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1 Introduction

According to the WKB method a solution of Schrödinger’s equation has the
form

f(t1, x1) =
∫

x0∈Rn

ei S(t1,x1,t0,x0)/~A(t1, x1, t0, x0)f(t0, x0) dx0 (1)

asymptotically as ~ → 0. The exponent S satisfies the Hamilton-Jacobi
equation from classical mechanics. According to the principal of stationary
phase the major conribution to such an integral occurs at the critical points
of the exponent.

∗This research has been partially supported by the SERC.
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Feynman in [9] (see also [10]) argued similarly. He argued that integrals

f(t1, x1) =
∫

x(t1)=x

ei I(x)/~f(x(t0))D x (2)

over the space of all curves x : [t0, t1] → R
n are fundamental. He was led to

integrals of this type by physical considerations. He assigned a phase eiI(x)/~

to each classical path x and summed over all paths x. The exponent I(x) is
the action integral from classical mechanics:

I(x) =
∫ t1

t0
K(ẋ) − V (x) dt

where K is the kinetic energy and V is the potential energy. The Euler-
Lagrange equations of I are Newton’s equations of motion. Hence by the
principal of stationary phase the major contribution to (2) should occur at
the classical trajectories.

The generating function S of equation (1) is obtained from the action
integral I(x) of equation (2) by evaluating I(x) at ‘the’ classical trajectory
x such that x(t0) = x0 and x(t1) = x1. If Feynman’s integral were finite
dimensional one might integrate out all the variables except x0 and arrive
at (1). Something analogous occurs in Hörmander’s theory [13] of Fourier
integral operators where the phase function which appears in the expression
for a Fourier integral operator can be replaced by another phase function
which defines the same symplectic relation. In fact, this is almost exactly
what Feynman did. He replaced the integral I(x) by a finite dimensional
approximation and evaluated the resulting finite dimensional integral to get
something of form (1).

In this paper we do something similar to what Feynman did. Unlike
Feynman, we use paths in phase space rather than configuration space and
use the symplectic action integral rather than the (classical) Lagrangian in-
tegral. We eventually restrict to (inhomogeneous) quadratic Hamiltonians so
that the finite dimensional approximation to the path integral is a Gaussian
integral. In evaluating this Gaussian integral the signature of a quadratic
form appears. This quadratic form is a discrete approximation to the second
variation of the action integral. We obtain the formula of Leray [16] for the
Metaplectic representation.

For Lagrangians of the form kinetic energy minus potential energy, eval-
uated on curves in configuaration space, the index of the second variation is
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well-defined and, via the Morse Index Theorem, related to the Maslov Index
of the corresponding linear Hamiltonian system. The second variation of
the symplectic action has both infinite index and infinite coindex. However,
this second variation does have a well-defined signature via the aforemen-
tioned discrete approximation. This signature can be expressed in terms of
the Maslov index of the corresponding linear Hamiltonian system. This is a
symplectic analog of the Morse Index Theorem.

Our topic has a vast literature. Our formula for the metaplectic represen-
tation appears in [16] where it is obtained by other arguments. Souriau [27]
found an explicit solution for the quantum harmonic oscillator involving the
Maslov index (thus correcting Feynman’s original formula which is valid only
for short times). Keller [14] first noticed the phase shift due to the Maslov
index in Theorem 8.5 below and for this reason the Maslov index is some-
times called the Keller-Maslov index. Duistermaat‘s article [8] explains how
to interpret the Morse index in terms of the Maslov index but in the situation
studied here the Morse index is undefined. The article [1] explains how Feyn-
man and Dirac [5] were motivated by using the method of stationary phase
to obtain classical mechanics as the limit (as ~ → 0) of quantum mechanics.
Daubechies and Klauder [6] (see also [7]) have formulated a theory of path
integrals on phase space where the Hamiltonian function can be any poly-
nomial. They remark that the ‘time slicing’ construction used by Feynman
does not generalize. However, our Hamiltonians are at worst quadratic and
Feynman’s original method is adequate.

2 Affine Hamiltonian Mechanics

An affine symplectomorphism has the form

ψ(z) = Ψ(z) + w

where w ∈ R
2n and Ψ ∈ Sp(2n). Here the linear part Ψ ∈ Sp(2n) has block

matrix form

Ψ =

(
A B
C D

)
. (3)

Then the equation z′ = ψ(z) takes the form

x′ = Ax +By + u
y′ = Cy +Dx + v

(4)
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where z = (x, y), z′ = (x′, y′), and w = (u, v). A quadratic generating
function on R

2n has the form

S(x, x′) = 1
2
〈αx, x〉 + 〈βx, x′〉 + 1

2
〈γx′, x′〉 + 〈a, x〉 + 〈b, x′〉 + c (5)

where α, β, γ ∈ R
n×n are square matrices with α = αT and γ = γT symmetric,

a, b ∈ R
n, and c ∈ R. The affine symplectic relation Rel(S) generated by S is

Rel(S) =

{
(x, y, x′, y′) : −y =

∂S

∂x
, y′ =

∂S

∂x′

}
.

In matrix notation the equations defining Rel(S) are

−y = αx+ βx′ + a
y′ = βTx + γx′ + b.

Remark 2.1 Let R ⊂ R
2n × R

2n be a linear symplectic relation. Then

(1) R = Gr(Ψ) for some Ψ iff R is transverse to 02n × R
2n.

(2) R = Rel(S) for some S iff R is transverse to 0n × R
n × 0n × R

n.

An affine symplectic relation is a graph (resp. admits a generating function)
iff its translate through the origin is (resp. does).

Remark 2.2 An affine symplectomorphism ψ as in equation (4) admits a
generating function S iff det(B) 6= 0. In this case Gr(ψ) = Rel(S) where S
is defined by equation (5) with

α = B−1A, β = −B−1, γ = DB−1,

a = B−1u, b = v −DB−1u

and the additive constant c ∈ R is arbitrary.

Remark 2.3 A quadratic generating function S as in (5) defines an affine
symplectomorphism ψ iff det(β) 6= 0. In this case Rel(S) = Gr(ψ) where ψ
is defined by equation (4) with

A = −β−1α, B = −β−1,
C = βT − γβ−1α, D = −γβ−1,
u = −β−1a, v = b− γβ−1a.
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Example 2.4 A shear

Ψ(x, y) = (x +By, y)

is symplectic iff B is symmetric. The generating function is given by

S(x, x′) = 1
2
〈B−1(x− x′), (x− x′)〉.

The symplectic shears form a subgroup: to compose two shears, add the
corresponding off-diagonal blocks.

Remark 2.5 Suppose that ψ10 and ψ21 are affine symplectomorphisms ad-
mitting generating functions S01 and S12 respectively. Then the composition
ψ20 = ψ21 ◦ψ10 admits a generating function S02 iff the inhomogeneous linear
system

∂S01

∂x1
+
∂S12

∂x1
= 0 (6)

has a unique solution x1 = g(x0, x2) for each choice of (x0, x2). The equation

S02(x0, x2) = S01(x0, g(x0, x2)) + S12(g(x0, x2), x2) (7)

defines a generating function for ψ20 when one exists. This generating func-
tion satisfies

S01(x0, x1) + S12(x1, x2) = S02(x0, x2) + 1
2
〈Qξ1, ξ1〉 (8)

where ξ1 = x1 − g(x0, x2). The form Q is called the composition form of
ψ10 and ψ21.

