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1 Introduction

In this paper we define instanton Floer homology groups for a pair consisting of
a compact oriented 3-manifold with boundary and a Lagrangian submanifold of
the moduli space of flat SU(2)-connections over the boundary. We carry out the
construction for a general class of irreducible, monotone boundary conditions.
The main examples of such Lagrangian submanifolds are induced from a disjoint
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union of handle bodies such that the union of the 3-manifold and the handle
bodies is an integral homology 3-sphere. The motivation for introducing these
invariants arises from our program for a proof of the Atiyah-Floer conjecture
for Heegaard splittings [3, 28]. We expect that our Floer homology groups are
isomorphic to the usual Floer homology groups [14] [9] of the closed 3-manifold
in our main example and thus can be used as a starting point for an adiabatic
limit argument as in [I2]. On the level of Euler characteristics, the Atiyah-Floer
conjecture was proven by Taubes [31].

Floer homology groups for 3-manifolds with boundary were first constructed
by Fukaya [16] with a different method. His setup uses nontrivial SO(3)-bundles
and thus cannot immediately be used for the proof of the Atiyah-Floer conjec-
ture where the bundles are necessarily trivial. Our approach is motivated by
the construction of a Chern-Simons functional on 3-manifolds with boundary.

Let Y be a compact oriented 3-manifold with boundary and denote

Y = 0Y, G :=SU(2), g :=su(2), (&m) = —tr(&n)

for £&,m € g. While many of the results in this paper carry over to general com-
pact Lie groups (and nontrivial bundles), our construction of Floer homology
works in this form only for G = SU(2) (where the bundles are necessarily triv-
ial). The whole story also carries over to nontrivial SO(3)-bundles, where the
moduli spaces of flat connections are nonsingular and monotone, however, in
this paper we restrict to the case G = SU(2).

The space A(X) := Q(, g) of connections on ¥ carries a natural symplectic
form

w(a, ) = / (anB) 1)

for o, € TAA(X) = QL(Z, g), the action of the gauge group G(2) := C>®(%, G)
on A(XY) is Hamiltonian, and the moment map is the curvature (see [4]). The
(singular) symplectic quotient is the moduli space

My := Apat(8)/9(X) = AX) /(%)

of flat connections. We assume throughout that £ C A(X) is a gauge invariant,
monotone, irreducible Lagrangian submanifold in the following sense.

(L1) £ is a Fréchet submanifold of A(X), each tangent space T4L is a La-
grangian subspace of Q'(X,g), £ C Aga(X), and £ is invariant under G(X).

(L2) The quotient of £ by the based gauge group G.(X) is compact, connected,
simply connected, and 75 (L£/G, (X)) = 0.

(L3) The zero connection is contained in £ and is nondegenerate (as a critical
point of the Chern-Simons functional). Moreover, every nontrivial flat connec-
tion A € A(Y) with Alx € L is irreducible.

A detailed explanation and a finite dimensional characterization of these condi-
tions is given in Section[2] In particular, the assumptions imply that £ descends
to a (singular) Lagrangian submanifold L := £/G(X) C Mx. If H is a disjoint



union of handlebodies with 9H = ¥ then the subset Ly C A(X) of all flat
connections on ¥ that extend to flat connections on Y satisfies (L1) and (L2).
It satisfies (I.3) if and only if Y Uy, H is an integral homology 3-sphere.

The space A(Y, L) :={A € A(Y) | A|x € L} of connections on ¥ with boun-
dary values in £ carries a gauge invariant Chern—Simons functional

CSr : A(Y, L) — R/4n*Z,

well defined up to an additive constant, whose differential is the usual Chern—
Simons 1-form (see Section . The critical points are the flat connections in
A(Y, L). If we fix a Riemannian metric g on Y then the gradient flow lines of
the Chern-Simons functional with respect to the L? inner product are smooth
maps R — A(Y) : s — A(s) satisfying the differential equation

OsA+xFy4 =0, A(s)ls € L VseR. (2)

As in Floer’s original work [I4] the main idea is to use the solutions of to
construct a boundary operator on the chain complex generated by the gauge
equivalence classes of the nontrivial flat connections in Ag, (Y, £). This defines
the Floer homology groups HF(Y, £). To make this precise one needs pertur-
bations that turn CS, into a Morse function whose gradient flowlines satisfy
Morse-Smale type transversality conditions.

We shall work with gauge invariant holonomy perturbations hy : A(Y) — R
as in [31L 14, 9] (see Section [2 and Appendix D). The differential of iy has the
form dhy(A)a = [, ( Xf(A)Aa) for a suitable map Xy : A(Y) — Q*(Y,g). The
space of gauge equivalence classes of critical points of the perturbed Chern—
Simons functional CS; + hy will be denoted by

Ry={Ac AY,L)|Fa+ X;(A) =0}/G(Y)

and the perturbed gradient flow lines are solutions of the boundary value prob-
lem

OsA+x(Fa+ X(A)) =0, A(s)ls € L VseR. (3)

The space of gauge equivalence classes of solutions of that are asymptotic
to [A%] € Ry as s tends to +oo will be denoted by M(A~, A*;g, f). In the
transverse case with irreducible limits [A*] # 0 this moduli space is a manifold
whose local dimension near [A] € M(A™, A";g, f) is given by the Fredholm
index d7(A) of a suitable linearized operator. A crucial fact is the energy-index
relation

51(4) = 5 Br(A) + ny(A7) —ng(4%)

for the solutions of (3) with energy E(A) = [; 195472y, and with a function
n¢ : Ry — R. This is Floer’s monotonicity formula; it follows from the fact that
L/G.(¥) is simply connected. The assumption on o is only needed for the
orientability of the moduli spaces.

Floer’s original work corresponds to the case Y = 0. The object of the
present paper is to show that all of Floer’s ideas carry over to the case of



nonempty boundary. The upshot is that, for a generic perturbation hj, all
critical points of CS; + h; are nondegenerate and so Ry is a finite set, and
that, for every pair [A*] € R; the moduli space M*(A~, A*; g, f) of index 1
connecting trajectories consists of finitely many flow lines up to time shift. The
monotonicity formula plays a central role in this finiteness theorem. As a result
we obtain a Floer chain complex

CR.V.Lif) = @ 7(4)

[AJeR \[0]

with boundary operator given by

OAT) == Y H#(MY(AT, AT g, f)/R) (AF).

[AT]eR;\[0]

Here the connecting trajectories are counted with appropriate signs determined
by coherent orientations of the moduli spaces (Section . It then follows from
gluing and compactness theorems (Sections [7| and @) that 92 = 0. The Floer
homology groups are defined by

HF.(Y,L; f,g) := ker 9/im 0.

We shall prove that the Floer homology groups are independent of the choice
of the metric g and the perturbation f used to define them (Section .

Remark 1.1. In the handle body case we expect the Floer homology groups
HF (Y, L) to be naturally isomorphic to the instanton Floer homology groups
of the homology 3-sphere Y Us; H. The proof will be carried out elsewhere.

Remark 1.2. An interesting special case arises from a Heegaard splitting M =
Hy Us, H; of a homology 3-sphere into two handle bodies H; with 0H; = X.
We obtain the Floer homology groups HF,.([0,1] x X, Lg, X Lg,) from the
following setup: The 3-manifold ¥ := [0, 1] x ¥ has two boundary components
JY = YUY, and attaching the disjoint union of the handle bodies H := HyL H,;
yields the homology 3-sphere Y Usy, vz H = M. The Lagrangian submanifold
is Ly, X Lpg, & Ly C AZ UYX). If this Floer homology is isomorphic to
HF. (M), as expected, then the proof of the Atiyah—Floer conjecture for M
reduces to an adiabatic limit argument as in [I2] which identifies the symplectic
Floer homology group of the pair of Lagrangian submanifolds Ly, L, of the
singular symplectic manifold My, := Agat(X)/G(X) with the Floer homology
groups HF([0,1] x X, Ly, x Lp,) defined in the present paper. Since My is
a singular space, this requires as a preliminary step the very definition of the
symplectic Floer homology groups of Ly, and Lg, with Ly, := L, /G(X).

Remark 1.3. If Ho, Hy, H> are three handle bodies with boundary ¥ such that
the manifold M;; := H; Uy, H; is a homology 3-sphere for i # j, then there is a
product morphism

HF*(K £H0 X EHl) X HF*(Y, £H1 X £H2) — HF*(K EHO X £H2),



where Y := [0,1] x ¥. A key ingredient in the definition is the observation
that is the perturbed anti-self-duality equation for a connection on R x Y in
temporal gauge. Thus equation can be generalized to a 4-manifold X with
a boundary space-time splitting and tubular ends (Section @ The definition
of the product morphism will be based on the moduli space for the 4-manifold
X = A x X, where A is a triangle (or rather a disc with three cylindrical
ends attached). The details will be carried out elsewhere. We expect that our
conjectural isomorphisms will intertwine the corresponding product structures
on the symplectic and instanton Floer homologies.

The construction of the Floer homology groups in the present paper is based
on the foundational analysis in [35] [36], 37, 24] for the solutions of the bound-
ary value problem . In our exposition we follow the work of Floer [14] and
Donaldson [9] and explain the details whenever new phenomena arise from our
boundary value problem. Recall that the present Lagrangian boundary con-
ditions are a mix of first order conditions (flatness of the restriction to 9Y)
and semi-global conditions (pertaining the holonomy on 9Y’), so they cannot be
treated by standard nonlinear elliptic methods.

In Section [2] we recall the basic properties of the Chern—Simons functional
on a 3-manifold with boundary and in Section [3| we discuss the Hessian and
establish the basic properties of the linearized operator on R x Y. Section [
examines the spectral flow and the determinant line bundle for operators over
S x Y. Section [5] establishes exponential decay on tubular ends. Section |§| sets
up the Fredholm theory for general 4-manifolds with space-time splittings of
the boundary and tubular ends. In the second half of the section we focus on
the tube R x Y, examine the spectral flow, and prove monotonicity. Section [7]
proves the compactness of the moduli spaces, based on [36], 37].

In Section [§| we establish transversality, using holonomy perturbations. The
novel difficulty here is that we do not have a geometric description of the bub-
bling effect at the boundary. So, instead of a gluing theorem converse to bub-
bling, we use monotonicity and work inductively on the energy levels. The
second difficulty is that we need to keep the support of the perturbations away
from the boundary, since the techniques of [37] do not extend to the perturbed
equation. As a result we cannot obtain an open and dense set of regular pertur-
bations but — still sufficient — we find a regular perturbation up to index 7 near
any given perturbation. In an appendix to this section we establish the relevant
unique continuation results. In the process we reprove Taubes’ unique continu-
ation result [32] for anti-self-dual connections that vanish to infinite order at a
point. This is needed to overcome difficulties arising from the nonlinear bound-
ary conditions. After these preparations, the construction of the Floer homology
follows the standard routine. For the gluing results in Section [9] we focus on the
pregluing map and the Banach manifold setup for the inverse function theorem.
In Section[I0] we construct coherent orientations in the Lagrangian setting. The
Floer homology groups are defined in Section

There are several appendices where we review standard techniques and adapt
them to our boundary value problems. Appendix [A]deals with the spectral flow



for self-adjoint operator families with varying domains. Appendix [B| discusses
the Gelfand—Robbin quotient, an abstract setting which relates self-adjoint op-
erators with Lagrangian subspaces. These results are needed for the index cal-
culations and orientations in Sections[dand[6} Appendix[C|reviews the Agmon-—
Nirenberg unique continuation technique used in Section [} In Appendix [D] we
discuss the basic analytic properties of the holonomy perturbations and prove
a compactness result needed in Section [7] Appendix [E] deals with Lagrangian
submanifolds in the space of connections. We construct an L2-continuous triv-
ialization of the tangent bundle TL, used in Sections [3] and [} and a gauge
invariant exponential map for £, used in Section [9]

Notation. We denote the spaces of smooth connections and gauge transforma-
tions on a manifold Z by A(Z) := Q}(Z, g) and G(Z) := C*(Z,G). The gauge
group G(Z) acts on A(Z) by u*A := u~ 1 Au+u~*du and the gauge equivalence
class of A € A(Z) is denoted by [A]. A connection A € A(Z) induces an exterior
differential d4 : Q%(Z,g) — QFT1(Z,g) via da7 := dr + [A A 7). Here [, ] de-
notes the Lie bracket on g. The curvature of A is the 2-form Fq :=dA+ AN A
and it satisfies dadaT = [Fa A 7]. The space of flat connections is denoted
by Agat(Z) := {A € A(Z)| Fa = 0}. Connections on X = R x Y or other
4-manifolds will be denoted by A or =, whereas A denotes a connection on a
3-manifold Y or a 2-manifold . We say that a connection A = A + &ds on
R x Y is in temporal gauge on I x Y if ®|;4y = 0.

2 The Chern—Simons functional

Let Y be a compact oriented 3-manifold with boundary 0Y = ¥ and G = SU(2).
The Chern—Simons 1-form on A(Y") is defined by

a /Y<FA/\OZ> (4)

for o € TQA(Y) = QY(Y,g). If Y is closed, then () is the differential of the
Chern-Simons functional CS : A(Y) — R given by

CS(A) = %/Y(umam + %(A/\[A/\A})).

It changes by
CS(A) — CS(u*A) = 4n? deg(u) (5)

under a gauge transformation v € G(Y); thus the Chern—Simons functional
descends to a circle valued function B(Y) := A(Y)/G(Y) — R/4n?Z which
will still be denoted by CS. If Y has nonempty boundary dY = X, then the
differential of is the standard symplectic form on A(X). To obtain a
closed 1-form we restrict the Chern—Simons 1-form to a subspace of connections
satisfying a Lagrangian boundary condition.



Lagrangian submanifolds

The relevant Lagrangian submanifolds of A(X) were studied in detail in [35], Sec-
tion 4]. Following [35] we assume that £ C A(X) is a gauge invariant Lagrangian
submanifold satisfying (L1). This condition can be rephrased as follows.

(L1) First, £ is contained in Ag,;(2) and is invariant under the action of G(X2).
Second, for some (and hence every) p > 2 the LP-closure of £ is a Banach
submanifold of the space of LP-connections, A%P(X%) := LP(X, T*Y ® g).
Third, for every A € L the tangent space T4L C Q(%, g) is Lagrangian,
ie.

w(a,f)=0 VB eTAL = a€TaLl (6)
for every a € QY(3, g).

Let £%P Cc A%P(X) denote the LP-closure of £. Then £ = £%? N A(X) and
the tangent space T 4 L of a smooth element A € £ - as in (L1) - is understood as
the intersection of the Banach tangent space T 4£%P with the space of smooth
1-forms. This space is independent of p > 2 and coincides with the space of
derivatives of smooth paths in £ passing through AE| This follows from a finite
dimensional characterization of the manifold property which we explain next.

A base point set is a finite set z C ¥ which intersects each component
of ¥ in precisely one point. For every base point set z the based gauge group
G.(2) :={u e G(X)|u(z) = 1} acts freely on A(X). Let 2¢g := dim H;(X) and
pick 2g loops in ¥ that generate H;(X) with base points chosen from z. The
holonomy around these loops defines a map p, : Agac — G29 which is invariant
under the action of the based gauge group G.(X). If £ is a gauge invariant
subset of Aga(X) then £9P is a Banach submanifold of A%P(X) if and only if
the image p.(£) C G29 of the holonomy morphism is a smooth submanifold.
There is however no well defined moment map for the action of G.(X), so the
symplectic structure does not descend to the quotient. On the other hand, the
quotient L := £/G(X) has singularities in general, but it intersects the smooth
part of the moduli space My, := Agat(X)/G(X) in a Lagrangian submanifold.

If £OP ¢ A%P(X) is a Lagrangian submanifold then £ is gauge invariant if
and only if £ C Ag,.(X); [35, Sec. 4]. Condition (L1) implies that £ is a totally
real submanifold with respect to the Hodge #-operator for any metric on X, i.e.

QN2 9) = TaL @ +TAL VA e L.

The construction of Floer homology groups for the Chern—Simons 1-form will
require the following additional assumptions on L.

(L2) The quotient space £/G.(X) is compact, connected, simply connected,
and m2(L/G.(X)) = 0 for some (and hence every) base point set z C X.

L Tt is not clear whether one could also work with Hilbert submanifolds £ C A%2(X).
This is connected to subtle questions concerning the gauge action at this Sobolev borderline,
see [24].



(L3) The zero connection is contained in £. It is nondegenerate in the sense
that da =0 <= « € imd for every a € ToA(Y, L). Moreover, every flat
connection in A(Y, £) that is not gauge equivalent to the zero connection
is irreducible.

In (L2) the hypothesis that £/G, (%) is simply connected is needed to estab-
lish an energy-index relation for the Chern-Simons functional. The hypothesis
m2(L£/G.(2)) = 0 is only used to orient the moduli spaces. It can be dropped
if one wants to define Floer homology with Zy coefficients. These two condi-
tions imply that (L) is isomorphic to m1(G,(X)) = m(G(X)) and the map
m2(G. (X)) 2 m2(G(X)) — m2(L) is surjective. To see this, note that L is a fiber
bundle over the base £/G, (%) (see [35, Lemma 4.3]). In particular, (L2) implies
that 71 (L) = Z™ ) since the fiber G.(¥) has fundamental group Z~ whenever
Y has N connected components. (For a connected component ¥’ an isomor-
phism 7 (G,(¥)) & Z is given by the degree of a map S* x ¥/ — SU(2) = §3.)

The main example of a Lagrangian submanifold of A(X) arises from the
space of flat connections on a disjoint union H of handle bodiesﬂ with boundary
O0H = ¥. Here ¥ is the same manifold as ¥ but equipped with the opposite
orientation. Given such a manifold H define

ﬁH = {A|2’A€Aﬂat(H)}.

Lemma 2.1. Let H be a disjoint union of handle bodies with 0Y = X. Then
the following holds.

(i) Lu is a Lagrangian submanifold of A(X) that satisfies (L1) and (L2) and
contains the zero connection.

(ii) The zero connection is nondegenerate if and only if Y U H is a rational
homology 3-sphere

(iii) Ewvery nontrivial flat connection in Ap.(Y, Lp) is irreducible if and only
if Y U H is an integral homology 3-sphere

Proof. That Ly satisfies (L1) was proved in [35, Lemma 4.6]. That £y contains
the zero connection is obvious. That it satisfies (L2) follows from the fact that
the based holonomy map p, induces a homeomorphism from Ly /G.(X) to GY
with G = SU(2) when ¥ is connected and has genus g, and that

EHlumuHm/Q{th,zm}(Zl [ Zm) = L:Hl/gz1 (21) X ... X EH,"L/gzm (Zm)

in the case of several connected components. This proves (i).

To prove (ii) we need to consider o € Q(Y,g) with daw = 0. The linearized
Lagrangian boundary condition on « is equivalent to the existence of an ex-
tension & € QY(Y U H,g) with da = 0. If H}(Y U H;R) = 0 (or equivalently
H,(Y U H;Q) = 0), then any such 1-form is exact on Y U H and thus on Y.

2 A handle body is an oriented 3-manifold with boundary that is obtained from a 3-ball
by attaching 1-handles. Equivalently, it admits a Morse function with exactly one minimum,
no critical points of index 2, and attaining its maximum on the boundary.



Conversely, if & € kerd, then nondegeneracy implies G|y € imd and hence
fv @ = 0 for every loop v C Y. This implies that & is also exact on Y U H since
every loop in Y U H is homotopic to a loop in Y. This proves (ii).

We prove (iii). Flat connections in A(Y, L) can be identified with flat con-
nections in A(YUH). The gauge equivalence classes of irreducible but nontrivial

connections are in one-to-one correspondence with nontrivial homomorphisms
(Y UH) — S'. These exist if and only if H;(Y U H;Z) # 0. O

Lagrangian submanifolds and representations

We characterize our Lagrangian submanifolds as subsets of the representation
spaces for Riemann surfaces. For simplicity we assume first that X is connected.
Fix a base point z € ¥ and choose based loops a1, . .., ag, f1, . . ., B4 representing
a standard set of generatorsﬂ of the fundamental group. The based holonomy
around the loops a; and f3; gives rise to a map p, : A(X) — G29. This map
identifies the moduli space My, of flat connections with the quotient of f~1(1)
by conjugation, where f : G29 — G is defined by

F@1, g y1, - yg) = [T iy tyy t (7)

The correspondence between flat connections and representations is reformu-
lated in (a) and (b) below. Assertions (c) and (d) are the infinitesimal versions
of these observations.

Remark 2.2. (a) Let w = (z1,...,24,y1,...Ys) € G?9. Then there exists a
flat connection A € Agat(2) with p,(A) = w if and only if f(w) = 1.

(b) Let A, A" € Agat(X). Then A is gauge equivalent to A’ if and only if p,(A)
is conjugate to p,(A’).

(c) Let A € Agar(X), w := p.(A), and v € T,G*. Then df(w)w = 0 if and
only if there exists an a € Q'(X, g) such that daa = 0 and dp, (A)a = .

(d) Let A € Aga(X) and a € Q1(3, g). Denote w := p,(A) and @ := dp,(A)a.
Then a € imd 4 if and only if @ belongs to the image of the infinitesimal
conjugate action Ly, : g = T,y G2?9 given by L& = fw — wé.

While the identity element 1 € G is not a regular value of f, it follows
from (c),(d) that the differential dp.(A) : QY(%,g) — T,,G?9 at a flat connec-
tion A € Aga(X) identifies HY := kerd,/imd4 (the virtual tangent space of
My,) with the quotient kerdf(w)/im L,, at w = p,(A). The gauge invariant
symplectic form descends to H and thus induces a symplectic form

Qy : kerdf(w)/im Ly, X kerdf(w)/im L,, = R

Qu (0, 0") ::/z<cz/\o/>7

3 The standard generators of 1 (X, z) satisfy the relation [T?_, aiﬂiai—lﬁi_l =1



where the (infinitesimal) connections A € Agat(X) and «, o’ € kerdy are cho-
sen such that w = p,(4), © = dp.(A)a, and @' = dp.(A)a’. An explicit

formula for this symplectic form at w = (z1,...,%4,%1,...,Yy) on the vectors
W = (511‘1’ s 7§g$ga771y17 ce 777gyg)7 W' = (fi’rla s 7§;mg7n/1y17 ) Uéyg) is
(0, @) = 327 (( (27 &wi + 7 S5ws — 8i1),71}) (8)

!/

— ((y; "miyi +y; Sy — 6im1),€L)).
Here §; = —(dhol(A)a)hol(A)~?! is the infinitesimal holonomy along the path
[T_, ciBia; 1B, ie.
-1 1

_ -1 -1 ) - -1 )
5j—cj (5Cj—|—cj Cj_15cj,10]+...+cj o] 0. cy,

ci = wyiwy y b, = ayi(yy "y — & + i — i) 3y yy

One should compare this with the identities f(w) =¢;---¢4 = 1 and
df(w)(w) =ec1...cg-10e, +C1...Cq20¢, Cqg~+ ...+ 0bcCa...cqg =0.

Combining these we see that d., = 1. So on the torus ¥ = T2 the formula
simplifies to Q. (1w, 0") = (x~¢x,n") — (y~ny,&). Moreover, if T C G is
any circle and w € T?9 C G29 then the restriction of Q,, to R?9 = T, 7?9 C
ker df(w) is the standard symplectic form on Euclidean space. By construction
and assertions (a-d) above, Q2 descends to the symplectic form on the (singular)
symplectic quotient f~1(1)/G = My = A(X)/G(X). In fact, one can verify
directly that € is G-invariant and that its kernel at each point is the tangent
space to the G-orbit. Thus, on the complement of the reducible set, 2 descends
to a smooth symplectic structure on the G-quotient.

In the case of the torus X = T? all points of f~1(1) are reducible; in this
case My2 can be identified with the quotient of the moduli space of flat S!-
connections by a residual Zs-action with four isolated fixed points {(£1,+1)}
(corresponding to the same four points in G2). For a general surface ¥, the set
of reducibles in f~*(1) is the union J; - 729 over all maximal tori 7' C G. For
g > 2 this set has codimension 4g — 2 > 3¢ in G29. So for a half dimensional
submanifold N C G29 the set of irreducibles will always be dense in N. In the
case of genus 2 the same is true if we require Q|tn = 0, since the codimension
of the set of reducibles is 3g but IV cannot intersect it in an open set since € is
nondegenerate on each subtorus 729 of the reducibles.

If ¥ has several connected components we fix a base point set z C 3 and
obtain the 2-form 2 as sum of the 2-forms of the connected components. We then
have My, 2 f~1(1)/G™ ) where G™ () acts by conjugation with a fixed group
element on each connected component and f : G29 — G™) is the product
of the relations for each connected component. Now we can reformulate
the assumptions (L1-3) on the Lagrangian submanifolds £ C A(X) as follows:
L = p;Y(N) C A(D) is the preimage of a submanifold N C G29 satisfying the
following conditions.

(L1) N c f~Y(1), N is invariant under G™) dim N = 3g, and Q|ry = 0.
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(L2) N is compact, connected, simply connected, and mo(N) = 0.

(L3) NNp,(Aaas(Y)) contains (1,...,1) as isolated point and does not contain
any other reducible points (with respect to the conjugate action of G™(3)),

The above discussion of the reducible locus shows that, by condition (L1), the
quotient L := N/G™ (&) C My is Lagrangian at a dense set of smooth points.

The Chern—Simons functional

Fix a compact, connected, oriented 3-manifold Y with nonempty boundary
dY =¥ and a gauge invariant, monotone, irreducible Lagrangian submanifold
L C A(2) satisfying (L1-3) on page[7] Then the restriction of the Chern—Simons
1-form to the submanifold

AY, L) :={Aec AY |A|ge£}
is closed. It is the differential of the circle valued Chern—Simons functional
CSc : A(Y, L) — R/47*Z
given by CS.(A) := [CS(A, B)], where

CS(A,B):z%/((AAde S(ANAAA]) 77// $)AD,B(s)) ds.
Y

Here B :[0,1] — L is a smooth path satisfying B(0) = Ay and B(1) = 0.

Remark 2.3. Note that CS(A, B) is the value of the Chern—Simons functional
on the connection 4 on Y = Y U ([0,1] x %) given by A on Y and by B
on [0,1] x ¥. Here we glue 9Y = X to {0} x X, and on the new boundary
Y = {1} x ¥ we have A = 0.

Lemma 2.4. (i) The Chern-Simons functional CS(A, B) is invariant under
homotopies of B with fized endpoints.

(ii) If u: [0,1] = G(X) satisfies u(0) = u(1) = 1 then

CS(A,B) —CS(A,u*B) = 47* deg u.

(iii) If By, By : [0,1] — L are two paths with Bo(0) = B1(0) and By(l) =
B1(1) = 0 then there is a path u : [0,1] = G(X) with w(0) = w(1) = 1 such that
By is homotopic to u* By (with fized endpoints).

(iv) The circle valued function CSc : A(Y, L) — R/An?Z descends to the quo-
tient B(Y, L) .= A(Y,L)/G(Y).

Proof. The Chern-Simons functional is invariant under homotopies since

_O,CS(A, By) = / / (0:Bu()A0LBu(s)) + ( Bu(s)A0DBuls))) ds

1

_ / [omdnasisyas s | [ (B >]0.
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for every smooth homotopy By : [0, 1] — £ with fixed endpoints. The first term
on the right is the symplectic form on 0;B;,dsB; € TpL and the second term
vanishes since 9; B¢(s) = 0 for s = 0,1. Hence 9;CS(A, B;) = 0. This proves (i).

To prove (ii), we abbreviate S' := R/Z, define @ : S' x ¥ — SU(2) by
a(t, z) == u(t)(z), and calculate

2(CS(A, B) — CS(A,u"B))
/ / w* BAOs(u B))—(B/\BSB>)ds
:/ / <BAdB(asu.u*1)>+<du~u*1A(8sB+dB(8su~u*1)) >) ds
0 b

= /1 / (BA(2d(0su-u™") + [B,0su-u""]) ) + (du- u" ' Ad(dsu - u™") )) ds

—2//FB/\8uu >—7/ tr(da-a ' Ada-a ' Ada-at)
Six¥

= 82 deg .

Here the first equation follows from the definitions, the second equation uses
the formula 0s(u*B) = u=Y(0sB + dp(dsu - u='))u, the third equation uses
integration by parts in s and the fact that du(0) = du(l) = 0, the fourth
equation uses the formula d(9su - u™t) — ds(du - u™1) = [du - u™,05u - u™1]
and integration by parts over X, and the last equation follows from the fact
that Fp(s) = 0 for every s and that the standard volume form on SU(2) with
integral 1 is 247%a* dvolgy(z) = ftr(dﬂ caTtAda - gt A - ffl). Thus we
have proved (ii).

To see (iii) note that the catenation of —Bg and Bj is a loop in £ based
at 0. It is contractible in the base of the fibre bundle G,(X) — £ — £/G,(%)
and hence it is homotopic to a loop u : [0,1] — G,(X) in the fibre based at
u(0) = u(1l) = 1. Now the catenation of By, —By, and Bj is homotopic with
fixed endpoints to By on the one hand, and on the other hand to the catenation
of By with the loop u*0, which is also homotopic to u*By.

It follows from (i-iii) that the map (A4, B) — CS(A, B) induces a circle valued
function CS. : A(Y,L) — R/4w?Z. We prove that this function is invariant
under gauge transformations. To see this we can use Remark [2:3 and extend
any given u € G(Y) to a gauge transformation @ € G(Y) onY := Y U ([0,1] x %)
with 4|y = 1. Such an extension exists because G(X) is connected (which in
turn follows from the fact that G = SU(2) is connected, simply connected,
and m5(G) = 0). Hence assertion (iv) follows from (f]), which directly extends
to gauge transformations that are trivial over the boundary. This proves the
lemma. O

Corollary 2.5. Let By € L and u : [0,1] — G(X) with w(0) = u(1) = 1. Then

/ / ) BoAds(u(s)* Bo) ) ds = 872 deg(u).
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Proof. The left hand side is twice the difference of the Chern-Simons functionals
in Lemma (ii). O
Perturbations

We work with holonomy perturbations as in [31,14,[9]. Let D := {z € C||z| < 1}
be the closed unit disc and identify S! with R/Z, with the real coordinate
denoted by 6. Choose embeddings 7; : S! x D — int(Y) for i = 1,...,N
such that the ~; coincide on a neighbourhood of {0} x D. We denote by
pi : Dx AY) — G the map that assigns to a pair (z, A) the holonomy of
the connection A around the loop [0,1] = Y : 8 — ~;(0,z). Then the map
p=(p1,---,pn) : D x A(Y) — GV descends to a map between the quotient
spaces D x B(Y) — GV /G, where the action of G on G¥ is by simultaneous
conjugation and B(Y) := A(Y)/G(Y).

Now every smooth function f : D x G — R that is invariant under conju-
gation and vanishes near the boundary induces a gauge invariant perturbation
hy: A(Y) = R given by

()= [ Feupen ) i

The differential dh;(A) : T4 A(Y) — R has the form
dhf(A)a = /}/(Xf(A)/\a% (9)

where X7 : A(Y) — Q2(Y, g) is a smooth map satisfying
daXp(A) =0, X;(u'A)=u"'Xp(A)u, dX;(A)dag = [X(4).6] (10)

for A€ A(Y), u e G(Y), £ € Q°(Y,g). This follows from the gauge invariance
of hy (see Appendix [D)). Since dXf(A) is the Hessian of hy we have

/<de(A)aA5> :/<de(A)ﬂ/\a>. (11)
Y Y

Moreover, X ;(A) is supported in the union of the thickened loops 7;(S! x D)
and hence in the interior of Y.

Critical points

The critical points of the perturbed Chern—Simons functional CS; + hy are the
solutions A € A(Y") of the equation

FA-‘:-Xf(A):O, Als € L.
Let Crit(CSz + hy) denote the set of critical points and abbreviate

Ry:= Crit(CS. + hf)/g(Y)

13



Associated to every critical point A € A(Y, L) of CS. + hy is a twisted deRham
complex

da

da+dXs(A)

d
QY 9) = Q1,.(Y.9)
where

Q'll‘AE(Ya g) = {a € Ql(Yv g) |a|2 S TA|2‘C} )
05(Y,9) = {r € *(Y,g)|7|x = 0}.

The first operator in this complex is the infinitesimal action of the gauge group,
the second corresponds to the Hessian of the Chern—Simons functional, and the
third to the Bianchi identity. A critical point A is called irreducible if the co-
homology group HY of vanishes, i.e. the operator d4 : Q°(Y, g) — QY(Y, g)
is injective. It is called nondegenerate if the cohomology group H I}X,f vanishes,
i.e. for every a € T4 A(Y, L) we have

daa+dXf(A)a=0 <= acimdy. (13)

This nondegeneracy means that the Hessian of the Chern-Simons functional is
nondegenerate on a local slice of the gauge action. In Section[§]we will prove that
for a generic perturbation every critical point is nondegenerate, i.e. CSz + hy
induces a Morse function on the quotient B(Y, £).

Gradient flow lines

Fix a metric ¢ on Y. Then a negative gradient flow line of the perturbed
functional CS;+hy is a connection A € A(RxY') in temporal gauge, represented
by a smooth path R — A(Y) : s — A(s) that satisfies the boundary value
problem

8SA+*(FA+Xf(A)) =0, A(S)|Z eL VseR. (14)

The energy of a solution is

By =5 [ (10.A° +1Fa+ X, ().

In Section [5| we prove that (in the nondegenerate case) a solution A of has
finite energy if and only if there exist critical points AT, A~ € Crit(CS, + hy)
such that A(s) converges exponentially to AT as s tends to £0c. Denote the
moduli space of connecting trajectories from [A~] to [AT] by

’ Ef(A) < 00,
lim A(s) € [Ai]} g(v),

s—Foo

M(A™, AY) = {A € A™P(R x V)

where A™P(R x Y) denotes the space of connections on R x Y in temporal
gauge. The analogue of equation for connections A = ®ds+ A that are not
in temporal gauge is

65A—dA<I>+*(FA+Xf(A)):O, A(S)‘ge,ﬁ Vs € R. (15)
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This equation can be written in the form
Fo+ Xp(A) +#(Fa+ Xr(A) =0,  Alggyxoy €L Vs€eR, (16)

where X(A)(s,y) = X;(A(s))(y). In this form it generalizes to 4-manifolds
with a space time of the boundary and tubular ends.

The moduli space M(A™, AT) can also be described as the quotient of the
space of all finite energy solutions of in temporal gauge outside of a compact
set that converge to AT as s — 4o0. In this case the gauge group consists of
gauge transformations that are independent of s outside of a compact set and
preserve AT at the ends. The study of the moduli space is based on the analysis
of the linearized operator for equation . As a first step we examine the
Hessian of the Chern—Simons functional.

3 The Hessian

In this section we establish the basic analytic properties of the Hessian of the
Chern-Simons functional and draw some conclusions on the structure of the set
of critical points and the linearized operator of the gradient flow lines.

We continue the notation of Section [2} The augmented Hessian of the per-
turbed Chern—Simons functional at a connection A € A(Y, L) is the operator

My = ( *da t*;kxf(“l) ‘SA ) (17)
A

The additional terms —d 4 and —d’ arise from a local slice condition. Think of
H 4 as an unbounded operator on the Hilbert space L(Y, T*Y ® g) x L*(Y ® g)
with dense domain

domH 4 := {(a, ) € WH2(Y, T*Y @ g) x WH2(Y, g)| * alay = 0,lsy € TaL}.

Here we abbreviate ToL := Ty, L for A€ A(Y, L).
The operator H 4 is symmetric: for o, 8 € Q1(Y,g) and ¢, € Q(Y, g)

<HA(a7 90)7 (67'(/)) >L2 - <(a7 @)aHA(Bv'(/)) >L2
= [ (aa+ aXy)a = sdap)n) + [ ((@axa)no)

- [ (an@us +axs(a)s —aan) - [ {oniaas ) 18)

= [ tangy= [ tos)s [ (s,

If both (¢, ¢) and (8,%) belong to the domain of H 4, then the boundary condi-
tions guarantee that the last three integrals vanish. In particular, |, gy (@A B)
is the symplectic form on alsy, Blay € TaL. An L*-estimate for the Hessian is
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obtained from the following elementary calculation: If (o, ¢) € domH 4 then
[Ha( )72 = sdaa — dagl7s + il
= [daalzz + lldaglzz + [dhallz. - 2/y<04A[FA,s0]>
2 2
> 0 [[(e, @)z = Cli(e, )7z -

Here the second equation follows from integration by parts. The inequality,
with suitable constants § > 0 and C, follows from the Cauchy—Schwarz inequal-
ity and [34, Theorem 5.1] with p = 2. The resulting estimate ||(a, ¢)||w1.2 <
S V2 Hala, @)z + (C/8)Y2||(a, )| > implies that H 4 has a finite dimen-
sional kernel and a closed image. In Proposition below (which is the main
result of this section) we will identify the cokernel (im H4)*) with the kernel
and thus prove that the Hessian is a Fredholm operator and self-adjoint. We
moreover establish the estimate for the Hessian in general W*P-Sobolev spaces.
This will be used in the analysis of the linearized operator on R x Y and for the
exponential decay analysis.

Proposition 3.1. (i) Ha is a self-adjoint Fredholm operator.

(ii) For every A € A(Y, L) and every integer k > 0 and every p > 1 there exists
a constant C such that the following holds. If (a, ) € domHa and Ha(a, @)
is of class WFP then («, ) is of class WFLP and

’|(aa<ﬂ)|‘wk+1,p(y) < O(HHA(O‘a‘P)HWk,p(y) + H(O"‘P)HLP(Y))'
(iii) If Fa + X(A) = 0 then ker Ha = HY ; x HS, where

HY :=ker dy c Q°(Y,g),
H} ;:=ker (da + dX;(A)) Nkerd} C Q4 (Y, 9), (19)
QL(Y,9) = {a € Q' (Y,q) | *aloy =0, algy € TaL}.

Definition 3.2. Let A € A(Y,L) be a critical point of the perturbed Chern—
Simons functional, i.e. Fa + X(A) = 0. The connection A is called nonde-
generate if H} ; = 0; it is called irreducible if H} = 0.

Remark 3.3. (i) The vector spaces HY and H}Lf in Proposition are iso-
morphic to the first two cohomology groups in the complex ; they are the
spaces of harmonic representatives. Hence a critical point A € A(Y, £) is non-
degenerate in the sense of Definition if and only if it satisfies .

(ii) Hypothesis (L3) says that A = 0 is nondegenerate for the zero perturba-
tion f = 0. Since the differential dX(A) vanishes at A = 0 for every f (see
Appendix E[) it follows that A = 0 is nondegenerate for any perturbation.

The proof of Proposition requires some preparation. First, we need
to introduce norms for the boundary terms in the upcoming estimates. Let
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p* denote the dual exponent of p given by 1/p + 1/p* = 1. We define the
following norms (which strictly speaking depend on Y') for a smooth function
p:X=90Y =g

inf{||3[lw1er) | Bls = ¢},

|5 {e, v dv012|
||w||bW*1/P,p(§]) = sup
049 €NO(Z,g) ||¢||bW1 1/p*,p* (E)

||<p||bW1—1/T‘J’(Z) :

For a 2-form 7 € Q%(%, g) the corresponding norms are understood as the norms
of the function *7 € QY(X,g). The following estimates for these boundary
Sobolev norms will be useful.

Lemma 3.4. For A€ A(Y) and a € Q'(Y,g) we have

[y ((daanday) — {an[Fa, v]))|
d =
H A|E(a|E)HbW*1/P*T’(E) o¢¢:1glz£)(y,g) [0l ()

Moreover, if A € A(Y, L) is a critical point of CSz + hy then
||dA|E (als) HbW Upp(s) = (1+ ||AHL°°(Y )HdAa"_de )O‘HLP(Y)'
Proof. By definition we have

s {das(als), )] _ Uy (andav)|
p#0 ||1/’HbW1 1/p%.p* (%) w;«éo ||1/JHW1:) (Y)

[dajs (als) HbW*l/P,p(E)

)

where the supremum runs over all nonzero functions ¥ € Q2°(Y, g). Now the first
identity follows from d{aAdav ) = (daandary) — (aA[Fa,9]). If A € A(Y, L)
is a critical point of CSz + hy then Fy + X¢(A) = 0 and hence

| [y ((daa + dXp(A)a)Adarp)|
d 1
[darz @ty = 22 [E e
< (14 ||AHL°°(Y))”dAa+de(A)a"LP(Y)

where we have used and . This proves the lemma. O

The following lemma provides the basic estimates for Proposition [3:1} The
first part is a regularity statement which goes a long way towards identifying
the dual domain of H 4 with its domain (thus establishing self-adjointness). The
second part is an estimate for the Hessian on pairs (a, ) that do not necessarily
satisfy the boundary conditions. This degree of generahty is necessary since
the Lagrangian boundary conditions are nonlinear, so differences in A(Y, L) or
derivatives of tangent vectors only satisfy the boundary conditions up to some
small curvature term.
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Lemma 3.5. The following holds for every p > 1 and every A € A(Y,L).
(1) If (a, ) € LP(Y, T*Y ® g) x LP(Y,g) and there is a constant ¢ such that

[ tatars-awn) - [ (e.an)| <cl@ oy, €0
Y Y

for every (B8,v) € QL(Y, g) x Q°(Y, g) with Blay € dA|EQO(E,g) and x0|ay =0,
then (a,p) € WEP(Y,T*Y @ g) x WYP(Y,g) and it satisfies *alsy = 0 and
d4jsy (aloy) = 0 in the weak sense.

(ii) There is a constant C' such that
@@y < C(Ildac = dag] oy + 450 oy + @20 o
+ H*athWl*l/PvP(E) + HdA\z(O‘|E)wafl/pvp(2))
for all a« € QY(Y, g) and ¢ € Q°(Y, g).

Before we prove this lemma let us draw a conclusion that will be useful for
the exponential decay analysis.

Corollary 3.6. Letp > 1 and A € A(Y, L) be a nondegenerate critical point of
CS. + hy. Then there is a constant C such that

el < € (ldae+dXp(A)all gy + a0l 1oy,
+ H*abeWl*l/np(Z) + Hnﬁ(a|2)||Lp(E))

for every a € QY(Y, g), where 15 : Q1(X, g) — TaL* denotes the L* orthogonal
projection onto the L? orthogonal complement of T4L.

Proof. By Lemma [3.5] (ii) with ¢ = 0 we have

HaHW1=P(Y) = C(HdAaHLP(Y) +
+ ||*a|2||bW1*1/P’P(E) + ||dA|z(a|E)HbW—1/p,p(z))

S C'(de‘lo‘ + de(A)aHLP(Y) + HdzaHm(y)

df‘laHLP(Y) + HQHLP(Y)

+ H*OAZHle*l/p,P(Z) + Hﬂj(ab)HLP(z) + HO‘HLP(Y))'

Here we have used the estimate ||de(A)a||Lp(Y) < cllallgpyy of Proposi-

tion (iv) and Lemma We added the term HHj(ah)HLP(E) on the
right since

T4 (als) =0 = aly € TaL
and the restriction of the operator H4 to the subspace {(o,0)} C domHy4 is
injective. Hence the operator a — (daa + dX (A)a, 4o, xals, T4 (aly)) is
injective and it follows that the compact term |||z, ) on the right can be
dropped. This proves the corollary. O
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Proof of Lemma[3.5 Tt suffices to prove the lemma in the case xA|gy = 0.
The general case can be reduced to this by a compact perturbation of the
operator (leaving the boundary conditions fixed). To prove (i) consider a pair
(a, ) € LP(Y, T*Y ® g) x LP(Y,g) that satisfies with a constant ¢. Let
¢ € QY g) with %\33/ = 0 and choose (8,1) = (da(,0). Then *8|sy = 0 and
Bloy = dajs(¢Cls) and hence, by (20),

[ (086)] < ¢ laacl i +| [ tartFacc))|
Y Y

< (C+ C”A”Lm(y) + ”FA”LM(Y) ||O‘HLp(y)) [[qiFews )

(21)

Hence it follows from the regularity theory for the Neumann problem ([I] or
e.g. [34, Theorem 2.3’]) that ¢ € W1P(Y,g) and

lellwrocry < Clet 1@ @) ogry)s (22)

for a suitable constant C' = C'(A).
Now fix a vector field Z € Vect(Y') with [ Z]|« (- < 1 that is perpendicular
to dY. Then it follows from with 8 =0 and ¥ = Lz that

[ (.22 < cleatly oo +| [ ol L))

< (e 14llpm vy lallzoge) ) IHnam vy

(23)

for every ¢ € Q°(Y, g). Choosing ¢ = 0 and 3 = *(1zg A d() gives

/Y<a,d*<LZgAd<>>]

SCIIngAdCIILp*m+‘/Y<s0,dA(ngAd<)>‘+ /Y<Oé,*[AA*(ngAdC)]>

< (e Co 1elloyy + 14l vy 10 Do ) I€llwroe v (24
for every ¢ € Q°(Y, g) with (|py = 0, where Cz := |[dezg|| 1o (v Here we have

used with *3|sy = 0 and B|sy = 0. Combining and we obtain

the estimate

/Y <a<Z>,A<>\ < (264 (@ Do) Il )

for every ¢ € Q°(Y,g) with (|sy = 0 and a suitable constant constant C’ =
C'(A, Z) (see [34, Theorem 5.3 (ii)]). This implies a(Z) € W'P(Y, g) and

la(Z)llyr.o vy < C e+ I D)l oy)) (25)
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where the constant C' depends on A and the vector field Z. This proves the
interior regularity of a as well as the regularity of its normal component. More-
over, partial integration now shows that, for every ¢ € QU(Y, g) with (|sy = 0,
we have

/<mmg&
oY
o _

In particular, we can fix any normal derivative 5> = g € 2°(dY, g) and find
an admissible function ¢ € Q°(Y, g) with |ay = 0 and |[||y1.0- (v arbitrarily
small. Thus we have [,..(a(Z),g) = 0for all g € Q°(9Y, g), and hence a(Z) = 0
for normal vector fields Z, i.e. xalgy = 0.

