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Preface

These are notes for the lecture course “Functional Analysis I” held by the
second author at ETH Zürich in the fall semester 2015. Prerequisites are
the first year courses on Analysis and Linear Algebra, and the second year
courses on Complex Analysis, Topology, and Measure and Integration.

The material of Section 1.4 on elementary Hilbert space theory, Sub-
section 5.4.2 on the Stone–Weierstraß Theorem, and the appendix on the
Lemma of Zorn and Tychonoff’s Theorem was not covered in the lectures.
These topics were assumed to have been covered in previous lecture courses.
They are included here for completeness of the exposition.

The material of Subsection 2.4.4 on the James space, Section 5.5 on the
functional calculus for bounded normal operators, and Chapter 6 on un-
bounded operators was not part of the lecture course (with the exception of
some of the basic definitions in Chapter 6 that are relevant for infinitesimal
generators of strongly continuous semigroups). From Chapter 7 only the
basic material on strongly continuous semigroups in Section 7.1, on their
infinitesimal generators in Section 7.2, and on the dual semigroup in Sec-
tion 7.3 were included in the lecture course.

28 February 2018 Theo Bühler

Dietmar A. Salamon
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Introduction

Classically, functional analysis is the study of function spaces and linear
operators between them. The relevant function spaces are often equipped
with the structure of a Banach space and many of the central results re-
main valid in the more general setting of bounded linear operators between
Banach spaces or normed vector spaces, where the specific properties of
the concrete function space in question only play a minor role. Thus, in the
modern guise, functional analysis is the study of Banach spaces and bounded
linear operators between them, and this is the viewpoint taken in the present
book. This area of mathematics has both an intrinsic beauty, which we hope
to convey to the reader, and a vast number of applications in many fields of
mathematics. These include the analysis of PDEs, differential topology and
geometry, symplectic topology, quantum mechanics, probability theory, geo-
metric group theory, dynamical systems, ergodic theory, and approximation
theory, among many others. While we say little about specific applications,
they do motivate the choice of topics covered in this book, and our goal is
to give a self-contained exposition of the necessary background in abstract
functional analysis for many of the relevant applications.

The book is addressed primarily to third year students of mathematics
or physics, and the reader is assumed to be familiar with first year analysis
and linear algebra, as well as complex analysis and the basics of point set
topology and measure and integration. For example, this book does not
include a proof of completeness and duality for Lp spaces.

There are naturally many topics that go beyond the scope of the present
book, such as Sobolev spaces and PDEs, which would require a book on
its own and, in fact, very many books have been written about this sub-
ject; here we just refer the interested reader to [19, 28, 30]. We also
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xii Introduction

restrict the discussion to linear operators and say nothing about nonlinear
functional analysis. Other topics not covered include the Fourier transform
(see [2, 48, 79]), maximal regularity for semigroups (see [76]), the space
of Fredholm operators on an infinite-dimensional Hilbert space as a clas-
sifying space for K-theory (see [5, 6, 7, 42]), Quillen’s determinant line
bundle over the space of Fredholm operators (see [71, 77]), and the work
of Gowers [31] and Argyros–Haydon [4] on Banach spaces on which every
bounded linear operator is the sum of a scalar multiple of the identity and a
compact operator. Here is a description of the contents of the book, chapter
by chapter.

Chapter 1 discusses some basic concepts that play a central role in the
subject. It begins with a section on metric spaces and compact sets which
includes a proof of the Arzelà–Ascoli theorem. It then moves on to establish
some basic properties of finite-dimensional normed vector spaces and shows,
in particular, that a normed vector space is finite-dimensional if and only if
the unit ball is compact. The first chapter also introduces the dual space of a
normed vector space, explains several important examples, and contains an
introduction to elementary Hilbert space theory. It then introduces Banach
algebras and shows that the group of invertible elements is an open set. It
closes with a proof of the Baire category theorem.

Chapter 2 is devoted to the three fundamental principles of functional
analysis. They are theUniform Boundedness Principle (a pointwise bounded
family of bounded linear operators on a Banach space is bounded), the Open
Mapping Theorem (a surjective bounded linear operator between Banach
spaces is open), and the Hahn–Banach Theorem (a bounded linear func-
tional on a linear subspace of a normed vector space extends to a bounded
linear functional on the entire normed vector space). An equivalent formu-
lation of the Open Mapping Theorem is the Closed Graph Theorem (a linear
operator between Banach spaces is bounded if and only if it has a closed
graph) and a corollary is the Inverse Operator Theorem (a bijective bounded
linear operator between Banach spaces has a bounded inverse). A slightly
stronger version of the Hahn–Banach theorem, with the norm replaced by
a quasi-seminorm, can be reformulated as the geometric assertion that two
convex subsets of a normed vector space can be separated by a hyperplane
whenever one of them has nonempty interior. The chapter also discusses
reflexive Banach spaces and includes an exposition of the James space.

The subjects of Chapter 3 are the weak topology on a Banach space X
and the weak* topology on its dual space X∗. With these topologies X
and X∗ are locally convex Hausdorff topological vector spaces and the chap-
ter begins with a discussion of the elementary properties of such spaces. The
central result of the third chapter is the Banach–Alaoglu Theorem which
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asserts that the unit ball in the dual space is compact with respect to the
weak* topology. This theorem has important consequences in many fields of
mathematics. The chapter also contains a proof of the Banach–Dieudonné
Theorem which asserts that a linear subspace of the dual space of a Banach
space is weak* closed if and only if its intersection with the closed unit ball
is weak* closed. A consequence of the Banach–Alaoglu Theorem is that the
unit ball in a reflexive Banach space is weakly compact, and the Eberlein–
Šmulyan Theorem asserts that this property characterizes reflexive Banach
spaces. The Krĕın–Milman Theorem asserts that every nonempty compact
convex subset of a locally convex Hausdorff topological vector space is the
closed convex hull of its extremal points. Combining this with the Banach–
Alaoglu Theorem, one can prove that every homeomorphism of a compact
metric space admits an invariant ergodic Borel probability measure. Some
properties of such ergodic measures can be derived from an abstract func-
tional analytic ergodic theorem which is also established in this chapter.

The purpose of Chapter 4 is to give a basic introduction to Fredholm
operators and their indices including the stability theorem. A Fredholm
operator is a bounded linear operator between Banach spaces that has a
finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between two
Banach spaces, with respect to the topology induced by the operator norm.
It also asserts that the sum of a Fredholm operator and a compact operator is
again Fredholm and has the same index as the original operator. The chapter
includes an introduction to the dual of a bounded linear operator, a proof of
the closed image theorem which asserts that an operator has a closed image
if and only if its dual does, an introduction to compact operators which map
the unit ball to pre-compact subsets of the target space, a characterization
of Fredholm operators in terms of invertibility modulo compact operators,
and a proof of the stability theorem for Fredholm operators.

The purpose of Chapter 5 is to study the spectrum of a bounded linear
operator on a real or complex Banach space. A first preparatory section
discusses complex Banach spaces and the complexifications of real Banach
spaces, the integrals of continuous Banach space valued functions on com-
pact intervals, and holomorphic operator valued functions. The chapter then
introduces the spectrum of a bounded linear operator, examines its elemen-
tary properties, discusses the spectra of compact operators, and establishes
the holomorphic functional calculus. The remainder of this chapter deals
exclusively with operators on Hilbert spaces, starting with a discussion of
complex Hilbert spaces and the spectra of normal and self-adjoint operators.
It then moves on to C* algebras and the continuous functional calculus for
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self-adjoint operators, which takes the form of an isomorphism from the
C* algebra of complex valued continuous functions on the spectrum to the
smallest C* algebra containing the given operator. The next topic is the
Gelfand representation and the extension of the continuous functional cal-
culus to normal operators. The chapter also contains a proof that every
normal operator can be represented by a projection valued measure on the
spectrum, and that every self-adjoint operator is isomorphic to a direct sum
of multiplication operators on L2 spaces.

Chapter 6 is devoted to unbounded operators and their spectral the-
ory. The domain of an unbounded operator on a Banach space is a linear
subspace. In most of the relevant examples the domain is dense and the op-
erator has a closed graph. The chapter includes a discussion of the dual of
an unbounded operator and an extension of the closed image theorem to this
setting. It then examines the basic properties of the spectra of unbounded
operators. The remainder of the chapter deals with unbounded operators
on Hilbert spaces and their adjoints. In particular, it extends the functional
calculus and the spectral measure to unbounded self-adjoint operators.

Strongly continuous semigroups of operators are the subject of Chap-
ter 7. They play an important role in the study of many linear partial
differential equations such as the heat equation, the wave equation, and the
Schrödinger equation, and they can be viewed as infinite-dimensional ana-
logues of the exponential matrix S(t) := etA. In all the relevant examples
the operator A is unbounded. It is called the infinitesimal generator of the
strongly continuous semigroup in question. A central result in the subject
is the Hille–Yosida–Phillips Theorem which characterizes the infinitesimal
generators of strongly continuous semigroups. The dual semigroup is not
always strongly continuous. It is, however, strongly continuous whenever
the Banach space in question is reflexive. The chapter also includes a basic
treatment of analytic semigroups and their infinitesimal generators. It closes
with a study of Banach space valued measurable functions and of solutions
to the inhomogeneous equation associated to a semigroup.

Each of the seven chapters ends with a problem section, which we hope
will give the interested reader the opportunity to deepen their understanding
of the subject.



Chapter 1

Foundations

This introductory chapter discusses some of the basic concepts that play a
central role in the subject of Functional Analysis. In a nutshell, functional
analysis is the study of normed vector spaces and bounded linear operators.
Thus it merges the subjects of linear algebra (vector spaces and linear maps)
with that of point set topology (topological spaces and continuous maps).
The topologies that appear in functional analysis will in many cases arise
from metric spaces. We begin in Section 1.1 by recalling the basic definitions
and list several examples of Banach spaces that will be used to illustrate the
theory throughout the book. The central topic is the study of compact sets
and the main results are the characterization of sequentially compact sub-
sets of a metric space in terms of open covers and the Arzelà–Ascoli theorem
which gives a compactness criterion for subsets of the space of continuous
functions on a compact metric space. Section 1.2 moves on to the study
of finite-dimensional normed vector spaces. It shows that any two norms
on a finite-dimensional vector space are equivalent, and that a normed vec-
tor space is finite-dimensional if and only if the unit ball is compact. The
section also contains a brief introduction to bounded linear operators and
to product and quotient spaces. Section 1.3 introduces the dual space of a
normed vector space and explains several important examples. Section 1.4
contains a brief introduction to elementary Hilbert space theory, including
a proof of the Cauchy–Schwarz inequality and the Riesz representation the-
orem. Section 1.5 examines some basic properties of power series in Banach
algebras. It shows, via the geometric series, that the space of invertible
operators on a Banach space is open and that the map that assigns to an
invertible operator its inverse is continuous. The Baire category theorem is
the subject of Section 1.6.

1



2 1. Foundations

1.1. Metric Spaces and Compact Sets

This section begins by recalling the basic definitions of a metric space and
a Banach space and gives several important examples of Banach spaces. It
then moves on to the study of compact subsets of a metric space and shows
that sequential compactness is equivalent to the condition that every open
cover has a finite subcover (Theorem 1.1.4). The second main result of this
section is the Arzelà–Ascoli theorem, which characterizes the precompact
subsets of the space of continuous functions from a compact metric space
to another metric space, equipped with the supremum metric, in terms of
equicontinuity and pointwise precompactness (Theorem 1.1.11).

1.1.1. Banach Spaces.

Definition 1.1.1 (Metric Space). A metric space is a pair (X, d)
consisting of a set X and a function d : X ×X → R that satisfies the fol-
lowing axioms.

(M1) d(x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

(M2) d(x, y) = d(y, x) for all x, y ∈ X.

(M3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A function d : X ×X → R that satisfies these axioms is called a distance
function and the inequality in (M3) is called the triangle inequality. A
subset U ⊂ X of a metric space (X, d) is called open (or d-open) if, for
every x ∈ U , there exists a constant ε > 0 such that the open ball

Bε(x) := Bε(x, d) := {y ∈ X | d(x, y) < ε}

(centered at x with radius ε) is contained in U . The set of d-open subsets
of X will be denoted by

U (X, d) := {U ⊂ X |U is d-open} .

It follows directly from the definitions that the collection U (X, d) ⊂ 2X

of d-open sets in a metric space (X, d) satisfies the axioms of a topology
(i.e. the empty set and the set X are open, arbitrary unions of open sets are
open, and finite intersections of open sets are open). A subset F of a metric
space (X, d) is closed (i.e. its complement is open) if and only if the limit
point of every convergent sequence in F is itself contained in F .

Recall that a sequence (xn)n∈N in a metric space (X, d) is called a
Cauchy sequence if, for every ε > 0, there exists an n0 ∈ N such that
any two integers n,m ≥ n0 satisfy the inequality d(xn, xm) < ε. Recall also
that a metric space (X, d) is called complete if every Cauchy sequence in X
converges.



1.1. Metric Spaces and Compact Sets 3

The most important metric spaces in the field of functional analysis are
the normed vector spaces.

Definition 1.1.2 (Banach Space). A normed vector space is a
pair (X, ∥·∥) consisting of a real vector space X and a function

X → R : x 7→ ∥x∥
satisfying the following axioms.

(N1) ∥x∥ ≥ 0 for all x ∈ X, with equality if and only if x = 0.

(N2) ∥λx∥ = |λ| ∥x∥ for all x ∈ X and λ ∈ R.

(N3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X.

Let (X, ∥·∥) be a normed vector space. Then the formula

(1.1.1) d(x, y) := ∥x− y∥
for x, y ∈ X defines a distance function on X. The resulting topology is
denoted by U (X, ∥·∥) := U (X, d). X is called aBanach space if the metric
space (X, d) is complete, i.e. if every Cauchy sequence in X converges.

Here are six examples of Banach spaces.

Example 1.1.3. (i) Fix a real number 1 ≤ p <∞. Then the vector
space X = Rn of all n-tuples x = (x1, . . . , xn) of real numbers is a Banach
space with the norm-function

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

for x = (x1, . . . , xn) ∈ Rn. For p = 2 this is the Euclidean norm. Another
norm on Rn is given by ∥x∥∞ := maxi=1,...,n|xi| for x = (x1, . . . , xn) ∈ Rn.

(ii) For 1 ≤ p < ∞ the set of p-summable sequences of real numbers is
denoted by

ℓp :=

{
x = (xi)i∈N ∈ RN

∣∣∣ ∞∑
i=1

|xi|p <∞

}
.

This is a Banach space with the norm ∥x∥p := (
∑∞

i=1|xi|p)1/p for x ∈ ℓp.

Likewise, the space ℓ∞ ⊂ RN of bounded sequences is a Banach space with
the supremum norm ∥x∥∞ := supi∈N|xi| for x = (xi)i∈N ∈ ℓ∞.

(iii) Let (M,A, µ) be a measure space, i.e.M is a set, A ⊂ 2M is a σ-algebra,
and µ : A → [0,∞] is a measure. Fix a constant 1 ≤ p <∞. A measurable
function f :M → R is called p-integrable if

∫
M |f |p dµ <∞ and the space

of p-integrable functions on M will be denoted by

Lp(µ) :=
{
f :M → R

∣∣ f is measurable and

∫
M
|f |p dµ <∞

}
.
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The function Lp(µ) → R : f 7→ ∥f∥p defined by

(1.1.2) ∥f∥p :=
(∫

M
|f |p dµ

)1/p

is nonnegative and satisfies the triangle inequality (Minkowski’s inequality).
However, in general it is not a norm, because ∥f∥p = 0 if and only if f

vanishes almost everywhere (i.e. on the complement of a set of measure
zero). To obtain a normed vector space, one considers the quotient

Lp(µ) := Lp(µ)/∼,

where

f ∼ g
def⇐⇒ f = g almost everywhere.

The function f 7→ ∥f∥p descends to this quotient space and, with this

norm, Lp(µ) is a Banach space (see [75, Theorem 4.9]). In this example
it is often convenient to abuse notation and use the same letter f to denote
a function in Lp(µ) and its equivalence class in the quotient space Lp(µ).

(iv) Let (M,A, µ) be a measure space, denote by L∞(µ) the space of
bounded measurable functions, and denote by

L∞(µ) := L∞(µ)/∼

the quotient space, where the equivalence relation is again defined by equal-
ity almost everywhere. Then the formula

(1.1.3) ∥f∥∞ := ess sup|f | = inf
{
c ≥ 0

∣∣ f ≤ c almost everywhere
}

defines a norm on L∞(µ), and L∞(µ) is a Banach space with this norm.

(v) Let M be a topological space. Then the space Cb(M) of bounded
continuous functions f : M → R is a Banach space with the supremum
norm

∥f∥∞ := sup
p∈M

|f(p)|

for f ∈ Cb(M).

(vi) Let (M,A) be a measurable space, i.e. M is a set and A ⊂ 2M is a
σ-algebra. A signed measure on (M,A) is a function µ : A → R that
satisfies µ(∅) = 0 and is σ-additive, i.e. µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for every

sequence of pairwise disjoint measurable sets Ai ∈ A. The space M(M,A)
of signed measures on (M,A) is a Banach space with the norm given by

(1.1.4) ∥µ∥ := |µ|(M) := sup
A∈A

(
µ(A)− µ(M \A)

)
for µ ∈ M(M,A) (see [75, Exercise 5.34]).
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1.1.2. Compact Sets. Let (X, d) be a metric space and let K ⊂ X. Then
the restriction of the distance function d to K ×K is a distance function,
denoted by dK := d|K×K : K ×K → R, so (K, dK) is a metric space in its
own right. The metric space (X, d) is called (sequentially) compact if
every sequence in X has a convergent subsequence. The subset K is called
(sequentially) compact if (K, dK) is compact, i.e. if every sequence in K
has a subsequence that converges to an element of K. It is called precom-
pact if its closure is sequentially compact. Thus K is compact if and only
if it is precompact and closed. The subset K is called complete if (K, dK)
is a complete metric space, i.e. if every Cauchy sequence in K converges to
an element of K. It is called totally bounded if it is either empty or, for
every ε > 0, there exist finitely many elements ξ1, . . . , ξm ∈ K such that

K ⊂
m⋃
i=1

Bε(ξi).

The next theorem characterizes the compact subsets of a metric space (X, d)
in terms of the open subsets of X. It thus shows that compactness depends
only on the topology U (X, d) induced by the distance function d.

Theorem 1.1.4 (Characterization of Compact Sets). Let (X, d) be
a metric space and let K ⊂ X. Then the following are equivalent.

(i) K is sequentially compact.

(ii) K is complete and totally bounded.

(iii) Every open cover of K has a finite subcover.

Proof. See page 7. □

Let (X,U ) be a topological space. Then condition (iii) in Theorem 1.1.4
is used to define compact subsets of X. Thus a subset K ⊂ X is called com-
pact if every open cover of K has a finite subcover. Here an open cover
of K is a collection (Ui)i∈I of open subsets Ui ⊂ X, indexed by the elements
of a nonempty set I, such that K ⊂

⋃
i∈I Ui, and a finite subcover is a finite

collection of indices i1, . . . , im ∈ I such that K ⊂ Ui1 ∪ · · · ∪ Uim . Thus The-
orem 1.1.4 asserts that a subset of a metric space (X, d) is sequentially com-
pact if and only if it is compact as a subset of the topological space (X,U )
with U = U (X, d). A subset of a topological space is called precompact
if its closure is compact. Elementary properties of compact sets include the
fact that every compact subset of a Hausdorff space is closed, that every
closed subset of a compact set is compact, and that the image of a compact
set under a continuous map is compact (see [45, 61]).



6 1. Foundations

We give two proofs of Theorem 1.1.4. The first proof is more straight-
forward and uses the axiom of dependent choice. The second proof is taken
from Herrlich [34, Prop 3.26] and only uses the axiom of countable choice.

The axiom of dependent choice asserts that, if X is a nonempty
set and A : X → 2X is a map that assigns to each element x ∈ X a
nonempty subset A(x) ⊂ X, then there exists a sequence (xk)k∈N in X such
that xk+1 ∈ A(xk) for all k ∈ N. In the axiom of dependent choice the first
element of the sequence (xk)k∈N can be prescribed. To see this, let x1 ∈ X,

define X̃ as the set of all tuples of the form x̃ = (n,x1, . . . ,xn) with n ∈ N
and xk ∈ A(xk−1) for k = 2, . . . , n, and for x̃ = (n,x1, . . . ,xn) ∈ X̃ define

the set Ã(x̃) := {(n+ 1,x1, . . . ,xn,x) |x ∈ A(xn)}. Then X̃ is nonempty

and Ã(x̃) is nonempty for every x̃ ∈ X̃. Now apply the axiom of dependent

choice to Ã.

The axiom of countable choice asserts that, if (Ak)k∈N is a sequence
of nonempty subsets of a set A, then there exists a sequence (ak)k∈N in A
such that ak ∈ Ak for all k ∈ N. This follows from the axiom of dependent
choice by takingX := N×A andA(k,a) := {k+1}×Ak+1 for (k,a) ∈ N×A.

Lemma 1.1.5. Let (X, d) be a metric space and let K ⊂ X. Then the
following are equivalent.

(i) Every sequence in K has a Cauchy subsequence.

(ii) K is totally bounded.

Proof of (ii) =⇒ (i) in Lemma 1.1.5. The argument only uses the ax-
iom of countable choice. Assume that K is totally bounded and let (xn)n∈N
be a sequence in K. We prove that there exists a sequence of infinite sub-
sets N ⊃ T1 ⊃ T2 ⊃ · · · such that, for all k,m, n ∈ N,

(1.1.5) m,n ∈ Tk =⇒ d(xm, xn) < 2−k.

Since K is totally bounded, it follows from the axiom of countable choice
that there exists a sequence of ordered finite subsets

Sk = {ξk,1, . . . , ξk,mk
} ⊂ K

such that

K ⊂
mk⋃
i=1

B2−k−1(ξk,i) for all k ∈ N.

Since xn ∈ K for all n ∈ N, there must exist an index i ∈ {1, . . . ,m1} such
that the open ball B1/4(ξ1,i) contains infinitely many of the elements xn.
Let i1 be the smallest such index and define the set

T1 := {n ∈ N |xn ∈ B1/4(ξ1,i1)}.
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This set is infinite and satisfies d(xn, xm) ≤ d(xn, ξ1,i1) + d(ξ1,i1 , xm) < 1/2
for all m,n ∈ T1. Now fix an integer k ≥ 2 and suppose, by induction,
that Tk−1 has been defined. Since Tk−1 is an infinite set, there must exist
an index i ∈ {1, . . . ,mk} such that the ball B2−k−1(ξk,i) contains infinitely
many of the elements xn with n ∈ Tk−1. Let ik be the smallest such index
and define

Tk := {n ∈ Tk−1 |xn ∈ B2−k−1(ξk,ik)}.
This set is infinite and satisfies d(xn, xm) ≤ d(xn, ξk,ik) + d(ξk,ik , xm) < 2−k

for all m,n ∈ Tk. This completes the induction argument and the construc-
tion of a decreasing sequence of infinite sets Tk ⊂ N that satisfy (1.1.5).

We prove that (xn)n∈N has a Cauchy subsequence. By (1.1.5) there
exists a sequence of positive integers n1 < n2 < n3 < · · · such that nk ∈ Tk
for all k ∈ N. Such a sequence can be defined by the recursion formula

n1 := minT1, nk+1 := min
{
n ∈ Tk+1

∣∣n > nk
}

for k ∈ N. It follows that nk, nℓ ∈ Tk and hence

d(xnk
, xnℓ

) < 2−k for ℓ ≥ k ≥ 1.