Remark 2.6 In the notation of equation (5) ψ20 admits a generating func-
tion iff α12 + γ01 is invertible. This is because equation (6) has the form
(α12 + γ01)x1 = f(x0, x2). An explicit formula for Q is

Q = γ01 + α12.

This was found by equating the homogeneous quadratic terms in x1 in (8).
With Bkj as in equation (3) we have α12 = B−1

21 A21, γ01 = D10B
−1
10 , and hence

Q = B−1
21 B20B

−1
10 .
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3 Symplectic action

A quadratic Hamiltonian is a function H : R
n × R

n → R of form

H(x, y) = 1
2
〈Hxxx, x〉 + 〈Hyxx, y〉 + 1

2
〈Hyyy, y〉

+〈Hx, x〉 + 〈Hy, y〉 +H0.
(9)

where Hxx, Hyx, Hyy are n × n matrices with Hxx and Hyy symmetric,
Hx, Hy ∈ R

n and H0 ∈ R. We define Hxy = HT
yx. Do not confuse Hx

and ∂xH = Hx +Hxxx +Hxyy.
Fix a smooth time dependent quadratic Hamiltonian

R × R
n × R

n → R : (t, x, y) 7→ H(t, x, y).

Denote the solution of Hamilton’s equations

ẋ = ∂yH(t, x, y), ẏ = −∂xH(t, x, y) (10)

satisfying the initial condition x(t0) = x0, y(t0) = y0 by

(x(t), y(t)) = ψt
t0
(x0, y0). (11)

Thus each ψt
t0

: R
n × R

n → R
n × R

n is an affine symplectomorphism. These
form an evolution system meaning that

ψt2
t1 ◦ ψ

t1
t0 = ψt2

t0 , ψt0
t0 = 1l.

We shall denote the linear part of ψt1
t0 by Ψt1

t0 . These form the evolution
system for the homogeneous quadratic Hamiltonian which results from H by
discarding the lower order terms.

When a symplectomorphism ψ admits a generating function S, this func-
tion S is determined only up to an additive constant. However, for a curve
of symplectomorphisms generated by a time dependent Hamiltonian we have
a natural choice for the additive constant. We now explain this. The time
dependent Hamiltonian determines a one-form σH on R

2n+1 via

σH = 〈y, dx〉 −H dt (12)

The form σH is called the action form. For each smooth curve c : [t0, t1] →
R

n × R
n the integral

I(c) =
∫

c

σH
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of the action form along c is called the action integral. A more explicit
formula is

I(c) =

t1∫

t0

(
〈y(t), ẋ(t)〉 −H(t, x(t), y(t))

)
dt.

where c(t) = (x(t), y(t)).

Proposition 3.1 The Euler-Lagrange equations for the action integral are
Hamilton’s equations (10).

Proof: Let
cλ = (xλ, yλ) : [t0, t1] → R

m × R
n

be a curve of curves and denote the derivatives by

ξ(t) =
∂

∂λ
xλ

∣∣∣∣∣
λ=0

, η(t) =
∂

∂λ
yλ

∣∣∣∣∣
λ=0

, Î =
∂

∂λ
I(cλ)

∣∣∣∣∣
λ=0

.

By differentiation under the integral sign and integration by parts we obtain

Î =
∫ t1

t0
〈η, ẋ− ∂yH〉 dt−

∫ t1

t0
〈ẏ + ∂xH, ξ〉 dt

+〈y(t1), ξ(t1)〉 − 〈y(t0), ξ(t0)〉.
(13)

The Euler-Lagrange equations assert that the two integrals vanish for all
(ξ, η). 2

Assume ψt1
t0 admits a generating function. By Remark 2.1 this means

that for each pair (x0, x1) ∈ R
n × R

n there are unique y0 and y1 such that
ψt1

t0 (x0, y0) = (x1, y1). Then c = (x, y) defined by

c(t) = ψt
t0

(x0, y0)

is the unique solution of the Euler-Lagrange-Hamilton equations such that
x(t0) = x0 and x(t1) = x1. This determines an affine map

R
n × R

n → C∞([t0, t1],R
n × R

n) : (x0, x1) 7→ c

which might be called the affine Green’s function. Define

S(x0, x1) = I(c).
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Proposition 3.2 The function S is a generating function for ψt1
t0 .

Proof: Choose (x0, x1) and (ξ0, ξ1). For λ ∈ R let cλ(t) = (xλ(t), yλ(t))
denote the unique solution of Hamilton’s equations (10) with boundary con-
dition

xλ(t0) = x0 + λξ0, xλ(t1) = x1 + λξ1.

Differentiate the formula S(x0 + λξ0, x1 + λξ1) = I(cλ) with respect to λ.
From equation (13) we get

∂S

∂x0
ξ0 +

∂S

∂x1
ξ1 = 〈y1, ξ1〉 − 〈y0, ξ0〉

where yj = y0(tj). Since ψ(x0, y0) = (x1, y1) this says that S is a generating
function for ψ. 2

Remark 3.3 A generating function for ψt1
t0 is determined only up to an

additive constant. To distinguish the generating function of Proposition 3.2
we may call it the generating function determined by H on the interval
[t0, t1]. By the addition property for definite integrals this generating function
satisfies (7) for t0 < t1 < t2. Hence also the composition formula (8) of
Remark 2.5 holds.

Remark 3.4 Fix (t0, x0) ∈ R × R
n and let S(t, x) denote the generating

function determined by H on [t0, t] evaluated at (x0, x). Then S satisfies the
Hamilton-Jacobi equation

∂tS +H(t, x, ∂xS) = 0.

To prove this let (x(·), y(·)) be the solution of the Hamiltonian differential
equation (10) with x(t0) = x0 and x(t) = x. Differentiate the identity

S(t, x(t)) =

t∫

t0

(
〈y(s), ẋ(s)〉 −H(s, x(s), y(s))

)
ds

with respect to t and use y = ∂S/∂x.
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Assume that ψt1
t0 admits a generating function. Fix x0, x1 and let c =

(x, y) : [t0, t1] → R
n × R

n be the unique critical point of the action integral I
with boundary condition x(t0) = x0 and x(t1) = x1. Expand I(c) by Taylor’s
formula about c. The result is

I(c+ γ) = S(x0, x1) + 1
2
〈Wγ, γ〉 (14)

for γ = (ξ, η) : [t0, t1] → R
n×R

n with ξ(t0) = ξ(t1) = 0. The inner product on
the right is the L2 inner product and W = Wt0t1 is the self-adjoint operator

W (ξ, η) = (−η̇ −Hxxξ −Hxyη, ξ̇ −Hyxξ −Hyyη)

on L2([t0, t1],R
n × R

n) with dense domain

W(t0, t1) = H1
0 ([t0, t1],R

n) ×H1([t0, t1],R
n).