To deal with the tangential components near the boundary 9Y = X we use
normal geodesics to identify a neighbourhood of the boundary with [0,¢) x ¥
with the split metric dt% + g;, where (9t)tefo,e) is a smooth family of metrics
on Y. In this splitting we write

< (264 C' (@ @)y + 1A L)) ISl v -

a=as+adt
for ay € LP([0,6) x X, T*Y ® g) and a € WP([0,¢) x ¥, g). Then
a|t:0 = Ov HGJHWLP < C(C+ H(O‘a@)”LP(Y))

by . From now on *, d, and d* will denote the Hodge operator, the exterior
derivative, and its adjoint on X. We abbreviate I := [0,¢) and denote by
Cs° (I x X) the space of functions with compact support in (0,¢) x ¥. Then the
inequality can be rewritten as

[ (an (0B~ xdb-+ av))
Ix%

_/ <a7 (8”/}_*(:16)3) >+/ <§03 (8tb_d*ﬁ2) > S CH(527 baw)HLp* (IXE)
IxX% Ix%

for all By € C°(I x , T*Y ®g) and b,1) € C§°(I x X, g). Partial integration in
the terms involving a and ¢ then yields

/1 E<az, (0eBs — db — xdp) >‘ < (et lallwrs + lellwe) (B b, )l Loe -

Since C§°(I x %) is dense in LP" (I x ) we obtain dyay, € LP(I x X, T*S @ g)
and *das,d*as € LP(I x X, g) with corresponding estimates. Hence Vyay is
of class LP (see e.g. [36, Lemma 2.9]); so sy is of class WP and satisfies the
estimate

sl < Cle+ llallyrs + lelly, + llasli)
with yet another constant C. In combination with and this proves the
regularity claimed in (i) and the estimate

1@y @) oy < Cle+ 10 @)l ny)-
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To prove the second boundary condition on algy we use partial integration

in to obtain
[ tans] < (c+ Waallo + Wagllo) 1l vy

for every 8 € Q'(Y,g) with *3|x = 0 and B, € dA‘ZQO(E, g). In particular, we
can fix By = da € for any £ € C>°(3, g) and find admissible 3 € Q(Y, g) with
#Bx = 0 and ||B]| s+ (1 arbitrarily small. Thus we have Js(anda &) =0 for
all £ € QY(%, g), that is d4,; (a|s) = 0 in the weak sense. This proves (i).

To prove (ii) let (o, ) € QL(Y, g) xQ°(Y, g) be given and choose v € Q(Y, g)
such that

|5 = *als, Ve =0, ”’}/HWLP(Y) <2f = O‘|Z”bW1*1/PvP(E)7

and denote o := «a — 7. There exists a constant Cy = Cp(A) > 0 such that
[Ha(y,0)llLo(vy < Coll * alsllowr-1/0.0(s) and hence

||HA(0/a<P)||Lp(Y) < ||HA(04780)||LP(Y) + Co ||*04‘2wal—1/p,p(z) =:c

Then it follows from that, for every pair (8,v) € Q'(Y,g) x Q°(Y, g) with
*f|x = 0, we have

(ol 0), Ha(B,16))] < ell(Br8)l e gy + | / <aw>\. (26)

Let ¢ € Q(Y,g) with 2%|sy = 0 and choose (8,9) = (da(,0). Then, by
Lemma we have

‘/E<a/\d,4<>’ = HdAIE(alﬁ)Hbel/p,p(g) HQHWLIJ*(Y)
and hence, by ,

/Yw,AAo] - \<<a',so>,HA<dA<,o>>/Y<o/,*[FA,<1>\

< elldaCll o v + ' / <aAdA<>\ 10 gy 1l e iy Il
< C(HHA(Q’SD)HLP(Y) + ||*O‘|2wal—1/p,p(g)

s @12 g -srmasy + el Il i,

for a suitable constant C' = C(A). (Compare this with (2I).) As in the proof
of (i) this implies

lellwreyy < C(||HA(O‘v‘P)HLp(y) + ||*a‘2||bW1—1/PvP(Z)

+ HdA\z(O‘b)HbWﬂ/p,p(z) + H(O‘v‘P)HLP(Y)>
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with a possibly larger constant C'. (Compare this with ) To prove the same
estimate for o/ (and hence for «) one can repeat the argument in the proof of (i),
because in this part of the argument the inequality is only needed for (3, )
with 8|y = 0 and S|z = 0. This proves (ii) and the lemma. O

Proof of Proposition[3.1. We prove (ii) by induction. Observe that

Hde(A) < C”O‘HWM(Y) (27)

aHW’W’(Y)
for all a € QY(Y,g) and a constant C = C(4, f), by Proposition (iv).
Hence it suffices to prove the estimate with f = 0. For k = 0 regularity holds
by assumption and the estimate follows from Lemma (ii), using the fact that
da;, (2, 9) C TaL, so daj,(a]g) = 0. (For p = 2 an elementary proof of the
estimate was given at the beginning of the section.) Thus we have proved (ii)
for k = 0. It follows that H 4 has a finite dimensional kernel and a closed image.

Now let k > 1 and suppose that (ii) has been established for £ — 1. Let
(o, ) € domH 4 and assume that Ha(a, ) is of class W*P. By the induction
hypothesis («, @) is of class WP and

[t ©) lwrn vy < C([[Halo, @)lwe-100v) + (0, 0) Lo (v)) -

Let Xi,...,X; € Vect(Y). Then, using the symmetry of H 4 and integration
by parts, we obtain for every smooth pair (3,%) € Q'(Y) x Q°(Y) with comact
support in the interior of Y, we have

(Lx, - Lx(a,0), Ha(B,¥))]

= (e, 9), £, - Lx, Ha(B,9))]
\<( ) Halx, L‘xl(ﬁ )| + Cull(, @) llwrr 3y 1B, ) o= (v
= [(Lx, - Lx,Hala, ), (B,9))] + Cill(a, @) lwrw ) 18, ) Lo (v
<Oy (||7'1A( )Hwk‘p(y)ﬂLH( s lwre ) I1B ) o (v

with uniform constants C;. This estimate extends to the W -closure, so it
holds for all (8,4) with zero boundary conditions. However, in order to apply
Lemma (i) to the pair Lx, --- Lx, (o, ¢) we would have to allow for more
general test functions (3, 1). Unfortunately, this weak equation does not extend
directly, but we can still use the arguments of Lemma For that purpose let
the vector fields X1, ..., X) € Vect(Y') be tangential to the boundary. Then the
boundary condition *algy = 0 will be preserved, and the Lie derivatives Ly,
in the following all have a dual L%, which does not include a boundary term.
To adapt the proof of Lemma [3.5] (i i) to Lx, - Lx, (a,9) instead of (o, p) we
replace (21]) and (23)), which use test functions with nonzero boundary values.
Instead of 1.’ we calculate for all ¢ € Q°(Y, g) with 2 . |ay = 0 and with a
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WHkP_approximation Q°(Y,g) > ¢; — ¢

}(ﬁxl L Lx e, AAC>| :jIL%|<dA£X1 o Lx g, dA§>|

< Jim ([(£x, - Lxdagy s daQ)] + Cullgsllwes ¢l )

= [(Lx, ... Lx,dap, Lx, dal)| + Cillellwr 1€l

<HLx,.. . Lx, xdaa, dal% )| +|(Lx, ... Lx,(xdac —dap), dal)]
+ Callellwes Cllwre

< [(xdaa, dalk, ... L%, O]+ |(xdaca, [£X, ... Lk,,da] L%, )]
+ Ca([| * daa — dapllwes + llellwes ) 1w

< Ca(Hale, ©)llwrr + [[(, @) lwrw) €0

with uniform constants C;. Here the components of [[Z}k L, d A]E}lc are
sums of derivatives of ¢ including at most one normal derivative, so all but
one derivative can be moved to the left hand side *d 4o by partial integration.
Moreover, we have used the fact that dAL',j(k . £§(1§|ay € T AL to obtain

(¥daa,dall, ... L% () = (o, *[Fa, LY, ... L% ()
:<LX1~--£Xk*[FA/\a]7C>

The last term can be estimated by |la|yye.0 [IC]] 1o+ -

Instead of (23) we pick a W*P-approximation Q!(Y,g) > aj — o satisfying
the boundary condition *aj|gy = 0 and hence *Lx, ...Lx, oy = 0. Then
we obtain for all ¢ € Q°(Y, g)

/Y</~'X1 ~--£Xk047d(£zﬁ)>‘

< Jim (| [ tex o exandatean)| + Calaslns Il )

o0 Y

< Jim (| [ s xias£2)| + CollalesClhen.
j—o0 v

[ cex -~-£Xkd2075§<1524>’ T Collallwes il

<Lx, - Lxpdiallpe | £2¢0 Lo + Collallwesl|Cllwre
< Cs([Halos )llwrs + 1 ) lwee) I Twre v

with uniform constants C;. Now the remaining arguments of Lemma (i) go
through to prove the regularity Lx, ... Lx, (o, @) € WP and the estimate

1£x, - Lxy (@ Q) lwrr < C([Hale @)llwnr + (@ ) llyrn) (28)

for the tangential derivatives and in the interior. To control the normal deriva-
tives near the boundary we use the same splitting as in Lemma (i). If
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Ha(a, ) € WFP then this argument shows that
Oy, € da — xdp + WHEP(I x 2, T*Y @ g),
da € d*ay +WHP(I x X, g),
drp € xdBy + WFP(I x B, g).

This can be used iteratively to replace the derivatives in by normal deriva-
tives. It then follows from the assumption H 4(«, ) € WP and the induction
hypothesis (o, p) € W*P that (a, ) € WHTLP and

(e, ) lwrsre < C ([Ha(@ D) lyrs + (0 9)l10) -

This finishes the proof of (ii).

We prove (iii). If F4 + X;(A) = 0 and (o, ¢) € ker Ha, then the pair
(o, ) is smooth by (ii). Integration by parts shows that *dac + *dX(A)a is
orthogonal to d 4, hence both vanish, so the kernel has the required form.

To prove (i) we first show that the cokernel of H 4 agrees with its kernel.
Let (o, p) € L2(Y, T*Y) x L?*(Y) be orthogonal to the image of H 4. Denote by
H the operator of Lemma [3.5] for the perturbation f = 0. Then

(@), H(B¥) )2 = —(a,xdXp(A)B) . < cl[(B,9)l L

for some constant ¢ and every pair (8,v) € QL(Y,g) x Q°(Y, g) satisfying the
boundary conditions #8|sy = 0 and Slsy € TaL. Hence it follows from
Lemma (i) that a € W12(Y, T*Y) and ¢ € W12(Y). So by

0= /Y ((daa+ dX;(A)a — *dap)AB) + /Y {(da* a)A)

7/8‘/<aw>+/6y<cp,*5>*/é)y(*aﬂ/ﬁ

for all 3 € QL (Y,g) and ¢ € Q°(Y,g). (See for the definition of QY (Y, g).)
Taking *0|ay = 0, Blay = 0, and 9|9y = 0 this implies

kdgo + *d Xy (A)a —dap =0, dja=0.
Taking (8,v) € domH 4 we then get

[ tang)+ [ (ravy =0

for every 3 € Q4 (Y, g) and every ¢ € Q°(Y, g). This (re-)proves xa|gy = 0 and,
since f|gy can take any value in the Lagrangian subspace T 4 £, it also shows that
aloy € TaL. Thus we have identified the cokernel of H 4 with its kernel. Since
the kernel is finite dimensional, this proves that H 4 is a Fredholm operator.
Furthermore, every symmetric Fredholm operator with this property is self-
adjoint. (Let x € domH*, i.e. (z,Hy) = (z,y) for all y € domH and some z
in the target space. By assumption we can write z = zo+Hx; with zo € (im H)*
and z1 € domH. Then, using symmetry, we have (x — z1, Hy) = (z0,y) =0
for all y € imH NdomH. The latter is a complement of ker H C dom H so we
obtain z — z; € (imH)* = kerH C domH and hence z € dom #.) This proves
the proposition. O
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The set of critical points

Using the properties of the Hessian we can now show finiteness of the set of gauge
equivalence classes of critical points of the Chern-Simons functional, where the
critical points are assumed to be nondegenerate. More generally, we establish a
compactness result that will be needed to achieve nondegeneracy by a transver-
sality construction.

Proposition 3.7. Fiz a Lagrangian submanifold £ C A(X) that satisfies (L1)
and an integer k > 1. Let f¥ be a sequence of perturbations converging to f in
the CkT1 topology and A € A(Y, L) be a sequence of critical points of CSp+h v
Then there is a sequence of gauge transformations u” € G(Y') such that (u”)* A"
has a C* convergent subsequence.

Moreover, if all the critical points of CS;z + hy are nondegenerate, then Ry
s a finite set.

Proof. Fix a constant p > 4. The critical points of CSz + hgv are S*-invariant
solutions of the perturbed anti-self-duality equation on S x Y and, by Propo-
sition (iii), they satisfy a uniform L* bound on the curvature. Hence, by
Uhlenbeck’s weak compactness theorem (see [33] or [34, Theorem A]), there is
a sequence of gauge tranformations uv” € G(Y) such that (u”)*A" is bounded
in W1P. Passing to a subsequence, we may assume that (u”)*A” converges
strongly in C° and weakly in WP to a connection A € AYP(Y,L£). The limit
connection is a (weak) solution of Fy + X;(A) = 0 and hence, by [36, Theo-
rem A], is gauge equivalent to a smooth solution. Applying a further sequence
of gauge transformation we may assume that A is smooth and, by the local slice
theorem (e.g. [34, Theorem F]), that

di((u)*A¥ — A) =0, *((u”)*AY — A)lgy = 0. (29)

It now follows by induction that (u”)*AY is uniformly bounded in WH+1.p,
Namely, if (u”)*A” is uniformly bounded in W7? for any j € {1,...,k} then
the curvature Fi,vyar = —Xpv((u”)*A”) is uniformly bounded in WP, by
Proposition (iii), and hence (u”)* A” is uniformly bounded in W7 P by [36]
Theorem 2.6]. Since the Sobolev embedding W*+1? < Ck is compact, the
sequence (u”)*A” must have a C* convergent subsequence.

To prove finiteness in the nondegenerate case it remains to show that non-
degenerate critical points are isolated in the quotient A(Y, L£)/G(Y). Thus let
A be a nondegenerate critical point and AY € A(Y, L) be a sequence of critical
points converging to A in the W1? topology (for some p > 2). Then, by the
local slice theorem, there exists a sequence of gauge transformations u” € G(Y),
converging to 1 in the W?2P topology, such that (u”)*AY satisfies . Since
AYP(Y, L) is a gauge invariant Banach submanifold of A?(Y) it follows that
the intersection with a local slice gives rise to a Banach submanifold

Xy = {a e WY, T'Y o g)| =) dac ABL!‘QHEW =° }
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for € > 0 sufficiently small. The tangent space of X4 at A is
TaXa={a e W'Y, T*'Y ®g)| *als =0, a|s € TAL, dja=0}.
Define the map F4 : X4 x {p € WHP(Y,g)|¢ Lker da} — LP(Y,T*Y @ g) by
Falo, ) = *(Fata + Xp(A+ ) —dap.
It has a zero at the origin, and we claim that its differential
dFa(0,0)(&, @) = *(dad +dXs(A)&) —dap

is bijective. The injectivity follows from the nondegeneracy of A and the fact
that imds L im *(da+dXy(A)). To check the surjectivity notice that dF4(0,0)
is the first factor of the Hessian H 4. The Hessian is self-adjoint by Propo-
sition with cokernel (imHa)t = kerHa = H} ; x HY, so the cokernel
of dF4(0,0) is H}" #» which vanishes by the nondegeneracy assumption. This
proves that dF4(0,0) is bijective. Since (u”)*A” — A € X4 converges to zero in
the WP norm and F4((u”)*A” — A,0) = 0 for every v, it then follows from the
inverse function theorem that (u”)*A” = A for v sufficiently large. This proves
the proposition. O

For nondegenerate critical points (i.e. H114’ F= 0) we have the following con-
trol on the kernel of the Hessian, Hg = kerdy C Q°(Y,g), which measures
reducibility.

Remark 3.8. The twisted cohomology groups HY form a vector bundle over
the space of pairs (f, A) with A a nondegenerate critical point of CS; + hy.
In particular, the dimension cannot jump. This follows from the general fact
that the cohomology groups H? form a vector bundle over the space of all chain
complexes with H' = 0. To see this consider two chain complexes

q° dt d°+p° d'+pP?
Lot L e, o0 1 ot Y o2

of operators with closed images (between Hilbert spaces) and assume that the
first homology of the unperturbed complex vanishes, H! = kerd!/imd® = 0.
(Then the homology of the other complex, Hp = ker(d! + P')/im (d° 4 P) also
vanishes for sufficiently small perturbation P.) Choose a complement D! C C!
of imd® = kerd! and let IT : C* — C'/D! be the projection. Then ITo d° :
C° — C'/D! is surjective and the restriction d'|p1 : D' — C? is an injective
operator with a closed image. If P’ : C* — C**! are sufficiently small then
o (A% + P% : C° — C'/D! is still surjective and (d! + P')|p: : D! — C? is
still injective. From the latter and the identity (d! + P!)o (d° + P°%) = 0 it
follows that H% = ker(d” + P°) agrees with the kernel of the surjective map
Mo (d° + P%. Now let D° C C° be a complement of H° = kerd®, then
o d% po: DY — C1/D! is bijective, and so is ITo (d° + P%)|po : D® — C*/D*
for sufficiently small P°. Its inverse is an injective map Ip : C1/D! — C° with
image D° that depends continuously on P and satisfies Il o (d° + P%) o Ip = Id.
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Now 7p = IpolIlo (d° + P : C° — (¥ is a projection, 7p o 7p = 7p,
with ker mp = ker(Il o (d° + P°)) = im (1 — 7p) and im7p = imIp = D° =
ker(1 — wp). The opposite projection 1 — wp then provides an isomorphism
H? =kerd® — ker(IT o (d° + P°)) = HY that depends continuously on P.

The linearized operator on R x Y

Next, we shall use the above results on the Hessian to establish some basic
properties of the linearized operator for . Let I C R be an open interval
and A = A+ ®ds € A(I xY) such that A(s)|gy € L for every s € I. A g-valued
1-form on I x Y has the form a+ ¢ds with a(s) € Q1(Y, g) and ¢(s) € Q°(Y, g).
Thus we shall identify Q!(I x Y, g) with the space of pairs (o, ) of smooth
maps o : [ — QY(Y,g) and ¢ : I — Q°(Y,g). For any integer & > 1 and
any p > 1 let Wg’p(f x Y, T*Y ® g) denote the space of W¥P-regular 1-forms
a: I xY — T*Y ® g that satisfy the boundary conditions

* a(s)|ay =0, a(s)|ay S TA(S)ﬂ (30)
for all s € I. (The first equation arises from a gauge fixing condition.)

Remark 3.9. The boundary conditions are meaningful for every « of class
WP with p > 1. In this case we have a(s)|gy € LP(3, T*E @ g) for almost all
s € I, so there is a Hodge decomposition

a(s)|oy = ao + dags)s€ + *dacs) s,

and the second condition in means that n = 0 and ap € T 44|, £. In other
words, «(s)|ay lies in the LP-closure of T 4, £. This LP-closure is Lagrangian
in the following sense: If o € LP(3, T*Y ® g), then « lies in the LP-closure of
T4L if and only if [,(a A B) = 0 for all smooth § € ToL. (This extends the
Lagrangian condition @ to nonsmooth tangent vectors.)

On a general 4-manifold X, the linearized operator Dy for with a gauge
fixing condition has the form

Q'(X,g) = T (X,g9) x Q°(X,g) : &~ ((dac + dXp(A)@) T, —d}a) .

In the case X = I x Y we identify Q*F (X, g) x Q°(X, g) with the space of pairs
of maps I — QY(Y,g) and I — Q°(Y, g), using the formula

& = 3 (xa(s) — a(s) Ads)
for self-dual 2-forms on I x Y. With this notation the linearized operator

Dy WIP(I XY, T*Y @ g) x WEP(I x Y, g)
S WFLP(I XY, TY ® g) x WFIP(I x Y, g)

for I x Y is given by
Dy :=Vs+Has,
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where V; := 05 + [®, -]; explicitly,
a\ [ Vsa+xdga+*dX(A)a—dap
P ( 0 ) - ( Vg - dja ' (81

Here we have dropped the argument s in the notation, e.g. d 4 stands for the
path s — d(s)¢(s) of g-valued 1-forms on Y.

Remark 3.10. The formal adjoint operator has the form
DZ =—-V,s+ HA(S)'

It is isomorphic to an operator of type V4 + H 4 via time reversal. Namely, if
o:(—=I)xY — I xY denotes the reflection in the s-coordinate, then

DX(BM/J) 00 = DO’*A(ﬁ o0, ¢ o 0)
for every pair of smooth maps 3: I — Q'(Y,g) and v : I — Q°(Y, g).

The following theorem provides the basic regularity (i) and estimate (ii) for
the Fredholm theory of Dy and will also be needed to prove exponential decay.
The LP-regularity has been established in [36] by techniques that do not extend
to p = 2. Here we prove the L2-regularity using the analytic properties of the
Hessian. A fundamental problem is that its domain varies with the connection,
unlike in the closed case. The variation will be controlled in step 1 of the proof,
using a trivialization of the tangent bundle of £ in Appendix This control
then allows to apply the general theory of Appendix [A]

Theorem 3.11. For every integer k > 0, every p > 1, and every compact
subinterval J C I there is a constant C such that the following holds.

(i) Assume k=0 and define p* :==p/(p—1). Let
(a,) € LP(I x Y, T*Y @ g) x LP(I x Y, g)

and suppose that there is a constant ¢ such that

/, (D). (@) < By (32)

for every compactly supported smooth map (8,%) : I — Q(Y,g) x Q°(Y,g)
satisfying . Then (o, ¢)|sxy is of class WP and satisfies the boundary
condition and the estimate

||(04780)||W1,p(J><y) < C(HDA(O[)SO)”LP(IXY) + ||(0‘7‘P)‘|Lp(1xy))~

(ii) Assume k > 1. If (o, ) € WEP(IXY, T*Y @g) x WIP(I XY, g) satisfies (@)
and Dy (a, ) is of class W*P_ then (o, ¢)|sxy is of class W*TLP and

||(0‘7S0)||W’“+1v17(J><Y) < C(”DA(%@)HWIW(IXY) + ||(a7<p)HLP(I><Y))~
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Proof. Using the estimates on the perturbation dX;(A) in Proposition (iv)
we may assume without loss of generality that f = 0. Fix sg € J. We prove the
result for a neighbourhood of s¢ in four steps.

Step 1. After shrinking I, there exists a family of bijective linear operators
Q(s) : Q'(Y,9) x Q°(Y, g) = Q'(Y, 9) x Q°(Y, 9),

parametrized by s € I, such that the following holds.

(a) For every s € I and every (o, p) € QY(Y, g) x Q°(Y, g)

(o, ) € domH 4(s,) — Q(s)(a, ) € domH 4.

(b) For every integer k > 0 and every p > 1 the operator family Q induces a
continuous linear operator from I/Vllf)cp(l xY, T*Y ®g) x VVlléf(I xY,g) to
itself.

Let U C A(Y, L) be a neighbourhood of A(sg) that is open in the C’-topology
and {Qa}aecy be an operator family which satisfies the requirements of The-
orem [E.2l Shrink I so that A(s) € U for every s € I. Then the operators
Q(s) := Qa(s) x Id satisfy the requirements of Step 1.

Step 2. We prove (i) for p = 2.
Abbreviate
H:=L*Y,T*Y ®g) x L*(Y, g)

and let W(s) C H be the subspace of (a,¢) € WH2(Y, T*Y ® g) x WH2(Y, g)
that satisfy the boundary conditions

*Oz|ay =0, Oz|§y S TA(S)ﬁ.

Let @ be as in Step 1, so each Q(s) induces an operator on H that descends
to a Hilbert space isomorphism from W (so) to W(s). Then, by Proposition [3.1]
with p = 2, the operator family H(,) : W(s) — H satisfies the conditions
(W1-2) and (A1-2) in Appendix [A] for every compact subinterval of I. Hence
the estimate in (i) with p = 2 follows from Lemma and a cutoff function
argument, and the regularity statement follows from Theorem [A-3]

Step 3. We prove (i) for p # 2.

The result follows from [36], Theorem C]. The intervals I and J can be replaced
by S' by using cutoff functions, and one can interchange Dj and Dy-p in
by reversing time as in Remark Then [36, Theorem C (iii)] implies that
(a,p) o o is of class WP (with corresponding estimate). The same holds for
(a, ), and partial integration as in implies that

B e > ‘/ (DL, (000)) = ((8.0), Dalan))

/ (anB)+ (v, ).
Ix9Y
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Here we can choose any compactly supported |rxay : I — TaL C QL(9Y,g)
and ¥|rxay @ I — Q°(9Y,g) and extend them to I x Y with |(8,%)| -+ ar-
bitrarily small. Thus the above estimate implies that « satisfies the boundary
conditions a(s)|ay € Ta(s)L and *a(s)|ay = 0.

Step 4. We prove (ii).

The assertion of (ii) continues to be meaningful for k¥ = 0; we prove it by
induction on k. For k = 0 the regularity statement holds by assumption and
the estimate follows from (i). Fix an integer & > 1 and assume, by induction,
that (ii) has been established with k replaced by k — 1. Let

(o, 0) € WHP(I x Y, T*Y @ ¢) x WHP(I x Y, g)
such that holds and
(B,9) == Da(a,p) € WHP(I x YV, T*Y @ g) x WHP(I x Y, g).
Denote
(o, ¢) = QI,(Q (a, ),
and

(#.4) = Q(0,Q 7 (B.9) — (0(Q ' DQ)Q ()

Then (a/,¢’) satisfies the hypotheses of (i) and hence is of class WP and
satisfies the boundary conditions (30]). Thus

DA(O/7 90/) = (6/’ d/)

is of class W*~1P, Hence, by the induction hypothesis, (o, ¢’) is of class W*P
and

1@, O Mwrrrxyy < CLll(B", W) lwr—rorxyy + 1@ @) Lo (rxyy)

< Co (1B, V) llwerrxyy + 1, @) lwen(rxy))-
Since (o, ¢") = (9sat, 050) — (0:Q)Q (e, ), this implies that (dscr, Ds¢p) is of
class WP and
1(8scx, 0s0) lwrn (rx vy < Cs(IIPa(c, @) lwrrxyvy + 1( @)l rxyy)
< C4(||DA(Oéa<P)||Wk«p(1xY) + H(CWP)”LP(IxY))-

It remains to establish regularity and estimates for (a, ) in LP(J, Wk+LP(Y)).
To see it note that Ha(a, @) = Da(a, p) — Vi(a, ) is of class LP(J, WFP(Y)).
By Proposition (a(s),¢(s)) € WETLP(Y) for almost every s € J and

[ (e, )”117,17 JWk+Lp(Y))

/ 1), @ () Byisn iy ds

< (||HA<5 A (O REE) [ RE
<G (||DA<a,¢>HWk,pW) + e )iy
This completes the proof. O
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Remark 3.12. The proof of Theorem carries over word for word to the
case where the metric and perturbation on Y depend smoothly on s € I.

We finish this section with a complete description of the linearized operator
for the trivial gradient flow line at an irreducible, nondegenerate critical point.

Theorem 3.13. Let A € A(Y, L) be a critical point of the perturbed Chern—
Simons functional CSz+hy such that HY = 0 and H}x,f = 0. Then the operator

0
Dy = —
A 63+HA

on IP(R XY, T*Y ® g) x LP(R x Y, g) with domain

dom Dy = {(a,go) EWYP(R x Y, T"Y ® g) x W'P(R x Y, g) ’

s« a(s)|ay =0, a(s)]oy € TaL Vs € R}

1s a Banach space isomorphism for every p > 1.

Proof. For p = 2 it follows from [26] Theorem A] and Proposition that
D4 is a Fredholm operator of index zero; that it is bijective follows from the
inequality (8) in [26]. Another argument is given in [9, Proposition 3.4]; it is
based on the fact that H 4 is a bijective self-adjoint Fredholm operator, and on
the local L?-regularity (Theorem . The case p # 2 can be reduced to the
case p = 2 by Donaldson’s argument in [9, Proposition 3.21]; it uses in addition
the local LP-regularity in Theorem (For an adaptation of Donaldson’s
argument to the symplectic case see [29, Lemma 2.4].) O

4 Operators on the product S' x Y

In this section we study the anti-self-duality operator on SU(2)-bundles over
the product S' x Y with Lagrangian boundary conditions. Our goal is, first,
to establish a formula for the Fredholm index and, second, to prove that the
relevant determinant line bundle is orientable. Both results are proved with the
same technique. The problem can be reduced to the case of a suitable closed
3-manifold Y Ug Y’ by means of an abstract argument involving the Gelfand—
Robbin quotient.

Throughout we fix a compact connected oriented 3-manifold Y with non-
empty boundary dY = ¥ and a gauge invariant, monotone Lagrangian sub-
manifold £ C A(X) satisfying (L1-2) on page |7l We identify S! = R/Z. Every
gauge transformation v : ¥ — G = SU(2) termines a principal SU(2)-bundle
P, — S' x Y defined by

_RxYxG

P, : ,
Z

[s,y,u] = [s+ 1,y,v(y)u].
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A connection on P, with Lagrangian boundary conditions is a pair of smooth
maps A : R — A(Y, L) and ® : R — Q°(Y, g) satisfying

A(s+ 1) =v*A(s), B(s+1) = v d(s)v. (33)

The space of such connections will be denoted by A(P,, L) and we write A =
®ds + A or (A, ®) for the elements of A(P,, L£). The space

A(S' x Y, L) = {(v,A)|A € A(P,, L)}

is a groupoid. We will see that it has several connected components, correspond-
ing to m1 (L/G. (X)) respectively the degree of v : (Y,0Y) — (G, 1). A morphism
from (vg,Ap) to (v1,A;) is a smooth gauge transformation u:R — G(Y) on
R x Y satisfying

vy = u(s) tvgu(s + 1),

34
Al = U*Ao. ( )

We abbreviate by (v1,A1) =: u*(vg, Ag). In the case vg = v1 = v a map u
that satisfies the first equation in is a gauge transformation on P,. Since
the gauge group G(Y) is connected there is, for every pair vy, v1 € G(Y), a gauge
transformation u : R — G(Y') that satisfies the first equation in (34).

Fix a perturbation X;. Then every pair (v,A) = (v, A, ®) € A(S! x Y, L)
determines Sobolev spaces

WEP(ST x Y, g) := {p € WEP(R x Y, g) | o(s + 1) = v~ p(s)v},

loc
VVf”’(S1 xY, T'Y ® g) := {a S VVIECP(R x Y, g) | a(s+1) = vila(s)v},
WEP(S' < Y, T'Y @) = {a € WrP(S' x Y, T*Y @ g) | (0)}

and an anti-self-duality operator

Dy WiE(S' x Y, TY @ g) x WrP(S' x Y, g)
— WELP(SY X Y, T*Y @ g) x WFHP(S! x Y, g)

given by D,  := Vs + H (s respectively by as in Section

Definition 4.1. The degree of a pair (v,A) = (v, A, ®) € A(S' x Y, L) is the
nteger

1
deg(v, A) := 7$/@ /Y<FA/\8$A>dS

Remark 4.2. (i) The degree is an integer because it is the difference of the

32



Chern-Simons functionals. Explicitly,

1
deg(v, A) :—81?/0 /Z<A/\85A)ds

1 s=1

1
-5 Uy(<AAdA> + 3<A/\[A/\A]>)}
1
— 5 (eS(a), Als#B) - cs(A), B))
= L
T 4q?
Here B : [0,1] — L is a smooth path from B(0) = A(1)|s to B(1) = 0 and
Alx#B is the catenation of Aly : [0,1] — £ with B.
(if) If vy, = 1 then A(s + 1)|x = A(s)|x and, by (5)),

s=0

(ese((A©) - ese(4@)) = 0 € R/Z

1
deg(v, A) = deg(v) — 87712/ /E<A/\85A>ds.
0

The last term is the symplectic action of the loop R/Z — L : s — A(s)|x,
multiplied by the factor 1/472.

(iii) If v = 1 and A(s)|z = u(s)*A(0)|x with u(s + 1) = u(s) € G(X) then
deg(v, A) is minus the degree of the map u : S1 x ¥ — G, see Corollary
Theorem 4.3. Fizp > 1 and an integer k > 1, then the following holds.

(i) Two pairs (v,A), (v',A") € A(S' x Y, L) belong to the same component of
A(SY x Y, L) if and only if they have the same degree.

(ii) For every pair (v,A) € A(S* x Y, L) the operator D, p is Fredholm and

index (D, ) = 8deg(v, A).

(iii) The determinant line bundle det — A(S* x Y, L) with fibers det(Dy ) is
orientable.

(iv) Let u : R = G(Y) be a morphism from (v,A) to (v',A") = (u*v,u*A).
Then (v,A) and (u*v,u*A) have the same degree and the induced isomorphism

u* : det(Dy,a) — det(Dyeyu=a))

is orientation preserving (i.e. the map on orientations agrees with the one in-
duced by a homotopy).

The proof of (i) will be based on an identification of the index with the
spectral flow of the Hessian. Both the index and orientation results in (ii)-
(iv) require a description of the space of self-adjoint boundary conditions for
the Hessian on a pair of domains with matching boundary. We will use it to
homotop from Lagrangian boundary conditions to the diagonal (representing
the closed case). More precisely, we will use the abstract setting of Appendix
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We think of the div-grad-curl operator on Y as an unbounded operator

xd  —d
D':(d* O).Wg—)H

on the Hilbert space
H:=L*(Y,T'Y ® g) ® L*(Y, g)
with the dense domain
dom D := Wy := W, (Y, T*Y @ g) & Wy (Y, g).

With this domain D is symmetric and injective and has a closed image, see
Lemma [£.4] below. Hence D satisfies the assumptions of Appendix [B] and thus
defines a symplectic Hilbert space, the Gelfand—Robbin quotient

V= domD*/domD = W/W(]7 W(fﬂ?) = <D*f»77> - <§7D*77>7

where W := dom D* is the domain of the adjoint operator D*. The crucial
property of the Gelfand—Robbin quotient is the fact that self-adjoint extensions
of D are in one-to-one correspondence with Lagrangian subspaces of V.

If Ae A(Y) is a smooth connection on Y then the restricted (unperturbed)
Hessian Halw, : Wy — H is an unbounded operator on H with domain Wj.
It is a compact perturbation of the div-grad-curl operator D. The next lemma
shows how these operators fit into the setting of Appendix

Lemma 4.4. (i) For every smooth connection A € A(Y) on Y the operator
Halw, : Wo — H is symmetric, injective, and has a closed image. Its domain
Wy is dense in H, the graph norm of Ha on Wy is equivalent to the W1 2-norm,
and the inclusion Wy — H 1is compact.

(ii) For every A € A(Y) the domain of the dual operator (Halw,)* is equal
to W and the symplectic form on the quotient W/Wy is given by

wen) = [ tangy= [ (o) [ ().

for smooth elements & = (a, p) and n = (B,v) in W.

(iii) The kernel of (Halw,)* determines a Lagrangian subspace

o keI’(HAlwo)* + Wy c

Ao(A) : i %

If two connections A, A’ € A(Y) coincide in a neighbourhood of the boundary
Y then Ag(A’) is a compact perturbation of Ag(A).

Proof. The operator Halw, is symmetric by and it has a closed image
by Lemma (ii). To prove that it is injective let («, ) € ker Ha N Wy.
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Extend A to an S'-invariant connection = on S! x Y and (a, ) to an S'-
invariant 1-form & = a + ¢ds on S' x Y. Then dJErﬁ =0,di¢ =0, and ¢
vanishes on the (nonempty) boundary. Near the boundary we choose coordi-
nates (s,t,2) € St x [0,¢) x ¥ so that (¢,2) are normal geodesic coordinates on
Y. Interchanging s and ¢t we can first bring = into temporal gauge with respect
to ¢ and then use Lemma (ii) to deduce that & vanishes near the bound-
ary. Since Y is connected it follows from an open and closed argument that
& vanishes identically. The graph norm of H 4 on W is given by below.
The boundary term vanishes on W, and hence this norm is equivalent to the
W12 norm. The compactness of the inclusion Wy — H follows from Rellich’s
theorem. This proves (i).

The domain of the dual operator and the symplectic form are independent
of A because the difference Halw, — D = (Ha —Ho)|w, : Wo — H extends to a
bounded self-adjoint operator from H to itself. The formula for the symplectic
form follows from .

Assertion (iii) follows from Lemma This uses the fact that the dif-
ference operator A := (Halw,)* — (Halw,)* : W — H is compact since it
coincides with AotoW. Here ¥ : W — W, is a bounded map, given by
multiplication with a cutoff function ¢ € C§°(Y,[0,1]), ¥|suppa—ary = 1, the
inclusion ¢ : Wy — H is compact by (i), and A : H — H is bounded. This
proves the lemma. O

Remark 4.5. (i) The symplectic Hilbert space (V,w) can be viewed as a space
of boundary data for the Hessian, containing the space

Q'(Y,g) x Q(Y, g)

Wor (Vg < 0(¥.g)) 00X 0 x )

of smooth boundary data as a dense subspace; see Lemma below. The iso-
morphism is by [(a, ¢)] = (a|ay, ©lay, *=(*a]gy)). In this notation, an explicit
formula for the symplectic form is given in Lemma (ii).

(ii) The space QY(Y,g) x Q°(Y,g) of smooth pairs (a, ) is contained in the
domain of the dual operator, and the restriction of (Ha|w,)* to this subspace
agrees with H 4. The graph norm on Q(Y, g) x Q°(Y, g) C dom (Ha|w,)* is

H(QMP)H%HA\WO)* = ||(@7<P)H%2(Y) + ||dAa||2L2(Y) + HdZQHQL?(Y)

T a2, +2/ (. [Fa.al) 72/ (g, daar).
Y oY

(35)

The dual domain W = dom (Ha|w,)* is the completion of Q!(Y, g) x Q°(Y, g)
with respect to this norm. It is bounded by the W1 2-norm and hence

Wy? = WY, T*Y @ g) ® W2(Y,g) C W.

Moreover, it follows from interior elliptic regularity that every element of the
dual domain W is of class W12 on every compact subset of the interior of Y.
However, W is not contained in Wy*, see Lemma below.
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The next Lemma gives a precise description for the spaces W and V, includ-
ing some parts of weak regularity. However, our theory does not depend on the
explicit description of these spaces. In our applications we only use the fact that
the Gelfand-Robbin quotient is independent of the connection, see Lemma [£.4]
In the following we slightly abuse notation and identify the Gelfand—Robbin
quotient V' = W/Wj with the orthogonal complement of W in W in the graph
norm of D*. Remark (ii) shows that it is given by

V={¢edom D" | D*¢ € dom D*, D*D*¢ + ¢ =0}.
Lemma 4.6. (i) The space V' admits an orthogonal Lagrangian splitting
V:Ao@Al, Ao Z:D*Al, Al :VﬂlmD,

where Ag is the orthogonal projection of the kernel of D* onto V.

(ii) The space W admits an orthogonal splitting W = Wy @ Ao ® A1, where Wy
and Ay are closed subspaces of W;’Q and Ag is a closed subspace of H =: L.

(iii) The spaces of smooth elements are dense in Ao, A1, V, and W (with respect
to the graph norm of D*). The restriction map

§=(a,p) = &]s = (als, pls, = (xals)) (36)

on the smooth elements extends continuously to Ag and Ay. This gives rise to
njective operators
Ao = W22 A WP

with closed images. Here we denote W£1/2,2 = (Wé/zg)* and
Wy >? = W22(5, TS @ g) @ WY22(S, g) @ W/22(%, g).

Proof. The splitting in (i) is the one in Remark (iii) with Ay = Ag. To
prove (ii) we examine the operator D*D of Lemma On smooth elements
this is the Laplace-Beltrami operator. Hence its domain is

dom (D*D) = {5 € W()’ sup (D8, D)1

< oo} = Wo N W2
neEWy 71l 12

by elliptic regularity. This implies that dom D* Nim D = D(Wy N W12/2) is a
closed subspace of W)I,’Q. One can also think of D* as a bounded linear operator
from L% to W;LZ := (Wh)*, see the proof of Lemma Then the operator

Wy? = Wy b2 x W22 6 (DD + £,¢]) (37)

is bijective, by elliptic regularity and the Sobolev trace theorem, and V' N W;;z
is the preimage of {0} x Wé/Q’Z under this operator. Hence V' N VV)l,’2 is also a
closed subspace of VV;,’2 and so is the space

Ay = (VN W) N (dom D* Nim D).
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Next, the kernel of D* is a closed subspace of L2- and hence, so is the space
Ao={¢~(1+D*D) ' ¢|€¢ € ker D*}.

See Remark (ii) for the projection W — V; the formula simplifies for
& € ker D*. This proves (ii).

We prove that the spaces of smooth elements are dense in Ay, Aq, V, and
W. Any element in A; can be approximated by a smooth sequence in A;: The
Wl2_approximation by any smooth sequence converges in the graph norm of D*
and projects under the map IIy in Remark [B.5| to a convergent smooth sequence
in Ay. Since Ag = D*Aq, this shows that the smooth elements are dense in Ag
aswell asin W =Wy ® Ao ® A;.

That the the restriction map extends to an injective bounded linear
operator from A; onto a closed subspace of Wé/ 22 follows by restricting the
isomorphism to the closed subspace A; of VHWS/Q. Next we prove that the
map sends Ag to a closed subspace of W~1/2:2(X). For this it is convenient
to use the following norms for £ € W:

w(&n) 2 wel2
lelsllyoree = sup 2 el = e, + D€l

sowra Tl

By definition there is a constant ¢ > 0 such that

1€l llyy 222 < cli€ll pe

for every £ € W. Thus (36) is a bounded linear operator from W to Wy, /2.2

Moreover, A; is complete both with respect to the graph norm of D* and the
Wh2_norm, and the former is bounded above by the latter. Hence, by the open
mapping theorem, there is a constant ¢ > 0 such that

[nllp- =6 Hn”wgﬁ Vn € Ay
Now let £ € Ay be given. Then D*¢ € Ay C W;’Q and hence

w(§n) _ (w(&D*E)
€15y vvze > 6 sup > g2
W yows Tllp- = " TD*€l

V

=0 €l p- -

Since Ay is a closed subspace of W, the operator Ag — W£1/2’2 € &y is
injective and has a closed image. This proves the lemma. O

Remark 4.7. The dual domain W admits another orthogonal splitting
W = (dom D* Nim D) & ker D*

where dom D* Nim D is a closed subspace of W;,z and the kernel of D* is a
closed subspace of L%,. It can be described as the image under D* of the space
of harmonic pairs £ = (o, ) € W;,’Q:

ker D* = {(*da — dp, —d*a) | (o, ) € W2, d*da + dd*a = 0, d*dyp = 0} .

37



This can also be used to prove that the restriction map maps the kernel of
D* to W£1/2’2: If  is a W12 harmonic function on Y then its restriction to
the boundary is of class W'/22 and its normal derivative on the boundary is of
class W—1/2:2,

Yet another splitting of W can be obtained from eigenspace decomposi-
tions along the lines of Atiyah—Patodi-Singer [5]. The operator D has the form
J(9¢ + B) near the boundary, where J? = —1 and B is a self-adjoint first order
Fredholm operator over 3. The decomposition involves the eigenspaces of B [g].

Proof of Theorem[/.3 It suffices to prove the theorem for X; = 0 because any
two perturbations are homotopic and result in compact perturbations of the
operators D, » and hence in isomorphic determinant line bundles.

We prove (i). By Lemmathe degree depends only on the homotopy class
of (v,A). Given such a pair, there is a smooth path [0,1] = G(Y) : 7+ v”
with v° = v and v! = 1, because G(Y) is connected. Let u” : R — G(Y') be the
smooth path of gauge transformations constructed in Lemma [£.§ below with
X = pt and define

AT = (u")*A.

Then 7 + (v, A7) is a smooth path in A(S! x Y, £) connecting (v°, A?) = (v, A)
to a pair of the form (1, A'). Hence we may assume without loss of generality
that v = v’ = 1 and A, A’ € A(P,£) where P = Py = S! x Y x G. Now the
map

AP,L) = C=(S1, L) : A Algiys

is a homotopy equivalence. Hence (i) follows from the fact that, by (L2), every
loop in £ is homotopic to a loop of the form R/Z — L : s — u(s)*Ay with
u(s +1) =u(s) € G(X), and that the homotopy class of such a loop is charac-
terized by the degree of the map u : S' x ¥ — G.

We prove (ii). That the operator D, 4 has a finite dimensional kernel and
a closed image follows immediately from the estimate in Theorem (ii) and
Rellich’s theorem (see [22] Lemma A.1.1]). That it has a finite dimensional
cokernel follows from the regularity results in Theorem and Remark
(The dual operator has a finite dimensional kernel.) Thus we have proved
that D, is a Fredholm operator for every pair (v,A) € A(S! x Y,L). The
regularity theory in Theorem [3.11] also shows that its kernel and cokernel, and
hence also the Fredholm index, are independent of k and p. Moreover, the
Fredholm index depends only on the homotopy class of (v, A); to see this one
can use the argument in the proof of Step 1 in Theorem [3.11] to reduce the
problem to small deformations with constant domain and then use the stability
properties of the Fredholm index. So by (i) it suffices to consider one pair (v, A)
in each degree. Hence we can assume

vy =1, P =0, A(s)In =0

for all s and an open neighbourhood N C'Y of 9Y. Then deg(v,A) = deg(v).
Choose a handle body Y’ with 0Y” = ¥ and extend A(s) smoothly by the trivial
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connection on Y’ to obtain a smooth connection fl(s) on the closed 3-manifold
Y=Y UgY

for every s. Note that A(s+1) = 7* A(s), where & € G(Y') agrees with v on Y and
is equal to 1 on Y. Let H{, denote the Hessian on Y (at the trivial connection)
and H () the Hessian on Y, both with the same boundary Lagrangian TpL.
These are self-adjoint Fredholm operators, by Proposition The Hessian
over the closed manifold Y will be denoted by H As)” Choose ¢ > 0 such that

the operators Hg +eld, H (o) +€ld, and 7-214(0) + eld are all bijective. We shall
introduce the spectral flow figpec (as defined in Appendix and prove that
index(Dy,a) = Hspec ({ (HA(S) + EId) &) (7‘[6 + Eld) }86[0}1])

= pispec ({H () + 5Id}se[0,l]) (38)
= index(D; ;) = 8deg(v) = 8deg(v,A).