Thus the subsequence (xnk
)k∈N is a Cauchy sequence. This shows that (ii)

implies (i) in Lemma 1.1.5. The converse will be proved on page 9. □

First proof of Theorem 1.1.4. We prove that (i) implies (iii) using the
axiom of dependent choice. Assume that the set K is nonempty and se-
quentially compact, and let {Ui}i∈I be an open cover of K. Here I is a
nonempty index set and the map I → 2X : i 7→ Ui assigns to each index i an
open set Ui ⊂ X such that K ⊂

⋃
i∈I Ui. We prove in two steps that there

exist indices i1, . . . , im ∈ I such that K ⊂
⋃m
j=1 Uij .

Step 1. There exists a constant ε > 0 such that, for every x ∈ K, there
exists an index i ∈ I such that Bε(x) ⊂ Ui.

Assume, by contradiction, that there is no such constant ε > 0. Then

∀ ε > 0 ∃x ∈ K ∀ i ∈ I Bε(x) ̸⊂ Ui.

Take ε = 1/n for n ∈ N. Then the set {x ∈ K |B1/n(x) ̸⊂ Ui for all i ∈ I}
is nonempty for every n ∈ N. Hence the axiom of countable choice asserts
that there exists a sequence xn ∈ K such that

(1.1.6) B1/n(xn) ̸⊂ Ui for all n ∈ N and all i ∈ I.

Since K is sequentially compact, there exists a subsequence (xnk
)k∈N that

converges to an element x ∈ K. Since K ⊂
⋃
i∈I Ui, there exists an i ∈ I

such that x ∈ Ui. Since Ui is open, there is an ε > 0 such that Bε(x) ⊂ Ui.
Since x = limk→∞ xnk

, there is a k ∈ N such that d(x, xnk
) < ε

2 and 1
nk
< ε

2 .

Thus B1/nk
(xnk

) ⊂ Bε/2(xnk
) ⊂ Bε(x) ⊂ Ui in contradiction to (1.1.6).
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Step 2. There exist indices i1, . . . , im ∈ I such that K ⊂
⋃m
j=1 Uij .

Assume, by contradiction, that this is wrong. Let ε > 0 be the constant in
Step 1. We prove that there are sequences xn ∈ K and in ∈ I such that

(1.1.7) Bε(xn) ⊂ Uin , xn /∈ Ui1 ∪ · · · ∪ Uin−1

for all n ∈ N (with n ≥ 2 for the second condition). Choose x1 ∈ K. Then,
by Step 1, there exists an index i1 ∈ I such that Bε(x1) ⊂ Ui1 . Now suppose,
by induction, that x1, . . . , xk and i1, . . . , ik have been found such that (1.1.7)
holds for n ≤ k. Then

K ̸⊂ Ui1 ∪ · · · ∪ Uik .
Choose an element xk+1 ∈ K \ (Ui1 ∪ · · · ∪ Uik). By Step 1, there exists
an index ik+1 ∈ I such that Bε(xk+1) ⊂ Uik+1

. Thus the existence of se-
quences xn and in that satisfy (1.1.7) follows from the axiom of dependent
choice. More precisely, let X be the set of all pairs x = (x, J) such that J is
a finite subset of I and x ∈ K \

⋃
j∈J Uj . For x = (x, J) ∈ X let A(x) be the

set of all pairs x′ = (x′, J ′) ∈ X, where J ′ = J∪{i′}, i′ ∈ I, and Bε(x
′) ⊂ Ui′ .

Then A(x) ̸= ∅ for all x ∈ X by assumption and the choice of ε in Step 1.
Thus there is a sequence xn = (xn, Jn) ∈ X such that xn+1 ∈ A(xn) for all n.
So Jn \ Jn−1 = {in} is a singleton such that Bε(xn) ⊂ Uin for each n ∈ N.
Moreover i1, . . . , in−1 ∈ Jn and so xn ∈ K \

⋃n−1
k=1 Uik for each integer n ≥ 2.

Thus the sequences (xn)n∈N and (in)n∈N satisfy (1.1.7) as claimed.

By (1.1.7) we have d(xn, xk) ≥ ε for k ̸= n, so (xn)n∈N does not have a
convergent subsequence, contradicting (i). This shows that (i) implies (iii).

We prove that (iii) implies (ii) without using any version of the axiom
of choice. Thus assume that every open cover of K has a finite subcover.
Assume that K is nonempty and fix a constant ε > 0. Then the sets Bε(ξ)
for ξ ∈ K form a nonempty open cover of K. Hence there exist finitely many
elements ξ1, . . . , ξm ∈ K such that K ⊂

⋃m
i=1Bε(ξi). This shows that K is

totally bounded.

We prove that K is complete. Let (xn)n∈N be a Cauchy sequence in K
and suppose, by contradiction, that (xn)n∈N does not converge to any ele-
ment of K. Then no subsequence of (xn)n∈N can converge to any element
of K. Thus, for every ξ ∈ K, there is an ε > 0 such that Bε(ξ) contains
only finitely many of the xn. For ξ ∈ K let ε(ξ) > 0 be half the supremum
of the set of all ε ∈ (0, 1] such that #{n ∈ N |xn ∈ Bε(ξ)} <∞. Then the
set {n ∈ N

∣∣xn ∈ Bε(ξ)(ξ)} is finite for every ξ ∈ K. Thus {Bε(ξ)(ξ)}ξ∈K is
an open cover of K that does not have a finite subcover, in contradiction
to (iii). This shows that (iii) implies (ii).

That (ii) implies (i) was shown in Lemma 1.1.5, using the axiom of
countable choice, and this completes the first proof of Theorem 1.1.4. □
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The above proof of Theorem 1.1.4 requires the axiom of dependent choice
and only uses the implication (ii) =⇒ (i) in Lemma 1.1.5. The second proof
follows [34, Prop 3.26] and only requires the axiom of countable choice.

Proof of (i) =⇒ (ii) in Lemma 1.1.5. The proof follows [34, Prop 3.26]
and only uses the axiom of countable choice. We argue indirectly and assume
that K is not totally bounded and hence also nonempty. Then there exists
a constant ε > 0 such that K does not admit a finite cover by balls of
radius ε, centered at elements of K. We prove in three steps that there
exists a sequence in K that does not have a Cauchy subsequence.

Step 1. For n ∈ N define the set

Kn :=

{
(x1, . . . , xn) ∈ Kn

∣∣∣∣ if i, j ∈ {1, . . . , n} and i ̸= j
then d(xi, xj) ≥ ε

}
.

There is a sequence (xk)k∈N in K such that (xn(n−1)/2+1, . . . , xn(n+1)/2) ∈ Kn

for every integer n ≥ 1.

We prove that Kn is nonempty for every n ∈ N. For n = 1 this holds
because K is nonempty. If it is empty for some n ∈ N then there exists
an integer n ≥ 1 such that Kn ̸= ∅ and Kn+1 = ∅. In this case, choose an
element (x1, . . . , xn) ∈ Kn. Since Kn+1 = ∅, this implies K ⊂

⋃n
i=1Bε(xi),

contradicting the choice of ε. Since Kn ̸= ∅ for all n ∈ N, the existence of a
sequence (xk)k∈N as in Step 1 follows from the axiom of countable choice.

Step 2. For every collection of n−1 elements y1, . . . , yn−1 ∈ K, there is an

integer i such that (n−1)n
2 < i ≤ n(n+1)

2 and d(yj , xi) ≥ ε
2 for j = 1, . . . , n−1.

Otherwise, there exists a map ν : { (n−1)n
2 + 1, . . . , n(n+1)

2 } → {1, . . . , n− 1}
such that d(xi, yν(i)) <

ε
2 for all i. Since the target space of ν has smaller car-

dinality than the domain, there is a pair i ̸= j in the domain with ν(i) = ν(j)
and so d(xi, xj) ≤ d(xi, yν(i)) + d(yν(j), xj) < ε, in contradiction to Step 1.

Step 3. There exists a subsequence (xkn)n∈N such that k1 = 1 and

(1.1.8)
(n− 1)n

2
< kn ≤ n(n+ 1)

2
, d(xkm , xkn) ≥

ε

2
for m < n.

Define k1 := 1, fix an integer n ≥ 2, and assume, by induction, that the inte-
gers k1, k2, . . . , kn−1 have been found such that (1.1.8) holds with n replaced
by any number n′ ∈ {2, . . . , n− 1}. Then, by Step 2, there exists a unique

smallest integer kn such that (n−1)n
2 < kn ≤ n(n+1)

2 and d(xkm , xkn) ≥ ε
2

for m = 1, . . . , n− 1. This proves the existence of a subsequence (xkn)n∈N
that satisfies (1.1.8). The sequence (xkn)n∈N in Step 3 does not have a
Cauchy subsequence. This shows that (i) implies (ii) in Lemma 1.1.5. □
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Second proof of Theorem 1.1.4. A sequentially compact metric space is
complete, because a Cauchy sequence converges if and only if it has a con-
vergent subsequence. Hence the equivalence of (i) and (ii) in Theorem 1.1.4
follows directly from Lemma 1.1.5.

We prove that (ii) implies (iii), following the argument in [34, Prop 3.26].
Assume that K is complete and totally bounded. Suppose, by contradiction,
that there is an open cover {Ui}i∈I of K that does not have a finite subcover.
Then K ̸= ∅. For n,m ∈ N define

An,m :=

(x1, . . . , xm) ∈ Km

∣∣∣∣K ⊂
m⋃
j=1

B1/n(xj)

 .

Then, for every n ∈ N, there exists anm ∈ N such that An,m ̸= ∅, because K
is totally bounded and nonempty. For n ∈ N let mn ∈ N be the smallest
positive integer such that An,mn ̸= ∅. Then, by the axiom of countable
choice, there is a sequence an = (xn,1, . . . , xn,mn) ∈ An,mn for n ∈ N.

Next we construct a sequence (yn)n∈N inK such that
⋂n
ν=1B1/ν(yν) ∩K

cannot be covered by finitely many of the sets Ui for any n ∈ N. For n = 1
define y1 := x1,k, where

k := min

{
j ∈ {1, . . . ,m1}

∣∣∣∣ the set B1(x1,j) ∩K cannot
be covered by finitely many Ui

}
.

Assume, by induction, that y1, . . . , yn−1 have been chosen such that the
set

⋂n−1
ν=1 B1/ν(yν) ∩K cannot be covered by finitely many of the Ui and

define yn := xn,k, where

k := min

{
j ∈ {1, . . . ,mn}

∣∣∣∣ the set B1/n(xn,j) ∩
⋂n−1
ν=1 B1/ν(yν) ∩K

cannot be covered by finitely many Ui

}
.

This completes the construction of the sequence (yn)n∈N. It satisfies

d(yn, ym) <
1

m
+

1

n
≤ 2

m
for n > m ≥ 1,

because B1/n(yn) ∩ B1/m(ym) ̸= ∅. Hence (yn)n∈N is a Cauchy sequence
in K. Since K is complete, the limit y∗ := limn→∞ yn exists and is an
element of K. Choose an index i∗ ∈ I such that y∗ ∈ Ui∗ and choose a
constant ε∗ > 0 such that Bε∗(y

∗) ⊂ Ui∗ . Then

B1/n(yn) ⊂ Bε∗(y
∗) ⊂ Ui∗

for n sufficiently large in contradiction to the choice of yn. This proves
that (ii) implies (iii).

That (iii) implies (ii) was shown in the first proof without using the
axiom of choice. This completes the second proof of Theorem 1.1.4. □
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It follows immediately from Theorem 1.1.4 that every compact metric
space is separable. Here are the relevant definitions.

Definition 1.1.6. Let X be a topological space. A subset S ⊂ X
is called dense in X if its closure is equal to X or, equivalently, every
nonempty open subset of X contains an element of S. The space X is called
separable if it admits a countable dense subset. (A set is called countable
if it is either finite or countably infinite.)

Corollary 1.1.7. Every compact metric space is separable.

Proof. Let n ∈ N. Since X is totally bounded by Theorem 1.1.4, there
exists a finite set Sn ⊂ X such thatX =

⋃
ξ∈Sn

B1/n(ξ). Hence S :=
⋃
n∈N Sn

is a countable dense subset of X by the axiom of countable choice. □

Corollary 1.1.8. Let (X, d) be a metric space and let A ⊂ X. Then
the following are equivalent.

(i) A is precompact.

(ii) Every sequence in A has a subsequence that converges in X.

(iii) A is totally bounded and every Cauchy sequence in A converges in X.

Proof. That (i) implies (ii) follows directly from the definitions.

We prove that (ii) implies (iii). By (ii) every sequence in A has a Cauchy
subsequence and so A is totally bounded by Lemma 1.1.5. If (xn)n∈N is a
Cauchy sequence in A, then by (ii) there exists a subsequence (xni)i∈N that
converges in X, and so the original sequence converges in X because a
Cauchy sequence converges if and only if it has a convergent subsequence.

We prove that (iii) implies (i). Let (xn)n∈N be a sequence in the closure A
ofA. Then, by the axiom of countable choice, there exists a sequence (an)n∈N
in A such that d(xn, an) < 1/n for all n ∈ N. Since A is totally bounded, it
follows from Lemma 1.1.5 that the sequence (an)n∈N has a Cauchy subse-
quence (ani)i∈N. This subsequence converges in X by (iii). Denote its limit
by a. Then a ∈ A and a = limi→∞ ani = limi→∞ xni . Thus A is sequentially
compact. This proves Corollary 1.1.8. □

Corollary 1.1.9. Let (X, d) be a complete metric space and let A ⊂ X.
Then the following are equivalent.

(i) A is precompact.

(ii) Every sequence in A has a Cauchy subsequence.

(iii) A is totally bounded.

Proof. This follows directly from the definitions and Corollary 1.1.8. □
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1.1.3. The Arzelà–Ascoli Theorem. It is a recurring theme in func-
tional analysis to understand which subsets of a Banach space or topological
vector space are compact. For the standard Euclidean space (Rn, ∥·∥2) the
Heine-Borel Theorem asserts that a subset of Rn is compact if and only if it
is closed and bounded. This continues to hold for every finite-dimensional
normed vector space and, conversely, every normed vector space in which
the closed unit ball is compact is necessarily finite-dimensional (see The-
orem 1.2.11 below). For infinite-dimensional Banach spaces this leads to
the problem of characterizing the compact subsets. Necessary conditions
are that the subset is closed and bounded, however, these conditions can
no longer be sufficient. For the Banach space of continuous functions on a
compact metric space a characterization of the compact subsets is given by
a theorem of Arzelà and Ascoli which we explain next.

Let (X, dX) and (Y, dY ) be metric spaces and assume that X is compact.
Then the space

C(X,Y ) :=
{
f : X → Y

∣∣ f is continuous
}

of continuous maps from X to Y is a metric space with the distance function

(1.1.9) d(f, g) := sup
x∈X

dY (f(x), g(x)) for f, g ∈ C(X,Y ).

This is well defined because the function X → R : x 7→ dY (f(x), g(x)) is
continuous and hence is bounded because X is compact. That (1.1.9) sat-
isfies the axioms of a distance function follows directly from the definitions.
When X is nonempty, the metric space C(X,Y ) with the distance func-
tion (1.1.9) is complete if and only if Y is complete, because the limit of a
uniformly convergent sequence of continuous functions is again continuous.

Definition 1.1.10. A subset

F ⊂ C(X,Y )

is called equi-continuous if, for every ε > 0, there exists a constant δ > 0
such that, for all x, x′ ∈ X and all f ∈ F ,

dX(x, x
′) < δ =⇒ dY (f(x), f(x

′)) < ε.

It is called pointwise compact if, for every element x ∈ X, the set

F (x) :=
{
f(x)

∣∣ f ∈ F
}

is a compact subset of Y . It is called pointwise precompact if, for every
element x ∈ X, the set F (x) has a compact closure in Y .

Since every continuous map defined on a compact metric space is uni-
formly continuous, every finite subset of C(X,Y ) is equi-continuous.
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Theorem 1.1.11 (Arzelà–Ascoli). Let (X, dX) and (Y, dY ) be metric
spaces such that X is compact and let F ⊂ C(X,Y ). Then the following
are equivalent.

(i) F is precompact.

(ii) F is pointwise precompact and equi-continuous.

Proof. We prove that (i) implies (ii). Thus assume F is precompact.
That F is pointwise precompact follows from the fact that the evalua-
tion map C(X,Y ) → Y : f 7→ evx(f) := f(x) is continuous for every x ∈ X.
Since the image of a precompact set under a continuous map is again precom-
pact (Exercise 1.7.1), it follows that the set F (x) = evx(F ) is a precompact
subset of Y for every x ∈ X.

It remains to prove that F is equi-continuous. Assume F is nonempty
and fix a constant ε > 0. Since the set F is totally bounded by Lemma 1.1.5,
there exist finitely many maps f1, . . . , fm ∈ F such that

(1.1.10) F ⊂
m⋃
i=1

Bε/3(fi).

Since X is compact, each function fi is uniformly continuous. Hence there
exists a constant δ > 0 such that, for all i ∈ {1, . . . ,m} and all x, x′ ∈ X,

(1.1.11) dX(x, x
′) < δ =⇒ dY (fi(x), fi(x

′)) <
ε

3
.

Now let f ∈ F and let x, x′ ∈ X such that

(1.1.12) dX(x, x
′) < δ.

By (1.1.10) there exists an index i ∈ {1, . . . ,m} such that d(f, fi) <
ε
3 . Thus

dY (f(x), fi(x)) <
ε

3
, dY (f(x

′), fi(x
′)) <

ε

3
.

Moreover, it follows from (1.1.11) and (1.1.12) that

dY (fi(x), fi(x
′)) <

ε

3
.

Putting these last three inequalities together and using the triangle inequal-
ity, we find

dY (f(x), f(x
′)) ≤ dY (f(x), fi(x)) + dY (fi(x), fi(x

′)) + dY (fi(x
′), f(x′))

≤ ε

3
+
ε

3
+
ε

3
= ε.

This shows that F is equi-continuous, and thus we have proved that (i)
implies (ii).
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We prove that (ii) implies (i). Let (fn)n∈N be a sequence in F and
let (xk)k∈N be a dense sequence in X (Corollary 1.1.7). We prove in three
steps that (fn)n∈N has a convergent subsequence.

Step 1. There exists a subsequence (gi)i∈N of (fn)n∈N such that the se-
quence (gi(xk))i∈N converges in Y for every k ∈ N.

Since F (xk) is precompact for each k, it follows from the axiom of depen-
dent choice (page 6) that there is a sequence of subsequences (fnk,i

)i∈N such
that, for each k ∈ N, the sequence (fnk+1,i

)i∈N is a subsequence of (fnk,i
)i∈N

and the sequence (fnk,i
(xk))i∈N converges in Y . Thus the diagonal subse-

quence gi := fni,i satisfies the requirements of Step 1.

Step 2. The subsequence (gi)i∈N in Step 1 is a Cauchy sequence in C(X,Y ).

Fix a constant ε > 0. Then, by equi-continuity, there exists a constant δ > 0
such that, for all f ∈ F and all x, x′ ∈ X,

(1.1.13) dX(x, x
′) < δ =⇒ dY (f(x), f(x

′)) <
ε

3
.

Since the balls Bδ(xk) form an open cover of X, there exists an m ∈ N such
that X =

⋃m
k=1Bδ(xk). Since (gi(xk))i∈N is a Cauchy sequence for each k,

there exists an N ∈ N such that, for all i, j, k ∈ N, we have

(1.1.14) 1 ≤ k ≤ m, i, j ≥ N =⇒ dY (gi(xk), gj(xk)) < ε/3.

We prove that d(gi, gj) < ε for all i, j ≥ N . To see this, fix an element x ∈ X.
Then there exists an index k ∈ {1, . . . ,m} such that dX(x, xk) < δ. This
implies dY (gi(x), gi(xk)) < ε/3 for all i ∈ N, by (1.1.13), and so

dY (gi(x), gj(x)) ≤ dY (gi(x), gi(xk)) + dY (gi(xk), gj(xk)) + dY (gj(xk), gj(x))

<
ε

3
+
ε

3
+
ε

3
= ε

for all i, j ≥ N by (1.1.14). Hence d(gi, gj) = maxx∈X dY (gi(x), gj(x)) < ε
for all i, j ≥ N and this proves Step 2.

Step 3. The subsequence (gi)i∈N in Step 1 converges in C(X,Y ).

Let x ∈ X. By Step 2, (gi(x))i∈N is a Cauchy sequence in F (x). Since F (x)
is a precompact subset of Y , the sequence (gi(x))i∈N has a convergent subse-
quence and hence converges in Y . Denote the limit by g(x) := limi→∞ gi(x).
Then the sequence gi converges uniformly to g by Step 2 and so g ∈ C(X,Y ).

Step 3 shows that every sequence in F has a subsequence that converges
to an element of C(X,Y ). Hence F is precompact by Corollary 1.1.8. This
proves Theorem 1.1.11. □
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Corollary 1.1.12 (Arzelà–Ascoli). Let (X, dX) be a compact met-
ric space, let (Y, dY ) be a metric space, and let F ⊂ C(X,Y ). Then the
following are equivalent.

(i) F is compact.

(ii) F is closed, pointwise compact, and equi-continuous.

(iii) F is closed, pointwise precompact, and equi-continuous.

Proof. That (i) implies (ii) follows from Theorem 1.1.11, because every
compact subset of a metric space is closed, and the image of a compact set
under a continuous map is compact. Here the continuous map in question is
the evaluation map C(X,Y ) → Y : f 7→ f(x) associated to x ∈ X. That (ii)
implies (iii) is obvious. That (iii) implies (i) follows from Theorem 1.1.11,
because a subset of a metric space is compact if and only if it is precompact
and closed. This proves Corollary 1.1.12. □

When the target space Y is the Euclidean space (Rn, ∥·∥2) in part (i) of
Example 1.1.3, the Arzelà–Ascoli Theorem takes the following form.

Corollary 1.1.13 (Arzelà–Ascoli). Let (X, d) be a compact metric
space and let F ⊂ C(X,Rn). Then the following holds.

(i) F is precompact if and only if it is bounded and equi-continuous.

(ii) F is compact if and only if it is closed, bounded, and equi-continuous.

Proof. Assume F is precompact. Then F is equi-continuous by Theo-
rem 1.1.11, and is bounded, because a sequence whose norm tends to infinity
cannot have a convergent subsequence. Conversely, assume F is bounded
and equi-continuous. Then, for each x ∈ X, the set F (x) ⊂ Rn is bounded
and therefore is precompact by the Heine–Borel Theorem. Hence F is pre-
compact by Theorem 1.1.11. This proves (i). Part (ii) follows from (i)
and the fact that a subset of a metric space is compact if and only if it is
precompact and closed. This proves Corollary 1.1.13. □

Exercise 1.1.14. This exercise shows that the hypothesis that X is
compact cannot be removed in Corollary 1.1.13. Consider the Banach
space Cb(R) of bounded continuous real-valued functions on R with the
supremum norm. Find a closed bounded equi-continuous subset of Cb(R)
that is not compact.

There are many versions of the Arzelà–Ascoli Theorem. For example,
Theorem 1.1.11, Corollary 1.1.12, and Corollary 1.1.13 continue to hold, with
the appropriate notion of equi-continuity, whenX is any compact topological
space. This is the content of the following exercise.
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Exercise 1.1.15. Let X be a compact topological space and let Y be a
metric space. Then the space C(X,Y ) of continuous functions f : X → Y is
a metric space with the distance function (1.1.9). A subset F ⊂ C(X,Y ) is
called equi-continuous if, for every x ∈ X and every ε > 0, there exists an
open neighborhood U ⊂ X of x such that dY (f(x), f(x

′)) < ε for all x′ ∈ U
and all f ∈ F .