The coefficients Hxx etc. on the right are independent of c since H is
quadratic in (x, y). The operator W is called the second variation of
the action from t0 to t1. We denote by Ψt1

t0 ∈ Sp(2n) the linear part of the
affine symplectomorphism ψt1

t0 . The matrices Ψt1
t0 form the evolution system

corresponding to the linear Hamiltonian system

ξ̇ = Hyxξ +Hyyη, −η̇ = Hxxξ +Hxyη. (15)

We shall consider the boundary conditions

ξ(t0) = ξ0, ξ(t1) = ξ1. (16)

The operator Wt0t1 : W(t0, t1) → L2([t0, t1],R
n × R

n) is invertible iff Ψt1
t0

admits a generating function iff the boundary value problem (15-16) has a
unique solution for every choice of (ξ0, ξ1). The function

G : R
n × R

n → H1([t0, t1],R
n × R

n)

which assigns to each pair (ξ0, ξ1) ∈ R
n × R

n the unique solution of (15-16)
is called the Green’s function on the interval [t0, t1].

Proposition 3.5 Fix t0 < t1 < t2 such that ψtk
tj admits a generating func-

tion. There is an isomorphism

W(t0, t2) → W(t0, t1) ⊕ R
n ⊕W(t1, t2) : γ02 7→ γ01 ⊕ ξ1 ⊕ γ12
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such that

〈Wt0t2γ02, γ02〉 = 〈Wt0t1γ01, γ01〉 + 〈Wt1t2γ12, γ12〉 + 〈Qξ1, ξ1〉

Q is the composition form as in (8).

Proof: Let Gjk denote the Green’s function on [tj, tk]. The isomorphism
sends γ02 = (ξ, η) to

γ01 = γ|[t0, t1] −G01(0, ξ1), ξ1 = ξ(t1), γ12 = γ|[t1, t2] −G12(ξ1, 0).

2

4 Discrete Hamiltonian mechanics

By a partition of R we mean an infinite discrete subset T ⊂ R extending to
infinity in both directions. Every t ∈ T has a unique successor t+ ∈ T and
predecessor t− ∈ T defined by

t− = sup T ∩ (−∞, t), t+ = inf T ∩ (t,∞).

A discrete evolution system is a two-parameter family φt
s of affine sym-

plectomorphisms defined for s, t ∈ T such that

φt2
t1 ◦ φ

t1
t0 = φt2

t0 , φt0
t0 = 1l.

Such a system is uniquely determined by its generators φt+

t where t ∈ T .
Fix a time dependent quadratic Hamiltonian H(t, x, y) as in section 3 and

a partition T . We shall assume that the partition satisfies the condition

(t+ − t)|Hxy(t)| < 1 (17)

for t ∈ T . The discrete Hamiltonian equations determined by H and T
are

x′ − x = ∂yH(t, x′, y)(t+ − t)
y′ − y = −∂xH(t, x′, y)(t+ − t).

(18)

These equations define (x′, y′) implicitly in terms of (x, y): condition (17)
implies that 1l− (t+ − t)Hxy(t) is invertible. The next proposition shows why
the right hand side is evaluated at (x′, y) rather than (x, y).
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Proposition 4.1 The equations (18) define an affine symplectomorphism
(x′, y′) = φt+

t (x, y).

Proof: The generating function is

S(x′, x) = I(x′, x, g(x′, x))

where y = g(x′, x) is the unique solution of ∂I/∂y = 0 and

I(x′, x, y) = 〈y, x′ − x〉 −H(x′, y)(t+ − t).

This works when ∂2
yH is nondegenerate. The general case holds by an ap-

proximation argument. 2

Let t0, t1 ∈ T with t0 < t1. Define the space

PT (t0, t1) = {c = (x, y) : x : T ∩ [t0, t1] → R
n, y : T ∩ [t0, t1) → R

n}

of discrete paths in R
2n. These discrete paths are finite sequences of length

N and N − 1 where N is the cardinality of the finite set T ∩ [t0, t1]. The
discrete action functional IT : PT (t0, t1) → R is defined by

IT (c) =
∑

t∈T
t0≤t<t1

(
〈y(t), x(t+) − x(t)〉 −H(t, x(t+), y(t))(t+ − t)

)
.

Proposition 4.2 The Euler-Lagrange equations of the discrete action with
fixed endpoints x(t0) = x0, x(t1) = x1 are the discrete Hamiltonian equa-
tions (18).

Proof:
∂I

∂y(t)
= x(t+) − x(t) − ∂yH(t, x(t+), y(t))(t+ − t)

for t0 ≤ t < t1 and

∂I

∂x(t)
= y(t−) − y(t) − ∂xH(t−, x(t), y(t−))(t− t−)

for t0 < t < t1. (In equation (18) y(t1) is determined by x(t1) and y(t−1 ).) 2
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The definitions and propositions for the rest of this section parallel the
continuous time case. We shall omit the proofs.

As in the continuous time case, the affine symplectomorphism φt1
t0 admits

a generating function iff for each pair (x0, x1) ∈ R
n ×R

n the Euler-Lagrange-
Hamiltonian equations of the discrete action have a unique solution c =
(x, y) ∈ PT (t0, t1) such that x(t0) = x0 and x(t1) = x1. This determines an
affine map

R
n × R

n → PT (t0, t1) : (x0, x1) 7→ c

which might be called the discrete affine Green’s function. Define

ST (x0, x1) = IT (c).

Proposition 4.3 The function ST is a generating function for φt1
t0 . It is

called the discrete generating function determined by T and H on the
interval [t0, t1]. (Compare Remark 3.3.)

Remark 4.4 Suppose t0 < t1 < t2, that φtk
tj admits a generating function,

and that ST
jk is the discrete generating function from tj to tk determined by

T and H. Then

ST
01(x0, x1) + ST

12(x1, x2) = ST
02(x0, x2) + 1

2
〈QT ξ1, ξ1〉

where ξ1 = x1 − gT (x0, x2) as in Remark 2.5. Here QT is the composition
form of φt1

t0 and φt2
t1 .

For t0, t1 ∈ T with t0 < t1 define

WT (t0, t1) =
{
γ = (ξ, η) ∈ PT (t0, t1) : ξ(t0) = ξ(t1) = 0

}
.

This is a Hilbert space with the approximate L2-norm

‖γ‖2
T =

∑

t0≤t<t1

(|ξ(t+)|2 + |η(t)|2)(t+ − t).

Expand IT by Taylor’s formula about c = (x, y). The result is

IT (c+ γ) = ST (x0, x1) + 1
2
〈W T γ, γ〉 (19)
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for γ ∈ W(t0, t1) where W T = W T
t0t1

: WT (t0, t1) → WT (t0, t1) is a (finite
dimensional) operator. It is given by W T (ξ, η) = (u, v) where

u(t) = −
η(t) − η(t−)

t− t−
−Hxx(t

−)ξ(t) −Hxy(t
−)η(t−),

v(t) =
ξ(t+) − ξ(t)

t+ − t
−Hyx(t)ξ(t

+) −Hyy(t)η(t).

The operator W T is called the second variation of the discrete action
from t0 to t1. It is symmetric with respect to the above inner product. As
in the continuous time case, the operator W T

t0t1
is invertible iff the affine

symplectomorphism φt1
t0 admits a generating function iff for every choice of

(ξ0, ξ1) the discrete boundary value problem

ξ(t+) − ξ(t)

t+ − t
= Hyx(t)ξ(t

+) +Hyy(t)η(t),

η(t+) − η(t)

t+ − t
= −Hxx(t)ξ(t

+) −Hxy(t)η(t),

ξ(t0) = ξ0, ξ(t1) = ξ1

has a unique solution (ξ, η) = G(ξ0, ξ1). We call G the discrete Green’s
function on [t0, t1].