Here Dﬁ’& =V, +H A(s) denotes the anti-self-duality operator on the twisted

bundle Pj over S x Y.

To prove we may assume k = 1 and p = 2. In this case the first and
third equations follow from Theorem the fourth equation follows from the
Atiyah—Singer index theorem (the second Chern class of the principal bundle
P; — St x Y is the degree of ¥), and the last equation is obvious from the
definitions. To prove the second equation in consider the operator family

D(s) := (Ha(s) +¢ld) & (H + €ld)
on the Hilbert space
H:=L*Y,T'Y ®g)® L*(Y,9) ® L*(Y', T*Y' ® g) ® L*(Y’, g)
with the constant dense domain dom D(s) = Wy, where
Wo = Wy (Y, T*Y ®@ g) @ Wy (Y, 0) @ Wy (Y, T*Y @ g) & W, * (Y, g).

As in Remark this choice of domain makes D(s) closed, symmetric, and
injective. Moreover, the Gelfand-Robbin quotient and its symplectic structure

V :=dom D(s)*/dom D(s) = W/W,

are independent of s. Now, by Appendix [B| self-adjoint extensions of D(s) are
in one-to-one correspondence with Lagrangian subspaces of V. The operators
in the first row of all correspond to the Lagrangian subspace

x|y, *a/|gyr = 0,

A=< (0,0, @) e W2
1 {( ' 90) Oé|ay,o/|3y/€T0£

}/WoCV,
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where Wh2 .= WE2(V,T*Y @ g ® g) x WH(Y' , T*'Y' @ g®g) C W. The
operators in the second row of all correspond to the ‘diagonal’

/ / 1,2 ¢|8Y - <P/|8Y’a
A2 = (O[7g0704 )P ) ewW> Oé|6Y = O/|8Y/’ /WO cv
*Oz‘ay = *0/|8Y’

For i = 1,2 and s € R let D(s)a, : dom D(s)s, — H denote the restriction of
D(s)* to the preimage of A; under the projection W — W/Wj. Then D(s)a,
is self-adjoint. Moreover, we have D(s + 1) = Q1 D(s)Q, where Q : H — H is
given by conjugation with the gauge transformation v and satisfies £ — Q¢ € Wy
for all £ € W since v = 1 near dY. This implies that

Ag := (ker D(0)* @ Wy) /Wy = (ker D(1)* @ Wy)/W.

Then, by the choice of €, the Lagrangian subspaces A; and Ay are transverse
to Ag. Moreover, they are compact perturbations of Ag- by Lemma since
the graph norm on dom D(s),, is equivalent to the W12-norm, see (35)). The
second identity in follows from Remark[B.14] which asserts that the spectral
flow of {D(s)A}seo,1) is independent of the Lagrangian subspace A C V' that
is transverse to Ag and a compact perturbation of Ag-. This proves and
thus (ii).

We prove (iii) and (iv). That two isomorphic pairs (vo,Ag) and (v1,A1) =
u*(vg, Ag) have the same degree follows from (ii) and the fact that conjugation
by u identifies kernel and cokernel of the operator D,, a, with kernel and co-
kernel of Dy, a,. For every (v,A) € A(S! x Y, L) denote by Or(D, ) the two
element set of orientations of det(D, 4). Then the remaining assertions in (iii)
and (iv) can be rephrased as follows.

Claim: Let {(vx, Ax)}ycy<; be a smooth path in A(S*xY, L) andu: R — G(Y)
be a morphism from (vg,Ag) to (vi,A1). Then the isomorphism

u* OI'(D»UO,AO) — OT(DU17A1)

agrees with the isomorphism induced by the path X\ — (v, Ay).

When v = 1, the claim asserts that the automorphism of det(D,, a,) induced by
aloop in A(S'xY, L) is orientation preserving and hence the determinant bundle
over A(S! x Y, L) is orientable. Throughout we write Ay = ®,(s)ds + Ax(s)
We prove the claim in five steps.

Step 1. It suffices to assume that vy = 1 for every .

Since G(Y') is connected, there exists a smooth homotopy [0,1] x [0,1] — G(Y) :
(7, A) = v from v] = vy to v} = 1. By Lemma.8|below with X = [0, 1], there
exists a smooth map [0,1] x [0,1] x R = G(Y') : (7, A, s) — u}(s) such that

of = () Monuf(s + 1), ul(s) = 1.
Define

1= (u}) Ay, ul = (ug)fluuf.
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Then (v])*A%(s) = AL(s+ 1), AT = (u™)*A], and v] = u"(s) toJu (s + 1).
Hence (v},A]) € A(S! x Y, L) for all 7 and A, and «” is a morphism from
(v, Af) to (v],A]) for every 7. By continuity, the claim holds for 7 = 0 if and
only if it holds for 7 = 1. Since v} = 1 for every A, this proves Step 1.

Step 2. It suffices to assume that vy = 1 and u|gixx = 1.

By Step 1 we can assume vy = 1. The restriction of the map v : S' xY — G
to the boundary has degree zero (see e.g. [23], §5,Lemma 1]). Hence there exists
a smooth path [0,1] — G(P) : 7 — u” such that v° = u and ul|giyy = 1.
Composing the paths {A)}o<a<1 and {(u*7)*Ag}o<r<1 we obtain a homotopy
of homotopies 7 — {A] }o<a<1 with AQ = Ay and AT = (u)*A]. Hence Step 2
follows as in Step 1 by continuity.

Step 3. Using (L2) we see that it suffices to assume that vy = 1, u|gixx = 1,
and there exists a smooth map [0,1] x ST — G.(X) : (A, 5) — wx(s) satisfying
Ax(8)]s = wa(s) " tdwa(s) and wx(s + 1) = wx(s), we(s) = wi(s), we(0) = 1.

By Step 2 we can assume vy = 1 and u|g1 gy = 1. Then Ax(s+1) = Ax(s) and
Ap(s) = Ay (s) for all s and A. Since £/G. (%) is connected and simply connected,
the loops [0,1] = £ : A+ Ay(0)|s and ST — L : s+ Ag(s)|x are homotopic to
loops in the based gauge equivalence class of the zero connection in £. This
implies that there is a smooth homotopy [0, 1]? x S* — L : (7, A, s) — BI(s) of
homotopies of loops, satisfying

B{(s+1) = Bi(s),  Bg(s) = Bi(s),
starting at BY(s) = Ax(s)|s and ending at a homotopy of loops satisfying
B (0), By(s) € {w™"dw ’ weG.(Y)}.

The composition of the map [0,1]2 — £ : (\,s) — Bi(s) with the projection
L — L£/G.(X) maps the boundary to a point. Since m2(L/G,(X¥)) = 0 the ho-
motopy 7 — BT can be extended to the interval 0 < 7 < 2 so that B/Q\(s) =
wy(s)"tdwy(s). This determines the map [0,1] x R — G,(2) : (A, s) — wx(s)
uniquly, hence w satisfies the requirements of Step 3. Since the restriction
map A(Y, L) — L is a homotopy equivalence, there exists a smooth homotopy
[0,2] x [0,1] = A(P1, L) : (1,\) — AT with AT = u*A] from A = A, to A3
satisfying A3 (s)|s = B3(s). Step 3 follows since, by continuity, the claim holds
for 7 = 0 if and only if it holds for 7 = 2.

Step 4. It suffices to assume that vy = v is independent of A and there exists
a neighbourhood N C'Y of Y such that v|y = 1, Ax(s)|y =0, ®a(s)|y =0,
and u(s)|y = 1.

By Step 3 we can assume vy = 1, u|giyy = 1, and Ax(s)|s = wx(s) " 1dwy(s)
for a smooth map w : [0,1] x S — G.(X). By a further homotopy argument
we may assume that w is transversally constant near the edges of the square,
Owx(s) = 0 for A = 0 and A ~ 1, and dswx(s) = 0 for s ~ 0 and s ~ 1.
Since every gauge transformation on ¥ extends to a gauge transformation on Y’
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and the same holds for families parametrized by contractible domains, there is
a smooth map [0,1]2 — G(Y) : (), ) = ux(s) such that
ur(8)|s = wa(s) L.
This map can be chosen such that dyux(s) = 0 for A ~ 0 and A ~ 1, and
Osux(s) =0 for s ~ 0 and s ~ 1. Moreover, we can achieve A-independence of
v} = ux(0)"tux(1). To see this, note that vi|s = 1 and there is a § > 0 such
that O\v} = 0 for A & (4,1 —§). Let 5 :[0,1] — [0,1] be a smooth monotone
cutoff function such that S(A) =X for A€ [6,1—0], 3=0for A\~0,and =1
for A ~ 1. Now we can replace uy(s) by uA(s)(v%(s)ﬁ()\))*l. The resulting map
(A, 8) — ux(s) satisfies ux(1) = ux(0)v’ with v’ independent of A, as claimed.
Hence it extends to [0,1] x R such that v' = uy(s) tuy(s + 1) for all A and s.
Define
A\ :==u3A\ € APy, L), u' = ug tuuy .

Then ¢'|y, = 1, Aj|x =0, v/|s = 1, and v'" (v/, A}) = (v/, A}). Moreover u, is a
morphism from (1, Ay) to (v/, A}) for every A. This gives a commuting diagram

det(Dya,) — det(Dya,)
g u]

det(Dvl,Ab) u—*> det(Dvl,Afl )

There is a second diagram where the horizontal arrows are induced by the paths
A= (1,A)) and A — (v, A}) = w3 (1, A)). That this second diagram commutes
as well follows from a homotopy argument; namely the space of smooth maps
[0,1]> = G(Y) : (s,A) = ux(s) is connected and the diagram obviously com-
mutes when uy(s) = 1. This shows that the claim holds for (u, 1, A,) if and
only if it holds for (v/,v’, A}). Hence Step 4 follows from a further homotopy
argument (to achieve the relevant boundary conditions and vanishing of ® in a
neighbourhood of 9Y).

Step 5. We prove the claim.

By Step 4, we may assume that vy = v and there exists a neighbourhood N C Y
of 9Y such that v|y = 1, Ax(s)|n =0, Pr(s)|ny =0, and u(s)|y = 1. We shall
argue as in the proof of (i), namely choose a handle body Y’ with Y’ = 3 and
transfer the problem to the closed 3-manifold Y := Y Uy, Y.

Since the map on orientations induced by the path A — A is invariant under
homotopy we may assume that the path is the straight line

Ay = (1= XA+ A,

where A € A(P,) vanishes near the boundary and v € G(P,) is equal to the
identity near the boundary. Since v € G(Y') is the identity near the boundary
we can extend it to a gauge transformation v € Q()N/) via d|ys := v’ := 1. Then
u € G(P,) extends to a gauge transformation @ € G(Pj) via 4(s)|ys := 1 and
A extends to a connection A € A(P;) via A|S1Xy, := A’ = 0. As in the proof
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of (ii) we have three Fredholm operators D, 4 on S x Y, D,y p» on S' x Y (both
with boundary conditions *alsgy = 0 and alsy € ToL), and Dy ; on ST x Y
(without boundary conditions). We must prove that the isomorphism

u* 1 Or(Dy,a) = Or(Dy yea)

agrees with the isomorphism determined by the homotopy. Since both the gauge
transformation and the homotopy act trivially on det(D, 4/) this means that
the isomorphism

u* ®Id: Or(Dy s X Dy pr) = Or(Dyyrs X Dy ar) (39)

agrees with the homotopy isomorphism. As in the proof of (ii) we choose a
family of Lagrangian subspaces connecting A; to As to obtain two continuous
families of isomorphisms (see Lemma we use the fact that the Lagrangian
subspaces can be chosen as compact perturbations of Aé). For A; the gauge
transformation induces the isomorphism and for Ay the isomorphism

@ : Ox(D, ;) = Or(D; ;.7) (40)

and similarly for the homotopy induced isomorphisms. For As both isomor-
phisms agree by the standard theory for self-duality operators on closed 4-
manifolds (see [II]). Hence they agree for A;. This proves the claim and the
theorem. O

Lemma 4.8. Let X be a manifold and [0,1] x X — G(Y) : (1,z) — v be a
smooth map. Then there is a smooth map

0,1] x X xR—=GY): (1,2,8) — uL(s)

such that
o =ul(s) Nl + 1), ul(0) = 1. (41)

Proof. Choose a cutoff function g : [0,1] — [0, 1] such that 5(s) = 0 for s ~ 0
and S(s) =1 for s ~ 1. Define
ul(s) == (09) " Lfe)T 0<s<1.

T

Then u7(s) = 1 for s ~ 0 and ul(s) = (vQ)~ T for s ~ 1. Hence uZ extends
uniquely to a smooth map from R to G(Y) that satisfies ; the extension to
(1,00) is given by uZ(s + 1) := (v2)~1uZ(s)v] and the extension to (—oo,0) by
ul(s — 1) := v0uZ(s)(vI)"!, in both cases for s > 0. Moreover, the resulting

map [0,1] x X x R — G(Y") is smooth in all variables. O

5 Exponential decay

Let Y be a compact oriented 3-manifold with boundary 9Y = ¥ and let
L C A(X) be a gauge invariant, monotone Lagrangian submanifold satisfying
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(L1-2) on page m (Actually this section only requires the compactness of
L£/G.(Z) from (L2).) We fix a perturbation X : A(Y) — Q*(Y,g) as in Sec-
tion [2] The purpose of this section is to establish the exponential decay for
finite energy solutions in the following two Theorems. The unperturbed Yang-
Mills energy of a connection A € AR x Y) is 1 [[F4|?>. In the presence of a
holonomy perturbation the gauge invariant energy of A = A + ®ds is

1 1

Ef(A):f/ |FA+Xf(A)]2:7/ (10,4 = dae|* + |Fa + X, (4)[*).
2 RxY 2 RxY

An anti-self-dual connection in temporal gauge satisfies 9, A+x* (FA +Xy (A)) =0
and ® = 0 and the energy simplifies to Ef(A) = [, [0 A%

Theorem 5.1. Suppose that every critical point of the perturbed Chern—Simons
functional CS. + hy is nondegenerate. Then there is a constant 0 > 0 such that
the following holds. If A : [0,00) — A(Y) is a smooth solution of

A+ #(Fa+ X;(4) =0, Als)lay € L, (42)

satisfying
(oo}
/ / |0sA|P dvoly ds < oo, p>2,
o Jy

then there is a connection As € A(Y,L) such that Fa_ + X¢(Ax) = 0 and
A(s) converges to A as s — oo. Moreover, there are constants Cy,Cq,Ca,. ..
such that

S

-5
A = Acollek (fs—1,5417xv) < Cre
for every s > 1 and every integer k > 0.

Remark 5.2. Let X be a compact Riemannian manifold with boundary. We
shall need gauge invariant Sobolev norms on the spaces 2°(X, g) depending on
a connection A € A(X). For p > 1 and an integer k > 0 we define

k ) 1/p
Jallwer = (X [ ¥5al")
j=0"X

for a € QY(Y, g), where V{xa denotes the jth covariant derivative of a twisted
by A. For p = oo we define

lolme s 3= llallen s := max sup|V5al.

These norms are gauge invariant in the sense that
Hu_lauH = |||
Whp u*A Whp A

for every gauge transformation v € G(X). In particular, for £ = 0 the LP-norms
are gauge invariant and do not depend on the connection A.
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Theorem 5.3. Suppose that every critical point of the perturbed Chern—Simons
functional is nondegenerate. Then, for every p > 1, there are positive con-
stants €, 6, Cy,C1,... such that the following holds for every T > 1. If
A:[-T,T] = A(Y) is a smooth solution of {{3) satisfying

T
/ / 0.4 dvoly ds < , (43)
-rJy
then, for every s € [0,T — 1] and every integer k > 0,

105 Allcr ((—s,51x )8 < Cre 2T 105 All 2 (=71 -0 —1,77) %) * (44)

where A € A([-T, T xY) is the connection associated to the path A. Moreover,
there is a connection Ay € A(Y, L) with Fa, + X¢(Ao) = 0 such that

A = Aollco((—s,s1xv) T 1A = Aol ((—s,6xv), 40
< Coe =) 10s All L2 (=1 —mjoir—1,) x vy (49)
for every s € [0,T —1].

The proofs of these results will be given below. Theorem guarantees the
existence of a limit for each finite energy solution of , however, the constants
in the exponential decay estimate depend on the solution. With the help of
Theorem one can show that these constants can be chosen independent of
the solution of and depend only on the limit A,,. This will be important
for the gluing analysis.

Corollary 5.4. Let Ay be a nondegenerate critical point of the perturbed
Chern—Simons functional CSz + hy. Then there are positive constant §, €,
Co,C4,... such that the following holds. If A : [0,00) = A(Y) is a smooth

solution of (@ satisfying

/ / ‘63A|2 dvoly ds < ¢, lim A(s) = A,
o Jy

§—00

then

14 = Ascllen (s,00)xv) < Cre ™ 105 All 2 (0,00) v

for every s > 1 and every integer k > 0.
Proof. Let §, ¢, C}, be the constants of Theorem Then

||3sAHck([s,oo)xY),A < Cllceiés ”aSAHL?([OpO)XY)

for kK = 0,1,2,... and s > 1. For k& = 0 the desired estimate follows by
integrating from s to oo because the C’-norm is independent of the reference
connection A. Now argue by induction. If the result has been established for
any k then there is a constant ¢, depending on C}, such that

llatllersr ((s,00)xv) < €k el ersn ((s,00)xv),0
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for every a : [1,00) — Q(Y,g). Applying this to a = 9,4 we obtain
05 All ers1([s,00)xv) < xChire 05 All L2([0,00) xv)

and the required C**!-estimate follows again by integrating from s to oo. This
proves the corollary. O

The proof of Theorems and is based on the following three lemmas
concerning solutions on a long cylinder with little energy. We show that such
solutions are uniformly close to a critical point and establish uniform estimates
for the Hessian and the linearized operator.

Lemma 5.5. For every k > 0, p >0, and p > 1 there is an € > 0 such that the
following holds. If A : [—p, p] — A(Y) is a solution of {{3) that satisfies

P
/ / 10,A] dvoly ds < e
—pJYy

then there is a connection As € A(Y, L) with Fa_ + X¢(Ax) =0 such that
14(0) = Acollwrr(vy,a. +I1A(0) = Acoll oo (v) + 105 A(0) | oo vy < K. (46)

Proof. Assume by contradiction that this is wrong. Then there exist constants
k>0, p>0,and p > 1 and a sequence A, : [—p, p] — A(Y) of solutions of
such that

P
lim / / 18,A,) dvoly ds = 0 (47)
vooo ), )y

but fails. Let A, € A([-p,p] x Y) denote the connection in temporal
gauge associated to the path A,. Then Fy, + X(A,) converges to zero in the
L2-norm, by and . Now it follows from the energy quantization in [37,
Theorems 1.2, 2.1] (for general Lagrangians see [24], and for the perturbed ver-
sion see Theorem that A, satisfies an L°°-bound on the curvature. Hence,
by [36, Theorem B] and Theorem there is a subsequence (still denoted
by A,) and a sequence of gauge transformations u, € G([—p/2,p/2] x Y) such
that ujA, converges to Ay = Ax(s) + Poo(s)ds € A([—p/2,p/2] x Y) in the
C*°-topology. By and the limit connection satisfies

asAoo(S) - dAoo(s)(I)OO(S) = Oa FAOO(S) + Xf(AOO(S)) = 07 AOO(S)|Z €L

for every s € [—p/2,p/2]. After modifying the gauge transformations u, we
may assume in addition that ®o(s) = 0 and Ay (s) = A is independent of s.
It then follows that u; 'dsu, converges to zero in the C*°-topology. So after a
further modification we can assume that the u,(s) = wu, is independent of s,
and so the convergent connections u},A, are in temporal gauge, given by the
paths [—p/2,p/2] = A(Y) : s — u}A,(s). Hence

lim ||Ay(0)—(u;1)*Aoo||W1,p(y) iy, = lim ||(uzAV—AOO)(O)||W1‘p,AOO =0,

V—00 sUy V—00
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: —1\* I * _
VILI&|‘Av(0) —(u, ") AOOHLOO(Y) B VILH;CH(“VAV - Ac><>)(0)||L°C(Y) =0,
ylggo ”asAV(O)HLOC(Y) = Ulggo ||aS(UI/AV)(O)||L‘X’(Y) = ”asAOOHLw(Y) =0.
This contradicts the assumption that fails, and thus proves the lemma. [

Lemma 5.6. Suppose that every critical point of the perturbed Chern—Simons
functional CS; + hy is nondegenerate. Then, for every p > 0, there are positive
constants co and € with the following significance. If A : [—p,p] = A(Y) is a
solution of (@/ such that

P
/ / 19, A| dvoly ds < &,
—pJY

then for every a € 9}4(0) (Y, g)

ldlze vy + lellzaay) < co([|daye +dXp(AO)al| 2y + [[dao @l 12y))-

Proof. Assume by contradiction that this is wrong. Then there is a constant
p > 0, a sequence A, : [—p,p] — A(Y) of solutions of with ([d7), and a
sequence «,, € Q}%(O)(Y, g) such that

lowllze vy + llawllzaay)
” — 0. (48)
[ da, o + de(AV(O))O‘VHm(y) + ||dA,,(O)aV||L2(Y) oo

Arguing as in the proof of Lemma [5.5] we find a subsequence, still denoted by
A,, and a sequence of gauge transformations u, € G(Y) such that u*A,(0)
converges in the C*-topology to a connection A, € A(Y,L) that satisfies
Fa_ + X¢(Ax) =0. By assumption A, is nondegenerate, so by Corollary
there is a constant C' such that

||(a’0)||W1=2(Y) < CHHAOO(O"O)HH(Y) (49)

for every (a,0) € domH 4. By Theorem this estimate is stable under C?-
small perturbations of A, and by gauge invariance it continues to hold with A,
replaced by A,(0). Precisely, let U C A(Y, L) be a neighbourhood of A and
{Qa}acu be an operator family that satisfies the requirements of Theorem [E.2
Then u; A, (0) € U for large v adnd the isomorphisms @, := Q. 4, (0) X Id from
domH 4., to domH,: 4, (0) converge to Qa,, x Id = Id in both L(W2) and
L(L?); so the sequence Q;l’Hu;Ay(o)Qu has the constant domain dom # 4__, and
it converges to H 4__ in the operator norm on £(W?12, L?). Hence, for large v, we
can replace Ha__ by Q;l’Hu;Ay(O)QV in to obtain estimates with a uniform
constant C. Since @, converges to the identity in the relevant operator norms
we obtain the following estimate with uniform constants C; but varying domain:

Ha||L6(Y) + ”O‘HL“([)Y) < Cl“(avo)le,z(y) < 02||Hul*,A,,(0)<a70)||L2(y)
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for every (a,0) € dom#H,: 4, (0). Here we have used the Sobolev embedding
W2(Y) < L5(Y) and the trace theorem W12(Y) — L4(9Y). Since Ty 4L =
u~Y(TaoL)u we can apply the last estimate to (u;laVuV,O) € domHy:x 4, (0)-
Since the norms on the left and right hand side are all gauge invariant the
resulting inequality contradicts . This proves the lemma. O

Lemma 5.7. Suppose that every critical point of the perturbed Chern—Simons
functional CSz + hy is nondegenerate. Then, for every p > p' > 0, there
are positive constants cg,c1,... and & with the following significance. If A :
[—p,p) = A(Y) is a solution of (42) such that

p
/ / 10, A|° dvoly ds < e,
—pJYy

then, for every smooth path [—p,p] — QY(Y,g) x Q°(Y,g) : s — (a(s),¢(s))
satisfying a(s) € Q}q(s)()ﬁ g) and every integer k > 0, we have

||(0"‘P)Hck([—pgpl]xy),A
< Ck(HDA(O‘v @)||Wk+2>2([7p,p]><Y),A + H(O‘v (70)||L2([7p,p]><Y)>'

Proof. If this is wrong, then there exist constants k > 0, p > p’ > 0 and a se-
quence A, : [—p, p] = A(Y) of solutions of with (47)), for which the constant
in the estimate blows up. As in the proof of Lemma [5.5|we find a subsequence of
the connections on [—p, p] x Y, still denoted by A, and gauge transformations
uy € G(Y) such that u}A, converges in the C*-topology on [—p/2,p/2] x Y
to a constant connection Ay = As € A(Y,L). Now by Theorem and
the Sobolev embedding theorem, and with the norms of Remark there is a
constant C such that for every («, ¢) satisfying a(s) € Q4 (Y, g)

H(O"‘p)Hck([—p/,p/]xY),Aoo
< C(||Da (a’SO)HW’“JrZQ([fp,p]XY),Ax + H(a’(‘O)HLz([fp,p]XY),A(x,)' (50)

The same argument as in the proof of Lemma (with the sequence of operators
Qu(s) == Quza,(s) x Id) shows that this estimate continues to hold with A
replaced by ujA,. Note that Dy:a,u, (o, ou)uy = uyt (Da, (o, ¢0))us. So
since the norms are gauge invariant, the above estimate also holds with A

replaced by A,, which contradicts the choice of A, and thus proves the lemma.
O

Proof of Theorem[5.1 The proof has three steps.

Step 1. There is a uniform constant § > 0 (independent of the solution A) and
a constant C' (which depends on A) such that

H@sA(s < Ce % fors > 0.

ez
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Define
1 2 1 2
o(s) :zify\asA| zify\pﬁxfm .
Then
J'(s) = /Y ((daBoA + dX (A0, A) A %(Fa + Xp(4))),

and hence
g”(s):L\dAaSA+de(A)aSA|2—/Y<([8SAA85A]+dAa§A)AaSA>
—/Y<(d2Xf(A)(8SA,85A)—i—de(A)agA)/\asA)
:/Y‘dA(f?SA—i—de(A)asAf—L(@fAA(dAé)SA—&-de(A)é)SA)>

—/<([aSAAaSA]+d2Xf(A)(aSA,aSA))AaSA>—/<a§AAasA>
Y )

> QHdAasA + de(A)asAH2L2(y)
— e1|03A]| e 3 1044l = €100A oy,

> (0% = eal|0sA] ey ) (1954 3y + 105412 o)
> 2520,

for uniform constants ¢; and § > 0 and s sufficiently large. Here we used .
In the first inequality the term [,(92ANO;A) is controlled by ||83AH3L$(8Y>,
see [37, Lemma 2.3] and [24] for general Lagrangian submanifolds. The first
inequality also uses the estimate on d*X ;(A) from Proposition (v). For the
second inequality note that every solution of satisfies 0, A(s) € T 4()L and

x0sAloy = —(Fa + Xf(A))|5y =0, (51)

d%0:A =*da(Fa+ X5(A)) =0.
These identities use and the Bianchi identity as well as the facts that
the perturbation vanishes near 0Y and that the Lagrangian submanifold L is
contained in the flat connections on 0Y. Now we can apply Lemma to the
paths [-1,1] = A(Y) : 0 — A(s + o) (whose derivative is L?-small due to the
finite LP-energy of the path) and to the 1-forms o = 9, A(s) € 9}4(8) (Y,g), for
sufficiently large s > 0 to obtain

0.y + 10 AN oy < (26274405 + AX (DA

()
Here we have chosen (20%2)~! = (coc)? with the constant ¢y from Lemma
and a further Sobolev constant ¢, so § > 0 is independent of the solution A.
The last inequality in the estimate of ¢” is due to [|95A(s)| r=(yv) < 26%¢5"
for s sufficiently large. This follows from Lemma [5.5] applied to the paths
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[-1,1] = A(Y) : 0 A(s+ ). So we have g”(s) > 46%g(s) for s sufficiently
large. This implies the assertion of Step 1, i.e. g(s) < C?e~%%% by a standard
argument (see e.g. the proof of [29, Lemma 2.11]).

Step 2. Let § > 0 be the constant of Step 1 and A € A(]0,00) x Y) be the
connection associated to the path A. For every integer k > 0 there is a constant
Cy such that for every s > 1

—ds
s—1,s+1]xY),A < Cke !

195 A | g

Fix £ > 0 and consider the connections A, € A([-2,2] x Y) given by the
paths A,(s) := A(c + s). Due to the finite LP-energy of A on [0, 00) for some
p > 2 these paths on [~2,2] satisfy [|0sAq | r2(—2,2)xy) — 0 as 0 — oo. So by
Lemma there is a constant c; such that for all sufficiently large o

(e, ) HC’“([—l,l]xY),A(,

< ¢ (||DA(, (aa‘P)Hwk+2‘2([_2,2]><y)7Aa + ||(O"50)||L2([—2,2]xy))
for every smooth ¢ : [-2,2] — Q°(Y,g) and « : [-2,2] — QL(Y,g) satisfying
a(s) € Qha(s)(Y, g). Now apply the estimate to the pair
a(s) := 0;A(0 + s), o(s):=0.
Differentiate and recall to see that (o, ¢) € ker Dy, and hence

_1 iy
HaSAHC’“([afl,aJrl]XY),A < ¢k H83A||L2([¢772,a+2]><Y) < e, C(20)72e¥e.
The last inequality follows from Step 1 and proves Step 2.

Step 3. Let § > 0 be the constant of Step 1. Then there is a connection
A € A(Y,L) such that Fa_ + Xf(Ax) = 0 and a sequence of constants
Co,C4,Cs, ... such that

HA - AOOHC"([S—LS-Q—HXY) = Ck€_53 (52)

for every integer k > 0 and every s > 1.
By Step 2 we have [|05A(s)|| o vy < Coe™% for every s > 0. Hence the integral

A = A(O)—ﬁ—/Oo 0sA(s)ds = lim A(s)
0

§— 00

converges in L>®(Y, T*Y ® g) and defines a C%-connection on Y. This directly
implies A |x € L. Moroever, holds with k£ = 0. We prove by induction on
k that Ao is a C* connection that satisfies . For k£ = 0 this is what we have
just proved. Fix an integer k > 1 and suppose that A, is a C*~! connection
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that satisfies with k replaced by k& — 1. Then A is bounded in C*~! and so
there is a constant C' such that

ledlee(o—1,s411xv) < Clledlee oot 5411518 (53)

for every £ < k, s > 1, and every a € Q'([s — 1,5 + 1] x Y, T*Y ® g). So it
follows from Step 2 that

||33AHC1€([5_175+1]><y) < CCre .

Hence for s; > s >0

s1 cC
1A(s0) — A(s1) e vy < / 10, Allgw iy ds < o

S

67650 .

This shows that A, is a C* connection with

CCr _s.
1AG) = Asclleryy < =5

The exponential decay of 9¢(A(s) — As) = 0LA(s) in CF4(Y) for £ =1,... .k
follows from Step 2 and , so this implies . Moreover,

Fa, +Xj(Ax) = lim (Fags) + Xp(A(s))) = — lim +0,A(s) = 0.

This proves Step 3 and the lemma. O

Proof of Theorem[5.3 Let 6 > 0 be the constant of Step 1 in the proof of
Theorem We prove that there are constants C' and ¢ > 0 such that the
following holds for every T > 1. If A: [-T,T] — A(Y") is a solution of that
satisfies , then it also satisfies

105 A(s)| L2(yvy < Ce*(T=leD 105 All 2 (=1 1-T0IT—1,11) x V) (54)

for |s] < T —1/2. Let ¢ > 0 be the constant of Lemma with p = { and
assume that holds with this constant ¢. Define f : [-T,T] — R by

f(s) = 5110:A(5) 172y

Then the same argument as in Step 1 in the proof of Theorem [5.1] shows that
there is a constants co, independent of A, such that for |s| <T —1/4

1"() 2 2 (402 = e [0 A(3) |y ) (£(5) + 104 [ oy ) -

Shrinking e if necessary we may assume, by Lemma with p = 1/4, that
105 A()| oo vy < 20%/co and hence

f"(s) > 46%f(s)  for|s| <T —1/4.
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Now follows from Lemmabelow with p = 1/4, 6 replaced by 26, and T
replaced by T — 1/4.
Integration of yields

—6(T—|o
105 All 25 —3/2,013/21x7) < C"em 0 loD 10s All 211~ 10T —1,77) % V)

for every o € [T +2,T — 2] with C” = Ce3/25=1/2. Now, shrinking ¢ if
necessary, we can apply Lemma with p = 3/2 and p’ = 1 to the paths
shifted by o. Since (954, 0) € ker Dy (as in Step 2 of the proof of Theorem [5.1)
we obtain constants C, and C}, for every k > 0 such that

HasA”ck([gngJruxy),A < C}’i} ||88A||L2([o'73/270'+3/2]><Y)

—6(T—|o
< Cre*TDN0All L2 a—Tiom—1.1] ) -

for every o € [-T + 2,T — 2]. Taking the supremum over o € [—s + 1,5 — 1]
then proves the assertion on OsA.

To prove it remains to estimate the derivatives tangent to Y. We fix
any two constants £ > 0 and p > 1 and then, by Lemma find a connection
Ap € A(Y, L) such that Fa, + X;(Ao) =0 and

1A(0) = Aollyr.n(v), 4, + 1A(0) = Aol oo vy < 5.

After a gauge transformation on Ay we can assume that A(0) lies in the local
slice Sx(g) of A(0), that is d% (A(0) — Ag) = 0 and *(A(0) — Ag)|sy = 0. Since
all critical points are nondegenerate, Corollary provides a universal constant
co depending on g > max{3,p} such that for all a € Q(Y,g) with *a|sy =0
”aHLW(Y) + ||a||W1,p(y)7AU
< co (”dAoO‘ + de(AO)a”Lq(y) + ||d*AoO‘HLq(y) + ||H%’_AL(Q|8Y)||Lq(ay)) :
When applying this to « = A(0) — Ag we can use the estimate

115, £ @low )| oy < 1 1(A©) — Ao)lov 2oy

with a uniform constant ¢; since A(0)|gy and Ag|sy both lie in the submanifold
L C A%4(X). More precisely, we abbreviate Af, := Ag|sy, then we can use the
exponential map in Lemma [E-3] to write

1
AO)loy = O.4,(8) = Ay + 5+ | (DO (1) — DO, (0))3 dr
0
for some 8 € T, L, using the identities ©4(0) = A and DO 4 = Id. The map
© is smooth and gauge invariant, and £/G(X) is compact, so by the choice

of kK > 0 we obtain arbitrarily small bounds on ||3||L«(x) and a uniform linear
bound || DO 4; (78) = DO 4, (0)|| < ¢[|B]|La(s)- This implies the uniform estimate

[(A0)loy = Ab) = Bl Loy < 1Bl o) < 1l (A0) = Ao)loy [I7aay)-
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We also use the identity da,a = Fa() — Fa, — 2[a A a] to obtain
[[A(0) — Aol (v) + [IA(0) = Aollwrr(v), a0
< o (IFa) + X (A©O) I zar) + I3[0 A alllzacyy
+ 11 X7 (Ao + @) = X (Ao) — dXp(Ao)allagy) + erllalov [Fuor))
< ol|0s A(0) || Lo vy + c26[|A(0) = Aol (v)-

Here c¢s is another uniform constant and we have used Proposition (v) for
the perturbation term. If we choose k = (2c2)~! and the corresponding & > 0
from Lemma then this proves

[ A(0) — Aol Lo vy + [|A(0) — Aollwrr(v),a, < 2¢0[05sA0)||La(yy-

Now follows by integrating over the estimate for 05 A. 0

Lemma 5.8. For every § > 0 and every p > 0 there exists a constant C such
that the following holds. If T > p and f : [-T,T] — R is a C*-function satisfying

f'(s) 2 6%f(s),  f(s)>0 (55)
for all s € [-T,T], then
f(s) < Cem TV, (f) (56)
for all |s| < T — p, where
p=T T
B(f= [ fedst [ fe)ds
=T T—p

Proof. We claim that there is a constant Cy = Cy(d, p) > 0 such that every
C%function f : [-T,T] — R with T > p that satisfies also satisfies

f'(s) = 6f(s) = =Coe T E,(f) (57)
for all 0 < s < T. To see this note that, for every s € [T, T], we have
L5 (f(s) = 51() = (") ~ 81(s)) = 0.
Hence
Fl(s) = 0f(s) = 02 (f'(r) = 6£(r))

for all —=T < r < s < T. Integrating this over the interval ¢ < r < ¢+ p/2 for
—T<t<—p/2-T<t<p/2—T and s > 0 gives

t+p/2
/t S (f(r) — 61(r)) dr

2¢ 95

f'(s) =df(s) =

P
— 2¢%¢ tres? d or _ or

=2 [ (G ey - 2 ) ar
> 2ense) - 2 e ),
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Integration over the interval —T <t < p/2—T yields with Cp := 12p~2e%".
By 7 we have

d

ds

for 0 < s < T and hence

e_‘ssf(s) — ¢ % (f/(s) - 6f(s)) > —006_6(S+T)Ep(f)

e f(t) — e f(s) = ~Cre T E,(f)
for 0 < s <t <T, where Cy :=Cy/d. For s <T — p <t <T this implies
F(5) < LCTUf (1) + Cre®CTDE,(f) < LT (e (1) + CLE,(f)).
Integrating this inequality over the interval T'— p < t < T gives for 0 <
s < T — p with C := C; + p—'e®”. To prove the estimate for —T +p < s < 0
replace f by the function s — f(—s). O

We close this section with a useful exponential estimate for the solutions of
the linearized equation.

Theorem 5.9. Let A : [0,00) — A(Y, L) be a finite energy solution of {{3) that
converges to a nondegenerate critical point AY € A(Y,L) of CSz + hy. Then
there exists a constant § > 0 with the following significance. If « : [0,00) —
QY(Y, g) is a smooth solution of the equation

duar(s) = *(daa + dX (A()als),  diyals) =0

satisfying the boundary conditions a(s)|s € Ta(s)L and *a(s)|s =0, and

* —s 2
| e @ s <.

then there are constants Cy, such that, for every s > 1 and every integer k > 0,
—Ids
ledllon fs—1,5411xy) < Cre™".
Proof. We prove first that
2 —ds
()2 < Ce™*. (58)
Since the limit connection is nondegenerate, Corollary provides an estimate
||a(s)||W1=2(Y) <c HdA(s)a + de(A(S))a(S)HL2(y)
for s sufficiently large. This implies that the function

9(s) = 3 lla(s) |72y
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satisfies
g"(s) = 10507 + ((da + dX;(A))0ser, o) + ( ([0:4, o] + d*X (0.4, ), )

> 2| daa+ dXp(A)a| 2y + /8 (9ualav Aalay ) = CllosAls a3y,

> 6%g(s) (59)

- 2 2 2
> 2¢7% lalliyrziyy = ClosAlls laloy 72ay) = CllOsAll lollz2y,

for some 6 > 0 and all s > sg. Here we used Proposition (v) to estimate
|d2X¢(0sA, )| r2(yy and Theorem to write a(s)loy = Pa(s)|sy B(s) for
tangent vectors B(s) € Ty, L at the limit connection Ag := lim,_, o A(S)|oy-
This gives the estimate

/W(asalaonzIaY> = /ay< (0sPa(s)(oy ) BAlay ) < Cll0sAllollaloy (172 oy -

The final inequality in follows from the exponential decay of 0sA (see
Theorem with any 6 < 2¢~! and sufficiently large so. This shows that the
function h(s) := e~%%(g'(s) + dg(s)) is monotonically increasing for s > s9. We
claim that h(s) < 0 for all s > so. Suppose otherwise that there is an s1 > sg
such that ¢; := h(s1) > 0. Then h(s) > ¢; for all s > s1, hence

d
T(g(9) = () 2 e, s s,
S

and hence, by integration,

e&sg(s) > %6268 _ (%62631 _ 66319(81)) )

But this means that the function s —+ e~%%g(s) is not integrable, in contradiction
to our assumption. Thus we have proved that h(s) < 0 and hence ¢'(s) < —dg(s)
for every s > sg. Hence either g vanishes identically for all sufficiently large s
or g >0 for all s > s and (logg)’ < —4. This proves (58).

To obtain bounds on the derivatives of & we use Theorem (i) with Dy
replaced by the adjoint —Dj = Vs — Hyu. Since A(s) converges in the C*
topology for s — oo we obtain |[a|lwr+12(s—1,s41]xv) < Crllal|L2(s—2,542)xv)
with a uniform constant C} for each integer k and all s > 2. The result then
follows from the Sobolev embeddings W**3:2([-1,1]xY) — C*([-1,1]xY). O

6 Moduli spaces and Fredhom theory
In this section we set up the Fredholm theory for the boundary value prob-
lem . For the purpose of this paper we could restrict the discussion to the

case of a tube R x Y as base manifold. In view of a future definition of product
structures however, we take some time to introduce a more general class of base
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manifolds and develop the basic Fredholm theory for these. For the index com-
putations we then restrict to the case of a tube. We begin by introducing the
basic setup followed by a discussion of the relevant moduli spaces. The main
part of this section then discusses the properties of the linearized operators.

Instanton data

Definition 6.1. A 4-manifold with boundary space-time splitting and
tubular ends is a triple (X, 7,) consisting of

e an oriented smooth 4-manifold X with boundary,
e a tuple T = (11,...,Tm) of orientation preserving embeddings
Ti:S,;inﬁ(?X, i:l,...m,

where each Y; is a compact oriented 2-manifold and each S; is either R
or St~ R/Z,

o a tuple t = (t1,...,tn) of orientation preserving embeddings
tj 1 (0,00) xY; = X, i=1,...,n,
where Y; is a compact oriented 3-manifold with boundary,
satisfying the following conditions.

(1) The images of the embeddings 11, ..., T, have disjoint closures and

0X = TZ'<S7; X Zz)

s

i=1

ii) For j =1,...,n the image U; := 1,((0,00) X Y;) of ¢t; is an open subset o
J ’ ) g J J ) J J D
X, the closures of the sets U; are pairwise disjoint, and the set X\U?=1 U;
1§ compact.

(iii) For every j € {1,...,n} there is a subset I; C {1,...,m} and a map
gj : I; = {1} such that
oY = || =i 4ls2) = mles(i)(s +1),2)
iEIj

for s > 0,1 € I, and z € 3;. The orientation of 3; coincides with the
boundary orientation of Y iff g—:j(i) = 1.

Definition 6.2. Let (X, 7,t) be a 4-manifold with boundary space-time splitting
and tubular ends. A Riemannian metric g on X is called compatible with
the boundary space-time splitting and the tubular ends if
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(i) on each tubular end the metric is of split form
g =ds* +gj,
where g; is a metric on'Y; independent of s € (0,00),

(ii) each 7; can be extended to an embedding T; : S; X [0,e;) X X; = X for some
g; > 0 such that
79 =ds® +dt* + gies,

where g; s+ 15 a smooth family of metrics on X;.

A quadruple (X, 1,1, g) with these properties is called a Riemannian 4-mani-
fold with boundary space-time splitting and tubular ends.

Remark 6.3. (i) On the tubular ends condition (ii) in Definition follows
from (i). Indeed, on U; the extension 7; for ¢ € I; is obtained by composing ¢;
with the embedding [0,e) x 3; — Y} associated to geodesic normal coordinates.

(ii) Let (X, 7,¢,¢) be a Riemannian 4-manifold with boundary space-time split-
ting and tubular ends. Then X can be exhausted by compact deformation
retracts. Hence the triple (X, 7, g) is a Riemannian 4-manifold with a boundary
space-time splitting in the sense of [30, Definition 1.2].

Example 6.4. Let Y be a compact oriented 3-manifold with nonempty bound-
ary 9Y = X. Then X := R x Y satisfies the requirements of Definition [6.1] with
the obvious inclusion 7 : RxY - 0X,Y; =Y, Y, =Y (which has the reversed
orientation), ¢1(s,y) := (s + 1,y), t2(s,y) := (—s — 1,y). For any metric gy on
Y the metric ds? + gy on R x Y satisfies the conditions of Definition If g+
are two metrics on Y then, by [36, Example 1.4], there is a metric g on R x Y’
that satisfies the conditions of Definition and has the form g = ds? + g4 for

+s > 1.

The following result will be needed in the proof of independence of the Floer
homology from the choice of a metric.

Lemma 6.5. Let (X, 7,.) be a 4-manifold with boundary space-time splitting
and tubular ends and, for j = 1,...,n, let g; be a metric on Y;. Then there
is a metric g on X, compatible with the boundary space-time splitting and the
tubular ends, such that (i) in Deﬁnition holds with the given metrics g;.

Moreover, the space of such metrics g is contractible if we restrict the con-
sideration to those metrics with €; > ¢ in (i) for any fized € > 0.