(a) Prove that the above definition of equi-continuity agrees with the one
in Definition 1.1.10 whenever X is a compact metric space.

(b) Prove the following variant of the Arzelà–Ascoli Theorem for compact
topological spaces X.

Arzelà–Ascoli Theorem. Let X be a compact topological space and let Y
be a metric space. A set F ⊂ C(X,Y ) is precompact if and only if it is
pointwise precompact and equi-continuous.

Hint 1: If F is precompact, use the argument in the proof of Theo-
rem 1.1.11 to show that F is pointwise precompact and equi-continuous.

Hint 2: Assume F is equi-continuous and pointwise precompact.

Step 1. The set F := {f(x) |x ∈ X, f ∈ F} ⊂ Y is totally bounded.

Show that F is precompact (Exercise 1.7.1) and use Corollary 1.1.8.

Step 2. The set F is totally bounded.

Let ε > 0. Cover F by finitely many open balls V1, . . . , Vn of radius ε/3 and
cover X by finitely many open sets U1, . . . , Um such that

sup
x,x′∈Ui

sup
f∈F

dY (f(x), f(x
′)) < ε/3 for i = 1, . . . ,m.

For any function α : {1, . . . ,m} → {1, . . . , n} define

Fα :=
{
f ∈ F

∣∣ f(Ui) ∩ Vα(i) ̸= ∅ for i = 1, . . . ,m
}
.

Prove that d(f, g) = supx∈X dY (f(x), g(x)) < ε for all f, g ∈ Fα. Let A be
the set of all α such that Fα ̸= ∅. Prove that F =

⋃
α∈A Fα and choose a

collection of functions fα ∈ Fα, one for each α ∈ A.

Step 3. The set F is precompact.

Use Lemma 1.1.5 and Step 3 in the proof of Theorem 1.1.11 to show that
every sequence in F has a subsequence that converges in C(X,Y ).

In contrast to what one might expect from Exercise 1.1.14, there is also
a version of the Arzelà–Ascoli theorem for the space of continuous functions
from an arbitrary topological space X to a metric space Y . This version uses
the compact-open topology on C(X,Y ) and is explained in Exercise 3.7.5.
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1.2. Finite-Dimensional Banach Spaces

The purpose of the present section is to examine finite-dimensional normed
vector spaces with an emphasis on those properties that distinguish them
from infinite-dimensional normed vector spaces, which are the main sub-
ject of functional analysis. Finite-dimensional normed vector spaces are
complete, their linear subspaces are closed, linear functionals on them are
continuous, and their closed unit balls are compact. Theorem 1.2.11 below
shows that this last property characterizes finite-dimensionality. Before en-
tering into the main topic of this section, it is convenient to first introduce
the concept of a bounded linear operator.

1.2.1. Bounded Linear Operators. The second fundamental concept in
functional analysis, after that of a Banach space, is the notion of a bounded
linear operator. In functional analysis it is common practice to use the
term linear operator instead of linear map, although both terms have the
exact same meaning, namely that of a map between vector spaces that
preserves addition and scalar multiplication. The reason lies in the fact
that the relevant normed vector spaces in applications are often function
spaces and then the elements of the space on which the operator acts are
themselves functions. If domain and target of a linear operator are normed
vector spaces, it is natural to impose continuity with respect to the norm
topologies. This underlies the following definition.

Definition 1.2.1 (Bounded Linear Operator).

Let (X, ∥·∥X) and (Y, ∥·∥Y ) be real normed vector spaces. A linear operator

A : X → Y

is called bounded if there exists a constant c ≥ 0 such that

(1.2.1) ∥Ax∥Y ≤ c ∥x∥X for all x ∈ X.

The smallest constant c ≥ 0 that satisfies (1.2.1) is called the operator
norm of A and is denoted by

(1.2.2) ∥A∥ := ∥A∥L(X,Y ) := sup
x∈X\{0}

∥Ax∥Y
∥x∥X

.

A bounded linear operator with values in Y = R is called a bounded linear
functional on X. The space of bounded linear operators from X to Y is
denoted by1

L(X,Y ) :=
{
A : X → Y

∣∣A is linear and bounded
}
.

Then (L(X,Y ), ∥·∥L(X,Y )) is a normed vector space. The resulting topology

on L(X,Y ) is called the uniform operator topology.

1Many authors use the notation B(X,Y ) for the space of bounded linear operators.
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Theorem 1.2.2. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be real normed vector spaces
and let A : X → Y be a linear operator. The following are equivalent.

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at x = 0.

Proof. We prove that (i) implies (ii). If A is bounded then∥∥Ax−Ax′
∥∥
Y
=
∥∥A(x− x′)

∥∥
Y

≤ ∥A∥
∥∥x− x′

∥∥
X

for all x, x′ ∈ X and so A is Lipschitz-continuous. Since every Lipschitz-
continuous function is continuous, this shows that (i) implies (ii). That (ii)
implies (iii) follows directly from the definition of continuity.

We prove that (iii) implies (i). Thus assume A is continuous at x = 0.
Then it follows from the ε-δ definition of continuity with ε = 1 that there
exists a constant δ > 0 such that, for all x ∈ X,

∥x∥X < δ =⇒ ∥Ax∥Y < 1.

This implies ∥Ax∥Y ≤ 1 for every x ∈ X with ∥x∥X = δ. Now let x ∈ X\{0}.
Then ∥δ∥x∥−1

X x∥X = δ and so ∥A(δ∥x∥−1
X x)∥Y ≤ 1. Multiply both sides of

this last inequality by δ−1∥x∥X to obtain the inequality

∥Ax∥Y ≤ δ−1 ∥x∥X
for all x ∈ X. This proves Theorem 1.2.2. □

Recall that the kernel and image of a linear operator A : X → Y
between real vector spaces are the linear subspaces defined by

ker(A) := {x ∈ X |Ax = 0} ⊂ X,

im(A) := {Ax |x ∈ X} ⊂ Y.

If X and Y are normed vector spaces and A : X → Y is a bounded linear
operator, then the kernel of A is a closed subspace of X by Theorem 1.2.2.
However, its image need not be a closed subspace of Y .

Definition 1.2.3 (Equivalent Norms). Let X be a real vector space.
Two norms ∥·∥ and ∥·∥′ on X are called equivalent if there is a constant

c ≥ 1

such that
1

c
∥x∥ ≤ ∥x∥′ ≤ c ∥x∥

for all x ∈ X.
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Exercise 1.2.4. (i) This defines an equivalence relation on the set of
all norm functions on X.

(ii) Two norms ∥·∥ and ∥·∥′ on X are equivalent if and only if the identity
maps id : (X, ∥·∥) → (X, ∥·∥′) and id : (X, ∥·∥′) → (X, ∥·∥) are bounded
linear operators.

(iii) Two norms ∥·∥ and ∥·∥′ on X are equivalent if and only if they induce
the same topologies on X, i.e. U (X, ∥·∥) = U (X, ∥·∥′).

(iv) Let ∥·∥ and ∥·∥′ be equivalent norms on X. Show that (X, ∥·∥) is
complete if and only if (X, ∥·∥′) is complete.

1.2.2. Finite-Dimensional Normed Vector Spaces.

Theorem 1.2.5. Let X be a finite-dimensional real vector space. Then
any two norms on X are equivalent.

Proof. Choose an ordered basis e1, . . . , en on X and define

∥x∥2 :=

√√√√ n∑
i=1

|xi|2 for x =

n∑
i=1

xiei, xi ∈ R.

This is a norm on X. We prove in two steps that every norm on X is
equivalent to ∥·∥2. Fix any norm function X → R : x 7→ ∥x∥.

Step 1. There is a constant c > 0 such that ∥x∥ ≤ c ∥x∥2 for all x ∈ X.

Define c :=
√∑n

i=1 ∥ei∥
2 and let x =

∑n
i=1 xiei with xi ∈ R. Then, by the

triangle inequality for ∥·∥ and the Cauchy–Schwarz inequality on Rn, we
have

∥x∥ ≤
n∑
i=1

|xi| ∥ei∥ ≤

√√√√ n∑
i=1

|xi|2

√√√√ n∑
i=1

∥ei∥2 = c ∥x∥2 .

This proves Step 1.

Step 2. There is a constant δ > 0 such that δ ∥x∥2 ≤ ∥x∥ for all x ∈ X.

The set S :=
{
x ∈ X

∣∣ ∥x∥2 = 1
}

is compact with respect to ∥·∥2 by the
Heine–Borel Theorem, and the function S → R : x 7→ ∥x∥ is continuous
by Step 1. Hence there exists an element x0 ∈ S such that ∥x0∥ ≤ ∥x∥ for
all x ∈ S. Define

δ := ∥x0∥ > 0.

Then every nonzero vector x ∈ X satisfies ∥x∥−1
2 x ∈ S, hence ∥∥x∥−1

2 x∥ ≥ δ,
and hence ∥x∥ ≥ δ ∥x∥2. This proves Step 2 and Theorem 1.2.5. □
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Theorem 1.2.5 has several important consequences that are special to
finite-dimensional normed vector spaces and do not carry over to infinite
dimensions.

Corollary 1.2.6. Every finite-dimensional normed vector space is com-
plete.

Proof. This holds for the Euclidean norm on Rn by a theorem in first
year analysis, which follows rather directly from the completeness of the real
numbers. Hence, by Theorem 1.2.5 and part (iv) of Exercise 1.2.4, it holds
for every norm on Rn. Thus it holds for every finite-dimensional normed
vector space. □

Corollary 1.2.7. Let (X, ∥·∥) be a normed vector space. Then every
finite-dimensional linear subspace of X is a closed subset of X.

Proof. Let Y ⊂ X be a finite-dimensional linear subspace and denote
by ∥·∥Y the restriction of the norm on X to the subspace Y . Then (Y, ∥·∥Y )
is complete by Corollary 1.2.6 and hence Y is a closed subset of X. □

Corollary 1.2.8. Let (X, ∥·∥) be a finite-dimensional normed vector
space and let K ⊂ X. Then K is compact if and only if K is closed and
bounded.

Proof. This holds for the Euclidean norm on Rn by the Heine–Borel
Theorem. Hence it holds for every norm on Rn by Theorem 1.2.5. Hence it
holds for every finite-dimensional normed vector space. □

Corollary 1.2.9. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces
and suppose dim X <∞. Then every linear operator A : X → Y is bounded.

Proof. Define the function X → R : x→ ∥x∥A by

∥x∥A := ∥x∥X + ∥Ax∥Y for x ∈ X.

This is a norm on X. Hence, by Theorem 1.2.5, there exists a constant c ≥ 1
such that ∥x∥A ≤ c ∥x∥X for all x ∈ X. Hence A is bounded. □

The above four corollaries spell out some of the standard facts in finite-
dimensional linear algebra. The following four examples show that in none of
these four corollaries the hypothesis of finite-dimensionality can be dropped.
Thus in functional analysis one must dispense with some of the familiar
features of linear algebra. In particular, linear subspaces need no longer be
closed subsets and linear maps need no longer be continuous.
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Example 1.2.10. (i) Consider the space X := C([0, 1]) of continuous
real valued functions on the closed unit interval [0, 1]. Then the formulas

∥f∥∞ := sup
0≤t≤1

|f(t)|, ∥f∥2 :=
(∫ 1

0
|f(t)|2

)1/2

for f ∈ C([0, 1]) define norms on X. The space C([0, 1]) is complete
with ∥·∥∞ but not with ∥·∥2. Thus the two norms are not equivalent. Exer-
cise: Find a sequence of continuous functions fn : [0, 1] → R that is Cauchy
with respect to the L2-norm and has no convergent subsequence.

(ii) The space Y := C1([0, 1]) of continuously differentiable real valued
functions on the closed unit interval is a dense linear subspace of C([0, 1])
with the supremum norm and so is not a closed subset of (C([0, 1]), ∥·∥∞).

(iii) Consider the closed unit ball

B := {f ∈ C([0, 1]) | ∥f∥∞ ≤ 1}
in the Banach space C([0, 1]) with the supremum norm. This set is closed
and bounded, but not equi-continuous. Hence it is not compact by the
Arzelà–Ascoli Theorem (Corollary 1.1.13). More explicitly, for n ∈ N define
the function fn ∈ B by fn(t) := sin(2nπt) for 0 ≤ t ≤ 1. Then ∥fn − fm∥ ≥ 1
for n ̸= m and hence the sequence (fn)n∈N does not have any convergent
subsequence. Theorem 1.2.11 below shows that the compactness of the unit
ball characterizes the finite-dimensional normed vector spaces.

(iv) Let (X, ∥·∥) be an infinite-dimensional normed vector space and choose
an unordered basis E ⊂ X such that ∥e∥ = 1 for all e ∈ E. Thus every
nonzero vector x ∈ X can be uniquely expressed as a finite linear combina-

tion x =
∑ℓ

i=1 xiei with e1, . . . , eℓ ∈ E pairwise distinct and xi ∈ R \ {0}.
By assumption E is an infinite set. (The existence of an unordered basis
requires the Lemma of Zorn or, equivalently, the axiom of choice by Theo-
rem A.1.3.) Choose any unbounded function λ : E → R and define the linear

map Φλ : X → R by Φλ(
∑ℓ

i=1 xiei) :=
∑ℓ

i=1 λ(ei)xi for all ℓ ∈ N, all pair-
wise distinct ℓ-tuples of basis vectors e1, . . . , eℓ ∈ E, and all x1, . . . , xℓ ∈ R.
Then Φλ : X → R is an unbounded linear functional.

Theorem 1.2.11. Let (X, ∥·∥) be a normed vector space and denote the
closed unit ball and the closed unit sphere in X by

B :=
{
x ∈ X

∣∣ ∥x∥ ≤ 1
}
, S :=

{
x ∈ X

∣∣ ∥x∥ = 1
}
.

Then the following are equivalent.

(i) dim X <∞.

(ii) B is compact.

(iii) S is compact.
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Proof. That (i) implies (ii) follows from Corollary 1.2.8 and that (ii)
implies (iii) follows from the fact that a closed subset of a compact set in a
topological space is compact.

We prove that (iii) implies (i). We argue indirectly and show that if X
is infinite-dimensional then S is not compact. Thus assume X is infinite-
dimensional. We claim that there exists a sequence xi ∈ X such that

(1.2.3) ∥xi∥ = 1, ∥xi − xj∥ ≥ 1
2 for all i, j ∈ N with i ̸= j.

This is then a sequence in S that does not have any convergent subsequence
and so it follows that S is not compact.

To prove the existence of a sequence in X satisfying (1.2.3) we argue
by induction and use the axiom of dependent choice. For i = 1 choose any
element x1 ∈ S. If x1, . . . , xk ∈ S satisfy ∥xi − xj∥ ≥ 1

2 for i ̸= j, consider
the subspace Y ⊂ X spanned by the vectors x1, . . . , xk. This is a closed
subspace of X by Corollary 1.2.7 and is not equal to X because dim X = ∞.
Hence Lemma 1.2.12 below asserts that there exists a vector x = xk+1 ∈ S
such that ∥x− y∥ ≥ 1

2 for all y ∈ Y and hence, in particular, ∥xk+1 − xi∥ ≥ 1
2

for i = 1, . . . , k. This completes the induction step and shows, by the axiom
of dependent choice (see page 6), that there exists a sequence xi ∈ X that
satisfies (1.2.3) for i ̸= j.

More precisely, take X :=
⊔
k∈N S

k and, for every x = (x1, . . . , xk) ∈ Sk,

define A(x) as the set of all k + 1-tuples y = (x1, . . . , xk, x) ∈ Sk+1 such
that ∥x− xi∥ ≥ 1

2 for i = 1, . . . , k. The above argument shows that this set is
nonempty for all x ∈ X and so the existence of the required sequence (xi)i∈N
follows from the axiom of dependent choice. This proves Theorem 1.2.11. □

Lemma 1.2.12 (Riesz Lemma). Let (X, ∥·∥) be a normed vector space
and let Y ⊂ X be a closed linear subspace that is not equal to X. Fix a
constant 0 < δ < 1. Then there exists a vector x ∈ X such that

∥x∥ = 1, inf
y∈Y

∥x− y∥ ≥ 1− δ.

Proof. Let x0 ∈ X \ Y . Then d := infy∈Y ∥x0 − y∥ > 0 because Y is
closed. Choose y0 ∈ Y such that

∥x0 − y0∥ ≤ d

1− δ

and define x := ∥x0 − y0∥−1 (x0 − y0). Then ∥x∥ = 1 and

∥x− y∥ =
∥x0 − y0 − ∥x0 − y0∥ y∥

∥x0 − y0∥
≥ d

∥x0 − y0∥
≥ 1− δ

for all y ∈ Y . This proves Lemma 1.2.12. □
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Theorem 1.2.11 leads to the question of how one can characterize the
compact subsets of an infinite-dimensional Banach space. For the Banach
space of continuous functions on a compact metric space with the supre-
mum norm this question is answered by the Arzelà–Ascoli Theorem (Corol-
lary 1.1.13). The Arzelà–Ascoli Theorem is the source of many other com-
pactness results in functional analysis.

1.2.3. Quotient and Product Spaces.

Quotient Spaces. Let (X, ∥·∥) be a real normed vector space and let Y ⊂ X
be a closed subspace. Define an equivalence relation ∼ on X by

x ∼ x′ ⇐⇒ x′ − x ∈ Y.

Denote the equivalence class of an element x ∈ X under this equivalence
relation by [x] := x + Y :=

{
x+ y

∣∣ y ∈ Y
}
and denote the quotient space

by

X/Y :=
{
x+ Y

∣∣x ∈ X
}
.

For x ∈ X define

(1.2.4) ∥[x]∥X/Y := inf
y∈Y

∥x+ y∥X .

Then X/Y is a real vector space and the formula (1.2.4) defines a norm
function on X/Y . (Exercise: Prove this.) The next lemma is the key step
in the proof that if X is a Banach space so is the quotient space X/Y for
every closed linear subspace Y ⊂ X.

Lemma 1.2.13. Let X be a normed vector space and let Y ⊂ X be a
closed linear subspace. let (xi)i∈N be a sequence in X such that ([xi])i∈N is a
Cauchy sequence in X/Y with respect to the norm 1.2.4. Then there exists
a subsequence (xik)k∈N and a sequence (yk)k∈N in Y such that (xik + yk)k∈N
is a Cauchy sequence in X.

Proof. Choose i1 ∈ N such that infy∈Y ∥xi1 − xj + y∥ < 2−1 for every in-
teger j ≥ i1. Once i1, . . . , ik have been constructed, choose ik+1 > ik to be
the smallest integer bigger than ik such that infy∈Y

∥∥xik+1
− xj + y

∥∥ < 2−k−1

for every integer j ≥ ik+1. This completes the inductive construction of the
subsequence (xik)k∈N. Now use the Axiom of Countable Choice to find a
sequence (ηk)k∈N in Y such that

∥∥xik − xik+1
+ ηk

∥∥
X
< 2−k for all k ∈ N.

Define

y1 := 0, yk := −η1 − · · · − ηk−1 for k ≥ 2.

Then ∥∥xik + yk − xik+1
− yk+1

∥∥
X

=
∥∥xik − xik+1

+ ηk
∥∥
X
< 2−k

for all k ∈ N and hence (xik + yk)k∈N is a Cauchy sequence. This proves
Lemma 1.2.13. □
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Theorem 1.2.14 (Quotient Space). Let X be a normed vector space
and let Y ⊂ X be a closed linear subspace. Then the following holds.

(i) The map π : X → X/Y defined by π(x) := [x] = x + Y for x ∈ X is a
surjective bounded linear operator.

(ii) Let A : X → Z be a bounded linear operator with values in a normed
vector space Z such that Y ⊂ ker(A). Then there exists a unique bounded
linear operator A0 : X/Y → Z such that A0 ◦ π = A.

(iii) If X is a Banach space then X/Y is a Banach space.

Proof. Part (i) follows directly from the definitions.

To prove part (ii) observe that the operator A0 : X/Y → Z, given by

A0[x] := Ax for x ∈ X,

is well defined whenever Y ⊂ ker(A). It is obviously linear and it satisfies

∥A0[x]∥Z = ∥A(x+ y)∥Z ≤ ∥A∥ ∥x+ y∥X
for all x ∈ X and all y ∈ Y . Take the infimum over all y ∈ Y to obtain the
inequality ∥A0[x]∥Z ≤ infy∈Y ∥A∥ ∥x+ y∥X = ∥A∥ ∥[x]∥X/Y for all x ∈ X.

This proves part (ii).

To prove part (iii), assume X is complete and let (xi)i∈N be a sequence
in X such that ([xi])i∈N is a Cauchy sequence in X/Y with respect to the
norm (1.2.4). By Lemma 1.2.13 there exists a subsequence (xik)k∈N and a
sequence (yk)k∈N in Y such that (xik + yk)k∈N is a Cauchy sequence in X.
Since X is a Banach space, there exists an element x ∈ X such that

lim
k→∞

∥x− xik − yk∥X = 0.

Hence limk→∞ ∥[x− xik ]∥X/Y = limk→∞ infy∈Y ∥x− xik + y∥X = 0. Thus

the subsequence ([xik ])k∈N converges to [x] in X/Y . Since a Cauchy se-
quence converges whenever it has a convergent subsequence, this proves
Theorem 1.2.14. □

Product Spaces. Let X and Y be normed vector spaces. Then the product
space X × Y admits the structure of a normed vector space. However,
there is no canonical norm on this product space although it has a canonical
product topology (page 110). Examples of norms that induce the product
topology are

(1.2.5) ∥(x, y)∥p :=
(
∥x∥pX + ∥y∥pY

)1/p
, 1 ≤ p <∞,

and

(1.2.6) ∥(x, y)∥∞ := max {∥x∥X , ∥y∥Y }
for x ∈ X and y ∈ Y .
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Exercise 1.2.15. (i) Show that the norms in (1.2.5) and (1.2.6) are all
equivalent and induce the product topology on X × Y .

(ii) Show that the product space X × Y , with any of the norms in (1.2.5)
or (1.2.6), is a Banach space if and only if X and Y are Banach spaces.

1.3. The Dual Space

1.3.1. The Banach Space of Bounded Linear Operators. This sec-
tion returns to the normed vector space L(X,Y ) of bounded linear operators
from X to Y introduced in Definition 1.2.1. The next theorem shows that
the normed vector space L(X,Y ) is complete whenever the target space Y
is complete, even if X is not complete.

Theorem 1.3.1. Let X be a normed vector space and let Y be a Banach
space. Then L(X,Y ) is a Banach space with respect to the operator norm.

Proof. Let (An)n∈N be a Cauchy sequence in L(X,Y ). Then

∥Anx−Amx∥Y = ∥(An −Am)x∥Y ≤ ∥An −Am∥ ∥x∥X
for all x ∈ X and all m,n ∈ N. Hence (Anx)n∈N is a Cauchy sequence in Y
for every x ∈ X. Since Y is complete, this implies that the limit

(1.3.1) Ax := lim
n→∞

Anx

exists for all x ∈ X. This defines a map A : X → Y . That it is linear follows
from the definition, the fact that the limit of a sum of two sequences is the
sum of the limits, and the fact that the limit of a product of a sequence with
a scalar is the product of the limit with the scalar.

