Proof: Given n € N.

31, bne M M = Bi(&)

i=1
Define
D, ={&,...&}
Define -
D=|JD,cM

i=1
D is countable.
Given x € M,e > 0, pick n € N so that % <e.
Then 3¢ € D,, so that x € B1 ().

=x€B(), €D = Blflx)ND#o

So D is dense. O

Exercise: (X, dx) compact metric space, (Y, dy) complete metric space and
C(X,Y):={f: X — Y| f continuous}

d(f,g) = sup dy (f(z),g(x)) < oo Vf,g € C(X,Y)

reX

Show that (C'(X,Y),d) is a complete metric space.
This is exercis 1a) on Series 2.

Definition: A subset F C C(X,Y) is called equicontinuous if

Ve>030>0:Vo,ye XVfeF dx(z,2') <d=dy(f(x), f(z))) <e

Theorem 3 (Arzela-Ascoli): (X,dx) compact metric space and (Y,dy)
complete metric space, F C C(X,Y).
Equivalent are:

i. F is compact.
ii. F is closed, equicontinuous and F(z) := {f(z) | f € F} C Y is compact
for every z € X.
Proof: i = ii.:
e F is closed (every compact set in a metric space is closed).

e Fix z € X. Then the evaluation map ev, : F — Y, ev,(f) := f(z) is
continous. So ev,(F) = F(x) is compact.

e Pick e >0. 3f1,..., [, € F so that F C U~ B:(f:)
Choose § > 0 so that ViVr, 2’ € X :

dx(z,2") < d = dy(fi(z), fi(z") <e
Given f € F choose i so that d(f, f;) < . Now for z, 2’ with dx (x,2") < §:

dy (f(2), f(2) < d(f(x), fi(x)) + d(fi(2), fi(2') + d(fi(2"), f () < 3e

<e <e <e

il = i
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To Show: F is compact. Let f,, € F be any sequence.
We know that X is separable, i.e. there is countable dense subset D C X with
D in the form D = {zy, z2,...}.

Claim 1 There is a subsequence g; := f,, so that the sequence g;(zr) € YV
converges as i — oo for every k € N.

Proof of Claim 1 F(z;) is compact and f,(z1) € F(z;). Thus there is a
subsequence (fy, ;)i so that (fp, ,(21)); converges. By the same argument there
is a subsequence (fn, )i of (fn, )i so that (fn,(z2)); converges.
Induction: There is a sequence of subsequences (fy,, ,)§2; so that

o (fu,(21))i2, converges as i — oo.
® (frpyr,)i2y is a subsequence of (fy, ;)i for every k € N.

Define g; := fn, ,, that is the Diagonal sequence construction. This satisfies
gi(xy) converges for all k € N as i — oo. But we want more: Namely, conver-
gence in the whole of X, not only D, and uniform convergence.

Claim 2: (g;); is a Cauchy sequence in C(X,Y).

With Claim 2:

Since C'(X,Y) is complete the sequence g; converges. Since F is closed, its limit
belongs to F.

Proof of Claim 2:

e Choose € > 0 and § > 0 as in the definition of equicontinuity, i.e.

Vo, o' € XVfeF: dx(z,a')<d=dy(f(x), f(z') <e

e Since D is dense in X we have
X = Bs(a)
k=1
By Theorem 2

ImeN: X =] Bs(x)
k=1

oo

e Since (g;(zx))52, is Cauchy for every k € {1,...n}:
AN € NVi, 5 > NVk € {1,...m} : dy(gi(zx), gj(zx)) <€
We prove: i,j > N = d(g;,9;) < 3c. Remember that

d(g:, 95) == Sup dy (gi(%), gj (7))

Fix an element x € X.
By Condition 2 3k € {1,...n} so that dx(z,zx) < 4.

By Condition 1
Vi e N:dy(gi(z),g:(xr)) <e

i,j = N = dy(gi(2),9;(z)) <
dy (9i(2), gi(xk)) + dy (gi(zr), gj (xr)) + dy (9i (k). 9;(x))
And this is, by Condition 3 and 4, smaller than € + ¢ + ¢ = 3e.
O

Looking closely at the proof, one can weaken the three condition of the theorem
of Arzéla-Ascoli.

10
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Theorem 3’ (Arzéla-Ascoli revisited): Let (X,dx) be compact, (Y,dy)
complete metric spaces and F C C(X,Y). Equivalent are

(i) F has a compact closure.

(ii) F is equicontinuous and F(z) C Y has a compact closure Vz € X.

Proof: F is the closure of F in C(X,Y). From (i) it follows that F(z) =
F(x)Vr € X.

e F(x) C F(x) is always true and an exercise.

e F(zx) D F(z). Proof:

Let y € F(x) = 3 sequence yi € F(x),yr — .

= 3fr € F so that fir(x) = yg.

= fr has a convergent subsequence fy, — f € C(X,Y) where f;, € F
and f € F.

Soy = f(z) € F(x).

“(i)=(ii)” F is equicontinuous by Theorem 4 for F.
F(xz) = F(x) which is compact by Theorem 3.
“(ii)=(i)” Claim 1 and Claim 2 in Theorem 3 only use (ii) in Theorem 3. So

every sequence in F has a Cauchy subsequence. O

Lemma 7: Let (M, d) be a complete metric space, A C M any subset. Equiv-
alent are

(i) A has a compact closure.

(ii) Every sequence in A has a Cauchy subsequence.

Proof: “(i)=(ii)” follows directly from the definitions.

“(ii)=(i)”. Let z, € A be any sequence => Ja, € A so that d(z,,a,) < L.
= 3 Cauchy subsequence (an,)2;. = (zy,)72; is Cauchy. Because (M,d) is
complete = (z,,,) converges (to another element of A). O

Special case: Y = R" (X,dx) compact metric space. X = C(X,R") is a
normed vector space.
[£1l := sup |f(z)[rn
zeX

Theorem 4’: Let F C C(X,R"™). Equivalent are
(i) F has a compact closure.

(ii) F is equicontinuous and bounded.

Proof: Theorem 3’ (A subset of R has a compact clousre if and only if it is
bounded). So condition (ii) in Theorem 4’ implies Condition (ii) in Theorem 3’
with Y = R"™. Moreover an unbounded subset of C'(X,R™) cannot be compact.
O

Theorem 4: Let F C C(X,R"). Equivalent are
(i) F is compact.

(ii) F is closed, bounded and equicontinuous.

11
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Proof: Corollary of Theorem 4’. O

This again highlights the difference between finite and infinite dimensional vec-
tor spaces, as far as compactness is concerned.

1.5 The Baire Category Theorem

Example for an open and dense set: Q C R. Let Q = {z1,22,...}. Let

U is open and dense.

Theorem 5: Let (M,d) be a complete metric space.

(i) If Uy, Us,Us, ... C M is a sequence of open and dense subset then

0
i=1

is dense in M.

(i) M # & and Ay, Ag, As, ... C M is a sequence of closed subsets so that

Then Ji so that A; contains an open ball.

Example:

1. M =R =,g{z} and R complete; so R uncountable.

z€R

2. M =Q =,colz} is not complete.

The proof is not so hard. It depends on one ingenious observation which has
many important consequences.

Proof:

(i) Let z € X and ¢ > 0. To show: B.(z) N D # @.
Let B:= B.(z) ={y € M | d(z,y) < €}. Since U; is dense BNU; # &. Choose
r1 € BNU;. BNU; open = Jde; > 0,61 < % so that

.B81 (:Cl) cBnU;

Since U; is dense, B, (x1) NUs # @. Choose z3 € B, (1) N Usz. Because
B, (x) N Uy is open, dzo > 0 so that

Bgz (372) C Bel (.’1?1) NU,

and 0 < g9 < %.
By Induction one gets a sequence

1
xkEM,O<Ek§2fk

so that
ng (.Ik) C ngfl(xk_l) NUy

12
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In particular zj, € B.,_, (xx_1), i.e.

1

d(zg, x—1) < k-1 < o1

So xy, is a Cauchy sequence in M, which converges, because M is complete. Let
x* = limy_, o x. Note:

BEl (.731) D 352(1‘2) D BES(JZ?,) DIV

So z¢ € Be, (z1)V€ > k and thus 2* € B, (z1) C UpVEk.
Soz* € D =(oo, Uy. Also z* € B.,(z;) C Bso BND # @.

(ii) Let U; := M \ A;, open. Suppose (by contradiction) that A; does not
contain any open ball for every i. So U; is open and dense. By (i) (.=, U; is
dense; thus M\ Ujo, 4 # 0 = M # U2, 4. O

Reminder Let A C M, then A° =int(A) = {& € M | Je > 0 such that B.(z) C
A} is the interior of A.
Definition:

e Let (M,d) be a metric space. A C M is called nowhere dense if A has
empty interior.

e A C M is said to be of st category in the sense of Baire if A = J;2, A4;,
where A; C M is nowhere dense.

e A C M is said to be of 2nd category if it is not of the 1st category.
e A C M is called residual if M \ A is of the 1st category.
Notation: cat(A) =1 or 2.

Example:
e 7 C R is nowhere dense.

e Q C R is of the 1st category.

Rules:
1. f AC B: cat(B) =1 = cat(A) =1
2. cat(A) =2 = cat(B) =2
3. A=, A;, cat(4;) = 1= cat(4) = 1

Lemma 8: (M,d) complete metric space, R C M. Equivalent are:
(i) R is residual
(ii) R D2, U; with U; open, dense.

Proof:
(i) = (ii) R residual, A:= M\ R = cat(4) =1

= A= GAZCGE
i=1 i=1

where A; is nowhere dense. Then U; := M \ A; is open and dense.

:stM\AaM\(f]fu):ﬂ(M\mthi

13
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(ii) = (i) Assume U; C M open, dense and ()=, U; C R
A:=M\R=R=M\(U=JM\U)

with M \ U; nowhere dense Vi € N = cat(A) = 1.

Theorem 6 (Baire Category Theorem): Let (M, d) be a complete metric
space and M # @. Then

(i) cat(M) =2
(ii) If A C M, then cat(A) =1 = cat(M \ A) =2
(i) If A C M, then cat(4) =1= M \ A is dense

)
)

(iv) @ #U C M open = Cat(U) =2

(v) A=JZ, A;, A; closed with A? =@ = A° =0
)

(vi) U =2, U; with U; C M open and dense = U is dense in M

Proof:

(i) Suppose cat(M) =1= M ==, 4; = U=, 4;

A; is nowhere dense =(by Thm 5) one of the A; contains an open ball.
Contradiction.

(ii) cat(M \ AU A) = cat(M) =2 = cat(M \ A) = 2 using the above rules.
(iii) Lemma 8 and Theorem 5 (ii)

(iv) U C M open, nonempty = U contains an open ball = M \ U is not dense.
= cat(U) =2

(v) A=J;2, A4; closed A} = @ = cat(A) =1 = (by (iv)) A does not contain
an open ball = A° =g

(vi) Theorem 5 (i)

Exercise: Even if (M, d) is not complete, we have (iii)< (iv)<(v)< (vi) An
Application of Baire’s theorem is the following

Theorem 7 (Banach 1931):

R:={f:]0,1] = R | f is continuous and nowhere differentiable}

is residual in C([0, 1]).

Proof: Denote

Uy,:=4 feC(0,1])| sup
0<|h|<1
t+he(0,1]

>n Vtel0,]1]

f@+m—f®’
h

Claim 1 R > (2, U,

Claim 2 U, is open —. Exercise.

14



1 Basic Notions 08.11.2006

Claim 3 U, is dense.

Proof of Claim 3 Fixn € N. Let g € C([0,1]) and € > 0.
To show: B.(9)NU, # @
By Weierstrass there is a polynomial p : R — R such that

llg = pll = sup |g(t) —p(t)] <e/2
t€[0,1]

We must find an f € U, such that ||f — p|| < &/2.

Trick: Define z : R — R by 2)(f) := Az(5%)

2(t)] = 1 and |21 (t)] = 5

Idea: Choose f(t) = p(t) + zx(t) then ||f — p|| = |lza] = A

‘f(Hh]z—f(t)’ z2(t+h) —Z(t)’_ 'p(t+h) —p(t)‘

>

h h

>4 if his small  <sup,cjoqy|Lp(t)|=:c
1 o
Zx—c>n1f/\1$sma11:>f6Un
Proof of Claim 2 See Zehnder’s notes. O

1.6 Dual spaces

Let (X, ]| -|

) be a Banach space. Three examples for dual spaces:

Example 1: If X = H is a Hilbert space, i.e. there is an inner product
Hx H—R: (z,y) — (x,y) so that

#]] = v/ (2, )
Each x € H determines a bounded linear functional A, : H — R via
Az(y) = (z,y)

The map H — H* : © — A, is a Banach space isometry, i.e. a bilinear map
preserving the norms, so H = H*. The difficult part of the proof is that (1) is
onto (Proof in Measure and Integration).

Example 2: Let (M, A, u) be a o-finite measure space and
X =12 = {331 = R| [I1ran < oo} /~
M
and .
»
9= | [ 1] 1p<oo

In the measure and integration course it was shown that

1 1
X Lin), 1<q<oo, —+-=1
p q

More precisely the map

L) — LP ()" g — Ay

Ag(f) = /fgdu

15
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is a Banach space isometry.
Again it’s easy to prove that

‘ffgdu’

M

lgllg = [[Agll = sup ———
0#feLP ||pr

and the hard part is that

VA € LP(p)* : 3g € L () so that A = Ay.
Proof in Measure and Integration.
Example 3: Let (M,d) be a compact metric space. Consider X = C(M) =
{f: M — R| f is continuous}. Let
1£1l:= sup [f(p)]
peM

That X is a Banach space is already known from Analysis I & II.

X" = {All real Borelmeasures on M} =: M

Let B C 2™ be the Borel o-Algebra and a o-additive A : B — R a real (Borel)
measure.

Define ¢y : C(M) — R by
oa(f) = [ fdA
/

Easy: @y is bounded and ||| = [|A]] = |A[(M).
The map M — C(M)* : X — ¢, is linear. But why is this map surjective?
Exercise with Hints:

1. U C M open = U is o-compact.

U=|JKn Kni={reM|Bi(x)CU}
n=1

2. Every finite Borel measure u: B — [0,00) is a Radon measure because of
1.

3. Riesz Representation Theorem
p:C(M)—-R
positive linear functional, i.e. if f € C(M) and f > 0= ¢(f) > 0, e.g.

o) = [ 1

4. For every bounded linear functional ¢ : C'(M) — R there are two positive
linear functionals ¢* : C(M) — R, s.t. ¢ = ot —¢~.

Hint: For f > 0 define

U(f) :==sup{p(fi) —@(fo) | fr+ fo= [, f1, f2€ C(M), fL >0, fo > 0}

U(f) € Ry Claim: ¢(f +g) = ¥(f) +¥(9)-
For f: M — R continuous define f*(z) := max{£f(z),0} = f = f+ —
= f * continuous and nonnegative.

Define ¢(f) :== ¢ (f") = 9(f7).
To show: ¢ : C(M) — R is bounded and linear.

F20= w2, o= W)

T are positive.

16
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Definition: Let (M,d) be a metric space. A completion of (M,d) is triple
(M*,d*,¢) where

1. (M*,d*) is a complete metric space

2. t: M — M¥* is an isometric embedding i.e.
d*(u(x),u(y)) = d(z,y) Vo,yeM

3. The image «(M) is dense subset of M*.

Definition: (M;,d), (Maz,ds) metric spaces
A map ¢ : My — My is called an isometry, if it is bijective
and da(¢(x), d(y)) = di(x,y) Yo,y € M.

Theorem 8:
(i) Every metric space (M, d) admits a completion.

(i) If (My,dy, 1) and (Ma,ds, t2) are completions of (M, d), then there exists
a unique isometry ¢ : M7 — Ms such that ¢ oty = 19

M —2> M

N
%]
M

Proof:

(i) Uniqueness — Exercise, the standard uniqueness proof for objects with
universal property.

(ii) Existence

Construction 1 M* := {Cauchy sequence in M}/
(gjn) ~ (yn) < limy, 0 d(xna yn) =0

v(x) == {[(zy)] where z; =2z Vie N}

d*([(@n)]; [(yn)]) == limp 00 d(2n, yn)-

See Topology lecture.

Construction 2 Let BC(M,R) :={f: M — R | f is continuous and bounded}
and |[f[| = sup,e s |f ()]
Fact: BC(M,R) is a banach space.

Fix a point x* € M. For every x € M define the function f, : M — R by

(a) f is continuous.

(b) f. is bounded because |d(z,y) — d(z*,y)| < d(x,z*).

(¢) i: M — BC(M,R) : x — f, is an isometric embedding.
For all z, 2’ € M we have:

d(fwvfw’) = ”fw_fw’H (6)
= sup [fo(y) — for (¥)] (7)
yeM
= sup |d(gj7 y) - d(il?/, y)| (8)
yeM
= d(z,2) (set y =2a’) (9)

Now define M* := closure({f, | * € M}) in B(M,R), d(f,g) =
lf — gl and ¢(x) := f,.

O

17
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Exercise: The completion of a normed vector space is a Banachspace. Hints:
Let (X,]| - ||) be a normed vector space and define the metric on X
by d(x,y) = ||z —y|| Ve,ye X

1. Let (X’,d’,¢) be a completion of (X,d). Then there is a unique pair of
vector space structure and norm on X’ such that

(i) X — X’ is linear
(i) [le@)|" = [l=] V2 e X
(iif) d'(2",y") = 2" = ¢/|" Vva',y' e X
2. If (X1, - [l1,¢1) and (Xa, ] - [|2, t2) are two completions of (X, || -||) then
the isometry ¢ : X1 — X5 in Theorem 9(ii) is linear.

Example: X =C([0,1))> f

1 P
1l = / FOPd]  1<p<oo
0

The completion of (X, || -,) is LP(]0, 1]) with respect to the Lebesgue measure
on [0, 1].

More general: Replace [0,1] by a locally compact Hausdorff space M and
Lebesgue by a Radonmeasure.

Exercise: (X, ] -||) normed vector space.

The functions X — R : 2z — |jz|, X x X — X : (z,y) — = + y and
Rx X — X : (\x) — Az are continuous.

Let M be any set. Then B(M,X) ={f: M — X | fis bounded}

with || f|| == sup,cas | f(2)| < 0o is a normed vector space.

X complete = B(M, X) is complete.

(M, d) metric space = BC(M,X) :={f : M — X | {is continuous and bounded}
is a closed subspace of B(M, X). Recapitulation:

1. Any two norms on a finite dim. vector space are equivalent (Lemma 1).
2. Every finite dimensional normed vector space is complete (Lemma 2).

3. Every finite dimensional subspace of a normed vector space is closed
(Lemma 3).

4. A normed vector space (X, || - ||) is finite dimensional if and only if the
unit ball B := {z € X | ||z]| < 1} (resp. the unit sphere S := {z € X |
x|l = 1}) is compact (Theorem 1).

5. (X, |- 1), (Y, ] - ||) normed vector space A : X — Y linear operator.
X is finite dimensional < Every linear operator A : X — Y is bounded
(Lemma 6).

Definition: L(X,Y):={A:X — Y | Ais lincar and bounded}

A
1Al 1= sup 12l
S Tl
x#0

Theorem 9: Let X,Y,Z be normed vector spaces.
(i) £(X,Y) is a normed vector space.
(ii) Y complete = L(X,Y) is complete.

(i) A€ L(X,Y), BeL(Y,Z) = BAe L(X,Z) and
IBA[| < [|B[ [|A]l (x)
Moreover the map L(X,Y) x L(Y,Z) — L(X,Z), (A,B)— BA is con-
tinuous.

18
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Proof:
(i) Verify axioms.

(iii) [|BAz[|z < |[BIl[[Az]y < B[ Al ll=]lx
This implies (*). Moreover:

(%)
[B2A2 — BiA1|| < [[B2 — Bil| [| Azl + [ B1|| A2 — A4
Now do €,9....

(ii) Assume Y is complete. Let (A, )nen be a Cauchy sequence in £(X,Y).
[Anz — Apzlly < [[An — Am|lllzllx

This shows: For each € X the sequence (A,2),cy is a Cauchy sequence
Y.

Because Y is complete the sequence (A, x),ecn converges for every x € X.