Proof. The construction of a metric with given ends works as in [36, Exam-
ple 1.4]. Denote by Met(X,7,¢) the set of metrics on X that satisfy (i) in
Defintion and 77g = ds? + gi,s for i = 1,...,m and some families of met-
rics (gis)ses; on X;. Then Met(X,7,¢) is convex and hence contractible. Fix
e > 0 and let Met.(X,7,0) C Met(X,7,.) denote the subset of all metrics
that are compatible with the boundary space-time splitting and the tubular
ends as in Definition with &; > ¢ in (ii). To prove that Met.(X,7,¢) is
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contractible it suffices to construct a continuous left inverse of the inclusion
Met. (X, 7,¢) <= Met(X, 7,¢).
Every metric g € Met(X, 7,¢) determines embeddings

Tgi 1 Si x[0,0) x 8; — X

defined by

77—9:1'(8’ t’ Z) = expri(s,z) (t Vi(s7 Z))v
where v; : §; X X; — 77 TX denotes the inward unit normal. The constant § > 0
for which the 7, ; are embeddings can be chosen uniform on a C*-neighbourhood
of the metric. Taking a locally finite refinement of the cover of Met(X, 7,¢) by
these neighbourhoods and using a partition of unity one can construct a function

5 Met(X,7,1) — (0,¢],

continuous with respect to the C>°-topology, such that the maps 7, ; are embed-
dings for 0 < § < 6(g).
For g € Met(X,7,t) and ¢ = 1,...,m define the metrics hy; on the strips
S; X [075(9)) X 2 by
hg,i = d52 + dtQ + Gi,s,ts

where the metric g; s on X; is the pullback of the metric on X under the
embedding z — 74(s,t,z). We fix a smooth cutoff function A : [0,1] — [0,1]
such that A(t) = 0 for ¢ near 0 and A(¢) = 1 for ¢t near 1. Then for § > 0 we
define A5 : S; x [0,0) x £; — [0,1] by

As(s,t,2) == A(t/0).
Now we can define the map Met(X,¢,7) — Met (X, ¢,7) : g — g by

9= (T9.)«(Ns(9) 769 + (1 = As(g) ) hg.i)

on the image of 7,; for ¢ = 1,...,m and by g := g on the complement. This
map is the identity on Met (X, 7,¢) since €; > &€ > §(g). So we have constructed
the required left inverse of the inclusion Met. (X, 7,¢) < Met(X, 7,¢). O

Definition 6.6. Let (X, 7,t) be a 4-manifold with boundary space-time splitting
and tubular ends. Instanton data on X are given by a triple (g, L, ) with the
following properties.

e g is a Riemannian metric on X compatible with the boundary space-time
splitting and the tubular ends.

o L = (Ly,...,L,) is an m-tuple of gauge invariant, monotone Lagrangian
submanifolds L; C A(X;), satisfying (L1-2) on page @

o X;: AX) = Q%*(X,g) is a holonomy perturbation as in the introduction
such that, on every tubular end and for every A € A(X), the 2-form
U X5(A) € Q3*((0,00) x Yj,9) is induced by the path s — Xy (A;(s)),
where 1A =: Aj(s) + ®;(s)ds. Here Xy, : A(Y;) — Q*(Yj, g) is as in @
The perturbation f involves a choice of thickened loops, i.e. embeddings
v+ St x Q — int(X), where  C R? is a contractible open set.
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The moduli space

Let (X, 7,¢) be a 4-manifold with boundary space-time splitting and tubular
ends and let (g, L, f) be instanton data on X. The perturbed anti-self-duality
equation with Lagrangian boundary conditions has the form

FA+Xf(A)+*(FA+Xf(A)) =0, Ti*,sAE,Ci Vs € S;. (60)

Here the embedding 7; s : ¥; — X is defined by 7; s(2) := 7;(s, 2). The energy
of a solution is 1
2
By(8)i= 5 [ Fat Xs(8)
X

By Theorem every finite energy solution of that is in temporal gauge on
the tubular ends converges to critical points A; of the perturbed Chern—Simons
functionals, i.e.

Jim {Je5A = A5l 1 o ayer) =0 (61)
for every j € {1,...,n} and every integer k > 0. This equation is understood as

follows. We denote by A(X, L) the set of smooth connections A € A(X) that
satisfy the Lagrangian boundary conditions 77 A € £L; for all i € {1,...,m}
and s € §;. On a tubular end, any such connection decomposes as

L;A = Bj + ‘I’de

with ®; : (0,00) = Q°(Yj,g) and B; : (0,00) — A(Y;,L). Here A(Y;, L)
denotes the set of smooth connections B € A(Yj) that satisfy the Lagrangian
boundary conditions Bly, € L; for all ¢ € I;. The temporal gauge condition
means that ®; = 0. For j = 1,...,n the connection 4; € A(Y;, L) in is a
critical point of the perturbed Chern—Simons functional for Y}, i.e.

FAj +ij(Aj) =0.

The space of solutions of and that are in temporal gauge on the tubular
ends will be denoted by

M(Ay,... An X;) C AX, L).

Let us denote by G4, C G(Yj) the isotropy subgroup of A;. Then the group
G(Ai1,...,A,) of all gauge transformations u € G(X) that satisfy uo¢; = u; €
Ga, for j =1,...,n, acts on the space Mv(Al, ..., Ap; Xy). The quotient will
be denoted by

M(Ay,. . A Xp) = M(Ay, . Ay Xp) /(A .., Ay). (62)

In the case of the tube X = R x Y, this moduli space can easily be identified
with the one that is mentioned in the introduction. Similarly, the moduli space
M(AL, ... AL X ) for gauge equivalent limits A € [A;] can be identified with
M(Ay, ... A Xy).

99



The linearized operator

Fix critical points A; € A(Y;, L), j =1,...,n, of the perturbed Chern-Simons
functionals and let A € A(X, L) be a connection satisfying . Denote by
Q1 (X, g) the space of smooth 1-forms that satisfy the boundary conditions

*alox =0, Tis € Tre aL; (63)
fori e {1,...,m} and s € S;. Then A determines a differential operator
DA : Q}&(ng) - QQ’+(X7 g) X QO(X79)7

Dpo:= ((dpa + dXp(A)a)t, —dja) , (64)
where wT := 1(w + *w) denotes the self-dual part of a 2-form w € Q*(X,g).

This is a generalization of the linearized operator on R x Y in . The formal
adjoint operator

Dj : 01 (X,9) x Q°(X,g) » Q'(X,9)

is given by
D} (w, ) = djw+ dX¢(A)'w — dap.

Here Qi&’*_(X ,8) denotes the space of self-dual 2-forms w on X that satisfy the
boundary condition

TFw=0, 1(0/0s) T Wls1xx € TT;SAQ (65)

]

forie{l,...,m} and s € S,.

To obtain a Fredholm operator we must impose decay conditions on « at the
tubular ends and extend the operator to suitable Sobolev completions. For any
integer k > 1 and any p > 1 denote by Wg’p(X, T*X ®g) the space of 1-forms on
X of class W"P with values in g that satisfy the boundary conditions and
by Wg’p(X, A%*T* X ®g) the space of self-dual 2-forms on X of class W*? with
values in g that satisfy the boundary conditions . The following theorem
summarizes the Fredholm properties of Dy and Dj. The regularity results (ii)
and (iii) are steps towards the proof of (i).

Theorem 6.7. Suppose the limit connections A; are nondegenerate and irre-
ducible, i.e. ng =0 and Hix,»,fj =0 forj=1,...,n. Then the following holds
for every connection A € A(X, L) that satisfies ,

(i) The operators
Dy WIP(X, T*X ® g) — WELP(X, A2FT*X @ g) x WELP(X, g),

D WIP(X,APTT*X @ g) x WFP(X, g) — WFIP(X, T*X ® g)

4 Note that the subscript A in Wi’p indicates boundary conditions for the 1-forms in this
space. This is not to be confused with the norms ||-||yyx,p 4 in Remark where the subscript
indicates that the covariant derivatives are twisted by A.
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are Fredholm for every integer k > 1 and every p > 1. Their Fredholm indices
d7(A) :=indexDp = —index D}

are independent of k and p and depend only on the homotopy class of A subject
to .

(ii) Ifa € IP(X, T*X ®g), w € WFLP(X A2TT*X ®g), p € WFLP(X g)
satisfy the equation

[P ey = [ (1) +(¢0)) (66)

or every compactly supported smooth (W', ') € o>t X,0) x Q°X,g), then
¥® A

a e WPP(X, T*X @ g) and Dy = (w, ¢).

(iii) Ifw € LP(X,A>TT*X ®9g), ¢ € LP(X,g), a € WEIP(X, T*X ®g) satisfy

the equation

J (o muaty = [ (o) (67)

for every compactly supported smooth 1-form o/ € Q}(X,g), then we have
we WIP(X,A>FTT*X @ g), p € WFP(X,g), and D} (w, ) = a.

Proof. Assertions (ii) and (iii) follow from Theorem and Remark [3.10] (To
obtain global W*P-regularity one sums up estimates on compact domains — with
and without boundary — exhausting X.) To prove (i) we combine Theorems|3.11]
and [3:I3] with a cutoff function argument to obtain the estimate

||0‘||ka()() < C(”DAO‘HWFLP(X) + ||0‘||ka111)(1<)) (68)

for a sufficiently large compact subset K C X. (See [9, p.50], or [26] for the
case X =R xY, k=0, and p = 2). This estimate shows that D4 has a finite
dimensional kernel and a closed image. (See for example [22] Lemma A.1.1].)
By (iii) the cokernel of Dy agrees with the kernel of Di. Since D} satisfies
a similar estimate as , it follows that the cokernel is finite dimensional as
well. Hence Dy and D} are Fredholm operators. By (ii) and (iii), their Fredholm
indices add up to zero and are independent of k and p. That they depend only
on the homotopy class of A follows from the stability properties of the Fredholm
index. O

In the case X = ) the space of connections satisfying is convex and so
the index of Dy depends only on the limit connections A;. The change of the
index under gauge transformations on Y; depends on the degrees of the gauge
transformations. By contrast, in the case X # () and J9Y; # 0 the space of
gauge transformations on Y; is connected, but the Lagrangian submanifolds £;
have nontrivial fundamental groups. So the index of D, also depends on the
homotopy classes of the paths in £; that are given by Algx.
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Weighted theory

In order to deal with reducible critical points we set up a refined Fredholm
theory on weighted Sobolev spaces. Fix small nonzero real numbers 4y, ..., d,
and choose a smooth function w : X — (0, 00) such that on all tubular ends

w(ij(s,y)) = €%° for s > 1,

w is independent of y € Y; for s € [0,1], and w = 1 on the complement. We
introduce the weighted spaces

WX, T"X®g):={a: X > T"X®g|wa € WX, T"X @)},

and similarly for WP(X,g) and WP (X, A>TT*X @ g). The function w does
not appear in the notation because the spaces only depend on the choice of
the &;. The weighted inner product on L3(X,T*X ® g) is

<aw%%:34w%awa

and similarly for Lg (X,g). The adjoint operator of dy with respect to these two
inner products is given by

Ay’ = w A djw? WP (X, T X @ g) — WP (X, g).

It has the form (o, ) — da — Vs — 2§ on the tubular ends. We will be
using the following generalized Hodge decomposition.

Lemma 6.8. Let k be a positive integer and p > 1 and suppose A € A(X, L)
satisfies . Then the operator

dpoda s WP (X, g) = WiHP(X, g)

with domain WgEl’p(X,g) = {5 € Wf“’p(X,g) | x dpélox = 0} is bijective
and there is a Hodge decomposition

WX, T*X ® g) = kerd}’ & da W, 5P (X, g),
Proof. This Hodge decomposition is standard (see e.g. [9, Section 4.3]) except
for the boundary conditions. The two subspaces do not intersect since

(drga)ss = (6diPay = [ wilena) = 0

for all o € Wif:g (X, T*X ®g). Assuming the operator d:;"sd& is bijective we ob-

tain the Hodge decomposition of 8 € Wg:g’(X, T*X ®g) by solving the Neumann
problem 5 5
dp°dag =dy°s, *dallox =0
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for ¢ € Wf“’p(X, g). Since da¢ satisfies the Lagrangian boundary condition
we have a := 8 —dp€ € Wg”g(X, T*X ®g).

To prove that the operator dz’édA is bijective we work with the weight func-
tion w = €" : X — (0,00) given by V(s) = ;s on the tubular ends. Since w
has normal derivative zero the function ¢ := w¢ € WFHLP(X g) satisfies the
boundary condition *da&'|ox = 0 whenever £ does. On the tubular ends we

have
wdp’dgw™ = dy da, — ViVi + 67,

This operator is bijective on Wgﬂ’p (R x Y}, g) since it is Fredholm, symmetric,
and positive definite. So, as in the proof of Theorem [6.7] one can use a cutoff
function argument to show that dZ"SdA is a Fredholm operator. Partial integra-
tion then shows that its kernel and cokernel are equal to the kernel of dy. To
prove that the kernel is zero let £ € V[/Iif;l’p(X7 g) with da§ = 0 and assume
w.l.o.g. that A is in temporal gauge on the tubular ends. Then on each tubular
end we have 0,¢; = 0, hence &; = 0 by the decay condition, and hence £ = 0.
This proves the lemma. O

Every connection A € A(X, L) that satisfies determines a differential
operator

Dps: Wel(X, T"X ® g) = Wy "P(X, AT T X @ g) x Wi HP(X, g)

given by
Dy o= ((dAa +dXs(A)a)T, —d:;’éa).

Different choices of w with the same §; give rise to compact perturbations
of 'DA,(;.

Theorem 6.9. Forj=1,...,nlet A; € A(Y;,L) and A € A(X, L) such that
Fp, + Xy,(Aj) =0 and A € A(X, L) satisfies . Then the following holds.
(i) The operator Dy s is Fredholm for every integer k > 1, every p > 1, and
every n-tuple of sufficiently small nonzero real numbers 61, ...,0,.

(ii) The Fredholm index of Dy s is independent of k and p; it depends only on
the signs of the 6; and on the homotopy class of A subject to .

(iii) If the limit connections A; are all nondegenerate and irreducible, then
index Dy s = index Dy.

(iv) If the limit connections A; are all nondegenerate and A satisfies (@) then
the cokernel of Dy s is independent of the weight function (up to natural iso-
morphisms) as long as the |§;| are sufficiently small.

Proof. The operator wD sw™! differs from Dy by a zeroth order perturbation
which makes the operators on the tubular ends invertible. Hence assertions (i-iii)
follow by adapting the proof of Theorem to the present case. To prove (iv)
we observe that the restriction of the second component dz’é of Dy s to the image
of d is surjective and, when A satisfies , the image of dj is contained in the
kernel of the first component (dy + dX¢(A))* of Dy 5. Hence every element in
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the cokernel of Dy 5 has the form (n,0). Moreover, (1, 0) belongs to the kernel
of the adjoint operator D ; (with respect to the L?-inner product determined

by w) if and only if n = w=2(, where
wlCe WX APTT* X @g),  (da+dX (A)C=0.  (69)

The subscript in Wif ~1? indicates the dual boundary condition. It follows from
linear exponential decay in Theorem that every solution ( of decays
exponentially. Hence the space of solutions of is independent of the choice
of the weight function w as long as the |d;| are sufficiently small. This proves
the theorem. O

Remark 6.10. (i) The linearized operator is gauge equivariant in the sense
that Dy-p s(u" au) = u~H(Dy sa)u for all @ € WP (X, T*X @ g) and all gauge
transfomations v € G(X) that satisfy uo¢; = u; € G(Y;).

(ii) In contrast to Theorem (iv), the kernel of Dy s is not independent of
the sign of the ¢; unless the A; are also irreducible.

(iii) On a tube X = R x Y we will use weight functions of the form

w(s,y) = exp(V(s)) (70)

with V' € C*°(R) such that V(s) = £ds for £s5 > 1 (i.e. 61 = d2 =: 6 > 0). Then
Dy,s can — as in Section f be identified with the operator

Das: WEPR x Y, TY @ g) x WyP(R x Y, g)
S WETPR XY, TY @ g) x WETP(R x Y, g) (71)

given by

0 O
Dy,s = VS+HA(S) + ( 0 2\ ), A= 0,V.

The formal L2-adjoint operator of Dy s has the form
* 202 0
DA,(S(OQSD) = =Vs+Hae) — ( 0 0 ) .
(iv) The operator is conjugate to the operator
WDy sw™t =V, +Has) — 1 n= (2" (72)
A,S s A(s) A(s)» A 0 —\ )
on the unweighted Sobolev spaces. By Theorem (iv) and its proof, this

operator is surjective if and only if the operator Vi + H 4(s) — I5 is surjective,

provided § € R\ {0} is sufficiently small and A € M(AﬂA*;Xf) is a Floer
connecting trajectory with nondegenerate ends.
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The nonlinear setup

In the remainder of this section we fix the constants 61 = --- = 4, = 6 > 0.
Then the operators Dy s have the following significance for the study of the
moduli space M(A1,...,An; Xy). Let A € M(Ah ..., Ap; Xy) and suppose
that Das is surjective. If the A; are all nondegenerate and irreducible and
0 = 0, then M(Ay,...,A,;X) is a smooth manifold near [A] whose tangent
space is the kernel of Dy = Dy 5. In general, the kernel of Dy 5 is the tangent
space of the quotient

Mo(Ar, .. Ap; Xp) o= M(Ax, ..., An; X)) /Go(X),

where Go(X) denotes the group of gauge transformations u € G(X) that satisfy
uot; =1 for every j. Hence the dimension of M(Ay,...,A,; X;) is equal to

§7(A) :=1indexDy 5 — »_dim HY . (73)

Jj=1

(This agrees with the notation in Theorem ) To prove these assertions one
can set up the nonlinear theory as follows. Fix an integer £ > 1 and a real
number p > 2. Associated to a tuple A; € A(Y}, L), j = 1,...,n, of critical
points of the perturbed Chern—Simons functionals is a Banach manifold

k.,p . = =
A5 (X,E,Al,..-,An) T {A_A0+a Ti’isAeﬂiVivsesi

o€ WHP(X,T*X ® g) } )

where Ag € A(X, L) is a reference connection satisfying tfAq = A; for all j.
The tangent space of A’g’p(X, L;A,...,A,) s

ToAS" (X L Ar, - Ay) = {0 € WP (X, T"X @) | 7,0 € Tr: uLi}.

Banach submanifold charts for AY?(X, £; Ay ... A,) C Ag + WP (X, T*X @ g)
can be constructed with the help of the Banach submanifold coordinates for
L; C A% (3;) in [35, Lemma 4.3] (see Appendix . The gauge group

GEHIP(X) = {u X -G ‘ utdu € WPP(X, g), i wety = ]1} (%)

acts freely on Alg’p(X,L;Al,...,An). Its Lie algebra is the Banach space
WithP(X, g) and the quotient AYP(X, L5 Ay, ..., A,)/GETHP(X) is a Banach
manifold. There is a gauge equivariant smooth map

AT (X, L3 Avy e An) = WP (XA TOX @ g) - A s (Fa+ Xp(A)F

and the moduli space My(A1,...,A,; Xs) can be identified with the quotient
of the zero set of this map by the action of gf;“”’(X). The operator Dy s arises

from linearizing this setup in a local slice of the gauge group action and hence,
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if this operator is surjective, it follows from the implicit function theorem that
Mqo(Aq, ..., Ay; X5) is a smooth manifold near A, whose tangent space can be
identified with the kernel of Dy 5. The isotropy group Ga, x --- x Gy, still
acts on Mo(A41,...,A,; Xy) and the quotient by this action is the moduli space
M(Aq, ..., Ap; Xy). If all limit connections A; are irreducible then the action
is free, so the moduli space is smooth.

The spectral flow

We now specialize to the case X := R x Y and establish index identities for
the linearized operator. The main results are Theorem and Corollary
below. They will be proven by identifying the index with a spectral flow.

We fix a gauge invariant, monontone Lagrangian submanifold £ C A(9Y)
satisfying (L1-2) on page[7|such that the zero connection is contained in £ and
is nondegenerate. Choose a perturbation iy : A(Y) — R as in the introduction
with a conjugation invariant function f : DxGY — R. Then the zero connection
is a (nondegenerate) critical point of the perturbed Chern—Simons functional.
For A € Crit(CSz + hy) and a path B : [0,1] — £ from B(0) = Als to
B(1) = 0 we define an integer u¢(A, B) as follows. Choose a smooth path
A:0,1] = A(Y, L) such that A(0) = A, A(1) =0, and A(s)|s = B(s). Define

0
/Lf(AvB) ‘= Mspec ({HA(S) + 15}86[0,1]> ’ IE = < 3 —& > ’

where figpec denotes the upward spectral flow (see e.g. [26] and Appendix
and € > 0 is sufficiently small. This integer is independent of the choice of
the path A and the constant € used to define it. (The space of paths A with
fixed endpoints and boundary values is in fact convex. Moreover, the kernel
ker Ha = H) ;x HY splits at the endpoints A = A(0), A(1) by Proposition)

The significance of the following theorem is that the index resp. local di-
mension of the moduli space M(A™, AT) is determined modulo 8 by the limit
connections A=, AT.

Theorem 6.11. (i) Let AT € A(Y,L) be critical points of CSc + hy and
A e AR XY) be the connection associated to a smooth path A : R — A(Y, L)
with limits
. + _
Sl}glm HA -4 Hcﬂ([sq,sﬂ]xy) =0. (76)

Choose paths B* : [0,1] — L from B*(0) = A%|s to B¥(1) = 0 such that B~
is homotopic to the catenation of the path R — L : s — A(s)|s with BT. Then

index DA,5 = Mspec ({HA(s) - I)\(s) }seR)
and

§¢(A) := index Dy 5 — dim HY_ — dim HY

7
= uf(A7,B7) — pus(A*, BY) —dim Hy —dim H}, . (77)
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(ii) If A € A(Y,L) is a critical point of CSz + hy and B : [0,1] — L is a
path from B(0) = A|x to B(1) = 0, then for every loop u : [0,1] — G(X) with
u(0) = u(l) =1

Proof. Multiplication by w defines an isomorphism Wf P WP so Day,s has
the same index as the operator wDy sw™! on Wg’p (RxY, T*(RxY)®g). Hence,
by and Theorem the index of the operator Dy s is given by

index(Da,5) = fispec ({ Ha(s) = Iaes) }ser)
= pispec ({Ha(s) + Is},op) — dim Hjyy ; + dim HY, .

Here X := 9,V : R — R satisfies A\(s) = —§ for s < —1 and A(s) = § for
s > 1. The second equation follows from a homotopy argument. Namely, the
path H 4(s) — In(s) is homotopic to the catenation of the path H 4.5 + Is with
Ha+ — In). Now the catenation of the path H 4(5) + [ with the path in the
definition of p (AT, BT) yields a path homotopic to the one in the definition of
pg(A=,B7). (By assumption the paths are homotopic over the boundary 0Y,
and this homotopy can be extended to the interior.) Hence

,Uf(A77 B7) = ,uspec({rHA(s) =+ IE}SGR) + Uf(AJr) B+)~
For ¢ > 0 sufficiently small we can choose € = § and obtain
(A7, B7) — pus(A*, BY) = index(Dy 5) — dim HY; +dim H}, 4.

This proves (i).

To prove (ii) choose a path A(s) : [0,1] — A(Y, £) with A(0) = A, A(1)
and B(s) = A(s)|s. By homotopy invariance we may assume that A(s) = 0
for s > 1/2. Now let u : [0,1] — G(X) be a loop with «(0) = u(1l) = 1
and choose a path A’ : [0,1] — A(Y, L) such that A’(0) = A4, A'(1) =0
and A'(s)|s = u(s)*B(s). Assume w.l.o.g. that u(s) = 1 and A'(s) = A(s)
for s < 1/2. Then the spectral flow of the path H 4/(s) + I on the interval
0 <s<1/2isequal to us(A4,B). On the other hand, by Theorem and a
homotopy from H 4/ + I to H 4/, the spectral flow on the interval 1/2 < s < 1is
equal to index(Dy 4) for a connection A = a~'da € A(S! x Y, L) on the bundle
Py in the notation of Section Here @ € G(S! x Y) is homotopic to u on
[1/2,1] X Y and identically 1 on the complement. Hence

/Lf(A’ B) — Hf(AvU*B) = *NspeC({rHA’(S) + 15}1/23531)
= —index(D1,a) = 8deg(l,A) = 8deg(u).

0,

Here the third identity follows from Theorem (ii) and the last from Re-
mark (iii). This proves the theorem. O

For every critical point A € A(Y, L) of the perturbed Chern—Simons func-
tional we define the real number 7y (A4) by

11(A) = 1y (A, B) — 25 (CS(A, B) + hy(4)),
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where B : [0,1] — £ is a path from B(0) = A|y to B(1) = 0, and CS(A4, B)
denotes the value of the Chern-Simons functional for the connection given by A
and B.

Corollary 6.12. (i) The spectral flow (A, B) — py¢(A, B) descends to a circle
valued function py : Ry — Z/8Z.

(ii) The function ns : Crit(CSz+hy) — R is well defined and descends to a real
valued function on Ry.

Proof. Lemma (iii), the homotopy invariance of the spectral flow, and The-
orem [6.11] (ii) imply that (A, B) € Z/8Z is independent of the choice of B.
Given a gauge transformation v € G(Y') we can connect it to the identity by
a smooth path @ : [0,1] — G(Y) from @(0) = u to (1) = 1. Let A :[0,1] —
A(Y, L) be the path in the definition of ps(A, B), then ps(u*A, (alay)*B) is
defined as the spectral flow along the path s — @(s)*A(s) and hence, by the
gauge equivariance of the Hessian,

ps(A, B) = py(u™ A, (algy)" B).

This proves (i). That 7y is well defined (i.e. independent of the choice of B)
follows from Lemmaand Theorem (ii). To see that 7, is gauge invariant
it remains to check that

CS(A, B) = CS(u* A, (iilpy)* B).

This follows from the same argument as Lemma (iv). Namely, CS(A, B) is
the Chern-Simons functional on ¥ = Y U ([0, 1] x ¥) of a connection A given by
A and B. The connection given by u*A and (u|gy )*B is @* A, where the gauge
transformation 4 € Q(f’) is given by u and u|gy. It satisfies i|lspy = 1 and
has degree zero since a homotopy to 1 is given by combining %(c) on Y with
s (s + (1 —s)o)|sy on [0,1] x X. Hence the equality of the Chern-Simons
functionals follows from the analogon of for manifolds with boundary and
gauge transformations that are trivial on the boundary. O

Remark 6.13. The function (f, A) — ns(A4) is continuous on the space of
nondegenerate pairs (f, 4). To see this note that the dimension of HY cannot
jump, by Remark and hence one can locally work with the same constant
e > 0 for the definition of py in a neighbourhood of a pair (f, A).

We can now state further index identities. The monotonicity formula in (i)
below — a linear relationship between index and energy — will be central for
excluding bubbling effects.

Corollary 6.14. (i) Let A € A(RXY) be the connection associated to a smooth
solution A: R — A(Y, L) of . Suppose that it satisfies (@ with the critical
points A* € A(Y,L) of CSz + hy. Then

2 _ . .
dr(A) = ﬁEf(A) +np(A7) = np(AT) —dim HY- — dim H}H,f-
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(i) If A, A" : R — A(Y, L) are paths connecting A~ to B, respectively B to AT,
then the index of their catenation is given by

Sp(A#A") = 67(A) + 67(A") + dim Hp + dim Hp ;.

(iii) If A : R — A(Y, L) is a self-connecting path with limits A~ = AT =: Ag
and s — A(s)|s is homotopic to s — u(s)*Apls for u : R — G(X) with
u(£o0) = 1, then

§7(A) = 8deg(u) — dim Hy, —dim H} .

Proof. Assertions (ii) and (iii) follow immediately from Theorem Assertion
(i) follows from the definition of 7y, Theorem and the following energy
identity. For a path A: R — A(Y, L) satisfying

0sA = — % (FA +Xf(A))
choose paths BT : [0,1] — £ from B*(0) = A¥|s to B¥(1) = 0 such that B~
is homotopic to the catenation of A(s)|s with BT. Then

—Ef(A):/R/Y<88A/\(FA+XJ«(A))>ds

=[5 [ ananr anianay)

1 0
+§/E<A/\85A> + aShf(A)> ds
=CS(AT,BT) + hy(AT) —CS(A~,B™) — hy(A7).
Here the second equation follows from @D and the fact that
0 1
2/<FA/\83A>:/ —((A/\dA)ij(A/\[A/\AD)qL/ (ANDA).
Y y Os 3 oy

The last identity follows from the C!-convergence of A for s — +o0o. Since B~
is homotopic (with fixed endpoints) to the catenation of Aly, with B*, we have

/R/Z:<A/\83A>ds—/01/E(B/\8$B>ds /()1/2<B+A383+>d5_

(See the proof of Lemma above for the invariance of this integral under
homotopy.) This proves the corollary. O

Remark 6.15. Our notation for the indices is motivated by the following finite
dimensional model. Let M be a Riemannian n-manifold, G be a compact Lie
group that acts on M by isometries, and f : M — R be a G-invariant Morse—
Bott function. Associated to every critical point x € M is a chain complex

V2 f(z)

0—g-LsT,M T,M L2 g — 0,
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where L, is the infinitesimal action of g and V2 f(z) is the Hessian of f (see )
We denote

ker V2 f(z)

vo(x) := dimker L, vi(x) := dim o~

, p(z) = inds(x),
that is p(z) is the number of negative eigenvalues of the Hessian and vy(z) is
the dimension of the isotropy subgroup. Now the kernel of the Hessian has
dimension vy (x) + dim G — vg(x), the unstable manifold W*(z) of the orbit Ga
has dimension p(z) + dim G — vp(z), the stable manifold W#(z) of Gz has di-
mension n — u(x) — v1(x), and, in the tranverse case, the moduli space

Mz, zt) = W@ )N W(at)/G
of connecting trajectories has dimension (compare with )

Sz, zt) i=dimM(z,2h) = p(z™) — plat) —vo(z™) — vi(z™).

7 Compactness

Let Y be a compact oriented Riemannian 3-manifold with boundary 9Y = ¥ and
L C A(Y) be a gauge invariant, monotone, irreducible Lagrangian submanifold
satisfying (L1-3) on pagem Fix a collection of embeddings ; : S* xD — int(Y),
i=1,...,m, as in Section 2] We use the notation

. OsA —da® + =(Fa + Xy (A4) =0,
MA AT X)) ={Ae AT (RXY)| A(s)|ls € L Vs€eR,
Et(A) < 0o, limsy100 A(s) = AT

for the space of Floer connecting trajectories associated to a perturbation f €
C>®(DxG™)% and two critical points A* € A(Y, L) of CSz+hy. Here A7(RxY)
denotes the space of connections Z = ®ds + A on R x Y that are in temporal
gauge outside of [-1,1] x Y, i.e. ®(s) = 0 for |s| > 1. The corresponding
gauge group G(A~, AT) consists of all gauge transformations v : R — G(Y)
that satisfy u(s) = u* € G4+ for £5 > 1 and the quotient space will be denoted
by .
M(AT, AT Xp) = M(A™, AT X)) /G(A, AT)

The goal of this section is to establish compactness theorems for these moduli
spaces. The proofs will be heavily based on the basic compactness results in
[36, B7]. We start with a summary of the compactness for uniformly bounded
curvature.

Proposition 7.1. Let f¥ € C®(D x G™)% be a sequence that converges to
f € C®(D x G™)S in the C*T'-topology for some k > 1. Let I C R be a
sequence of open intervals such that IY C I'™1 for all v and denote I := U, Iv.
Let B = ®¥ds+ A € A(IY XY') be a sequence of solutions of the Floer equation

DAY — dav®” + x(Fav + Xy (AY)) =0, A”(s)|s € L, (78)
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such that the curvature |Fgv| is locally uniformly bounded. Then the following
holds.

(1) There exists a subsequence, still denoted by Z¥, and a sequence of gauge
transformations u¥ € G(I* x Y') such that (u’)*Z converges in the C* topology
on every compact subset of I XY .

v

(ii) There exists a subsequence, still denoted by Z¥, and a sequence of gauge
transformations u¥ € G(IY x Y') such that (u”)*E" is in temporal gauge and
converges in the C*~1 topology on every compact subset of I x Y.

(iii) In both cases, the limit Z° € A(I X Y') of the subsequence can be chosen
smooth and it satisfies (@ with f¥ replaced by f°.

Proof. In a neighbourhood of the boundary I x dY, where the perturbations
vanish, compactness for anti-self-dual connections with Lagrangian boundary
conditions was established in [36, Theorem B]. The interior compactness fol-
lows from standard techniques (e.g. [10], [34]) and Remark The crucial
point in the bootstrapping argument is that a W"P-bound on (u")*=¥
plies a W*P-bound on X v ((u”)*E") and hence on F(ZV)*E,,. (The constant in
the W¥P-estimate of Proposition (iii) depends continuously on f € C*F*1))
Combining these two compactness results via a general patching procedure as
in [I0, Lemma 4.4.5] or [34, Proposition 7.6] we deduce that, for a suitable
subsequence and choice of u”, the sequence (u*)*Z" is bounded in W*+1P(K)
for every compact subset K C I x Y and a fixed p > 4, and hence has a C*
convergent subsequence. A diagonal argument then proves (i).

To prove (ii) we write 2% := (u”)*E” =: ®”ds + A” where u” is as in (i).
Then E is bounded in W**+L? on every compact subset of I x Y. Define
v : IV XY — G as the unique solution of the differential equation

im-

dsv” 4+ ®Vv” = 0, v”(0) = 1.

Then v¥ is bounded in W**1P on every compact subset of I x Y. (To check
this use the identity d,(v—'dv) = —v~'®v.) Hence (v")*E” = (u”v”)*EY is in
temporal gauge and is bounded in W*? on every compact subset of I x Y. The
compact embeddings W*?(K) — C*~1(K) together with a diagonal argument
then prove (ii).

The regularity of the limit =°° can be achieved by a further gauge trans-
formation. That =°° solves follows from the fact that these equations are
gauge invariant and preserved under weak W*? convergence. O

o0

The following is the most general compactness result for bounded energy.

Theorem 7.2. Let f € C°(D x G™)S be a perturbation such that every critical
point of CS; + hy is nondegenerate. Let f* € C°(D x G™)€ be a sequence that

converges to f in the C*T1-topology and let Z¥ = ®¥ds+ A € M(A’j, A X )
be a sequence of Floer connecting trajectories with bounded energy

sup Epv (EY) = sup/ 18,A" — d 4 ®”]? < .
v RxY

v
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Fiz p > 1 and suppose that A4 converges to A* € Crit(CSz + hy) in the
C* topology. Then there is a subsequence, still denoted by =V, critical points
By,...,B; € Crit(CSz + hy) with By = A=, By = AT, and Floer connecting
trajectories =; € /f\/lv(Bi_l,Bi;Xf) forv =1,...,¢, such that =¥ converges to
the broken trajectory (Z1,...,Z¢) in the following sense.

For every i € {1,...,¢} there is a sequence s € R and a sequence of gauge
transformations u? € G(R x Y') such that the sequence s — ((uf)*E")(s + sY¥)
converges to Z; in the WYP-norm on every compact subset of R x Y\ Z;. Here
Z; CR XY is the bubbling locus consisting of finitely many interior points and
finitely many boundary slices; it is nonempty whenever =; has zero energy.

The broken trajectory (Z1,...,Z¢) has energy and index

0
D Ep(Z) < lim Ep(2),

— v—00
‘ -1 (79)
> 6p(Ei) + > dimHY < lim 650 (2Y).
V—00
i=1 i=1

If sup,, ||F=v||L~ < oo then there is no bubbling (i.e. Z; = for all i), equality
holds in (@, and (u”)*Z¥ converges in the C* topology on every compact set.
If sup,, ||Fev||L = oo then there is bubbling (i.e. Z; # O for some i) and

L
E) < i v(EY) — 4n?
> Ef(Ei) < lim Ep(27) - dn®,

i=1

‘ -1 (80)
Z;af(zi) + Zldim Hp, < lim §7.(27) - 8.
1= 1=

Remark 7.3. The assumption that A% converges in the C* topology always
holds for a subsequence in a suitable gauge, by Proposition [3.7}

Proof of Theorem[7.4 Replacing the uniform bound on the curvature in Propo-
sition by an energy bound on E¥ allows for bubbling. For the (unperturbed)
anti-self-duality equation with Lagrangian boundary conditions this was dealt
with in [37] Theorems 1.2,1.5], [24], and [38], Section 3]; for the perturbed equa-
tion in the interior the (well known) result is Theorem Combining these
one essentially obtains the same basic compactness theorem as for anti-self-
dual connections (see [9, Proposition 2.1]). A minor difference is that — due
to the holonomy perturbations — we obtain convergence in the W' P-norm for
any p > 1 rather than in the C*-topology; so [9, Proposition 2.1 (1)] is re-
placed by WP-convergence. The crucial difference is in the knowledge about
the bubbling phenomenon. First, the finite set {z1,...,2¢} C R x Y of bub-
bling points is replaced by a more general bubbling locus Z C R X Y consisting
of finitely many interior points and finitely many boundary slices {s} x 9Y.
On the complement of Z, one has local LP-bounds on the curvature. Second,
we do not have a geometric description of the bubbles (after rescaling) or the
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precise quantum 472 for the energy concentration. There is however a univer-
sal constant & > 0 that is a lower bound for the energy concentration at each
component of the bubbling locus Z; so [9, Proposition 2.1 (2)] is replaced by
Jo |Fa + X5(A)? < limsup, o [ |[Fa,, + Xy, (Aar)|? — Ch, where £ is the
number of points and boundary slices in Z.

The second source of noncompactness, the splitting of trajectories, is the
same as for the usual Floer theories. With the exponential decay results of Sec-
tion [b| and the modified basic compactness above, one can adapt the discussion
in [9, Chapter 5.1] to prove the convergence to a broken trajectory. In particu-
lar, exponential decay holds for sufficiently C2-close perturbations with uniform
constants (see Theorem for the nondegeneracy and Proposition (v) for
the constants). More precisely we argue as follows.

Throughout we denote the perturbed Yang-Mills energy of Z¥ on I x Y by

Ep (2¥;1) ;:// |9, A” — d v @]
1JY

Passing to a subsequence we may assume that bubbling occurs only for finitely
many sequences t7, j =1,...,m, with
=1 i L (EY: [t — v > h.

hj }%VIEEOEf (EY[t; —o,t7 +0]) > h
In particular, the limits exist. The sequences are chosen such that ¢7,, —t7 >0
and that these differences converge either to a positive number or to infinity.
We may also assume that the curvature of 2 is uniformly bounded on the
complement of the sets [t;’ — 0,8 + 8] x Y for every 6 > 0 and that the following
limits exist:

g0 := lim lim Ev (EY; (—oo,t] —d]),

§—0v—o00

€j = lim lim Efu(Ey; [t]V +(5,t;+1 —(5})7 j=1....m—1,

§—0v—o0
1 ; =7
em = lim lim By (23 [f, +8,00)).
Then
lim Efu(EV) =co+hi+e1+- -+ hp+em.

vV— 00

Next we choose a constant € > 0 smaller than the constant in Theorem [5.3] and
smaller than /. Following [9, 5.1] we choose the s/ € R inductively such that

— v 13 —_p v v =
Efu(: ;(—o0,87]) = bR Ef"(: ;[siaSH—lD = Ef(:i) + Z hj,
JjeJ;

where E; is the limit of the sequence Z¥(s¥ 4 -) modulo gauge and bubbling
and J; C {1,...,m} denotes the set of all j such that the sequence 7 — s is
bounded. This choice guarantees that s}, — sy — oo for all 4, that {1,...,m}
is the disjoint union of the J;, and that J; # ) whenever Z; has zero energy. By
Theorem (applied to a temporal gauge of the Z” on intervals [s} + T, s}, ;]
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with energy less than ) the positive end of Z; is gauge equivalent (and hence
w.l.o.g. equal to) the negative end of Z;;1, the negative end of Z; is A~, and
the positive end of = is A*. The total energy of the broken trajectory is

4 m m

Y Ef(E) =) e = lim Ep(E) =Y by (81)
i=1 j=0 j=1

If the curvature is bounded then m = 0 and all bubbling loci Z; are empty.
In this case the energy identity is (81) and the index identity follows from the
monotonicity formula in Corollary (i). If the curvature blows up then
m > 1, hence Z; # () for some 7, and we obtain the strict inequality

4 4 4

= : 2 -
S br(E) + dim i, = 35 EE) + 1y (Bioa) — s (50
=1 =1 =1

. 2 v v v

V—r00

= lim §pv(2") + dim HY- .
V— 00

Here the first step follows from Corollary (i), the second step uses and
the continuity of the function (f, A) — ns(A) (see Remark , and the last
step uses Corollary (ii) and dim HY}, = dim HY_ for v sufficiently large

(see Remark . Each side of our inequality has the form §;(Z) + dim HY_
for a suitable path Z running from A~ to AT. For the left hand side, by
Corollary [6.14] (ii), = can be chosen as the catenation of the Z; and for the
right hand side as a small deformation of Z¥ for v sufficiently large. Since the
inequality is strict it follows from Theorem (i) and Corollary that the
defect is at least 8. Using monotonicity again we obtain an energy gap of at
least 472. This proves the theorem. O

A first consequence of the compactness and index identities is that we can
exclude bubbling in certain moduli spaces by transversality.

Corollary 7.4. Suppose that the sequence of solutions in Theorem[7.4 has index
dp(BY) ST,

Suppose that either bubbling occurs or one of the limit trajectories Z; is a self-
connecting trajectory of [B;_1] = [B;] = [0]. Then one of the limit trajectories
=; must have negative index §¢(Z;) < 0 and at least one of its endpoints Bj_1
or Bj is not gauge equivalent to the trivial connection.

Proof. Every nontrivial self-connecting trajectory Z; of [0] has index 07(=;) > 5
by Corollary with E(Z;) = 4n® deg(u) > 0. It also adds dim Hyy = 3 to
the sum of indices. So to achieve a sum < 7, one of the other indices must be
negative. A trivial self-connecting trajectory of [0] has index —3 but also adds

another dim H [% = 3 to the sum of indices. Hence there must be a trajectory
with negative index and at least one nontrivial end. The same holds in the
bubbling case by (80). O
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We will refine the compactness theorem in two special cases. First we con-
sider the case of no breaking and no bubbling in which we obtain actual com-
pactness of moduli spaces.

Theorem 7.5. Fiz a constant p > 1. Let f, " be as in Theorem [7.3 and
A* € A(Y, L) such that Fy« + Xy (A%) =0 for all v. Then there is a § > 0

such that the following holds. If Z € /K/lv(A_7 AT Xy) and, for each v, Z is a

solution of (@ that is gauge equivalent to an element of MV(A_, AT X4v) such
that 2 converges to E in the C* topology on compact sets and

Ef(E) = lim Efu(EV),

| Zde el

then there exists a sequence of gauge transformations u” € G(R x Y') such that
(u”)*Z¥ converges to E in W;”p(R xY).

Proof. Note that, by contradiction, it suffices to prove the convergence state-
ment for a subsequence. For that purpose we choose v¥ € G(R x Y') such that

2V = (0V)*'EY € M(A™, AT Xp).

In particular, Z¥ =: ®”ds 4+ A is in temporal gauge outside of [-1,1] x Y. Fix
a constant € > 0 smaller than the constant in Corollary and note that the
exponential C* estimate in Corollary holds with uniform constants &g :=
§ > 0 and Cy := C} in a sufficiently small C**! neighborhood of f. We write
= = ®ds + A and choose Ty > 0 such that

To
/ / 10,4 — da®)® > Ef(Z) —e.
—To JY

Since Z¥ = ®¥ds + A¥ converges in the C* norm on compact sets we have

To - - 9 To
/ /lasA”—dAucb”! :/ /|aSAV—dAVq>V|2>Efy(E”)—e
—To JY —To JY

and thus E(E”;(—o00,Ty]) + E(E"; [To,0)) < € for sufficiently large v > wvy.
Hence it follows from Corollary [5.4] that

HAU _A+Hck([
147

< Coe= =T B(2Y: [Ty, o0)),
CQ€760(S*TO)E(EV§ (700, 7T0])

$,00)XY)
- A7 HC’“((—OO,—S]XY) s

for s > To + 1 and v > 1. The same estimate holds with A” replaced by A.
Now fix a constant 0 < § < dgp. Then there exists a constant C' (depending on
Co, 0, 0o, k, and p) such that

="~ EHvaP((R\[—T,T])xy) < Qe Qom0

for T >Ty+ 1 and v > vy.
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Next, fix a sequence p,, — 0 and choose T,, — oo so that T,, > Ty + 1 and

Cle—(G0=0)(Tn=To) _ Pr
2
For fixed n € N note that both Z¥ and Z¥ = (v”)*Z" converge to = in the C*
norm on [T,,,T,, + 1] x Y and on [-T,, — 1, -T,] x Y. Using the identity

(v)rde” = ¥ — (v¥) 1BV (82)
we thus inductively obtain bounds on v” in C*+1((%[T},, T,, +1]) x Y). Then, by
a compact Sobolev embedding, we find a subsequence lim;_, o, v, (¢) = 0o such
that U”"“)|(i[Tan+1DXy — v converges in the C* norm. Again using
we see that this convergence is in fact in the C**! norm. On these domains we
moreover have

|5 E—Z| . = V:mlLi(Ig)l_)OOH(UV)*E =

< Jim (0" = =g + 01 E =D e) = .
First, this implies that v¥ € G(Y) is independent of s € &[T},, T}, +1]. Secondly,
by unique continuation (Proposition , it implies (vF)*Z = = and hence the
limits vf € G4+ must lie in the stabilizer of the limit connections. Now we
can define the gauge transformations u’, € G(R x Y) by uf, = v*»)(vF)~!
for £5 > T, + 1, by uf, = 1 for |s| < T,,, and, for s € +[T},, T}, + 1], by an
interpolation which satisfies d(uf,, 1)cr+1 (47, T +1])xy) — 0 as £ — co. With
this choice we have

= - <

EHW{;“’P((R\[anfLTnJrl])><Y)
from the exponential decay, as before for (v¥)*E", and

Pn

H(Ufz)*ay"(é) - EHW;C’F([—Tn—LTn-‘rl])XY) =2

for all sufficiently large ¢ > L,,, from the convergence of =¥ and ufl on compact

subsets. Now we can pick ¢, > L, so large that v, = v,(f,) — oo and

[|(un)*EVn — E”Wk,p(]ny) < pp, — 0. This proves the theorem. O
5

Corollary 7.6. Let hy be a regular perturbation in the sense of Deﬁm’tion
and let AT, A~ € A(Y,L) be nondegenerate and irreducible critical points of
CSc+ hy. Then MY (A=, AT; X;)/R is compact and hence is a finite set.