Proposition 4.5 Fix t0 < t1 < t2 such that φtk
tj admits a generating func-

tion. Then there exists an isomorphism

WT (t0, t2) → WT (t0, t1) ⊕ R
n ⊕WT (t1, t2) : γ02 7→ γ01 ⊕ ξ1 ⊕ γ12

such that

〈W T
t0t2
γ02, γ02〉 = 〈W T

t0t1
γ01, γ01〉 + 〈W T

t1t2
γ12, γ12〉 + 〈QT ξ1, ξ1〉

where QT is the composition form for φt1
t0 and φt2

t1 .

Corollary 4.6 In the notation of Proposition 4.5

signW T
t0t2

= signW T
t0t1

+ signW T
t1t2

+ signQT .
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5 The Maslov index

In [17] we develop a theory of the Maslov index for paths of symplectic
matrices. Our theory differs slightly from other treatments in the literature.
Our Maslov index assigns a half integer µ(Ψ) to every path Ψ : [a, b] →
Sp(2n) of symplectic matrices. Here we summarize the results which are
needed in the sequel.

Denote by Sp0(2n) the open and dense set of all symplectic matrices which
admit a generating function and by

Σ = Sp(2n) \ Sp0(2n)

its complement. The space Sp0(2n) has two components distinguished by
the sign of the determinant of B in the block decomposition (3). The set
Σ is called the Maslov cycle. It admits a natural co-orientation. The
Maslov index of a path with endpoints in Sp0(2n) is the intersection number
of that path with Σ. For a path which begins and/or ends on Σ we add half
the intersection number at the endpoints. The definition of this intersection
number is not completely obvious because we allow paths which begin and
end in the strata of the Maslov cycle of codimension bigger than 1. For
example we allow paths which start at the identity. As in [3] this is motivated
by Hamiltonian evolution systems.

For a time dependent quadratic Hamiltonian H denote by Ψ(H)t
t0

∈
Sp(2n) the evolution system generated by the linearized Hamiltonian dif-
ferential equation. Define

µ(t0, t1, H) = µ(ΨH,[t0,t1])

where ΨH,[t0,t1] denotes the path [t0, t1] → Sp(2n) : t 7→ Ψ(H)t
t0
. We use

the Maslov index µ(t0, t1, H) only when Ψ(H)t1
t0 ∈ Sp0(2n). Any time this

notation is used this is implicitly assumed. In particular the homotopy Hλ

mentioned below satisfies Ψ(Hλ)
t1
t0 ∈ Sp(2n) for every λ. The Maslov index

satisfies the following conditions.

(Homotopy) Two time dependent quadratic Hamiltonians are homotopic
as above if and only if they have the same Maslov index.

(Composition) If t0 < t1 < t2 then

µ(t0, t2, H) = µ(t0, t1, H) + µ(t1, t2, H) + 1
2
signQ
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where Q is the composition form of Ψ(H)t1
t0 and Ψ(H)t2

t1 as in Re-
mark 2.6.

(Product) If H(t, x′, x′′, y′, y′′) = H ′(t, x′, y′) +H ′′(t, x′′, y′′) then

µ(t0, t1, H) = µ(t0, t1, H
′) + µ(t0, t1, H

′′).

(Normalization) If H(t, x, y) = 1
2
〈Hyy(t)y, y〉 so that

Ψ(H)t
t0 =

(
1l B(t)
0 1l

)

is a symplectic shear then

µ(t0, t1, H) = − 1
2
signB(t1).

(Determinant) The number µ(t0, t1, H) + n/2 is an integer and

sign det B = (−1)µ+n/2

where µ = µ(t0, t1, H) and B is the right upper block in the decompsi-
tion (3) of Ψ(H)t1

t0.

6 Approximation

Fix a time dependent quadratic Hamiltonian as in section 3 and a partition T
as in section 4 and denote by {φt

s : t, s ∈ T } the associated discrete evolution
system. Let {ψt

s : t, s ∈ R} be the evolution system of Section 3 and Ψt
s be

its linear part.
To make the statements of our convergence theorems less awkward we

shall interpolate this discrete evolution system by a 2-parameter family of
affine symplectomorphisms. For t ∈ T and t ≤ s, s′ ≤ t+ the symplectomor-
phism

(x′, y′) = φs′

s (x, y)

is defined implicitly by

x′ − x = ∂yH(t, x′, y)(s′ − s), y′ − y = −∂xH(t, x′, y)(s′ − s).

15



For t0 ≤ s ≤ t+0 and t1 ≤ t ≤ t+1 with tj ∈ T define

φt
s = φt

t1 ◦ φ
t1
t0 ◦ φ

t0
s .

(Because of the interpolation, {φt
s : t, s ∈ R} is not an evolution system.)

Denote by |T | = supt |t
+ − t| the mesh of the partition.

Theorem 6.1 We have
ψt

s = lim
|T |→0

φt
s.

The convergence is uniform in every compact domain t0 ≤ s, t ≤ t1.

Proof: By Proposition 4.1 we have

x′ = x + ∂yH(t, x, y)(s′ − s) +O((s′ − s)2),

y′ = y − ∂xH(t, x, y)(s′ − s) +O((s′ − s)2).

for (x′, y′) = φs′

s (x, y) with t ≤ s, s′ ≤ t+. 2

Corollary 6.2 Suppose ψt1
t0 admits a generating function. Then the sym-

plectomorphism φt1
t0 admits a generating function for |T | sufficiently small

and the limit of the discrete generating function determined by T and H

lim
|T |→0

ST = S

is the continuous generating function determined by H.

Theorem 6.3 Assume that ψt1
t0 admits a generating function. Then for suf-

ficiently small mesh the discrete second variation W T
t0t1

is nonsingular and
its signature is independent of the choice of the partition. This allows the
definition

signWt0t1 = lim
|T |→0

signW T
t0t1
.

Theorem 6.3 is an immediate consequence of the following relation be-
tween the signature of the Hessian and the Maslov index.

Theorem 6.4 If ψt1
t0 admits a generating function then for sufficiently small

mesh the signature of the discrete second variation from t0 to t1 is related to
the Maslov index by

signW T
t0t1 = 2µ(t0, t1, H).

16



Proof: We first prove Theorem 6.4 in the case of a symplectic shear

H(t, x, y) = 1
2
〈Hyy(t)y, y〉.

Then the discrete time evolution system is linear and given by

φt
t0

=

(
1l B(t)
0 1l

)

where B(t) for t ∈ T ∩ [t0, t1] is defined inductively by

B(t+) = B(t) +Hyy(t)(t
+ − t), B(t0) = 0, BT = B(t1).

Moreover

〈W T γ, γ〉 = 2
∑

t0<t<t1

〈η(t−) − η(t), ξ(t)〉 −
∑

t0≤t<t1

〈Hyy(t)η(t), η(t)〉(t
+ − t).