Define A: X — Y by Az :=1lim,,_,o, A,z = A is linear.
Claim : A is bounded and A,, converges to A in L(X,Y).

Proof : Let € > 0. There dng € N such that
Vm,n € N:n,m >ng = ||A, — Al <e
Hence for n,m > ng:

Az — Apzlly = ||Anz— lim A,z|y
n—oo

lim |4,z — Anz|ly
n—oo

IA

limsup || 4, — An||[]2] x
n—oo

IN

ellzllx
So

[ Az[ly [Az — Anzlly + [|Anz|ly
ellzllx + [ Anllllzlx

(& + [l An[Dll2]l x

IAIA

So A is bounded and ||A|| < ||A,|| + €, moreover

|Anz — Ax||y

<e
]| x

|Ap — Al := sup
z#0

Example: Y =R
X*:= L(X,R) is a Banach space with the norm [[A| := sup,_, %
X* is called the dual space of X.

Example: (LP)* = L% where 1 < p < oo and %4—% = 1. See the Measure and
Integration lecture for the proof.

Theorem 10: Let X be a normed vector space, Y Banach space.
Let (A;);en be a sequence of bounded linear operators such that Y.~ | [|4;| < oo
Then the sequence S, := > | A; converges in £(X,Y). The limit is denoted

19
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Proof: s, : =Y .2, |4l < oo converges in R.

n

150 =Sl =1 32 A< S Al = 50— s

i=m-+1 i=m-+1

= S, is a Cauchy Sequence in £(X,Y).

Thm 9
= S, converges. O

Example: X =Y Banach space, £(X) := L(X, X)
Suppose f(z) = Z;’io a;%" is a convergent power series with convergence radius

1
R=———F>0

lim sup |a,
n—oo

Let A € £(X) be a bounded linear operator with [|A|| < R. Then Y_;° |a;|||A]| <

Yoo lail A" < oo Th 10 4 he Timit f(A) == Y2 a A = lim, oo > a; A
exists.

n

Remark: Works also with a; € C if X is a complex Banach space.

Example: f(z)=>:2,2" = -

1—2

Corollary: ||A]| <1=1— A is bijective with inverse

(1- A= im € L(X)
1=0

Proof: S, :=1+A+ A%+ ..+ A"

|4l <1 TR 10 The sequence S, converges.

See = limy, o S, = 300 Al

Sp,(1—A4) = (1-A4)S,
= 1+A4+A%+. 4+ A" —A— .. — AT
= 1-A"" 1

= Soo(1—A) = (1 — A)See =1 0

Theorem 11: X Banach space, A € L(X) =

(i) The limit 74 := lim, s [|A"||% = inf,sq ||A"||* < ||A] exists.
(It’s called the Spectral radius of A.)

(i) ra <1= 37 |4 <ocoand Y og A= (1—A)~!

Proof:
(i) Let a :=inf,,~¢ HAH% Let € > 0.
ImeN [[A™||w < a+e
c:=max{L, ||A],...,[[A™}

Write an integer n > 0 in the formn = km+! k € Ny, [ € {0,1,...m—1}

lAY= =l AmRA (10)
< [lAmElAYE (11)

< c%(a—i-s)kTm (12)

=  cr(ate)Tn (13)

=2 ate (14)
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= 3Ing e NVn >ng : [|[A"]|% < a+ 2

= lim, o |A"]|" = a

(i) 74 < 1. Choose « € R: 74 <a < 1= 3Ing e NVn >ng: |A"||" <a=
JAn] < o = 32, 147 < 00 B i)

1.7 Quotient spaces
Definition: Let X normed vector space, Y C X closed subspace.
r+Y ={a+ylyeY}cCcX

r+Y=2d'4+Y o —zcY sz~
XY =X/.={xz+Y |ze X}

Notation: [z]:=2x+Y for the equivalence class of x € X

Remark: X/Y is a normed vector space with

= inf
2]l x/y ;Ielyl\eryHX

Exercise:
L || ||x/v is a norm

2. X Banach space, Y closed subspace = X/Y is a Banach space.
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2 Functional Analysis

2.1 Basics

Theorem 1 (Uniform Boundedness): Let X be a Banach space, Y a
normed vector space and I an arbitrary set. Let A; € £(X,Y) for i € I and
assume Vo € X :sup;¢; ||Ai(x)] < oo.

The conclusion says that 3¢ > 0 such that sup,c; |[|4;z|| < ¢ Vo € X with
o] < 1.

Lemma 1: (M,d) complete metric space M # &, I any set. f; : M — R
continuous for i € I. Assume sup,c; | fi(z)| < oo Vo € M = 3 open ball B C M
such that

sup sup | f;(z)] < oo
zeB iel

Proof of Lemma 1: Denote

Api={zeM||fi(z)] <n}forneNandiel

Ap =) Ani ={z € M |sup|fi(x)| <n}
il el
= Vaz € M 3n € N such that z € 4, L.e. M =, An.
Now A,; = f; '([-n,n]) is closed. So A, is closed. So In € N such that
int(A,) # o
= Jxp € int(A,,)

de > 0 such that
B.(zo) ={z € M | d(z,x0) <& C A}
O

Proof of Theorem 1: Set M := X, fi(z) := ||Ax|, so fi : X Ay Mg
So f; is continuous for every i € I.

sup;e; | fi(z)] < oo Vo € X temme 1 3 hall B = B.(z9) C X with zg € X,e >0
such that

c:=supsup ||A;z] < oo
i€l zeB

=VielVre X wehave ||z — x| <e = ||Aiz| <ec

Let x € X with ||z] = 1.

Then ||(zg +¢-x) — x| =¢

Hence ||A;(zo +€x)| < ¢ so

c+c
€

1 1 1
|Aiz|| = EHAz'(ifo +ex) — Ajzol| < gHAz‘(xo +ex)|| + g||AifU0|| <

Theorem 2 (Banach-Steinhaus): X Banach space, Y normed vector space
A€ L(X,Y),i=1,2,3,...

(i) Assume the sequence (A;z)5°, converges in Y for every x € X. Then:

® sup;cy [|[4if < oo
e JA € L(X,Y) such that Az = lim; o A;z, ||A|| < liminf; ||A;]|

(ii) Assume Y is complete and

o sup;ey [[Aif| < oo
e Jdense subset D C X such that (4;2)°, converges for every x € D

Then (A;z); converges for all z € X
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Proof:

1. Since (A;x); converges we have

sup ||[4;z|| < coVz € X = sup |4 < >
ieN ieN

Define A: X — Y by Az :=lim; .., A;x. This operator is linear. Why is
A bounded?

[|[Az|| = lim ||A;z|| = liminf [|A;z] < lminf ||A;|| ||z
71— 00 71— 00 17— 00
<oo

2. Let 2 € X. Need to show that (A;z)$2, is Cauchy. Let ¢ > 0.
Denote ¢ := sup;¢y || 4i]| < oc.
Choose y € D such that ||z —y[| < .

Choose ng € N so that Vi, j > ng : ||4; — Aj] < 5
=Vi,j>no: Az — Ajz| < [|Aiw — Ayl + [|Aiy — Ajyll + |4y — Ajz]
< NAilllz = yll + 14i = A; Iyl + 1 A5l llz — yll
< ELELE

4 2 4

< €

Example 1: [* = {bounded sequences € R}, x € [*® withz = (21, x2,23,...) =
(z)2;

X :={x = (a;); €1°°| In € N such that z; =0 Vi >n}

Define
Ap: X = X by Apx = (21,229,323, .. ,n2,,0,...)

= lim,, o, Apz = Az where Az = (21,229, 3x3,...).

But ||A,|| = n — oo. Completeness of the domain is missing here.

So the assumption that X is complete cannot be removed in Theorem 1 or
Theorem 2.

Example 2: X Banach space, Y, Z normed vector spacesand B : X XY — 7
bilinear. Equivalent are:

(i) B is continuous

(ii) The functions X — Z : x — B(z,y) is continuous Yy € Y and
the function Y — Z : y — B(x,y) is continuous Vz € X.

(i) Je>0Ve € X Vy € Y : || Bz, y)|| < cllf| - [y

This is exercise 2 on Sheet 4.

Theorem 3 (Open Mapping Theorem): X, Y Banach spaces. A € L(X,Y)
surjective = A is open, i.e. if U € X is an open set then AU C Y is open.

Corollary (Inverse Operator Theorem): X, Y Banach spaces, A € L(X,Y)
bijective = A~! is bounded, i.e. A~! € L(X,Y).

Proof: A open < A~! continuous < A~! bounded. O
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Example 3: X as in example 1; X is not complete. Define B : X — X by
Bz := (z,139,1x3,...). Then |Bz| < |z, so B bounded. B~! = A4, as in
example 1, is not bounded.

Lemma 2: X, Y Banach spaces, A € L(X,Y) surjective
=30 > 0such that {y € Y| Jly|]| <} C {Az |z € X, ||z] < 1} (¥)

Remark: () means Vy € Y3z € X such that Az =y and [|z| < 3|y (+*)

Exercise: (x) < (xx)
Use (x) to prove the Corollary.

Proof (Lemma 2 = Theorem 3): Let U C X be open, and yg € AU =

dxg € U such that yg = Axg (Ugn) Je > 0 such that B.(xg) C U.

Claim: By (yo) C AU. Let

<0

— Yo
Y € Bsc(yo) = Hygy

3z € X such that ||z|| <1 and Az = ¥=2 = xg+ex € B(wg) CU
Al(zg+ex) =y +cAz =y =y € AU. O

Proof of Lemma 2:

Step 1 dr > 0 so that

{yeY [yl <r} c{Az]zc X, |z <1}

Proof of Step 1:
Let

Bi={re Xl <5}
C::AB:{Am\xEX,||m||<%}
Note that
1. nC={ny|lyeC}={Az |z e X, |z < i}
2. yy eC=y—y €2C
3. yycC=y—y €2C
4. nC =nC

gty = aAx

By Baire: In € N: (nC)° # @ = (C)° £ @

Jyo €Y Ir>0:B.(yo) cC
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Soif y € Y and |jy|| <7 then yo +y € C. B
Thus Vy € Y with |ly|| <r we have y =yo+y— yo € 2C
—

eC eC

={yeY ||yl <r}c2C

Step 2 (*) holds with 6 = 5. Proof:

Let y € Y with |y[| < 5.

To Show: Jz € X so that Az =y and ||z| < 1.
Denote

1
B :={ze X ||z] < ﬁ} k=1,2,3,...
Then, by Step 1,
{er| lyll < 2%} CAB), k=1,23,...
Since y € Y and [|y|| < §, by (%*) with k& = 1:
1 T
Jzy € X laq]| < §,||yfo1|| <37
and by (xx) with k& = 2
1 r
Azo € X : |22 < 7 lly — Az — Axsl| < 3
So, by induction, using (x*), there is a sequence (zy)r € X so that
1 r
loell < o lly = Awy = = Azl < oy
We have

oo [ee] 1
Sl <3 o =1
k=1 k=1

By Chapter 1, the limit

n oo
T = limE gcizg T;
n—oo
i=1 i=1

exists and ||z| < 1. Since

k
y*AZIi
i=1

r
< 27 — 00
we have proved Lemma 2.

2.2 Product spaces

Example 4: Let X be a Banach space and X, X5 both closed linear sub-
spaces. Assume X = X; + X5 and X; N X5 = {0}; these subspaces are called
transverse subspaces. We say X is the direct sum of X; and X, and write

X=X1® X,

Every vector in X can be written as sum of a vector in X; and one in X5 in a

unique way (Linear Algebra).

Define A : X7 x X5 — X by A(x1,22) := 21 + 2. If X, Y are normed vector
spaces, then X x Y := {(z,y) | * € X,y € Y} is again a normed vector space

with
[ )= [l + lyll
for (z,y) € X x Y. Other possibilities are

1z y)lloo = max{][z]], [ly[|}

1
(@, y)llp := (lzl” + lyl[*)», 1<p<oo
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e All these norms are equivalent.
e X Y Banach spaces = X x Y is a Banach space for any of these norms.

These are exercises.

Return to Example 4: X, X5 are closed subsets of a complete space, hence
complete. So X; x X5 is complete by the exercise above and A is a operator
between Banach spaces.

e A is bounded and linear, because

[A(z1, z2)|| = o1 + @l < [l + [lz2

e A is surjective because X = X; + X
e A is injective because X1 N X, = @.
By the open mapping theorem (Theorem 3) A~! is bounded
=3Je>0: Vo, € X1 Vg € Xo: ||lag|| 4 ||z2f] < ¢|lxr + 22|

So the projections 71 : X — X, w9 : X — X5 are bounded.

Example 5: X =Y = C([0, 1]) with supnorm.
Ax =& A is only defined on a subset of X namely on

D :={z € X | z is continuously differentiable} =: C*([0, 1])

DCX,A:D—Y.

Definition: Let X,Y be Banach spaces.

D C X linear subspace, a linear operator A : D — Y is called closed if its graph
I' = graph(A) := {(x, Az) | x € D} is a closed subspace of X x Y, i.e. for any
sequence (Zn)nen in D and (x,y) € X x Y we have:

Ty — T
} = x€Dandy=Ax
Az, —y

Example 5:

xn € CH[0,1])  limp oo SUPg<icy |2n(t) —2(t)] =0  and
z,y € C([0,1])  limp o0 SUPg<y<q |[En(t) —y(t)| =0

= x € C! and & = v, so the operator in Example 5 is closed.

Exercise: The graph norm on D is defined by ||z||4 := ||z|x + ||Az]|ly
Prove that (D, || - ||a) is complete if and only if A is closed.

Example 5: The graph norm on C1([0,1]) is

[zlla = sup |z(t)|+ sup [E(?)]
0<t<1 0<t<1

The standard norm in C!.

What if D = X7

Theorem (Closed Graph Theorem): X,Y Banach spaces
A: X — Y linear operator. Equivalent are:

(i) A is bounded

(ii) A has a closed graph
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Proof:

(i)= (1) X>z,—>zandY > Az, -y

A continuous
== Ax, — Ax

Uniqueness of the limit

(ii) = (i) T :=graph(4) C X xY, T isa Banach space.

Define 7 : I' — X by n(z,y) =«

= 1 is a bounded linear operator with norm = 1.

7 is injective.

7 is surjective (because D C X).

A3 -1 X T is bounded = Je > 0 such that |7~ (x)||a < cllz]lx

But |7~} (z)]|a = [[(z, Az)[| 4 = |[z]x + [[Az[ly = [Az]y < cllz|lx Vo€ X. O

Example 6 (Hellinger-Toeplitz-Theorem): H Hilbert space
A : H — H linear operator which is symmetric,
ie. (z,Ay) = (Ax,y) Vz,y € H = A is bounded.

Proof: To show: A is closed.

H > z, sequence. Assume x, — x € H,

Ax, —y € H.

To show: Ax =y.

(y, z) = limy, oo (A, 2) = limy, oo (@0, A2) = (x,Az) Vz e H

= (y—Az,2) =0 VzeHZ:gAmHy—AazH:O:y:Ax O

Example 5: A: D — Y is closed but not bounded:
Eat) =" ea] = supgepo,y on(6)] = 1
[Azn | = llZnll = supse(o 1) [En ()] = n — o0

Definition: A : D C X — Y is called closable, if there is an operator A’ :
D' —Y D C D such that A’ is closed and A'|p = A.

Remark: LetI':={(x,Axz) |z € D} := graph(4)
A is closable

& T is the graph of a closed operator

& m: T — X is injective

< D>a, — 0, Az,, — y implies y = 0

Example 7: Let X = L%([0,1]), D =C([0,1]), Y =R. Let A: D — Y,z
2(0) is not closable.

Example 8: X =L*R) D={re€ L*R)|Jc>0 VY|t|>c: z(t) =0}
Y =R Az= [ ax(t)dt

2n(t) ::{ Lo lf<n

m
[t| > n

Han%2 = % Az, =2

Example 9: “Every differential operator is closable.”
Let Q C R™ be an open subset.

Cse ={f:Q—=R| f is smooth, supp(f) is compact}
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with
supp(f) := {z € Q| Jz,, € Q such that f(z,) # 0,2, — z}
— do({z € Q| f(x) £ 0})
C§°(Q) C LP(£2). We know:

1. Co(Q2) = {f : Q@ — R | f continuous, f has cpct support} is dense in
LP(£2).

2. C5°(9Q) is dense in C(Q), i.e.
Ve C(Q) 3K € Q, K compact 3f,, € C;°(Q2)

such that
m sup [fn(z) — f(2)[ =0

supp(fn) C K, I

Let X =Y = LP(Q).

Let D := C5°(Q) C X.

Define A: D — Y by (Af)(z) = 3,/ <pm ta(@)0” f(z)

where a = (a1,...,a,) €2", a; <0 and |a| :=ay + ...+ ap.
aal aan,
0% = —~ ... =5
Ox{*  Oxp"

Let a,, : 2 — R be smooth.
Claim A is closable.

Proof: Integration by parts: f,g,€ C§°(Q)

=>Q/g(Af)dM - ;Q/g-aaaafdu

= > (=Dl [ 6%(aag) - fdu
/

«

_ /(Z(q)\alaa(aag)) fdu

Q

[Bo)- £

Q

Let (0,g) € Graph(A) C LP(Q) x LP(Q)
To show: g =0
fr € C5° () sequence such that (fx, Afr)

LY x LP
—

(079)’ le
Jim ([ fillee = 0= Tm [Afy = gllrs

= V¢ € C(Q):
/ ¢gdp = lim / P(Afr) dp
Q Q
— tim [(Bo)- fud
Q

= 0
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because
/ B6) i < | Bolus | s
—— ——
Q <00 —0

Where%+%:1f0rl<p<oo.

So
[osau=0 voe cr@
——
Q dense in L(Q2)
= /¢g dpu=0 VopeLi(Q) = ¢g=0 almost everywhere
= /¢>ng = / 9" dp
Q Q
¢ = (sign(g))lg|"~" € LYQ) m

2.3 Extension of bounded linear functionals

Theorem 5 (Hahn-Banach): X normed vector space over F =R or C. Y C
X linear subspace ¢ : Y — F linear and ¢ > 0 such that |¢p(y)| < c|ly|| Vy € Y
= 3¢ : X — F linear such that

1. ®ly = ¢
2. |®(z)| < c|jz|| Yz € X.

Question: If we replace the target F by another Banach space Z over F, i.e.
¢ 'Y — Z bounded linear operator. 37® : X — Z bounded linear operator,
Ply =¢

Answer: No!

Example: X =[° Y :=¢=Z,F=R, ¢p=1id:Y — Z does not extend!

Lemma 3: Let X,Y, ¢,c as in Theorem 5 with F = R.
Let 2p € X \'Y and denote

Z=YoRry={y+ o |yeY,AeR}
Then Jv : Z — R linear so that
a. Py =¢
b. [¢(2)| < ¢||z||Vz € Z

Proof: Need to find a number a € R so as to define

P(xo) == a (1)

Then
Yy + Axg) = d(y) + AaVy €Y and A € R (2)

¥ is well-defined by (2), because z¢ ¢ Y. Moreover 9|y = ¢. To show: a can
be chosen such that

|¢(y) + Aal| < clly + Azol Vy € Y VA € R 3)

(3) is equivalent to
|¢(y) +al < clly +zof Vy €Y (4)
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(3) = (4) is obvious.
(4) = (3) ok for A =0.

y © y
A0 [6(y) +Aal = A 16 () +al < elAIE +zoll = clly + Aol

(4) is equivalent to
—clly +xo| < ¢(y) +a < clly +xolVy €Y
& —o(y) —clly +xol| CaVy € Ya < clly + zo|| —d(y)Vy €Y &
oY) —cly —zo| <y’ €Ya<cly+xol —o(y)Vy €Y (5)

Is there a real number a € R such that (5) holds, i.e.

sup (o(y') — clly’ — 2ol < a < inf (clly + xol| — 6(y))
y' ey yey

This is true iff

6)
oY) —clly’ —zol|l < clly + ol — d(y)Vy,y €Y (6)

Proof: of (6)

o) +o(y) = oy+y') < clly+y' || = clly+zo+y' —zoll < clly+zoll+clly’ — ol

d

Definition: Let P be a set. A partial order on P is a relation < (i.e. a subset
of P x P, we write a < b instead of (a,b) € <.)
That satisfies:

e < is reflective, i.e. a < aVa € P
e < is transitive, i.e. Ya,b,c € P we have a < b,b<c=a <c
e < is anti-symmetric, i.e. Va,b € P: a <bb<a=a=05b

Definition: (P, <) partially ordered set (POS). A subset C C P is called a
chain if it is totally ordered, i.e.

a,beC=a<borb<a

Definition: (P,<) POS, C C P,a € P ais called the supremum of C if
1. VeeC:c<a

2.VbeP:(c<bVeel=a<b)

Definition: (P,<) POS, a € P. ais called a mazimal element of P if Vb € P
we have a <b=b=a

Lemma Zorn’s Lemma: Let (P, <) be a POS such that every chain C C P
has a supremum. Let a € P = There exists a maximal element b € P such that
a<b.