Proof. Assume by contradiction that there is a sequence of distinct points
[E¥] € MY(A~, AT; X;)/R. These solutions have index 1 and hence fixed energy
by Corollary (i). By Theorem we can pick a subsequence and represen-
tatives 2% that converge to a broken trajectory (Zi,...,Z¢) modulo bubbling.
By transversality we do not have solutions of negative index, so Corollary
implies that there is no bubbling, and the index identity in Theorem implies
that £ = 1. Now Theorem implies that ="* converges to Z; in the W(;1 P
norm. Since M!(A~, AT; X¢)/R is a O-manifold this implies that ="+ is gauge
equivalent to a time-shift of Z; in contradiction to the assumption. O
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Finally we refine the compactness theorem in the case when bubbling is
excluded but breaking can take place. The precise convergence statement here
will be important for the gluing theory.

Theorem 7.7. Fiz a constant p > 1. Let f, f¥, EY, s/, u?, and Z; be as

in the conclusion of Theorem[7.4 and suppose that no bubbling occurs, i.e. the
*=U

curvature of Z¥ is uniformly bounded, ((uf)*E")(s¥ 4 -) converges to =; in the
C* topology on compact sets, and

0
> Ep(Z) = lim Ep(2). (83)

; v—00
i=1

Then the following holds.
(i) If Dz, s is surjective for i =1,...,¢ then so is D=v 5 for v sufficiently large.

(ii) If the set of critical points of CSg + hyv is independent of v then, after
replacing the broken trajectory (Z1,...,5¢) by a gauge equivalent one, and for
a subsequence, there exists a sequence of gauge transformations u¥ € G(R x Y)
such that

0, for i=1,...,¢,

lim ||(u”)*E” - Ei(-— Sy)le-,p(I; xY)

V—00
3 1 S
(;OO, ngl+ Z‘;lll]a 1 =1,
vo._ v v v v 5 —
I’i = [§$i71+*$i,18i+1+15i], 2—2,...7671,
v v S
[157_1 + 357, 00), 1=4.

Proof. Fix a constant € > 0 smaller than the constant of Theorem [5.3]and recall
that the sequences s in Theorem are chosen such that

Ep (2% (zo0,st]) = /2, Ep(E%[s7,574]) = Ef(Si) (84)

for v sufficiently large and ¢ = 1,...,£ — 1. Since s}, ; — s; — oo we have for
any 7' >0
By (B (87,87 +T1) + Ep(E% [s701 = T, sial) < By (2% [s7 5744])

PR

for large v. With v — oo this gives E¢(Z;;[0,T)) + Ef(Zi41; [—T1,0]) < Ef(E)
and, by taking the limit 7' — oo, E¢(Z;41;(—00,0]) < Ef(E;; (—00,0]). Hence
E¢(Z;; (—00,0]) < e/2 for all i. Choose 71,..., 7 such that

Ef(Bis [=7i,7]) = Ef () — /4.
Then E¢(Z;; [0, 73]) > E¢(2;)—3¢/4 and hence Efv (2Y; [sY, sV +73]) > E¢(5;)—¢

for v sufficiently large. Moreover, Ev (E¥;[s},00)) converges to E¢(Z¢) — /2,
by and . In summary we have for ¢ = 0,...,¢ and v sufficiently large

(—o0, s¥], 1=0,
Ew(E"J7) <e, J{ = Y 4T si], i=1,..,0—1, (85)
(s} +1p,00), i=14.
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*oV

Now choose gauge transformations v} on J xY such that (v})*E" is in temporal
gauge on J! X Y. Thus each connection (v} )*Z" is represented by a smooth path
AY : J; — A(Y,L). Then it follows from Theorem that there are critical
points BY € Crit(CS.z + hyv) and positive constants Cy and dy such that, for

i=0,...,0, 7 >1; 4+ 1, and v sufficiently large, we have
147 - B;HCU(J;’(T)XY) + 147 - B;HWLP(J;’(T)XY),B;’ < Coe™ ™™™ V. (86)

Here we abbreviate 79 := 0 and

(—o0,8¥ — 7], 1=0,
JY(T) = [sf +7,s—7], i=1,...,0—1,
[s} + T,00), 1 =4

Moreover we use the fact that the constants in Theorem 5.3 can be chosen uni-
form for all f”. Since the estimate is gauge invariant we may modify the gauge
transformations v so that the sequence BY converges in the C¥-norm to the crit-
ical point B; in the assertion of Theorem for every i (see Proposition .
Then continues to hold if we drop the subscript BY in the W!P-norm and
replace Cy with a possibly larger constant, still denoted by Cj.

Under the assumption of (ii) we may choose v} so that BY = B; is indepen-
dent of v. Now we can argue as in the proof of Theorem Combining
with BY = B; and the exponential decay of Z; and =Z;1; we obtain the estimates

= = )
1(v6)"E” = E1(: = sl ((—oo s —rxyy < Cre” ™7,

— —_ .y —7;
107)*Z = Zil = )l wrn(psyrr 2o, +3sr]xyy < Cre” 2077,

87)
— = ot (
@)= = ZiraC = st lwaoqar s oty ot~y S Cre” 00T,
— = s
(7)) B — Ee(- — SZ)HWLP([SZ-&-T,OO)XY) < Cre%o(r=T)
for v sufficiently large, some constant C7, and i = 1,...,¢ — 1. Fix a constant

p > 0 and choose 7 so large that

Credo(r=T) <p/d for i=1,... ¢

Then, on the interval [s¥ — 7 —1,s¥ — 7] C JZ_,(7) the connections (vy_;)*E”
and (u?)*Z” are both WP close to Z;(- — s¥) Thus ((v¥ ;) 'u?)(- + s¥) is
bounded in W2P?([—1 —1,—7] x Y) and thus, for a subsequence, converges to
a gauge transformation g; € G#P([—7 — 1,—7] x Y)). For the limit we obtain
(9; )*E; = E; on (—o0,—1] as in Theorem and we deduce that g; € Gp,.
Similarly, we can pick the subsequence such that ((v?)~'u?)(- + s¥) — g;" €
Gp,,, in W2P([r,7 + 1] x Y) with (¢;")*Z; = Z; on [1,00). With this we can
now construct a sequence u” € G(R x Y) that satisfies

v

e u’(s) =vf(s)g; for s € (—o0,sy —7—1],

u
o u’(s) =uY(s) for s € [s¥ — T,8¥ + 7],
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u( (s)g; for s e [sf +7+1,s5 —7—1],
o u’(s) =uf(s)(g; )", (9,20) 7" - (92)tgy for s € [sY — 7,57 + 7] and
1

) =vY(s)g; (g7 ) Lo ... (95) tg for s € [s¥ +74+ 1,87, —7—1]
andi=2,...,/0.
)

o () Mur)(-+sY) = (97) gii(gi) ™t (92)tg as v — oo in
W2P([—1 = 1,7+ 1] x Y,G) fori =1,...,¢,

i diSth'P([S$+T,S§‘+1—T])((v;‘j)iluuvg;_(gi_)ilgj—l(gi_—l)il' .. (92_)71910—) —0

asv —oofori=0,... ¢
At the same time we replace the broken trajectory (Z1,...,Zy) with Z] := 2
—_ —_\ — _ N\ K — . .
and 2} = ((g; ) 'gt1(921) ... (95)gi) Eifori =2,..., ¢ Note that this
again defines a broken trajectory (Zf,...,Z)) between the critical points
C= —\—1 —\—1, +)*
Slglolo Ei= ((gz ) 9;1 - (92) gii_) Bit1

= (o) iy (92) 1) ((9i) 7 197) Biga = lim =i,

Here we used the fact that g; ,, g € Gp,,,. The convergence of (u})*E” then
implies
k= =/
H(ul/) 2 — Hi<' - 571;/)HWl*p([S;-jfT,S;Iﬁ*T]XY) < p/3
for large v and i = 1,...,¢, and from the exponential decay we obtain

[(u”) 2" — Zi(- - Siy)|’W17P([S$+T,%s’i’+l+is;ﬁ]><Y) < p/3,

sY S,’;—T]XY) § ’0/3’

i

=Dl 4

1
1

for large v, large 7, and 7 = 1,...,£. Here we denote sg := —oo and sy, := 00,
and we use the fact that (¢;")*Z; = Z; on [1,00) and (g; )*=; = Z; on (—o0, —1].
Thus, for every p > 0, we have a subsequence (v, )nen and a sequence of gauge
transformations " such that H(uZ”)*E”” -2 - Szl‘jn)le,p(];n vy SP holds
for all sufficiently large n > N,,. Assertion (ii) then follows by taking a diagonal
subsequence.

To prove (i) we can assume by contradiction that, after passing to a subse-
quence, none of the D=zv s is surjective. Then we use the C%-estimate of (86) and
the same patching construction as for (ii) to find a further subsequence and a
sequence of gauge transformations u” € G(R x Y) such that

Tim [|(a)°E” — Zi — ) oo eyy =0 (88)
for i = 1,...,£. (The C%estimate holds on increasingly large domains because

BY — B, converges in C’(RxY) - but not in W*?(RxY).) By Theorem (iv)
the surjectivity of the linearized operators Dzv 5 is independent of a timeshift
in the weight function, or equivalently in the connection. Hence, applying an
overall timeshift to each element of the sequence =¥, we may assume w.l.o.g. that
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s{ = 0 and for each i > 2 we have s¥ — oo. By assumption, the linearized
operator wDEN;w_l = V; + Ha, — I, is surjective on the unweighted Sobolev
spaces, see Remark (iv), and so are the operators Vs+H 4, —Is. (Recall that
A = 0,V = wt0,w denotes the derivative of the weight function.) Equivalently,
the adjoint operators —V,; +Ha, — I resp. —V; +Ha, — I5 are injective. Hence
there is a constant ¢ such that

€l e < el =Veb +Ha & = Il s IEllLs < | =Vl +Ha & — Isg]|

for every € € WHP(R x Y, T*Y ® g @ g). This estimate is stable under C°-small
perturbations of Z; and under the action of the gauge group. Hence, enlarging
the constant c if necessary, we obtain

suppE C IV XY = €l < |-V + Havf — L€,

for all £ and 7 and for v sufficiently large. For ¢ > 1 this follows directly from
with s = 0. For i > 2 we use the fact that A\(s) = § for all s € IV, so
we can estimate ||7VS§ + Hav€ — IASHU” by ||7VS§ +Ha (€ — I5§HLF —
|(w)rE” — 2i(- - sy)|]cowxy)\|§|\m and identify the first term of this with
(=¥ +Ha, = I)EC+ 7)o = €N Lo

Now for each v we can choose a partition of unity hY : R — [0,1] with
supp hy C I¥ and ), ||0sh?| - — 0. Then we obtain

4 £
el < ST URYElL, < ¢ SO |RY(=Vt + Hav€ — 1nE) — (,h2)E]

i=1 i=1

14
< le||—ViE + Har& — Il + D N0 | o 1€ Lo -

=1

This shows that the operator —V; + H 4» — I is injective on the unweighted
Sobolev spaces for v sufficiently large, and hence its adjoint V; + H v — I is
surjective. Since the latter operator is conjugate to Dzv 5 this is a contradiction
to the assumption, and the theorem is proved. O

8 Transversality

Let (Y,g) be a compact oriented Riemannian 3-manifold with metric g and
boundary Y =X, and let £ C A(X) be a gauge invariant, monotone, ir-
reducible Lagrangian submanifold satisfying (L1-3) on page Then R x Y
naturally is a Riemannian 4-manifold with boundary space—time splitting and
tubular ends in the sense of definition In order to complete the instanton
data we must also choose a perturbation. A detailed construction of holon-
omy perturbations is given in Appendix In this section we concentrate on
achieving transversality by the choice of perturbation.
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Fix an embedding 8 : [-1,1] X D — int(Y) and denote by T, the set of
finite sequences ¥ = (71, . - . , Ym) of embeddings 7; : ST x D — int(Y') that agree
with § in a neighbourhood of {0} x D. Every 7 € T';,, gives rise to a map

p:(plaapm)DxA(Y)%Gm

where p;(z, A) is the holonomy of the connection A around the loop ~;(, 2).
Let Fop :=C°(D x G™)S denote the space of conjugation invariant real valued
compactly supported smooth functions on D x G™. Each pair (v, f) € '), X Fin
determines a smooth function iy : A(Y) — R via

()= [ Feuplen ) i

The differential dhy(A) : T4 A(Y) = R has the form

dhy(A)o = /Y<Xf(A)/\oz>.

Here X; : A(Y) — Q%*(Y, g) is a smooth function satisfying . We emphasize
that the tuple (1, ..., 1) is a critical point of every conjugation invariant function
G™ — R and hence the trivial connection A = 0 is always a critical point
of the perturbed Chern-Simons functional CS; + hy; it is nondegenerate by
assumption (L3).

Definition 8.1. Fiz a perturbation (v, f) € T'yy X Fo and two nondegenerate
critical points A* € Crit(CSz + hy). A finite energy solution A : R — A(Y, L)
of the boundary value problem with limits lim,_,10 A(s) = AT is called
regular if the operator Dy s defined in is surjective for every sufficiently
small constant 6 > 0. (This condition is independent of k and p.)

Definition 8.2. A pair (v, f) € I'y, X Fu, is called regular (for (Y,g) and L)
if it satisfies the following.

(i) Every montrivial critical point of the perturbed Chern—Simons functional
CSc + hy is irreducible and nondegenerate, i.e. if A € A(Y,L) is not gauge
equivalent to the trivial connection and satisfies Fa + X (A) =0 then H} =0
and H;Lf =0.

(i) Let A : R — A(Y,L) be a finite energy solution of the boundary value
problem with §;(A) < 7 and suppose that at most one of the limits A*
is gauge equivalent to the trivial connection. Then the operator Dy s defined
m is surjective for every integer k > 1, every p > 1, and every sufficiently
small constant § > 0.

For every v € Ty, the set of regqular elements f € F,, will be denoted by Freg(7)-

If f € Freg(y) and ([A7],[AT]) # (0,0) then it follows from the discussion
in Section@that the moduli space M(A™, AT; X ), introduced in and the
beginning of Section [7} is a smooth manifold of local dimension

dim[A] M(A™, A+;Xf) = 5f(A).
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For every integer k > 1 we introduce the following seminorm on the space of
perturbations

1 X5 (Allen [dX (A)all -
I1X sl :=  sup +  sup = |-
T gearvey \ T+ AT ) " aeraame Tl (T+ Al grr)

We will apply this notation to the difference Xy — X/ associated to two pairs
(v, f) € Ty X Frp and (', f') € Ty X Fppr. This difference can be written
as Xy_ associated to the union v U~ = (Y1, -, Yms Vi - - s Ym’) € D
where f and f’ are extended to elements of F,,4., in the obvious way. Then
Proposition implies that || Xy, — Xy, — 0 for |[f, — follck+r — 0.

Theorem 8.3. (i) For every v € 'y, the set of all f € F,,, that satisfy condi-
tion (i) in Deﬁnition is open in F,, with respect to the C*-topology.

(i) Let (Y0, fo) € Ting X Fmy be such that every nontrivial critical point of
CS. + hy, is irreducible. Then, for every e > 0 and every k € N, there exists an
n € N and a pair (v, f) € 'y, X F,, that satisfies condition (1) in Deﬁm’tion
and | X5 = X, |l <&

The zero perturbation satisfies the assumptions of Theorem [8.3] (ii) by (L3).
Transversality for the critical points near the unperturbed equation was estab-
lished by Taubes [3I]. The extension to large perturbations requires another
proof, similar to that of the following transversality result for trajectories.

Theorem 8.4. (i) The set Freg(7) is open in F,,, with respect to the C*-topology
for every m € N and every v € T',,.

(ii) Assume that (o, fo) € Timy X Fim, satisfies condition (i) in Definition[8.3
Then, for every ¢ > 0 and k € N, there exists an n € N and another pair
(7, f) € Ty, x Fy, that is regular, i.e. f € Freg(7y), and satisfies

Crit(CSgz + hy,) = Crit(CSz + hy),

A€ Crit(CSe + hy,) = hy(A) = hyy(A),
I1Xr = Xpolll, <e.

Note that we do not construct a Banach space of perturbations in which
regular ones are of Baire second category. The main reason for this is that the
loops in the interior of Y do not form a Banach space.

Remark 8.5. Fix a point yg € int(Y). For every based, embedded loop 7 :
[0,1] — int(Y") with v(0) = (1) = yo denote by py : A(Y) — G the holonomy
map. For later reference we state two facts that follow from the equivalence
between connection 1-forms and parallel transport. (Note that it suffices to use
embedded loops in the interior.)

(i) Two connections A, B € A(Y) are gauge equivalent if and only if there is a
go € G such that

p'y(B) = go_lp’v(A)gO
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for every based embedded loop ~.

(ii) Let A € A(Y) and a € Q'(Y,g). Then a € imdy, if and only if there is a
&o € g such that

dpy(A)a = py(A)So — &op(A)
for every based embedded loop 7.

Proof of Theorem[8.3 Assertion (i) follows from the fact that the conditions
HY =0 and H}Lf = () are open with respect to C2-variations of f and A. The
conditions are moreover gauge invariant, and the set of nontrivial critical points
of CS; +hy is compact in A(Y, £)/G(Y) for every perturbation f. (This follows
from Uhlenbeck compactness [33],[34] since Fa = —X(A) is L>-bounded.) The
proof of (ii) has three steps.

Step 1. Let (70, fo) € T'mg X Fm, be given. Then there is ay € Ty, with v; = 7o,
fori=1,...,mg satisfying the following condition. Define o : A(Y) — G™ by

o (A) == p(0, A) = (p1(0, A), . . pm (0, A).

Then, for every critical point A € Crit(CSz + hy,) and every nonzero 1-form
n € QLYY g) satisfying

dan +dXy,(A)n =0, din =0, nloy € TaL, #nloy =0, (89)

the vector [do(A)n] € T(G™/G) is nonzero.

The trivial connection is nondegenerate by assumption (L3), so for n # 0 we
must have [A] # [0], and so by assumption A is irreducible. The condition
[do(A)n] # 0 is open with respect to variations of (A,7n), and it is invariant
under gauge transformations (A4,7n) — (u*A,u~tnu). Moreover, the set of gauge
equivalence classes of pairs (4,n) € Crit(CSz + hy,) x Q1(Y,g) that satisfy
Inll,. = 1, [A] # [0], and is compact. (For n this follows from elliptic
estimates for the operator d 4 @ d*% with boundary condition *n|sy = 0, see e.g.
[34, Theorem D].) Hence it suffices to construct v for a single such pair (A4, 7).
We shall use Remark (ii) to construct v. In each step it suffices to find
the loops 6 — ~;(6,0) (with base point yo := £(0,0)). Since the condition is
open with respect to smooth variations of «y, these loops can be deformed and
extended to the required embeddings of D x S into the interior of Y.

Since A is irreducible we can choose the 100ps Vp,,+1 and Yi,,+2 such that
the matrices g1 = pmy+1(0, A) and g2 := pmy+2(0, A) do not commute. Then
o(A) lies in the free part of G™. The tangent space of the G-orbit through o(A)
is

Vo i={v = (0i(A)E — €oi(A)),_y |€€g} CTraG™

We prove that v can be chosen such that do(A)n ¢ V.
Since n L im d4, it follows from Remark (ii) that for every £ € g there
is a based loop 7y such that

dpy (A)n # py(A)E = Epy(A). (90)
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Since the map & — (g1& — €91, g2€ — £g2) is injective there is a constant C' such
that for || > C condition holds for one of the loops ¥,,+1(0, -) or Ym42(0, ).
The compact set {|{| < C'} can be covered by finitely many open sets U;, on
each of which condition holds with the same loop Yp42+4;. Thus we have
proved that for every £ € g there exists an i such that holds with v = ~;.
This implies that do(A)n is not contained in Vy and hence does not vanish in
the tangent space of the quotient G™/G.

Step 2. Lety €'y, be as in Step 1 and fixp > 3. For k € N and £ > 0 denote
]:sz’s = {f € CkH(D X Gm)G | ILf = foller+r < 6},

let AYP(Y, L) and G*P(Y) denote the WP~ and W2P-closure of A(Y,L) and
G(Y) respectively, and

ME(Fre) = {(Af) € AVP(Y, £) x Fi© | Fa+ Xp(A) =0, [A] # [0]}.
Then for every k € N there is an € > 0 such that the moduli space
M (FE?) = ME (i) /G2 (Y)

is a separable C* Banach manifold.

We denote W%’f,v-(Y, T*Y ® g) := {a € W'P(Y,T*Y @ g) | alsy € TaL} and
Fh = CF1(D x GM)Y = T;Fke, and consider the operator

Wrle (Y. TY @ g) x WHP(Y, g) x Fp, — LP(Y, T*Y @ g) x L”(Y,g)
given by
(a0, f) = (*daa +*dX(A)a — dayp + *X(A), —dja). (91)

This operator is H4 x (¥*X.(A),0) and hence it is the linearized operator of
M (F*#) together with the local slice condition for the G*P(Y)-action. (The
nonlinear operator is a C* map since the map *X; : AVP(Y) — LP(Y, T*Y ® g)
is Ck for f € CF*1.) We must prove that this operator is surjective for every
pair (4, f) € M*(F%¢) when ¢ is sufficiently small. We first prove this for
f = fo. Suppose, by contradiction that there is a nontrivial critical point A €
Crit(CS.+hy,) such that the operator is not onto. Then withg™! = 1—p~!

there is a nonzero element
(n,€) € LYY, T"Y ® g) x L(Y, g)
orthogonal to the image of . Any such element satisfies
da =0,  xdan+*dXy(A)n =0,  dijn=0,
and

dhg(ayn = [ (xpapmn) =0 (92)
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for every f € ]-',’;’E. This implies £ = 0 because A was assumed to be irreducible.
Since n # 0 it follows from Step 1 that do(A)n # 0 and hence the map R —
G™/G : r+— [p(0,A+ rn)] is an embedding into the free part of the quotient
near 7 = 0. This implies that there exists a map f € FF such that

f(zp(z, At rn)) = rB(r)B(I2]),

where 5 : R — [0, 1] is a smooth cutoff function that is supported in a sufficiently
small neighbourhood of 0 and is equal to 1 near 0. Hence

d
dh (A = =

/ F(zplz, A+ ) d2z = / B(2)d2z > 0
r=0 /D D

in contradiction to . This proves that the operator is onto whenever
[ = fo and [A] # [0]. That this continues to hold for || f — fo||ox+: sufficiently
small follows from compactness and the fact that the trivial connection is non-
degenerate.

Step 3. We prove (ii).

By Step 2, the projection M*(FF€) — F* is a C* Fredholm map of Fredholm
index zero. (Its linearization ker(H 4 + (*X.(A),0) — TF%= has the same index
as the self-adjoint operator H 4.) Hence it follows from the Sard—Smale theorem
that the set of regular values of this projection is dense in F%¢. For such a
regular value f € F%¢ we have im (¥X.(A),0) C imH 4, so by the surjectivity
in Step 2, the operator H 4 itself is surjective and hence injective. This shows
that H) , = 0 for all critical points A € Crit(CSe + hy). For |[f — follc2
sufficiently small we also have H) = 0 by (i), and hence f is ‘regular’ in the
sense that Definition (i) is satisfied. So we have seen that fy € F,, can be
approximated by a sequence of ‘regular’ C¥*! perturbations f* € F* and due
to (i) also by a sequence of ‘regular’ smooth perturbations. This proves the
theorem. O

Proof of Theorem[8.4} To prove (i) we suppose by contradiction that there is
ay € I'y, and a sequence f” € F,, \ Freg(7y) converging to some f € Freg(?)
in the C? topology. By Theorem we may assume that each f" satisfies
condition (i) in Deﬁnition Thus there is a sequence A” € M(AY, A ; Xyv)
such that 67~ (AY) < 7, at most one of the limits A% is gauge equivalent to the
trivial connection, and the the operator Dy s is not surjective. The sequence
A" has bounded energy by Corollary and hence a subsequence converges to
a broken Floer trajectory (Aq,...,As) by Theorem Since f € Freg(), all
moduli spaces with negative index and at least one nontrivial limit connection
are empty, and the assertion of Corollary [7.4] is wrong. So neither bubbling
nor self-connecting trajectories of [0] can occur in the limit. Hence Dy, s is
surjective for every j and, by gluing (see Theorem (1)), the operator Dav s
is surjective for v sufficiently large. This contradiction proves (i).

We prove (ii). By assumption CSz+h, has only finitely many critical points
in the configuration space A(Y, £)/G(Y). By Corollary|[6.14]the energy of a Floer
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connecting trajectory is £ = %71’2 (77fo (AT)—ns (A7) —dim HY _ +dim HY,, +j) ,
where j is the Fredholm index of the linearized operator. There are finitely many
such numbers F > 0 with 7 < 7. We order them as

0<Ey< E,<---<E,.

Claim. Let j € {0,...,£—1} and (v, f) € Ty, X Fo, such that

A e M(A~,A*; Xy), ([A7],[AT]) # (0,0), |
Er(A) Sij, dr(A) <7 } = Das is onto (93)

Crit(CSz + hy) = Crit(CS. + hy,) (94)
A€ Crit(CSz + hy,) = hy(A) = hy(A), (95)

Fiz an integer k € N and a constant ¢ > 0. Then there is a perturbation
(Y, ") € Ty X Fy satisfying (93) to (95) with j replaced by j + 1 and

X s — Xglll, <e (96)

A connection A € M(A™,A"; X;) with energy Ef(A) < 0 must be gauge
equivalent to the constant path A= = AT & [0]. By assumption these critical
points of CSz + hy, are nondegenerate. So by Theorem [3.13] the hypotheses of
the claim are satisfied for j = 0 and (v, f) = (70, fo). Therefore assertion (ii)
of the theorem follows from the claim by induction on j. We prove the claim in
four steps.

Step 1. The quotient of the set

O0sA+*(Fa+ X;(A)) =0,
limg 400 A(S) € [Ai]7
Er(A) < Ejor, 65(8) <T,
Da,s not onto

K= U A:R = A(Y, L)
(A=), [A*])#(0,0)

by the gauge group G(Y') is compact.

This is proven by the same discussion as in (i). The argument uses in addition
the fact that the energy of each limit trajectory A; is strictly less than the
energy of the A” if bubbling or breaking of trajectories occurs. (So the relevant
moduli spaces will be transverse or empty by assumption.)

Step 2. There is a v € Ty with v, = ~; for i = 1,...,m satisfying the
following conditions. For z € D and A € A(Y) let pi(z, A) be the holonomy of
A around the loop 0 — ~/(0, z) and define o : A(Y) — G™ by

o(A) 1= (440, 4),...., oy (0, A)).
Then, for every A € IC, there is an so € R such that the following holds.

(a) The tuple o(A(so)) is not contained in o(Crit(CSz + hy)) and belongs to

the free part of G’ for the action of G by simultaneous conjugation.
Moreover, o(A(s)) # o(A(s0)) for every s € R\ {so}.
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(b) For every nonzero section (1,0) € ker Dy 5 the vectors do(A(so))dsA(so)
and do(A(so))n(so) are linearly independent in T(G™ /G).

For every sg € R and every 7/ the set of all A € K that satisfy conditions (a) and
(b) is open. Moreover, (a) and (b) are preserved under gauge transformations
and under adding further loops to 4/. So it suffices to establish (a) and (b)
for a single element of IC. (Then K is covered by finitely many gauge orbits of
small open sets around such elements, and the final 7/ results from taking the
union over all loops that are required by these different elements.) Hence from
now on we fix an element A € K. Since either AT or A~ is irreducible, there
is an so € R such that A(so) is irreducible. Since the path s + (d(5&,0) is
a solution of for every ¢ € Q(Y,g), it follows from Proposition (ii)

below that
8SA(80) Q_ﬁ im dA(so)§ (97)

otherwise we would have 0,A(s) = d(s)¢ for all s € R and, by partial integra-
tion, [[daéllr2(vy = — [y (da&A(Fa+Xy(A))) = 0 which would imply 9,4 = 0
and hence Ef(A) = 0. By Proposition (i) below, we have that

Also) ¢ |J [A(s)] LU Crit(CSe + hy); (98)
S#£S0

otherwise A : R — A(Y, L) would be constant or periodic modulo gauge, in
contradiction to 0 < Ef(A) < co. Moreover, for (7,0) € ker Dj ;, we have

n(s0) L RO;A(s0) +imda(s,)- (99)

To see this, fix an element £ € Q°(Y,g). Then a(s) := 0;A(s) +da(s)€ and 7(s)
satisfy the differential equations

Osa + *(daa+dX¢(A)a) =0, Osn + 20,V — *(dan+dXs(A)n) = 0.

and the Lagrangian boundary condition 7(s)|ay, (s)|oy € T'a(s)L. Hence

%exp(?‘/) /Y<77,04) = exp(2V) </Y<5s77 +20,Vn, xa ) + /Y<77»*asa>) =0.

The last identity uses the fact that the operator a +— *(daa + dX(A)a) with
the Lagrangian boundary condition is self-adjoint for every s. Since the inner
product e2V fy<77, a) converges to zero for s — 400, this proves .

As in the proof of Theorem [8.3] we shall use Remark [8.5] to construct 4’ and
it suffices in each step to find the loop 6 — ~(6,0). Since A(sg) is irreducible
and using we can argue exactly as in the proof of Step 1 in Theorem [8.3]
with (A4, n) replaced by (A(so),dsA(So)), to prove that 4/ can be chosen such
that o(A(so)) belongs to the free part of G and

do(A(s0))0sA(so) ¢ Vo, (100)
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where V) C TU(A(SO))G’”/ is the tangent space of the G-orbit through o(A(so)),
namely

Vo = {’U = (O'i(A(So))&) — EOUi(A(SO)))i:l,..,,m/ 60 S g}

This implies that [do(A(s9))0sA(s0)] # 0 in the tangent space of the quotient
G™ /G. Tt follows that the curve [so — 8,50 + 6] — G™ /G : s — [0(A(s))] is
injective for § > 0 sufficiently small. The set

C:= {[A(s)] | |s — s0| > 6} U Crit(CSL + hy) /G(Y) C A(Y)/G(Y)

is compact and, by (98), does not contain [A(sq)]. Now (i) holds if and only if
o(B) # o(A(sp)) for every [B] € C. Since this condition is open in B, and C is
compact, it suffices to prove this for a fixed element [B] € C. Given [B] € C it
follows from Remark (i) that for every g € G there is a based loop v such
that
p+(B) # 97" p(A(s0))g-

For every fixed loop -y this condition is open in g. Since G is compact there
exist finitely many loops 7; such that the tuple (p,/(B)); is not simultane-
ously conjugate to (p,(A(0)))i- For this choice of the loops 7; we have that
o(B) # 0(A(sp)) as claimed.

To prove (b) it suffices to consider a fixed nonzero element (n,0) € ker Dj ;
because this kernel is finite dimensional. Since 7(sg) # 0 (by unique continuation

as in Proposition (ii)) it follows from that
n(s0) — A0sA(s0) & imda(s,) YA eR.
By we have § := inf ey, |[do(A(s0)0sA(so) — v| > 0 and
do(A(s0)) (n(s0) — AsA(s0)) & Vo (101)

for [A| > 671 ||do(A(s0)n(so0)|| =: c. We wish prove that continues to hold
for all X € [—¢, ¢] with a suitable choice of 4/. For each fixed A the proof is the
same as that of Step 1 in the proof of Theorem Since condition is
open in A this proves Step 2.

Step 3. Let C := {(2,p'(2,4)) € D x G™ | A € Crit(CS; + hy)}. Fore' >0
and k € N (possibly larger than the constant in the claim) denote

Fhe = {f et D x G™)C | (f' = Als ) =0, = fllek <€’}
and for a fixed p > 4 let

_ Ae M(A- AT Xp)

M(A=, AT FREy = (A ) € AP x FRE' | Br(A) < By
Sp(A) <7

Here we abbreviate A};’p = A};’p(R xY,L; A7, AT) (see equation ) Let
GeP(R X Y) be the W2P-closure of {u: R — G(Y) | u(s) =1 V|s| > 1}. Then
for every k € N there is an € > 0 such that the following holds.
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Every perturbation [’ € }'ﬁf, satisfies conditions , (@, (@), and for
every pair of critical points ([A~],[AT]) # (0,0) the universal moduli space

M(A™,AY FEEy = M(A AT FRE) 1G2P R x V)

is a separable C*-Banach manifold.

Conditions , and are satisfied for every f/ € ]-'fn’,g "for & > 0 suf-

ficiently small. The assertion about the universal moduli space holds whenever
the linearized operator

(@, f) = Dasle, @) + (X 7(A), 0) (102)

is surjective for every pair (A, f') € M(A_, AT, ]-':f/). Here D, s is the operator
with k& = 1. We first prove that this holds for f/ = f. If A is not gauge
equivalent (by G(A™, AT)) to a connection in K, then the operator Dy s is
surjective by Remark (i), and hence so is (102). Let A € K (after a
gauge transformation in G(A~, A%)) and ¢~! := 1 — p~!, and suppose, by
contradiction, that there is a nonzero pair

(n,¢) € LIRxY, T"Y @ g) x LY(R x Y, g)

orthogonal to the image of . Then we have ¢ = 0 (by the proof of Theo-
rem @; neW, PR XY, T*Y ®g) (by Theorem 3.11), D} 5(1,0) = 0, and

/ exp(2V (5))dh ;(A(s))n(s)ds = 0 (103)
for every f € Tff:ff,. By Step 2 there is s € R such that o(A(s)) # o(A(so))
for s # s¢ and the tangent vectors do(A(so))dsA(so), do(A(so))n(so) are lin-
early independent. Hence the map

(rys) = p(z, A(s) +rn(s))

is an embedding in a neighbourhood of (0, so) € R? for every sufﬁmently small
z € D. It follows that there exists a smooth G-invariant map f DxG™ - R
vanishing in a neighbourhood of C' and satisfying

F(z.p(z Als) +11(s))) = rB(r)B(s — s0)B(2])

for a suitable cutoff function 8 : R — [0, 1] that is supported in a neighbourhood
of 0 and is equal to 1 near 0. This implies

0

(AN = [ G Feple Al + o)z

:6(3—30)/DB(|z|)d2,z >0
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for every s € R. Hence the integral on the right hand side of (103 does not
vanish, contradiction. Thus we have proved that the operator is onto
whenever f' = f.

We must prove that is onto when || f' — f||cr+1 is sufficiently small.
Otherwise there are sequences .7:5{,5/ > fY — fand AY € M(A_, AT Xyv) such
that the operator (102), with (A, f') replaced by (A, f¥), is not onto. If A”
converges (modulo gauge) to A € K then is surjective for the pair (A, f)
and hence for (A%, f¥) when v is sufficiently large. Otherwise it follows from the
compactness and gluing theorems as in the proof of (i) that Dyv 5 is surjective
for v sufficiently large. This contradiction finishes the proof of Step 3.

Step 4. We prove the claim.

By Step 3 the projection M(A~, AT, .7::;’,5/) — .7:7];’,6/ is a Fredholm map of index
at most 7 for every pair A* € Crit(CS,z + hy) with ([A7],[A1]) # (0,0). (The
index at (A, f) is the same as that of the linearized operator Dy s.) Hence it
follows from the Sard-Smale theorem that, for k£ > 8, the set of regular values
is of the second category in the sense of Baire. Any such regular value f € ]-"7];’,5 /
satisfies . To prove the claim, pick a regular value of the projection and
approximate it by a smooth perturbation f’. In the last step we use the fact
that the set of all perturbations that satisfy the requirements of the claim is
open in the C¥*!-topology. (The proof is analogous to the proof of (i).) This
proves the theorem. O

The main difference between our proof of Theorem [8:4] and the argument in
Donaldson’s book [9, p 144] for the closed case is that we do not have a gluing
theorem converse to bubbling on the boundary and hence cannot work on a
compact part of the moduli space in the presence of bubbling on the boundary.
To circumvent this difficulty we have restricted the discussion to the monotone
case and to Floer connecting trajectories of index less than or equal to seven.
We also made use of a unique continuation result for perturbed anti-self-dual
connections with Lagrangian boundary conditions, which is established next.

Unique Continuation

Proposition 8.6. Let (v, f) € I'y, X Fo and fix an open interval I C R.
(i) Let A,B : I — A(Y) be two solutions of the Floer equation

0s A+ *xFy + *Xf(A) =0, A(S)lg eL. (104)

If A(so) = B(so) for some sg € I then A(s) = B(s) for all s € 1.
(ii) Let A: I — A(Y,L) and & = (a,p) : I — QY(Y,g) x Q°(Y, g) be smooth
maps satisfying the (augmented) linearized Floer equation

Db +HAE =0,  a(s)ls € TawL, *als)|s =0. (105)

If £(s0) =0 for some sg € I then &(s) =0 for all s € 1.
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The proof will use the following local continuation result in the interior.
This was proven by Taubes [32] in a slightly different formulation; we include
the proof for the sake of completeness.

Lemma 8.7. Let U be a (not necessarily compact) 3-manifold without boundary
and I C R be an open interval.

(i) Let A, B : I — A(U) be two solutions of the unperturbed Floer equation
with f = 0. If A(sg) = B(sg) for some so € I then A(s) = B(s) for all s € I.
(ii) Let A : I — A(U) and & = (a,p) : I — QY (U, g) x Q°U,g) be smooth
maps satisfying the unperturbed linearized Floer equation with f = 0. If
&(s0) =0 for some sg € I then &(s) =0 for all s € I.

Proof. To prove (i) assume by contradiction that A(s’,y1) # B(s’,y1) for some
(s;y1) € I x U. Let D,(y1) C U be a geodesic ball of radius r > 0 around y;
and denote

J = {5 el | A(S)|Dr/2(y1) = B(S)|Dr/2(y1)} crI

This set contains sy by assumption and it is a closed subset of I because A — B
is continuous. We claim that J C I is open and hence J = I in contradiction
to the assumption.

To prove that J is open we fix an element s; € J. Then A — B vanishes
to infinite order (i.e. with all derivatives) at x1 := (s1,y1). For the derivatives
in the direction of I this follows from the Floer equation. Let D,.(z1) C I x U
denote the geodesic ball centred at x1. We fix gauge transformations ua,up €
G(Dy(x1)) with ua(z1) = up(z1) = 1 such that v A and ujB are in radial
gauge on D,(z1). Then these can be pulled back to connections in temporal
gauge A’ B’ : (—o0,logr) — A(S®) by geodesic polar coordinates (—oo,logr) x
S35 Dy(z1) \ {z1}. The fact that u* A — uj; B vanishes to infinite order at z;
translates into superexponential convergence A’(s) — B'(s) — 0 as s — —oo. In
particular, for every K > 0, we have

lim e X||A'(s) — B'(s)||p2(s3) = 0. (106)

§—+—00

The pullback metric on (—oo,logr) x S? has the form e?¢(ds? + g,), where g is
a smooth family of metrics on S that converges exponentially to the standard
metric on S% as s — —oo. Since the anti-self-duality equation is conformally
invariant, the connections A’ and B’ also satisfy with respect to the metric
ds? + g5 on (—o0,logr) x S3. We now denote a := B’ — A’ : (—o0,logr) —
01(S3,g) and use the technique of Agmon—Nirenberg in Appendix |C| to prove
that & = 0. The Floer equations (i.e. the anti-self-duality of A’ and B’ w.r.t.
the conformally rescaled metric) imply that o satisfies

Osor+#d gy 1,00 = 0.

We shall use the operator F := — *dA,+%a (corresponding to A(s), appropriately
shifted, in the notation of Appendix|C)) which is self-adjoint with respect to the
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time dependent inner product
(@.8),i= [ {ans8) = (Qe)a,Q)8) s
S3

Here #, is the Hodge operator for the metric g, on S3, and the subscript
indicates the use of the standard metric on S. The operator Q(s) : (5%, g) —
0153, g) is defined as in [10}, p.151], as a self-adjoint operator such that Q(s)? =
xp*s. This square root exists since xg*s is positive definite. These operators
satisfy (Q1) in Appendix [C| by the exponential convergence of gs; as s — —o0.
Moreover,

d
—£<a7*d14,+%aa>s +2(0sa, xd g 10 00)s = —/ (aN[Os(A"+ 2a) A a])
S3

< 0.4 + 300 o g0 el

Hence the function x(s) := a(ses — ), with sy € (—o0,logr), satisfies the as-
sumptions of Theorem with ¢; = ¢ = 0 and c3(s) = [|0sA" + 050 poc (59).-
The constant ¢ in Theorem|C.2|is finite because [*2 |0 4"+ 30sa|| oo (s2) < 00,
by the exponential decay of A" and B’ (see Theorem . We thus obtain

la(s)ll, = e as2)],,
for all s € (—o0, s2]. This estimate contradicts the superexponential convergence
in unless a(ss) = 0. Since sy is any element of the interval (—oo,logr)
we have shown that o = 0 and hence v A = u; B on the geodesic ball D, (z1)
around x1 = (s1,%1). This ball contains the set [s; — 5,51+ 5] X D, /2(y1). From
the construction of the gauge transformations with A = B on {s1} x D, 2(y1)
we know that uals—s, = up|s=s,. Now there is a unique gauge transformation
von [s1 — L, 814 5] X Dy jo(y1) with v|s—ys, = u)'[s=s; = up'[s=s, that puts
uy A = u} B back into temporal gauge. By the uniqueness of the temporal
gauge with usv|s—s, = upv|s=s, = 1 this implies

A= (upv)*A= (ugv)*B=1B on [s1— 5,81+ 5] X Dyya(y1)

and hence [s; — ,51 + 5] C J. This proves that J is open as claimed.

The proof of (ii) is analogous to (i). In conformal polar coordinates near
x1 we choose the radial gauge u% A as before. The pullback &' : (—oo,logr) —
QL(S3,g) x Q°(S3, g) then satisfies the linearized Floer equation with respect to
A’. Now the Agmon-Nirenberg technique for z = & (with the Hessian H 4/ ()
as self-adjoint operator) shows that ¢’ = 0 and hence £ = 0 on D,(x1). The
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relevant estimate is
d
- (L Hat), +2(0.8 Hat),
-4 (/SJa’AdAIaW - 2/SBWA * dAfso’>) +2(0u(a, ) Ha (ol ),

= — / (N[0 A ') + 2/( (/N *[0sA",¢']) + 2/( (' AN (0s%)dar”)
S3 S3 S3
< 2e5(8) [[HaE |1, €1, + es(s) €112,

where c(s) = 20 eg(s) and cs(s) = 2[|0A'|| oo (g3 + 80 eq(s) || Farl| 12 5o
with ¢ and ¢g as in (Q1) in Appendix We have used the identity Os% =
*p0sQ?, which implies ||0s * ||s < 26 3¢q, and

2 2 2
ldag'I2 + lldare|2 = xdara’ — dar' |2 +2 [y (@’ AlFar, ')
which implies [|da ¢, < [[Ha€'ll, +2 |1 Far 2 s €] O

Proof of Proposition[8.6. The proof of (i) is similar to that of Lemmaexcept
for the presence of boundary terms. To control these we first use Lemma[8.7] (i)
on U := N\ 9Y for a neighbourhood N C Y of Y on which X; = 0. It implies
that A and B agree on I x U and hence by continuity on I x N. In particular,
the 1-form a(s) := B(s) — A(s) € Q!(Y, g) vanishes near Y and hence belongs
to the space Qz(s)(Yg) for every s. To establish unique continuation in the

interior we assume, by contradiction, that «(s;) # 0 for some s1 < so. We will
apply Theorem to z(s) = a(s; — s) and the symmetric operator

F(s) := #dg(s) + *d X (A(s)) : Qo (Y, 9) = Qe (Y,0)
for s € I. We have a(sg) = 0 and

dsa+Fa=—Fxlana] —*(Xp(A+a)— Xp(A) —dXs(A)a),
Os(a,Far) — 2( 050, Far) = [, (an[0; AN a]) + [, (o, d2Xf(A)(0:4, ) ).

Hence it follows from Proposition (v) that

10scx(s) + F(s)ax(s)l| 2 vy < e1 ()l 2y »
Ds(a(s), F(s)a(s)) — 2(dsa(s), F(s)a(s)) < ez [la(s)]| 72y

for s1 < s < sg and suitable constants ¢; and c3. This shows that the path
s — a(s) and the operator family F(s) satisfy the hypotheses of Theorem [C.1
with ¢ = 0. Hence a(s) = 0 for s;7 < s < sp and a(s;) = 0 follows by
continuity, in contradiction to the assumtion. The argument for s; > sg is
simlar and this proves (i). Assertion (ii) follows from Lemma (ii) and the
analogous estimates for the solutions of . This proves the proposition. [
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9 Gluing

Let Y be a compact oriented Riemannian 3-manifold with boundary Y = ¥ and
L C A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold
satisfying (L1-3) on page [/} Fix a regular perturbation hy : A(Y) — R in the
sense of Definition B2l

Let By, B, Ba € A(Y, L) be nondegenerate and irreducible critical points of
CSr + hy. We denote by A(R x Y, L; By, Bz) the space of smooth connections
on R x Y with boundary values in £ and C*°-limits By and Bs as in ; this
is a special case of the notation . Also recall the notation JT/l/(BO7 Bi; Xy)
from chapter [7] for the space of solutions that are in temporal gauge over the
ends, and M(By, By; X) for this space modulo gauge equivalence. For T' > 1

we define a pregluing map
M(By, By; X¢) x M(By, By; X) = A(R x Y, L; By, By) (107)
(E1,E2) = E1#7E2

as follows. The connections =; = A; + ®;ds are in temporal gauge outside the
compact set [—1,1] x Y and have limits

lim A;(s) = Bo, lim A;(s) = By = lim As(s), lim As(s) = Bs.

S§——00 §—00 S§——00 S§—00

Define EI#TEQ = A + dds by

Al(gfgo(f%fs)), s<f%,
A(S) = B17 s € [7%
Ao(—F + (=5 +5)), s>,

where ¢ : (0,00) — R is a smooth function satisfying

s, s> 2,
‘P(S):{ _%’ Sﬁ%, s > 0.