It remains to prove that A is bounded and that limn→∞ ∥A−An∥ = 0.
To see this, fix a constant ε > 0. Since (An)n∈N is a Cauchy sequence with
respect to the operator norm, there exists an integer n0 ∈ N such that

m,n ∈ N, m, n ≥ n0 =⇒ ∥Am −An∥ < ε.

This implies

∥Ax−Anx∥Y = lim
m→∞

∥Amx−Anx∥Y
≤ lim sup

m→∞
∥Am −An∥ ∥x∥X

≤ ε ∥x∥X

(1.3.2)

for every x ∈ X and every integer n ≥ n0. Hence

∥Ax∥Y ≤ ∥Ax−An0x∥Y + ∥An0x∥Y ≤ (ε+ ∥An0∥) ∥x∥X
for all x ∈ X and so A is bounded. It follows also from (1.3.2) that,
for each ε > 0, there is an n0 ∈ N such that ∥A−An∥ ≤ ε for every inte-
ger n ≥ n0. Thus limn→∞ ∥A−An∥ = 0 and this proves Theorem 1.3.1. □
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1.3.2. Examples of Dual Spaces. An important special case is where
the target space Y is the real axis. Then Theorem 1.3.1 asserts that the
space

(1.3.3) X∗ := L(X,R)

of bounded linear functionals Λ : X → R is a Banach space for every normed
vector space X (whether or not X is itself complete). The space of bounded
linear functionals on X is called the dual space of X. The dual space of
a Banach space plays a central role in functional analysis. Here are several
examples of dual spaces.

Example 1.3.2 (Dual Space of a Hilbert Space). LetH be a Hilbert
space, i.e. H is a Banach space and the norm on H arises from an inner
product H ×H → R : (x, y) 7→ ⟨x, y⟩ via ∥x∥ =

√
⟨x, x⟩. Then every ele-

ment y ∈ H determines a linear functional Λy : H → R defined by

(1.3.4) Λy(x) := ⟨x, y⟩ for x ∈ H.

It is bounded by the Cauchy–Schwarz inequality (Lemma 1.4.2) and the
Riesz Representation Theorem asserts that the map

H → H∗ : y 7→ Λy

is an isometric isomorphism (Theorem 1.4.4).

Example 1.3.3 (Dual Space of Lp(µ)). Let (M,A, µ) be a measure
space and fix a constant 1 < p <∞. Define the number 1 < q <∞ by

(1.3.5)
1

p
+

1

q
= 1.

The Hölder inequality asserts that the product of two functions f ∈ Lp(µ)
and g ∈ Lq(µ) is µ-integrable and satisfies

(1.3.6)

∣∣∣∣∫
M
fg dµ

∣∣∣∣ ≤ ∥f∥p ∥g∥q .

(See [75, Theorem 4.1].) This implies that every g ∈ Lq(µ) determines a
bounded linear functional Λg : L

p(µ) → R defined by

(1.3.7) Λg(f) :=

∫
M
fg dµ for f ∈ Lp(µ).

It turns out that

∥Λg∥L(Lp(µ),R) = ∥g∥q
for all g ∈ Lq(µ) (see [75, Theorem 4.33]) and that the map

Lq(µ) → Lp(µ)∗ : g 7→ Λg

is an isometric isomorphism (see [75, Thm 4.35]). The proof relies on the
Radon–Nikodým Theorem (see [75, Thm 5.4]).
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Example 1.3.4 (Dual Space of L1(µ)). The assertion of Example 1.3.3
extends to the case p = 1 and shows that the natural map

L∞(µ) → L1(µ)∗ : g 7→ Λg

is an isometric isomorphism if and only if the measure space (M,A, µ) is
localizable. In particular, the dual space of L1(µ) is isomorphic to L∞(µ)
whenever (M,A, µ) is a σ-finite measure space. (See [75, Def 4.29] for the
relevant definitions.) However, the dual space of L∞(µ) is in general much
larger than L1(µ), i.e. the map

L1(µ) → L∞(µ)∗ : g 7→ Λg

in (1.3.7) is an isometric embedding but is typically far from surjective.

Example 1.3.5 (Dual Space of ℓp). Fix a number 1 < p < ∞ and
consider the Banach space ℓp of p-summable sequences of real numbers,
equipped with the norm

∥x∥p :=

( ∞∑
i=1

|xi|p
)1/p

for x = (xi)i∈N ∈ ℓp.

(See part (ii) of Example 1.1.3.) This is the special case of the counting
measure onM = N in Example 1.3.3 and so the dual space of ℓp is isomorphic
to ℓq, where 1/p+ 1/q = 1. Here is a proof in this special case.

Associated to every sequence y = (yi)i∈N ∈ ℓq is a bounded linear func-
tional Λy : ℓ

p → R, defined by

(1.3.8) Λy(x) :=
∞∑
i=1

xiyi

for x = (xi)i∈N ∈ ℓp. It is well defined by the Hölder inequality (1.3.6).
Namely, in this case the Hölder inequality takes the form

∞∑
i=1

|xiyi| ≤ ∥x∥p ∥y∥q

for x = (xi)i∈N ∈ ℓp and y = (yi)i∈N ∈ ℓq and hence the limit

∞∑
i=1

xiyi = lim
n→∞

n∑
i=1

xiyi

in (1.3.8) exists. Thus, for each y ∈ ℓq, the map Λy : ℓ
p → R in (1.3.8) is

well defined and linear and satisfies the inequality

|Λy(x)| ≤ ∥x∥p ∥y∥q for all x ∈ ℓp.
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Thus Λy is a bounded linear functional on ℓp for every y ∈ ℓq with norm

∥Λy∥ = sup
x∈ℓp\{0}

|Λy(x)|
∥x∥p

≤ ∥y∥q .

Hence the formula (1.3.8) defines a bounded linear operator

(1.3.9) ℓq → (ℓp)∗ : y 7→ Λy.

In fact, it turns out that ∥Λy∥ = ∥y∥q for all y ∈ ℓq. To see this, fix a

nonzero element y = (yi)i∈N ∈ ℓq and consider the sequence x = (xi)i∈N,
defined by xi := |yi|q−1sign(yi) for i ∈ N, where sign(yi) := 1 when yi ≥ 0

and sign(yi) := −1 when yi < 0. Then |xi|p = |yi|(q−1)p = |yi|q and thus

∥x∥p =

( ∞∑
i=1

|yi|q
)1−1/q

= ∥y∥q−1
q , Λy(x) =

∞∑
i=1

xiyi =
∞∑
i=1

|yi|q = ∥y∥qq .

This shows that

∥Λy∥ ≥ |Λy(x)|
∥x∥p

=
∥y∥qq
∥y∥q−1

q

= ∥y∥q

and so ∥Λy∥ = ∥y∥q. Thus the map (1.3.9) is an isometric embedding.

We prove that it is surjective. For i ∈ N define

(1.3.10) ei := (δij)j∈N,

where δij denotes the Kronecker symbol, i.e. δij := 1 for i = j and δij := 0
for i ̸= j. Then ei ∈ ℓp for every i ∈ N and the subspace span{ei | i ∈ N}
of all (finite) linear combinations of the ei is dense in ℓp. Let Λ : ℓp → R
be a nonzero bounded linear functional and define yi := Λ(ei) for i ∈ N.
Since Λ ̸= 0 there is an i ∈ N such that yi ̸= 0. Consider the sequences

ξn :=
n∑
i=1

|yi|q−1sign(yi)ei ∈ ℓp, ηn :=
n∑
i=1

yiei ∈ ℓq for n ∈ N.

Since (q − 1)p = q, they satisfy

∥ξn∥p =

(
n∑
i=1

|yi|q
)1−1/q

= ∥ηn∥q−1
q

and Λ(ξn) =
∑n

i=1|yi|q = ∥ηn∥qq, and so(
n∑
i=1

|yi|q
)1/q

= ∥ηn∥q =
Λ(ξn)

∥ξn∥p
≤ ∥Λ∥

for n ∈ N sufficiently large. Thus y = (yi)i∈N ∈ ℓq. Since Λy(ei) = Λ(ei) for
all i ∈ N and the linear subspace span{ei | i ∈ N} is dense in ℓp, it follows
that Λy = Λ. This proves that the map (1.3.8) is an isometric isomorphism.
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Example 1.3.6 (Dual Space of ℓ1). The discussion of Example 1.3.5
extends to the case p = 1 and shows that the natural map

ℓ∞ → (ℓ1)∗ : y 7→ Λy

defined by (1.3.8) is a Banach space isometry. Here ℓ∞ ⊂ RN is the space
of bounded sequences of real numbers equipped with the supremum norm.
(Exercise: Prove this by adapting Example 1.3.5 to the case p = 1.)

There is an analogous map ℓ1 → (ℓ∞)∗ : y 7→ Λy. This map is again an
isometric embedding of Banach spaces, however, it is far from surjective.
The existence of a linear functional on ℓ∞ that cannot be represented by a
summable sequence can be established via the Hahn–Banach Theorem.

Example 1.3.7 (Dual Space of c0). Consider the closed linear sub-
space of ℓ∞ which consists of all sequences of real numbers that converge to
zero. Denote it by

(1.3.11) c0 :=

{
x = (xi)i∈N ∈ RN

∣∣∣ lim
i→∞

xi = 0

}
⊂ ℓ∞.

This is a Banach space with the supremum norm

∥x∥∞ := sup
i∈N

|xi|.

Every sequence y = (yi)i∈N ∈ ℓ1 determines a linear functional Λy : c0 → R
via (1.3.8). It is bounded and ∥Λy∥ ≤ ∥y∥1 because

|Λy(x)| ≤
∞∑
i=1

|xiyi| ≤ ∥x∥∞
∞∑
i=1

|yi| = ∥x∥∞ ∥y∥1

for all x ∈ c0. Thus the map

(1.3.12) ℓ1 → c∗0 : y 7→ Λy

is a bounded linear operator. In fact, it is an isometric isomorphism of
Banach spaces. To see this, let y = (yi)i∈N ∈ ℓ1 and define εi := sign(yi)
for i ∈ N. Thus εi = 1 when yi ≥ 0 and εi = −1 when yi < 0. For n ∈ N
define ξn :=

∑n
i=1 εiei ∈ c0, where ei ∈ c0 is defined by (1.3.10). Then

Λy(ξn) =

n∑
i=1

|yi|, ∥ξn∥∞ = 1.

Thus ∥Λy∥ ≥
∑n

i=1|yi| for all n ∈ N, hence

∥Λy∥ ≥
∞∑
i=1

|yi| = ∥y∥1 ≥ ∥Λy∥ ,

and so ∥Λy∥ = ∥y∥1. This shows that the linear map (1.3.12) is an isometric
embedding and, in particular, is injective.
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We prove that the map (1.3.12) is surjective. Let Λ : c0 → R be a
nonzero bounded linear functional and define the sequence y = (yi)i∈N ∈ RN

by yi := Λ(ei) for i ∈ N where ei ∈ c0 is the sequence in (1.3.10). As before,
define ξn :=

∑n
i=1 sign(yi)ei ∈ c0 for n ∈ N. Then ∥ξn∥ = 1 for n sufficiently

large and therefore

n∑
i=1

|yi| = Λ(ξn) ≤ ∥Λ∥ for all n ∈ N.

This implies ∥y∥1 =
∑∞

i=1|yi| ≤ ∥Λ∥ and so y ∈ ℓ1. Since Λy(ei) = yi = Λ(ei)
for all i ∈ N and the linear subspace span{ei | i ∈ N} is dense in c0 (prove
this!), it follows that Λy = Λ. Hence the map (1.3.12) is a Banach space
isometry and so c∗0

∼= ℓ1.

Example 1.3.8 (Dual Space of C(M)). Let M be a second count-
able compact Hausdorff space, so M is metrizable [61]. Denote by B ⊂ 2M

its Borel σ-algebra, i.e. the smallest σ-algebra containing the open sets.
Consider the Banach space C(M) of continuous real valued functions on M
with the supremum norm and denote by M(M) the Banach space of signed
Borel measures µ : B → R with the norm in equation (1.1.4) (see Exam-
ple 1.1.3). Every signed Borel measure µ : B → R determines a bounded
linear functional Λµ : C(M) → R defined by

(1.3.13) Λµ(f) :=

∫
M
f dµ for f ∈ C(M).

The Hahn Decomposition Theorem asserts that for every signed Borel mea-
sure µ : B → R there exists a Borel set P ⊂ M such that µ(B ∩ P ) ≥ 0
and µ(B \ P ) ≤ 0 for every Borel set B ⊂ M (see [75, Thm 5.19]). Since
every Borel measure on M is regular (see [75, Def 3.1 and Thm 3.18]) this
can be used to show that ∥Λµ∥L(C(M),R) = ∥µ∥ . Now every bounded linear

functional Λ : C(M) → R can be expressed as the difference of two positive
linear functionals Λ± : C(M) → R (see [75, Ex 5.35]). Hence it follows from
the Riesz Representation Theorem (see [75, Cor 3.19]) that the linear map

M(M) → C(M)∗ : µ 7→ Λµ

is an isometric isomorphism.

Exercise 1.3.9. Let X be an infinite-dimensional normed vector space
and let Λ : X → R be a nonzero linear functional. The following are
equivalent.

(i) Λ is bounded.

(ii) The kernel of Λ is a closed linear subspace of X.

(iii) The kernel of Λ is not dense in X.
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1.4. Hilbert Spaces

This section introduces some elementary Hilbert space theory. It shows that
every Hilbert space is isomorphic to its own dual space.

Definition 1.4.1 (Inner Product). Let H be a real vector space. A
bilinear map

(1.4.1) H ×H → R : (x, y) 7→ ⟨x, y⟩

is called an inner product if it is symmetric, i.e. ⟨x, y⟩ = ⟨y, x⟩ for
all x, y ∈ H, and positive definite, i.e. ⟨x, x⟩ > 0 for all x ∈ H \ {0}.
The norm associated to an inner product (1.4.1) is the function

(1.4.2) H → R : x 7→ ∥x∥ :=
√
⟨x, x⟩.

Lemma 1.4.2 (Cauchy–Schwarz Inequality). Let H be a real vector
space equipped with an inner product (1.4.1) and the norm (1.4.2). The
inner product and norm satisfy the Cauchy–Schwarz inequality

(1.4.3) |⟨x, y⟩| ≤ ∥x∥ ∥y∥

and the triangle inequality

(1.4.4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥

for all x, y ∈ H. Thus (1.4.2) is a norm on H.

Proof. The Cauchy–Schwarz inequality is obvious when x = 0 or y = 0.
Hence assume x ̸= 0 and y ̸= 0 and define

ξ :=
x

∥x∥
, η :=

y

∥y∥
.

Then ∥ξ∥ = ∥η∥ = 1. Hence

0 ≤ ∥η − ⟨ξ, η⟩ξ∥2 = ⟨η, η − ⟨ξ, η⟩ξ⟩ = 1− ⟨ξ, η⟩2.

This implies |⟨ξ, η⟩| ≤ 1 and hence |⟨x, y⟩| ≤ ∥x∥ ∥y∥. In turn it follows from
the Cauchy–Schwarz inequality that

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2 .

This proves the triangle inequality (1.4.4) and Lemma 1.4.2. □

Definition 1.4.3 (Hilbert Space). An inner product space (H, ⟨·, ·⟩)
is called a Hilbert space if the norm (1.4.2) is complete.
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Theorem 1.4.4 (Riesz). Let H be a Hilbert space and let Λ : H → R
be a bounded linear functional. Then there exists a unique element y ∈ H
such that

(1.4.5) Λ(x) = ⟨y, x⟩ for all x ∈ H.

This element y ∈ H satisfies

(1.4.6) ∥y∥ = sup
0̸=x∈H

|⟨y, x⟩|
∥x∥

= ∥Λ∥ .

Thus the map H → H∗ : y 7→ ⟨y, ·⟩ is an isometry of normed vector spaces.

Proof. See page 33. □

Theorem 1.4.5. Let H be a Hilbert space and let K ⊂ H be a nonempty
closed convex subset of H. Then there exists a unique element x0 ∈ K such
that ∥x0∥ ≤ ∥x∥ for all x ∈ K.

Proof. Define

δ := inf
{
∥x∥

∣∣x ∈ K
}
≥ 0.

We prove existence. Choose a sequence xi ∈ K with limi→∞ ∥xi∥ = δ. We
prove that xi is a Cauchy sequence. Fix a constant ε > 0. Then there exists
an integer i0 ∈ N such that

i ∈ N, i ≥ i0 =⇒ ∥xi∥2 < δ2 +
ε2

4
.

Let i, j ∈ N such that i ≥ i0 and j ≥ i0. Then
1
2(xi + xj) ∈ K because K is

convex and hence ∥xi + xj∥ ≥ 2δ. This implies

∥xi − xj∥2 = 2 ∥xi∥2 + 2 ∥xj∥2 − ∥xi + xj∥2

< 4

(
δ2 +

ε2

4

)
− 4δ2 = ε2.

Thus xi is a Cauchy sequence. Since H is complete the limit x0 := limi→∞ xi
exists. Moreover x0 ∈ K becauseK is closed and ∥x0∥ = δ because the Norm
function (1.4.2) is continuous.

We prove uniqueness. Fix two elements x0, x1 ∈ K with

∥x0∥ = ∥x1∥ = δ.

Then 1
2(x0 + x1) ∈ K because K is convex and so ∥x0 + x1∥ ≥ 2δ. Thus

∥x0 − x1∥2 = 2 ∥x0∥2 + 2 ∥x1∥2 − ∥x0 + x1∥2 = 4δ2 − ∥x0 + x1∥2 ≤ 0

and therefore x0 = x1. This proves Theorem 1.4.5. □
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Proof of Theorem 1.4.4. We prove existence. If Λ = 0 then the vec-
tor y = 0 satisfies (1.4.5). Hence assume Λ ̸= 0 and define

K := {x ∈ H |Λ(x) = 1} .

Then K ̸= ∅ because there exists an element ξ ∈ H such that Λ(ξ) ̸= 0
and hence x := Λ(ξ)−1ξ ∈ K. The set K is closed because Λ : H → R
is continuous, and it is convex because Λ is linear. Hence Theorem 1.4.5
asserts that there exists an element x0 ∈ K such that

∥x0∥ ≤ ∥x∥ for all x ∈ K.

We prove that

(1.4.7) x ∈ H, Λ(x) = 0 =⇒ ⟨x0, x⟩ = 0.

To see this, fix an element x ∈ H such that Λ(x) = 0. Then x0+ tx ∈ K for
all t ∈ R. This implies

∥x0∥2 ≤ ∥x0 + tx∥2 = ∥x0∥2 + 2t⟨x0, x⟩+ t2 ∥x∥2 for all t ∈ R.

Thus the differentiable function t 7→ ∥x0+tx∥2 attains its minimum at t = 0
and so its derivative vanishes at t = 0. Hence

0 =
d

dt

∣∣∣∣
t=0

∥x0 + tx∥2 = 2⟨x0, x⟩

and this proves (1.4.7).

Now define y := ∥x0∥−2x0. Fix an element x ∈ H and define λ := Λ(x).
Then Λ(x− λx0) = Λ(x)− λ = 0. Hence it follows from (1.4.7) that

0 = ⟨x0, x− λx0⟩ = ⟨x0, x⟩ − λ∥x0∥2.

This implies ⟨y, x⟩ = ∥x0∥−2⟨x0, x⟩ = λ = Λ(x). Thus y satisfies (1.4.5).

We prove (1.4.6). Assume y ∈ H satisfies (1.4.5). If y = 0 then Λ = 0
and so ∥y∥ = 0 = ∥Λ∥. Hence assume y ̸= 0. Then

∥y∥ =
∥y∥2

∥y∥
=

Λ(y)

∥y∥
≤ sup

0̸=x∈H

|Λ(x)|
∥x∥

= ∥Λ∥ .

Conversely, it follows from the Cauchy–Schwarz inequality that

|Λ(x)| = |⟨y, x⟩| ≤ ∥y∥∥x∥

for all x ∈ H and hence ∥Λ∥ ≤ ∥y∥. This proves (1.4.6).
We prove uniqueness. Assume y, z ∈ H satisfy ⟨y, x⟩ = ⟨z, x⟩ = Λ(x) for

all x ∈ H. Then ⟨y − z, x⟩ = 0 for all x ∈ H. Take x := y − z to obtain

∥y − z∥2 = ⟨y − z, y − z⟩ = 0

and so y − z = 0. This proves Theorem 1.4.4. □
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We will see, as we proceed, that Hilbert spaces have several features that
are not shared by general Banach spaces. One of these is that every closed
subspace of a Hilbert space has a complement, i.e. another closed subspace
whose direct sum with the original subspace is the entire Hilbert space. To
explain this, we define the orthogonal complement of a subset S ⊂ H by

(1.4.8) S⊥ :=
{
y ∈ H

∣∣ ⟨x, y⟩ = 0 for all x ∈ S
}
.

It follows directly from the definitions that S⊥ is a closed subspace of H.

Corollary 1.4.6. Let H be a Hilbert space and let E ⊂ H be a closed
subspace. Then H = E ⊕ E⊥.

Proof. If x ∈ E ∩E⊥ then ∥x∥2 = ⟨x, x⟩ = 0 and hence x = 0. If x ∈ H
then the set K := x+ E = {x+ ξ | ξ ∈ E} is a closed convex subset of H.
Hence Theorem 1.4.5 asserts that there exists an element ξ ∈ E such
that ∥x− ξ∥ ≤ ∥x− η∥ for all η ∈ E. Hence, for all η ∈ E, we have

0 =
d

dt

∣∣∣∣
t=0

∥x− ξ + tη∥2

2
= ⟨x− ξ, η⟩

Thus x− ξ ∈ E⊥ and so x ∈ E ⊕ E⊥. This proves Corollary 1.4.6. □

In Chapter 2 we will encounter closed subspaces of Banach spaces that
are not complemented (see Subsection 2.3.5).

Example 1.4.7. Let (M,A, µ) be a measure space. Then H := L2(µ) is
a Hilbert space. The inner product is induced by the bilinear map

(1.4.9) L2(µ)× L2(µ) → R : (f, g) 7→ ⟨f, g⟩ :=
∫
M
fg dµ.

It is well defined because the product of two L2-functions f, g :M → R
is integrable by the Cauchy–Schwarz inequality. That it is bilinear and
symmetric follows directly from the properties of the Lebesgue integral. In
general, it is not positive definite. However, it descends to a positive definite
symmetric bilinear form on the quotient space

L2(µ) = L2(µ)/∼,
where the equivalence relation is defined by equality almost everywhere as in
part (iii) of Example 1.1.3. The inner product on L2(µ) induced by (1.4.9)
is called the L2 inner product. The norm associated to this inner product
is the L2 norm in (1.1.2) with p = 2. By [75, Theorem 4.9] the space L2(µ)
is complete with this norm and hence is a Hilbert space.

Special cases are the Euclidean space (Rn, ∥·∥2) in part (i) of Exam-
ple 1.1.3, associated to the counting measure on the set M = {1, . . . , n},
and the space ℓ2 in part (ii) of Example 1.1.3, associated to the counting
measure on the set M = N.
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1.5. Banach Algebras

We begin the discussion with a result about convergent series in a Banach
space. It extends the basic assertion in first year analysis that every abso-
lutely convergent series of real numbers converges. We will use Lemma 1.5.1
to study power series in a Banach algebra.

Lemma 1.5.1 (Convergent Series). Let (X, ∥·∥) be a Banach space
and let (xi)i∈N be a sequence in X such that

∞∑
i=1

∥xi∥ <∞.

Then the sequence ξn :=
∑n

i=1 xi in X converges. Its limit is denoted by

(1.5.1)
∞∑
i=1

xi := lim
n→∞

n∑
i=1

xi.