Remark: Zorn’s Lemma is equivalent to the axiom of choice.
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Proof of Theorem 5: Let X,Y, ¢, c be given as in Theorem 5.
Define

P ={(Z,¢)| Z C X linear subspace,
Y C Z,
v : Z — R linear,

7/J|Y = ¢7
[(@)| < cllz|vVe € Z }

(Zp)<(Z'W) e ZCZ, Y)z:=1
Note that this is a partial order and every chain C C P has a supremum Zj :=
U(Z,¢)ec Z 3.

e (Z,4) C P is maximal & Z = X by Lemma 3
e (Y,7) € P = 3 maximal element

e (X,®) € P such that (V,¢) < (X, D)

Proof of Theorem 5 for F = C: X complex normed vector space, Y C X
complex linear subspace
¢:Y — C such that [¢p(y)| < clly]| VyeY

Fact: ¢ : Y — C is complex linear

< ¢ is real lin. and ¢(iy) = id(y) Yy eY (1)
Write ¢(y) = ¢1(y) + ida(y) where ¢1(y), ¢2(y) € R

Then ¢1,¢2 : Y — R real linear and

ig(y) = i¢1(y) — d2(y)  oliy) = ¢1(iy) + ida(iy)

= ¢ satisfies (1) < ¢a2(y) = —¢1(iy)  ¢1(y) = ¢2(iy) Vy €Y (2)
We have |¢1(y)| < |o(y)| < ||yl T2FE 56, L X — R Relinear

Pily =1 [P1(z)| < cflz]] VreX

Define @ : X — C by ®(z) := &4 (z) — 1Py (iz) =

1. @ is complex linear

2. If y € Y then ®(y) = ¢1(y) — i1 (iy) = ¢(y)

3. Let x € X. Suppose ®(x) # 0

Then%eSlz{zeCHz\:l}

i _ ()
so d6 € R such that e’ = ()]

= d(e z) = e‘“’@(x) =[®(z)| € R _ _
= |®(2)| = [e7®()| = [2(e” )| = [D1(e™72)| < clle ]| = c|z]

Definition: X real vector space. A function p : X — R is called seminorm if
L oplx+y) <p(x)+ply) VYe,yeX
2. p(Ax) = Ap(z) VA>0,VezeX

Theorem 5’: X real vector space, p: X — R seminorm

Y C X linear subspace, ¢ : Y :— R linear
Then 3 linear map ® : X — R such that ®|y = ¢ and ®(x) < p(z) Ve e X
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Sketch of Proof Theorem 5: Asin Lemma 3: Z:=Y @ Ragy, 20¢Y
= o) +o(y) =y +vy) <ply+y) <py+z0) +py —20)
= oY) —p(y —z0) < ply+z0) —d(y) Vy,y €Y
= Ja € R such that ¢(y) —p(y —z0) <a <ply+zo) —o(y) Vyey
= ¢(y) —p(y — Azo) < Aa < p(y + Azo) — P(y) Vy € Y,VA>0
= o(y) — Aa < p(y — A\xg) and ¢d(y) + Aa < p(y + A\xg) Yy € Y,VA>0
= o(y) +ta <ply+txy) VieRVyeY
—_——

=1 (y+txo)
ie. Y(xo)=asoF:Z —-Ryply =¢ (x) <plx) VeeZ
For the remainder of the proof, argue as in Theorem 5 using Zorns lemma. O

Remark: Theorem 5’ implies Theorem 5 with F = R, p(x) = ¢||z||

Notation: X normed vector space over F =R,C X*:= L(X,F)
Each element of X* is a bounded F-linear functional ¢ : X — F. We write:

e ¥ € X*instead of p: X — F
o (z*,x) € IF instead of ¢(x)

Remark: Theorem 5 says, if Y C X is a linear subspace and y* € Y* then
Jz* € X* such that 2*|y = y* and ||2*| x = ||y*]|v~

Definition: Y C X linear subspace of a normed vector space X.
The annihilator of Y is the (closed) subspace Y+ C X* defined by
Yt i={2*ec X*|(z*,y) =0Vy €Y}
Exercise:

1.y = Xx*/yt

2. (X/Y)* 2 YL ifY is closed

3. For Z C X*, define 17 :={re X | (2*,2) =0Vz* € Z}

Prove that (Y1) =Y whenever Y is a closed subspace of X.

Theorem 6: X normed vector space, A, B C X convex, int(A) # &, B # &,
ANB=g
= Jr* € X*,3c € R such that (z*,z) < cVzr € Aand (z*,2) >cVre B

Proof:
Case 1: B={0} Letxg € int(A) and define p: X — R by

p(x) :=inf{t > 0|z + % € A}

So xg+ ¢ € Afort > p(x) and x4+ % ¢ A for t < p(z)
1. p(Az) = Ap(x) VA >0

2. p(z+y) < p(z) +ply)
Givene >03s,t>0:5<p(x)+¢e, t<plx)+e
§$0+%€A SC()‘F%GA
¢x0+‘zi?:ﬁ(moJr%)qLH%(moJr%)GA(Aconvex)
pxz+y) <s+t<p(x)+ply) +2Ve>0

3. Choose ¢ > 0 such that Bs(zg) C A so p(x) < ”%HVJL‘ eX
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4 zo+rxeA=plx)<lazyt+r ¢ A=plx)>1
Choose Y := Rz ¢p(Azg) := —A
Check: —1 = ¢(z0) <0< p(xg) 1= ¢(—xzg) < p(—xg) (because 0 ¢ A)
T % 3¢ . X — R such that ®(z) < p(z)Vz € X, ®(z) = —1
(iie. Dly =¢)and z € A= P(z) <O0:
Namely z € A= p(z —x0) <1
So if x € A then ®(x — xg) < p(x —29) <1 =D(—x0) = P(x) <0
= Assertion with * = ®,¢=0

(@ is bounded by 3. + @(2) < p(a) < 151)

Case 2: A arbitrary

K:={a—-blac Abe B} = K convex, int(K)# @, 0 ¢ K

“2¢ ! 32% € X* such that (x*,z) <OVe e K

= (z*,a) < (z*,b) VYaec A,be B

¢ = sup,ec(z*, a) < oo (because B # &)

= (z*,a) <c < (x*,b) Vae€ A,beB O

Theorem 7: X normed vector space over F =R, C

Y C X linear subspace, 7o € X \ 'Y

Let § := d(.l?o,Y) = infyey Hl‘o — y” >0

= Jdo* € X* such that ||z*]| = 1, (x*,20) =0, (z*,y) =0 VyeY

Note: Hypotheses of Theorem 6 are satisfied with A = Bs(zg), B=Y

Proof: Denote Z :={y+ A zg |y €Y, AeF} =Y & Fxg
Define ¥: Z - F by U(y+ A\xg) : =X YyeY, AeF =

1. U is well-defined and linear because zg ¢ Y

2. U(y)=0Vy ey

[P(z)] _
4. SupazEZz;ﬁO ﬁ -
Because:
W (y + Azo)| Al 5
sup 7 — u T = SUp T
(N)£0,0) 1Y+ Azl (wN£0,0) 1Y+ 220l 0zxy 1K + 2ol
0 0
= sup = - =1
yey llzo +yll  infyey [|zo —yl|
T8 % 30% € X* such that l*|| =1 and (z*,z) = U(x)Vz € Z
(2%, 50) = W(wo) =6 (2*,y) = U(y) = 0Vy € ¥ .

Corollary 1: X normed vector space, Y C X linear subspace, z € X.
Equivalent are:

(i) zeY
(ii) For every z* € X* we have: (z*,y) =0Vy € Y implies (z*,2) =0

Proof:

(1) = (1) z=limp ooy Yn €Y

(*,y) =0y eY

= (z*,2) = lim (z*,y,) =0

it) = (4):

J;¢?T}g73x*EX*:(x*,y):OVyEY (x*,z) #0 O
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Corollary 2: X normed vector space, Y linear subspace
Y is dense & Y+ = {0}

Proof: Corollary 1. O

Corollary 3: X normed vector space, 0 # xg € X = Jx* € X* such that
=l =1, (2%, 2z0) = [0l

Proof: Theorem 7 with Y = {0},0 = ||zo| O

2.4 Reflexive Banach Spaces

X real Banach space
X*:=L(X,R)
X* = L(X*R)

Example: Every element z € X determines a bounded linear functional ¢, :
X* — R by ¢ (x*) := (z*, ).
Bounded because |¢,(z*)| < ||z*|| - ||=] hence

Pz (27)
6]l := sup ———= < |||
arz0 ]|
In fact: [|¢.]] = |||, because V& # 0 Jz* € X* such that ||2*|] = 1 and

(x*,z) = ||z|| (Cor 3). We have proved:

Lemma 4: The map ¢ : X — X** defined by

vz)(27) = (27, x)

is an isometric embedding.

Definition: A Banach space X is called reflezive if the canonical embedding
t: X — X** (defined in Lemma 4) is bijective.

Example 1: X = H Hilbert space = H =2 H* =2 H** so H is reflexive.

Example 2: (M, A, ) measure space, p,g > 1, = + + = 1 = LP(u)* =

L(p), L (p)* = LP ().
So LP(u) is reflexive for p > 1.

141
P q

p=1: Ll([ov )" = L>([0,1])
L>=([0,1])* 2 L*([0,1])
so L1([0,1]) is not reflexive.
Example 3:

co = {(Zn)nen € RN | lim z, =0}

|z = sup [z,
neN

(CO)* ~ el)(él)* = > 2 o

S0 co, {1, £ are not reflexive
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Theorem 8: Let X be a Banach space.

e X is reflexive & X* is reflexive

e suppose X is reflexive and Y C X be a closed linear subspace = Y, X/Y
are reflexive

Proof:

1. “X reflexive = X* reflexive”:

Let ¢ : X** — R be a bounded linear functional. Need to show: Jdz* € X*
such that

Consider the diagram

XL x= LR
Denote z* ;=9 or: X — R.
Let ** € X and denote x := ¢~ !(2**) € X. Then

(™) = Ppu(e)) = (&%, x) = ((x), 27) = (™", "),

2. “X* reflexive = X reflexive”:

Assume X* is reflexive, but X is not reflexive. Then «(X) & X**. Pick
an element z3* € X** \ o(X).

Fact: «(X) is a closed subspace of X**  because ((X) is complete by
Lemma 4. = 3 bounded linear functional 1 : X** — R such that:

(i) Y(z**) =0Va*™ € o(X), and

(i) ¥(x57) =1
X reflexive = Jz* € X* such that

D) = (@, 2" WVa™ € X
= (¢, x) = (L x),2") =0Vr € X
¥ =
1= (ag) @ (@g,at) =0
Contradiction.
3. “Y is reflexive”:
Let m: X* — Y™ be the bounded linear map
m(x*) ="y

By Hahn-Banach 7 is surjective. Let y** € Y**. Consider the diagram

*

X Sy* YLR
Let ™ := y** o : X* — R. Then, because X is reflexive, 3y € X such
that «(y) = 2**.
= Vz* € Y+. We have 7(z*) = 0 and so
(%) = (uy), 27) = (@™, 27) =y, m(z") = 0
To show: (y**,y*) = (y", y)Vy" € Y~
Given y* € Y* choose z* € X* such that 7(z*) = y*

W y) = (r(@),y)
_ <$**,l’*>
= (y),z")
= (z%,y)
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4. “Z = X/Y reflexive”:
Denote by 7 : X — X/Y the canonical projection, ie.
m(x)=[z]=2+YVr e X

Define the bounded linear operator T : Z* — Y+ by Tz* := z*or : X — R
Note:

(a) imT C Y+ because kerm =Y

(b) Infact im 7T = Y+ and T is an isometric isomorphism (Exercise 1,b)).
Let 2** € Z**. Consider the composition

T71 *
Yyt 7" 2SR

This is a bounded linear functional on Y+ € X*, so by Hahn-Banach:
Jz** € X** such that

(%) = (", Tl )\Wa* e Y (7)
(™, 2" om) = (2", 2")V2" € Z7 (8)
(X refloxive) 30 € X such that v(z) =™

Denote z :=m(z) = [z] € Z

=

=VteZr: () =

I
PN
X
o

A
8
~

Remark: Y*= X*/y+t
(X*/YL)* ~ (YL)L gL (YL)
because X is reflexive.

Recall A Banach space X is called separable if 3 countable dense subset D C
X.

Remark: Suppose there is a sequence eq, e, es, ... such that the subspace
n
Y :=span{e; | i € N} = {Z)‘iei [neN ) € R}
i=1

is densein X. = X isseparable. Indeed theset D := {}_7" |, Nje; | n € N, \; € Q}
is countable and dense.

Theorem: X Banach space
(i) X* separable = X separable.

(ii) X separable and reflexive = X* separable.

Proof:
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(i) Let D = {z},x3,2%,...} be a dense, countable subset of X*. Assume
w.l.o.g that z} # 0 Vn € N such that

* 1 *
lzall =1, {7, za)| 2 Sll25]

Denote Y = span{z,, | n € N}
Claim: Y is dense in X
By Hahn-Banach
Y is dense < Y+ = {0}

Let z* € Y+ ¢ X*. Because D dense in X*:

= dny,ng,n3,... — oo such that lim [z}, —z"|| =0
1—00 :
Now:
g || < 20, 2n,)| = 22y, — 2% 2| < lag, — 27| =0

so ¥ = lim;_, x;‘i” =0s0 Yt =0s0Y is dense in X so X is separable.

(ii) X reflexive and separable = X** = ((X) separable = X* is separable O

Example:

(i) ¢o separable.
¢t = (! separable.

(/1)* = £°° not separable.
(ii) (M,d) compact metric space X = C(M) separable
X" = M = {finite Borel measures on M}

not separable, except when M is a finite set.

(iii) X = LP(Q) with Lebesgue-measure 1 < p < co. @ # Q C R"™ open = X
is separable. L>° () is not separable.
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3 The weak and weak* topologies

3.1 The weak topology

Definition: A topological vector space is a pair (X,U), where X is a (real)
vector space and U is a topology such that the maps

XxX—-X (r,y)—z+y

and
RxX—=X (\z)—

are continuous.

Definition: A topological vector space (X,U) is called locally convex, if
Vee XVU eld,x ¢ UV € U such that x € V C U V convex.

Lemma 1: X topological vector space, K C X convex
= K,int(K) are convex

Proof:

(i) int(K) is convex
X0, 1 Eint(K), 0<A<l1
To show: ) = (1 — N)xo + Ax; € int(K)
Jopenset U C X such that 0 € U and 2o+ U C K, 21 +U C K
=23+ U CK =z, €int(K)

(i) K is convex
zo,x1 €K, 0< A< 1
To show: ) € K. Let U C X be an open set with ) € U
W= {(yo,y1) € X X X [ (1 = AN)yo + Ay1 € U}
=W C X x X is open, (zg,z1) € W.
d open sets Uy, Uy C X such that: zg € Uy,z1 € Uy Uy x U CW

IO’%GK Jy e UyNK Jy1 e U NK
:>yA::(11A)y0+Ay1EKﬂU,soKﬂU#@

Hence x) € K.

Let X be a real vector space

Let F be a set of linear functions f: X — R

Let Uz C 2% be the weakest topology such that f € F is continuous w.r.t. Uz
IfFsf: X —>Rwehavefora<b{zre X |a< f(z) <b} €eUr

Let V£ C 2% be the set of all subsets of the form
Vi={reX|a<file)<b, i=1,....m} fieF, a,b€eR

fori=1,...,m

Lemma 2:

(i) Let U € X. Then U € Ur if and only if
VexeU3IV € Vrsuch that x € V € U (*)

(ii) (X, UF) is a locally convex topological vector space

(iii) A sequence x,, € X converges to 2o € X if and only if
Flao) = lim f(z,)Vf € F

(iv) (X, Ur

( is Hausdorff if and only if Vo € X, 2 # 03f € F such that
1) 0.
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Proof:

(i) Exercise with hint:
Define Uy :={U C X | (%)}
Prove:

(a) U% is a topology
(b) Each f € F is continuous w.r.t. U’

(c) If U c 2% is another topology such that each f € F is continuous
w.r.t. U then Uy CU

(i) e Each V € Vr is convex

e scalar multiplication is continuous:
Ao € R,z e X
Choose V' € V£ such that A\gzg € V 36 > 0 such that
()\0 — (5)1’07 ()\0 + 5)%0 eV and§ 7& +\g
S U= V0 sV € Vs
If x € U and |\ — X\g| < § then Az € V' (because V is convex)
e addition is continuous:
zo, Yo € X, xo+yo € W, W € Vr
Define U := W 4 o280 V.= Ly 4 #o°2o
=UVeVrxgeU yeV
zelU,yeV=x+yeW

(iii) Assume xnzifxo
Let f € F,e>0.Denote U :={z € X | |f(z) — f(z0)| <&} € V&
ro €U =3dngeNn>ng:z, €U
= Vn > nolf(z) — f(zo)| <e

Assume f(z,) — f(xo)Vf e F

Let U € Ur with z € UL 3V € Vy withzg € V € U
V:{$€X|Gi<‘fi($i)<bi i=1,...,m}
:>ai<fi(x0)<bi 1=1,....m

=3dngeN Vie{l,...om}VYn>ng:a; < fi(z,) <b;
=Vn>ngxeVcU

(iv) Exercise without hints

Example 1: [ any set, X = R := {z : I — R} > {x;};¢; is a vector space.
”product space”. m; : X — R projection m;(z) = x(i) linear map
U C 2% weakest topology such that each ; is continuous

Example 2: X Banach space

F:={¢: X — R|¢is bounded and linear} = X*

Let U™ be the weakest topology such that each bounded linear functional is
continuous w.r.t. U"

Facts:

a) U* C 2% strong topology; induced by the norm; U™ C 2% weak topology:
uv cus

b) (X, U"™) is a locally convex vector space

¢) A sequence x,, € X converges to xg € X if and only if

(x*,29) = lim (z*,2,) Vz*e X*

Notation: Ty — Ty O Tg = W- lim Ip
0 0
n— 00
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Example 3: Let X be a Banach space, £(X,R) dualspace

Let U™ C 2% be the weakest topology on X* such that each linear functional
of the form X* — Ra* — (z*, z) is continuous (in this case F = i(X) C X**)
Facts:

a) U* C 2% strong topology
Uv c 2X° weak topology = U*" C U™ C U*

b) (X*, U"") is a locally convex topological vector space

c) A sequence z¥, € X* converges to zj in the weak*-topology if and only if
(x§,x) = lim (z},2) VexeX
n—oo

*

w .
= ahor xf = w' — limy, oo 2

Notation: z
Remark: Suppose the sequence (z*,z,) converges Vz* € X*
Does this imply that x,, converges weakly?

No, denote p(z*) = lim, o (z*, z,)

Then ¢ : X — R is linear and continuous

x,, converges weakly< ¢ € i(X) C X**

Exercise: Find an example

Lemma 3: X Banach space, K C X convex
Assume: K is closed w.r.t. the strong topology = K is weakly closed

Proof: Letzoec X\ K, K # 0
Je > 0 such that B.(zg) N K = &

hap. II Th
Chap = m 6 dz* € X*, J¢ € R such that (z*,2) < ¢ Vz € B.(xp) and

(*,2) >c VreK
=U:={reX| (z*z) <c} weakly open and o e U, UNK = & O

Lemma 4 (Mazur): x; sequence, z; — 2o = Ve > 03\q,...,\, €R
)\i > 0 Z?:l )\z =1 ||£L'0 — Z?:l )\111” <é€

Proof: K :={)> " Nz;|neN, X\ >0,>" A\ =1} convex

Lem:>m al the strong closure K of K is convex

Lem:?a 3 K is weakly closed = xg € K U

Lemma 5: X Banach space, co-dimensional
Si={eeX|le|=1} B:={reX||z]<1}
= B is the weak closure of S.