This connection is smooth because A; and As converge exponentially as s tends
to £oo. It satisfies the limit conditions and the Lagrangian boundary conditions
by construction. In fact, this is why we use rescaling in time rather than convex
interpolation in space. The map (Z1,Z3) — Z1#1rZ2 is gauge equivariant in
the sense that

ui(s+T), s<0,

(WE)#r(uzE2) = u* (Ea#rEs),  uls):= { ug(s —T), >0

for each pair (u1,u2) € G(By, B1) X G(B1, B2). Recall from the beginning of
Section [7] that each u; € G(By, By) satisfies 95uy(s) = 0 for [s| > 1, u1(s) € Gp,
for s > 1, and uy(s) € Gp, for s < —1; similarly for us. Since Bj is irreducible
we have uj(s) = ug(—s) =1 for s > 1.
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Theorem 9.1. Let By, B, Ba € A(Y, L) be nondegenerate and irreducible crit-
ical points of CSz + hy, and fix Z1 € MV(BO,Bl;Xf) and 2y € M(Bl,BQ;Xf)
with 05(Z1) = 0¢(E2) = 1. Then, for every p > 2, there exist positive constants
k, To and a map

71 (Tp,00) = M?*(Bo, B2; X¢)/R, T~ 7r(Z1,Zs)
with the following properties:
(1) 7 is a diffeomorphism onto its image.

(ii) The connections 7 (Z1,Z2) converge without bubbling (as in Theorem[7.2)
to the broken trajectory (E1,Z2) as T — 0.

(iii) If = is a solution of the Floer equation (@ and
HE o (EI#TEQ)HWLP(RXY) Sk

for some T > Ty + 1, then its gauge and time-shift equivalence class [Z]

lies in the image of 7.
Proof. The preglued connection

E1#71E2 = Er = Ar + ®rds

is an approximate solution of the Floer equation and 77(Z1,Z2) will be con-
structed as a nearby true solution. More precisely, we have

< Ce T (108)

105 A — dap @1+ *(Fag + X5 (A7) || 1y moyy <

for some constants C' and § > 0 by exponential decay, Theorem [5.1] We will
use the inverse function theorem to find near the approximate solution Zr
a true solution Zp € M(By, B2; X¢). For that purpose we use the Banach
manifold structure of the space AYP(R x Y, L; By, Bs), see . Its tangent
space Tz, AVP(R x Y, L; By, Bz) is the space of all 1-forms £ = a + ¢ds with
a € WHPR XY, TY ® g) and ¢ € WLP(R x Y, g) satisfying the boundary
condition a(s) € Ta,(sL. Using the exponential map of Theorems and
Corollary we obtain a continuously differentiable map

Tz, AYP(R X Y, L; By, By) DU — AYP(R x Y, L; By, Bs) : € — E(Z7; &)
defined on a neighbourhood U of zero by
B(E15€) = Bayo(a(s) + (@1(s) + ¢(s))ds.

We now look for a solution of the form Sr = Ap + Opds = E(ET;ﬁ), where
Eeld satisﬁes

dz, £ =0, *&|rxoy = 0, ¢ €imDr. (109)

5 Here * denotes the Hodge * operator on the four-manifold R x Y unlike in (110] below.
The first two conditions fix the gauge whereas the third condition fixes a complement of the
kernel of the linearized operator for combined anti-self-duality and gauge fixing.
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Note that = automatically satisfies the boundary conditions AT(s)|ay e L
and has the limits lims_, _ oo A7 (s) = By, lims_ 00 A7 (s) = Bsy. So it remains to
solve the Floer equation

OsAr —d g, @7 + *(F5, + X;(Ar)) =0 (110)

for £ subject to (109). The precise setup for the inverse function theorem is
as follows: In order to keep track of the T-dependence we use the version [22]
Proposition A.3.4.] which provides explicit constants. We apply this version of
the inverse function theorem to the C'-map
. — (t *
fT . XT — Z7 fT(g) T (FE(ET,g)’dETg)

Its domain is a neighbourhood of zero in the Banach space X consisting of
€€ Ts, AYP(RxY, L; By, By) that satisfy the boundary condition *{|gxay = 0.
(Note that the domain depends on 7. One could also work with a T-independent
domain by using simple reparametrizations in s € R to identify Xr = Xr, for
a fixed Tp. This gives rise to a continuous family of inverse function problems
fr : X1, = Z for T € [Tp,00).) The first component, FE(ET'E)’ is identified
with the left hand side of (110)), so the target space of fr is the Banach space

Z=ILPRxY,T'Y @ g) x L(R x Y, g).

The differential d f7(0) at 29 = 0 then is the linearized operator Dy := Dz,.. To
check that the differential d fr is uniformly continuous at 0 € X7 we calculate
for all £, € Xp

H(dfT(g) - DT)CHLP(]RxY) = H*[(E(Eva) - ET) A *C] HLP(RXY)
< OS0p[ Bay o (@(3)) = A7 () + @(5)45] oy 1 Koy (111)

Here C'is the constant from the Sobolev embedding W?(Y) — L?(Y) and the
second factor converges to zero uniformly in T as ||{||w1.» = [|a+eds|wis — 0.
Indeed, given ¢ > 0 there is o7 s > 0 such that [|[Ea, (s (o) — Ar(s)|[r2e(yv) < €
for all a € T, (5)A(Y, L) with |||/ z2p(y) < 67,5. We can choose o7 s =0 > 0
uniform for all T' > 1, s € R because the image of Ay in A(Y, L) is compact
and independent of T'.

That the linearized operator is surjective for sufficiently large T with a uni-
form bound for its right inverse Q7 := D4 (DrDi)~! follows from the estimates

[nllwre@xy) < ClIDTlLe@xy), (112)

IDrnllwrs@®xy) < ClDrDInl| Lo rxy)- (113)

These estimates hold for T sufficiently large, and the constant C' is independent
of T. The inequality (112]) implies that Dr is surjective and Q7 : Y — Xr is

defined, and (113)) gives a uniform bound for Q7. The proof of the estimates is
as in [9, Proposition 3.9], [29, Proposition 3.9], or Theorem It rests on the
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fact that the connections =1 1 := E1#7 By and Eg 1 := By #7E3 (which coincide
T T

with Eg for s < 5 and s > —35 respectively) satisfy exponential estimates of
the form ||Z; 7 — Z;(- & T)|ler < Cre™®", and hence their linearized operators
are surjective with uniform estimates. Here we use the fact that =; and =5 are
regular in the sense of Definition [8.1

We have thus checked that the assumptions of [22] Proposition A.3.4.] are
satisfied with uniform constants for all T > Ty, where Ty > 1 is determined
by comparing with [22] (A.3.5)]. Hence the inverse function theorem
provides unique solutions &r € imQr C Xp of fr(ér) = 0. In other words,
we can define 770(Z1,Es) := Er = E’(ET,fT), where =7 € MV(BO,BQ;X)“) is
the unique solution of the form ((109)) with =Er = Z1#7=2,. This map is gauge
equivariant and induces a map to the moduli space. Note moreover that &7 will
be continuous with respect to 7' in the W1 P-norm and hence Zr as well as T
will depend continuously on T € [T, 00). In the following we sketch the proof
of properties (i)—(iii).

The convergence in (ii) follows from the fact that the infinitesimal connection
&7 obtained in the inverse function theorem satisfies an estimate of the form
e llwir < Cllfr(0)||r < C'e™9T for uniform constants C, C".

The index of 7 (=1, Ey) is given by (77), i.e.

54(m7(21,22)) = ps(Bo, Bo) — puy(B1, B1) + pug(B1, By) — py(Ba, Bo)
= 5f(51) + 5f(52) =2.

Here B; : [0,1] — £ are paths from B;(0) = B; to B;(1) = 0, where we pick
any B; and pick the other paths such that By is homotopic to the catenation
of Z1|gxy with B; and B is homotopic to the catenation of Zg|gxs with Bs.
Then, by construction, By is homotopic to the catenation of (E1#7E9)|rx s
with By. Moreover, 77(E1, Z2)|rxx is homotopic to (E1#71Z2)|rxs-

To see that 7 is a diffeomorphism note first that both domain and target are
1-dimensional manifolds (by the regularity and additivity of the indices). Hence
it suffices to show that 7 is an injective immersion by following the argument
in [0 p.96]. In fact, since the domain of 7 is connected, it suffices to show that
dr is nonzero for all sufficiently large 7. We will show below that 7 is C!-close
to the pregluing T' +— Zp = Z1#7=2 as a map [Ty, o0) — AVP(R XY, L; By, Bs),
ie.

— 0. (114)

2. d=
ar=T dT‘—‘THleP(RxY) T—do

With this, the immersion condition %T # 0 € T () M(Bo, B2; X5)/R follows
if we can prove that the pregluing map is an immersion modulo gauge and
time-shift with a uniform estimate. Indeed, taking the infimum over all ¢ €
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C*(R xY,g), A € R we have
gl/f\ HﬁET —dzp—A- aSETHWLP(JRxY)

> ir;f(iﬁfHaSAl — ¥ = A 01 ey

HWLP([I,OO)XY)) >A>0.

+ Hdl)f||789A2 - dAQw - A 5'5/12
Here we restricted the W'P-norm to the half cylinders s < —T — 1 resp. s >
T + 1, where Ep(s) = Ai(s + T) resp. Zp(s) = Az(s — T). We also dropped
the ds-terms and applied various shifts. The constant A > 0 is obviously
independent of T'. It is positive since otherwise one could pick a minimizing
sequence converging to limits A, 1,19 such that (1 — \)0sA; = da, 1 and
(14X)0sAg = —da,2. However, from unique continuation (Proposition[8.6](ii))
we know that JsA;(s) € imdy,(s), so da,1; vanishes on both half cylinders,

which leaves the contradiction 1 = A = —1.
It remains to establish li We write (...) for &(...) and claim that

70 = Erlly., < [00BEr, &) — 1] [Er]| + [|2BEr. &r)ér | . 0

due to the identities F(-,0) = Id and 9,E(Z7,0) = Id, the boundedness
of |27|lw1» (due to exponential decay), and the convergence &7 — 0 and
||§.T||W1,p — 0. To check the latter recall the abstract setup for the inverse
function theorem. Taking the T-derivative of fr({r) = 0 we obtain

deT(fT)fTHLp = HfT(fT)HLp

— gt F(= = =

- HdE(ET,gT)alE(“T’gT)“THLP + | [Er A *ST]HLP e 0.

This convergence uses the same estimates as before and the fact that d— jT
vanishes except for near s = :I: , where it is exponentially small. Now wrlte
&r = Qrnr with nr = Drér, then

ér = (r + QrDrér with (7 = Qrir € imQr.

We have HQTDT§T||W1,p — 0 since & — 0 and the operators Dy : WhP — LP
and Q7 : LP — dom Dy C WP are uniformly bounded. The first bound is due
to |Dr — Dr|| < |E7 — Ex, llco; similarly Dy : WHP — LP and D : W2P —
WP are bounded 1n terms of ||Z7]|co resp. ||HT||(31 and we have the identity
Q7 = Di(DrD3) ! = Qr (DD + DrDi ) (DrDs) . Here the uniform bound
on (DrDi)~1, that is ||n|lwzr < C|DrDin| Le, follows from combining (1
with the Wz’p—version of .
Finally, we can prove that ||¢r|lw1.» — 0 because, starting from (L13)),

I¢rllwre < CIDrlrl|Le
< C(I(dfr(ér) — Dr)Crllee + |dfr(ér)érllee + |dfr(Er)QrDrér| o).
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Here the first term can be absorbed into the left hand side by for suffi-
ciently large T' > Ty and the other terms converge to zero as T — oo, using a
uniform bound on dfr(¢é7) from ||dfr(é7) — Dr|| < ||E(Er, é7) — Erllco. This
finishes the proof that &7 — 0, hence (114) holds and (i) is proven.

Assertion (iii) follows from the uniqueness statement in the inverse function
theorem if we can find u € G(RxY), o € R, and 77 > Tp such that v*=(-+0) =
E(E7,€) with € satisfying (109) and W'P-small. For each (o, T") close to (0, T)
we can use the local slice theorem to find u, 7 and &, 7/ satisfying

uy 7 Z(-+0) = E(Er, §o 1), dz_,&or =0, *&o 1 |[Rxay = 0.
One then finds (0,7") satisfying &, 7+ € imD3, = (kerDz/)t by a further
implicit function theorem. Namely, there is a basis (11,77, 2, 7+) of ker D close

to (8551#T/07 O#T@SEQ). Then the map (0’, T/) — <<£U,T/, ’171’T/>, <€O’,T’7 7)27T/>)
is invertible and has a zero close to (0, 7). O

Remark 9.2. In Theorem we can allow Bj to be reducible (but still non-
degenerate). Then we obtain a gluing map

70 (T, 00) X (Gp, /{£1}) — M>mHE (B By X /) /R

with the same properties as in Theorem[0.1] This map is constructed by starting
from a preglued connection Z1#, rZs that takes g € Gg, /{£1} into account by

MG -p(-5-s)  s<-7
A(S) = Bl = g*Bl, S € [—

g AT+ (=5 +s), s>

The index identity again follows from and the uniformly bounded right
inverse can be constructed using weighted spaces, as described in [9, 4.4.1].

This shows that the breaking of trajectories at the zero connection can be
excluded in low dimensional moduli spaces since the stabilizer Go C G(Y') adds
3 to the index of the glued connection. However, this argument is not needed
for the construction of Floer homology. In the proof of Corollary below, we
use simpler index bounds to exclude breaking at the zero connection.

Theorem [9.1] gives rise to maps
TT * Ml(Bo,Bl)/R X Ml(Bl,BQ)/R — M2(317Bg)/R

7

a%]a

ro[N

defined by choosing one representative for each gauge and shift equivalence class
in each moduli space M'(A~, A")/R with [AT],[A7] € R\ [0].

Corollary 9.3. Let AT, A~ € Crit(CSz + hy) \ [0]. Then, for Ty sufficiently
large, the sets T(7, o0)([Z1], [E2]) € M?*(A™, AT)/R, indexed by [B] € Ry \ [0]
and ([Z1],[Z2]) € MY(A™, B)/R x MY (B, AT)/R, are pairwise disjoint. More-
over, their complement
M} AT AN RO\ U mr(M'(A7, B)/R x M (B, AT)/R)
[0]£[B]eR; T>To

18 compact.
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Proof. The sets (7, )([21], [E2]) are disjoint for T sufficiently large since they
converge to different broken trajectories for Ty — oo, see Theorem (ii).

To prove compactness we assume by contradiction that there exists a se-
quence [=Y] € M?*(A7,A%;X;)/R in the complement of the image of 7 as
above, and that has no convergent subsequence. These solutions have index 2
and hence fixed energy by Corollary (i). By Theorem we can pick a
subsequence and representatives, still denoted by =¥, that converge to a bro-
ken trajectory (Z1,...,Z¢) modulo bubbling. By transversality we do not have
solutions of negative index, so Corollary [7.4] implies that there is no bubbling,
and the index identity in Theorem [7.2]implies ¢ < 2. In the case £ = 1 we would
obtain a convergent subsequence from Theorem hence the limit must be
a broken trajectory with two index 1 solutions and an irreducible intermediate
critical point B. The time-shifts and gauge transformations in Theorem can
be chosen such that the limit (21, Z5) consists of the fixed representatives used in
the definition of 7. Now the assertion of Theorem (ii) can be reformulated
as

[0 "2+ 5057+ 5)) = EatrZall s gacy) = 0

for T := %(s§ —s{) — 0o. Then, by Theorem [9.1| (iii), [Z¥] lies in the image of
7 for sufficiently large v, in contradiction to the assumption. O

10 Coherent orientations

Let Y be a compact oriented Riemannian 3-manifold with boundary 9Y = %
and £ C A(X) be a gauge invariant, monotone, irreducible Lagrangian subman-
ifold satisfying (L1-3) on page m In this section it is essential that we restrict to
the case of Y being connected with nonempty boundary, so that the gauge group
G(Y) is connected. The construction of orientations for closed Y can be found
in [9, 5.4]. Fix a perturbation hy such that every critical point of CS; + hy
is nondegenerate and every nontrivial critical point is irreducible (see Defini-
tion . For every pair of irreducible critical points A=, AT € Crit(CS. + hy)
we consider the space

A(A=, A7) :={A e AR XY, L) | Alls s+1]xY R 0ds + A* exponent. },

which consists of smooth connections A = ®ds + A on R x Y that are given by
paths ® : R — Q°(Y, g) and A : R — A(Y, £) that converge exponentially with
all derivatives to 0 and A%, respectively, as s — d00. If we allow the limits A*
to vary within gauge orbits of critical points, we obtain the spaces
A(ATL AT = | Al ) A7, (uh) 4").
uteg(y)
We denote by

Or([A7],[AT]) == L Or(Dy) — A([A7],[AT])
ACAAT][A*)
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the principal Zs-bundle whose fibre over A € A([A™],[AT]) is the set Or(Dy)
of orientations of the determinant line

det(Dy) := A (ker DA) Q@ Amax (cokerDA) -

Here D, is the linearized operator (31)). Any homotopy [0,1] — A([A7], [A*]),
A — A, induces an isomorphism

OI‘(DAO) — OI‘(DAl)

by path lifting. A gauge transformation v € G(R x Y') which converges expo-
nentially to u* € G(Y) as s — 400 gives rise to a bundle isomorphism

u* : Or(A™, A") = Or((u™)*A™, (u™)*AT)

induced by the conjugate action of u on kernel and cokernel. The pregluing
construction in for Ay € A(Bg, B1) and Ay € A(Bj, By) induces a natural
isomorphism

or . OI‘(DAI) & OT(DAZ) — Or(DAl#TAZ)

for sufficiently large T'. If both Dy, and Dy, are surjective, then Dp, 4,4, is
surjective for T sufficiently large, by estimates as in the proof of Theorem [7.7]
and or is induced by the isomorphism ker(Da,) % ker(Da,) — ker(Da,4,4,)-
The general case is reduced to the surjective case by the method of stabilizations
as in [1I, Section 3(a)].

We will also have to glue connections over S* to connections over R x Y.
For that purpose we denote by A(P,) the space of connections on the bundle
P, that is obtained by gluing two copies of C? x B* with the transition function
u € G(S3). Then for every A € A(A=, AT) and =, € A(P,) we can construct
a preglued connection A#r=, € A(A™,u*AT) by taking the connected sum
(RxY)#ap,S* and trivializing the induced bundle over R x Y. Here we denote
by Dr C R x Y the ball of radius T~! centred at (0,%) for some y € int(Y),
and after the trivialization we have

(A#7E) |[Rxy )\ Dy = T*A

for a gauge transformation @ on (R x Y) \ D with @|gp, = u. We fix these
extensions such that | —1)xy = 1 and |j1,)xy = 1, and hence @|rxay
defines a path @ : R — G(X) with @(s) = 1 for |s|] > 1. A partial integration
on [—1,1] x Y then shows that the degree of this loop is deg(a) = deg(u). So
we have both A, A#7=, € A(A~, A1), but the homotopy classes (of paths in
L with fixed endpoints) of A|sy and (A#rZ,)|sy differ by deg(u). The de-
terminant line bundle over the contractible space A(P,) is canonically oriented
(compatible with gauge transformations, homotopies, and gluing, see e.g. [10]
Proposition 5.4.1]), and as before pregluing induces an isomorphism

or : Or(Dy) ® Or(Dg,) = Or(Daxg,=z,)

for T sufficiently large. The various isomorphisms, induced by homotopies,
gauge transformations, and pregluing, all commute in the appropriate sense.
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Definition 10.1. A system of coherent orientations is a collection of sec-
tions

A([AT][AT]) = Or([AT], [AT]) + A oy,
one for each pair [A”],[AT] € Crit(CSz + hy)/G(Y) \ [0] of nontrivial gauge

equivalence classes of critical points, satisfying the following conditions.

(Homotopy) The sections o : A(JA™],[A1]) — Or([A~],[AT]) are continuous.
In other words, if [0,1] — A([A™],[AT]) : A = A\ is a continuous path,
then the induced isomorphism Or(Dy,) — Or(Da,) sends op, to oa,.

(Equivariance) For every A € A(A~, A") and every u € G(R X Y)) that con-
verges exponentially to u* € G(Y) as s — 00 we have

Ourp = U 04.

(Catenation) Let A € A(By, B1) and A’ € A(By, Bs), then for T sufficiently
large we have
Op#r A = or(op ® oar).

(Sum) Let A € A(A=,A%), u € G(S?), and =, € A(P,), then for T sufficiently
large we have
Or#rz, = 07(0s ® 0%,).

(Constant) If A= A~ = AT, then o, is the orientation induced by the canon-
ical isomorphism det(Dy) — R. (Under this assumption Dy is bijective.)

Remark 10.2. (i) The (Equivariance) axiom follows from the (Homotopy)
axiom. To see this note that, since Y is connected with nonempty boundary,
the gauge groups G(Y') and hence G(R x Y) are connected. (Here we do not fix
the boundary values or limits of the gauge transformations.) The claim then
follows from the following observation.

(ii) For every continuous path [0,1] = G(R X Y) : A — uy with ug = 1 the
isomorphism w7 : det(Dy) — det(Dyzra) coincides with the isomorphism induced
by the homotopy A — u3A. To see this consider the continuous family of paths
[0,1] = G(R XY) : A — ury for 7 € [0,1]. Then the assertion holds obviously
for 7 = 0 (both maps are the identity) and hence, by continuity, for all 7.

Theorem 10.3. Fix representatives By, ..., By, one for each nontrivial gauge
equivalence class in Crit(CSg + hy)/G(Y) \ [0], connections A; € A(B;, Biy1),
and orientations o; € Or(Dy,) fori = 1,...,N — 1. Then there is a unique

system of coherent orientations oy € Or(Dya) such that o, = o; for all i.
The proof of this theorem will make use of the following lemma.

Lemma 10.4. Fiz a pair A* € A(Y, L) of irreducible and nondegenerate critical
points of CSz + hy. Let [0,1] — A([A™],[AT]) : A — A\ be a smooth path and
u € GR xXY) such that Ay = u*Ag. Then the isomorphism

u* OI"('DAO) — OI“('DAl)
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agrees with the one induced by the path A — Ax. In particular, the orientation
bundle Or([A™],[AT]) — A([A™],[AT]) admits a trivialization.

Proof. By continuity, it suffices to prove the identity under the asumption
0sAx(s) = 0, ®x(s) = 0, and Osu(s) = 0 for |s| > 1. Then there are paths
[0,1] = G(Y), A = v5 such that (vy )*Ax(s) = A~ for s < —1and (v]")*Ax(s) =
AT for s > 1. We can replace A* by ((vF)~1)*A* and thus assume in addition
that v = 1. Now there is a smooth map [0,1] x R — G(Y) : (\,s) = ux(s)
such that ug = 1, uy(s) = vy for s < —1 and uy(s) = v for s > 1. Define

1= uy, Ay, u” = gy,
for every 7 € [0,1]. Then we have AT = (u")*A]. By continuity, the assertion
now holds for 7 = 1 if and only if it holds for 7 = 0, that is for the original pair
({Ax},u). For 7 = 1 we have A}(s) = A* and u'(s) = 1 for £s > 1.
Finally, we prove the lemma in the case Ax(s) = A* for +s > 1. For
T > 2 we define the catenation BY := ®1ds + B} € A(R/2TZ x Y, L) and
u” € G(R/2TZ x Y) by

_ [ A\(s), ~T/2<s<T/2,
B} (s) = { A(/)\(T —s), T/2<s<3T/2,
_f ®a(s), -T/2<s<T/2,

T, J ou(s), -T/2<s<T/2,
ui(s) = { 1, T/2<s<3T/2

Then BY(s) = A* and ®1 = 0 for +s € [1,7 — 1]. Moreover we have
BY = (u?)*BI. For T sufficiently large the linear gluing theory gives rise to a
continuous family of isomorphisms

QDZ: : OI(DAA) — Or(D]B}“)v

where Dyr denotes the anti-self-duality operator on R/2TZ x Y introduced in
Section [d] The gluing operators commute with the gauge transformations, i.e.

el ou* = (ul)* ol : Or(Dy,) — Or(Dgr).

The isomorphisms induced by the homotopies A — Ay and A — B{ satisfy the
same relation. By Theorem (iv) (with v = 1), the isomorphism (u®)* :
Or(Dgr) — Or(Dgr) agrees with the one induced by the path A — BT. Hence
the same holds for v* and this proves the desired identity.

To see that Or([A7],[AT]) — A(J[A™],[AT"]) admits a trivialization we only
need to check that parallel transport around loops induces the identity isomor-
phism on the fibre. This follows immediately from the identification of the
homotopy induced isomorphism with u* : Or(Dy,) — Or(Dy,) for u = 1. O

Proof of Theorem[I0.3 The orientation bundle over the constant component of
A([B;], [Bi]) is canonically oriented by the (Homotopy) and (Constant) axioms.
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The orientation on the other components of A([B;], [B;]) is determined by the
(Sum) axiom because any connection A € A([B;], [B;]) is homotopic to B;#1Z,,
for the constant solution B; = B;, a connection =, over S* associated to a non-
trivial u € G(S%), and any T > 0. Indeed, since G(Y) is connected, A can be
homotoped to a connection with fixed limits in A(B;, B;). Moreover, there is a
homotopy equivalence A(B;, B;) — C>°(S*, £) which assigns to each connection
A € A(B;, B;) a based loop in £ obtained from the path Algy : R — £ with
endpoints B;|sy. Now, by (L2), the loop Alsy in £ is homotopic to 4*Bil|gy
for some loop 4 : S* — G(X). Hence A is homotopic to B;#r=, for the as-
sociated u € G(S%). Similarly, the orientation bundle over A([B;],[Bit1]) is
oriented by o4, and the (Homotopy) and (Sum) axioms, because any connection
in A([B;], [Bi+1]) is homotopic to A;#7=, for some v € G(S3). Finally, the
orientation bundles over general spaces A([B;], [B,]) are oriented by the (Cate-
nation) axiom and the previously fixed orientations. This proves uniqueness.
To establish existence note that, by Lemma [I0.4] we have a choice of two
possible orientations over every component of each A([A™],[AT]). Each of the
possible combinations of choices satisfies the (Homotopy) axiom by construction.
To see that the choices can be made such that the (Constant), (Catenation),
and (Sum) axioms are satisfied (and so the (Equivariance) axiom follows from
Remark , one needs to check that the isomorphisms in the (Catenation),
(Sum), and (Homotopy) axioms all commute. For example, let Ay € A(B;, B;)
and A\ € A(Bj, By) be smooth families parametrized by A € [0, 1] and denote by

p: Or(Dy,) — Or(Dy,), P’ Or(Day) — Or(Day),

pT : Or(DAo#TAé) — Or(DAl#TAll)

the isomorphisms induced by the homotopies A — Ay, A}, and Ay#A). Let
o} :0r(Dy,) ® Or(DA;) — Or(DAX#TA;)

denote the catenation isomorphisms for 7' sufficiently large. A parametrized
version of the linear gluing construction then proves that

ol o(p@p)=p"oog.
A similar statement holds for the (Homotopy) and (Sum) isomorphisms. That
two (Catenation) isomorphisms commute is a kind of associativity rule modulo
homotopy and the proof involves a simultaneous gluing construction for three
connecting trajectories; similarly for the commutation rules of the (Sum) and
(Catenation) isomorphisms. All these arguments are exactly as in the standard
theory and the details will be omitted. O

11 Floer homology

Let Y be a compact connected oriented 3-manifold with boundary dY = ¥ and
L C A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold
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satisfying (L1-3) on page Fix a Riemannian metric g on Y, a regular per-
turbation (v, f) € 'y, X Fn as in Theorem and a system o = {op}s of
coherent orientations as in Theorem Associated to these data we define a
Floer homology group HF (Y, L; g, f,0) as follows.

Since the trivial connection is nondegenerate by (L3), the set

Rp={A€AY)|Fa+X;(A)=0, Aloy € L}/G(Y)

of gauge equivalence classes of critical points of CSz + hy is finite, by Proposi-
tion The nontrivial critical points determine a chain complex

CEY.Lif) = @ Z(A).

[AleRs\[0]

with a Z/8Z-grading py : Ry — Z/8Z defined by the spectral flow (see Corol-
lary . We emphasize that the spectral flow is invariant under homotopies
of the metric and of the perturbation with fixed critical points. To define the
boundary operator we consider the space

8SA—dA<I>+*(FA —l—Xf(A)) =0
A(s)ls €L VseR

— A+ dds .
+. R __ AL
M(A™, AT 9, Xy) = € AR x Y) hms_&ooil(s) =A
Dlgjsp>13 =0
Ef(A) < 0

This space is invariant under the group G(A™, AT) of gauge transformations
u € G(R x Y) that satisfy u(s) = u* € G4+ for £s5 > 1. The quotient spaces
M(A‘,A*; 9,X7)/G(AT, A7) are canonically isomorphic for different choices
of representatives A% of critical points. The index of the linearized operator at
[Alis 67(A) = ps(A7) — py (A1) (modulo 8). For k € Z we denote the index k

part of the Floer moduli space by
MF(A™, AT 9, Xp) = {[A] € M(A™, AT59,X[)/G(A™, AT) [ 55(A) = k}.

For k < 7 this is a smooth k-dimensional manifold (see Section |§| and Defini-
tion . The energy of a solution in this space is E(A) = 1x2(k + np(AT) —
ns(A~)) by Corollary (i), and hence is independent of A. Moreover, R acts
on MF(A=,A%;9,X r) by time-shift, and the action is proper and free unless
A= = A" and k = 0. For k = 1 the quotient space M!(A7, AT; X;)/R is a
finite set, by Corollary [7.6] Counting the elements with signs gives rise to a
boundary operator on CF (Y, L; f) via

A7) = > > v(A) | (AT). (115)

[AT]ERO] \[A]leM (A, At:g,Xf)/R

Here v(A) := 1 whenever the element d;A € kerDy = det(Dy) is positively
oriented with respect to oy and v(A) := —1 otherwise. The next two theorems
are the main results of this paper; their proofs take up the rest of this section.
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Theorem 11.1. The operator 0 : CF(Y, L; f) — CF(Y, L, f) defined by
satisfies 0o 0 = 0.

The Floer homology group of the pair (Y, L) equipped with the regular
data (g, f,0) is defined by

. ~ ker0: CF(Y,L; f) = CF(Y, L; f)
HF(Y, £ g, f,0) := ima: CF(Y, L; f) — CE(Y,L: )

The next theorem shows that it is independent of the choices of metric, pertur-
bation, and coherent orientations.

Theorem 11.2. There is a collection of isomorphisms
O HF(Y, L5 9% [, 0%) = HF(Y, £; g7, 17, 07),
one for any two regular triples (g%, f*,0%) and (¢°, f?, 0?), such that
P70 o pP = o7, P =1d (116)
for any three regular triples (g%, f*,0%), (¢°, f?,0%), and (g7, f7,07).
Proof of Theorem[I1.1. For A* € Ry \ [0] denote

n(A=, A%) = > v(A).

[AlEML(A— A+;g9,X;)/R
Then the equation d o @ = 0 is equivalent to the formula

> n(A7,B)n(B,AT) =0 (117)
[BIER\[0]

for all A € R;\ [0]. The proof of is exactly as in the standard case.
One studies the moduli space M?(A~, AT)/R. This is a 1-manifold, oriented
by the coherent orientations of Theorem [10.3] By Corollary its ends are
in one-to-one correspondence with pairs of trajectories in M!(A™, B; Xf)/R x
MY (B, AT; X)/R for any critical point [B] € R\ [0], which are exactly what is
counted on the left hand side of (I17)). By the (Catenation) axiom in Section [L0]
the signs agree with the orientation of the boundary of M?(A~, AT; X;)/R.
Hence the sum must be zero and this proves 0 o 0 = 0. O

Proof of Theorem[I1.2 That the Floer homology groups are independent of the
choice of the system of coherent orientations is obvious; two such systems give
rise to isomorphic boundary operators via a sign change isomorphism (with
+1 on the diagonal). To prove the independence of metric and perturbation,
we fix two Riemannian metrics ¢* on Y and two sets of regular perturba-
tion data (y*, f¥). We will construct a chain map from CF(Y,L;g~, f~) to
CF(Y,L;g", fT) following the familiar pattern. As in the closed case we choose
a metric § on R x Y such that § = g* for +s sufficiently large. However,
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unlike the closed case this metric cannot necessarily be chosen in split form
since it is required to be compatible with the boundary space-time splitting in
the sense of Definition (see Example or [36, Example 1.4]). Next we
choose a holonomy perturbation X : AR x Y) — Q2*(R x Y, g) of the form
X = BXyp- + (1 = B)X s+ + Xy for some cutoff function 3 € C*(R, [0,1]) and
a further holonomy perturbation Xy as in Definition This uses thickened
loops v} : S1 x B® < R x int(Y) in a compact part of R x Y, so that we have
X=X ¢+ for &5 sufficiently large. This perturbation is still gauge equivariant
but no longer translation invariant. We use these interpolation data to set up
the 4-dimensional version of the perturbed anti-self-duality equation on R x Y’
as described in Section @ For critical points A% € R+ \ [0] from the two Floer
chain complexes we consider the space of generalized Floer trajectories

Fe+X(E)++,(Fs+X(E)=0
A(s)ls €L VseR

E=A+dds |
MATA%5,8) = 2 Ry | imeme Als) = A*
l{js1>1y =0
Ef(E)<OO

Here *; denotes the Hodge operator on R x Y with respect to the metric g.
This space is invariant under the gauge group G(A™, A™) as before, and if the
perturbation X is regular, then the quotient M(A~, A+; g, X)/G(AT, A~) will
be a smooth manifold whose local dimension near [A] is given by the Fredholm
index 0(A) = ps- (A7) — ps+(AT) (modulo 8). By transversality arguments
similar to Section |8 we can find a perturbation Xy (and thus X') such that the
linearized operators of index less than or equal to 7 are indeed surjective. Thus
we obtain smooth k-dimensional moduli spaces

MF(A™, AT 3, X) = {[A] € M(A™, A §,X)/G(A™,AT) | 5(A) = k}

for k£ < 7. The 0-dimensional moduli spaces are compact by the same analysis
as in Section [7] Namely, the main component will converge to a new solution
without time-shift; energy cannot be lost by bubbling or by shift to +00 since the
remaining solution would have negative index. So — again using the orientations
from Section [I0] - we can define a homomorphism

&:CF(Y,L;g7, f7) = CR(Y, L; gF, 1),
which preserves the grading and is given by
DA™= > > v(A) | (AT).
[A+]ER ;4 \[0] \AeMO(A—,A+;5,X)

This time the linearized operator is bijective, so det(Dy) is canonically isomor-
phic to R, and the sign v(A) = +1 is obtained by comparing the coherent
orientation o, with the standard orientation of R.
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As in the standard theory there are three identities to verify (e.g. [29] Sec-
tion 3.2]). First, we must prove that ® is a chain map, i.e.

0T od=000". (118)

This is proved just like the formula d 0 @ = 0 in Theorem [T1.1} In this case the
relevant 1-manifold is the moduli space M (A=, AT; g, X ). A compactness and
gluing theory similar to Corollary identifies the ends of this moduli space
with the pairs of trajectories in M'(A~,B~; 97, X;-) x M°(B~,A*; g, X) for
[B7] € Ry- \ [0] and in MO(A=,B*;§,X) x MY BT, At g, X4) for [BY] €
R+ \ [0]. Summing over these oriented ends of a 1-manifold then proves that
d satisfies and hence descends to a morphism on Floer homology.

Second, we must prove that the induced map on homology is independent of
the choices. Given two such maps ®g, ®; : CF(Y, L;97, f~) — CF(Y, L; g™, f)
associated to (jo, Xo) and (g1, )~(1) we must find a chain homotopy equivalence
H:CF(Y,L;97,f7) = CF(Y,L;g", fT) satisfying

O~ Dy =0t oH+Hod . (119)

To construct H we choose a 1-parameter family {7, X A o<a<i of interpolating
pairs of metric and perturbation. By Lemma the metrics can be inter-
polated within the space of metrics that are equal to g+ over the ends and
are compatible with the space-time splitting of the boundary. The perturba-
tions X can be chosen as convex combinations. We then add further compactly
supported holonomy perturbations for 0 < A < 1 to achieve transversality of
the parametrized moduli spaces

MF (A7, AT {ga, Xa}) o= {(\JA]) | [A] € MF(A™, AT G, X))

For k = —1 these are compact oriented 0-manifolds which we use to define H:

H(A )= ) > v\ A) | (AT,

[ATIER £ O] \(A\8)eEM (A=, A%5{7x, X))

The linearized operator has a 1-dimensional cokernel which projects isomorphi-
cally to R and v(\, A) is the sign of this projection. To prove one stud-
ies the 1-dimensional moduli space M?(A~, A*: {gx, X»}) in the usual fashion
with the contributions of ®( corresponding to the boundary at A = 0, the con-
tributions of ®; to the boundary at A = 1, and the contributions on the right
in to the noncompact ends with 0 < A < 1. These ends have either
the form of a pair in M~1(A~, B¥; {4\, X\}) x M} (B*, A*; g%, X;+)/R with
(B*] € Rye \ {[0]} or in MI(A~, B~1g~, X;-)/R x M- (B, A% {3y, X.})
with [B~] € Ry~ \ {[0]}. Counting all the ends and boundary points with
appropriate signs proves that H satisfies (119)).

Third, we must establish the composition rule in for three sets of
regular data (g%, £), (¢°, %), (g7, 7). We choose regular interpolating metrics
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and perturbations to define ®?* and ®7# on the chain level. The catenation
(with gluing parameter T') of these data gives rise to a regular interpolation
from (g%, f*) to (g7, f7) for T sufficiently large. The resulting morphism @}ﬁ
will then, for large T', agree with ®7% 0 ®5 on the chain level. This follows from
a gluing theorem as in Section [9]and compactness arguments as in Theorem
and Corollary In particular, the breaking of connecting trajectories in the
limit T — oo at the zero connection is excluded since the stabilizer Gy C G(Y)
adds 3 to the index of the glued connection (compare with Remark or use
index inequalities as in Corollary ) Again, the orientations are compatible
with the gluing by the (Catenation) axiom. The upshot is that, for suitable
choices of interpolating data, equation already holds on the chain level.
Once these three relations have been established one just needs to observe
that ®*“ is the identity on the chain level for the obvious product metric and
perturbation on R x Y. It follows that each ® induces an isomorphism on Floer
homology. This proves Theorem [11.2 O

A The spectral flow

In this appendix we adapt the results of [26] to families of self-adjoint operators
with varying domains. Similar results have appeared in various forms (see [8]
19, [6]).

Let H be a separable real Hilbert space. Throughout we identify H with its
dual space. We consider a family of bounded linear operators

A(s): W(s) = H

indexed by s € R. Here W(s) is a Hilbert space equipped with a compact
inclusion W (s) C H with a dense image. We formulate conditions under which

the unbounded operator
D:=0,+A

on L?(R, H) is Fredholm and its index is the spectral flow of the operator
family s — A(s). In contrast to [26] the domain of A(s) varies with s € R. Our
axioms give rise to an isomorphic family of operators with constant domain but
which are self-adjoint with respect to inner products which vary with s € R.
More precisely, we assume that the disjoint union | | . W (s) is a Hilbert space
subbundle of R x H in the following sense.

seR

(W1) There is a dense subspace Wy C H with a compact inclusion and a family
of isomorphisms Q(s) : H — H such that Q(s)Wy = W (s) for every s € R.

(W2) The map @ : R — L(H) is continuously differentiable in the weak oper-
ator topology and there is a ¢y > 0 such that, for all s € R and £ € Wy,

ey lEllws < 1Q()Elw(s) < coll€llwa,

1Q(s)é e + 110:Q(s)él < collélla-
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(W3) There exist Hilbert space isomorphisms Q* € £(H) such that

. +
Jm 10(s) = Q¥ e = 0.

Two trivializations Q1, Q2 : R — L(H) satisfying (W1-3) with Wy, Woa, respec-
tively, are called equivalent if there is a family of Hilbert space isomorphisms
®(s) € L(H) such that

(I)(S)W()l = WOQ, QQ(S)‘I)(S) = Ql(s)

for every s, the map ® : R — L(H) is continuously differentiable in the weak
operator topology, the map ® : R — L(Wy1, Wye) is continuous in the norm
topology, supcg [|0s®(s)|| 2y < oo, and there exist Hilbert space isomorphisms
®* € L(H) N L(Wy1, Woz) such that

lim ||®(s) — ®F| 2z = 0.

s—+oo

Remark A.1. To verify (W1-3) it suffices to construct local trivializations on
a finite cover R = (JU, that satisfy these conditions (where condition (W3)
is only required near the ends) and that are equivalent over the intersections
U, NU3.

We now impose the following conditions on the operator family A. Again,
it suffices to verify these in the local trivializations of Remark

(A1) The operators A(s) are uniformly self-adjoint. This means that for each
s € R the operator A(s) when considered as an unbounded operator on H
with dom A(s) = W(s) is self-adjoint and that there is a constant ¢; such
that

€15y () < ex (I1A(s)ENT + II811%) -
for every s € R and every £ € W (s).

(A2) The map B := Q tAQ : R — L(Wy, H) is continuously differentiable in
the weak operator topology and there exists a constant ¢, > 0 such that

1B(s)¢llm + 10sB(s)&l < call€llwy-
for every s € R and every & € Wy
(A3) There are invertible operators B* € £(W, H) such that

. +
i 1B(s) = B e =0,

Given a differentiable curve £ : R — H with £(s) € W(s) for all s € R we
define D¢ : R — H by

(DE)(s) = 058(s) + A(s)€(s)-
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This map extends to a bounded linear operator
D:WY(R,H)NL*(R,W) — L*(R, H).

Here L*(R, W) := {Qno | no € L*(R, Wp)} is a Hilbert space with the norm

Il gy = / ()1 ) -

By (W2) this norm is equivalent to the norm on L?(R, Wy) under the isomor-
phism 1 — Q™ 'n. We will prove the following estimate, regularity, and index
identity.

Lemma A.2. There exist constants ¢ and T such that

> 2 2 * 2 T 2
(1060005 + el )as < ([ 1oetols as+ [ e as)
for every ¢ € WH2(R, H) N L2(R, W).

Theorem A.3. Suppose that £,m € L*(R, H) satisfy
| (190(9) = 496(5).€(9) + (00,101 )ds =0
for every test function ¢ : R — H such that Q¢ € C(R,Wy). Then
¢e WH(R, H)N L*(R, W), DE =1).

Theorem A.4. The operator D is Fredholm and its indez is equal to the upward
spectral flow of the operator family s — A(s).

As in the case of constant domain the spectral flow can be defined as the
sum of the crossing indices

pspec(A) =Y _sign T(4, s). (120)

In the present case the crossing form I'(A, s) : ker A(s) — R is defined by

d

= | (€0, Al +D5(),

t=0

(A, 5)(€) :

where £(t) € W(s+t) is chosen such £(0) = € and the path t — A(s+1t)&(t) € H
is differentiable (for example £(t) := Q(s +1)Q(s)~1€); the value of the crossing
form at £ is independent of the choice of the path t — £(t). We assume that
the crossings are all regular, i.e. I'(A, s) is nondegenerate for every s € R with
ker A(s) # {0}. Under this assumption the sum in is finite.

Two operator families A;(s) : Wi(s) — H and As(s) : Wa(s) — H with
the same endpoints AT are called homotopic if they can be connected by an
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operator family Ay (s) : Wi(s) = H, 1 < A < 2, with the following properties.
There is a family of Hilbert space isomorphisms Qx(s) : H — H that is con-
tinuously differentiable in A and s with respect to the weak operator topology
and satisfies Qx(s)Wy = Wi(s) as well as conditions (W2-3) uniformly in A.
Moreover Ay(s) satisfies (A1-3) with constants independent of A and the map
[1,2] x R — L(Wy, H) : (A, 5) = Qa(s) " Ax(s)Q(s) is continuously differen-
tiable in the weak operator topology.

The spectral flow has the following properties:
(Homotopy) The spectral flow is invariant under homotopy.
(Constant) If W(s) and A(s) are independent of s € R then pgpec(A4) = 0.

(Direct sum) The spectral flow of a direct sum of two operator families A and
B is the sum of their spectral flows, i.e.

Hspec (A S B) = Mspec (A) + Uspec(B)~

(Catenation) The spectral flow of the catenation of two operator families Agq
from Ag to Ay and Ajs from A; to As is the sum of their spectral flows,
ie.

,Uspec(AOI#AIQ) = Mspec(A01)+Mspec(A12)~
(Normalization) For W = H =R, A(s) = arctan(s) we have ptgpec(A4) = 1.

The spectral flow is uniquely determined by the homotopy, constant, direct sum,
and normalization axioms. The proof is the same as that of [26, Theorem 4.23]
and will be omitted.

Proof of Lemma[A-3 The proof is analogous to that of [26, Lemma 3.9]. The
only difference is in the first step where we prove the estimate with 7' = oo. For
every ¢ : R — H such that  := Q¢ € C}(R, Wy) we have

| 1mels = [ (lougl + el + 20, 46) )ds.

—0o0

The last summand can be estimated by

2/°°<asg,As>ds

—0Q0

_ / " (20(0.Qm. AQn) + (Q0n. AQn) +(Qn. AQD.n) ) s

— 00

- [ (t0.@n.0B1) - (@0 (0.0)B1) ~ (Qu.Q(@.B)) )as

— 00

o0
< 32y / )l a1l v s
o0

< clléllz @, m €l 2 mywy
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with ¢ := 3cicy. Here we used partial integration and the identity AQ = QB.
Now use (Al) to obtain

IDEN|72 )
> (1058012 .y + €1 1€ 2wy = 1€0 22,y — lléll e,y €D 22w
> (0581172 g, ) + (201) T8N T2 @owy — (L4 5¢%e1) €172 -
This proves the estimate for T = co. O

Proof of Theorem[A.3 We follow the line of argument in [26, Thm. 3.10].
Step 1: Define &o,m0 € L2(R, H) by

So(s) :=Q()"¢(s),  mo(s) := Q(s)™n(s) + (0:Q(5)")&(s)-
Then & € WH2(R,W{) and

0580(s) = —B(s)"&o(s) + no(s)- (121)

To see this we calculate for ¢ € C5°(R, W)

| ongatnds= [ (0.@e0) - 0.Q)p0. ) s

—00 — 00

- / ) (<AQ%6>H —(Qpo,n)m — <<asQ>goo,5>H) ds

— 00

= / (<<P0, B*& —no >W0,W0*) ds.
Here the self-adjoint operator A(s) extends to an operator in L(H, W (s)*) which
we also denote by A(s). We denote the dual of the trivialization Q(s) by
Q(s)* € L(H), which extends to an isomorphism W (s)* — W§. With this
we can write B* = Q*A(Q*)~! for the dual operator family of B = Q~1AQ,
which is continuously differentiable in £(H, W{) with a uniform estimate dual
to that in (A2). So we have B*¢y — 1o € L*(R, W), and since the derivatives
of test functions g are dense in L?(R, W) this implies Step 1.