Proof. Define sn :=
∑n

i=1 ∥xi∥ for n ∈ N. This sequence is nonde-
creasing and converges by assumption. Moreover, for every pair of inte-
gers n > m ≥ 1, we have

∥ξn − ξm∥ =

∥∥∥∥∥
n∑

i=m+1

xi

∥∥∥∥∥ ≤
n∑

i=m+1

∥xi∥ = sn − sm.

Hence (ξn)n∈N is a Cauchy sequence inX. SinceX is complete, this sequence
converges, and this proves Lemma 1.5.1. □

Definition 1.5.2 (Banach Algebra). A real (respectively complex)
Banach algebra is a pair consisting of a real (respectively complex) Banach
space (A, ∥·∥) and a bilinear map A × A → A : (a, b) 7→ ab (called the
product) that is associative, i.e.

(1.5.2) (ab)c = a(bc) for all a, b, c ∈ A,

and satisfies the inequality

(1.5.3) ∥ab∥ ≤ ∥a∥ ∥b∥ for all a, b ∈ A.

A Banach algebra A is called commutative if ab = ba for all a, b ∈ A. It
is called unital if there exists an element 1l ∈ A \ {0} such that

(1.5.4) 1la = a1l = a for all a ∈ A.

The unit 1l, if it exists, is uniquely determined by the product. An el-
ement a ∈ A of a unital Banach algebra A is called invertible if there
exists an element b ∈ A such that ab = ba = 1l. The element b, if it exists,
is uniquely determined by a, is called the inverse of a, and is denoted
by a−1 := b. The invertible elements form a group G ⊂ A.
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Example 1.5.3. (i) The archetypal example of a Banach algebra is the
space L(X) := L(X,X) of bounded linear operators from a Banach space X
to itself with the operator norm (Definition 1.2.1 and Theorem 1.3.1). This
Banach algebra is unital whenever X ̸= {0} and the unit is the identity.
It turns out that the invertible elements of L(X) are the bijective bounded
linear operators from X to itself. That the inverse of a bijective bounded
linear operator is again a bounded linear operator is a nontrivial result,
which follows from the Open Mapping Theorem (see Theorem 2.2.5 below).

(ii) An example of a commutative unital Banach algebra is the space of
real valued bounded continuous functions on a nonempty topological space
equipped with the supremum norm and pointwise multiplication.

(iii) A third example of a unital Banach algebra is the space ℓ1(Z) of bi-
infinite summable sequences (xi)i∈Z of real numbers with the convolution
product defined by (x ∗ y)i :=

∑
j∈Z xjyi−j for x, y ∈ ℓ1(Z).

(iv) A fourth example of a Banach algebra is the space L1(Rn) of Lebesgue
integrable functions on Rn (modulo equality almost everywhere), where mul-
tiplication is given by convolution (see [75, Section 7.5]). This Banach alge-
bra does not admit a unit. A candidate for a unit would be the Dirac delta
function at the origin which is not actually a function but a measure. The
convolution product extends to the space of signed Borel measures on Rn
and they form a commutative unital Banach algebra.

Let A be a complex Banach algebra and let

(1.5.5) f(z) =

∞∑
n=0

cnz
n

be a power series with complex coefficients cn ∈ C and convergence radius

(1.5.6) ρ :=
1

lim supn→∞|cn|1/n
> 0.

Choose an element a ∈ A with ∥a∥ < ρ. Then the sequence (cna
n)n∈N

satisfies the inequality
∑∞

n=0 ∥cnan∥ ≤ |c0| ∥1l∥+
∑∞

n=1|cn| ∥a∥
n <∞, so the

sequence ξn :=
∑n

i=0 cia
i converges by Lemma 1.5.1. Denote the limit by

(1.5.7) f(a) :=

∞∑
n=0

cna
n

for a ∈ A with ∥a∥ < ρ.

Exercise 1.5.4. The map f : {a ∈ A | ∥a∥ < ρ} → A defined by (1.5.7)
is continuous. Hint: For n ∈ N define fn : X → X by fn(a) :=

∑n
i=0 cia

i.
Prove that fn is continuous. Prove that the sequence fn converges uniformly
to f on the set {a ∈ A | ∥a∥ ≤ r} for every r < ρ.
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Theorem 1.5.5 (Inverse). Let A be a real unital Banach algebra.

(i) For every a ∈ A the limit

(1.5.8) ra := lim
n→∞

∥an∥1/n = inf
n∈N

∥an∥1/n ≤ ∥a∥

exists. It is called the spectral radius of a.

(ii) If a ∈ A satisfies ra < 1 then the element 1l− a is invertible and

(1.5.9) (1l− a)−1 =

∞∑
n=0

an.

(iii) The group G ⊂ A of invertible elements is an open subset of A and the
map G → G : a 7→ a−1 is continuous. More precisely, if a ∈ G and b ∈ A
satisfy ∥a− b∥∥a−1∥ < 1, then b ∈ G and b−1 =

∑∞
n=0(1l− a−1b)na−1 and

(1.5.10) ∥b−1 − a−1∥ ≤ ∥a− b∥∥a−1∥2

1− ∥a− b∥∥a−1∥
, ∥b−1∥ ≤ ∥a−1∥

1− ∥a− b∥∥a−1∥
.

Proof. We prove part (i). Let a ∈ A, define

r := inf
n∈N

∥an∥1/n ≥ 0,

and fix a real number ε > 0. Choose m ∈ N such that

∥am∥1/m < r + ε

and define

M := max
ℓ=0,1,...,m−1

(
∥a∥
r + ε

)ℓ
.

Fix two integers k ≥ 0 and 0 ≤ ℓ ≤ m− 1 and let n := km+ ℓ. Then

∥an∥1/n =
∥∥∥akmaℓ∥∥∥1/n

≤ ∥a∥ℓ/n ∥am∥k/n

≤ ∥a∥ℓ/n (r + ε)km/n

=

(
∥a∥
r + ε

)ℓ/n
(r + ε)

≤M1/n(r + ε).

Since limn→∞M1/n = 1, there is an integer n0 ∈ N such that

∥an∥1/n < r + 2ε

for every integer n ≥ n0. Hence the limit ra in (1.5.8) exists and is equal
to r. This proves part (i).
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We prove part (ii). Let a ∈ A and assume ra < 1. Choose a real
number α such that

ra < α < 1.

Then there exists an n0 ∈ N such that

∥an∥1/n ≤ α

for every integer n ≥ n0. Hence

∥an∥ ≤ αn for every integer n ≥ n0.

This implies
∑∞

n=0 ∥an∥ <∞, so the sequence

bn :=
n∑
i=0

ai

converges by Lemma 1.5.1. Denote the limit by b. Since

bn(1l− a) = (1l− a)bn = 1l− an+1

for all n ∈ N and limn→∞
∥∥an+1

∥∥ ≤ limn→∞ αn+1 = 0, it follows that

b(1l− a) = (1l− a)b = 1l.

Hence 1l− a is invertible and (1l− a)−1 = b. This proves part (ii).

We prove part (iii). Fix an element a ∈ G and let b ∈ A such that

∥a− b∥ ∥a−1∥ < 1.

Then
∥∥1l− a−1b

∥∥ < 1 and hence

a−1b = 1l− (1l− a−1b) ∈ G, (a−1b)−1 =
∞∑
n=0

(1l− a−1b)n

by part (ii). Hence b = a(a−1b) ∈ G and

b−1 =
∞∑
n=0

(1l− a−1b)na−1

and so

∥b−1 − a−1∥ ≤
∞∑
n=1

∥a− b∥n∥a−1∥n+1

=
∥a− b∥∥a−1∥2

1− ∥a− b∥∥a−1∥
.

Thus B∥a−1∥−1(a) ⊂ G and the map B∥a−1∥−1(a) → G : b 7→ b−1 is continu-

ous. This proves part (iii) and Theorem 1.5.5. □
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Definition 1.5.6 (Invertible Operator). Let X and Y be Banach
spaces. A bounded linear operator A : X → Y is called invertible if there
exists a bounded linear operator B : Y → X such that

BA = 1lX , AB = 1lY .

The operator B is uniquely determined by A and is denoted by

B =: A−1.

It is called the inverse of A. When X = Y , the space of invertible bounded
linear operators in L(X) is denoted by

Aut(X) :=
{
A ∈ L(X)

∣∣ there is a B ∈ L(X) such that AB = BA = 1l
}
.

The spectral radius of a bounded linear operator A ∈ L(X) is the real
number rA ≥ 0 defined by

(1.5.11) rA := lim
n→∞

∥An∥1/n = inf
n∈N

∥An∥1/n ≤ ∥A∥ .

Corollary 1.5.7 (Spectral Radius). Let X and Y be Banach spaces.
Then the following holds.

(i) If A ∈ L(X) has spectral radius rA < 1 then

1lX −A ∈ Aut(X), (1lX −A)−1 =
∞∑
n=0

An.

(ii) Aut(X) is an open subset of L(X) with respect to the norm topology
and the map Aut(X) → Aut(X) : A 7→ A−1 is continuous.

(iii) Let A,P ∈ L(X,Y ) be bounded linear operators. Assume A is invertible
and ∥P∥∥A−1∥ < 1. Then A− P is invertible,

(1.5.12) (A− P )−1 =

∞∑
n=0

(A−1P )nA−1,

and

(1.5.13) ∥(A− P )−1 −A−1∥ ≤ ∥P∥∥A−1∥2

1− ∥P∥∥A−1∥
.

Proof. Assertions (i) and (ii) follow from Theorem 1.5.5 with A = L(X).
To prove part (iii), observe that ∥A−1P∥ ≤ ∥A−1∥∥P∥ < 1. Hence it follows
from part (i) that the operator 1lX −A−1P is invertible and that its inverse
is given by (1lX −A−1P )−1 =

∑∞
k=0(A

−1P )k. Multiply this identity by A−1

on the right to obtain (1.5.12). The inequality (1.5.13) follows directly
from (1.5.12) and the limit formula for a geometric series. This proves
Corollary 1.5.7. □
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1.6. The Baire Category Theorem

The Baire category theorem is a powerful tool in functional analysis. It pro-
vides conditions under which a subset of a complete metric space is dense.
In fact, it describes a class of dense subsets such that every countable in-
tersection of sets in this class belongs again to this class and hence is still a
dense subset. Here are the relevant definitions.

Definition 1.6.1 (Baire Category). Let (X, d) be a metric space.

(i) A subset A ⊂ X is called nowhere dense if its closure A has an empty
interior.

(ii) A subset A ⊂ X is said to be meagre if it is a countable union of
nowhere dense subsets of X.

(iii) A subset A ⊂ X is said to be nonmeagre if it is not meagre.

(iv) A subset A ⊂ X is called residual if its complement is meagre.

This definition does not exclude the possibility that X might be the
empty set, in which case every subset of X is both meagre and residual.
In the literature meagre sets are often called of the first category (in
the sense of Baire), nonmeagre sets are called of the second category,
and residual sets are called comeagre. The next lemma summarizes some
elementary consequences of these definitions.

Lemma 1.6.2. Let (X, d) be a metric space. Then the following holds.

(i) A subset A ⊂ X is nowhere dense if and only if its complement X \ A
contains a dense open subset of X.

(ii) If B ⊂ X is meagre and A ⊂ B then A is meagre.

(iii) If A ⊂ X is nonmeagre and A ⊂ B ⊂ X then B is nonmeagre.

(iv) Every countable union of meagre sets is again meagre.

(v) Every countable intersection of residual sets is again residual.

(vi) A subset of X is residual if and only if it contains a countable inter-
section of dense open subsets of X.

Proof. The complement of the closure of a subset of X is the interior of
the complement and vice versa. Thus every subset A ⊂ X satisfies

X \ int(A) = X \A = int(X \A).

This shows that a subset A ⊂ X is nowhere dense if and only if the interior
of X \ A is dense in X, i.e. X \ A contains a dense open subset of X. This
proves (i). Parts (ii), (iii), (iv), and (v) follow directly from the definitions.
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We prove (vi). Let R ⊂ X be a residual set and define A := X \R. Then
there is a sequence of nowhere dense subsets Ai ⊂ X such that A =

⋃∞
i=1Ai.

Define Ui := X \Ai = int(X \Ai). Then Ui is a dense open set by (i) and
∞⋂
i=1

Ui = X \
∞⋃
i=1

Ai ⊂ X \
∞⋃
i=1

Ai = X \A = R.

Conversely, suppose that there is a sequence of dense open subsets Ui ⊂ X
such that

⋂∞
i=1 Ui ⊂ R. Define Ai := X \ Ui and A :=

⋃∞
i=1Ai. Then Ai is

nowhere dense by (i) and hence A is meagre by definition. Moreover,

X \R ⊂ X \
∞⋂
i=1

Ui =
∞⋃
i=1

(X \ Ui) =
∞⋃
i=1

Ai = A.

Hence X \R is meagre by part (ii) and this proves Lemma 1.6.2. □

Lemma 1.6.3. Let (X, d) be a metric space. The following are equivalent.

(i) Every residual subset of X is dense.

(ii) If U ⊂ X is a nonempty open set then U is nonmeagre.

(iii) If Ai ⊂ X is a sequence of closed sets with empty interior then their
union has empty interior.

(iv) If Ui ⊂ X is a sequence of dense open sets then their intersection is
dense in X.

Proof. We prove that (i) implies (ii). Assume (i) and let U ⊂ X be a
nonempty open set. Then its complement X \ U is not dense and so is not
residual by (i). Hence U is not meagre.

We prove that (ii) implies (iii). Assume (ii) and let Ai be a sequence
of closed subsets of X with empty interior. Then their union A is meagre.
Hence the interior of A is also meagre by part (ii) of Lemma 1.6.2. Hence
the interior of A is empty by (ii).

We prove that (iii) implies (iv). Assume (iii) and let Ui be a sequence
of dense open subsets of X. For i ∈ N define Ai := X \ Ui. Then Ai is a
sequence of closed subsets of X with empty interior. Hence A :=

⋃∞
i=1Ai

has empty interior by (iii) and so the set

R :=

∞⋂
i=1

Ui =

∞⋂
i=1

(X \Ai) = X \A

is dense in X.

We prove that (iv) implies (i). Assume (iv) and let R ⊂ X be residual.
Then, by part (vi) of Lemma 1.6.2, there exists a sequence of dense open
subsets Ui ⊂ X such that

⋂
i∈N Ui ⊂ R. By (iv) the set

⋂
i∈N Ui is dense

in X and hence so is R. This proves Lemma 1.6.3. □
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Theorem 1.6.4 (Baire Category Theorem). Let (X, d) be a non-
empty complete metric space. Then the following holds.

(i) Every residual subset of X is dense.

(ii) If U ⊂ X is a nonempty open set then U is nonmeagre.

(iii) If Ai ⊂ X is a sequence of closed sets with empty interior then their
union has empty interior.

(iv) If Ui ⊂ X is a sequence of open dense sets then their intersection is
dense in X.

(v) Every residual subset of X is nonmeagre.

Proof. The first four assertions are equivalent by Lemma 1.6.3.

We prove that (ii) implies (v). Let R ⊂ X be a residual set. Then X \R
is meagre by definition. If the set R were meagre as well, then

X = (X \R) ∪R

would also be meagre by part (iv) of Lemma 1.6.2, and this would contradict
part (ii) because X is nonempty. Thus R is nonmeagre.

We prove part (iv). Thus assume that Ui ⊂ X is a sequence of dense
open sets. Fix an element x0 ∈ X and a constant ε0 > 0. We must prove
that Bε0(x0) ∩

⋂∞
i=1 Ui ̸= ∅. We claim that there exist sequences

(1.6.1) xk ∈ Uk, 0 < εk < 2−k, k = 1, 2, 3, . . . ,

such that

(1.6.2) Bεk(xk) ⊂ Uk ∩Bεk−1
(xk−1)

for every integer k ≥ 1. For k = 1 observe that U1 ∩Bε0(x0) is a nonempty
open set because U1 is dense in X. Choose any element x1 ∈ U1 ∩Bε0(x0)
and choose ε1 > 0 such that ε1 < 1/2 and Bε1(x1) ⊂ U1 ∩Bε0(x0). If xk−1

and εk−1 have been found for some integer k ≥ 2, use the fact that Uk is
dense in X to find xk and εk such that (1.6.1) and (1.6.2) hold.

More precisely, this argument requires the axiom of dependent choice
(see page 6). Define the set

X :=
{
(k, x, ε)

∣∣ k ∈ N, x ∈ X, 0 < ε < 2−k, Bε(x) ⊂ Uk ∩Bε0(x0)
}

and define the map A : X → 2X by

A(k, x, ε) :=
{
(k′, x′, ε′) ∈ X

∣∣ k′ = k + 1, Bε′(x′) ⊂ Bε(x)
}

for (k, x, ε) ∈ X. Then X ̸= ∅ and A(k, x, ε) ̸= ∅ for all (k, x, ε) ∈ X,
because Uk is open and dense in X for all k. Hence the existence of the
sequences xk and εk follows from the axiom of dependent choice.
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Now let xk ∈ Uk and εk > 0 be sequences that satisfy (1.6.1) and (1.6.2).
Then

d(xk, xk−1) < εk−1 ≤ 21−k

for all k ∈ N. Hence

d(xk, xℓ) ≤
ℓ−1∑
i=k

d(xi, xi+1) <
ℓ−1∑
i=k

2−i < 21−k

for all k, ℓ ∈ N with ℓ > k. Thus (xk)k∈N is a Cauchy sequence inX. SinceX
is complete the sequence (xk)k∈N converges. Denote its limit by

x∗ := lim
k→∞

xk.

Since xℓ ∈ Bεk(xk) for every ℓ ≥ k it follows that

x∗ ∈ Bεk(xk) ⊂ Uk for all k ∈ N.

Moreover,

x∗ ∈ Bε1(x1) ⊂ Bε0(x0).

This shows that the intersection

Bε0(x0) ∩
∞⋂
i=1

Ui

is nonempty for all x0 ∈ X and all ε0 > 0. Hence the set
⋂∞
i=1 Ui is dense

in X as claimed. This proves part (iv) and Theorem 1.6.4. □

The desired class of dense subsets of our nonempty complete metric
space is the collection of residual sets. Every residual set is dense by part (i)
of Theorem 1.6.4 and every countable intersection of residual sets is again
residual by part (v) of Lemma 1.6.2. It is often convenient to use the char-
acterization of a residual set as one that contains a countable intersection
of dense open sets in part (vi) of Lemma 1.6.2. A very useful consequence
of the Baire Category Theorem is the assertion that a nonempty complete
metric space cannot be expressed as a countable union of nowhere dense
subsets (part (ii) of Theorem 1.6.4 with U = X).

We emphasize that, while the assumption of the Baire Category Theo-
rem (completeness) depends on the distance function in a crucial way, the
conclusion (every countable intersection of dense open subsets is dense) is
purely topological. Thus the Baire Category Theorem extends to many met-
ric spaces that are not complete. All that is required is the existence of a
complete distance function that induces the same topology as the original
distance function.
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Example 1.6.5. Let (M,d) be a complete metric space and let X ⊂M
be a nonempty open set. Then the conclusions of the Baire Category Theo-
rem hold for the metric space (X, dX) with dX := d|X×X : X ×X → [0,∞),
even though (X, dX) may not be complete. To see this, let Ui ⊂ X be
a sequence of dense open subsets of X, choose x0 ∈ X and ε0 > 0 such
that Bε0(x0) ⊂ X, and repeat the argument in the proof of Theorem 1.6.4
to show that Bε0(x0) ∩

⋂∞
i=1 Ui ̸= ∅. All that is needed is the fact that the

closure Bε1(x1) that contains the sequence xk is complete with respect to
the induced metric.

Example 1.6.6. The conclusions of the Baire Category Theorem hold
for the topological vector space C∞([0, 1]) of smooth functions f : [0, 1] → R,
equipped with the C∞ topology. By definition, a sequence fn ∈ C∞([0, 1])
converges to f ∈ C∞([0, 1]) with respect to the C∞ topology if and only

if, for each integer ℓ ≥ 0, the sequence of ℓth derivatives f
(ℓ)
n : [0, 1] → R

converges uniformly to the ℓth derivative f (ℓ) : [0, 1] → R as n tends to
infinity. This topology is induced by the distance function

d(f, g) :=

∞∑
ℓ=0

2−ℓ
∥∥f (ℓ) − g(ℓ)

∥∥
∞

1 +
∥∥f (ℓ) − g(ℓ)

∥∥
∞
,

where ∥u∥∞ := sup0≤t≤1 |u(t)| denotes the supremum norm of a continuous
function u : [0, 1] → R, and (C∞([0, 1]), d) is a complete metric space.

Example 1.6.7. A residual subset of Rn may have Lebesgue measure
zero. Namely, choose a bijection N → Qn : k 7→ xk and, for ε > 0, define

Uε :=
∞⋃
k=1

B2−kε(xk).

This is a dense open subset of Rn and its Lebesgue measure is less than (2ε)n.
Hence R :=

⋂∞
i=1 U1/i is a residual set of Lebesgue measure zero and its

complement

A := Rn \R =

∞⋃
i=1

(
Rn \ U1/i

)
is a meagre set of full Lebesgue measure.

Example 1.6.8. The conclusions of the Baire category theorem do not
hold for the metric space X = Q of rational numbers with the standard
distance function given by d(x, y) := |x− y| for x, y ∈ Q. Every one element
subset of X is nowhere dense and every subset of X is both meagre and
residual.
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1.7. Problems

Exercise 1.7.1 (Precompact Sets). Let X and Y be topological
spaces such that Y is Hausdorff. Let f : X → Y be a continuous map and
let A ⊂ X be a precompact subset of X (i.e. its closure A is compact). Prove
that B := f(A) is a precompact subset of Y . Hint: Show that f(A) ⊂ B.
If A is compact and Y is Hausdorff show that f(A) = B.

Exercise 1.7.2 (Totally Bounded Sets). Let A be a subset of a metric
space. Show that A is totally bounded if and only if A is totally bounded.

Exercise 1.7.3 (Complete and Closed Subspaces). Let (X, dX) be
a metric space, let Y ⊂ X be a subset, and denote by dY := dX |Y×Y the
induced distance function on Y . Prove the following.

(a) If (Y, dY ) is complete then Y is a closed subset of X.

(a) If (X, dX) is complete and Y ⊂ X is closed then (Y, dY ) is complete.

Exercise 1.7.4 (Completion of a Metric Space). Let (X, d) be a
metric space. A completion of (X, d) is a triple (X, d, ι), consisting of a
complete metric space (X, d) and an isometric embedding ι : X → X with
a dense image.

(a) Every completion (X, d, ι) of (X, d) has the following universality
property: If (Y, dY ) is a complete metric space and ϕ : X → Y is a 1-
Lipschitz map (i.e. a Lipschitz continuous map with Lipschitz constant
one), then there exists a unique 1-Lipschitz map ϕ : X → Y such that

ϕ = ϕ ◦ ι.

(b) If (X1, d1, ι1) and (X2, d2, ι2) are completions of (X, d) then there exists
a unique isometry ψ : X1 → X2 such that ψ ◦ ι1 = ι2.

(c) (X, d) admits a completion. Hint: The space Cb(X) of bounded con-
tinuous functions f : X → R is a Banach space with the supremum norm.
Let x0 ∈ X and, for x ∈ X define fx ∈ Cb(X) by

fx(y) := d(y, x)− d(y, x0) for y ∈ X.

Prove that the map X → Cb(X) : x 7→ fx is an isometric embedding and
that the closure of its image is a completion of (X, d).