Proof: zp€ B,U e U and z¢g € U
= UNS # @. Choose ¢;, x} such that
Vi={zeX||(zf,z0—2)| <&} CU
VDO E:={x¢€X| (xf,x9 — x) = 0} nontrivial affine subspace, ENS # & O

Example: X =][!'> z, sequence, I > zq
Then x,, = g < T — 20 ||2n — 0|1 — 0

3.2 The weak* topology

Theorem 1 (Banach Alaoglu, sequentially): X separable Banach space
= every bounded sequence z; € X* has a weak*-convergent subsequence.
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Proof: D = {z1,x2,23,...} C X dense, countable.

¢ :=sup ||z || < oo
neN

= [@n, 20 < gl -zl < cflaa ]
= J subsequence(zy, , )i=;

such that (z7, 1,:31) converges.

The sequence <$;:1,1,.’L'2> € R is bounded

3 further subsequence (7}, ,)?2; such that (27, ,, x2) converges.
Induction

= 3 sequence of subsequences (z,, , )72, such that

e (z},,.,)i is a subsequence of (z},, );

e the limit lim; ... (z},, ,,7x) exists for every k € N

Diagonal Subsequence
= (x;)fil is a subsequence of ()72, and the limit lim; ... (x}, , 7%) exists for
every k € N.

= By Chapter II, Thm 2 (Banach-Steinhaus) with Y = R, J2* € X* such that
(", z) = lim (z;, ,2)Ve € X

*

—
Uz T

So x

Example 1: (M,d) compact metric space with M # @, B C 2™ Borel o-
algebra. X := C(M) separable

X* := {real Borel measuresy : B — R}

f: M — M homeomorphism.

A Borel measure u: B — [0,00) is called an f-invariant Borel probability mea-
sure if

o u(M)=1
e BeB= u(f(B)=u(B)

M(f) := {f-invariant Borel prob. meas. on M} C X*

Fact 1: p € M(f)

= [lpll = [l (M) = p(M) =1
Fact 2: M(f) is convex = Exercise.
Fact 3: M(f) # @

Proof: Fix an element z € M. Define the Borel-measure pu,, : B — R

n—1

/udun = %Zu(fk(a:))v ue C(M)

M k=0

where f¥:= fofo...of = |pu|| <1, pn>0= (Thml)3 weak* convergent
—_—

k
subsequence ft,, —

Claim: p € M(f)

w>0 /udu:lim/uduniZOVuZO
M
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M(M):/ldu:_lim 1du,, =1

11— 00

M M

u(f(B)) = m(B)VB € B

ng ’I’Lifl

Juefau=lin > u(r @) = lim - > (@)
i ' k=1 b k=1
/uofd,uz/udf*,uVue C(M)
M M
= fun(B) = p(B)YB € B
and fu(B) = (7~ (B)) 0

Example 2: X = ¢*°, elements of X are bounded sequences x = (2;)52; € R.
[#lloc = sup;en |2il

Definition: ¢, : X — R by ¢,,(z) := z,, and ||¢,| =1

Exercise: Show that ¢, € X* has no weak*-convergent subsequence, ie. for
all subsequences n; < ng < n3z < ...: Jr € X = £* such that the sequence
(fn; (2))22, € R does not converge.

Theorem 2 (Banach-Alaoglu, general form): X Banach space = the unit
ball B* := {a* € X* | |[z*|| < 1} in the dual space is weak* compact.

Remark: X* with the weak* topology is Hausdorff.
= B* is weak*-closed. Prove it directly without using Thm 2.

Theorem 3 (Tychonoff): Let I be any index set and, for each i € I, let K;
be a compact topological space = K := [[,.; K; is compact wrt the product
topology.

Remark: K ={z = (z;)ics | z; € K;} m; : K — K, canonical projection
product topology := weakest topology on K wrt which each m; is continuous.

Proof Thm 3 = Thm 2: [=X. K, := [—|z|,|z||] CR

K= ] Ko ={f: X > R[[f(2)] < [|l2]|Ve € X} C R
reX

L:={f:X —R| fis linear} ¢ R¥
e By Thm 3: K is compact

e L is closed with respect to the product topology. For x,y € X, A € R, the
functions
bry R 5 R, 5 :RY SR

given by g, (f) == fa+y) - f(2) — f(y) and d,x == f(Ax) — Af(x) ave
continuous wrt product topology. So
L =[¢,,0) N[0
T,y T,
is closed == K N L = B* is compact. Product topology on K N L =
weak*-topology on X*
O
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Definition: K any set. A set A C 2K is called FiP if A;,..., A, € A =
Ain...NA, # @. A set B C 25X is called mazimal FiP if B is FiP and
VA C 25 we have

BCcAand AFiP=A=8

Fact 1: If A C 2% is FiP, then 38 C 2% max FiP such that A C B (Zorn’s
Lemma)

Fact 2: Let B C 2 is max FiP, then:

(1) Bl,...,BnGBiBlﬂ...mBneB
(i) Ce K,CNB+oVBeB=CcB

Fact 3: Let K be a topological space. Then K is compact if and only if every
FiP collection A C 2K of closed subsets satisfies (). 4 A # @

Proof of Tychonoff’s theorem: K =[], K;. Let A C 25 be a FiP collec-
tion of closed sets. By Fact 1 3 max FiP collection B C 2K with A C B (not
each B € B needs to be closed).

To show: Npep B # @

Step 1: Construction of an element z € K.
Fix i € I. m; : K — K; projection. Denote B; := {m;(B) | B € B} C 2Ki = B,
is FiP (lfBl,,Bn € B then Wl(Bl)ﬁﬂﬂ'(Bn) D 7Ti<Bl ﬂﬂBn) 7& @)

(K; compact,Fact 3)=
N pes "B 7 2

Pick x; € (gepmi(B) Choose x = (2;)icr € K (Axiom of Choice).

Step2: zcB VBeRB

Let U € K be open with x € U.

To show: UNB # @ VB € B U open, x € U = ()3 finite set J C T

3 open sets U; C K;,i € J such that 2 € (o, m; " (U;) C U (like Lemma 2 (i)).

T; = 7TZ(£L') ey ﬂm(B)Vz S J,VB eB

(U; open)

= "U;Nmn(B)#2vVie JVBeB
=7, Y(U)NB+#2Vic JVBecB

(Fagg 2) m; NU;) € BYi € J
FLD \x () e B
e
(7 (Vi) "B # VB € B
ieJ
=UNB+#0oVBeRB

Theorem 4: X separable Banach space, K C X*. Equivalent are:
(i) K is weak® compact

(ii) K is bounded and weak™* closed

(iii) K is sequentially weak™ compact

(iv) K is bounded and sequentially weak™ closed

Exercise: M(f) as in example 1 = M(f) is weak™ compact.
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Proof of Thm 4: Exercise.

(i) « (Thm 2) (ii): use uniform boundedness (Chapter II, Thm 1)

(ii) = (Thm 1) (iii) = (definitions) (iv) = (ii)

Given z* € weak™® closure(K). Need to prove 3 sequence z € K with z — z*.
Then, by (iv), z* € K O

Theorem 5: X Banach space, F C X* linear subspace
Assume E N B* is weak*-closed, where B* := {z* € X* | ||z*| <1}
Let x5 € X*\ E. Let ¢ be such that 0 < § < infE lxg — ™|l

T*E

= Jzo € X such that (zf,2z0) =1, (x*,20) =0 Va* € E, ||lzo < %

Remark 1: FE is closed

Let 2} € F and z}, — z* € X~

Je > 0 such that [[z)]| <¢ VneN

= %" € ENDB*

=L cENB* =ENB*=2"€ckE

E closed=- 36 > 0 as in the hypothesis of Theorem 5

Remark 2: B* is closed in the weak*-topology.
Hence each closed ball {z* € X* | ||a* — §|| < r} is weak*-closed.

Proof:

Step 1 There is a sequence of finite sets S,, C B={z € X | ||z| <1}
satisfying the following condition for every z* € X*:

[a* — x5 < nd
;neas>:|<fv —20,2)| S0k V= a* ¢ B (%)
fork=0,...,n—1
Proof of Step 1: n =1 Choose Sy = &
Then () holds for n =1
n > 1: Assume Sy, ..., S,—1 have been constructed such that (x) holds.
To show: There is a finite set S,, C B such that (x) holds with n replaced by
n+1
For any finite set S C B denote

1)
E(S) == { o* € B | max|(e” — 2, 2)| < okvk

To show: 3 finite set S C B such that E(S) = &
Suppose, by contradiction, that F(S) # @, for every finite set S C B

a) The set K :={a* € E| ||* —zf|| < d(n+ 1)} is weak*-compact.
Let R :=||zo|| +d(n+ 1) Then |z*|| < R Vz* € K
so KCENRB*=R(ENB*)=:Eg

Epg is weak*-closed. So K = Egr N{z* e X*| |la" —zj]| <d(n+1)}
-~
weak”cl. by ass. weak*-closed by Rem. 2

K is weak*-closed and bounded Th:r>n 2 K is weak*-compact.

b) E(S) is weak*-closed for every S
E(S) is the intersection of K with the weak*-closed subsets
{z* e X* | masx|<x* —ay,x)| <0k} k=0,...,n—1
TESK

{o* € X* | max| (@ — a5, 2)| < dn}
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¢) S C B finite set for i € I, I finite

N E(S)=E (U Si> # @ by assumption.

el il
Let S :={S C B| S finite } Then by c), the collection {E(S) | S € S} is
FIP and by b) it consists of weak*-closed subsets of K.
By a) K is weak*-compact= (] E(S) # @

Ses
Let 2* € (| E(S)=a* € E, ||Jz* — z}|| < d(n+1),
Ses

maxzes, |(#*—af, )| <dkk=0...n—1and [{(z*—2},2)| < dn Vo e B
ie. ||* — x| < on This contradicts (x)

Step 2 Construction of xg
Choose a sequence x; € B which runs successively through all points of the set

S=U LS,
i=1
Then lim [jz;]] =0

Define a linear operator T : X* — ¢ by Tz* := ({(z*, 2;))ien
Claim: For every z* € F there is an ¢ € N such that |[(a* — x5, 2;)| > ¢
Let z* € E and choose n > M = [lz* — || < on

Step 1
2L Jk <n— 13z € Sy, such that |(z* — zf, z)| > ok

= [(z* — 2§, £)| > 0 = Ji such that z; = 7

The claim shows: ||Tz* —Txg|| >0 Va* € E
= Tz} ¢ TE
hap II, Th
Chap =G ’ Ja € ¢ = 1! such that (o, Txy) =1 (o, Tz*) =0 Vz* € E
ol < 5

Define zg := Y .0, ayx; € X.

Note 1 377, [logag]| < 3777 |ai| < oo
So by Chapter I Theorem 10, the sequence Efil Qi T; converges as m — 00

Note 2
a) (xf, ) = Zfi1 iz, x) = (o, Taf) =1
b) (z*,z0) = (o, Tax*) =0 Va*€FE

©) [lwoll < 32324 le = flafls < 5

Corollary 1: Let X be a Banach space and £ C X a linear subspace.
Let B* := {z* € X" | ||lz*| = 1}
Equivalent are:

(i) E is weak*-closed

(ii) F N B* is weak*-closed

(iii) (+E)Yt=EFE
Exercise: X Banach space, ¢ : X — X** canonical embedding
= 1(X) is weak*-dense in X**
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Proof of Corollary 1: (i)=(ii) obvious
(ii)=(iii) E C (+E)* by definition (*E = {z € X | (z*,2) = 0Vz* € E})

(LE)L > B: Let o ¢ B V25 350 € X such that (7, z0) = 1

(x*,20) =0Va* € E
=x0 €LE, (x5,10) #0 =} ¢ (LE)
(iii) = (i) E= (*E)t = [ {2 € X*| (2 2) =0} O

ze +E

weak”-closed

Corollary 2: X Banach space, ¢ : X* — R linear
Equivalent are:

(i) ¢ is continuous w.r.t. weak*-topology
(i) »=1(0) € X* is weak*-closed
(i) dJw € XVa* € X*  p(z*) = (%, z)

Proof: (iii) = (i) definition of weak*-topology
(i) = (1) definition of continuity

(19) = (4i1) wlo.g o #0

E = o 1(0) C X* is weak*-closed

Choose z§ € X* such that o(z§) =1, so z; ¢ E

Th:I>n g Jzg € X such that (xf,z0) =1 (2*,29) =0 Va* € E

Let 2* € X*

=z —p*)zfe B

= (z* — p(x*)zf,x0) =0

= (z*,x0) = o(a*){x*, x0) = p(x*) O

Corollary 3: X Banach space, ¢ : X — X** canonical embedding
S:={zeX ||z =1}
The weak*-closure of +(S) € X** is B** = {z** € X** | ||z| < 1}

Proof: K := weak* closure of ¢(5)
1. K C B** because B** is closed

2. K is convex:

Key fact: ¢ : X — is continuous
~—

X**

<~
weak top  weak™-top

Hence «(B) C K : . € B U C X** weak™® open, t(z) € U

= 1"Y(U) € X weakly open and z € .=1(U)

.Y U)NS+£2

=UNUS)£2 X (z) e K

So K is the weak*-closure of the convex set «(B) Lem:>ma ! K is convex

3. B C K

x§* ¢ K = 3 weak*-continuous linear functional ¢ : X** — R such that
sup p(z7") < p(25")

z**eK

C% 2 Jz§ € X* such that ¢(z**) = (x™*, xf)

= (g™, x5) > sup (&7, x5) = sup(zg, @) = [lag] = 25" > 1 = 25" ¢
T**eK €S

B**
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Lemma 6: X normed vector space

(i) If «7,...,25 € X* are linearly independent, then 3zq,...,z, € X such
that
(x, ;) = bij

(i) If z7,..., 2} € X are lin. indep., then
Xo:={reX|{(x],2)=0,i=1,...,n}
is a closed subspace of codimension n and Xg = span{x7,...,z%}

Proof:

(i) for n =(ii) for n: Vo € X we have: x — > 1" | (z}, z)z; € X,
This shows: X = X, @ span{zi,...,r,} and, moreover x* € Xy

=0 = (a"2-— Z(mf,@m)

n
= (2% - Z(x*,m)x;‘,x)v:v eX
i=1
n
= = Z(z*,x,ﬂf € span{zy,..., )}
i=1
(ii) for n =(i) for n +1: Let x7,...,25,, € X* be lin. indep. for i =

L,...,n+1denote X; := {z € X | (z},2) =0,j # i}

i) f
(1):(;rn

Xt = span{z} | j # i}
=} ¢ X;* = Ju; € X; such that (2], 2;) = 1

= <l‘;,$l> = 51’]’

Remark 1: Converse if z;,...,x, € X are lin. indep., then 327, ..., 2} € X*
such that (x},z;) = 0;;

Remark 2: z7,...,2; € X* lin indep, ¢1,...,¢c, €R
= Jz € X such that (z},z) = ¢; (namely: =) | ¢;z; with z; as in Lemma

6).

Lemma 7: X normed vector space, z7,...,z) € X", c1,...,¢, € R,LM > 0.
Equivalent are:

(i) Ve > 03z € X such that

(xf,xy=cpi=1,....,n |z| <M+e

(ii) YA1,..., Ay € R we have

> diesl < MY M|
i=1 i=1
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Proof: (i)=(ii):
x=x. € X asin (i). Then

|Z/\1‘Ci| = |Z/\i<$f7$s>|
HERS]
| ZAHE?H el

(M + &)Y Mzl Ve > 0

(il)=(i):
Assume z7,...,z} lin indep (w.l.o.g)
Choose = € X such that (z},z) = ¢;Vi (Remark 2). X as in Lemma 6.

. ¥ x
inf o+el = sup L2
£€Xo ozaerext ¥

[ Aiaf, @)

(by Lemma 6) = sup ——==——"—

ner o Ml
a2 A
M

IN

Theorem 6: X Banach space. Equivalent are:
(i) X is reflexive
(ii) The unit ball B := {z € X | ||z|] < 1} is weakly compact

(iii) Every bounded sequence in X has a weakly convergent subsequence

Proof: :: X — X** is an isomorphism from X with the weak topology to
X** with the weak*topology.
U C X weakly open < (U) C X** is weak*-open.

(i)=(ii) «(B) is the unit ball in X**, hence is weak*compact (Thm 2), so B
is weakly compact.

(i)=-(iii) X separable and reflexive = X* separable (Chapter II, Thm 9).
(zn) € X bounded sequence = i(z,) € X** is a bounded sequence. So, by
Thm 1, ¢(z,) has a weak*-convergent subsequence ¢(z,,)

= ©,, converges weakly.

(i)=(iii): The nonseparable case Let z, € X be a bounded sequence.
Denote Y := {ZnN:1 Anzn | N €N, € R}

=Y is separable and reflexive (Chapter II, Thm 8)
= x,, by separable case has a subsequence x,,, converging weakly in Y ie.

JreYVy" e Y™ : (y", z) = lim (y*, zy,)

11— 00

by HabpeBanach ) v o xox (x*,x) = lim (x*, xp,)

— 00
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(i)=() Let ™ € X** o™ #£0.
Claim: For every finite set S C X™* there exists an € X such that
(z%,2) = (2™, 2") Va© € S [la]| < 2=

S :={S C X* |S finite subset} and K(S) := {z € X | ||z| < 2||«**||, (z**,z*) =
(x*, x)Vz* € S}
Note:

e K(S) is a weakly closed subset of ¢B = {z € X | ||z]| < ¢} where ¢ =
2|l
e ¢B is weakly compact, by (ii).
e The collection {K(S) | S € S} is FiP, because
K(S1)N...NK(Sy) =K(S$1U...uS,) #@= [ K(S)#@
Ses
= Jo € X such that(z*, z) = (™, 2")Vz* € X~

Proof of claim:
Write S = {zF,...,25}, ¢ = (x*, af).

> hel =13 A ) =, 3 A < a3 A

Assumption of Lemma 7 holds with M = [|z**|| > 0 Choose € = ||z**|| > 0.

(iii)=-(i) Let z3* € X**,||z5*|| < 1. Denote E := {z* € X* | (a¢*,2*) = 0}
and B* := {a* € X* | ||l2*| < 1}
Claim 1: E(B* is weak*closed.

. by Cor 1 by Cor 2
Claim 1 V=2 =

E is weak*-closed
dxg € XVa* € X* 1 (xf",2") = (2%, 20) = 25" = 1(x0)

So ¢ : X — X** is surjective.
Claim 2: Vz7,...,2) € X*, 3z € X such that

(7, x) = (zg", ), i=1,....,n |z <1

i

Proof of Claim 2 Denote Uy, := {z** € X** | [(z** — a3*,2})| < L;i =
1,...n}

= a3* € Up, Uy, is weak*open. Moreover ||z§*|| < 1.