Introduce new variables u, v : T ∩ (t0, t1) → R
n and η0 ∈ R

n defined by

u(t) = ξ(t) − 1
2
(B(t) − BT )(η(t) + η(t−)),

v(t) = −
η(t) − η(t−)

t− t−
,

η0 = η(t0).

for t0 < t < t1. Then the map γ 7→ (u, v, η0) is an isomorphism. The L2-inner
product of u and v is given by

〈u, v〉 =
∑

t0<t<t1

〈u(t), v(t)〉(t− t−)

=
∑

t0<t<t1

〈ξ(t), η(t−) − η(t)〉

+ 1
2

∑

t0<t<t1

〈(B(t) − BT )(η(t) + η(t−)), η(t) − η(t−)〉

=
∑

t0≤t<t1

〈ξ(t), η(t−) − η(t)〉

+ 1
2

∑

t0<t<t1

〈(B(t) − BT )η(t)), η(t)〉

− 1
2

∑

t0<t≤t1

〈(B(t) −BT )η(t−)), η(t−)〉

17



=
∑

t0≤t<t1

〈ξ(t), η(t−) − η(t)〉

+ 1
2

∑

t0≤t<t1

〈(B(t) − B(t+))η(t), η(t)〉 + 1
2
〈BT η0, η0〉

=
∑

t0≤t<t1

〈ξ(t), η(t−) − η(t)〉

− 1
2

∑

t0≤t<t1

〈Hyy(t)η(t), η(t)〉(t
+ − t) + 1

2
〈BT η0, η0〉

= 1
2
〈W T γ, γ〉 + 1

2
〈BT η0, η0〉.

Hence the second variation W T can be represented by the matrix

W T =




−BT 0 0
0 0 1l
0 1l 0


 .

By the normalization property of the Maslov index this shows that

signW T = −signBT = 2µ(t0, t1, H).

in the case of a symplectic shear.
Now let H be any quadratic Hamiltonian with Ψt1

t0 ∈ Sp0(2n). Through-
out the remainder of the proof we shall fix the interval [t0, t1] and denote the
second variation W T

H . Consider a new Hamiltonian H0 = H ⊕H ′ where

H ′(x′, y′) = 1
2
〈H ′

yyy
′, y′〉

on R
n′

×R
n′

and H ′
yy is a constant symmetric n′×n′ matrix of signature zero.

(The number n′ is necessarily even.) Then the induced symplectomorphism
of H ′ is a symplectic shear of Maslov index zero. By the first part of the
proof the corresponding Hessian W T

H′ has signature zero:

signW T
H′ = 0

(for every mesh). By the product property it suffices to prove the theorem
for H0. By the determinant and normalization properties of the Maslov
index there exists, for n′ sufficiently large, a symplectic shear H1 on R

2n+2n′

whose Maslov index agrees with that of H0. By the homotopy property there

18



exists a homotopy {Hλ}λ from H0 to H1 such that the symplectomorphism
generated by Hλ admits a generating function for every λ. Hence

signW T
H = signW T

H0

= signW T
H1

= 2µ(t0, t1, H1)

= 2µ(t0, t1, H0)

= 2µ(t0, t1, H).

The last identity follows the product property, the last but one from the
homotopy property, and the last but two is the theorem for symplectic shears.
2

Remark 6.5 A direct proof of Theorem 6.3 is slightly more difficult. It
would proceed by showing that for sufficiently small mesh the signature of
W T remains unchanged under the introduction of a new mesh point. This
argument requires a uniform estimate on the inverse of W T .

Theorem 6.6 If the mesh of T is sufficiently small then the determinant of
the second variation W T from t0 to t1 is given by

det(W T ) = (−1)Nn+n(t+0 − t0)
n det(BT )

∏

t∈T
t0≤t<t1

det(1l − (t+ − t)Hxy(t))

(t+ − t)2n

where BT is the right upper block in the decomposition (3) of the affine sym-
plectomorphism ψ(T , H)t1

t0, and N = #{t ∈ T : t0 ≤ t < t1}.

Proof: The formula for the absolute value of the determinant follows from
the proof of Theorem 8.5 below. By the determinant property from section 5

sign det(BT ) = (−1)µ+n/2

Hence

sign det(W T ) = (−1)(rank WT −sign WT )/2

= (−1)nN+n/2−µ

= (−1)nN+n/2−µ

= (−1)nN+nsign det(BT ).

2
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7 Two Lie Algebras

We summarize some material from [12]. Denote the space of all complex
linear differential operators on R

n with polynomial coefficients by OpC(n).
This space forms an associative algebra under composition of operators and
hence a Lie algebra. It is convenient to define generators for this associative
algebra by

(Pjf) (x) = −i~∂jf(x), (Qjf) (x) = xjf(x), (20)

for x = (x1, x2, . . . , xn) ∈ R
n and f ∈ C∞(Rn). Here ~ is is a fixed positive

number called Planck’s constant. These operators satisfy the Heisenberg
relations

[Pj, Pk] = [Qj, Qk] = 0, [Qj, Pk] = i~δjk1l (21)

In multi-index notation a typical element A ∈ OpC(n) has form

A =
∑

aα,βQ
αP β

where the coefficients aα,β are complex numbers. This operator has a formal
adjoint defined by

A∗ =
∑

āα,βP
βQα.

Denote the (formally) skew-adjoint operators by

Op = Op(n) = {A ∈ OpC(n) : A+ A∗ = 0}.

Then OpC(n) is the complexification of Op(n):

OpC(n) = Op(n) + iOp(n).

Introduce a filtration of Op via

Opr =
⊕

s≤r

Op(s), Op(s) = span{QαP β : |α| + |β| = s}.

This gives
[Opr,Ops] ⊂ Opr+s−2.

In particular, Op1 and Op2 are Lie algebras and Op1 acts on Op2 by deriva-
tions.
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The polynomial Poisson algebra F = F(2n) in 2n dimensions is the
Lie algebra of all real valued polynomials f : C

n = R
2n → R with the bracket

operation defined by

{f1, f2} =
n∑

j=1

(
∂f1

∂xj

∂f2

∂yj
−
∂f1

∂yj

∂f2

∂xj

)

where zj = xj + iyj. This algebra is graded

F =
∞⊕

r=1

F (r)

and
{F (r),F (s)} ⊂ F (r+s−2)

where F (r) denotes the subspace of homogeneous polynomials of degree r.
Denote by

Fr =
⊕

s≤r

F (s)

the corresponding filtration.The co-ordinate functions

qj(x, y) = xj, pj(x, y) = yj, (22)

for j = 1, 2, . . . , n form a vector space basis for F (1). They satisfy the rela-
tions

[pj, pk] = [qj, qk] = 0, [qj, pk] = δjk (23)

The monomials qαpβ with |α| + |β| = r form a basis for F (r).

Theorem 7.1 There is an isomorphism F2 → Op2.

Proof: Equations (21) and (23) show that the linear map

1 7→
1

i~
1l, pj 7→

1

i~
Pj, qk 7→

1

i~
Qk,

is an isomorphism F1 → Op1. It extends to to an isomorphism F2 → Op2

via

qjqk 7→
1

i~
QjQk, pjpk 7→

1

i~
PjPk, qkpj 7→

1

i~

(
QkPj −

i~

2
δjk1l

)
.
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The right hand side is achieved by replacing qj and pj with Qj and Pj, taking
the self-adjoint part, and dividing by i~. The following multiplication table
proves this for n = 1:

{p2, q} = −2p [P 2, Q] = −2i~P
{q2, p} = 2q [Q2, P ] = 2i~Q
{qp, p} = p [QP, P ] = i~P
{qp, q} = −q [QP,Q] = −i~Q

{p2, q2} = −4qp [P 2, Q2] = −4i~QP −2~
21l

{p2, qp} = −2p2 [P 2, QP ] = −2i~P 2

{q2, qp} = 2q2 [Q2, QP ] = 2i~Q2

2

Remark 7.2 This isomorphism does not extend to a Lie algebra homomor-
phism F → Op. See [12].