Step 2. Suppose that & and n are supported in an interval I such that for all
s € I the operator B(s) : Wy — H is bijective and satisfies a uniform estimate

1B(s)™ l ecawe) < e
Fiz a smooth function p: R — [0,00) with support in (—1,1) and [p =1 and
denote by ps(s) = 8 1p(671s) for § > 0 the standard mollifier. Then we find a
constant C such that ps x (Q~¢) € WH3(R, H) N L*(R, Wy) for all § > 0 and

1DQ(ps * Q)2 < C.

113



Multiply equation by (B*)~! to obtain & = (B*)_l(no — 3550) and note
that Q71¢ = (Q*Q)~I&. Then convolution gives
ps * (Q71E)
=ps* (0s((B*Q*Q) ") & + (B*Q*Q) " 'mo) — ps * (B*Q*Q) &)
=ps*Co— ps * ((Q*QB) &)

with (g = 83((Q*QB)’1)§0 +(Q*QB)"'ny € L*(R,Wy). This takes values in
Wy since

(B'Q Q)= 'AT(Q) " =B7HQQ)" (122)
and its derivative are uniformly bounded in L(H, Wy).
So, after convolution, Q(p5 * (Qflﬁ)) lies in the domain of D and

Q7'DQ(ps * (Q71E))

= ps5 * (Q71E) + Q7H(9:Q) (ps * (Q71€)) + B(ps * (Q71€))

=B(B " (ps * (Q7'€)) — ps * (Q"QB) &)
+Q71(9:Q) (ps * (Q7€)) + B(ps * o)

The second line is unifomly bounded in L?(R, H). For the first term we have
| 1B s (@9)(6) = s (@ QB) M 60) 5y, s
o) s+0
/oo‘ /svfﬁ
[ [ Bl e, dds

<Clliloe [ 16l

52— B0 (Qrem) e, as

=

<

Here the constant C' contains a uniform bound for §,B~! = —B~1(9,B)B~*
on I. This proves Step 2.

Step 3. £ € WL2(R, H) N L3(R, W) and D¢ = 1.

Under the assumptions of Step 2 it follows from Lemma that ps * (Q71E)
is uniformly bounded in W := L%(R, W) N WH2(R, H) for all § > 0. So there
is a sequence d, — 0 such that ps, * (Q71&) converges weakly in W. The
limit has to coincide with the strong L?(R, H)-limit Q~1£. Thus we have £ €
LA (R, W)NWL2(R, H). Now it follows from (121)) and (122) that

DE = (Q") 0580 — (@) H(0:Q7)(@Q7) 6o + B(Q") &
=n—(Q")'B* + B(Q") &% = 1.

This proves the theorem under the assumption that £ and n are supported in an
interval on which B is bijective. In general, one can cover the real axis by finitely
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many open intervals on which A\l + B(s) : Wy — H has uniformly bounded
inverses for some A € R. Then one can use a partition of unity argument to
deduce the regularity and equation for £ on each interval. O

Sketch of proof of Theorem[A.]] By Lemma [A22] the operator D has a finite
dimensional kernel and a closed image. By Theorem [AZ3] the cokernel of D is
the kernel of the operator D’ with A replaced by —A. Hence the cokernel of D
is also finite dimensional and thus D is Fredholm.

To prove the index identity one verifies as in |26, Theorem 4.1] that the
Fredholm index satisfies the axioms on page[I12] which characterize the spectral
flow. For the homotopy and the direct sum property one can extend the proofs
in [26] without difficulty to nonconstant domains; the constant and normaliza-
tion properties are immediate since they only refer to constant domains. O

We conclude this appendix with a version of the index identity for twisted
loops of self-adjoint operators.

Theorem A.5. Let A(s) : W(s) — H be an operator family that satisfies the
conditions (W1 —2), (Al —2), and

Wi(s+1)=Q 'W(s), A(s+1)=Q 'A(s)Q

for every s € R and a suitable Hilbert space isomorphism @ : H — H. Then A
induces a Fredholm operator D = 0s + A : W — H, where

H:= {f € L?OC(R’ H) |§(S + 1) = Qilé‘(s)} ’

W= {€e L} (RW)NW AR, H)[£(s+1) =Q'¢(s)}.

Its Fredholm indez is equal to the upward spectral flow of the operator family A
on a fundamental domain [sg, sg + 1].

Proof. The Fredholm property follows from Lemmal[A-2 and Theorem The
proof of the index formula can be reduced to Theorem [A.4] by using the homo-
topy invariance of spectral flow and Fredholm index, stretching the fundamental
domain, and comparing kernel and cokernel with a corresponding operator over
R via a gluing argument. We omit the details. For a version of the relevant
linear gluing theorem see [9, Propositions 3.8, (3.2)]. O

B Symmetric operators and Fredholm pairs

Associated to a closed densely defined symmetric operator on a Hilbert space is
a (possibly infinite dimensional) symplectic vector space, namely the quotient
of the domain of the dual operator by the domain of the original operator. This
space can be thought of as the space of boundary data and the symplectic form
is obtained from integration by parts. We call this space the Gelfand—Robbin
quotient, because the first author learned about this notion from Joel Robbin
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and Israel Gelfand in the early nineties, who arrived at these ideas indepen-
dently, but never wrote them up. Though a precursor to this discussion can be
found in [I3} Chapter XII.4] we are not aware of an earlier reference explicitly
making the connection between self-adjoint operators and symplectic geome-
try. Since then many researchers have contributed to this field. In particular,
the notion of a Fredholm pair of Lagrangian subspaces (of what we call the
Gelfand—Robbin quotient) plays a central role in the work of Boss-Bavnbek and
his coauthors [7, [§]; they introduced the Maslov index for paths of such Fredholm
pairs and related it to the spectral flow in a suitable setting (see Remark
below). The results proved in this appendix play a crucial role in reducing our
orientation and index theorems to the case of closed 3-manifolds. We couldn’t
find these results in the relevant papers, although most of the definitions and
some of the basic lemmas below are contained in the existing literature.

Let H be a Hilbert space and D : dom D — H be an injective, symmetric,
but not necessarily self-adjoint, operator with a dense domain and a closed
image. Then the domain of the adjoint operator D* : dom D* — H contains
the domain of D and the restriction of D* to the domain of D agrees with D.
The Gelfand—Robbin quotient

V :=dom D*/dom D
carries a natural symplectic form
w([z], [y]) :== (D*z,y) — (=, D"y).

The Lagrangian subspaces A C V are in one-to-one correspondence to self-
adjoint extensions Dy of D with

dom Dy = {z € dom D" |[z] € A}.
Moreover, the kernel of D* determines a Lagrangian subspace
Ao :={[z] € V |z € dom D*, D*xz = 0}. (123)
The operator Dy is bijective if and only if V' = Ag@® A. (See Lemmabelow.)
The domain of D* is a Hilbert space with the graph inner product
(z,9)p- = (2, y) g + (D2, DY)y .

The domain of D is a closed subspace because D has a closed graph. Hence
both dom D and the quotient space V' = dom D*/dom D inherit a Hilbert space
structure from dom D*. One can now check (using the next remark) that (V,w)
is a symplectic Hilbert space in the sense that the symplectic form is bounded
and the linear map V' — V* : v — I, (v) := w(v, ) is an isomorphism. If A C V
is a Lagrangian subspace, i.e. the annihilator A+ C V* is given by A+ = I,(A),
then A is closed and hence inherits a Hilbert space structure from V.

Remark B.1. (i) The graph norm on dom D is equivalent to the norm

(z,y)p = (D2, Dy )y .

because D is injective and has a closed image.
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(ii) Tt is sometimes convenient to identify the Gelfand—Robbin quotient V' =
dom D*/dom D with the orthogonal complement

V = (dom D)* = {z € dom D* | D*z € dom D*, D*D*z +x =0} .
The orthogonal projection of dom D* onto V' along dom D is given by
domD* =V :2+ z— (1+D*D) *(x + D*D*x),

where 1+ D*D is understood as an operator from dom D to (dom D)*. The
graph inner product on V is compatible with the symplectic form and the asso-
ciated complex structure is  — Jx := D*z, that is w(z, Jy) = (x,y )p+. This
shows that (V,w) is indeed a symplectic Hilbert space.

(iii) In the formulation of (ii) the subspace A and its orthogonal complement
are given by
A ={zeV|IecdomDs.t. D(x+&)=0}={x € V|D*x €im D}
and
Ay = D*Ag =V NimD.

Definition B.2. A triple (V, A1, As) consisting of a Hilbert space V and two
closed subspaces A1, Ao C V is called Fredholm if A; N Ay is finite dimen-
sional, A1 + As is a closed subspace of V', and the cosum V /(A1 + Ag) is finite
dimensional (see [Z7]); equivalently the linear operator S : Ay X Ay — V' given
by S(x1,x2) := x1+x2 is Fredholm. The Fredholm index of a Fredholm triple
(V,A1,As) is defined by

index(V, A1, Ag) := dim(A; N Ag) — dim(V/ (A1 + Ag)) = index(S).
Lemma B.3. Let A C V be a Lagrangian subspace. Then Dy : dom Dy — H
is a Fredholm operator if and only if (V, Ao, A) is a Fredholm triple.
Proof. This follows from the definition and the fact that the homomorphisms
ker Dy — Ao NA:z— [z],

14 o H
AO —+ A 1II1 DA '
are bijective. For the second map this uses Lemma [B.4] below. O

[z] = [D"x]

Lemma B.4. Let D : dom D — H be an injective symmetric operator with a
closed image and a dense domain. Then

Y :={{edomD|D¢ e domD"}
is a Hilbert space with the inner product

and the operator D*D :Y — H is an isomorphism.
Moreover, if the inclusion dom D — H is a compact operator then the oper-
ator D(D*D)~' : H — H is compact.
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Proof. We prove that Y is complete. Let & € Y be a Cauchy sequence. Then
&, DE;, D*DE; are Cauchy sequences in H. Define £ := lim¢;, x := lim D¢,
y = lim D*D¢;. Since D and D* have closed graphs we have £ € dom D,
x € dom D*, D¢ =z, and D*x = y. Hence £ € Y and §; converges to £ in Y.

That D*D : Y — H is injective follows from the fact that D is injective and
(D*DE, &Yy = HD§||§{ for £ € Y. Now consider the Gelfand triple

Z CHCZ

where Z := dom D and (&,n)z = (D&, Dn)y. We identify H with its dual
space and define the inclusion H — Z* as the dual operator of the inclusion
Z — H. We can think of D : Z — H as a bounded linear operator and
of its adjoint as bounded linear operator D* : H — Z*. Then dom D* =
{re H|D*z € H}. Since D : Z — H is injective and has a closed image the
dual operator D* : H — Z* is surjective. Now let y € H. Then y € Z* and
hence there exists an element x € H with D*x = y. Since D*x € H we have
x € dom D*. Now it follows from the definitions that the kernel of D* is the
orthogonal complement of the image of D. Since the image of D is closed this
implies H = ker D* @& im D. Hence there is a vector zy € ker D* such that
x—xo € im D. Choose £ € dom D such that D€ = x — 9. Then D¢ € dom D*
and D*D¢ = D*xz = y. This proves that D*D is surjective.

Now assume that the inclusion Z — H is compact. To prove that the
operator D(D*D)~! : H — H is compact we observe that

L <.’[, g >H o * -1
SR B il

(124)

] H

for every x € H C Z*. Here the last equation follows from the fact that the
supremum in the second term is attained at the vector & = (D*D)~ 'z with
x = D*D¢y. Now let x; be a bounded sequence in H. Since the inclusion
H — Z* is compact, there exists a subsequence x;, which converges in Z* and
it follows from that the sequence D(D*D)~'z;, converges in H. This
proves the lemma. O

Remark B.5. (i) By Lemmathe subspaces Ag and Ag- of V in Remark
can also be written in the form

Ao = {z € dom D* | D*z + D(D*D) 'z = 0} = ker(D* + 1),
Ay ={z €V|z=DD*D) 'D*z} = Tker(D* + T),
where T':= D(D*D)~! : H — H maps to imT = dom D* Nim D.

(ii) The orthogonal projection of V onto Ag- extends to a bounded linear oper-
ator Ily : H — H given by

Moz = D(D*D +TD) Y (D*x + Tx).
Here D*D +TD : dom D — (dom D)* is an isomorphism because
(x,D*Dz + TDz) = ||Dz|* + | TDz||* > §||z||*.
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In fact, Iy is a projection on all of H, its kernel is Ay, and its image is equal to
the image of D. In particular, H0|A(§ =1

(iii) In all our applications the inclusion dom D — H is a compact operator.
Then, by Lemma T : H — H is compact, and thus the inclusion A~ — H
is compact. Indeed, the inclusion is given by the composition z +— T'D*x of a
compact and a bounded operator.

The inclusions dom D* — H and Ay — H, however, are not compact unless
V is finite dimensional. Namely, if V' is infinite dimensional then so is the kernel
of D* (since Ay C V is Lagrangian) and the inclusion dom D* D ker D* — H is
an isometric embedding. Lemma below gives a condition under which the
domain of a self-adjoint extension of D has a compact embedding into H. This
requires the notion of a compact perturbation of a closed subspace of V.

Definition B.6. Let V' be a Hilbert space and A C V be a closed subspace. A
closed subspace A’ C V is called a compact perturbation of A if the projection
of A’ onto some (and hence every) complement of A in V is a compact operator
and vice versa.

Remark B.7. The notion of compact perturbation defines an equivalence rela-
tion on the set of closed subspaces of V. To see this denote by II: V' — A and
Il' : V.— A’ the orthogonal projections. If A’ is a compact perturbation of A
and A” is a compact perturbation of A’ then the operators 1 —IT : A’ — A+
and 1 —1II' : A” — (A)* are compact. Hence the operator (1 — II)[yr =
(1-II)(1 —II')|o» + (1 — II)IT'| o~ is compact. Repeating this argument with A
and A" interchanged we see that A” is a compact perturbation of A.

Lemma B.8. Let V be a Hilbert space and A1, A, A" C V be closed subspaces
such that A’ is a compact perturbation of A. If (V,A1,A) is a Fredholm triple
then so is (V, A1, A).

Proof. Let I1 : V. — A and II' : V' — A’ be the orthogonal projections. Then
(1-HI')|py =M1 — )]s : A > A and (1 — IT'I)|ar : A” = A’ are compact
operators. This implies that II|p, : A’ — A and I'| : A — A’ are Fredholm
operators with opposite indices; see e.g. [I8, Chapter II1.3].

Now suppose that (V, A1, A) is a Fredholm triple, i.e. the map S : Ay xA = V
given by S(v1,v) = v1 + v is Fredholm. Then the operator

S"i=So(IxM): Ay xAN =V

is Fredholm. Define the map S’ : Ay x A’ — V by S’(vy,v") = v1 + v'. Since
S’ (vy,v") = §"(v1,v") = (1 —TIII")v’ the operator S’ — S” is compact. Hence S’
is a Fredholm operator and so (V, Ay, A’) is a Fredholm triple. O

Lemma B.9. Let (V,w) be a symplectic Hilbert space. Let A,A" C V be La-
grangian subspaces. Then the following are equivalent.

(1) A’ is a compact perturbation of A.
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(ii) The projection of A’ onto A+ is a compact operator.
(iii) The operator A’ — A* : v — w(v', ) is compact.

Proof. By definition, (i) implies (ii). The Lagrangian condition asserts that
the orthogonal complement A+ is isomorphic to A* via the isomorphism A+ —
A* : v — w(v,-). Under this isomorphism the orthogonal projection A’ — A~
corresponds to the operator A’ — A* : v/ — w(v',), hence (ii) and (iii) are
equivalent. To see that (iii) implies (i) note that the operators A’ — A* :
v = w@,) and A - (A)* 1 v = —w(v,-) are dual to each other. Using
“(iii) < (ii)” we see that (iii) implies compactness of both projections A’ — A+
and A — (A’)*. This proves the lemma. O

Lemma B.10. Let D :dom D — H be an injective symmetric operator with a
closed image and a dense domain and suppose that the inclusion dom D — H is
a compact operator. Let V = (dom D)* be the Gelfand-Robbin quotient, A C V
be a Lagrangian subspace, and Ao, Ag be as in Remark . Then the following
are equivalent.

(i) The inclusion dom Dy — H is compact.
(ii) The inclusion A — H is compact.
(iii) A is a compact perturbation of Ag .

Proof. Let Iy : V. — V denote the orthogonal projection onto Aé‘. Then
Ip : V — H is compact since the inclusion of the image IIo(V) = Ag into H
is compact by Remark (ii). By Lemma (iii) holds if and only if the
operator (1 —IIp)|a : A — Ap is compact. Moreover, the graph norm of D* on
Ao = ker(D*+T) is equivalent to the norm of H so, in fact, (iii) holds if and only
if the operator (1—1IIp)|a : A — H is compact. We deduce that (iii) is equivalent
to (ii) because the inclusion A — H is given by the sum 1|5 = (1—Ty)|a +1o|a,
where IIg|a : A — H is compact.

That (i) is equivalent to (ii) follows from the fact that the inclusion of dom D
into H is compact, by assumption, and dom Dy = dom D & A. O

Lemma B.11. Let D : dom D — H be an injective symmetric operator with a
closed image and a dense domain and suppose that the inclusion dom D — H
is a compact operator. Let V = dom D* /dom D be the Gelfand—Robbin quotient
and Ao = {[z] € V|D*z = 0} as in . Let P: H — H be a self-adjoint
bounded linear operator such that D + P : dom D — H is injective. Then the
following are equivalent.

(1) The composition of P with the inclusion dom D* — H is a compact operator.
(ii) The operator Plier(p=+p) : ker(D* + P) — H is compact.

(iii) Ap :=={[z] € V| D*z + Pz = 0} is a compact perturbation of Ay.
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Proof. Abbreviate Dp := D + P. Then dom D} = dom D* and the graph norm
of D* is equivalent to the graph norm of D}. Moreover, on ker D} and ker D*
both graph norms are equivalent to the norm of H. For [z] € Ap, represented
by x € ker D%, and [zg] € Ao, represented by xg € ker D*, we have

w([z], [xo]) = (D*x,x0) — (x,D*x¢ ) = —( Px,x0) = (TPx — Px,20),

where T := D(D*D)~! : H — dom D*. Using Lemma and the compactness
of the inclusion dom D — H, we see that Ap is a compact perturbation of Ag if
and only if (P — T'P)|ker D% : ker D% — ker D* is a compact operator. Since T
is compact, by Lemma [B.4] this shows that (ii) is equivalent to (iii). That (i)
implies (ii) is obvious. To prove that (ii) implies (i) note that, by Remark
with D replaced by Dp, the inclusion of dom D* Nim Dp into H is compact.
Since the decomposition dom D* = (dom D* Nim Dp) @ ker D}, is orthogonal
with respect to the graph norm of D%, this shows that (ii) implies (i). O

Remark B.12. Let D, V, Ag be as in Lemma[B.11} P : H — H be a bounded
self-adjoint operator, and denote Ap := {[z] € V| D*z + Pz = 0}.

(i) Let AILD’P denote the orthogonal complement of A p with respect to the graph
inner product of D* + P. Then it always is a compact perturbation of Ag.
Namely, by Remark with D replaced by D + P, the inclusion Aﬁ’P — H is
compact. Hence, by Lemma with D replaced by D + P and A := A",
the inclusion {v € dom D* | [v] € A} — H is compact. Using Lemma[B.10]again
we deduce that A is a compact perturbation of Ag-.

(ii) The orthogonal complement A3 with respect to the graph inner product
of D* is a compact perturbation of Ag if and only if the restriction of P to
dom D* is a compact operator. This follows from Lemma |[B.11| and the fact
that A5 = D*Ap and Af = D*Ag in the notation of Remark where D* is
a compatible complex structure on V.

(iii) Tt follows from (i) and (i) that A" is a compact perturbation of A if
and only if the restriction of P to the domain of D* is a compact operator.
(iv) If A is a compact perturbation of Ag- then (V, Ap,A) is a Fredholm triple.
Since (V, Ap, AILD’P) is a Fredholm triple, this follows from (i) and Lemma

Lemma B.13. Let D,V,Aq be as in Lemma and let P(s) : H - H
for s € R be a continuously differentiable family of self-adjoint bounded linear
operators. Assume that P(s) converges to P(+00) =: P* in the operator norm
as s tends to £oo, that (D + P(s))|dom D 15 injective for every s € RU {£o0},
and that

ker(D*+ P~ )®domD  ker(D*+ P*)® dom D

=: A, CV.
dom D dom D 0C

Then the spectral flow of the operator family s — (D + P(s)), is independent
of the Lagrangian subspace A C V' such that V.= Aj ® A and A is a compact
perturbation of Ay .
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Remark B.14. Let D,V, A be as in Lemma [B.I1] and let Q : H — H be a
Hilbert space isomorphism such that

x € dom D* = z — Qx € dom D.

Then @ induces the identity on V. Let P(s) : H — H for s € R be a continu-
ously differentiable family of self-adjoint bounded linear operators such that

D+ P(s+1)=Q YD+ P(s)Q.
Assume (D + P(s))|dom p is injective for every s € R and denote

A ker(D* + P(0)) @dom D ker(D* + P(1)) ©® dom D
o dom D N dom D ’

Then the spectral flow of the operator family s — (D + P(s)), on the funda-
mental domain [0,1] is independent of the Lagrangian subspace A C V such
that V = Aj @ A and A is a compact perturbation of Ag. The proof is the same
as that of Lemma [B.13]

Proof of Lemma[B-13 The operators D + P(s) : dom D — H satisfy the as-
sumptions of this section and give rise to the constant Gelfand-Robbin quo-
tient V' = dom D*/dom D since dom (D + P(s))* = dom D*. Hence any
Lagrangian subspace A C V gives rise to a family of self-adjoint operators
A(s) := (D + P(s))a : dom Dy — H, which satisfies the conditions (A1-3) of
Section [A| whenever V' = A & A. In particular, the estimate in (A1) holds for
s = +oo, Le. ||z]|p. < C|(D+ PE)az|y for x € dom Dy, because (V,Af, A)
is a Fredholm triple and (D 4 P%), is injective. The estimate for s € R fol-
lows from a uniform bound of the form || P(s) — P*|| < C for the operator norm
on H. The assumptions (W1-3) are satisfied with the trivial map = 1 and the
constant domain Wy = dom D,. In particular, the domain embeds compactly
to H, by Lemma whenever A is a compact perturbation of Ag. Hence the
spectral flow is well defined under our assumptions (see Appendix .

We prove that the set S of Lagrangian subspaces of V' that are transverse
to Aj, and are compact perturbations of Ag is connected. For that purpose let
A1 C V denote the orthogonal complement of Aj with respect to the graph
inner product of D* + P and let I, : Aj — A} be the isomorphism given
by v — w(v,-). Then a subspace A C V = A; @ Af is a complement of Aj, if
and only if it is the graph of a linear operator from A; to A{, or, equivalently,
A = A4 := graph(I; !0 A) for some linear operator A : A; — A%. One can check
that the subspace A4 is Lagrangian if and only if A is self-adjoint and that it
is a compact perturbation of Ag if and only if A is compact. The last assertion
uses the explicit formula x + I 1Az — I;1Ax for the projection Ax — Af
along A; and the fact that A4 is a compact perturbation of Ag- if and only if
it is a compact perturbation of A;, by Remark (i) and Remark Thus
we have identified S with the vector space of compact self-adjoint operators
A: Ay — A7 and so S is contractible, as claimed.
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Now the result follows from the homotopy invariance of the spectral flow.
The homotopies of Lagrangian subspaces do not directly translate into homo-
topies in the sense of Section [A] see the proof of Lemma below. However,
the homotopy invariance of the spectral flow of the family s — (D + P(s)),
follows from Remark where the spectral flow is identified with a Maslov
index, which in turn is invariant under homotopies of A. O

Remark B.15. (i) Let [0,1] 3 s — (Ao(s), A1(s)) be a smooth path of pairs of
Lagrangian subspaces of V' such that (V,Ag(s), A1(s)) is a Fredholm triple for
every s. For each s define the crossing form I'(Ag, A1, 8) : Ap(s) NA1(s) = R by

d

T(Ag, Ay, 8)(v) := T

(w(v,vp(t) — w(v,vi(1))

t=0

for v € Ag(s) N A1(s), where Aj, A} C V are Lagrangian subspaces such that
V = Ao(s) ® Aj = A1(s) & A} and v((t) € A}, vi(t) € A} are chosen such that
v+ vi(t) € Ao(s + 1) and v+ vi(t) € A1(s+t). As in [25] the Maslov index
is defined as the sum of the signatures of the crossing forms

iAo, Ar) = signT(Ao, Ay, )

provided that the crossing forms are all nondegenerate and Ag(s) is transverse to
Aq(s) for s =0, 1. Under this assumption the sum is finite. The nondegeneracy
condition can be achieved by a small perturbation with fixed endpoints. The
Maslov index is invariant under homotopies of paths of Lagrangian Fredholm
triples with transverse endpoints.

(ii) The spectral flow in Lemma can be identified with the Maslov index

fispec (D + P)y) = p(Ap, A), (125)

where Ag(s) := Apy = {[z] € V|D*z + P(s)z = 0} and Ay(s) := A for
every s. The Fredholm property of the triples (V,Ap(,),A) follows from Re-
mark (iv).

To prove ((125)), fix a real number s, choose A} and v{(t) as in (i), let zo(¢) €
dom D* be the smooth path defined by (D* + P(s +t))zo(t) = 0 and [zo(t)] =
v+ vj(t) € Ao(s+t), and denote = := x0(0) so that [z] = v € Ag(s) N A. Then

d d
G eth0) = 5| w0+ i)
d * *
= 3l ((raa) - @)
t=0
d .
= —| ((D*+P(s+1t)z,x0(t))
dt|,_,
d *
= — ((D*+P(s+1t))z,z).
dt|,_,
This shows that the crossing forms I' ((D* 4 P), ,s) and —I'(Ag, A, s) agree
under the isomorphism ker (D* 4+ P(s)), — Ao(s) NA : z — [z].
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Lemma B.16. Let D,V, Ao, Q, P be as in Remark[B.1] Denote by Y the set
of Lagrangian subspaces A C V that are compact perturbations of Ag. For every
A € Y there is a Fredholm operator

Dp =05+ Dp+ P(s) : Wr —H

with
Hi={¢e L3 (R H) |[&(s+1) = Q'¢(s)},

Wa = {€ € L3 (R,dom Dp) N WE2(R, H) | £(s + 1) = Q7 ¢(s)}.

loc

The determinants det(Dyp) for A € T form a line bundle over Y.

Proof. Dp is Fredholm since it is the operator of Theorem with A(s) =
Dp + P(s) and constant domain W (s) = dom Dy.

We do not know if for any two subspaces A, A’ € T there is a Hilbert space
isomorphism of ) : H — H that identifies dom Dy with dom Dy, as would
be required for a homotopy of operator families in the sense of Appendix [A]
However, one can prove directly that the kernel of D, depends continuously on
A (as a subspace of H) if Dy is surjective. This proves the lemma since the
transverse situation can always be achieved by finite dimensional stabilization.

To prove the continuous dependence of ker Dy on A we will use the fact
that every element £ € ker Dy is a smooth function from R to dom Dy (see [26]
Theorem 3.13]) and satisfies an estimate of the form [|£[|,,, +[|0sllyy, < c[I€]l5-
Two Lagrangian subspaces A, A’ € T are close if there exists an isomorphism of
V close to the identity that maps A to A’. This extends to an isomorphism of
dom Dy = A @ dom D and dom Dy, = A’ @ dom D (which does not necessarily
extend to an isomorphism of H). This isomorphism of domains followed by
the orthogonal projection onto the kernel of Dy induces a map ker Dy — W,
which is an isomorphism for A’ sufficiently close to A. O

C Unique continuation

In this appendix we formulate a general unique continuation theorem based on
the Agmon—Nirenberg technique. The method was also used by Donaldson—
Kronheimer [I0, pp150] and Taubes [32] to prove unique continuation results
for anti-self-dual instantons and by Kronheimer-Mrowka [21] and in [30] for the
Seiberg-Witten equations.

Let H be a Hilbert space and A(s) be a family of (unbounded) symmetric
operators on H with domains dom (A(s)) C H. The operators A(s) are not
required to be self-adjoint although in the main applications they will be and,
moreover, their domains will be independent of s. However, in some interest-
ing cases these operators are symmetric with respect to time-dependent inner
products. The following theorem is a special case of a result by Agmon and
Nirenberg [2].
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Theorem C.1 (Agmon-Nirenberg). Let H be a real Hilbert space and let A(s) :
dom (A(s)) — H be a family of symmetric linear operators. Assume that x :
[0,T) = H for 0 < T < oo is continuously differentiable in the weak topology
such that x(s) € dom (A(s)) and

[£(s) + A(s)az(s)]| < er(s) [z(s)] (126)

for every s € [0,T), where £(s) := dsx(s) € H denotes the time derivative of x.
Assume further that the function s — (x(s), A(s)x(s)) is also continuously
differentiable and satisfies

%@5, Aw) = 2(i, Az ) < 2e5(s) [| Az ||z + es(s) |l (127)

Here c1,¢2,¢5 : [0,T) — R are continuous nonnegative functions satisfying

T T
ao ::2/ co < 00, by ::/ (4¢3 +e3) <00, co:i=supc; < o0.
0 0

Then the following holds.
(1) If z(0) = 0 then x(s) =0 for all s € [0,T).
(ii) If (0) # 0 then x(s) # 0 for all s € [0,T) and, moreover,

lz(s)| = e= lz(0)|, = co+ e (bo + 2 (0)| M| A0)x(0)]])-

Proof. The basic idea of the proof is to use the convexity of the function ¢
log ||(¢)]|*. Assume that z:(0) # 0 and define

do

p(s) = log ||z(s)] - /0 ) <w<0>,fv<”r;>(a+r)h42(a>x<a)>

for 0 < s < T wherever z(s) # 0. Then we prove that ¢ is twice continuously
differentiable and satisfies the differential inequality

p+alo|+b>0, a = 2ca, bi=ct+c3+cs. (128)
Define f(s) := @(s) + A(s)z(s). Then the derivative of ¢ is given by
(@) (o f) _ (xAx)

Sb = — — —
[Ed [EdlR
Hence
. sl Ava)  2Awx)(dz)
== 5 T i
] [l
S 2 Az, Az — f) — 2¢; || Az|| |z — 3 ||| ~ 2(Az,x)(Az — f.z)
B [Ells (el '
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Here the second step follows from the inequality (127) and the definition of f.
The terms on the right hand side can now be organized as follows

. 2 Az, z)? 2 Az, x
‘»02 2 ||A.’E||2— < 2> - 2 Aw—%*&f
[zl (4] [E] (E4]

A
g el
]
2 (Ar,z) [ 2 (Ar,z)
T, x T,x
Y PR Y
] ] ] ]
A
o el
[l
Now abbreviate
x Ax
5 = T n=t-
[l ]] ]
Then ¢ = —(&,n) and the previous inequality can be written in the form

¢Z2lln<n,£>§22<n<n,§>£,|£||>262 Il - s

> 2|l — (0,€)€1* = 2In — (n, €)¢]| '”xf"' —2¢y |lnl| — e
I1f11?
> |ln— (n,€)¢))> - o2 7]l - 3

2
> [ln = (0, €)¢l° = cf = 22 [In]| - cs.

The last but one inequality uses the fact that a3 < a?/2 + $2/2 and the last
inequality uses || f|| < ¢1]|z||. To obtain (128) it remains to prove that

2 .
ln = (n, E)E|I" = 2¢2 |Inl| = —2¢2|¢] — c3.

Since ¢ = —(&,n) this is equivalent to

2 |l < llm — (0, €)€1* + 2¢2 [{n, € )| + 2.

Now the norm squared of 1 can be expressed in the form

Inll* = w* + 0% w=ln— (&l v=|{nE)l.

Hence the desired inequality has the form

2co v/ u2 4 v2 < u? 4 2c0v +

This follows from the inequalities vu2 4+ v2 < u + v and 2cou < u? + ¢p2. Thus

we have proved ((128).
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Define a(s) := [, a(o)do. Then « is nonnegative and ¢ = a. Hence at each
point s € [0,T) with ¢(s) < 0 we have

d

%(efo‘gb) = @ (gb + a|gb|) > —b.

Integrating this inequality over maximal intervals where ¢ is negative we obtain
S
e p(s) > min{0, $(0)} — / b(o)do, for 0 <s<T.
0

This implies ¢(s) > —e®(by + |¢(0)]), hence p(s) > ¢(0) — e (by + |¢(0)])s,
and hence, again for 0 < s < T,

log [[z(s)[| = ¢(s) — /Os |7 [l&: + Az[| > @(0) — e (bo + [£(0)])s — cos.

Now we can use log ||2(0)]| = ¢(0) and |¢(0)| < [|z(0)]| ]| A(0)x(0)| to prove
(ii):

2(s)| > e?(0) =0 (bo+|@(0))s—cos > l|2(0)]le¢.
To prove (i) we assume by contradiction that x(sg) # 0 for some sg € (0,T).
Then part (i) applies to the path s — x(sy — s) and the operator family
s — —A(sg — s). It implies ||z(o)]| > e@ 0|z (so)|| for all o € (0, sg], so by
continuity ||z(0)]] > e~*°||x(sg)| # 0 in contradiction to the assumption. O

Time-dependent inner products

There are interesting applications to operator families A(s) on a Hilbert space
which are self-adjoint with respect to a time-dependent family of inner products
which are all compatible with the standard inner product on H. Any such
family of inner products can be expressed in the form

(z,y)s =(Q(s)z, Qs)y) (129)

for some invertible bounded linear operators Q(s) : H — H. Without loss
of generality one can consider operators @(s) which are self-adjoint. Assume
throughout that these operators satisfy the following conditions.

(Q1) The operator Q(s) is self-adjoint for every s and there exists a constant
d > 0 such that for all 2 € H and s € [0,7)

dllall < lQ(s)zll < 67 ] -

Moreover, the map [0,T) — L(H) : s — Q(s) is continuously differentiable
in the weak operator topology and there exists a continuous function cg :
[0,T) — [0, 00) such that

T
||Q(S)H£(H) <cg(s) Vsel0,T), Co ::/O co < 0.
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Theorem C.2. Let H be a real Hilbert space, Q(s) € L(H) a family of (boun-
ded) self-adjoint operators satisfying (Q1), and A(s) : dom (A(s)) = H a family
of (unbounded) linear operators such that A(s) is symmetric with respect to the
inner product . Assume that x : [0,T) — H s continuously differentiable
in the weak topology such that x(s) € dom (A(s)) and

[&(s) + A(s)z(s)]ls < exls) z(s)ll

for every s € [0,T). Assume further that the function s — (x(s), A(s)x(s))s is
also continuously differentiable and satisfies

L (), Als)a(s))s — 2 (s), Als)a(s) ),

< 2e9(s) [|A(s)a(s), ()], + ea(s) |z (s)]3

for every s € [0,T). Here c1,ca,c3 : [0,T) — R are continuous nonnegative
functions satisfying

T
ag = 2/ (ca+ 07 eg) < oo,
0

T
by := / ((cl + (5_1CQ)2 + (c2 + 6_1(:@)2 + 03) < 00,
0

co :=sup(c1 + 6 eg) < oo,
Then the following holds.
(i) If (0) = 0 then x(s) = 0 for all s € [0,T).
(ii) If (0) # 0 then x(s) # 0 for all s € [0,T) and, moreover,

lz(s)lly > e lz(O0)llg, ¢ :=co+ e (bo + [[2(0)[l5 [ A(0)z(0) o)
Proof. The result reduces to Theorem Define
A:=QAQ™",  #:=Qz, [:=Qz+Qf

with dom (A(s)) = Q(s)dom (A(s)) and f = & + Az. Then the operator A(s)
is symmetric with respect to the inner product if and only if A(s) is
symmetric with respect to the standard inner product. (Moreover, one can
easily check that A(s) is self-adjoint with respect to if and only if A(s)
is self-adjoint with respect to the standard inner product. However, this is not
needed for the proof.) It also easy to see that

i+ Az =f — i+ Ai=f.

It remains to show that under the assumptions of Theorem the triple .ZL z,
f satisfies the requirements of Theorem First, note that

IF] = 1Qz + QfIl < cq llzll + 1/, < eqd™" |z, + e Il
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and hence # satisfies (126)) with ¢; replaced by é = ¢1 + ¢g/d. Secondly, the

function
s = (E(s), A(s)i(s)) = (@(s), A(s)x(s) )

is continuously differentiable and a simple calculation shows that

d—sm,jm —2(2, AE) = %(w,Am)s —2(&, Az ) — 2(Qx, QAx).

(&, Ax) —2(5, Ak) < 2 |al, | Az, + es 2]l + 21 Qx| Az
~ 1~ ~112 — ~ T~
< ¢, 7] [ A2 + s |2 + 2¢05" 2] | Az

This shows that Z satisfies (127)) with co and c3 replaced by é& = c2 + ¢cg/0
and ¢3 = c3. Hence & and A satisfy the requirements of Theorem and this
proves Theorem O

D Holonomy perturbations

In this appendix we review the properties of the holonomy perturbations used
in this paper. Throughout this appendix Y is a compact oriented 3-manifold,
D C C is the closed unit disc, and we identify the circle S with R/Z. The
elements of S will be denoted by @ and those of D by z. Fix a finite sequence
of orientation preserving embeddings v; : S' x D — Y for i = 1,..., N that
coincide in a neighbourhood of {0} x D. Define the holonomy maps

gi :RxDx AY) — G, pi :DxAY)—G
by
0ggi + A(Ogi)gi = 0, gi(0,2;A) =1, pi(z; A) == gi(1, 2; A).

and abbreviate p := (p1,...,pn) : D x A(Y) — GV. Fix a smooth conjugation
invariant function f : D x G — R that vanishes near the boundary, and define
the perturbation hy : A(Y) — R by

hi(A) = /Df(z,p(z;A)) d?z.
This map is smooth and its derivative has the form

d
Aa = —
dhf( )a ds

/f(z,p(z;A+sa))d2,z:/(Xf(A)/\a> (130)
s=0JD Y

for « € Q1(Y,g). The map X; : AY) — Q*(Y,g) is uniquely determined
by (130)); it has the form

N
Xp(A) =D 70 (Xpi(A)d%2),
=1
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where X7 ;(A) € Q°(S* x D, g) is given by
X1i(A)(0,2) = —gi(0, 2 A)Vif (2, p(2; A))gi(0, 2 A) 1. (131)

Here the gradient V,f : D x GV — g is defined by

d
(Vif(z,9),¢) = T f(z91,- -, 9i-1,9iexp(t§), git1, - -, 9N)
t=0

for €D, g=(g1,...,98) € GV, and € € g. It vanishes near the boundary of
D and, since f is conjugation invariant, it satisfies

vzf(zv hghil) = hvif(zvg)hil (132)

for h € G. If follows from that X;;(A) : R x D — g descends to a
function on S! x D. If the center of G is discrete then equation implies
that V;f(z, (1,...,1)) = 0 and hence X;(0) = 0 for every f € C5¢(D x GV)€.
Thus, for G = SU(2) the trivial connection is always a critical point of the
perturbed Chern-Simons functional CS;+h. The next proposition summarizes
the properties of X ;. We denote the space connections of class WkP by

ARP(Y) .= WEP(Y, T*Y ® g).

Proposition D.1. Let f € Cé“(]D) x GMG for some integer £ > 0. Then the
following holds (with uniform constants independent of f).

(i) For every integer £ > k > 1 and every p > 2 with kp > 3, X; extends
to a C*=% map from AFP(Y) to WFP(Y,A’TY ® @), mapping bounded sets to
bounded sets.

(ii) For all Ac A(Y), ue G(Y), £ € Q%(Y,g), and o € Q*(Y, g) we have
da(Xp(4)) =0,  X;(u"A) =u" Xy (A)u,
dXf(A)dal = [Xf(A).¢],  da(dXj(A)a) = [Xf(A) Aal.

(iii) For every k € {0,...,¢} and every p € [1,00] there is a constant ¢ such
that

X (Dllwrs < cllVEller [T+ D0 IAllwsor [Allen - 1Al

dot-+is=k
520, 5y 21

for every A€ A(Y). If k =0 then || X;(A)|l,;, < cl[VfllL-
(iv) For every k € {0,...,£ — 1} and p € [1,00] there is a constant ¢ such that

k
||de(A)aHW,C‘,,(Y) < |V lerr (1 + HAHck) ||a||wk,p(y)

for all A € A(Y) and o € QY(Y, g).
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(v) For all p,q,r € [1,00] with ¢~' +r~t = p~! there is a constant ¢ such that

42X (A) (e, B[ Lo yy < eIV Fllen el ayry 18N vy »
[Xf(A+a) = Xp(A) = dXp(A)all vy < elVE e lall Loy llal

L7(Y)

for all Ae AY) and o, 8 € QY(Y, g)

(vi) For every p € [1,00] there is a uniform constant ¢ such that
IVA(X (Ao < L+ IV ller) (14 [[Fall o) (133)

for every A € A(Y)

Remark D.2. Consider a connection Z = &ds + A € A(I x Y') for a compact
interval I, given by A : I — A(Y) and ® : I — Q°(Y,g). Proposition
extends to the perturbation X¢(Z) := Xfo A € Q*(I x Y,g) — except for (ii),
and in (i) we need to assume kp > 4. In particular, for every k > 1 and p > 2,
Xy maps bounded sets in A®P(I xY') to bounded sets in W*?(Ix Y, A°TY @g).
In the case k = 1 and kp < 4 this follows from Proposition (iii).

The proof requires some preparation. We begin by considering connections
on the circle. The canonical 1-form df € Q(S*) allows us to identify the space
A(SY) = QS g) of G-connections on S' with the space Q°(St, g) of Lie
algebra valued functions. The holonomy of a connection A = ndf € A(S!) with
n:S' — g is the solution ¢ : R — G of the differential equation

dog+mng=0,  g(0)=1. (134)

The solutions give rise to a map hol : R x Q°(S!, g) — G which assigns to each
pair (6,1) € R x Q°(S!,g) the value hol(f;n) := g(#) of the unique solution
of (134) at 8. The gauge invariance of the holonomy takes the form

hol(6; u™ ' Ogu + u™'nu) = u(0) ™~ hol(6;1)u(0)

for u : S — G. One can think of hol as a map from Q°(S*,g) to C*°([0, 1], G)
defined by hol(n)(#) := hol(f;n). The holonomy then induces a map between
Sobolev completions, for every integer k > 0 and every p > 1,

hol : WHP(St, g) — WHFHLP([0,1],G). (135)

This map is continuously differentiable and its derivative at n € WkP (S g) is
the bounded linear operator d hol(n) : W*P(St g) — Wk+LP([0, 1], hol(n)*TG)
given by

0
(hol(n) "' dhol()7) (6) = — / hol(t; )~ Mi(Dhol(t:)de (136)

for i € W¥*»(S1 g). The formula (136)) shows, by induction, that the map (135
is smooth. The next lemma is a parametrized version of this observation.
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Lemma D.3. Let Q be a compact Riemannian manifold.

(i) For every integer k > 1 and every p > dim €, composition with the holonomy
induces smooth maps

Hol : WHP (S x Q,g) — W"?([0,1] x Q,G),
Holy : WFP(S' x Q,g) — WFP(Q,G),

gwen by Hol(n) := g, with g,,(0,z) := hol(#,n(-,x)) and Holy(n)(z) := g,(1,x)
for x € Q and 6 € [0,1]. These map W*P-bounded sets to W*P-bounded sets.

(i) For every integer k > 1 there is a constant ¢ such that

[Hl()lyer + [HOL (M) lyprr < e [ 1+ D nllwson [nllesn - Inllei

Jo+tis=k
520,y >1

for every n € C*(S' x Q,g) and every p € [1, 0].
(iii) For every integer k > 0 and every p € [1,00] there is a uniform constant c
such that, for every n € C*(S' x Q,g), the derivatives

Hol(n)~'dHol(n) : W*P(S' x Q,g) — WkP([0,1] x Q, g),
Hol, () ~'dHol (1) : W*P(S! x Q,g) — WHP(Q, g)

are bounded linear operators with norms less than or equal to c (1 + ||n|lcx)*.

Proof. Think of n as a map from Q to W7P(S!, g) and of Hol(n) as a map from
Q to W7TLP([0,1], G). Then Hol(n) is the composition

O -1 wir(st g) 24 withe([0,1],G).