Recall the weak*closure of ¢(5),S := {x € X | ||z|| = 1} is the closed unit ball
in X** (Cor 3). = U, t(S) # @ 3Tz, € X such that

lzmll =1 (27, 2m) = {zg" i)l < — i=1,...,n

= by (iii) 3 weakly convergent subsequence z,,, — .
= |lz|| <1 and

(xf,x) = lUm (xf,zp,) = (5" 2]) i=1,...n
k—o0

Proof of Claim 1 Let 2§ € weak*closure of E'(|B*. We must prove that
x € E(B*. Clearly ||z§]| < 1. So it remains to prove (x¢*, z§) =0
Step 1 Let ¢ > 0. Then 3 sequences z,, € X,n > 1,2} € X* such that

() el <1, flag ]l <1, (257, 23,) = 0

(2) (zf,zp) = (x§*2f) i=0,....,.n—1

(3) [zy, —xf, )| <e i=1,...,n
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Proof of Step 1 Induction n = 1: a) By Claim 2, 3z; € X such that ||z;|| <
1, (z§, m1) = (xf*,z§) b) Because zfy € weak*closure (E(\B*) 3z € E(|B*
such that [(z} — f,21)| < e

= (1),(2),(3) hold for n = 1.

n > 1: Suppose z;, x; have been constructed for i =1,...,n.

a) By Claim 2,

Azpy1 € X (2], xpy1) = (x5"2f) i=0,....n |zpp| <1

i
b) 3wy, € E()B* such that [(z),, — x5, 2:)| <e,i=1,...,n
Step 2 (z3*,zf) =0
By (iii) 3 weakly convergent subsequence

Tn, =20 €X o] <1

= by Lemma 4 3m € N 3\{,... ;)\, >0
(@) X A =1 Jlwo — 302, Aiwil| <e
a) (x;,,xo) = lim (z),, x,,) = lm (5", 2;) =0

m? m? g m
11— 00 1—00

b)
(by a) i i
g, at)l < [t wg) — (@ D N )|+ [ @ D N — o
i i=1
< Do Nilaptag) — ()| 4| i — o
' <eby (3) i
<(3) by(4)
< 2e
O
3.3 Ergodic measures
(M, d) compact metric space, f : M — M homeomorphism
M(f) := {f-invariant Borel probability measure p : B — [0,00)}
B c 2M Borel g-algebra, u(M) =1, u(f(E)) = p(E) VE € B
We know: M(f) nonempty, convex, weak*-compact.
Definition: An f-invariant Borel-measure ;1 € M(f) is called ergodic,
iftVAeB A= f(A)= uA)e{0,1}
1 NeA 1 SeA
. _ 2 _ _
Example: M = 5% dn(A) = { 0 N¢A ds(A) = { 0 S¢A where

N stands for north pole and S for south pole.

Definition: X vectorspace, K C X convex

z € K is called an extremal point of K, if the following holds:
zo,r1 € K
x=(1—Nxzo+ Az S T0=T1 =T
0<A<l1

Lemma 8: ;€ M(f) extremal point=- 4 is ergodic
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Proof: Suppose not.

= JA € B such that A = f(A), 0 < p(A) <
Define pg, p1 : B — [0,00) by po(E) := £
po, 1 € M({),  po # p, p1 # p
p=(1=XNpo+ A A= p(A)

= [t is not extreme O

Theorem 7 (Krein-Milman): X locally convex topological T2 vectorspace
K C X nonempty, compact, convex

E := set of extremal points of K

C :=convex hull of E :={>"""  Nje; |e; € EXN; >0 > N =1}

= C = K (in particular C' # @)

Corollary: Every homeomorphism of a compact metric space has an ergodic
measure

Proof: Apply Theorem 7 to the case X = C(M)* with weak*-topology
and K = M(f) O

Proof of Theorem 7:

Step 1 A, B C X nonempty, disjoint, convex sets, A open = 3 continuous
linear functional ¢ : X — R such that ¢(a) < bin]fg pb) Yaec A
€

Proof of Step 1: Hahn-Banach as in Chapter II Theorem 6

Step 2 Vax € X, x #0 3 linear functional ¢ : X — R with ¢(z) #0
Proof: Choose an open convex neighborhood A C X of 0 such that = ¢ A.
Denote B = {z}. Now apply Step 1.

Step3 FE#O

Proof:

A nonempty compact convex subset K’ C X is called a face of K if
rve K' xg,71 € K

K cKand z=(1—-Nzo+Mx1 p=z9,21 € K’
0<A<l1

Denote K := {K C X | K is nonempty, compact, convex}

K is partially ordered by K’ C K (%gf K’ is a face of K

e K XK
e KK K xK=K =K
e ("X K K xK=K'<xK

If C C K is a chain, then Ky := () C € !
cec
Because of the FIP characterisation of compactness we have Kg # &

Zorns Lemma implies: For every K € IC, there is a minimal element Ky € K
such that Ky < K

Claim: K, = {pt}

Suppose Ky 3 zg,x1 g # 21

Step 2
2L Jp : X — R continuous linear such that p(x1 —x9) > 050 p(z9) < (1)

Ki:=Kone (sup ¢(z)) € K = K; < Ko and Ky # K; since 7g € Ko \ K1
rze Ky
So Ky is not minimal. Contradiction.

Claim= Ky = {z¢} = 2 € E (by definition of face)
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Step 4 K = C
Clearly C C K -
Suppose C' G K, let zp € K\ C

tep 1
5 2 Jp : X — R continuous linear such that ¢(xg) > sup ¢
c
Ko:= KNy l(supyp) is a face of K and Ko NC = @
K

Step 3
:E Ky has an extremal point e
= e is extremal point of k'
Contradiction, because e ¢ C O

(M, d) compact metric space
f: M — M homeomorphismus, 1 € M(f) ergodic
u : M — R continuous, xr € M

Question: L 377 u(fF(x)) - Jarwdn

Theorem (Birkhoff): Vu e C(M)3A € Bsuch that f(A) =A u(A) =1
[yyudp= lim L Z;é u(fF(z)) VxeA

Without proof

Theorem 8 (von Neumann): (M,d) compact metric space, f : M — M
homeomorphismus, u € M(f) ergodic, 1 < p < 0o

= tim [R5 () — fyyuan] | =0

Theorem 9 (Abstract Ergodic Theorem): X Banach space, T € L(X), ¢ >
1
Assume ||T"|| <c¢ VneN
—1
Denote S, := 1 370 TF € £(X)
Then the following holds:

(i) For x € X we have: (S,x)nen converges < (S,2)nen has a weakly con-
vergent subsequence.

(ii) The set Z := {x € X | S,a converges} is a closed linear subspace of X
and
Z=Ker(1-T)®Im(1-1T)
If X is reflexive Z = X

(iii) Define S: Z — Z by S(x+y):=x zecker(l-T),yeIm(l-1T)
Then Sz :=1lim, .00 Spz VzE€ Zand ST=TS=S52=S5, S| <c

Proof of Theorem 9= Theorem 8 X = LP(u) Tu:=wuo f
Jog lwo fIPdp = [y [ulP dp, so | Tull, = |lull,

IT]=1 VkeN

(Snu)(z) = & 337 ulf* ()

To show: nh—>H;<> | Snu — fMuduHLp(u) =0

Equivalently Claim 1: (Su)(x) = [, udp Vxe M

(By Theorem 9 we have S,u — Su in LP(u) )

Claim 2: Tv = v = v = const.
Claim 2= Claim 1: Su € Ker(1 -T) = Su=c¢

c:fMSudu:nli_)rr;ofMSnudu:nli_{rgoizz;éfMuofkdu:fMudu

Proof of Claim 2:

v: M — R measurable, [, |[v[’ du < co

[v] € LP(u) Tv] = [v] & vo f = v almost everywhere
Ey:={zr e M |v(z)# v(f(r))} measure zero

= E= U fH(E0) w(E)=0
keN
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M\E=ANUAUA_
A={zeM|v(x)=ct Ar={xeM]|+uv(zx)>c} wherec:= [, vdu
= Ao, Ay f—invariant, (Ao) + p(Ay) + (A=) =1

M erg)dlc ji(Ag) = 1

because otherwise: p(Ay) =1so [, vdu>c
or p(A_) =1so [, vdu <c O
Let A e L(X,Y).

Definition: The dual operator of A is the bounded linear operator A* €
L(Y*, X*) defined by (A*y*, z) := (y*, Azx) for y* € Y* and x € X, ie.

*

x2-y-YLspr

o
Remark: |[|A*]| = ||4]|
Proof:
A"yl
A% = p
v#0 vl
= Sup Sup o
y=2£0 220 ||z - [ly* |l
(y*, Ax)

= SUp
o ly*|l - 1zl
z#0

by Hahn-Banach HAJ?”

a0 |||
= 1A]l

Proof of Thm 9: X isspace. T € L(X),c > 1,||T*|| < ¢,k = 0,1,2,....
Denote S, := = 3272 T*

Step 1
1+c¢

[Snll < ¢ [|Sn (T =T <

Proof

n—1
1
15all <~ S ITHI < e
k=0
1 1 1
S,(1-T)==y TF—=N"TF=—(1-1"
P A

Step 2 Vz,& € X with Te = = we have ||z]| < c|lx + & —T¢||.

Proof z=Tzx=T?z=...= S,z =x2VYneN.
Also, by Step 1, lim,, o [|Sn(§ = TE)|| =0

= llall = lim ||S,(z + €~ TO)| < ellz +& — T¢]

<cllz+E-T¢||
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Step 3
zeker(1-T),y cim(l1-T) = |z|] <c|z+yl

Proof
3¢, € X such that &, —T¢, — y
= by Step 2 |jo]] < cllz + &, — T&, |
—_———

-y

n—oo

= [lzll < cllz +yl

Step 4 ker(1—T)Nim(1—7T) = {0} and the subspace X := ker(1 - T) @&
im(1—1T) is closed

Proof For z € ker(1—T7) Nim(1 —T) choose y := —z in Step 3 =z =0
Let z, € Xgp,z2 = lim z, € X.

n—oo
Write 2z, = @y, + Yn, Tn € ker(1—T),y, € im(1—1T)

by Step 3
= Zn — zmll < cllzn — 2ml|

= x, is Cauchy

= The limits exist and = := lim z,, € ker(1-T),y := lim y, € im(1 —¢),z = z+y € Xo

n—oo

Step 5 Let z =2 +y € Xy where x € ker(1-T),y € im(1 —T).
=S, € Xg for all n € N and lim,, ... Spz =z

Proof
a) x=Tx = S,z =z € Xy
b) Choose & € X such that & — T¢, — y. Then

Spy = klim Sp(1—T)&
= lim (1-1T7)5,&
K — 00 e —
€im(1-T)
€ im(1-T)
¢) By Step 1,
1+c
I8a (€T < —liglve € X
So S,y — 0Vy e im(1—1T)
= (by Ch II, Thm 2 (ii)) S,y — OVy € im(1—1T)
= Spz=x+ Spy — .
Step 6 Let z,2z € X. Equivalent are
(i) imy—oo Spz ==

(ii) 3 subsequence n; < ng < ng < ... such that

w— lim Sy,z ==
i—00

(i) Te =2,z —z € im(1—T)
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Proof (iii) ™ 2577 (1) L (i),
(ii) = (iii)
(", Tx —x) = (Trz*—2a" x)
RAS lim (T"z* — 2", Sy, 2)
1— 00
= lim (2", T —1)S,, 2)
11— 00 %,—/
< e
= 0 Va*e X" by Step 1
= by Hahn-Banach Tz — x = 0.
Suppose z* € (im(1 — 7))+
=@, (-TE =0VEe X
= (¢" =T 2", &) = 0V¢
=" =T = (T*)%" - 2" = S} 2*Vi
(x*,z —x) @ lim (x*, 2 — Sy, 2)
= lim (2" - S}, 2%, 2) =0
Soz—z et (im(1—-T))*%) =im(1-T). % Theorem 9.
Xy = X in the reflexive case. O
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4 Compact operators and Fredholm theory

4.1 Compact operators

Lemma 1: XY Banach spaces, K € L(X,Y). Equivalent are:

(i) If z,, € X is a bounded sequence then K, € Y has a convergent subse-
quence

(i) If S C X is a bounded subset then KS is a compact subset of V.
(iii) The set {Kz | ||z]| < 1} C Y is compact.

The operator K is called compact if it satisfies these equivalent conditions.

Proof: (i) = (ii):
To Show: Every sequence in K S has a Cauchy subsequence (see Ch I, Lemma
7). Let y, € KS. Choose z,, € S such that y, = Kz,

= 1, is a bounded subsequence (——Z; Kz, has a convergent subsequence Kx,, =
Yn, = Yn, is Cauchy.

(if) = (iii): take S:={z e X | ||z] < 1}

(iii) = (i): #n € X bounded. Choose ¢ > 0 such that ||z,| < c¢Vn

(:>) K== has a convergent subsequence = Kz, has a convergent subsequence
O

Example 1: 7 : X — Y surjective, dimY = oo = T not compact. (open
mapping theorem) {Tz | ||z]| < 1} D {y € Y | |jy|| < 6} for some § > 0 not
compact.

Example 2: K € £(X,Y),imK finite dimensional = K is compact.

Example 3: X = C'([0,1]),Y = C°([0,1]),K : X — Y obvious inclusion
= K is compact. Arzela-Ascoli.

Example 4: X =Y =/ 1<p<oo A, Ag,... € R bounded.
Kx := ()\11‘1, )\2%2, )\3%37 .. )

K compact & lim A\, =0
n—oo
(exercise).

Theorem 1: XY, 7 Banach spaces
(i) Ae L(X,Y),Be L(Y,Z)

A compact or B compact = BA is compact

(ii) K, € L(X,Y) compact v =1,2,3,... K € L(X,Y) such that
lim, . ||[K, — K|| =0 = K is compact.

(iii) K compact < K* is compact.
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Proof: (i): Exercise
(ii): @, € X bounded, ¢ := sup,,cy ||zn|| < 00

Diagonal Sequence Argument: 3 subsequence x,,, such that (K, xz,, )52, is Cauchy
for every v € N.

Claim: (Kw,,)2, is Cauchy.

e > 0. Choose v such that [|[K, — K| < .

Choose NVi,j > N : | K, x,, — K2, || <

£
3.

CEN K~ K, | < (K = Kzl + Ko, — Kyan, |+ 1(K, — K)an, | <

<K =Kl len; <51 <3 <

wlm

(iii): K compact = K* compact.
Denote M = {Kz | ||z|| <1} CY.

M is a nonempty compact metric space. For y* € Y™ denote fy- := y*|u €
C(M). Let F := {f,- | |y*l| <1} € C(M).
Note:
Il fye = sup |fy-(y)]
yeM
= sup(y",y)
yeM
= sup (y", Kx)
lzll<1
= sup (K'y" )
lzll<1
= K"y

F is bounded
f=fy e F=f=1Ky <Ky

<K

of

F is equicontinuous
f = fy* Efvy* S Y*a ||y*H S 1.

= |fy) = fy)l = Ky" yr —v2)|
< Ny lllyr — vall
<y — vl

Arzela-Ascoli = F is compact in C(M) = K*is compact. y: € Y* ||y*|| <1
= fn =y |m € F = f, has a convergent subsequence f,,

| Ky || = [ frs = fny || = (K5, )=, is a Cauchy sequence = K™y converges.
K* compact = K compact K* compact = K** compact.

X H* > Y H*
KR

g tyo K = K*ou1x : X — Y* is compact.
If 2, € X is bounded = 1y (Kx,) has a convergent subsequence = Kz, has a
convergent subsequence.

O

Lemma 2: X, Y Banach spaces, A € L(X,Y)
(i) ImA)* =KerA* +(ImA*) =KerA
(ii) A* injective < Im A dense in YV

(iii) A injective < Im A* is weak™ dense in X*
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Proof:

(i) Let y* € Y*
y* € (ImA)t & (y*,A2) =0 Vo e X & A*y* =0
————
(A*y*,y)
Let # € X. Then z € + (Im A*) <
(A"y*,2) =0 Vy*eY™* Hahn—(l_é)anach Az
—_——

=0

(ii) A* injective < Ker A* =0 0 (ImA)+ =0
< Im A is dense in Y (Chap. II, Cor. 2 of Theorem 7)

(iii) A injective < Ker A =0 < ( Im A"t = X*
N———

weak™ closure of 1m A~

Example 1: X =Y =H =?
)

. X X
Ar = (w1, 3,5, ...

A* = A injective, Im A # H %)00:1 €li’\ImA

Example 2: X =1'Y =¢y, A:1' — ¢y inclusion
A* 11 — [ inclusion, Im A* = I* C [* not dense
A** 2 (1°°)* — [*° not injective.

When is Tm A = L+ (Im A*) or Im A* L (Ker A)*+

Theorem 2: X,Y Banach spaces, A € L(X,Y)
Equivalent are:

(i) Im A is closed in Y
(ii) e >0V e X Aing |z + & < cl|Az||

(iii) Im A* is weak*-closed in X*
(iv) Tm A* is closed in X*

(v) 3e=0vyr e Y™ inf [y +n"| < c[A"y"|
it

If these equivalent conditions are satisfied, then:
ImA =+ (Ker A*), Im A* = (Ker A)*

Lemma 3: X, Y Banach spaces, A € L(X,Y), e >0
Assume {y € Y| [ly|| <e} C {Az| ||z <1} (*)
Then: {y €Y | |lyll < 5} € {Az | [l«f| <1}

Proof: Chapter II, Lemma 2, Step 2 O

Remark 1: In Chapter II we proved:

A su]rjectiveBgre (%) Lem:r>n a3 4 open

Remark 2: (%) = A is surjective
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Proof of Theorem 2 (i)=-(ii) Denote X := X/Ker 4, Yy :=Im A

A induces an operator A : Xg — Yy by Aglz] := Az

Note: [z1] = [22] = 21 — 22 € Ker A = Axy = Axa, s0 Ay is well defined
Ay is a bijective, linear operator

ing th
open mapping thm Ayt Yoy — Xo bounded

=320V € X1 nf flo+ €l = el o < clAolelll = el Al
(ii)=(iii) Claim: Im A* = (Ker A)* = [ {2* € X*| (z*,2) = 0}
r€Ker A

Let z* € (Ker A)* ie. (z*,2) =0 Vz € KerA
Define ¢ : Im A — R ¢(Ax) := (z*, x) well defined
1 is bounded: V¢ € Ker A :

[Y(Az)| = [(z™,x + )| < ||95*H||9fj)L§H

so [f(Av)] < flo”|| inf flz+&ll < el | Az]
Hahn-ganach Jy* € Y* such that (y*,y) =¢¥(y) VyeImA
= (A", x) = (y*, Az) = P(Az) = (z",2) Vo e X

= A*y* =" € Im A*

(iii)=(iv) obvious

(iv)=(v) follows from (i)=-(ii) with A* instead of A

(v)=(i) Case 1:A* is injective

If 3¢ > 0Vy* € Y™ |ly*|| < c||[A*y*||, then A is surjective
Claim: A satisfies (+) in Lemma 3 with ¢ = 1

(Then by Lemma 3, A is surjective)

Proof of the claim: Denote K := {Ax | ||z| < 1} closed, convex, nonempty

To show: yop € Y\ K = ||yl > ¢

Chap. II, Thm 6

Let yo e Y\ K ap = m Jyg € Y* such that (y5, yo) > sup(yg,y)
yeEK

= ||[A*y5ll = sup (A*y§, x) = sup (y5, Az) = Sulg<y8‘7y> <{y5,y0) < llwsll llyoll
ye

flfl <1 flll<1
lAG Yo I 1
= 0200 > L — ¢
lyoll > Hpet™ = 2

Case 2: A* not injective

Denote Yy :=Im A* Y7 2 V*/(ImA)L =Y*/Ker A*

Ay: X =Yy Aj:Yy=Y*/Ker A* — X*

Aj is the operator induced by A*

By (v) we have: |[[y*]lly- ke 4+ < cll A%y

= Aj satisfies the hypotheses of Case 1

= Ay is surjective ImA = Im Ay = Yy = Im A = Im A is closed

=ImA= 1 (ImA)+) =+ (Ker A¥) O

Corollary: X,Y Banach spaces, A € £(X,Y)
(i) A is surjective if and only if e > 0Vy* € Y™ ||y*|| < ¢||A*y*||

(ii) A* is surjective if and only if e > 0Vz € X ||z|| < c||Az||

Proof:

(i) A is surjective < Im A closed and Im A dense
< (v) in Theorem 2 and Ker A* =0

(if) A* is surjective < Im A* weak™ closed and Im A* weak* dense
< (ii) in Theorem 2 and Ker A =0

Remark 1: X,Y,Z Banach spaces, A € L(X,Y),B€ L(Z,Y),ImB CIm A
= 3T € L(Z,X) AT = B (Douglas Factorization)
Hint: T:= A"'B: Z — X is closed
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Remark 2: Aec L(X.,Y), Be L(X,Z)
Equivalent are:

(i) ImB* C Im A*
(ii) e > 0Vz € X||Bz| < || Az||

Hint for the proof:B = id see Corollary (ii)

(i)=-(ii) Douglas Factorization (when A* is injective)

(ii)=(i) Prove that

¥ €ImA* < Je > 0Ve € X [(z*, x)| < ¢||Az|| as in Proof of Theorem 2

Remark 3: X reflexive, A € L(X,Y), B € L(Z,Y)
Equivalent are:

(i) InBCImA
(i) Je > 0Vy* € Y™ [[B*y"| < c[[A"y"|

Hint for the proof: (ii)Reg)1 2 Im B** C Im A**

Example: X reflexive cannot be removed in Remark 3:
X=cy,Y=I017Z=R

A: X =Y Ax = (%)nZI B:Z—Y Bz:= (%)20:1 el?
A, B satisfy (ii) in Remark 3, but not (i)

o0

4.2 Fredholm operators

Definition: X,Y Banach spaces and A € L(X,Y). kerA:={z € X | Az =
0},imA := {Az | + € X}. Define coker A := Y/A. A is called a Fredholm
operator if

e im A is a closed subspace of Y
e ker A and coker A are finite dimensional

The Fredholm index of A is the integer index(A) := dim ker A — dim coker A.