(d) Let (X, d) be a complete metric space and let ι : X → X be a 1-Lipschitz
map that satisfies the universality property in (a). Prove that (X, d, ι) is a
completion of (X, d).

Exercise 1.7.5 (Completion of a Normed Vector Space). The
completion of a normed vector space is a Banach space.
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Exercise 1.7.6 (Operator Norm). This exercise shows that the supre-
mum in the definition of the operator norm need not be a maximum (see
Definition 1.2.1). Consider the Banach space X := C([−1, 1]) of continuous
functions f : [−1, 1] → R equipped with the supremum norm and define the
bounded linear functional

Λ : C([−1, 1]) → R

by

Λ(f) :=

∫ 1

0
f(t) dt−

∫ 0

−1
f(t) dt for f ∈ C([−1, 1]).

Prove that there does not exist a function f ∈ C([−1, 1]) such that ∥f∥∞ = 1
and |Λ(f)| = ∥Λ∥ = 2.

Exercise 1.7.7 (Continuously Differentiable Functions).

Let I := [0, 1] be the unit interval and denote by C1(I) the space of continu-
ously differentiable functions f : I → R (with one-sided derivatives at t = 0
and t = 1). Define

(1.7.1) ∥f∥C1 := sup
0≤t≤1

|f(t)|+ sup
0≤t≤1

∣∣f ′(t)∣∣ for f ∈ C1(I).

(a) Prove that C1(I) is a Banach space with the norm (1.7.1).

(b) Show that the inclusion ι : C1(I) → C(I) is a bounded linear operator.

(c) Let B ⊂ C1(I) be the unit ball. Show that ι(B) has compact closure.

(d) Is ι(B) a closed subset of C(I)?

(e) Does the linear operator ι : C1(I) → C(I) have a dense image?

Exercise 1.7.8 (Integration Against a Kernel).

Let I := [0, 1], let K : I × I → R be a continuous function, and define the
linear operator TK : C(I) → C(I) by

(TKf)(t) :=

∫ 1

0
K(t, s)f(s) ds for f ∈ C(I) and 0 ≤ t ≤ 1.

Prove that TK is continuous. Let B ⊂ C(I) be the unit ball and prove that
its image TK(B) has a compact closure in C(I).

Exercise 1.7.9 (Fekete’s Lemma). Let (αn)n∈N be a sequence of real
numbers and suppose that there exists a constant c ≥ 0 such that

αn+m ≤ αn + αm + c for all n,m ∈ N.

Prove that limn→∞ αn/n = infn∈N αn/n. Here both sides of the equation
may be minus infinity. Compare this with part (i) of Theorem 1.5.5 by
taking αn := log ∥an∥.
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Exercise 1.7.10 (The Inverse in a Unital Banach Algebra).

Let A be a unital Banach algebra and let a, b ∈ A such that 1l − ab is in-
vertible. Prove that 1l− ba is invertible. Hint: An explicit formula for the
inverse of 1l− ba in terms of the inverse of 1l− ab can be guessed by expand-
ing (1l− ab)−1 and (1l− ba)−1 formally as geometric series (Theorem 1.5.5).

Exercise 1.7.11 (Cantor’s Intersection Theorem). The diameter
of a nonempty subset A of a metric space (X, d) is defined by

(1.7.2) diam(A) := sup
x,y∈A

d(x, y).

(a) Prove that a metric space (X, d) is complete if and only if every nested
sequence A1 ⊃ A2 ⊃ A3 ⊃ · · · of nonempty closed subsets An ⊂ X sat-
isfying limn→∞ diam(An) = 0 has a nonempty intersection (consisting of a
single point).

(b) Find an example of a complete metric space and a nested sequence of
nonempty closed bounded sets whose intersection is empty. Hint: Consider
the unit sphere in an infinite-dimensional Hilbert space.

Exercise 1.7.12 (Convergence Along Arithmetic Sequences).

Let f : [0,∞) → R be a continuous functions such that

lim
n→∞

f(nt) = 0 for all t > 0.

Prove that

lim
x→∞

f(x) = 0.

Hint: Fix a constant ε > 0 and show that the set

An := {t > 0 | |f(mt)| ≤ ε for every integer m ≥ n}

has a nonempty interior for some n ∈ N (using the Baire Category Theo-
rem 1.6.4). Assume without loss of generality that [a, b] ⊂ An for 0 < a < b
with n(b− a) ≥ a. Deduce that |f(x)| ≤ ε for all x ≥ na.

Exercise 1.7.13 (Nowhere Differentiable Continuous Functions).
Prove that the set

R :=
{
f : [0, 1] → R

∣∣ f is continuous and nowhere differentiable
}

is residual in the Banach space C([0, 1]) and hence is dense. (This result is
due to Stefan Banach and was proved in 1931.) Hint: Prove that the set

Un :=

f ∈ C([0, 1])

∣∣∣∣ sup
0≤s≤1
s ̸=t

∣∣∣∣f(s)− f(t)

s− t

∣∣∣∣ > n for all t ∈ [0, 1]


is open and dense in C([0, 1]) for every n ∈ N and that

⋂∞
n=1 Un ⊂ R.



48 1. Foundations

The proof of the Baire Category Theorem uses the axiom of dependent
choice. A theorem of Blair asserts that the Baire Category Theorem is
equivalent to the axiom of dependent choice. That the axiom of dependent
choice follows from the Baire Category Theorem is the content of the next
exercise.

Exercise 1.7.14 (Baire Category and Dependent Choice). Let X
be a nonempty set and letA : X → 2X be a map which assigns to each x ∈ X
a nonempty subset A(x) ⊂ X. Use Theorem 1.6.4 to prove that there is a
sequence (xn)n∈N in X such that xn+1 ∈ A(xn) for all n ∈ N.
Hint: Denote by X := XN the set of all sequences ξ = (xn)n∈N in X and
define the function d : X × X → [0,∞) by d(ξ, ξ) := 0 and

d(ξ, η) := 2−n, n := min{k ∈ N |xk ̸= yk},
for every pair of distinct sequences ξ = (xn)n∈N, η = (yn)n∈N ∈ X . Prove
that (X , d) is a complete metric space. For k ∈ N define

Uk :=
{
ξ = (xn)n∈N ∈ XN

∣∣∣∣ there is an integer ℓ > k
such that xℓ ∈ A(xk)

}
.

Prove that Uk is a dense open subset of X for every k ∈ N and deduce that
the set R :=

⋂
k∈N Uk is nonempty. Construct the desired sequence as a

suitable subsequence of an element ξ = (xn)n∈N ∈ R.

Exercise 1.7.15 (Borel Measurable Linear Operators).

(a) Sets with the Baire property. A subset B of a topological space is
said to have the Baire property if there exists an open set U such that
the symmetric difference B∆U := (B \U)∪ (U \B) is meagre, i.e. B and U
differ by a meagre set (see Definition 1.6.1). Prove that the collection of all
sets with the Baire property is the smallest σ-algebra containing the Borel
sets and the meagre sets.

(b) Pettis’ Lemma. Let X be a Banach space and let B ⊂ X be a non-
meagre subset that has the Baire property. Prove that the set B −B is a
neighborhood of the origin. In particular, if B is a linear subspace of X
then B = X. Hint: Let U be an open subset of X such that B∆U is
meagre. Show that U ̸= ∅, fix an element x ∈ U , and find an open neigh-
borhood V of the origin such that x+ V − V ⊂ U . For every v ∈ V show
that U ∩ (v + U) ̸= ∅ and deduce that B ∩ (v +B) ̸= ∅.

(c) Borel measurable linear operators. Let f : X → Y be a Borel mea-
surable linear operator from a Banach space X to a separable normed vector
space Y . Prove that f is continuous. Hint: B := {x ∈ X | ∥f(x)∥Y < 1/2}
is a nonmeagre Borel set.



Chapter 2

Principles of
Functional Analysis

This chapter is devoted to the three fundamental principles of functional
analysis. The first is the Uniform Boundedness Principle in Section 2.1. It
asserts that every pointwise bounded family of bounded linear operators on
a Banach space is bounded. The second is the Open Mapping Theorem in
Section 2.2. It asserts that every surjective bounded linear operator between
two Banach spaces is open. An important corollary is the Inverse Operator
Theorem which asserts that every bijective bounded linear operator between
two Banach spaces has a bounded inverse. An equivalent result is the Closed
Graph Theorem which asserts that a linear operator between two Banach
spaces is bounded if and only if its graph is a closed linear subspace of the
product space. The third fundamental principle in functional analysis is
the Hahn–Banach Theorem in Section 2.3. It asserts that every bounded
linear functional on a linear subspace of a normed vector space extends to
a bounded linear functional on the entire normed vector space. A slightly
stronger version of the Hahn–Banach theorem, in which the norm is replaced
by a sublinear functional can be reformulated as the geometric assertion
that two convex subsets of a normed vector space can be separated by a
closed hyperplane whenever one of them has nonempty interior. There are in
fact many variants of the Hahn–Banach theorem, including one for positive
linear functionals on ordered vector spaces, which is used to establish the
separation of convex sets. Another application of the Hahn–Banach theorem
is a criterion for a linear subspace to be dense. The final section of this
chapter discusses reflexive Banach spaces and includes an exposition of the
James space.

49



50 2. Principles of Functional Analysis

2.1. Uniform Boundedness

Let X be a set. A family {fi}i∈I of functions fi : X → Yi, indexed by the
elements of a set I and each taking values in a normed vector space Yi, is
called pointwise bounded if

(2.1.1) sup
i∈I

∥fi(x)∥Yi <∞ for all x ∈ X.

Theorem 2.1.1 (Uniform Boundedness). Let X be a Banach space,
let I be any set, and, for each i ∈ I, let Yi be a normed vector space and
let Ai : X → Yi be a bounded linear operator. Assume that the operator
family {Ai}i∈I is pointwise bounded. Then supi∈I ∥Ai∥ <∞.

Proof. See page 51. □

Lemma 2.1.2. Let (X, d) be a nonempty complete metric space, let I
be any set, and, for each i ∈ I, let fi : X → R be a continuous function.
Assume that the family {fi}i∈I is pointwise bounded. Then there exists a
point x0 ∈ X and a number ε > 0 such that

sup
i∈I

sup
x∈Bε(x0)

|fi(x)| <∞.

Proof. For n ∈ N and i ∈ I define the set

Fn,i :=
{
x ∈ X

∣∣∣ |fi(x)| ≤ n
}
.

This set is closed because fi is continuous. Hence the set

Fn :=
⋂
i∈I

Fn,i =

{
x ∈ X

∣∣∣ sup
i∈I

|fi(x)| ≤ n

}
is closed for every n ∈ N. Moreover,

X =
⋃
n∈N

Fn,

because the family {fi}i∈I is pointwise bounded. Since (X, d) is a nonempty
complete metric space, it follows from the Baire Category Theorem 1.6.4
that the sets Fn cannot all be nowhere dense. Since these sets are all closed,
there exists an integer n ∈ N such that Fn has nonempty interior. Hence
there exists an integer n ∈ N, a point x0 ∈ X, and a number ε > 0 such
that Bε(x0) ⊂ Fn. Hence

sup
i∈I

sup
x∈Bε(x0)

|fi(x)| ≤ n

and this proves Lemma 2.1.2. □
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Proof of Theorem 2.1.1. Define the function fi : X → R by

fi(x) := ∥Aix∥Yi
for x ∈ X and i ∈ I. Then fi is continuous for each i and the family {fi}i∈I is
pointwise bounded by assumption. Since X is a Banach space, Lemma 2.1.2
asserts that there exists a vector x0 ∈ X and a constant ε > 0 such that

c := sup
i∈I

sup
x∈Bε(x0)

∥Aix∥Yi <∞.

Hence, for all x ∈ X and all i ∈ I, we have

(2.1.2) ∥x− x0∥X ≤ ε =⇒ ∥Aix∥Yi ≤ c.

Let i ∈ I and x ∈ X such that ∥x∥X = 1. Then ∥Ai(x0 ± εx)∥Yi ≤ c and so

∥Aix∥Yi =
1

2ε
∥Ai(x0 + εx)−Ai(x0 − εx)∥Yi

≤ 1

2ε
∥Ai(x0 + εx)∥Yi +

1

2ε
∥Ai(x0 − εx)∥Yi ≤

c

ε
.

Hence

(2.1.3) ∥Ai∥ = sup
x∈X\{0}

∥Aix∥Yi
∥x∥X

= sup
x∈X

∥x∥X=1

∥Aix∥Yi ≤
c

ε

for all i ∈ I and this proves Theorem 2.1.1. □

Remark 2.1.3. The above argument in the proof of Theorem 2.1.1, which
asserts that (2.1.2) implies (2.1.3), can be rewritten as the inequality

(2.1.4) sup
x∈X

∥x−x0∥X<ε

∥Ax∥Y ≥ ε ∥A∥

for all A ∈ L(X,Y ), all x0 ∈ X, and all ε > 0. With this understood, one
can prove the Uniform Boundedness Theorem as follows (see Sokal [80]).
Let {Ai}i∈I be a sequence of bounded linear operators Ai : X → Yi such
that supi∈I ∥Ai∥ = ∞. Then the axiom of countable choice asserts that there
is a sequence in ∈ I such that ∥Ain∥ ≥ 4n for all n ∈ N. Now use the axiom
of dependent choice, and the estimate (2.1.4) with A = Ain and ε = 1/3n,
to find a sequence xn ∈ X such that, for all n ∈ N,

∥xn − xn−1∥X ≤ 1

3n
, ∥Ainxn∥Yin ≥ 2

3

1

3n
∥Ain∥ .

Then (xn)n∈N is a Cauchy sequence and so converges to an element x∗ ∈ X
such that ∥x∗ − xn∥X ≤ 1

2
1
3n . Thus

∥Ainx∗∥Yin ≥
(
2

3
− 1

2

)
1

3n
∥Ain∥ ≥ 1

6

(
4

3

)n
for all n ∈ N and so the operator family {Ai}i∈I is not pointwise bounded.
This argument circumvents the Baire Category Theorem.
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The Uniform Boundedness Theorem is also known as the Banach–
Steinhaus Theorem. A useful consequence is that the limit of a pointwise
convergent sequence of bounded linear operators is again a bounded linear
operator. This is the content of Theorem 2.1.5 below.

Definition 2.1.4. Let X and Y be normed vector spaces. A sequence of
bounded linear operators Ai : X → Y , i ∈ N, is said to converge strongly
to a bounded linear operator A : X → Y if Ax = limi→∞Aix for all x ∈ X.

Theorem 2.1.5 (Banach–Steinhaus). Let X and Y be Banach spaces
and let Ai : X → Y , i ∈ N, be a sequence of bounded linear operators. Then
the following are equivalent.

(i) The sequence (Aix)i∈N converges in Y for every x ∈ X.

(ii) supi∈N ∥Ai∥ <∞ and there is a dense subset D ⊂ X such that (Aix)i∈N
is a Cauchy sequence in Y for every x ∈ D.

(iii) supi∈N ∥Ai∥ < ∞ and there is a bounded linear operator A : X → Y
such that Ai converges strongly to A and ∥A∥ ≤ lim infi→∞ ∥Ai∥.

The equivalence of (i) and (iii) continues to hold when Y is not complete.
The equivalence of (ii) and (iii) continues to hold when X is not complete.

Proof. That (iii) implies both (i) and (ii) is obvious.

We prove that (i) implies (iii). Since convergent sequences are bounded,
the sequence (Ai)i∈N is pointwise bounded. Since X is complete it follows
from Theorem 2.1.1 that supi∈N ∥Ai∥ < ∞. Define the map A : X → Y
by Ax := limi→∞Aix for x ∈ X. This map is linear and

(2.1.5) ∥Ax∥Y = lim
i→∞

∥Aix∥Y = lim inf
i→∞

∥Aix∥Y ≤ lim inf
i→∞

∥Ai∥ ∥x∥X

for all x ∈ X. Hence A is bounded and ∥A∥ ≤ lim infi→∞ ∥Ai∥ <∞.

We prove that (ii) implies (iii). Define c := supi∈N ∥Ai∥ <∞. Let x ∈ X
and ε > 0. Choose ξ ∈ D such that c ∥x− ξ∥ < ε

3 . Since (Aiξ)i∈N is a
Cauchy sequence, there exists an integer n0 ∈ N such that ∥Aiξ −Ajξ∥Y < ε

3
for all i, j ∈ N with i, j ≥ n0. This implies

∥Aix−Ajx∥Y ≤ ∥Aix−Aiξ∥Y + ∥Aiξ −Ajξ∥Y + ∥Ajξ −Ajx∥Y
≤ ∥Ai∥ ∥x− ξ∥X + ∥Aiξ −Ajξ∥Y + ∥Aj∥ ∥ξ − x∥X
≤ 2c ∥x− ξ∥X + ∥Aiξ −Ajξ∥Y < 2ε

3 + ε
3 = ε

for all i, j ∈ N with i, j ≥ n0. Hence (Aix)i∈N is a Cauchy sequence and so
it converges because Y is complete. The limit operator A satisfies (2.1.5)
and this proves Theorem 2.1.5. □



2.1. Uniform Boundedness 53

Example 2.1.6. This example shows that the hypothesis that X is com-
plete cannot be removed in Theorems 2.1.1 and 2.1.5. Consider the space

X :=
{
x = (xi)i∈N ∈ RN ∣∣ ∃n ∈ N ∀ i ∈ N : i ≥ n =⇒ xi = 0

}
with the supremum norm ∥x∥ := supi∈N|xi|. This is a normed vector space.

It is not complete, but is a linear subspace of ℓ∞ whose closure X = c0 is
the subspace of sequences of real numbers that converge to zero. Define the
linear operators An : X → X and A : X → X by

Anx := (x1, 2x2, . . . , nxn, 0, 0, . . . ), Ax := (ixi)i∈N

for n ∈ N and x = (xi)i∈N ∈ X. Then Ax = limn→∞Anx for every x ∈ X
and ∥An∥ = n for every n ∈ N. Thus the sequence {Anx}n∈N is bounded for
every x ∈ X, the linear operator A is not bounded, and the sequence An
converges strongly to A.

Corollary 2.1.7 (Bilinear Map). Let X be a Banach space and let Y
and Z be normed vector spaces (over R or C). Let B : X × Y → Z be a
bilinear map. Then the following are equivalent.

(i) B is bounded, i.e. there is a constant c ≥ 0 such that

∥B(x, y)∥Z ≤ c ∥x∥X ∥y∥Y

for all x ∈ X and all y ∈ Y .

(ii) B is continuous.

(iii) For every x ∈ X the linear map Y → Z : y 7→ B(x, y) is continuous
and, for every y ∈ Y , the linear map X → Z : x 7→ B(x, y) is continuous.

Proof. If (i) holds then B is locally Lipschitz continuous and hence is
continuous. Thus (i) implies (ii). That (ii) implies (iii) is obvious. We prove
that (iii) implies (i). Thus assume (iii), define

S := {y ∈ Y | ∥y∥Y = 1} ,

and, for y ∈ S, define the linear operator Ay : X → Z by Ay(x) := B(x, y).
This operator is continuous by (iii) and hence is bounded by Theorem 1.2.2.
Now let x ∈ X. Then the linear map Y → Z : y 7→ Ayx = B(x, y)
is continuous by (iii) and hence supy∈S ∥Ayx∥Z < ∞ by Theorem 1.2.2.
Hence c := supy∈S ∥Ay∥ <∞ by Theorem 2.1.1. Thus

∥B(x, y)∥Z ≤ c ∥x∥X for all x ∈ X and all y ∈ S.

This implies (i) and completes the proof of Corollary 2.1.7. □
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2.2. Open Mappings and Closed Graphs

2.2.1. The Open Mapping Theorem. A map f : X → Y between
topological spaces is called open if the image of every open subset of X
under f is an open subset of Y .

Theorem 2.2.1 (Open Mapping Theorem). Let X,Y be Banach
spaces and let A : X → Y be a surjective bounded linear operator. Then A
is open.

Proof. See page 56. □

The key step in the proof of Theorem 2.2.1 is the next lemma, which
asserts that the closure A(B) of the image of the open unit ball B ⊂ X under
a surjective bounded linear operator A : X → Y contains an open ball in Y
centered at the origin. Its proof relies on the Baire Category Theorem 1.6.4.
Lemma 2.2.3 below asserts that if an open ball in Y centered at the origin
is contained in A(B) then it is contained in A(B).

Lemma 2.2.2. Let X, Y , and A be as in Theorem 2.2.1. Then there
exists a constant δ > 0 such that

(2.2.1)
{
y ∈ Y

∣∣ ∥y∥Y < δ
}
⊂ {Ax |x ∈ X, ∥x∥X < 1}.

Proof. For C ⊂ Y and λ > 0 define λC := {λy | y ∈ C}. Consider the
sets

B := {x ∈ X | ∥x∥X < 1} , C := A(B) = {Ax |x ∈ X, ∥x∥X < 1} .

Then X =
⋃
n∈N nB and so Y =

⋃
n∈NA(nB) =

⋃
n∈N nC because A is sur-

jective. Since Y is complete, at least one of the sets nC is not nowhere dense,
by the Baire Category Theorem 1.6.4. Hence the set nC has a nonempty
interior for some n ∈ N and this implies that the set 2−1C has a nonempty
interior. Choose y0 ∈ Y and δ > 0 such that

Bδ(y0) ⊂ 2−1C.

We claim that (2.2.1) holds with this constant δ. To see this, fix an ele-

ment y ∈ Y such that ∥y∥Y < δ. Then y0+y ∈ 2−1C and y0 ∈ 2−1C. Hence
there exist sequences xi, x

′
i ∈ 2−1B such that

y0 + y = lim
i→∞

Ax′i, y0 = lim
i→∞

Axi.

Hence x′i − xi ∈ B, so A(x′i − xi) ∈ C and

y = lim
i→∞

A(x′i − xi) ∈ C.

Thus (2.2.1) holds as claimed. This proves Lemma 2.2.2. □
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Lemma 2.2.3. Let X and Y be Banach spaces and let A : X → Y be a
bounded linear operator. If δ > 0 satisfies (2.2.1) then

(2.2.2)
{
y ∈ Y

∣∣ ∥y∥Y < δ
}
⊂
{
Ax
∣∣x ∈ X, ∥x∥X < 1

}
.

Proof. The proof is based on the following observation.

Claim. Let y ∈ Y with ∥y∥Y < δ. Then there is a sequence (xk)k∈N0 in X
such that

∥x0∥X <
∥y∥Y
δ

, ∥xk∥X <
δ − ∥y∥Y
δ2k

for k = 1, 2, 3, . . . ,

∥y −Ax0 − · · · −Axk∥Y <
δ − ∥y∥Y
2k+1

for k = 0, 1, 2, . . . .

(2.2.3)

We prove the claim by an induction argument. By (2.2.1) the closed ball of
radius δ in Y is contained in the closure of the image under A of the open
ball of radius one in X. Hence every nonzero vector y ∈ Y satisfies

(2.2.4) y ∈
{
Ax
∣∣x ∈ X, ∥x∥X < δ−1 ∥y∥Y

}
.

Fix an element y ∈ Y such that ∥y∥Y < δ and define

ε := δ − ∥y∥Y > 0.