8 Feynman path integrals

In this section the triple

S(Rn) ⊂ L2(Rn) ⊂ S ′(Rn)

made from the Schwartz space S(Rn), the Hilbert space L2(Rn), and the
space S ′(Rn) of tempered distributions plays the role of a kind of Gelfand
triple. By a unitary Schwartz automorphism we mean a unitary auto-
morphism of L2(Rn) which restricts to a toplinear automorphism of S(Rn)
and hence extends uniquely to a toplinear automorphism of S ′(Rn). Some
unitary Schwartz automorphisms are the Fourier transform

F(f)(y) = (2π~)−n/2
∫
e−i〈y,x〉/~f(x) dx,

the inverse Fourier transform

F̄(g)(x′) = (2π~)−n/2
∫
ei〈y,x′〉/~g(y) dy,
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the multiplication operator

M(N)g(y) = e−iN(y)/~g(y)

where N : R
n → R is a polynomial, the translation operator

R(y0)g(y) = g(y + y0)

where y0 ∈ R
n, and the composition operator

K(B)g(x′) = | det B|1/2g(Bx′)

where B ∈ GL(n,R).
A time independent quadratic Hamiltonian of the form (9) determines a

linear map T (H) : L2(Rn) → L2(Rn) via

T (H)f(x′) = (2π~)−n det(1l −Hyx)
1/2
∫ ∫

ei(〈y,x′−x〉−H(x′,y))/~f(x) dx dy

for f ∈ S(Rn). (It is required that Hyx be sufficiently small so that the
determinant is non-zero.)

Proposition 8.1 The operator T (H) is a unitary Schwartz automorphism.

Proof: It factors as

T (H) = M(L) ◦ K(B) ◦ F̄ ◦M(N) ◦ F .

where L(x) = H0 + 〈Hx, x〉+ 1
2
〈Hxxx, x〉, B = 1l−Hyx, and N(y) = 〈Hy, y〉+

1
2
〈Hyyy, y〉. Each factor is a unitary Schwartz automorphism. 2

Let H(t, x, y) = Ht(x, y) be a smooth time dependent quadratic Hamil-
tonian, T be a partition of the interval [t0, t1], and P(T ) be the finite di-
mensional space of paths as in section 4. For t, t0 ∈ T define the Feynman
product UT (t, t0, H) inductively by

UT (t+, t0, H) = T ((t+ − t)Ht) ◦ U
T (t, t0, H),

UT (t0, t0, H) = 1l.
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This has the appearance of an integral over paths:

UT (t1, t0, H)f(x) =
∫

c∈PT

x(t1)=x

ei IT (c)/~f(x(t0))D c (24)

where

D c =
∏

t0≤t<t1

(2π~)−n det(1l − (t+ − t)Hyx(t))
1/2 dx(t)dy(t).

The order of integration is the time order, i.e. first dx(t0), then dy(t0), then
dx(t+0 ) etc. The notation D c hides the normalization which makes the Feyn-
man product a unitary operator. The integral does not converge absolutely
as an integral in all its variables. Interchanging the order of integration
requires justification.

Theorem 8.2 The limit

U(t1, t0, H) = lim
|T |→0

UT (t1, t0, H)

exists in the strong operator topology. It is a unitary Schwartz automorphism.
Here |T | = maxj(sj − sj−1) is the mesh of the partition and the partitions
partition the interval [t0, t1].

Corollary 8.3 U(t2, t1, H) ◦ U(t1, t0, H) = U(t2, t0, H).

Theorem 8.4 The operators U(t, t0, H) are the evolution operators of the
time dependent partial differential equation

i~
∂φ

∂t
= Ht(Q,P )φ

where Qj and Pj denote the self-adjoint operators of equation (20) and
(i~)−1Ht(Q,P ) ∈ Op2 is the image of Ht ∈ F2 under the Lie algebra ho-
momrphism of Theorem 7.1.

We now give an explicit formula for the operator U(t, t0, H). Let ψ denote
the evolution system determined by H as in equation (11).
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Theorem 8.5 If ψt1
t0 admits a generating function then U(t1, t0, H) is given

by

U(t1, t0, H)f(x) =
eiπµ(t0 ,t1,H)/2

(2π~)n/2| detB|1/2

∫

Rn

ei S(x,x0)/~f(x0) dx0.

where S(x, x0) is the generating function from t0 to t1 as in Remark 3.3,
µ = µ(t0, t1, H) is the Maslov index as in section 5, and B = B(t1, t0) is the
right upper block in the block decomposition (3) of Ψt1

t0 .

The previous theorem shows that the unitary operator U(t1, t0, H) de-
pends, up to multiplication by a complex number of modulus 1, only on the
symplectomorphism ψt1

t0 generated by the quadratic Hamiltonian H but not
on H itself. If H is chosen with constant term c = 0 then U(t1, t0, H) is
determined by ψt1

t0 up to a sign. The sign is determined by the Maslov index.

Proof of Theorem 8.2 and Theorem 8.5: By equations (24) and (19)

UT (t1, t0, H)f(x) =
∫

WT (t0,t1)

∫

Rn

ei ST (x,x0)/~f(x0) dx0 e
i〈WT γ,γ〉/2~ Dγ

where

D γ = (t+0 − t0)
n/2

∏

t0≤t<t1

(2π~(t+ − t))−n det(1l − (t+ − t)Hyx(t))
1/2 dγ,

and
dγ = (t+0 − t0)

n/2dη(t0)
∏

t0<t<t1

(t+ − t)ndξ(t)dη(t).

Recall that WT (t0, t1) is a finite dimensional Hilbert space and dγ is the
Euclidean volume form. The Gaussian integral is

∫

WT (t0 ,t1)

ei〈WT γ,γ〉/2~ dγ =
(2π~)nN−n/2

| det W T |1/2
eiπ sign WT /4

where
N = N(t0, t1) = #{t ∈ T : t0 ≤ t < t1}.

By Theorem 6.4

∫

WT (t0 ,t1)

ei〈WT γ,γ〉/2~ Dγ = λ
(2π~)−n/2

| det BT |1/2
eiπµ(t1 ,t0,H)/2.
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where

λ =
| det BT |1/2

| det W T |1/2
(t+0 − t0)

n/2
∏

t0≤t<t1

(t+ − t)−n det(1l − (t+ − t)Hxy(t))
1/2

Hence

UT (t1, t0, H)f(x) = λ
(2π~)−n/2

| det BT |1/2
eiπµ(t,t0 ,H)/2

∫

Rn

ei ST (x,x0)/~f(x0) dx0.

Since UT (t1, t0, H) is a unitary operator it follows that λ = 1. Now let the
mesh go to zero and use Theorem 6.1 and Proposition 4.3. 2

Proof of 8.3: This is immediate from Theorem 8.2. We give another proof
using Theorem 8.5. Fix t0 < t1 < t2. For j, k = 0, 1, 2 abbreviate

ψkj = ψtk
tj , Ψkj = Ψtk

tj , µkj = µ(tk, tj, H)

and write Ψkj in block matrix notation

Ψkj =

(
Akj Bkj

Ckj Dkj

)
.