Lemma 3: X,Y Banach spaces, A € L(X,Y)
dim coker A < oo = im A closed.

Proof: dimcoker A < oo = Jyi,..., ¥y, €Y such that [y;] € Y\ im A form a
basis

=Y =imA®span{y1,...,Ym}

Denote X := X x R™ (x,\) € X

(@, M)llx = [lzllx + [|Allzm

Define A : X —Y by A (z,)):=Az+>.", Ny

= A € L(X,Y). A is surjective and ker A = ker A x {0}.

T2 30 > ova € X inf 4+ €|l x < cllAz|y

i.e.

XV\A€R™: inf A
Vo e XV € Alglonﬂerf”XJr” |

e < cllAz+ > Nwilly

hm?2

= Ai?—fo Iz + €llx < cllAz]y 2% im A closed

Remark: Y Banach space, Yy C Y linear subspace, dimY /Yy < oo
2 Y} is closed.
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Lemma 4: X,Y Banach spaces, A € L(X,Y)
A Fredholm < A* is Fredholm.
In this case: index(A*) = —index(A).

Proof: By Thm 2 im A closed < im A* closed. In this case we have im(A*) =
(ker(A))+ and ker(A*) = (im(A))P*"P. Hence

(ker A)* =2 X* /(ker A)t = X*/(im A*) = coker(A*)
(coker A)* = (Y/im A)* = (im A)* = ker(A*)
= dim coker(A4*) = dim ker(A) dim ker(A*) = dim coker(A) O

Example 1: XY finite dimensional = Every linear operator A : X — Y is
Fredholm and index(A) = dim X — dimY".

Proof: dim X = dimker A + dimim A (by Linear Algebra) O

Example 2: X,Y arbitrary Banach spaces, A € L(X,Y) bijective = A Fred-
holm and index(A4) =0

Example 3: Hilbert spaces X =Y = H = (%2> 2 = (11, 22,...)

Define Ay : H — H by Agx := (Tp41,Tp42,...) shift = A is Fredholm and

index(Ag) = k

H =~ H* with (z,y) = Y oo, ;y;. So A* : H — H is defined by (z, A*y) :=

(Az,y).

Ay = (0,...,0k,x1,22,...) so Ay =: A_py, where A_; is Fredholm and
——

index(A_x) = —k.

Lemma (Main Lemma) 5: X,Y Banach spaces and D € L(X,Y). Equiv-
alent are:

(i) D has a closed image and a finite dimensional kernel.

(ii) 3 Banach space Z and 3 compact operator K € £(X,Z) and 3¢ < 0 such
that Vo € X ||z]|x < c(||Dz|ly + |Kz| z)

Proof: (i)=(ii): Z := R™ m = dimker D < oo. Choose an isomorphism

® : ker D — R, HePnBamach 5 0 ded linear operator K : X — R" such that

Kx = ®aVr € ker D. Define D : X - Y xR"™ by D z:= (Dz, Kx)

= imD = imD x R™ closed and ker D = {0} T2 3¢ < OV € X with

[z]lx <e|D allyxpm = c([|Dzlly + [[Kz|gm)

(i) = (i):

Claim 1 Every bounded sequence in ker D has a convergent subsequence.
(= dimker D < oo, by Chapter I, Thm 1)

compact

Proof of Claim 1 Let z,, € ker D be a bounded sequence K = 3 subse-
quence (x,,)2, such that (Kx,,); converges

= (Dxy,); and (Kx,,); are Cauchy sequences

= (xp,) is Cauchy, because

me - l'n7|| < C”D‘rnl - Dl’n7|| + CHK‘rnl - Kxnj ”

X complete
=" (zp,) converges.

Claim 2 3C > 0Vz € X :infpe—g ||z + || < C||Dz| (By Thm 2, this implies
that im D is closed).
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Proof of Claim 2 Suppose not. = Vn € N3z,, € X such that infpe—g ||z, +
£l > nf| Dy

Without loss of generality we can assume inf pe—g ||z, +&|| = Land 1 < ||z, || < 2
= [|[Dz,|| < + so =

a) Dz, — 0
b) 3 subsequence (z,,); such that (Kx,,) converges

= (Dxy,); and (Kx,,); are Cauchy
&) (2n, )i is Cauchy
= (zp,) converges. Denote x := lim;_ o0 n,

= Dz = lim; o Dy, 90 and 1= inf pe—o |xn, +&|| < ||zn, — 2| O

Theorem 3: (another characterization of Fredholm operators) X,Y Banach
spaces, A € L(X,Y) bounded linear operator. Equivalent are:

(i) A is Fredholm
(ii) IF € L(Y, X) such that 1y — FA,1y — AF are compact.

Proof: (i)=(ii):
Xy := ker A C X is finite dimensional. So 3 a closed subspace X; C X such
that X = Xo D Xl.
Yy :=im A C Y is a closed subspace of finite codimension. So 3 finite dimen-
sional subspace Yy C Y such that Y =Y, ® Y.
Consider the operator Ay := A|x, : X1 — Y;. Then A € £(X;,Y7) and A; is
bijective. P =P AT € £(vy, X))
Define F: Y — X by F(yo +v1) := A7 'y for yo € Yo, y1 € V1.
Then F € L(Y, X):

FA((EO + Zl) = FAlel =X

AF(yo +y1) = AAT 'y =

:>1x—FA:HXO:X%XOEBXlHXQCXandly—AFZHYO:Yg
Yo+ Y:r — Yy CY compact

(ii)=(i):

K :=1x —FAe L(X,Y) compact

|FAz + Kz| x
[1FAz||x + || Kzl x
[N - Az lly + ([ Kl x
c([[Azly + [ Kz x)

= |lzllx

IAIACIA

where C := max{1, | F||}

L 5 . . . 3
“Z° A has a finite dimensionl kernel and a closed image.

L:=1y—AF € L(Y) compact Thl e ig compact and y* = L*y*+F* A*y*Vy* €
Y*
= with ¢ := max{1, ||L||} we have

ly*Il < c(JA*y* 1L y*]]) FmBeS qim ker A* < oo with dim ker A* = dim coker A.
O

Theorem 4: X, Y, Z Banach spaces,
A€ L(X,Y), Be L(Y,Z) Fredholm operators
= BA € L(X, Z) is a Fredholm operator and index(BA) =index(A)+index(B)

62



4  Compact operators and Fredholm theory 04.01.2007

Proof: By Theorem 3, 3F € L(Y,X), 3G € L(Z,Y) such that
1x — FA, 1y — AF, 1y — GB, 1; — BG are compact =

a) 1x —FGBA=1x — FA+F(ly — GB)A compact by Theorem 1
N—— N——
compact compact
b) 1 — BAFG =17 — BG + B(ly — GB)A is compact
= BA is Fredholm by Theorem 3.

Proof of the index formula:

Ao :ker BA/ker A — ker B [z] — Ax

By:Y/imA —imB/im BA [y] — [By]

= Ay is injective, By is surjective

im Ay =im ANker B

coker Ag = ker B/(im A Nker B)

ker By ={[y] € Y/im A | By € im BA}

={[y] € Y/im A | 3z € X such that By = BAxz}

={ly] €Y/im A | 3z € X such that y — Az € ker B} = (im A + ker B)/im A
= ker B/(im A Nker B) = coker Ay

= 0 = dim ker By — dim coker Ag — dim coker By + dim ker Ag

= index Ag + index By

= dim(ker BA/ker A) — dimker B 4 dim coker A — dimim B/ ker BA

= dim ker BA—dim ker A—dim ker B+dim coker A—dimker Y/im BA+dimY/im B
= index BA — index A — index B O

Theorem 5 (Stability): X, Y Banach spaces, let D € L(X,Y) be a Fred-
holm operator

(i) Je > 0 such that VP € L(X,Y) we have
IP|| < e = D+ P is Fredholm and index(D + P) = index(D)

(ii) If K € L(X,Y) is a compact operator, then D 4+ K is Fredholm and
index(K + P) = index(D)

Proof: (i) By Lemma 5, 3 Banach space Z, 3 compact operator L € L(X, Z),
Jde > 0 such that ||z|| < c(||Dz|| + || Lz||) Vze X

(because im D closed, dim ker D < o0)

Suppose P € L(X,Y) with [|P[| < 1
Then [lz|| < c(|Dz|| +[|L=]]) < c([(D + P)z| + || Pz|| + || L=])
<c(l(D+ Pz| + |[Lz|) + cll Pl ||«

= (I =PIl < e(l(D+ P)a|| + | L)

= llzll < =y (D + P)z|| + [| L))

Lem:r>n as D + P has a closed image and a finite dimensional kernel

(provided || P|| < 1)

(coker D)* = (Y/im D)* = (im D)+ = ker D*

dimker(D + P)* < oo for ||P|| = ||P*| sufficiently small
(by the same argument as for D + P)

Index formula:
X:XQ@Xl X():keI‘D,Y:YO@H Y1:11’I1D
Then P(’IO —+ IL‘l) = P()OIO + P01£171 +P10:Z’0 —+ Pllxl

€Yy €Yy

Poo  Po 0 0
P = D =
<P10 Py 0 Dn
D11 : X1 — Yl is bijective
= 14 Dy P11 is bijective as well for || Py || small.
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= D11 + P11 is bijective for ||P|| small.

Let x =20+ 21 9 € Xo, 21 € X7. Then:

(D+ P)x =04 Pyxo+ Poix1 =0, Piorg+ (Pii + Diy)z1 =0

& x1 = —(D11 + Pi1) ' Piozo, (Poo — Po1(D11 + Pi1) ' Pio)zo =0

Denote Ag := Pyg — POl(Dll + P11)71P10 :Xo— Y

Then ker(D + P) = {1’0 — (Dll + P11)71P101'0 ‘ xo € keer}

so dim ker(D + P)=dim ker A

Let x=204+21 20€Xo, 1 €X99y=9+y1 Yo € Yo, y1 €Y1

Then: Yy = (D + P)x = Yo = P()oxo + ]301.1317 Y1 = PleO + (Dll + Pn)a:l

< yo = Poozo + Po1 (D11 + Pi1) "t (y1 — Piowo), 1 = (D11 + Pi1) " (y1 — Piozo)
& yo = Aowo + Po1 (D11 + Pi1) " 'yr, 21 = (D11 + Pin) H(y1 — Prozo)

Hence y € im(D + P) < yo — Po1 (D11 + Pi1) " 'yr € im Ay (%)
This implies coker Ay 2 coker(D + P)!

Indeed, choose a subspace Z C Yy C Y such that Yy =im Ay @ Z

Then by (%) Y =im(D + P)& Z

im(D+P)NZ=0:

Y=Yy t+y € 1m(D +P) N Z, then Yo — P01(D11 + Pll)ilyl S ion, y1 =20
soyp € ZNimAsoy=0,y1 =0

Given y = yg +y1 € Y, write

Yo — POI(Dll + Pll)_lyl = Aol‘o +z zeZ, then

(o—2)+ty=y—z ¢ im(D + P)

Hence index(D + P) = index Ag = dim X — dim Yy

= dim ker D — dim coker D = index D

(ii)By Theorem 3 3T € L(X,Y) such that 1x — T'D, 1y — DT compact

—1x —- T(D+K), ly — (D + K)T compact ™23 D } K Fredholm

Fr:={A € L(X;Y) | A Fredholm, index A = k}

open subset of L(X,Y) by (i)

U Fr =: F(X,Y) = {Fredholm operators X — Y}

kEZ

We have proved D +tK € F(X,Y) VteR

Consider the map v: R — F(X,Y)t — D +tK

7 is continuous

So I, ==~y (Fr) = {t € R | index(D + K) = k} is open Vk € Z
= R = |J I disjoint union

kEZ
= each I is open and closed
Jk € Z such that I, = R = index(D) = k = index(D + K) O

Example: X Banach space, K € £(X) compact
= 1— K Fredholm and index(1 — K) = 0 = dimker(1 — K) = dim coker(1 — K)

Fredholm alternative
Either the equation x — Kx = y has a unique solution Vy € Y
or the homogeneous equation z — Kz = 0 has a nontrivial solution

Application to integral equations like z(t) + fol k(t,s)x(s)ds=y(t) 0<t<1
Remark: We well prove in Chapter V: dm > 0 such that:
index(1 — K)™ = index(1 — K)™*!

By Theorem 4 this implies mindex(1 — K) = (m + 1) index(1 — K)
so it follows also index(1 — K) =0
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5 Spectral Theory

5.1 Eigenvectors

For this whole chapter: X complex Banach space and [|[Az| = |\|||z||VA € C.
L(X,)Y) ={A: X — Y | Acomplex linear bounded}, X* = L(X,C) and
L(X):=L(X,X).

Let A € L(X):

A € C eigenvalue & dJr € X x#0 Ar=\x

Definition: Let X complex Banach space and A € L(z). The spectrum of A
is the set

o(A):={AeC| A 1— Aisnot bijective} = Po(A) U Ro(A) UCo(A)

Po(A) ={\ € C| Al — A is not injective} point spectrum
Ro(A) = {X € C| Al — A is injective and im(A1 — A) # X'} residual spectrum
Co(A) ={X € C| Al — A is injective and im(A\l — A) = X,im(A1 — A) # X} continuous spectrum
p(A) :=C\o(A) ={A e C| Al — A is bijective} resolvent set

Remark: X real Banach space, A € L£(X) bounded real linear operator.
spectrum of A: o(A) := o(Ac

Ac : X¢ — X complexified operator

Xe=XxX=XdiX>z+1y

Ac(z +iy) == Az +iAy

Example 1: X = (2 > (21,22,23,...) and A = (A1, A2, ...) bounded sequence

in C. Set Az := (A1$1,A2,JJ2,. . .), PO’(A) = {A1,>\2, .. .}, O'(A) = PO’(A)

Example 2: X =/2D:={z€C||z| <1}

Bz = (0,1’1,1’2, . )
Po(B) =92

Lemma 1: A€ £(X). Then o(A*) = o(A).

Proof:
(AL —A)"=X1—- A"
Claim
A bijective & A* bijective (A7')* = (4*)~!
A bijective & imA closed iImA=X kerA=0
ChIV’ThWég’Lemmaz im A* weak*closed kerA® =0 im A* weak*dense
& A* bijective
((A=h) 2", y) (x*, A"y
_ <A*(A* _lx*,A_1y>
= (A7) 'ar, 447 y)
(A t2* y)Vy € X, Va* € X*
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= (A7 2* = (A*) " la*va* € X*

5.2 Integrals

Lemma 2: X Banach space, z : [a,b] — X continuous

b
=3 e XVz" € X*: (2",&) = /(x*,x(t))dt

b
Notation: [ x(t)dt := ¢ is called the Integral of x.

a

Proof (exercise with hint): Define ¢, := 2161 Lar(a+ k(gza))
O 1= sup|;_y<ba [[2(t) — z(s)]| — 0

Show that: ||£ntm — &nll < (b—a)d,Vm > 0= &, is Cauchy.
Denote ¢ := lim,, o &, and check (*). O

Remark:

1.

8 —o

o(t)dt + [2(t)dt = [ 2(r)dt

x(t) +y(t)dt = fbx(t) dt+fby(t) dt

a

N
[ —c

3. ¢:|a, 8] — [a,b] Cl-map
#(83) B .
z : [a,b] — X continuous. Then [ z(t)dt = [z(d(s))¢(s)ds
#(a) @
b
4. If z : [a,b] — X is continuously differentiable, then [ &(t)dt = z(b) — z(a)

a

b b
5. A€ L(X,Y)and z : [a,b] — X continuous. Then [ Az(t)dt = A [ z(t)dt

(=2

b b
A fa@) el < [ ()] dt

a
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Proof: By definition: Vz* € X*.

b

/(x*, x(t) dt

(x*7/bx(t) dt)

IN

)
/ (" ()]

b
< / |- ()]t

b
|- / ()] e

N

Now use:
b

b | [{a*, 2(t)) dt
/x(t) dt|| = sup =

w0l

Notation: Let X be a Banach space, 2 C C an open subset, f: Q2 — X a
continuous map, and 7 : [a, b] — € be continuously differentiable.

b
Denote: [ f(z)dz = [ f(7(¢))¥(t)dt € X

Remark:

/ F(2)dz|| <1(7) -supa < t < B F(4(0)]

~

b
I(y) = / 4]

Definition:  C C open set. X complex Banach space, f : 2 — X is called
holomorphic if the limit f'(z) := limgsp—o w exists for every z € ()

and the map f': Q — X is continuous.
Lemma 3: X,Y complex Banach spaces. Q € C open set. A € L(X,Y)
continuous. Equivalent are:

(i) A is holomorphic

(ii) For every x € X and every y* € Y™ the function Q@ — C : z +—+—
(y*, A(z)z) is holomorphic

(iii) Proof B,(z) = {z € C | |z — 2| <7} C Q then A(zo) = 5% [ 2 dz,
ol

z

where v(t) := 29 +7- €2, 0 <t < 1.

Exercise: A : ) — X holomorphic = A is C*° and

A (z) _ i/ A(z)
n! 2w ) (22— z)nt?
8!

dz v asin (iii)
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Proof: of Lemma 3 (i)=(ii): obvious
(ii)=-(iii): Cauchy integral formula of Complex Analysis.
(iii)=-(i): usual argument from Complex Analysis.
Denote B := 5 [ Az with v as in (iii).

8!

(2—20)2

Claim For 0 < |[h| <7 and c:=sup|,_, ., [[A(z)| we have

. el
—(A h)—A - B|l< ——
”h( (20 + h) (2)) | < T
s 1 i A(z
This implies A’(29) = ﬁ{ (z—(zg))2 dz.
Continuity of A’: Exercise.
Proof of Claim
! @y 1 1, 1 1 .
pAo ) —Al)) =B =" 50 [ - - Az)d
T (Ao +h) — ACz0)) o [ - ) - A
B!
h
= A(z)d
211 / (z — 20)2(z — 20 — h) (2)dz
5
1
=I5 (Alz0 +h) — A(20)) - B
! IR A @)
< =l su
= o<t<1 |7(t) — 2027 (t) — 20 — A
TG0
T o<t<1 |re?™ —h| = r(r — |h|)

Lemma 4: A€ L(X) = p(A) C C is open, the function
p(A) = L(X) : A — (A1 — A)~! =: Ry(A) is holomorphic, and

RA(A) = Ru(A) = (n = N RA(A) R, (A)VA, 1 € p(A)

Proof: Proof of (*)

(AL = A)(BA(A) = Ru(A)(pl = A) = (ul = A) = (AL = A) = (p = A) - L = (x)
p(A) is open:

A€ p(A), = MM = A) 1 < 1 I 4= A) (M — A)~1 s bijective,
where (u — \) = (ul — A)(A\1 — A)~! = ul — A bijective = p € p(A)

Also:

_ _ - 1—A)" 12 R
(1 = A)=1 = (A1 = A)7Y| < LA =D I Continuity

()= tim, . BB = i (4)
Contigity 5\, R\ (A) is holomorphic. O

Theorem 1: Let A € £(X), then

1. 0(A) # @ and
2. sup |A| = lim ||A"||% = inf [[A"]|% =:r4
A€o (A) n—oo neN

(Spectral radius, Chapter I, Theorem 11)

68



5 Spectral Theory 11.01.2007

Proof:

1. sup A <ra
Aeo(A)
Let A € C with [A| > 74 =ry-14<1

Chap LIhm ALy y -1y bijective = X € p(A)

2. 14 < sup |A
A€o (A)

=AY 20,1 ep4)
R(z) := { 0 2= 0
R:Q— L(X) Q={1]z€ep)}u{o}
Fact: © open and R : Q — £(X) is holomorphic
Proof: Lemma 4 and removal of singularity for holom. Q\ {0} — C
Or for small z :
R(z) = 2z(1—2A4)7! =32 2*1 A% (Chap. I, Thm. 11)

7

)
R "!(O) — Anfl

Cauchy integral formula 2

v A= L[ EG g, (1)
v =1e?mt €[0,1] provided {z € C||z] < 1} C Q (2)
If r > sup |A| then (2) holds, so

Aeo(A)

JAn ) = | s S, 2 ]| < 209) sup LEGNL

lz|=+
n

=1(7) gz sup [I(z711 = A) M| =" sup (A1 - A)7'
T lal=1 Al=r
=:ic L
= A" S e = AT < et = AT < (er)
——
—1
= lim [|[A"|% <r Vr> sup |A|
n—oo )\EO'(A)

3. 0(A)#£2
Suppose o(A) = @ and so p(A) = C.
Pick x € X,2* € X* and define
f:C—C f\):={a*,(\1 - A)~'a)
Lemmma 4

= f is holomorphic and

FOOL < e[zl (1 = 4) =2 < gl e 1] > )14

Momyille ¢ — g = (A1 — A)~! =0V € C Contradiction

H complex (real inner product) Hilbert space |jiz| = ||z||Vz € H <
(iz,1y) = (z,y) Vo, y € H

recover inner product from norm: (z,y) = (||z + y||* — ||z — y||?)