Then, by (2.2.4), there exists a vector x0 ∈ X such that ∥x0∥X < δ−1 ∥y∥Y
and ∥y −Ax0∥Y < ε2−1. Use (2.2.4) with y replaced by y −Ax0 to find a
vector x1 ∈ X such that ∥x1∥X < εδ−12−1 and ∥y −Ax0 −Ax1∥Y < ε2−2.
Once the vectors x0, . . . , xk have been found such that (2.2.3) holds, we

have ∥y −
∑k

i=0Axi∥Y < ε2−k−1 and so, by (2.2.4), there exists an xk+1 ∈ X

such that ∥xk+1∥X < εδ−12−k−1 and ∥y −
∑k

i=0Axi − Axk+1∥Y < ε2−k−2.
Hence the existence of a sequence (xk)k∈N0 in X that satisfies (2.2.3) follows
from the axiom of dependent choice (see page 6). This proves the claim.

Now fix an element y ∈ Y such that ∥y∥Y < δ. By the claim, there is
a sequence (xk)k∈N0 in X that satisfies (2.2.3) and hence

∑∞
k=0 ∥xk∥X < 1.

Since X is complete, it then follows from Lemma 1.5.1 that the limit

x :=

∞∑
k=0

xk = lim
k→∞

k∑
i=0

xi

exists. This limit satisfies

∥x∥X ≤
∞∑
k=0

∥xk∥X < 1, Ax = lim
k→∞

k∑
i=0

Axi = y.

Here the last equation follows from (2.2.3). This proves the inclusion (2.2.2)
and Lemma 2.2.3. □
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Proof of Theorem 2.2.1. Let δ > 0 be the constant of Lemma 2.2.2 and
let B ⊂ X be the open unit ball. Then Bδ(0;Y ) ⊂ A(B) by Lemma 2.2.2
and hence Bδ(0;Y ) ⊂ A(B) by Lemma 2.2.3.

Now fix an open set U ⊂ X. Let y0 ∈ A(U) and choose x0 ∈ U such
that Ax0 = y0. Since U is open there is an ε > 0 such that Bε(x0) ⊂ U .
We prove that Bδε(y0) ⊂ A(U). Choose y ∈ Y such that ∥y − y0∥Y < δε.
Then

∥∥ε−1(y − y0)
∥∥
Y
< δ and hence there exists a ξ ∈ X such that

∥ξ∥X < 1, Aξ = ε−1(y − y0).

This implies x0 + εξ ∈ Bε(x0) ⊂ U and hence

y = y0 + εAξ = A(x0 + εξ) ∈ A(U).

Thus we have proved that, for every y0 ∈ A(U), there exists a number ε > 0
such that Bδε(y0) ⊂ A(U). Hence A(U) is an open subset of Y and this
proves Theorem 2.2.1. □

If A : X → Y is a surjective bounded linear operator between Banach
spaces, then it descends to a bijective bounded linear operator from the
quotient space X/ ker(A) to Y (see Theorem 1.2.14). The next corollary
asserts that the induced operator A : X/ ker(A) → Y has a bounded inverse
whose norm is bounded above by δ−1, where the constant δ > 0 is as in
Lemma 2.2.2.

Corollary 2.2.4. Let X, Y , and A be as in Theorem 2.2.1 and let δ > 0
be the constant of Lemma 2.2.2. Then

(2.2.5) inf
x∈X
Ax=y

∥x∥X ≤ δ−1 ∥y∥Y for all y ∈ Y.

Proof. Let y ∈ Y and choose c > δ−1 ∥y∥Y . Then
∥∥c−1y

∥∥
Y
< δ and so,

by Lemma 2.2.2 and Lemma 2.2.3, there exists an element ξ ∈ X such
that Aξ = c−1y and ∥ξ∥X < 1. Hence x := cξ satisfies ∥x∥X = c ∥ξ∥X < c
and Ax = cAξ = y. This proves (2.2.5) and Corollary 2.2.4. □

An important consequence of the open mapping theorem is the special
case of Corollary 2.2.4 where A is bijective.

Theorem 2.2.5 (Inverse Operator Theorem). Let X and Y be Ba-
nach spaces and let A : X → Y be a bijective bounded linear operator. Then
the inverse operator A−1 : Y → X is bounded.

Proof. By Theorem 2.2.1 the linear operator A : X → Y is open. Hence
its inverse is continuous and is therefore bounded by Theorem 1.2.2. Alter-
natively, use Corollary 2.2.4 to deduce that ∥A−1∥ ≤ δ−1, where δ > 0 is
the constant of Lemma 2.2.2. □
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Example 2.2.6. This example shows that the hypothesis that X and Y
are complete cannot be removed in Theorems 2.2.1 and 2.2.5. As in Ex-
ample 2.1.6, let X ⊂ ℓ∞ be the subspace of sequences x = (xk)k∈N of real
numbers that vanish for sufficiently large k, equipped with the supremum
norm. Thus X is a normed vector space but is not a Banach space. Define
the operator A : X → X by Ax := (k−1xk)k∈N for x = (xk)k∈N ∈ X. Then A
is a bijective bounded linear operator but its inverse is unbounded.

Example 2.2.7. Here is an example where X is complete and Y is not.
Let X = Y = C([0, 1]) be the space of continuous functions f : [0, 1] → R
equipped with the norms

∥f∥X := sup
0≤t≤1

|f(t)|, ∥f∥Y :=

√∫ 1

0
|f(t)|2 dt.

Then X is a Banach space, Y is a normed vector space, and the identity

A = id : X → Y

is a bijective bounded linear operator with an unbounded inverse.

Example 2.2.8. Here is an example where Y is complete and X is not.
This example requires the axiom of choice. Let Y be an infinite-dimensional
Banach space and choose an unbounded linear functional Φ : Y → R. The
existence of such a linear functional is shown in part (iv) of Example 1.2.10
and its kernel is a dense linear subspace of Y by Exercise 1.3.9. Define the
normed vector space (X, ∥·∥X) by

X := {(x, t) ∈ Y × R |Φ(x) = 0} , ∥(x, t)∥X := ∥x∥Y + |t|

for (x, t) ∈ X. Then X is not complete. Choose a vector y0 ∈ Y such that

Φ(y0) = 1

and define the linear map A : X → Y by

A(x, t) := x+ ty0 for (x, t) ∈ X.

Then A is a bijective bounded linear operator. Its inverse is given by

A−1y = (y − Φ(y)y0,Φ(y))

for y ∈ H and hence is unbounded.

Example 2.2.8 relies on a decomposition of a Banach space as a direct
sum of two linear subspaces where one of them is closed and the other is
dense. The next corollary establishes an important estimate for a pair of
closed subspaces of a Banach space X whose direct sum is equal to X.
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Corollary 2.2.9. Let X be a Banach space and let X1, X2 ⊂ X be two
closed linear subspaces such that

X = X1 ⊕X2,

i.e. X1 ∩X2 = {0} and every vector x ∈ X can be written as x = x1 + x2
with x1 ∈ X1 and x2 ∈ X2. Then there exists a constant c ≥ 0 such that

(2.2.6) ∥x1∥+ ∥x2∥ ≤ c ∥x1 + x2∥

for all x1 ∈ X1 and all x2 ∈ X2.

Proof. The vector space X1×X2 is a Banach space with the norm func-
tion

X1 ×X2 → [0,∞) : (x1, x2) 7→ ∥(x1, x2)∥ := ∥x1∥+ ∥x2∥
(see Exercise 1.2.15) and the linear operator A : X1 ×X2 → X, defined by

A(x1, x2) := x1 + x2

for (x1, x2) ∈ X1 × X2, is bijective by assumption and bounded by the
triangle inequality. Hence its inverse is bounded by the Inverse Operator
Theorem 2.2.5. This proves Corollary 2.2.9. □

2.2.2. The Closed Graph Theorem. It is often interesting to consider
linear operators on a Banach space X whose domains are not the entire Ba-
nach space but instead are linear subspaces of X. In most of the interesting
cases the domains are dense linear subspaces. Here is a first elementary
example.

Example 2.2.10. Let X := C([0, 1]) be the Banach space of continuous
real valued functions f : [0, 1] → R equipped with the supremum norm. Let

dom(A) := C1([0, 1]) = {f : [0, 1] → R | f is continuously differentiable}

and define the linear operator A : dom(A) → X by

Af := f ′ for f ∈ C1([0, 1]).

The linear subspace dom(A) = C1([0, 1]) is dense in X = C([0, 1]) by the
Weierstraß approximation theorem. Moreover, the graph of A, defined by

graph(A) := {(f, g) ∈ X ×X | f ∈ dom(A), g = Af} ,

is a closed linear subspace of X × X. Namely, if fn ∈ C1([0, 1]) is a se-
quence of continuously differentiable functions such that the pair (fn, Afn)
converges to (f, g) in X ×X, then fn converges uniformly to f and f ′n con-
verges uniformly to g, and hence f is continuously differentiable with f ′ = g
by the fundamental theorem of calculus.

Here is a general definition of operators with closed graphs.
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Definition 2.2.11 (Closed Operator). Let X,Y be Banach spaces,
let dom(A) ⊂ X be a linear subspace, and let A : dom(A) → Y be a linear
operator. The operator A is called closed if its graph

(2.2.7) graph(A) :=
{
(x, y) ∈ X × Y

∣∣x ∈ dom(A), y = Ax
}

is a closed linear subspace of X × Y . Explicitly, this means that, if (xn)n∈N
is a sequence in the domain of A such that xn converges to a vector x ∈ X
and Axn converges to a vector y ∈ Y , then x ∈ dom(A) and y = Ax. The
graph norm of A on the linear subspace dom(A) ⊂ X is the norm func-
tion dom(A) → [0,∞) : x 7→ ∥x∥A defined by

(2.2.8) ∥x∥A := ∥x∥X + ∥Ax∥Y
for x ∈ dom(A).

Note that a linear operator A : X ⊃ dom(A) → Y is always a bounded
linear operator with respect to the graph norm. In Example 2.2.10 the graph
norm of A on dom(A) = C1([0, 1]) agrees with the usual C1 norm

(2.2.9) ∥f∥C1 = sup
0≤t≤1

|f(t)|+ sup
0≤t≤1

|f ′(t)| for f ∈ C1([0, 1]),

and C1([0, 1]) is a Banach space with this norm.

Exercise 2.2.12. Let X,Y be Banach spaces and let A : dom(A) → Y
be a linear operator, defined on a linear subspace dom(A) ⊂ X. Prove that
the graph of A is a closed subspace of X × Y if and only if dom(A) is a
Banach space with respect to the graph norm.

The notion of an unbounded linear operator with a dense domain will
only become relevant much later in this book when we deal with the spectral
theory of linear operators (see Chapter 6). For now it is sufficient to consider
linear operators from a Banach spaceX to a Banach space Y that are defined
on the entire space X, rather than just a subspace of X. In this situation
it turns out that the closed graph condition is equivalent to boundedness.
This is the content of the Closed Graph Theorem, which can be derived as
a consequence of the Open Mapping Theorem and vice versa.

Theorem 2.2.13 (Closed Graph Theorem). Let X and Y be Banach
spaces and let A : X → Y be a linear operator. Then A is bounded if and
only if its graph is a closed linear subspace of X × Y .

Proof. Assume first that A is bounded. Then A is continuous by The-
orem 1.2.2. Hence, if (xn)n∈N is a sequence in X such that xn converges
to x ∈ X and Axn converges to y ∈ Y , we must have y = limn→∞Axn = Ax
and hence (x, y) ∈ graph(A).
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Conversely, suppose that Γ := graph(A) = {(x, y) ∈ X × Y | y = Ax} is
a closed linear subspace of X×Y . Then Γ is a Banach space with the norm

∥(x, y)∥Γ := ∥x∥X + ∥y∥Y for (x, y) ∈ Γ

and the projection

π : Γ → X, π(x, y) := x for (x, y) ∈ Γ,

is a bijective bounded linear operator. Its inverse is the linear map

π−1 : X → Γ, π−1(x) = (x,Ax) for x ∈ X,

and is bounded by the Inverse Operator Theorem 2.2.5. Hence there exists
a constant c > 0 such that ∥x∥X + ∥Ax∥Y =

∥∥π−1(x)
∥∥
Γ

≤ c ∥x∥X for
all x ∈ X. Thus A is bounded and this proves Theorem 2.2.13. □

Exercise 2.2.14. (i) Derive the Inverse Operator Theorem 2.2.5 from
the Closed Graph Theorem 2.2.13.

(ii) Derive the Open Mapping Theorem 2.2.1 from the Inverse Operator
Theorem 2.2.5. Hint: Consider the induced operator A : X/ ker(A) → Y
and use Theorem 1.2.14.

Example 2.2.15. (i) The hypothesis that X is complete cannot be re-
moved in Theorem 2.2.13. Let X := C1([0, 1]) and Y := C([0, 1]), both
equipped with the supremum norm, and define A : X → Y by Af := f ′.
Then A is unbounded and has a closed graph (see Example 2.2.10).

(ii) The hypothesis that Y is complete cannot be removed in Theorem 2.2.13.
Let X be an infinite-dimensional Banach space, let Φ : X → R be an un-
bounded linear functional, let Y := ker(Φ)× R with ∥(x, t)∥Y := ∥x∥X + |t|
for (x, t) ∈ Y , choose an element x0 ∈ X such that Φ(x0) = 1, and define the
linear operator A : X → Y by Ax := (x− Φ(x)x0,Φ(x)) for x ∈ X. Then A
is unbounded and has a closed graph (see Example 2.2.8).

Let X and Y be Banach spaces and let A : X → Y be a linear operator.
The Closed Graph Theorem asserts that the following are equivalent.

(i) The operator A is continuous, i.e. for every sequence (xn)n∈N in X and
all x ∈ X we have

lim
n→∞

xn = x =⇒ Ax = lim
n→∞

Axn.

(ii) The operator A has a closed graph, i.e. for every sequence (xn)n∈N in X
and all x, y ∈ X we have

lim
n→∞

xn = x

lim
n→∞

Axn = y
=⇒ Ax = lim

n→∞
Axn.
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Thus the closed graph condition is much easier to verify for linear operators
than boundedness. Examples are the next two corollaries.

Corollary 2.2.16 (Hellinger–Toeplitz Theorem). Let H be a real
Hilbert space and let A : H → H be a symmetric linear operator i.e.

(2.2.10) ⟨x,Ay⟩ = ⟨Ax, y⟩ for all x, y ∈ H.

Then A is bounded.

Proof. By Theorem 2.2.13 it suffices to prove that A has a closed graph.
Thus assume that (xn)n∈N is a sequence in H and x, y ∈ H are vectors such
that

lim
n→∞

xn = x, lim
n→∞

Axn = y.

Then

⟨y, z⟩ = lim
n→∞

⟨Axn, z⟩ = lim
n→∞

⟨xn, Az⟩ = ⟨x,Az⟩ = ⟨Ax, z⟩

for all z ∈ H and hence Ax = y. This proves Corollary 2.2.16. □

Corollary 2.2.17 (Douglas Factorization [23]). Let X, Y , Z be
Banach spaces and let A : X → Y and B : Z → Y be bounded linear
operators. Assume A is injective. Then the following are equivalent.

(i) im(B) ⊂ im(A).

(ii) There exists a bounded linear operator T : Z → X such that AT = B.

Proof. If (ii) holds, then im(B) = im(AT ) ⊂ im(A). Conversely, suppose
that im(B) ⊂ im(A) and define

T := A−1 ◦B : Z → X.

Then T is a linear operator and AT = B. We prove that T has a closed
graph. To see this, let (zn)n∈N be a sequence in Z such that the limits

z := lim
n→∞

zn, x := lim
n→∞

Tzn

exist. Then

Ax = lim
n→∞

ATzn = lim
n→∞

Bzn = Bz

and hence x = Tz. Thus T has a closed graph and hence is bounded by
Theorem 2.2.13. This proves Corollary 2.2.17. □

The hypothesis that A is injective cannot be removed in Corollary 2.2.17.
For example, take X = ℓ∞, Y = Z = ℓ∞/c0, and B = id. Then the
projection A : ℓ∞ → ℓ∞/c0 does not have a bounded right inverse (see
Exercise 2.5.1).
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2.2.3. Closeable Operators. For a linear operator that is defined on a
proper linear subspace it is an interesting question whether it can be ex-
tended to a linear operator with a closed graph. Such linear operators are
called closeable.

Definition 2.2.18 (Closeable Operator). Let X and Y be Banach
spaces, let dom(A) ⊂ X be a linear subspace, and let A : dom(A) → Y be a
linear operator. The operator A is called closeable if there exists a closed
linear operator A′ : dom(A′) → Y on a subspace dom(A′) ⊂ X such that

(2.2.11) dom(A) ⊂ dom(A′), A′x = Ax for all x ∈ dom(A).

Lemma 2.2.19 (Characterization of Closeable Operators).

Let X and Y be Banach spaces, let dom(A) ⊂ X be a linear subspace, and
let A : dom(A) → Y be a linear operator. Then the following are equivalent.

(i) A is closeable.

(ii) The projection πX : graph(A) → X onto the first factor is injective.

(iii) If (xn)n∈N is a sequence in dom(A) and y ∈ Y is a vector such
that limn→∞ xn = 0 and limn→∞Axn = y then y = 0.

Proof. That (i) implies (iii) follows from the fact that y = A′0 = 0 for
every closed extension A′ : dom(A′) → Y of A.

We prove that (iii) implies (ii). The closure of any linear subspace of a

normed vector space is again a linear subspace. Hence graph(A) is a linear

subspace of X × Y and the projection πX : graph(A) → X onto the first
factor is a linear map by definition. By (iii) the kernel of this linear map is
the zero subspace and hence it is injective.

We prove that (ii) implies (i). Define

dom(A′) := πX

(
graph(A)

)
⊂ X.

This is a linear subspace and the map πX : graph(A) → dom(A′) is bijective

by (ii). Denote its inverse by π−1
X : dom(A′) → graph(A) and denote by

πY : graph(A) → Y

the projection onto the second factor. Then

A′ := πY ◦ π−1
X : dom(A′) → Y

is a linear operator, its graph is the linear subspace

graph(A′) = graph(A) ⊂ X × Y,

and (2.2.11) holds because graph(A) ⊂ graph(A′). Thus we have proved
Lemma 2.2.19. □
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Example 2.2.20. Let H = L2(R) and define Λ : dom(Λ) → R by

dom(Λ) :=

{
f ∈ L2(R)

∣∣∣∣ there exists a constant c > 0 such that
f(t) = 0 for almost all t ∈ R \ [−c, c]

}
and

Λ(f) :=

∫ ∞

−∞
f(t) dt for f ∈ dom(Λ).

This linear functional is not closeable because the sequence fn ∈ dom(Λ),
given by fn(t) :=

1
n for |t| ≤ n and fn(t) := 0 for |t| > n satisfies

∥fn∥L2 =
2

n
, Λ(fn) = 2

for all n ∈ N. (See Lemma 2.2.19.)

Example 2.2.21. Let H = L2(R) and define Λ : dom(Λ) → R by

dom(Λ) := Cc(R), Λ(f) := f(0)

for f ∈ Cc(R) (the space of compactly supported continuous real valued
functions f : R → R). This linear functional is not closeable because there
exists a sequence of continuous functions fn : R → R with compact support
such that fn(0) = 1 and ∥fn∥L2 ≤ 1

n for all n ∈ N. (See Lemma 2.2.19.)

Exercise 2.2.22 (Linear Functionals). Let X be a real Banach space,
let Y ⊂ X be a linear subspace, and let Λ : Y → R be a linear functional.
Show that Λ is closeable if and only if Λ is bounded. Hint: Use the Hahn–
Banach Theorem (Corollary 2.3.4) in Section 2.3 below.

Example 2.2.23 (Symmetric Operators). Let H be a Hilbert space
and let A : dom(A) → H be a linear operator, defined on a dense linear
subspace dom(A) ⊂ H. Suppose A is symmetric, i.e.

(2.2.12) ⟨x,Ay⟩ = ⟨Ax, y⟩ for all x, y ∈ dom(A).

Then A is closeable. To see this, choose a sequence xn ∈ dom(A) such
that limn→∞ ∥xn∥ = 0 and the sequence Axn converges to an element y ∈ H
as n tends to infinity. Then

⟨y, z⟩ = lim
n→∞

⟨Axn, z⟩ = lim
n→∞

⟨xn, Az⟩ = 0

for all z ∈ dom(A). Since dom(A) is a dense subspace of H, there exists a
sequence zi ∈ dom(A) that converges to y as i tends to infinity. Hence

∥y∥2 = ⟨y, y⟩ = lim
i→∞

⟨y, zi⟩ = 0

and so y = 0. Thus A is closeable by Lemma 2.2.19.
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Example 2.2.24 (Differential Operators). This example shows that
every differential operator is closeable. Let Ω ⊂ Rn be a nonempty open
set, fix a constant 1 < p < ∞, and consider the Banach space X := Lp(Ω)
(with respect to the Lebesgue measure on Ω). Then the space

dom(A) := C∞
0 (Ω)

of smooth functions u : Ω → R with compact support is a dense linear
subspace of Lp(Ω) (see [75, Thm 4.15]). Let m ∈ N and, for every multi-
index α = (α1, . . . , αn) ∈ Nn0 with |α| = α1 + · · ·+ αn ≤ m, let aα : Ω → R
be a smooth function. Define the operator A : C∞

0 (Ω) → Lp(Ω) by

(2.2.13) Au :=
∑

|α|≤m

aα∂
αu.

Here the sum runs over all multi-indices α = (α1, . . . , αn) ∈ Nn0 with |α| ≤ m

and ∂α = ∂|α|

∂x
α1
1 ···∂xαn

n
. We prove that A is closeable.

To see this, define the constant 1 < q <∞ by 1/p+ 1/q = 1 and define
the formal adjoint of A as the operator B : C∞

0 (Ω) → Lq(Ω), given by

Bv :=
∑

|α|≤m

(−1)|α|∂α(aαv)

for v ∈ C∞
0 (Ω). Then integration by parts shows that

(2.2.14)

∫
Ω
v(Au) =

∫
Ω
(Bv)u

for all u, v ∈ C∞
0 (Ω). Now let uk ∈ C∞

0 (Ω) be a sequence of smooth functions
with compact support and let v ∈ Lp(Ω) such that

lim
k→∞

∥uk∥Lp = 0, lim
k→∞

∥v −Auk∥Lp = 0.

Then, for every test function ϕ ∈ C∞
0 (Ω), we have∫

Ω
ϕv = lim

k→∞

∫
Ω
ϕ(Auk) = lim

k→∞

∫
Ω
(Bϕ)uk = 0.

Since C∞
0 (Ω) is dense in Lq(Ω), this implies that∫

Ω
ϕv = 0 for all ϕ ∈ Lq(Ω).

Now take ϕ := sign(v)|v|p−1 ∈ Lq(Ω) to obtain
∫
Ω|v|

p = 0 and hence v van-
ishes almost everywhere. Hence it follows from Lemma 2.2.19 that the linear
operator A : C∞

0 (Ω) → Lp(Ω) is closeable as claimed.
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2.3. Hahn–Banach and Convexity

2.3.1. The Hahn–Banach Theorem. The Hahn–Banach theorem deals
with bounded linear functionals on a subspace of a Banach space X and
asserts that every such functional extends to a bounded linear functional
on all of X. This theorem continues to hold in the more general setting
where X is any real vector space and boundedness is replaced by a bound
relative to a given sublinear functional on X.

Definition 2.3.1 (Sublinear Functional). Let X be a real vector
space. A function p : X → R is called a sublinear functional if it satisfies

(2.3.1) p(x+ y) ≤ p(x) + p(y), p(λx) = λp(x)

for all x, y ∈ X and all λ ≥ 0. It is called a seminorm if it is a sublinear
functional and p(λx) = |λ|p(x) for all x ∈ X and all λ ∈ R. A seminorm has
nonnegative values, because 2p(x) = p(x) + p(−x) ≥ p(0) = 0 for all x ∈ X.
Thus a seminorm satisfies all the axioms of a norm except nondegeneracy
(i.e. there may be nonzero elements x ∈ X such that p(x) = 0).