Since hol : WJP(S1 g) — WitLr(]0, 1], G) is smooth the composition induces a
smooth map

Hol : WP (Q,W7P(S, g)) — WHP(Q, W/HP((0, 1], G))
for £p > dim 2 and any j; hence it defines a smooth map from

k
WHhP(ST x Q,g) = [ WP (QWF 5P (S g))
=0

to

k
(YW@ Wh=r([0,1],G)) € WhP([0,1] x Q,G)
/=1

for Kk > 1 and p > dim Q. This proves (i) for Hol. To prove (i) for Holy,
take £ = k and note that evaluation at 8§ = 1 gives a smooth map from
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WkEP(Q, WP ([0,1],G)) to W*P(Q,G). The boundedness of Hol and Hol; is
a consequence of (ii) and (iii).
To prove (ii) we differentiate the function g(6,x) = hol(8, n(-, x)):

0
g = —g 'ng, (g 0.g)(0,2) = - / gt 2) "0, (t, 2)g(t, z) .
0

Hence there are constants ¢y, co, c3,... such that
lglwnre <ce [T+ D lwsos lgllen - lglles. (137)
dot+is=k
$20,jp>1

for every smooth function n : S' x Q — g, every integer £ > 1, and every
p € [1,00]. For p = oo assertion (ii) now follows by induction on k. Inserting
the resulting estimate into (137) proves (ii) for all p. For k = 0 assertion (iii)
follows immediately from ith ¢ = 1. To prove (iii) for k > 1 differentiate
equation with respect to # and = and use (ii). This proves the lemma. O

Proof of Proposition[D.1. The map X;; : A¥P(Y) — WFP(S! x D, g) can be
expressed as composition of three maps. The first is the product of the N maps

ARP(Y) = WEP(SY x D, g) : A ;= A(Dp;),
the second is given by composition with the holonomy
WHP(ST x D, g) = WEP([0,1] x D, G?) : 5 = (g5, ),

where g;(6,z) := hol(n;(-,2))(#) and p;(0, z) := hol(n,(-,2))(1), and the third
map has the form

WHEP([0,1] x D, G*N) = WHP(SY x D, g) : (g1, p1,-- -, 9N, PN) > €,

with
C:=giVif(p1s--on)g !

(see equation (I31))). The first map is bounded linear (and hence smooth)
for all k£ and p because composition with a smooth embedding at the source
and multiplication with a smooth function define bounded linear maps between
WkP_spaces. The second map is smooth and bounded for & > 1 and p > 2
by Lemma The third map is bounded and C*~* because composition
with a CF-map at the target defines a continuous map from WP to WP for
all kp > dim(R x D) (or kp > dim(R? x D) in the case of Remark . This
proves (i). Assertion (ii) follows by straight forward calculations and (iii) follows

from (131) and Lemma (ii).
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To prove (iv) we abbreviate A; := v A;, a; := v} oy, and differentiate equa-
tion (131)) to obtain
Hol(4;) ™' (dXy,:(A)a) Hol(4;)
= [Hol(4;) "Xy, (A) Hol(A;), Hol(A;) ™ dHol(A;)ey]
N
- Z VjVif((Holl (Ag))gzl,_uN) Holy (Aj)_ldHoll (Aj)Oé]
j=1
The estimate now follows from Lemma and the uniform bounds in (iii).
To prove (v) we differentiate the last equation again and obtain the inequality
42X (A) (e, B))|
< |dX¢(A)a||dHol(A)B| + [dXs(A)B||dHol(A)al
+ [ X (A)||dHol(A)cr|[dHol(A)B| + | X s (A)||d (Hol(A) " dHol(A)e) B
+|V?f||dHoly (A)a||dHoly (A) | + |V? £||d (Holy (A) " dHol; (A)) B|

with
d(Hol(A)'dHol(A)a)B = / ' [Hol(A)~"dHol(A)a, Hol(A)~'dHol(A4)3].
0

A similar inequality holds for Holy. The first estimate in (v) now follows from
the L4- and L"-bounds in (iv) and Lemma and the L>-bounds on X; and
V2f. The second estimate in (v) follows from the first and

Xp(A+a) — X(A) — dX (A)a = /0 /OT d2X (A + ta)(a, a)dt dr.

Assertion (vi) is a result of Froyshov [I5]. The proof uses the formula
Org(0,t) + A(9i(0,1))g(0, 1)
=900 ( [ 90607 FaO 5,000 6. 00005.05) - (139)
for v:[0,1]> = Y and g : [0,1]? — G with
999+ A(9p7)g =0, g(0,t) = 1.
Namely, inserting a ¢-dependent parameter z = z(t) into (L31]), abbreviating
9(0,t) := gi(0, 2(1); A), 7i(0,1) == (0, 2(1)),

£(0,1) == X710, 2(1) = —g(0, ) Vi f(2(t), p(2(t); A))g(0,1) ",
and differentiating & covariantly with respect to v A we find that Vp¢ = 0 and

Vi€ = 0:€ + [A(0¢i) €]
=[(0g 97"+ A0:)). €] — g7 (1% ) (2, p(z; A))Dy2) g

N
(Z ViVif) (2, p(z; A))pj(2; A) 6tpj(Z;A)>g-
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Since the estimate ((133)) is gauge invariant and the ~y; all coincide near v;(0, z) =
7v;(1,2) we can assume that A(dyy;(1,2(t))) = 0 for all j and ¢. Then it follows

from that
1
pi(2(t); A) " Oups(2(t); A) = / i (s,8) " Fa(09v; (s,1), Oy, (s, 1)) g5 (s, t) ds.
0

So the first and third term on the right hand side of (139) can be estimated by
the curvature of A, and the second term is uniformly bounded. This proves the
proposition. O

In the remainder of this section we give a proof of the basic compactness
result for solutions Z € A(R x Y) of the perturbed anti-self-duality equation

(F=+X4(3)" =0 (139)

with bounded energy
- 12
Ey(5) = %/ |Fe + X;(E)]
RXY

A similar proof for somewhat different perturbations can be found in [20].

Theorem D.4. There exists a universal constant h > 0 such that the following
holds for every perturbation Xy, every real number E > 0, and every p > 1.
Let 2, € AR X Y) be a sequence of solutions of with bounded energy

sup Ef(2,) < E.

Then there exists a subsequence (again denoted (,)) and a finite set of bubbling
points S = {z1,...,zx} C R x int(Y) with
1
lim inf f/ Fe, + X;E)[ >h  V5>0,2; €8
vree Bs(x;)
Moreover, there is a sequence of gauge transformations u, € G((R xint(Y))\S)

and a limit connection Eo, € AR x int(Y")) such that ut=, converges to Eo in
the WYP-norm on every compact subset of R x int(Y')\ S. The limit 2., solves

and has energy
FEi(Ex) < limsup E¢(E,) — Nh.

vV—r00

Remark D.5. If S C (T_,T) x Y in Theorem [D.4] then the convergence can
be improved to the C*°-topology on every compact subset of (—oo, T_] x int(Y")
and [T, 00) xint(Y) (in particular on R xint(Y) if S = (}). This follows from the
standard bootstrapping techniques (e.g. [10], [34]) and Remark[D.2] The crucial
point is that a W*P-bound on u**Z" implies a W*P-bound on X ;(u”*E") and
thus on FJ},*EV. The appropriate gauge transformations can be interpolated to
the ones over (T, T} ) x int(Y).
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Proof of Theorem[D.Z). Without loss of generality we prove the theorem for
a fixed constant p > 4. We follow the line of argument in [I0, 4.4.4]. Let
eyn > 0 and Cyy, be the (universal) constants in Uhlenbeck’s gauge fixing the-
orem (see [33] or [34, Theorem B]). Then for each x € R x Y, each sufficiently
small constant § > 0 with Bs(x) C R x Y, and each connection = € A(R xY)

with energy
/ |Fel? < eun
Bs(x)

on the geodesic ball Bs(z) there is a gauge transformation u € G(R x Y') such
that

1™l 4 3y 2y + 14 Ell w2y () < ConlF=ll 2550 -
Step 1. For every € > 0 there is a finite set of bubbling points Sc C R x int(Y")
and a subsequence, still denoted by =, such that the following holds.
(a) If z € (R x int(Y)) \ Sc then there is a 6 > 0 with sup,, fBé(z) |Fe, > <e.

(b) If x € S¢ then infssoliminf, o fB(S(I) Pz |? > e/2.

Let Sc be the set of points z € R x int(Y) that satisfy the inequality in (b).
Since Xf(Z,) is uniformly bounded we have

>0 v—o0 >0 v—oo

inf liminf/ Fz, + X;(2,)] = inf liminf/ Fz, > > <
Bs(x) Bs(x) 2

for every x € S, and hence the energy bound guarantees that S. contains at
most 4F /e elements. If each point in (R x int(Y")) \ S satisfies (a) we are done.
Otherwise there is a point z € (R x int(Y")) \ S. with

In this case we can choose a subsequence (still denoted by =,) such that

LTS
Bi/u(@) 2

for all v. After passing to this subsequence we obtain a new strictly larger
set S.. Continue by induction. The induction terminates when each point
z € (R xint(Y)) \ Se satisfies (a). It must terminate because in each step the
the set S. contains at most 4F /¢ points.

Step 2. We denote q := 4p/(p +4) € (2,4). If € > 0 is sufficiently small and
S = S. is as in Step 1, then there exists a subsequence, still denoted by =,
and a sequence of gauge transformations u, € G(R x Y)\ S) such that u}=,

converges to Eo € Allo’Z((]R x int(Y))\ S) in the Wh9-norm on every compact
subset of (R x int(Y)) \ S.

There are universal constants Cy > 1 and C; > 1 such that

IValp: < Co([[dal[, +ld*all2), Nl < CilVall. (140)
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for o € Q'(B1(0)) supported in the interior of the Euclidean unit ball. These
inequalities are scale invariant, and for 6 > 0 sufficiently small the metric in
geodesic coordinates on Bs(z) is Cl-close up to a conformal factor to the Eu-
clidean metric on B;(0). Hence the estimates continue to hold with the
same constants Cy and C for every compactly supported 1-form on a geodesic
ball Bs(z) C R x Y, provided that 6 > 0 is sufficiently small.

Now fix 0 < ¢ < (4CoC1Cyy)~! and choose a finite set S = S. C R x int(Y)
and a subsequence (still denoted by Z,) as in Step 1. Since € < ey, it follows
from Uhlenbeck’s gauge that, for every z € (R x int(Y)) \ S, there is a radius
4 > 0 and a gauge transformation u, , € G(Bs(z)) such that

< Cyne, d*(u; ,=,) = 0. (141)

HU;JE”HWLZ(Bg(m)) =

By a global patching argument as in [10, Lemma 4.4.5] or [34, Proposition 7.6], it
suffices to construct gauge transformations, limit connections, and establish the
convergence on every compact deformation retract K C (R xint(Y))\S. We fix
K and find a covering by finitely many of the Uhlenbeck gauge neighbourhoods
Bs,(x;). On each of these u; , =, satisfies . Now we fix a smooth cutoff
function h : By, (x;) — [0,1] that vanishes near the boundary. Then

ol LERPRCH

< CollhVd™ (uy ,, Z0)l| 22 + Clluy, 4, Bollw.e

< Col|nV (up s, X (Bo) Vv, = 5[50, B0 NS0, Bl )| 2 + O 100, Bl

< Go Hu;xiEyHL‘l ||V(h ’ u;,xiEy) ||L4 Hi‘l +C Hu;xiEV
+ Col([ut, (Y2, X5 @)t | o+ 050, Zo 2 1K Bl o)

< CoCrCune ||h -}y 4, Bulyyan + CCFue” + CCupe

+ CO(HU;;I- (vEqu(EV))uV,Ii 2T Cune HXf(EV>||Loc)

* o
+C 0, = [

Here all norms are in B, (x;) and C denotes a constant that only depends on h

and the radius ;. In the first step we have used (140) with o = 9;(h - u;} ,.=,),

i=1,...,4, and (141). In the last step we have used (141]) and the inequality
[V (h-u; . Z0)|| . < Culh-ug,

=
i—Vllw2.2

of (140). Since CyC1Cuyre < 1/4 and
V2,5 @) o, ey < OO+ 1Pz, lnarer)

for an interval I C R with Bs,(z;) C I x Y we obtain a W?22-bound on Uy, 2 B
over a slightly smaller ball in By, (x;) where h = 1.

By Uhlenbeck’s patching procedure (see [33] or [34, Chapter 7]) the gauge
transformations u,, ;, can then be interpolated to find u, € G(K) such that u}=,
is bounded in W?22(K). The compact Sobolev embedding W22(K) — W4(K)
for ¢ < 4 then provides a W1%-convergent subsequence u}Z, — =, € AY(K).

137



Step 3. We prove the theorem with h = /4 where ¢ is as in Step 2. In partic-
ular, we remove the singularities to find S € AR x int(Y)), a subsequence,
and gauge transformations @, € G(R x int(Y))\ S) such that @*Z, — E in
the WYP-norm on every compact subset of (R x int(Y))\ S.

Step 2 gives u},=, — E € Allo’g((R x int(Y)) \ S) with ¢ > 2. This implies L>-
convergence of the curvature on every compact subset of (R x int(Y)) \ S, and
hence with the exhausting sequence Kj := ([-671,67] x Y)\ Bs(SUR x 9Y)

/ |F=_|? = lim/ |F=_|*> = lim lim |F= |? < E.
RxY =0 Jk, 5

§—=0v—00 [ge

Next we consider small annuli around the singularities and denote their union,
for k € N sufficiently large, by

Ak = le—k(S) \ 327k(5)

Then [ A, |F=_|> — 0 as k — oo since the above limit exists. For sufficiently
large k we can now patch Uhlenbeck gauges to obtain a gauge transformation
ur, € G(Ax) such that ||ujZ|raca,) < CllF=.llz2(a,) — 0. The patching
procedure does not introduce k-dependent constants or a flat connection since
the inequality is scale invariant and each annulus can be covered by two balls
whose intersection is connected and simply connected (see [10} 4.4.10]).

We extend uy to (R x Y)\ S and denote

Z = (upuk) Z,,.
Here we pick a subsequence vy — oo such that
||Fu;kayk ||iz(Ak ) S 2||FEOO||2L2(AkO)
0
for all k > ko sufficiently large, and

A sup 2,2 = Zooll s,y =0

In particular, we have ||Z}||14(4,) — 0 as k — co. Now consider the sequence
of extended connections

[1]2

kiihk~E%€A(RXY),

where hy, : R x Y — [0,1] is a cutoff function that vanishes on By-«(S), varies
smoothly on Aj with |dhy| < 2*¥*! and equals to 1 on the complement of
Bji1-«(S5). The curvature of the extended connections is

Fék = hy - FE;€ + %(hz — hk)[E;€ A\ E;ﬂ] + dhg A E;ﬁ
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So for 6 =27¢ and k > ¢+ 1 we have

/ P [?

Bs(S)

<2 B o [ (WRIBS P + 02— haPIEA + i 124
Bs(S)\B,1-x (S) Ak

<o / Fe P 250 s ay + 225+ 2VOl(AR)Z5 2 a,-
Bé(S)\B2 k(S)

The right hand side converges to 2fB5(S) |Fz_|? as k — oo, so for sufficiently

small 6 = 27% we have locally small energy sup, st(z) \Fék|2 < € at every
z € R x int(Y) for the subsequence (Zj)s>¢. (For x ¢ S this is true by Step 1.)

Now we can find an Uhlenbeck gauge vi, € G(Bs(S)) such that
d*(viZg) =0,

Hvk‘—‘knwl 2(Bs(9)) = C’Uhff (142)

The W'2-bound allows us to choose a W'2-weakly convergent subsequence
ViER = Boo € AV2(B5(9)).

On the other hand, for every closed ball D C Bs(S) \ S and every sufficiently
large k (such that hx|p = 1) the same estimate as in Step 2 prov1des W22,
bounds on v}Eg|p and thus W' 9-convergence viZx — Zo € AY(B5(S) \ S)
on every compact subset.

We can extend the gauge transformations vy € G(Bs(S)) by Uhlenbeck’s
patching procedure to a compact deformation retract S C K C R x int(Y)
(which is covered by Bs(S) and finitely many balls in (R xint(Y"))\S on which we
also have an Uhlenbeck gauge and hence W22-bounds), and to R x int(Y) by the
general extension procedure [34, Proposition 7.6]. This provides a subsequence
and gauge transformations vy, € G(R x int(Y)) such that the v}Z), converge in
the W14-norm on every compact subset of (R xint(Y))\ S to a limit connection
Eoo € AP((R x int(Y)) \ S). In particular, this means that

loc

Uy By = ooy Uy = Uy uvg € G((R < nt(Y)) \ 5),

because Zj, = (u,, ux)*E,, on compact subsets of (R xint(Y))\ S. Moreover, the
limit connection extends to S such that v;=) — Z., € AY?(B;(S)) converges
Wh2.weakly and L*-weakly.

Since =, is of class W12, the perturbation X;(Z.) € L®(R x Y) is well
defined, and we claim that

Xp(iZk) = Xp(E), @, Xp(E0 )i, — Xj(Ecc) (143)

in the LP-norm on every compact subset of R x Y. If S does not intersect

the support supp Xy := Ufil R x im~; of the perturbation then Zo|supp x, 18
1,q 10 S - JUN— .

the W, -limit of v}Zk|supp x; = ViELlsupp x; = Up, By lsupp x; and the claim

139



follows directly from Remark and the Sobolev embedding W14 — LP on
compact subsets of R x Y. If S does intersect the set supp X; at some points
(85,7, (05,25))j=1,...n. C S, then we have

Xp(vkEr) = v ' Xp (Bl )ve = v ' Xp(Ep)ve = 1, X4 (E0, )i,

only on the complement of a solid cylinder neighbourhood Zj of the loops
(55.7,(S', 2;)) € R x Y. More precisely, Z;, C R x int(Y) is given by the
union of all loops (s,7;(S',2)) that intersect the support of 1 — hg. It thus
is a union of solid cylinders whose width is of order 2'=*. If we fix the cylin-
der neighbourhood Zj,,, then the previous argument still applies for & > kg to
give LP-convergence on the complement of Zj,. The remaining Zj, has volume
of order 23735 and the perturbations X(Z..), Xf(viZs), and X;(E,,) are
all uniformly bounded by Proposition (iii) (with & = 0). So we see that
| X7 (vEEk) _Xf<Eoo)||LP(ZkU) and ||71;,3Xf(51/,€)11yk —Xf(EOO)HLp(ZkO) also con-
verge to zero as we let k > kg — oo. This proves ([143)).
A first consequence is that the limit connection satisfies

(Pe + X7(Bse)) " =0 (144)

because this is the local weak L?-limit of (F,.z + Xf(v,jék))+ and
’Uk_.k

Ex +Xf(vzék)>+“m(kxy)
FthZ + Xf(th;c))+ - (ul/kuk)_l (FEuk + Xf(EVk))Jr(quuk)||L2(R><y)
— F=

=/
k=g =%

<
ks

L2(Ay) + ||Xf(th;s) - (uykuk)ile(EVk)(quuk)||L2(Zk)’

which converges to zero by similar estimates as before. Another consequence is
the energy identity: We have

Fv,’;ék + Xf(’UZék) — Féoc + Xf(éoo)
in the L2-norm on every compact subset of (R x int(Y))\ S. So, exhausting

R x Y with
Ks = ([-6""6"xY)\Bs(SUR x 9Y),
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we have

Ef(éw)
—lim = [ P+ XE))’ = lm lim s [ |Fs o+ XpE)
T 650 2 Jg, B DI T ks 2 fy, 1T T R

2

. . 2
=L o (/ |Fe, + X5 (En)] +/K§!Fhk5;— 1
— — —_ 2
1) = o)X o) )

2 2
= lim lim = F=, +X¢(5, —/ F=, +X¢(E,,) )
6—>0k—>002( [ 5— 16 I]XY k f< k)‘ BJ(S) k f( k ‘

<limsup Ef(=Z,) — NA.

V—r 00

Here hi:=¢/4 with > 0 as in Step 2.

It follows from and - that

d*Ee =0, ||éoo||L4(Bé(S)) <Cune,  FZi €L¥RxY).

This implies 2o € A1’3(B5/2(S)) by a standard argument as in [I0, Proposi-
tion 4.4.13], using the estimate

|Allyra < € (

FE o + Al sl 0)

for compactly supported A € A(Bs(S)). Hence we have =, € Aloc (Rxint(Y)).
Now the standard regularity theory for anti-self-dual connections (e.g. [34, Chap-
ter 9]) together with Remark [D.2] for control of the perturbation, provides
another gauge transformation that makes =, smooth and does not affect the
convergence.

It remains to strengthen the convergence

ﬂ;k E,,k — éoo
n (R x int(Y)) \ S to the VV1 P_topology. Again, it suffices to construct the
required subsequence and gauge transformations on a compact deformation re-

tract K C (R x int(Y)) \ S. We pick a compact submanifold
McC Rxint(Y))\S

such that K C int(M) and apply the local slice theorem (e.g. [34, Theorem 8.1])
to find gauge transformations u,, € G(M) such that

=0.

df (u) 2, —Zs) =0, lim Huukuyk -=

Jim ool lyw.aqa

Since @}, Ey, | has the same W 9-limit, the gauge transformations @,,'u,, €
G(M) converge, for a further subsequence, in the weak W?249(M)-topology to an

141



element u., of the isotropy subgroup of Zo. We can make sure that this limit
is in fact 1, by modifying u,, to u,,uz! in the local slice gauge. With this we
have

; L= LY~
lim ||u}, 2y, — E d*(u =

k—o0

=0, lim |
k—r o0

0,

OOHLP(M) Oo)HLP(M) =

so we can use the elliptic estimate for d*™ @ d* on M. For that purpose fix a
cutoff function h : M — [0,1] with h|x =1 and h = 0 near 9M. Then

ld* (h(, B = E))

v —Vk

< Cnllup, B = Eac, + 1X7(Eoe) = w0, X5 (Boy ]|,

+[|A[Eoe A Eool™ = luf, Euy, A, B ]| -

Here the constant Cp, := ||Vh|« is finite, so the first term converges to zero
as k — o0o. The second term also converges to zero due to and the
C%-convergence ﬂ;klul,k — 1. Finally, the third term can be bounded by the
constant (2||Zx ||z + Cs|lh(u}, Ev, — Zoo)llwie ) [u), Eve — Ecol|r with a con-
stant Cg from the Sobolev embedding W1?(M) < C°(M). Now apply the ellip-
tic estimate for d¥@d* to the compactly supported 1-form 7, := h(uy, Z,, —éoo)
to obtain

Il < CQUAlmsllwr) [, B, —Zooll, +Cl1 X5 Boo) — 5! X5 B Y |

with a finite constant C'. Since ||u}, =, —Eo | »(ary — O this can be rearranged
to prove that

HuzkE”k - éoo”vvl»p(x) S ||77kHW1~P(M) — 0.

This finishes the proof of Step 3 and the theorem. O

E The Lagrangian and its tangent bundle

For any compact manifold X, any integer k£ > 0, and any p > 1 we denote the
space of W¥*P-connections by

ARP(X) .= WhP(X, T*X @ g).
If (k+ 1)p > dim X then the gauge group
GFIP(X) = WHHLP (X, G)

acts smoothly on A¥P(X). For p = oo we denote by A*>°(X) the space of
CF-connections; similarly for GF>°(X).

Let Y be a compact oriented Riemannian 3-manifold with boundary Y = X
and £ C A(X) be a gauge invariant Lagrangian submanifold (in the sense of
(L1) of the introduction) such that £/G,(X) is compact. For (k + 1)p > 2 the
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WHP_closure of £ is a Banach submanifold of A*?(X), which we denote by £F7.
(This follows from the Sobolev embedding W*?(¥) < L4(X) with ¢ > 2 and
the fact that the L?-Banach submanifold coordinates in [35, Lemma 4.3] restrict
to Wk P-coordinates.) Again, we denote by £*>° the C*-completion. Denote

ARP(Y L) = {A e APP(Y) | Aloy € L™}

This is a Banach submanifold of A*?(Y) for (k + 1)p > 3 since the restriction

map A*P(Y) — A%4(2) with ¢ > 2 is smooth and transverse to £. Theorem|E.4

will provide a gauge equivariant exponential map for AY?(Y, £), from which we

construct an exponential map for AVP(R x Y, £; B_, B,) in Corollary
Moreover, consider the vector bundle & — A(Y, £) with fibre

Epi= Q}LX(Y,Q) = {a S Ql(Y,g) ’ * Oé|3y =0, Oz|ay € TAﬁ}.

In Theorem below we construct local trivializations of £. In a preliminary
step we construct local trivializations of the tangent bundle of £. Note that
these trivializations extend to the fibrewise L?-closure of the tangent bundle
although it is not known whether the L2-closure of £ is smooth.

Theorem E.1. For every Ay € L there exists a neighbourhood U C L of Ag
(open in the C°-topology) and a family of bijective linear operators

Py Q(3,9) = Q1(Z,9),
parametrized by A € U, such that the following holds.
(1) Pa, =1
(ii) For every A € U and every a € Q*(3, g) we have

Pia e TuL <= a €Ty L.

(iii) For every integer k > 0 and every p > 1 the operator P4 extends to a
Banach space isomorphism from WFP(X, T*Y @ g) to itself; this extended
operator depends smoothly on A € LF°° with respect to the operator norm
on Py.

(iv) For every integer k > 0, every p > 1, every A € [0, 1], and every A € UM>
the operator A1+ (1 — \) P4 extends to a Banach space isomorphism from
WkP(S, T*Y ® g) to itself. Here U">° denotes the interior of the closure
of U in LF>.

Proof. Choose a 3-dimensional subspace E C Q°(3, g) such that the restriction
of da, : Q°(%,g9) — Q(Z,g) to E+ (the L2-orthogonal complement of E) is
injective. Then there is a constant C' such that ||¢]|y12 < C||da,&|2 for all
¢ € E+. This estimate continues to hold for each A € £ that is sufficiently close
to Ag in the C%-norm. Hence there is a C°-open neighbourhood U C L of Agy
such that d4 : B+ — QY(X, g) is injective for every A € U. Define

H}l,E = {a € QY(%,g) | xdaa € B, d5a € E}
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Then, for every A € U, there is a generalized Hodge decomposition
Q'(S,9) = Hy p ® da(ET) @ «da(EY). (145)

The three summands in (145 are orthogonal to each other and the generalized
Hodge decomposition extends to each Sobolev completion AP (X) in the usual
fashion. This uses the fact that the operator

Agp:=dida: Q%% g9) D E- = Q%%,g)/E

extends to an isomorphism from W#*+2P to WkP (with p > 1) for every A € U.
(The operators A4 g are all injective and compact perturbations of the iso-
morphism Ay, g.) The standard Hodge decomposition corresponds to the case
E = ker d4. The reason for our construction with F independent of A is the
need for a Hodge decomposition which depends smoothly on A.

The Lagrangian submanifold £ gives rise to another L?-orthogonal decom-
position, Q1(X, g) = TaL ® *TaL, see [35, Lemma 4.2]. Since d4(E+) C TaL
and *d4(E1) is perpendicular to TaL it follows from that we have
TaL = As ®da(EL), where

Ay = H114,E NT4L
is a Lagrangian subspace of H}L - Hence there is a refined Hodge decomposition
QN2 9) = Aa DA ©da(E) @ xda(EL). (146)
For A € U we define a bijective linear operator Py : Q1(%, g) — QY(Z, g) by
Pa(ag + #Bo + da,§ +*da,n) := aag + *1a By + dad + xdan
for ap, o € Aa, and &, € E+ C Q°(%, g), where
Ma: QN2 0) = Aa

denotes the L?-orthogonal projection. (Shrink U, if necessary, so that the re-
striction of IT4 to A4, is a vector space isomorphism for every A € U.) Note
that P4, =Id and Py € ToL iff o € Ty, L. We claim that each operator Py
extends to a Banach space automorphism of T4 AP (X) = WFP (X, T*Y ®g) for
all k and p, and this automorphism depends smoothly on A € £, To prove
this we write P4 as the composition of three linear operators. The first is the
Banach space isomorphism

WHEP(S,T*S @ g) = Aa, X Aa, X WETHP(S, g) x WETH2(S, g)

induced by the Hodge decomposition for Ay. Here W};H’p (X, g) denotes the
L2-orthogonal complement of F in W**1:P(3 g). The second operator is the re-
striction of I1 4 on the factors A 4, and is the identity on the factors WgH’p(Z7 g).
We think of the target space of this second operator as the product

WHEP(S, TS @ g) x WFP(S, T*S @ g) x WETP(, g) x WETHP (2, g).
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The third operator maps this product to to W*?(3, T*Y ® g) via

(a,B,6,m) = a+*f + da& + *dan.

The first operator is independent of A and the third depends smoothly on
A € £F>°. By the Hodge decomposition for A it restricts to an isomorphism
from Ay x Ag x WETYP(S,g) x WETP(S, g) to WHP (S, T*S ® g). It remains
to prove that the map

U — Hom(Aa,, WEP(S, T*Y ®g)) : A T4
is smooth. To see this we write 114 as the composition of two projections
Mo = Mgy oTlr,cfas,:

Here p - WkP(S, T*Y®g) - WFP(S, T*Y ® g) denotes the L2-orthogonal

projection onto H}x, g given by
Mgy oi=a— dAA;}E(d’Aa) + *dAAz}E(*dAa).

It depends smoothly on A € £¥° NI/ since the same holds for the operator
App: WEH”)(Z,Q) — WF*=LP(3 g)/E and its inverse. The operator

Iy, . : WEP(D, T*Y @ g) = WFP(S, T*E ® g)

denotes the L2-orthogonal projection onto T 4£*P?. For (k+ 1)p > 2 we know
that £F? C A*P(X) is a Banach submanifold, so It , . depends smoothly on
A € £FP_ and this proves that IT4 depends smoothly on A € £F>°. In the case
(k+1)p <2,ie k=0,p<2 wehave A°3(X) C A¥P(X). The LP- and the L3-
norm are equivalent on the finite dimensional space A4, C Q'(3, g). Hence IT4
is the composition of the projection Ilt, . : L3(X, T*Y ® G) — L3(Z, T*X ® G),
restricted to Aa,, the inclusion L3(X, T*Y ® G) — LP(X,T*Y ® G), and the
projection Mg+ LP(E, T2 ® G) — LP(E,T*Y ® G). All of these depend
smoothly on A € L%,

To prove (iv) shrink ¢ such that [[1 — Pal[z(z2) < 1/2 for all A € Y. Then
Al + (1 — A\)Py4 is invertible on L? for every A € [0,1] and every A € U%°°.
Invertibility on W*? for A € U**° now follows from elliptic regularity for the
Laplace operator. This proves the theorem. O

Theorem E.2. For every Ay € A(Y, L) there is a neighbourhood U C A(Y, L)
of Aoy (open in the C°-topology) and a family of bijective linear operators

QA : QI(Y7Q) - Ql(ya g)a
parametrized by A € U, such that the following holds.
(i) Qa, =1.
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(ii) For every A € U and every a € Q*(Y, g) we have
Quaey(Yyg) =  aeQy (V9.

Moreover, x(Qaa)|ay = *a|sy and (Qaa)lay =0 iff alsy = 0.

(iii) For every integer k > 0 and every p > 1 the operator Q4 extends to a
Banach space isomorphism from WFP(Y, T*Y ® g) to itself: this extended
operator depends smoothly on A € A*>°(Y, L) with respect to the operator
norm on Q4.

Proof. Choose geodesic normal coordinates to identify a neighbourhood of Y
with the product (—¢,0] x ¥ via an orientation preserving embedding

t: (=€, 0l x X =Y.

For a connection A € A(Y, £) and a 1-form a € Q'(Y, g) we write the pullbacks
under ¢ in the form

VA= BE)+ U dt, S =: () +o(t)dt. (147)

Then B(0) = Al|x € L. Choose a neighbourhood Uy C L of By := Ag|n
(open in the CY%topology) and an operator family Pg : Q'(X,g) — QY(%, g),
parametrized by B € Uy, which satisfies the requirements of Theorem
Then we have Pp, = 1. Now

U:={AcAY,L)|Als € Up}

is a C%-open neighbourhood of Ag. For A € U we define the bijective linear
operator Q4 : 21(Y, g) - Q1(V,g) by

(Qaa) := h(t)B(t) + (1 — h(t)) Paj B(t) + () dt

for t*« of the form (147), and by Qa« := « outside of the image of . Here
h: (—¢,0] = [0,1] is a smooth cutoff function that vanishes near 0 and equals
to 1 near —e. The operator family {Qa}acy satisfies conditions (i)-(iii). O

The construction of exponential maps will be based on the following.

Lemma E.3. Fiz a constant p > 2. There is an open neighbourhood
U C LP(2, T*E ® g)
of zero and a smooth map
LOP x YO — A%P() : (A, a) — O4(a)

satisfying the following conditions:
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(i) For every A € LOP the map © 4 : U"P — AYP(X) is a diffeomorphism from
UP onto an LP-open neighbourhood of A in AP (X) such that © 4(0) = A
and DO 4(0) = 1d. In particular, there is a uniform constant C' such that

1©4(a) = ©a(a)llzr < Clla — oL
I1DOA()B = DOA(')B]r < Clla = || o || Bl v

forall Ae LOP, a eUOP, B e LP(E, T*E ® g).
(ii) © is gauge equivariant in the sense that for u € G1P(X)

Ou-a(utau) = u O 4(a).

(iii) For every A € LOP
OA(TALP NUOP) = LOP N O 4 (UP).
(iv) For every integer k > 1 and every A € L*P the restriction of © 4 to the

intersection UFP .= UOPNWFP is a diffeomorphism onto its (open) image
in ABP(S). It depends smoothly on A € LFP and satisfies

1©4(e) = ©a(a)[lwrr < CA+ | A] )l = o[,
IDOA(a)B = DOA()Bllwrr < C(1+ [[AllL)llor = & [lwro || Bllwre

for all A€ LYP, o, €e UMP, and B € WHP(S, T*Y ® g) with a uniform
constant C.

(v) The restriction of © to an open neighbourhood of the zero section in the
subbundle ¥*TLYP C LOP x UOP is a diffeomorphism onto an open neigh-
bourhood WP C A%P(X) of LOP. The composition of its inverse with the
projection onto LOP

7 WOP o LOP

is gauge equivariant and maps WP := WOP N WkEP to LEP for every k.

Proof. Since L%?/G1P(X) is compact it suffices to provide the construction for
smooth A € £. The smooth extension to £%P is then provided by the equivari-
ance (ii). For every smooth connection A € £ we have an L?-orthogonal direct
sum decomposition from [35, Lemma 4.2],

LP(S, T*S ® g) = TaL%? @ T ALOP. (148)

Moreover, TALYP = Ly & daW1P(%, g), where La := TAL% NhY C Q1(%, g)
is the intersection of T 4£ with the harmonic (and thus smooth) 1-forms

hY :=kerds Nkerd’ C Q'(3, g).
We denote the L?-orthogonal projection in (148]) by

ma: LP(S, T*Y ® g) — TAL"P.
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It smoothly depends on A € L, is gauge equivariant m,« 4 (u"tau) = u=1m4(a)u,

and satisfies d% o w4 = d¥ because imdy C T4L%P. By standard Hodge the-
ory, this projection restricts to a bounded linear operator from the subspace
WFEP(S, T*Y ® g) to TaLFP = Ly @ daWkHLP(3 g) for every integer k > 1.
For each A € £ the map

LOP — TALY : B 14(B — A)

is smooth and its differential at B = A is the identity. Hence it restricts to a
diffeomorphism from an LP—open neighbourhood of A onto an open set

VAP C TAL.

We denote its inverse by
ha VAP — L0,

It follows immediately from the definition that 1 is smooth and gauge equivari-
ant in the sense that

Yura(u" o) = ua(a)
forall A e £, u € GX) and a € Vg’p. Its differential at 0 is the identity,
Dy 4(0) = 1d, hence on a small ball {|ja]z» < d} D VP, we can bound the

LP-operator norm ||Dy4(a)|| < 2, and thus obtain a linear estimate for all
/ 0,p
a0 € Vy

1
[ha(e) = pa(a)llzr < /0 [DYa(te+ (1= t)a)|llo—o/|r < 2flo = o

Similarly, since D 4 is continuously differentiable, we obtain for all a, @ in (the
possibly smaller) Vz’p and all 8 € ToLP

DY a(e)B = Dpa(a’)Bllr < Clla = o[l o || Bll

with a uniform constant C. (In fact, C' is also independent of A € L since the
estimates are gauge invariant and £/G(X) is compact). In particular, we have

[Yala) = Allr <2llallze,  [[DYa(@)8 = Bller < Cllafz||B] Lo

Moreover, )4 maps the intersection Vf"p = V%p NWHkP to WkP-regular points
in L*? because Fy, (o) = 0 and

di(vala) = A) = di(ma(¥ala) - A)) = dha € WHIP(E,g).

In fact, we obtain an estimate for all A € £LMP, o, 0/ € Vil’p (denoting all uniform
constants by C')

[a(a) = pa(a)wre
< O(a(ate) —va@)], + |4 (£a(e) ~ va@))], + [Pate) ~vat@)],)
< C([vala) - 1/JA(0/)HP + [ale’) = Allp) [ale) — va(@)|
+C||dz(a = )|, + CllAllcllva(@) = pa(@)llp + Clla = o[,
<CO+ [[Allso)le = a'llwie + C(lla = [l + |/ [lp) [ ala) = Ya(@)]| 1.,
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If we choose Vg’p sufficiently small, then the second term can be absorbed into
the left hand side, which proves

lpa(@) =va(@)lwie < CA+[[Allz=)lla—a[wir VA€ LY, a0 € VIP.

Note that this estimate does not simply follow from smoothness of 1 4 since V}l’p
is not even bounded in the W1 P-norm. Similarly, we obtain uniform estimates
for the linearization D14 of ¢4 using the identities dy , ) (D¥a(a)f) = 0 =
daf and d% (Dya(a)B) = d% 5,
[Da(e)B — Dipa(a’)Bllwrs
< C([ld(Dya(a)8 = Dya(@)B)[], + [[d"(Dva(@)8 = Dba(e)B) ],
+ || DYa(e)B — DZ/JA(CV/)ﬁHp)
< C(L+ [[Allso)(DYa(e) = DYpa()Bllp + () = ¥a(@) ol DY ala) By
+ Cllpa(a’) = Allp|| DY a(a)8 — Dipa(e)B]|
< C [l Allso) e = [l [1Bllp + Cller = & [lwro (1 + [l [[p) 1]l
+ Cllal v || Da()8 = D a(a’) Bl ., -

For Vg’p sufficiently small, this can be rearranged to
DY a(@)B = Dipa(a’)Bllwre < CA+ [|Allzee)lla = o [[wrr 1Bl Lo
Now choose an open neighbourhood U°? C LP(X, T*Y ® g) of 0 such that
TaUOP) C VP
for every A € £. Then the map ©4 : U%? — A%P(X) defined by
Oa(a) :=va(ra(a)) +a —ma(a)

has the required properties. The estimates for ©4 follow from the linearity
of m4 and the linear estimates for ¢ 4. To check (v) note that the differential
of ©|,rror at (A,0) is the isomorphism TAL%P x T4 L% — LP(%, T*Y @ g),
(n, B) = 0+ B. So the restriction of © to *TLY? is a local diffeomorphism near
the zero section. To see that it is globally injective we assume by contradiction
that © 4, (a;) = Op,(B;) for some A;, B; € LOP and some «, B; € ¥T 4, LOP with
llvillLe + ||BillL» — 0. Since © is equivariant and £%?/GYP(X) is compact, we
can assume w.l.o.g. A4; =+ Ay and u!B; — Bs in the C°-topology for some
U; € glvp(E). Then @Ai (Oél) — A, and ul*@A1 (Ozi) = @ufBi (u:lﬁzuz) — Boo,
so we can find a convergent subsequence u; — uo, € G(X3). Consequently
B; — ul *B,, = As has the same limit as A;, in contradiction to the local
injectivity of ©|,tro.p. O

Theorem E.4. Fir a constant p > 2 and a compact subset N C AYP(Y,L).
Then there is an open neighbourhood U C TAYP(Y, L) of the zero section over
N and a smooth map

U— AP (Y, L) : (A Q) — Ea(a)

satisfying the following conditions:
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(i) For every A € AYP(Y,L) the map Ea : UNTAAY (Y, L) — AVP(Y, L) is
a diffeomorphism from a neighbourhood of 0 onto a neighbourhood of A
such that E4(0) = A and dE4(0) = 1d.

(ii) F is gauge equivariant in the sense that for u € GLP(Y)

Byalu™ au) = u*Eala).

Proof. Our construction will be based on the two maps from Lemma
O : L9 xUP — AVP(T), T WOP — £0P,

We start by fixing a tubular neighbourhood 7 : (—1,0] XX < Y of the boundary
Y = {0} x ¥ such that 7* Ay xx € WP for all A€ N and t € (—1,0]. This
is possible since 7*N C W1P((—1,0] x ) C C°((-1,0],.A%P(X)) is compact.

On the complement of the image of 7 we define E4(a) := A+ a. On the
image of 7 write 7* A = B(t)+ ¥ (¢t)dt and 7*a = B(t)+1(t)dt, where 3(t) € UOP
can be ensured by the choice of neighbourhood U/ 3 « of the zero section. With
this we can define 7*E4(a) := B + (¥ + 1)dt by

B(t) = B(t) + p(t) (O (B(t) — m(B(1))) + (1 — p(t))B(2),

where p : (=1,0] — [0,1] is a smooth cutoff function satisfying p = 1 near 0
and p = 0 near —1. The claimed properties of E now simply follow from the
properties of © and 7 in Lemma [E-3] O

Corollary E.5. Let B_, B, € A(Y,L) andZ = A+®ds € ARxY,L; B_,By).
Fiz p > 2, then there is an open neighbourhood U C Tz AMP(R x Y, L; B_, By)
of zero such that

E:U— AR xY,L;B_,B,), E(a+ @ds):=FEs(a)+ (P4 ¢)ds
defines a continuously differentiable homeomorphism onto a neighbourhood of =.

Proof. Here we follow the construction of the exponential map of Theorem [E-4]
over the compact subset N := {A(s)|s € R} U{B_,B;+} C A(Y, L). We fix the
tubular neighbourhood 7 : (—1,0] x ¥ < Y of the boundary such that 7* A(s) =
B(s,t) + U(s,t)dt with B(s,t) € W%(X) for all (s,t) € R x (—1,0]. For
a+eds € TeAY (R x Y, L; B_, By) with |+ ods||yw1.p(rx vy sufficiently small
the Sobolev embedding WP(R x (—1,0] x £) < C°(R x (—1,0], LP(X)) ensures
that 7% = B(s,t) + (s, t)dt with B(s,t) € U"P for all (s,t) € R x (—1,0].

Thus we have E(a 4 ¢ds) = A+ a + (® + ¢)ds on R x (Y \ im7) and
T*E(a+ ¢ds) = B+ (¥ +4)dt + (@ + ¢)ds on R x (—1,0] x 3 with

B(s,t) = B(s,t) + p(t) (On(B(s,0) (B(s: 1)) = m(B(5,1))) + (1 = p(t))B(s, 1)

That E is a bijection to a neighbourhood of = follows directly from Theorem [E.4
For a restriction to a compact subset of R x Y the smoothness of E follows
directly from the smoothness of the 3-dimensional exponential map. To see
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that the 4-dimensional exponential map also is continuously differentiable with
respect to the WP(R x Y)-norm on the noncompact domain, it suffices to drop
linear terms and the cutoff function p and check that 8 +— O, () — 7(B)
defines a C'-map W1P(R x (—1,0], LP(X)) — WP(R x (—1,0], LP(¥)) and also
induces a C'-map LP(R x (—1,0], WLP(X)) — LP(R x (—1,0], WLP(X)). This
follows from the linear bounds for ® and 7 in Lemma as follows. For all
B,8 € WEHP(R x (—1,0] x ¥, T*X ® g) we have
1€ (35 (B(5.1)) = Oy (8 (5| 1 sy < CUB(5.1) = (5, 8) o3

”6ﬂ(3(5,t))(6(57 t)) - 6%(3(5,t))(6/<57 t))”wl,p(g) < CHB(S’ t) - 51(87 t)HWIP(Z)

For the (s,t)-derivatives we use the smoothness of © in the LP-norm to ob-
tain uniform continuity for the derivative by A in the LP-operator norm, i.e.
[D10(A,a) — D10(A,d')|| < Clla — /|| pr(x) for all sufficiently small o, o’ €
LP(X,T*Y ® g). Since ||B(s,t)| sy — 0 for s — oo this applies for all
t € (—=1,0] and |s| sufficiently large, so that

|05 (O (B(s,)) (B(5,1)) — On(B(s)) (5 (5:1))) HLP(E)

< HD@TF(B(S,t))(ﬂ)(aéﬂ(s7t) - 68/6/(57t))|‘Lp(2)

+ || (D1®(7T(B(57 t))a 5(& t)) - Dl@(ﬂ'(B(Sa t))v ﬂ,('S? t)))asﬂ-(B('S? t))HLp(E)

< C(l19:B(s,t) = 0B’ (5, )| Losy + 1B(5,1) = B'(5,8) | o) 10 B(s, )| Lo (s ) -

(The same holds for 9,(...).) Integrating these estimates over (s,t) € (—1,0] xR

proves W1P-continuity of E(a + ¢ds). To check continuity of the differential
we use the analogous estimates for DO, in particular we use uniform continuity
for the second derivatives of © (which again hold for ||3(s,t)||»(x) sufficiently
small, i.e. |s| sufficiently large) to obtain

105 (DO (s, (B(5,)) = DOr(r(5,0) (B (5,))) (5, )| 1o
< H(D@W(B)(ﬁ) - Deﬂ(B)(BI))aS'YHLp(z) + ||D2@n(3)(ﬁ)(355 - a56/"7)”1;;7(2)
+ [[(D1D:0(x(B), B) = D1D20(w(B), 8)) (0s7(B), )| 11
< C(IB = B'llo ) 197l Loy + 11058 = 98 | Loy [Vl e ()
+ 118 = Bl Loy 105 Bll o (s [Vl Lo (53)) -

Integration then proves the continuity of DE in W'?(RxY). (Strictly speaking,
we can only integrate the above estimate over the complement of a compact
interval in R. However, the same estimate holds on the compact part due to
the smoothness of ©.)

105 (DO (8) — DGW(B)(5l))7|‘LP(Rx(—1,0]xE)
<C|B~- 5/|\Loo(mx(—1,0]xz)||as’YHLP(R><(—1,o]xz)
+ C|0s8 — 05" | Lo mx (=1,0)x ) 1V [| oo (R x (1,01 x )
+ CIB = B'|| Lo mx (=1,01x5) 105 Bl e x (= 1,0)x ) 17| o0 (R x (=1,0] x )
< C|IB = Bllwrr@x(=1,0x5) (1 + 10sBll o ®x (1,01 x)) IV w.e R (= 1,0 x5) -
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