< (iz,y) + (v,iy) =0 Va,ye H

Define the Hermitian inner product:

Hx H— C(z,y) — {(x,y)c by (z,y)c := (x,y) + i(iz,y)

a) real bilinear

)

b) (z,y)c = (z,y)c

C) <$7)\y>(C = >‘<xuy>(C7 <)\£C,y>(c = X<£C7y>(C

d) [z, y)el < llz Iyl
)

e) |zl = v/{z, z)c
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Proof: Exercise O

H* :={¢: H— C| ¢ complex, linear}

Define ¢ : H — H*  (u(x),y) . := (T,Y)c

Riesz Representation Theorem: ¢ : H — H* isometric isomorphism
Warning: ¢ is anti-linear: ((A\z) = \(z) Vo € HVA € C

The Hilbert space adjoint of a linear operator A : H — H is the operator
A* . H — H defined by (A*z,y)c = (x, Ay)c Vo, y € H

Remark:

(i) Afew =t 10 A% o0

new

(i) (Ao =Aga (M)l = A

new new

(i) 0(A34) = 0(4) o(Afe) = o (A)

new

Proof: A — Ar,_ Y 1AL — A7)y bijective

new

& Al — Af), bijective Feal a1 — A bijective O

Definition: H complex Hilbertspace
An operator A € L(H) is called normal, if AA* = A* A, selfadjoint, if A = A*
and unitary, if AA*=A*A=1

Example 1: H =12, Av = (\z1, A2, ...)
An € C, sup |\, < o0
neN
A=A\ eR
Because A*x = (A121, A2xa, .. .)
<x7 y><C = 220:1 TnYn
A is normal

Example 2: H = l%
Az = (x9,23,...) A*z=(0,21,22,...) = AA* # A*A

Example 3: selfadjoint=- normal

A unitary (||Az|| = ||z||Vz € H) isomorphism = A normal, because
(w, A" Az) = ||Az|? = ||2[|* & (y, A" Az) = (y,2) Vr,ye H
A onto =

SA*A=1 4 A*=1 A=A
In Example 2 we have ||A*z|| = ||z|| but A* # A=! (A* is not onto)

Lemma 5: H complex Hilbert space, A € L(H)
Equivalent are:

(i) A is normal

(i) Az] = A"z Vo€ H
Proof:

(i)=(ii) ||Az|]* = (Ax, Ax)c = (x, A*Az)c = (z, AA*7)¢
= (A*z, A*z)c = ||A*2|?

(ii)=(i) Same argument gives (z, A*Az)c = (x, AA*z)c Ve e H
= (y, A"Az)c = (y, AA"z)c Vo,ye H
= A*A = AA* O
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Theorem 2: H complex Hilbert space, A € L(H) normal =

(i) sup |Al=[lA]
Aeo(A)

(i) A=A"=0(A) CR

Proof:
(i) Claim: ||A™|| = ||A||™ Vn € N (Then (i) follows from Theorem 1)
Ax AT A
n—9: ||A||2 = sup ”Hx\l” = sup <x|\x|\2x>
O x#£0
CS
< sup —”“‘H:\‘;”Q boma 8 gup Il — .42
x#0 z#0
normal always
Az " ) S
n = 2™ Induction || 42" | = ||A||?

n arbitrary:

1A[*" [ 7 P |

A" = = < <lAa™]

[AP = AT = AP

(ii)) Assume A = A* let A€ C\R
To show: X\ € p(A)
Claim: [[Az — Az||? > (Im \)?||z||?
Claim ™™™ ™™ 2 \1 4 injective, im(A1 — A) closed

A= N1 - A injective, so A1 — A bijective
Proof of Claim: [[Az — Az||* = (\z — Az, Az — Az)c
= M\ (2, z)c — MAz, 2)c — Ma, Az)c + <A:c, Az)c

= [APll2[* — 2(Re \)(z, Az)c + [|[Az[* = ImA)?[z]* + Re A)?|l|* —

2(Re ) (z, Ax)c + || Az|?
= (Im A)?[|z[|* + [[(Re \)x — Az| > (Tm X)?[|z||?

Theorem 3: H complex Hilbert space, A = A* € L(H) selfadjoint. Then

a) R

o(A) =@ and

b) (1) supo(A) = supy,=i(z, Az)
)
)

(2) info(A) = inf) ;=1 (v, Az)
(3) Al = supyzy=y [z, Az)]

Proof:
a) Ro(A) =92
A ¢ Po(A) < Al — A injective

& H=ker(\l — A)*
= {ze€H|{(x,§) =0V €ker(l - A)}
= im(l—A)
< AeCo(A)

(1)=(2)

replace A by —A.
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(D&(2)=(3)

IAl- "= sup [A]
A€o (A)
= max{supo(A),—info(A)}
(1):(2) sup |(z, Az)]
llz|l=1

Proof of (1) Assume wlog
(x,Az) >0Vr e H

(replace A by A+ [|A] - 1).
Claim 1: (4) = o(4) C [0,0)
Claim 2: (4) = [|A[| = sup| =1 (z, Ax)

Claims 1&2 = (1)

sup (z,Az) = |A| by Claim 2
l[=]=1

= sup |A| by Thm 2
Aeo(A)

= supo(A) by Claim 1

Proof of Claim 1 Let € > 0. Then Vx € H:

A
IN®

ellz||? + (x, Az)
= (z,ex + Azx)
<zl - llex + Az]]

ell||?

= ¢|lz|| < |lex + Az||Vx € H

el + A is injective and has a closed image (see Chapter IV).
A= 1+ A is bijective

= —<c¢o(A)

Proof of Claim 2 Let a := sup, = (z, Az) < [|A]| (Cauchy-Schwarz). To
show: [|A| < a.
For xz,y € H we have

ly. Ay = (e + 3, Alw +9) (@~ 3, Alz — 1))
= For ] = ]l = 1
—o < —qalle —yl> < 3@~y A= p) < Gy, Av)

1 1
< oty A +y) < qale+yl <a

= |(y, Az)| < aVz,y € H and [[z[| = [ly[| = 1
= [|A]l = sup |(y, Az)| < a
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Remark: Given any operator T' € L(H) we have

I sup || T]*

llzll=1

= sup (Tz,Tx)
llzll=1

sup (x, T*Tx)
lz]l=1

17|
11T
I

INIA A

= |IT)1? sup (z, T*Ta) T > EATTT
lzl=1

|IT)] = /|| T*T||. We can use this to compute ||T||.

1T

5.3 Compact operators on Banach spaces
X complex Banach space, A € £(X) bounded, complex linear.
Facts

a) ker(Al — A) C ker(All — 4)? C ker(A1 — A)3 C ...

b) ker(All — A)™ = ker(A1 — A)m+1

= ker(A\ll — A)™ = ker(A\1l — A)™FvE > 0

Notation: E) := E\(A) :=,_, ker(A\1— A)™
Theorem 4: A € £(X) compact

(i) TAX€o(A),\#0, then A € Po(A) and dim F) < cc.

Hence 3m € N such that ker(All — A)™ = ker(A1 — A)™+1L,

(ii) Eigenvalues of A can only accumulate at 0, ie
VA€ o(A),A\#0,3e > 0VueC:

0<|p—A<e=pepll)

Proof:

(i) If A # 0 = A1 Fredholm, index = 0.

“BY \1 — A Fredholm, index = 0

ThmbA cpct
=

either A1 — A is bijective (A ¢ o(A)) or Al — A is not injective

(A € Po(A)). Moreover: dim(ker(Al — A)™) < oo¥m € N, because

(AL — A)™ = 37 (TYAF(—A)™F = Am 14 epet
Let K := A\"'A and E,, = ker(1 — K)" = ker(A\1 — A)".

To show: Im such that E,, = E,,+1.
Suppose not. Then E,, G E,;1¥n € N

ChIlLgmmat vy, Ndz,, € E,, such that
leall =1 inf e —al > 2
Tnll = welgn 1 n = 2

Now: for m < n we have

Kz, € FE,, CE,_1 x,— Kz, € E,_;
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N | =

= |Kz, — K| = ||lzn — (v — Ky + Koy || >

€ELn 1
So (Kxy), has no convergent subsequence: contradiction!
(i) Let A € o(A), A # 0.
% 3, € N such that ker(Al — A)™ = ker(\1 — A)m+!
= X =ker(A\l — A)™ ¢ im(A\ — A
N—— N——
=:Xp =X,
This is an exercise (use Hahn-Banach).
AXO c Xy AX; C X;.
Note: (A1 — A)™: X1 — X is bijective
OPeN WEPPINE 30 S Oy € X,
22|l < e[ (AL = A)™a |
Choose € > 0 such that for all p € C:

1
A=l <2 = L= A)™ = (1 = 4)™ < -

= (ul — A)™ : Xy — X is bijective for |\ — p| < e
(ul —A)™: Xo — X is bijective for p # A

o~

The rest by induction. Xj is finite dimensional. A|x, =

= (pl — A)"™ : X — X only true if bijective!
= ul —A: X — X is bijective.

H real or complex Hilbert space

Notation: (.,.) real or Hermitian inner product.
Definition: A collection of vectors {e; };cr in H is called an orthonormal basis
if

(ei,e5) = 0ij

H = span{e; |i € I}

Remark 1: (2) holds if and only if
Vee H: (x,e;)=0iel=x=0

Remark 2: H separable < [ is finite or countable

Remark 3: z € H,{e;},c; ONB

== Z<€iax>ei ]| = Z [(es, 2)|?

iel icl

Theorem 5: H real or complex Hilbert space. A = A* € L selfadjoint,
compact. = A admits an ONB {e; };c; of eigenvectors

Aei = )\iei? )\,L c R AJ] = Z )\i<ei7x>ei
el
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Proof:
Step 1
Ar=Xr x#0 Ay=py y#0and \# pu
= (z,y) =0
proof
A=z, y) = QAz,y) — (2, py)

= <A:v,y> - <{I?,Ay>

Step 2 ker(Al — A)™ =ker(A\l — A)Vm > 1

proof
AeER Ae Po(A) (A —A)Pz=0
= 0= (z,(\l — A)%z)
= (A1 = Az, (A — A)z) = | Az — Az|?
Step 3

(x,y) =0Vy € ker(A\1 —AVAER =2 =0
HOZ{Z‘EH|(*)} Ho;éo :>A|H07é0
= [|Alm, || € o(Alm,) or — [|Alm, || € o(Alm,

= Alp, has a nonzero eigenvalue, eigenvector. This is also an eigenvector of A:
contradiction! O

Definition: A C*-algebra is a complex Banach space A equipped with

e an assoziative, distributive product A x A — A : (a,b) — ab with a unit
1 € A such that ||ad|| < ||a|l ||l

e a complex anti-linear involution A — A : a — a* such that
(ab)* = b*a*, 1* =1, and ||a*|| = ||a||

Remark: antilinear: (\a)* = \a*, involution: a** = a
Example 1: H complex Hilbert space, then £(H) is a C*-algebra

Example 2: A€ L(H)

A := smallest C*-algebra containing A

A=A p(N\):=ap+ar A+ ... +a,\" ap€C

p(A) i =ap+aA+...+a, A" plA)*=as+aA+...+a,A"
(pq)(A) = p(A)q(A)

A = closure({p(A) |p: R — C)

Example 3: Y compact metric space
C(X):={f:¥ — C| f continuous}

C*-Algebra, sup-norm, involution: f — f

Goal: A=A"Y=0(A) = A=ZCE):p(A) —p
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Theorem 6: H complex Hilbert space, A = A* € L(H) selfadjoint
Y:=0(A4) C (R)

= There is a unique bounded linear operator

C(S) = L(H) : | — f(A) (+)
such that (fg)(A) = f(A)g(A), Ir(4) = 1g (1)
J(A) = f(A) (2)
fA=AVAeX= f(A)=4 (3)
Denote ®4(f) := f(A)

Then () is the operator ® 4 : C(X) — L(H)

(1): ®a(fg) = Pa(f)Palg) Pa(l) =1
(2): @a(f) = Pal(f)"
(3): Pa(id:X—>XCC)=A

Lemma 6: H complex Hilbert space, A € L(H)
p(\) =Y r_y axA¥ ay € C complex polynomial =

(1) p(A)" =B(A"), B(N) = Xk—o @A, (pa)(A) = p(A)q(A)
(i) o(p(A)) =p(e(A)) = {p(A) [ A € 0(A)}
(iii) A= A" = [[p(A)llz=(oa) = sup [p(A)|
Aeo(A)

Proof:
(i) Exercise

(ii) A € o(A), to show p(A\) € o(p(A))
The polynomial ¢ — p(t) — p(\) vanishes at ¢ = A
3 polynomial ¢ such that p(t) — p(A) = (t — N)q(t)
= p(A) — p(V1 = (4 — M)g(4) = g(A)(A — D)
= p(A4) — p(A)1 is not bijective = p(A) € o(p(4))

pea(p(A)) =3INea(A): p=p(A)

n:=deg(p) = p{t) —p=alt—XA1)...(t—=X,) a#0
p(A) — pl =a(A—A1)...(A— A1) not bijective

= Ji such that A — \;1 not bijective

=X €o(A),p(N\)—p=0

(iii) A= A* = p(A)* =p(A)
= p(A) is normal: ¢(A)p(A) = (pq)(A)) = p(A)q(A)
|

so p(A)p(A)* = p(A)p(A) "2 2 IpA)| = swp |l L sup [p(V)]
pea(p(A)) AEo(A)

Remark 1: If p(A) = g(A) VA € 0(A), then p(A) = q(A)
i.e. the operator p(A) only depends on the restriction p|y(4)

Remark 2: Why is P(X) := {p|x | p: R — C polynomial} dense in C(X)?
Stone-Weierstrass:
e P(X) is a subalgebra of C(X)
e P(X) seperates points (i.e. Vz,y € ¥,z # y3Ip € P(X) s.t. p(x) # p(y))
e pce PX)=pe P(Y)
= P(X) is dense in C(X)
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Proof of Theorem 6:

1. Existence: Given f € C(X), construct f(A) € L(H)
By Remark 2, 3 sequence p,, € P(¥) such that lim [|f — py|/ze(x) =0
pn is a Cauchy sequence in C'(X)
Femma 6 (i) pn(A) is a Cauchy sequence in L(H)
120 (A) = pm (A = llpn = Pl (s)
= pn(A) converges in L(H)
Define f(A) := lim p,(A)

(This is the only way of defining f(A), so we have proved uniqueness)

2. f(A) is well-defined
If ¢, € P(X) is another sequence converging uniformly to f, then
[Pn(A) = @n (Al = [Ipn — anllL=(s) — 0
So lim p,(A4) = lim ¢,(A)

3. f is linear, continuous and satisfies (1), (2), (3)

*pn—ftn—4q
= Pnln — G P+ qn — f+yg
Same for addition and for f(tA) =tf(A)

1(A) =1
e f — f(A) bounded, indeed || f(A)|| = || fllL=) = /\sugpA) lf (V)]
€o
True for f=p e P(X); p, — f
S 1] = lim lpn(A)] = i o l~s
e (2) and (3)
(2) obvious, (3) true for polynomials, take limits O

Theorem 7: Let A=A*€ L(H), Y :=0(A)CRand f e C(X) =
(i) o(f(4)) = f(a(A))
(i) £ = N fllzoe =
) Az =z = f(A ) =[Nz
(iv) AB=BA= f(A)B = Bf(A)
)
)

(iil

(v) If f(3) C R then f(A4) = f(A)*

(vi) f>0< (z,f(A)z) >0Vz € H

Proof:

(ii) already proved, also follows from (i)
(ii

) true for polynomials, hence true in the limit
(iv) true for polynomials, take the limit
)

Use Theorem 3:
inf f(X) =info(f(A4)) = inf(x, f(A)z)

(vi) o(f(A) C f(%)
Let p & f(%)
Define g(A) := (A) m LAEY
=9(f—n)=(—-mg=1
= g(A)(f(A) = pl) = 1= (f(A) — pl)g(A)
= f(A) — u bijective, i.e. p ¢ o(f(A4))

(v
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f(E) ca(f(A))

Let A € ¥ = o(A). Claim: f(\) € o(f(A))
Suppose not

= f(A)1 — f(A) is bijective

Pick a sequence of polynomials p,, € P(X) such that |[p, — f|z=x) — 0

= f(AN)1—f(A) = lim (pp(A\)1 — pn(A)) (in norm topology)
= pn(A)1 — pn(A) is bijective for n large
Pn(X) ¢ 0(pn(A)), this contradicts Lemma 6 (ii)

5.4 Spectral Measure

Let A= A* € L£,3 = 0(A) C R. We have defined

C(X) = {continuous functionsf : ¥ — C}
B(X) = {bounded measurable functionsf : ¥ — C}
F(¥) = {bounded functionsf : ¥ — C}

[£1:= sup [f(A)]
AEX

Remark 1: C(X) C B(X) C F(X) closed subspace and F'(X) is a Banachspace.

Remark 2: We take a sequence f,, € F(X) bp-converges to f € F(X) iff

sup || full <00, f(A) = lim f,(A)VA €%
We write
f=bplim,  fn
1. B(X) is closed under bp-convergence.
2. C(X) is bp-dense in B(X).

Therefore

Remark 3: B(X) is the smallest C*-subalgebra in F'(X) so that
1. C(3) C B(X)
2. B(X) is bp-closed.

Recall from Theorem 6 that 3! continuous C*-homomorphism & 4 :

L(H) so that
Dy(id)=A

Theorem 8: 3! C*-homomorphism ¥4 : B(X) — L(H) such that
1. If f(A\) = AVA € 3 then W 4(f) = A.

2. [WaANHI < [IfIVf € B(E)
3. f=bplim,  fn = Ya(f)r=lim, o Pa(fn)aVee H
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Remark: Let A, € L(H) and A € L(H). We say A,, converges strongly to
Aif
Arx = lim A,z Vee H

n—00

A,, converges in norm to A if

lim [|A — A,|| =0

Fact Norm convergence = Strong convergence.
Proof of Theorem 8, only sketch:

Existence

1. For every z € H there is a unique real Borel measure p, on X such that
@ 0a(a)e = [ Fan i€ C(E)
b

Namely
{real Borel measures on £} = C(X,R)”

={¢:C(2) — C| ¢ complex linear, ¢ bounded, ¢(f) = ¢(f)V[f}

That was discussed in detail when we introduced the dual space.

Therefore for every bounded complex linear function ¢ : C(¥) — C with
o(f) = ¢(f) 3! real Borel-measure p on ¥ so that

o(f) = / fdu VfeC(s)

>
Example ¢, (f) := (x, Pa(f)z).
(a)
6 (f)

0(N)] = [{z, @a(f)2)]
]l - [[@a(f)z]
12aCH] - ll]f?
[P e

IAINA

by Theorem 7

This concludes the proof of the first statement: Choose u, so that

bulf) = / fdue VfeCE)
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2. 3! complex linear operator W4 : B(X) — L(H) so that ||W4f|| < [|fIVf €
B(X) and

(z,Va(f)z)c = /fduac Vf € BY
b

Namely: Let f : ¥ — R be bounded and measurable. The map H x H —

R
(y,z) — % (/fd,ufery - /fd/izy)
) z

is bilinear and symmetric and bounded (which we will not verify).
Define U 4(f) by

0 Waf)e) = | ( [t [ fduz—y)

) 2

)

= (e, af)e) = [ < |f] - o]
%

= [[Pa(NIl = sup [z, ®a(f)z) <[]l

llzll=1

This is the end of the proof of step 2.