Assume Ψkj ∈ Sp0(2n) and denote by Skj the generating function of ψkj

given by the action functional. Define

K(x2, x0) =
∫

Rn

eiS21(x2,x1)/~+iS10(x1,x0)/~dx1.

By equation (8) and Remark 3.3

S21(x2, x1) + S10(x1, x0) = S20(x2, x0) + 1
2
〈Qv, v〉

where v = x1 + `(x0, x2). The Gaussian integral is given by

∫

Rn

ei〈v,Qv〉/2~ dv = (2π~)n/2| det(Q)|−1/2eiπ sign Q/4.

Combining these gives another formula for K(x2, x0):

K(x2, x0) = (2π~)n/2| det Q|−1/2eiπsign Q/4+iS20(x2,x0)/~.
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By the composition property of the Maslov index

µ21 + µ10 = µ20 − 1
2
signQ

Moreover, Q = B−1
21 B20B

−1
10 and hence

| det Q| · | det B21B10| = | det B20|.

Using these last three identities and the formula of Theorem 8.5 gives

U(t2, t1) ◦ U(t1, t0)f(x2)

= eiπ(µ21+µ10)/2 (2π~)−n | detB21B10|
−1/2

∫

Rn

K(x2, x0)f(x0) dx0

= eiπ(µ20)/2 (2π~)−n/2 | detB20|
−1/2

∫

Rn

eiS20(x2,x0)/~f(x0) dx0

= U(t2, t0)f(x2)

as required. 2

Proof of Theorem 8.4: Assume that ψt
t0 admits a generating function

and let S(t, x, x0) be given by the action. Let B(t) denote the right up-
per block in the block decomposition of Ψt

t0 = dψt
t0 and abbreviate λ =

eiπµ(t,t0 ,H)/2 (2π~)−n/2. Then

u(t, x) = U(t, t0, H)f(x) = λ| detB(t)|−1/2
∫

Rn

eiS(t,x,x0)/~f(x0) dx0.

Differentiating with respect to x gives

Pju = λ| detB|−1/2
∫

Rn

∂S

∂xj
eiS/~f

and

PjPku = −i~
∂2S

∂xj∂xk

u+ λ| detB|−1/2
∫

Rn

∂S

∂xj

∂S

∂xk

eiS/~f

Hence the right hand side of the equation is

H(t, Q, P )u = −i~ 1
2
tr (Hyx +HyyDB

−1) u

+λ| detB|−1/2
∫

Rn

H(t, x, ∂xS)eiS/~f.
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Here we have used the identity ∂2S/∂x2 = DB−1 where D = D(t) is the
lower right block in the block decomposition (3) of Ψt

t0
. Now

d

dt
| det B|−1/2 = − 1

2
tr (ḂB−1)| det B|−1/2

= − 1
2
tr (Hyx +HyyDB

−1)| det B|−1/2

and hence

i~
∂u

∂t
= −i~ 1

2
tr (Hyx +HyyDB

−1) u− λ| detB|−1/2
∫

Rn

∂S

∂t
eiS/~f.

Since S satisfies the Hamilton-Jacobi equation ∂tS + H(t, x, ∂xS) = 0 this
proves the statement whenever ψt

t0 admits a generating function. The general
case follows since both sides of the equation depend continuously on H.

Here is an alternative proof. Since U(t, t0) is a strongly continuous evo-
lution operator it suffices to prove

d

dt

∣∣∣∣∣
t=t0

U(t, t0)f =
1

i~
Ht0(Q,P )f

for f ∈ S(Rn). Since

U(t0 + τ, t0)f − T (Ht0τ)f = O(τ 2)

it suffices to prove

lim
τ→0

T (Hτ)f − f

τ
=

1

i~
H(Q,P )f (25)

for f ∈ S(Rn) and any quadratic Hamiltonian H. The limit is in the L2-norm.
First assume that H either depends only on x or only on y or consists only

of a mixed term. If H = H(x) depends only on x then T (Hτ) = M(Hτ)
and hence

lim
τ→0

T (Hτ)f(x) − f(x)

τ
= lim

τ→0

e−iτH(x)/~ − 1

τ
f(x)

=
1

i~
H(x)f(x).
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If H = H(y) depends only on y then T (Hτ) = F̄ ◦M(Hτ) ◦ F . Hence

lim
τ→0

F
T (Hτ)f(y) − f(y)

τ
= lim

τ→0

e−iτH(y)/~ − 1

τ
Ff(y)

=
1

i~
H(y)Ff(y).

If H(x, y) = 〈Hyxx, y〉 then T (Hτ) = K(1l − τHyx) and hence

lim
τ→0

T (Hτ)f(x) − f(x)

τ
= lim

τ→0

det(1l − τHyx)
1/2f(x− τHyxx) − f(x)

τ
= −〈Hyxx,∇f(x)〉 + 1

2
trHyx

=
1

i~
H(Q,P )f(x).

In either case equation (25) is satisfied.
The general case follows by decomposing the operator T (Hτ) as in the

proof of Proposition 8.1. More precisely, define for each k = 0, 1, . . . the
Hilbert space Sk(Rn) to be the completion of the Schwartz space S(Rn) with
respect to the norm

‖f‖2
k =

∑

µ,ν

‖QνP µf‖2
L2

where the sum is over all pairs of multi-indices µ and ν with |µ|+|ν| ≤ k. The
S0-norm is the L2-norm. Fourier transform is a Hilbert space isomorphism
of each Sk. The operator T (H) is also an isomorphism of Sk and satisfies
estimates

‖T (Hτ)f‖k ≤ c ‖f‖k

and
‖T (Hτ)f − f‖k ≤ τc ‖f‖k−2

for 0 < τ ≤ 1 where the constant c = c(k,H) > 0 is independent of f and
τ and depends continuously on the coefficients of H. This proves strong
convergence in (25) for f ∈ S2(Rn). 2

9 Geometric Quantization

A time dependent Hamiltonian H on R
2n determines an evolution system

(z1, u1) = gt1
t0

(z0, u0)
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on W = R
2n × U(1) via the formula

z1 = ψt1
t0

(z0), u1 = u0e
iI(c)/~,

for (z0, u0) ∈ W = R
2n × U(1) where

I(c) =
∫ t1

t0
(〈y, ẋ〉 −H(t, x, y)) dt,

c(t) = (x, y) = ψt
t0

(x0, y0), c(t0) = z0, c(t1) = z1,

and ψt1
t0 is the evolution system generated by H. If the generating function

S of Proposition 3.2 is defined then

gt1
t0 (z0, u0) =

(
ψt1

t0 (z0), u0e
iS(x0,x1)/~

)
(26)

where zj = (xj, yj). The group ESp(W, ~) of all diffeomorphisms of W of
form gt1

t0 where H runs over the time dependent (inhomogeneous) quadratic
Hamiltonians R → F2 is called the extended symplectic group.1 The
various groups ESp(W, ~) depend set-theoretically on ~ but are isomorphic
as abstract groups. There is a central extension

1 → U(1) → ESp(W, ~) → ASp(R2n) → 1

where ASp(R2n) denotes the affine symplectic group; the projection is
given by gt1

t0 7→ ψt1
t0 and the U(1) subgroup consists of those gt1

t0 where H is
constant.