Proof: For f = f; +1ifs : ¥ — C bounded measurable define
Ya(f) == Walfr) +iPa(f2)

Exercise: WV, : B(X) — L(H) is a C*-algebra homomorphism

b
By Lebesgue dominated convergence: lim (z, ¥ 4(fy,)z) = lim [§, f dpe =
n—oo

Jsigmaf dp, = (x, Va(f)z)Ve € H

=y, Va(f)z) = lim {y, Wa(fo)r) Vo,yc H

Also: [ Wa(f)zl* = (2, Wa(f)* Va(f)z) = (z, Va(ff)z) = lim (2, Va(fofn)r) =
Tim [ @a(f)a]? BT wa(f)e = lim wa(fu)e VeeH

Here we use: If £, € H and £ € H, nlln;(x,fn> =(y,&) Vye€H,

Jim [ = €[] then lim &, —&] = 0. Apply this to &, = Wa(fn)z

Uniqueness: C(X) is bp-dense in B(X) O

Exercise:
(i) f>0=U4(f)>0,ie (x,¥a(f)r) >0 and Us(f) selfadjoint
(il) Az = Az = Yu(f)le=f(N)z

(ili) AB=BA= V4(f)B=BUA(f)

Notation: f(A):=V4(f)

Theorem 6: ”continuous functional calculus”
Theorem &8: "measurable functional calculus”
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Remark:
1. Recall (z,V4(f)z) = [5 [ dps
2. f continuous = H\I/A(f)” =|Ifll
3. f bounded measurable = |[|[¥4(f)|| = || /]l

Warning: B(X) # L (X, u.)
Literature: Reed-Simon

Spectral projections
Let 2 C X be a Borel set. Define

1 Xe
XQ()‘)::{ 0 /\EE\Q

Then xq € B(X) and x4 = xo = Xa = The operator Py := U4(xq) is an
orthogonal projection: P3 = P = P}

Corollary: The orthogonal projections Py € L(H) satisfy the following con-
ditions:

(i) Py=0 Pyr=1
(11) Pﬂlﬁfb = PQl Pﬂz
(III)QZU;ZlQZ UNQ =0k #1
= Por = lim ZZ:l PQk.%‘ Vee H
n— oo

Proof: Theorem 8 O

> C R compact set

B(%) C 2% Borel o-algebra

The map B(X) — L(H) satisfying the axioms of the corollary above, is called a
projection valued measured on Y. The projection valued measure of the corollary
is called the spectral measure of A

Remark: From the spectral measure we can recover the operator A via

a() = (1, Par) and (z, f(A / f dpe

Example: A compact and self-adjoint

Y= {)\0,)\1,...}, )\n — )\() =0

E, :=ker(\,1 — A), P, € (H) orthogonal projection onto E,,
f(A)J? = ZZO:O f(An)an

7Py = Z P,dy,” (not convergent in the norm)
An €EQ
Definition: « € H is called cyclic for A, if span{z, Ax,...} = H

Theorem 9: A= A€ L(H), z € H cyclic
= 3 Hilbert space isometry (unitary operator) U : H — L?(X, j1,;) such that

(UAUTLH)(A) = Af()
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Proof: i, Borel measure on ¥ defined by [, fdu, = (z, f(A)z)c Vf e C(D)
Claim: 3 isometric isomorphism U : H — L*(¥, u,;) such that

H T) H
v| v (ane) =rr0
L2 L2

DeﬁneAT CE)—=HbyTf:=04s(f)x

ITfI? = @a(f)al® = (@a(f)z, Da(f)z)

= (2, 24(f)"@a(f)z) = (x, 2a(F)Pa(f)z) (%)

= (2, ®A(Ff)x) = / Tfdpe = / P e = 12

Recall: C(X) dense in L?(%, )

(:*>) T extends uniquely to an isometric embedding T : L*(%, p,) — H

Claim: T is surjective: f(A) = A" = Pu(f) = A" =Tf=A"x

Hence A"xr € imT'Vn € N

A M T S span{ A"z} is dense in H

Moreover ||Tf|lz = ||fllL2 Vf, so T is injective and has a closed image

= T is bijective U := T~1

To show: UAU ! = A or equivalently AT = TA

ATf = APa(f)x = Pa(id)Pa(f)z = Palid flz =T(id f) =TAf m

Remark: In general, if A = A* € L(H) and H is separable 3 orthogonal
decomposition H = @, Hy, such that AH, = Hj; and A|g, admits a cyclic
vector.

Exercise: A compact and selfadjoint =
J cyclic z € H < every eigenspace of A is 1-dimensional
Similar to the following example:

Example 1: A= A* e C"*" A* = ZT, (x,y) = zn: T5Y;
3 ONB ey, ...¢e, of cigenvectors of A; Ae; = Aje; )33216 R
Assume \; # A for k # j, then (LA) z = zn: e; 1s cyclic.
AFp =310 Mre; -
S = A} (A=

C(¥)=L3(x)=Cn
e is defined by

= e = Z?:l Ox;
U:H=C"—Cr=L* U¢=({e;,&),
A =diag(A1,..., \)

M=

FQi)(ei, €)e

i=1

PO ena)ie,e) = 30 F(A)

i=1 i=1

NE

Example 2: H =1*Z)={x = (zn)nez | >, |zu]*> < oo}

(Lm)n = Tnp+1 (L*$>n = Tp-1

A= L+ L* selfadjoint o(A) = [~2,2] and H = H® @ H°d

where H® := {z | z_,, = z,} and H°Y := {2 | x_,, = —z,,} are invariant
under A
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(Ax)n =Ty_1+ Tn+1
2= (...0,_ 1 ,0...) and 2°% := (...0,0,—1, 0 ,1,0,0...) cyclic vectors
~~ —~

—pev
=xg :xgdd

fOI‘ A‘HCV, AIHodd
Define U : H — LQ([O’ 1]) by (Ux)(t) = Z xne27rint

(ULz)(t) = ™ (Uz)(t) (UL*z)(t) = > (Ux)(t)
(UAUTLF)(t) = 2 cos(2nt) f(t)
A multiplication operators on L?([~2,2], u1) x L?([~2,2], u2)
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6 Unbounded operators

X, Y Banach spaces, D C X dense, A: D — Y closed graph
For x € D, ||z||a := ||z||x + ||Az||y graph norm
Then (D, | -||4) is a Banach space and A : D — Y is bounded

In Spectral theory one studies A1 — A: D — X where X Banach space,
D C X dense subspace and A : D — X linear

Recapitulation
1. graph(A) .= {(z,Az) |z € D} C X x X
A closed & graph(A) is a closed subspace of X x X
2. B : dom(B) — X is an extension of A, if dom(A) C dom(B) and

B|d0m(A) =A

3. Ais closable, if A admits a closed extension

4. Ais closable < graph(A) is a graph i.e. (0,y) € graph(4) = y =0
Denote by A the smallest closed extension of A, graph(A) = graph(A)

5. QCR"open, X =LP(Q) 1 <p<ooD:=C§Q),
A: D — X differential operator
= A is closable

Adjoint Operator

A : dom(A) = X densly defined linear operator on a Banach space. The adjoint
operator A* : dom(A*) — X* is defined as follows:

dom(A*) :={y* | 3¢ > 0¥z € dom(A) [(y*, Az)| < c||z||}

For y* € dom(A*) the linear functional dom(A) — Rz — (y*, Az) is bounded
= dz* € X* such that (z*,z) = (y*, Az) Vo € dom(A)

Define A*y* := z*

Note that (A*y*, x) = (y*, Azr) x € dom(A), y* € dom(A4*)

Remark 1: Let y* € X*, then

Je > 0Vx € dom(A) |(y*, Ax)| < ¢||z]|

& do* € X* sucht that (*,z) = (y*, Ax)

In this case we have y* € dom(A*),z € dom(A)

Remark 2: (y*,z*) € graph(4*) & (z*,z) = (y*, Az) Vo € dom(A)
& ((—z*,y*), (z, Az)) = 0Vx € dom(A) & (—z*,y*) € (graph(A))*
Hence graph(A*) € X* x X* 2 (X x X)* is always weak*-closed

Remark 3: A closable = graph(A)+ = graph(A)J_ = graph(A)+
Rem. 2 —/*

= A = A"
Lemma 1: X reflexive, A : dom(A4) — X densely defined linear operator.
Then

(i) A* is closed

(ii) A closable < dom(A*) is dense in X*

(iii) A closable = A~ = A* and

A

X** 5 dom(A*) —— X**

A**
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Proof: Define J: X x X — X x X by J(z,y) = (—y,z)
Then by Remark 2, graph(A*) = (J graph(A))* = J* graph(A)~+
J*(.’I?*,y*) = (y*a —.%'*)

(iii) (J * graph(A*))* = graph(A**) and

(J* graph(A*))* = (graph(A)*)* = 1x . x (*(graph(4)+)) = txxx (graph(A))

(ii) Assume dom(A*) is dense
Let (0,y) € graph(A) = 3x,, € dom(A) such that x,, — 0, Ax,, —y
= Vy* € dom(A*) we have (y*,y) = lim (y*, Az,) = lim (A*y*,z,) =0

d A*) der
om( :; ense yZO

Proof: of Lemma 1 (continued) X Banach space, A : dom(A) — X linear,
dom(A) C X dense supspace, X reflexive.
A closable = dom(A*) is dense in X*.

1. graph(A)* = {(z*,y*) € X*x X* | (a*,2) + (y*, Ax) = 0}Va € dom(A) =
{(=Ay",y") [ y* € dom(A")}
2. graph(A) =" (graph(4)")
3. (z,y) € graph(4)
& (2, 2) + (y°,y) = 0¥(a°,y") € graph(4)*
& (~A%y",x) + (y",y) = 0V € dom(A")
4. Because X is reflexive we have: dom(A*) = X* <+ dom(4*) = 0.
5. y €t dom(A*)
= (y*,y) = O¥y" € dom(A*)

EA (0,y) € dom(A)
A closable
=

y=20

Remark 1: The spectrum of an unbounded operator A : dom(A) C X — X
is defined exactly as in the bounded case:

p(A) :={Ae€C| Al —A:dom(A) — X is bijective}

o(4) = C\ p(A)

Po(A) = {\| A\l — A not injective}

Ro(A) = {\| A\1 — A injective,im(A1 — A) # X}

Co(A) = {\| A\l — a injective,im(A1 — A) = X,im(A\l — A) # X}

Remark 2: X reflexive, A : dom(A) — X closed, densely defined.

im A+ =ker A* L(imA*) = ker A
imA =1 (ker A*) im A* = (ker A)*

Remark 3:
p(A) = p(A") Co(A) =Co(A")

Ro(A) C Po(A*) Ro(A*) C Po(A)
Po(A)URo(A) = Po(A*)U Ro(A™)
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Example 1: X = /(2 3> 2 = (z1,22,23,...) D:={z € |37 n?z,* <

oo}

Ax = (2w9,373,...) A:D — (2 closed.

Po(A)

=CoX zy=(\2,2 .. )eD Az, =z

s 21 31

Example 2: Az := (x1,2x9,3xs,...). Eigenvectors: e, := (0,...,0, 1 ,0,...

Ae, =

ne, Po(A)=0(A)=N

Lemma 2: X complex Banach space. D C X dense subset. A : D — X
closed operator. Assume g € p(A) (then Ry, (A) := (Ml1—-A)" : X - DcCX
is bounded, cf. Closed Graph Theorem). Then the following holds:

i) If A e C\ {\o} then

ker(A\1 — A) = ker( o
im(Al — A) = im(ﬁl Ry, (4))
o

ii) o

iii)

)\01 B R)\ (A))

(A)={reC\ | )\ Ry, (A))}. Same for Po, Ro, Co.

p(A) is open, the map p(A) — L(X, D) : A +— Ryx(A) is holomorphic, and

R, (A) — Rx(A) = (A — ) RA(A)R,(A)VA, 1w € p(A). Here D is equipped
with the graph norm of A: ||z||p := ||z||x + ||Az||x for z € D.

Proof:

Proof

A% Ao
M—A = Al—A+(A—A)l
= (Al =A) 1+ (A= Ao)Rx,(4))
2= d) el = )G L+ Ry (4)

1

= (A=Al — A)(m

M—A = (i), (i)

1—Rx,—21— Ry, (A))

of (i) |\ — Aol [[Rag(A)] < 1= 1- (A — Ao)Ra,(A) bijective

G = A=(1— (A= AR, (A)(Aol — A) : D — X is bijective
Hence p(A) is open.

So p(A

(%) 1 1
A =
Ra(4) /\O—ARAO(AO—/\

) — L(X,D) : A\ — Rx(A) is holomorphic. O

1- R)\o (A))_l

Definition: A closed, densely defined unbounded operator A : dom(A) C
X — X is said to have a compact resolvent if p(A) # @ and Ry(A) : X — X is
compact VA € p(A).

Remark 4: \g € p(A) R,,(A) compact.
= R\(A) compact Y\ € p(A), because

Ry(A) = E//\_ﬂ/ (14 (Ao — A)RA(A))

compact bounded

Remark 5: Suppose p(A) # @ and let D := dom(A) be equipped with a
graph norm. Then:

A has a compact resolvent < the inclusion D — X is compact
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Remark 6: A:D =dom(A) — X closed, densely defined.
X0:=X |zl = [|lzllx

X1i= D =dom(4) |zl == llolx + [ Az]x
X2im{zeD|Ave X1} |z = |zl + [ Az] + | A%]
X3 :={zx € D| Az € X5} and so on with
L.CX?CcX?cX!cXxO

Assume p(A) # @, let A\g € p(A) and denote T := Aol — A. Then T : X<+ —
X" is an isomorphism for all K and

Moreover: (A1 —A)™: X™ — XY and ker(Al — A)™ C X* =J-_, X™. And:
if the inclusion X' — X9 is compact, then X**! — X% is compact Vk.

Lemma 3: A:dom(A) — X closed, densely defined, compact resolvent =
(i) o(4) = Pa(A)
(ii) The space Ey(A) :=,._; ker(Al — A)™ is finite dimensional VA € o(A).

(iii) o(A) is discrete.

Proof: Let \g € p(A) and denote K := Ry,(A) € L(X). Let A € 0(A) = X\ #

Ao and p = )\017)\ € o(K)

Moreover: p # 0 and Ey(A) = E,(K) finite dimensional. = (i), (ii) see Ch IV.

Let A\, € 0(A) Ay £ AV #m

= Uy 1= /\0%/\ € o(K)

Ch IV
=

tn — 0 |Ap] — oo. O

X = H Hilbert space and dom(A) C H dense subset
A :dom(A) — H closed linear operator.

Definition: The Hilbert space adjoint of A is the (closed, densely defined)
operator A* : dom(A*) — H given by dom(A*) := {y € H | 3¢ > OVz €
dom(A), [{y, Azx)| < c||z||} with A*y := z, where z € H is the unique vector
with (z,x) = (y, Az).

Remark 7: A closed = A*™ = A

Definition:

a) A is called self-adjoint if A* = A, ie. dom(A*) = dom(A) and A* =
AxVz € dom(A)

b) A is called symmetric if (x, Ay) = (Az,y)Vz,y € dom(A).
Remark 8: A symmetric = dom(A) C dom(A*) and A*|qom(a) = A.

Lemma 4: A:dom(A) — H densely defined, self-adjoint =
i) o(A) CR

ii) If in addition, A has a compact resolvent, then o(A4) = Po(A) is discrete
subset of R and H has a ONB of eigenvectors of A.

Proof: Easy exercise. O
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Exercise 1: A€ L(X),U C Copen, o(A) CU
f : U — C holomorphic, v a path in U around o(A)

£ i= o [ V1= )t ay
Prove:

(i) fg(4) = F(A)g(A), L(A) = 1 id(4) = A

(ii) o(A) = 09U oy 09,01 compact and disjoint
o 0XeUy
f(>\) o { 1Ael;

where Uy, Uy are disjoint open sets, U; containing o;
= P := f(A) satisfies P2 =P PA= AP
Xo:=kerP X;:=imP,s0X =XoPX; and 0(4|x,) = 0;

What is W1P([0,1])?
wtp([0,1]) :== {f : [0,1] — R|f cont. Jg € Lp([o 1)) : f(z (0)+ [y g(t) dt v}

[l = (2 1£@P d+ [} lg(@)P dz)”

Fact: f € WHP = f is differentiable almost everywhere and f(x) = g(x) for
almost all = € [0, 1]

Warning: f almost everywhere differentiable

f e L= feWhP (Cantor-function)

Remark: ge L', [Fg(t)dt =0Vz €[0,1] = g=0ae.
(measure and mtegratlon)

Definition: A function f : [0,1] — R is said to have bounded variation if
Var(g 1) f < oo where

n—1
Var o f = sup Z |f(tiv1) — f(ts)]

O=to<t1<...tp=x i—0

sin(2) is not of bounded variation

1
pr(u) = lims—o 3310, U(fz)(f( it1) — = Jo wdf = [udpg
where 0 =g < t; <. tmzlandé—max|tz+1—t|

Exercise 2: BV :={f:[0,1] — R | f is of bounded variation and right continuous}

[ fllBv == |f(0)] + Varjg 1 f
Prove BV is a Banach space

Exercise 3: Every (right continuous) function of bounded variation is the
difference of two monotone (right continuous) functions.

Hint: Denote F(x) := [f(0)| + Varjg 5 f

Show that F'+ f are monotone, right continuous.

IS A

Exercise 4:

a) f:]0,1] — R monotone, right continuous, f(0) > 0
3! Borel measure gy on [0, 1] such that p ([0, z]) = f(x)

b) [ € BV = 3! Borel measure py such that p([0,z]) = f(z) Va € 0,1]

fo t)dtvVx € 0,1], g € L*
:> /Lf (E) = fE g d\ «— Lebesgue measure
hint for a): construct outer measure vy,

vy((a,b)) = lim /(t) — £(a) ~ vy(open scts)
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6 Unbounded operators

Exercise 5*: f € BV, F(z) := |f(0)| + Varj ) f =
(i) |usl = pr
(ii) f(z) = [y g(t)dt = F(x) = [ |g(t)| dt
Hint: (i)= (ii) P:={g >0} N :={g <0}
= |us|(B) = up(ENP) = pp(ENN) = [p0p9 = [pan 9= [ gl (*)

= F@) = ur((0,a]) @ |yl (0.2]) £ [ |g
Proof of (i): Easy pur([0,2]) < |pr|([0,2])
Hard ? > 7

Exercise 6: [ € BV. Equivalent are:
(i) ny < A
(ii) Jg € L'([0,1]) such that f(z) = foz g(t)dt

(iii) f(0) =0 and f is absolutely continuous i.e.
Ve>030>0Vn e NO< s <t <sp<tp<...<5,<t, <1

Z‘ti_sil <5:>Z|f(ti)—f(8i)| <e
i—1 i=1

Hint: First assume f is monotone

Remark:
a) f abs. continuous < f is diff. a.e., f € L' and f(z) = f(0)+ [ f(t)dtVz
b) W2([0,1]) = {f: [0,1] — R| f abs. continuous, f € L}
1 lwes = (102 + 1417

Lemma: p > 1 The inclusion W1P([0,1]) — C([0,1]) is a compact operator

1
. . P P 1
Proof: |f(t) ~ f(s)| = | J f(v) dvl < [!1F () dv < (JL1f ()P dv)" |t = s
11
1f(@&) = F()] < (I fllzelt — 5|2
= The set {f € WP | || fllwr» < 1} is bounded and equicontinuous, so the
result follows from Arzéla-Ascoli O

(f.9) = Jy Fgdt

1,C)
€R, f(1) € R}

Example: H = L?([0,1
D= {f € W2(0,1)) | £

Af:=1if

,C
)

Exercise 7: A is selfadjoint, 0(A) = 27Z
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