If the Hamiltonian H is time independent then the corresponding evolu-
tion systems ψt1

t0 and gt1
t0 are flows: denote by XH and YH the vector fields

generating these flows. Then XH is the Hamiltonian vector field2 of H, and
YH is a lift of XH to W . The Lie algebra to ASp(R2n) is the image of F2

under the representation H 7→ XH but this representation is not faithful
as the constant Hamiltonians F0 map to zero. However the representation
H 7→ YH is faithful. Differentiating gives the following

Proposition 9.1 The vector field YH on W is given by

YH(z, u) = (XH(z), uisH/~) , sH = 〈y, ∂yH〉 −H.

1Souriau [27] would probably call it the affine quantomorphism group.
2That is, the vector field whose integral curves are the solutions of Hamilton’s equa-

tions (10).
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Following Souriau [26] and Kostant [15] we describe the extended sym-
plectic group as a group of bundle automorphisms. View W as (the total
space of) a principal U(1) bundle over R

2n and define a connection form on
W by

α = −
i

~
〈y, dx〉 + u−1du.

The curvature form is F = dα = iω/~ a multiple of the standard symplectic
form. Denote by ν(z, u) = (0, ui) the generator of the U(1) action and by
X̃H the horizontal lift of XH defined by

X̃H = (XH , u̇) , α(X̃H) = 0.

In other words

u̇ = u
i

~
〈y, ∂yH〉.

The following is routine.

Lemma 9.2 YH = X̃H − (H/~)ν.

Corollary 9.3 The extended symplectic group ESp(W, ~) is the group of all
automorphisms of the U(1) bundle W which preserve the connection α and
cover an affine symplectomorphism of R

2n.

Proof: Let ι(X) denote interior multiplication by a vectorfield X and `(X)
denote Lie differentiation. Then ι(X̃H)α = 0 and ι(X̃H)dα = idH/~ so
`(X̃H)α = idH/~ by Cartan’s formula. Since ι(ν)α = i and ι(ν)dα = 0
Cartan’s formula gives `((H/~)ν)α = (dH/~)i. Hence `(YH)α = 0. This
shows that the elements of the group ESp(W, ~) preserve α. The definition
shows that the elements gt1

t0 of ESp(W, ~) commute with the U(1) action and
cover elements ψt1

t0 of ASp(R2n). The bundle automorphisms which cover the
identity of R

2n are given by the U(1) action and are the elements of ESp(W, ~)
corresponding to constant Hamiltonians. 2

10 Representations

The Extended Metaplectic representation

The set of all unitary Schwartz automorphisms

U = U(t1, t0, H) (27)

31



where H runs over the time dependent quadratic Hamiltonians and t1, t0
range over the real numbers forms a group EMp(2n) called the extended
metaplectic group. The metaplectic group Mp(2n) is the subgroup of all
elements of form (27) where H is a time dependent homogeneous quadratic
Hamiltonian. Let g(H)t1

t0 denote the evolution system on W defined in sec-
tion 9.

Proposition 10.1 The formula

EMp(2n) → ESp(W, ~) : U(t1, t0, H) 7→ gt1
t0

(H)

gives a well-defined group homomorphism. It is a double cover.

Proof: By Theorem 8.5 and equation (26) the map is well-defined and two-
to-one. It is a group homomorphism by Corollary 8.3. 2

Remark 10.2 It follows that Mp(2n) is a nontrivial double cover of Sp(2n).
Since π1(Sp(2n)) = Z the double cover is unique up to isomorphism.

Decompose the Lie algebra Op1 as

Op1 = M⊕ Op0

where M is spanned by P1, . . . , Pn, Q1, . . . , Qn. The linear version of the
following theorem appears in [16].

Theorem 10.3 The extended metaplectic group is precisely the set of all
unitary Schwartz automorphisms U such that

UOp1U
−1 = Op1.

The subgroup of all U such that

UMU−1 = M

is isomorphic to U(1) × Mp(2n).
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The Heisenberg representation

The subgroup HG(W, ~) of the extended symplectic group ESp(W, ~) con-
sisting of those elements which cover translations is called the Heisenberg
group. Its Lie algebra is the image of F1 in the representation by vector
fields of Proposition 9.1. The restriction of the isomorphism F2 → Op2 of
Theorem 7.1 gives an isomorphism F1 → Op1 called the Heisenberg rep-
resentation. A typical element H ∈ F1 is a Hamiltonian of degree one

H(x, y) = 〈Hx, x〉 + 〈Hy, y〉 +H0.

Such a Hamiltonian never admits a generating function. Hence Theorem 8.5
cannot be used to give a formula for the limit U(t, t0, H).

Theorem 10.4 For a time independent affine Hamiltonian H we have

U(t, t0, H) = U((t− t0)H)

where
U(H)f(x) = e−iw(H,x)/~f(x−Hy),

w(H, x) = H0 + 〈Hx, x〉 − 〈Hx, Hy〉/2.

Proof: By direct computation

T (H)f(x) = e−iu(H,x)/~f(x−Hy), u(H, x) = H0 + 〈Hx, x〉.

Choose a partition t0 < t1 < · · · < tN = t and define τj = tj − tj−1. By
induction on N

UT (t, t0, H) = T (τNH) ◦ · · · ◦ T (τ1H)f(x)

= e−iwT (t0,t,H,x)/~f(x− (t− t0)Hy)

where

wT (t0, t, H, x) = w((t− t0)H, x) + 1
2
〈Hx, Hy〉

N∑

j=0

τ 2
j .

Now let the mesh |T | = max |τj| go to zero. Alternatively the statement
follows from Theorem 8.4 2
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The Lie algebra of the Heisenberg group is the space F1. It is isomorphic
to the vector space

hg(2n) = R
2n × R

with bracket operation

[(v1, c1), (v2, c2)] = (0, ω(v1, v2)).

for (vj, cj) ∈ hg(2n). This space is called the Heisenberg algebra. An
explicit isomorphism hg(2n) → F1 : (v, c) 7→ H is given by

H0 = c, (Hx, Hy) = v (28)

with H defined as above. The universal cover of the Heisenberg group
HG(2n) is the central extension

H̃G(2n) = R
2n × R

of R
2n with group operation

(v1, c1) · (v2, c2) = (v1 + v2, c1 + c2 + 1
2
ω(v1, v2)).

An explicit covering map H̃G(2n) → HG(2n) is given by

H̃G(2n) → HG(2n) : (v, c) 7→ U(H)

where H is given by (28). We may think of this covering map as an irreducible
unitary representation of H̃G(2n). If Ψ is a symplectic matrix then the map

H̃G(2n) → HG(2n) : (v, c) 7→ U(H ◦ Ψ)

is another such representation corresponding to the same value of Planck’s
constant ~. By the Stone-von Neumann theorem both representations are
unitarily isomorphic. In other words there exists a unitary operator U :
L2(Rn) → L2(Rn), unique up to multiplication by a complex number of mod-
ulus 1, such that

U(H ◦ Ψ) = U−1 ◦ U(H) ◦ U.

These operators U are the elements of the metaplectic group. This is ap-
parently how the metaplectic representation was discovered (see [24]). The
elements of the metaplectic representation are thus viewed as intertwining
operators of various incarnations of the Heisenberg representation. See [20]
for an exposition in terms of co-adjoint orbits and polarizations.
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