Theorem 2.3.2 (Hahn–Banach). Let X be a normed vector space and
let p : X → R be a sublinear functional. Let Y ⊂ X be a linear subspace and
let ϕ : Y → R be a linear functional such that ϕ(x) ≤ p(x) for all x ∈ Y .
Then there exists a linear functional Φ : X → R such that

Φ|Y = ϕ, Φ(x) ≤ p(x) for all x ∈ X.

Proof. See page 66. □

Lemma 2.3.3. Let X, p, Y , and ϕ be as in Theorem 2.3.2. Let x0 ∈ X\Y
and define Y ′ := Y ⊕Rx0. Then there exists a linear functional ϕ′ : Y ′ → R
such that ϕ′|Y = ϕ and ϕ′(x) ≤ p(x) for all x ∈ Y ′.

Proof. An extension ϕ′ : Y ′ → R of the linear functional ϕ : Y → R
is uniquely determined by its value a := ϕ′(x0) ∈ R on x0. This extension
satisfies the required condition ϕ′(x) ≤ p(x) for all x ∈ Y ′ if and only if

(2.3.2) ϕ(y) + λa ≤ p(y + λx0) for all y ∈ Y and all λ ∈ R.

If this holds then

(2.3.3) ϕ(y)± a ≤ p(y ± x0) for all y ∈ Y.

Conversely, if (2.3.3) holds and λ > 0, then

ϕ(y) + λa = λ
(
ϕ(λ−1y) + a

)
≤ λp(λ−1y + x0) = p(y + λx0),

ϕ(y)− λa = λ
(
ϕ(λ−1y)− a

)
≤ λp(λ−1y − x0) = p(y − λx0).
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This shows that (2.3.2) is equivalent to (2.3.3). Thus it remains to find a
real number a ∈ R that satisfies (2.3.3). Equivalently, a must satisfy

(2.3.4) ϕ(y)− p(y − x0) ≤ a ≤ p(y + x0)− ϕ(y) for all y ∈ Y.

To see that such a number exists, fix two vectors y, y′ ∈ Y . Then

ϕ(y) + ϕ(y′) = ϕ(y + y′)

≤ p(y + y′)

= p(y + x0 + y′ − x0)

≤ p(y + x0) + p(y′ − x0).

Thus

ϕ(y′)− p(y′ − x0) ≤ p(y + x0)− ϕ(y)

for all y, y′ ∈ Y and this implies

sup
y′∈Y

(
ϕ(y′)− p(y′ − x0)

)
≤ inf

y∈Y

(
p(y + x0)− ϕ(y)

)
.

Hence there exists a real number a ∈ R that satisfies (2.3.4) and this proves
Lemma 2.3.3. □

Proof of Theorem 2.3.2. Define the set

P :=

(Z,ψ)

∣∣∣∣ Z is a linear subspace of X and
ψ : Z → R is a linear functional such that
Y ⊂ Z, ψ|Y = ϕ, and ψ(x) ≤ p(x) for all x ∈ Z

 .

This set is partially ordered by the relation

(Z,ψ) ≼ (Z ′, ψ′)
def⇐⇒ Z ⊂ Z ′ and ψ′|Z = ψ

for (Z,ψ), (Z ′, ψ′) ∈ P. A chain in P is a totally ordered subset C ⊂ P.
Every nonempty chain C ⊂ P has a supremum (Z0, ψ0) given by

Z0 :=
⋃

(Z,ψ)∈C

Z, ψ0(x) := ψ(x) for all (Z,ψ) ∈ C and all x ∈ Z.

Hence it follows from the Lemma of Zorn that P has a maximal ele-
ment (Z,ψ). By Lemma 2.3.3 every such maximal element satisfies Z = X
and this proves Theorem 2.3.2. □

A special case of the Hahn–Banach theorem is where the sublinear func-
tional is a norm. In this situation the Hahn–Banach theorem is an existence
result for bounded linear functionals on real and complex normed vector
spaces. It takes the following form.
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Corollary 2.3.4 (Real Case). Let X be a normed vector space over R,
let Y ⊂ X be a linear subspace, let ϕ : Y → R be a linear functional, and
let c ≥ 0 such that |ϕ(x)| ≤ c ∥x∥ for all x ∈ Y . Then there exists a bounded
linear functional Φ : X → R such that

Φ|Y = ϕ, |Φ(x)| ≤ c ∥x∥ for all x ∈ X.

Proof. By Theorem 2.3.2 with p(x) := c ∥x∥, there exists a linear func-
tional Φ : X → R such that Φ|Y = ϕ and Φ(x) ≤ c ∥x∥ for all x ∈ X.
Since Φ(−x) = −Φ(x) it follows that |Φ(x)| ≤ c ∥x∥ for all x ∈ X and this
proves Corollary 2.3.4. □

Corollary 2.3.5 (Complex Case). Let X be a normed vector space
over C, let Y ⊂ X be a linear subspace, let ψ : Y → C be a complex linear
functional, and let c ≥ 0 such that |ψ(x)| ≤ c ∥x∥ for all x ∈ Y . Then there
exists a bounded complex linear functional Ψ : X → C such that

Ψ|Y = ψ, |Ψ(x)| ≤ c ∥x∥ for all x ∈ X.

Proof. By Corollary 2.3.4 there exists a real linear functional Φ : X → R
such that

Φ|X = Reψ

and |Φ(x)| ≤ c ∥x∥ for all x ∈ X. Define Ψ : X → C by

Ψ(x) := Φ(x)− iΦ(ix) for x ∈ X.

Then Ψ : X → C is complex linear and, for all x ∈ Y , we have

Ψ(x) = Φ(x)− iΦ(ix)

= Re(ψ(x))− iRe(ψ(ix))

= Re(ψ(x))− iRe(iψ(x))

= Re(ψ(x)) + iIm(ψ(x))

= ψ(x).

To prove the estimate, fix a vector x ∈ X such that Ψ(x) ̸= 0 and choose a
real number θ ∈ R such that

eiθ = |Ψ(x)|−1Ψ(x).

Then

|Ψ(x)| = e−iθΨ(x) = Ψ(e−iθx) = Φ(e−iθx) ≤ c∥e−iθx∥ = c∥x∥.

Here the third equality follows from the fact that Ψ(e−iθx) is real. This
proves Corollary 2.3.5. □
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2.3.2. Positive Linear Functionals. The Hahn–Banach Theorem has
several important applications. The first is an extension theorem for posi-
tive linear functionals on ordered vector spaces. Recall that a partial order
is a transitive, anti-symmetric, reflexive relation.

Definition 2.3.6 (Ordered Vector Space).

An ordered vector space is a pair (X,≼), where X is a real vector space
and ≼ is a partial order on X that satisfies the following two axioms for
all x, y, z ∈ X and all λ ∈ R.

(O1) If 0 ≼ x and 0 ≤ λ then 0 ≼ λx.

(O2) If x ≼ y then x+ z ≼ y + z.

In this situation the set P := {x ∈ X | 0 ≼ x} is called the positive cone.
A linear functional Φ : X → R is called positive if Φ(x) ≥ 0 for all x ∈ P .

Theorem 2.3.7 (Hahn–Banach for Positive Linear Functionals).

Let (X,≼) be an ordered vector space and let P ⊂ X be the positive cone.
Let Y ⊂ X be a linear subspace satisfying the following condition.

(O3) For each x ∈ X there exists a y ∈ Y such that x ≼ y.

Let ϕ : Y → R be a positive linear functional, i.e. ϕ(y) ≥ 0 for all y ∈ Y ∩P .
Then there is a positive linear functional Φ : X → R such that Φ|Y = ϕ.

Proof. The proof has three steps.

Step 1. For every x ∈ X the set {y ∈ Y |x ≼ y} is nonempty and the
restriction of ϕ to this set is bounded below.

Fix an element x ∈ X. Then the set {y ∈ Y |x ≼ y} is nonempty by (O3).
It follows also from (O3) that there exists a y0 ∈ Y such that −x ≼ −y0.
Thus we have y0 ≼ x by (O2). If y ∈ Y satisfies x ≼ y, then y0 ≼ y and this
implies ϕ(y0) ≤ ϕ(y), because ϕ is positive. This proves Step 1.

Step 2. By Step 1 the formula

(2.3.5) p(x) := inf{ϕ(y) | y ∈ Y, x ≼ y} for x ∈ X

defines a function p : X → R. This function is a sublinear functional and
satisfies p(y) = ϕ(y) for all y ∈ Y .

Let x1, x2 ∈ X and ε > 0. For i = 1, 2 choose yi ∈ Y such that xi ≼ yi
and ϕ(yi) < p(xi) + ε/2. Then x1 + x2 ≼ x1 + y2 ≼ y1 + y2 by (O2), and so

p(x1 + x2) ≤ ϕ(y1 + y2) = ϕ(y1) + ϕ(y2) < p(x1) + p(x2) + ε.

This implies p(x1 + x2) ≤ p(x1) + p(x2) for all x1, x2 ∈ X.
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Now let x ∈ X and λ > 0. Then {y ∈ Y |λx ≼ y} = {λy | y ∈ Y, x ≼ y}
by (O1) and hence

p(λx) = inf
y∈Y
λx≼y

ϕ(y) = inf
y∈Y
x≼y

ϕ(λy) = inf
y∈Y
x≼y

λϕ(y) = λp(x).

Moreover, p(0) = 0 by definition, and so p is a sublinear functional. The for-
mula p(y) = ϕ(y) for y ∈ Y follows directly from the definition of p in (2.3.5)
and this proves Step 2.

Step 3. We prove Theorem 2.3.7.

By Step 2 and the Hahn–Banach Theorem 2.3.2, there exists a linear func-
tional Φ : X → R such that Φ|Y = ϕ and Φ(x) ≤ p(x) for all x ∈ X. If x ∈ P
then −x ≼ 0 ∈ Y , hence Φ(−x) ≤ p(−x) ≤ ϕ(0) = 0, and so Φ(x) ≥ 0. This
proves Theorem 2.3.7. □

Exercise 2.3.8. Give a direct proof of Theorem 2.3.7 based on the
Lemma of Zorn. Hint: If (X,≼) is an ordered vector space, Y ⊂ X is a
linear subspace satisfying (O3), ϕ : Y → R is a positive linear functional,
and x0 ∈ X \ Y , then there is a positive linear functional ψ : Y ⊕ Rx0 → R
such that ψ|Y = ϕ. To see this, find a real number a ∈ R that satisfies the
conditions

x0 ≼ y =⇒ a ≤ ϕ(y)

and

y ≼ x0 =⇒ ϕ(y) ≤ a

for all y ∈ Y .

Exercise 2.3.9. This exercise shows that the assumption (O3) cannot
be removed in Theorem 2.3.7. The space X := BC(R) of bounded continu-
ous real valued functions on R is an ordered vector space with

f ≼ g
def⇐⇒ f(t) ≤ g(t) for all t ∈ R.

The subspace Y := Cc(R) of compactly supported continuous functions does
not satisfy (O3) and the positive linear functional

Cc(R) → R : f 7→
∫ ∞

−∞
f(t) dt

does not extend to a positive linear functional on BC(R). Hint: Every
positive linear functional on BC(R) is bounded with respect to the sup-
norm.
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2.3.3. Separation of Convex Sets. The second application of the Hahn–
Banach theorem concerns a pair of disjoint convex sets in a normed vector
space. They can be separated by a hyperplane whenever one of them has
nonempty interior (see Figure 2.3.1). The result and its proof carry over to
general topological vector spaces (see Theorem 3.1.11 below).

Λ=0

B = {0}

A

Figure 2.3.1. Two convex sets, separated by a hyperplane.

Theorem 2.3.10 (Separation of Convex Sets). Let X be a real
normed vector space and let A,B ⊂ X be nonempty disjoint convex sets
such that int(A) ̸= ∅. Then there exists a nonzero bounded linear func-
tional Λ : X → R and a constant c ∈ R such that Λ(x) ≥ c for all x ∈ A
and Λ(x) ≤ c for all x ∈ B. Moreover, every such bounded linear functional
satisfies Λ(x) > c for all x ∈ int(A).

Proof. See page 71. □

Exercise 2.3.11. This exercise shows that the hypothesis that one of
the convex sets has nonempty interior cannot be removed in Theorem 2.3.10.
Consider the Hilbert space H = ℓ2 and define

A :=

{
x ∈ ℓ2

∣∣∣∣ ∃n ∈ N ∀i ∈ N
i < n =⇒ xi > 0
i ≥ n =⇒ xi = 0

}
, B :=

{
x ∈ ℓ2

∣∣∣∣ ∃n ∈ N ∀i ∈ N
i < n =⇒ xi = 0
i ≥ n =⇒ xi > 0

}
.

Show that A,B are nonempty disjoint convex subsets of ℓ2 with empty
interior whose closures agree. If Λ : ℓ2 → R is a bounded linear functional
and c is a real number such that Λ(x) ≥ c for all x ∈ A and Λ(x) ≤ c for
all x ∈ B, show that Λ = 0 and c = 0.

Exercise 2.3.12. Define A :=
{
x ∈ ℓ2 |xi = 0 for i > 1

}
and

B :=
{
x = (xi)

∞
i=1 ∈ RN | |ixi − i1/3| ≤ x1 for all i > 1

}
⊂ ℓ2.

Show that A,B are nonempty disjoint closed convex subsets of ℓ2 and A−B
is dense in ℓ2. Deduce that A,B cannot be separated by an affine hyperplane.
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Lemma 2.3.13. Let X be a normed vector space and let A ⊂ X be a
convex set. Then int(A) and A are convex sets. Moreover, if int(A) ̸= ∅
then A ⊂ int(A).

Proof. The proof of convexity of int(A) and A is left as an exercise (see
also Lemma 3.1.10). Let x0 ∈ int(A) and choose δ > 0 such that Bδ(x0) ⊂ A.
If x ∈ A, then the set Ux := {tx+ (1− t)y | y ∈ Bδ(x0), 0 < t < 1} ⊂ A is

open and hence x ∈ Ux ⊂ int(A). □

Lemma 2.3.14. Let X be a normed vector space, let A ⊂ X be a convex
set with nonempty interior, let Λ : X → R be a nonzero bounded linear func-
tional, and let c ∈ R such that Λ(x) ≥ c for all x ∈ int(A). Then Λ(x) ≥ c
for all x ∈ A and Λ(x) > c for all x ∈ int(A).

Proof. Since A is convex and has nonempty interior, we have A ⊂ int(A)
by Lemma 2.3.13, and so Λ(x) ≥ c for all x ∈ A because Λ is continuous.
Now let x ∈ int(A), choose x0 ∈ X such that Λ(x0) = 1, and choose t > 0
such that x− tx0 ∈ A. Then Λ(x) = t+ Λ(x− tx0) ≥ t+ c > c. □

Proof of Theorem 2.3.10. The proof has three steps.

Step 1. Let X be a real normed vector space, let U ⊂ X be a nonempty
open convex set such that 0 /∈ U , and define P := {tx |x ∈ U, t ∈ R, t ≥ 0}.
Then P is a convex subset of X and satisfies the following.

(P1) If x ∈ P and λ ≥ 0 then λx ∈ P .

(P2) If x, y ∈ P then x+ y ∈ P .

(P3) If x ∈ P and −x ∈ P then x = 0.

If x, y ∈ P \ {0}, choose x0, x1 ∈ U and t0, t1 > 0 such that x = t0x0 and
y = t1x1; then z :=

t0
t0+t1

x0 +
t1

t0+t1
x1 ∈ U and hence x+ y = (t0 + t1)z ∈ P .

This proves (P2). That P satisfies (P1) is obvious and that it satisfies (P3)
follows from the fact that 0 /∈ U . By (P1) and (P2) the set P is convex.

Step 2. Let X and U be as in Step 1. Then there exists a bounded linear
functional Λ : X → R such that Λ(x) > 0 for all x ∈ U .

Let P be as in Step 1. Then it follows from (P1), (P2), (P3) that the relation

x ≼ y
def⇐⇒ y − x ∈ P

defines a partial order ≼ on X that satisfies (O1) and (O2).

Let x0 ∈ U . Then the linear subspace Y := Rx0 satisfies (O3). Namely,
if x ∈ X then x0 − tx ∈ U ⊂ P for t > 0 sufficiently small and so x ≼ t−1x0.
Moreover, the linear functional Y → R : tx0 7→ t is positive by (P3). Hence,
by Theorem 2.3.7, there is a linear functional Λ : X → R such that Λ(tx0) = t
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for all t ∈ R and Λ(x) ≥ 0 for all x ∈ P . We prove that this functional is
bounded. Choose δ > 0 such that Bδ(x0) ⊂ P , and let x ∈ X with ∥x∥ ≤ 1.
Then x0 − δx ∈ P , hence Λ(x0 − δx) ≥ 0, and so Λ(x) ≤ δ−1Λ(x0) = δ−1.
Thus |Λ(x)| ≤ δ−1 ∥x∥ for all x ∈ X. Since U ⊂ P , we have Λ(x) ≥ 0 for
all x ∈ U , and so Λ(x) > 0 for all x ∈ U by Lemma 2.3.14.

Step 3. We prove Theorem 2.3.10.

Let X,A,B be as in Theorem 2.3.10. Then U := int(A)−B is a nonempty
open convex set and 0 /∈ U . Hence, by Step 2, there exists a bounded linear
functional Λ : X → R such that Λ(x) > 0 for all x ∈ U . Thus Λ(x) > Λ(y)
for all x ∈ int(A) and all y ∈ B. This implies Λ(x) ≥ c := supy∈B Λ(y) for
all x ∈ int(A). Hence Λ(x) ≥ c for all x ∈ A and Λ(x) > c for all x ∈ int(A)
by Lemma 2.3.14. This proves Theorem 2.3.10. □

Definition 2.3.15 (Hyperplane). Let X be a real normed vector
space. A hyperplane in X is a closed linear subspace of codimension one.
An affine hyperplane is a translate of a hyperplane. An open half-
space is a set of the form {x ∈ X |Λ(x) > c} where Λ : X → R is a nonzero
bounded linear functional and c ∈ R.

Exercise 2.3.16. Show that H ⊂ X is an affine hyperplane if and only
if there exists a nonzero bounded linear functional Λ : X → R and a real
number c ∈ R such that H = Λ−1(c).

Let X,A,B,Λ, c be as in Theorem 2.3.10. Then H := Λ−1(c) is an affine
hyperplane that separates the convex sets A and B. It divides X into two
connected components such that the interior of A is contained in one of
them and B is contained in the closure of the other.

Corollary 2.3.17. Let X be a real Banach space and let A ⊂ X be
an open convex set such that 0 /∈ A. Let Y ⊂ X be a linear subspace such
that Y ∩A = ∅. Then there is a hyperplane H ⊂ X such that

Y ⊂ H, H ∩A = ∅.

Proof. Assume without loss of generality that Y is closed, consider the
quotient X ′ := X/Y , and denote by π : X → X ′ the obvious projection.
Then π is open by Theorem 2.2.1, so A′ := π(A) ⊂ X ′ is an open convex
set that does not contain the origin. Hence Theorem 2.3.10 asserts that
there is a bounded linear functional Λ′ : X ′ → R such that Λ′(x′) > 0 for
all x′ ∈ A′. Hence Λ := Λ′ ◦ π : X → R is a bounded linear functional such
that Y ⊂ ker(Λ) and Λ(x) > 0 for all x ∈ A. So H := ker(Λ) is the required
hyperplane. □
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Corollary 2.3.18. Let X be a real normed vector space and let A ⊂ X
be a nonempty open convex set. Then A is the intersection of all open half-
spaces containing A.

Proof. Let y ∈ X \ A. Then, by Theorem 2.3.10 with B = {y}, there is
a Λ ∈ X∗ and a c ∈ R such that Λ(x) > c for all x ∈ A and Λ(y) ≤ c. Hence
there is an open half-space containing A but not y. □

Corollary 2.3.19. Let X be a real normed vector space and A,B ⊂ X
be nonempty disjoint convex sets such that A is closed and B is compact.
Then there exists a bounded linear functional Λ : X → R such that

inf
x∈A

Λ(x) > sup
y∈B

Λ(y).

Proof. We prove first that

δ := inf
x∈A, y∈B

∥x− y∥ > 0.

Choose sequences xn ∈ A and yn ∈ B such that

lim
n→∞

∥xn − yn∥ = δ.

Since B is compact, we may assume, by passing to a subsequence if neces-
sary, that the sequence (yn)n∈N converges to an element y ∈ B. If δ = 0
it would follow that the sequence (xn − yn)n∈N converges to zero, so the
sequence xn = yn + (xn − yn) converges to y, and so y ∈ A, because A is
closed, contradicting the fact that A ∩B = ∅. Thus δ > 0 as claimed. Hence

U :=
⋃
x∈A

Bδ(x)

is an open convex set that contains A and is disjoint from B. Thus, by
Theorem 2.3.10, there is a bounded linear functional Λ : X → R such that

Λ(x) > c := sup
y∈B

Λ(y) for all x ∈ U.

Choose ξ ∈ X such that ∥ξ∥ < δ and ε := Λ(ξ) > 0. Then every x ∈ A
satisfies x− ξ ∈ U and hence

Λ(x)− ε = Λ(x− ξ) > c.

This proves Corollary 2.3.19. □

Exercise 2.3.20. Let X be a real normed vector space and let A ⊂ X
be a nonempty convex set. Prove that A is the intersection of all closed
half-spaces of X containing A.
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2.3.4. The Closure of a Linear Subspace. The third application of
the Hahn–Banach Theorem is a characterization of the closure of a linear
subspace of a real normed vector space X. Recall that the dual space of X
is the space

X∗ := L(X,R)
of real valued bounded linear functionals on X. At this point it is convenient
to introduce an alternative notation for the elements of the dual space.
Denote a bounded linear functional on X by x∗ : X → R and denote the
value of this linear functional on an element x ∈ X by

⟨x∗, x⟩ := x∗(x).

This notation is reminiscent of the inner product on a Hilbert space and
there are in fact many parallels between the pairing

(2.3.6) X∗ ×X → R : (x∗, x) 7→ ⟨x∗, x⟩

and inner products on Hilbert spaces. Recall that X∗ is a Banach space
with respect to the norm

(2.3.7) ∥x∗∥ := sup
x∈X\{0}

|⟨x∗, x⟩|
∥x∥

for x∗ ∈ X∗

(see Theorem 1.3.1). It follows directly from (2.3.7) that

(2.3.8) |⟨x∗, x⟩| ≤ ∥x∗∥ ∥x∥

for all x∗ ∈ X∗ and all x ∈ X, in analogy to the Cauchy–Schwarz inequality.
Hence the pairing (2.3.6) is continuous by Corollary 2.1.7.

Definition 2.3.21 (Annihilator). Let X be a real normed vector
space. For any subset S ⊂ X define the annihilator of S as the space
of bounded linear functionals on X that vanish on S and denote it by

(2.3.9) S⊥ :=
{
x∗ ∈ X∗ ∣∣ ⟨x∗, x⟩ = 0 for all x ∈ S

}
.

Since the pairing (2.3.6) is continuous, the annihilator S⊥ is a closed lin-
ear subspace of X∗ for every subset S ⊂ X. As before, the closure of a
subset Y ⊂ X is denoted by Y .

Theorem 2.3.22. Let X be a real normed vector space, let Y ⊂ X be a
linear subspace, and let x0 ∈ X \ Y . Then

(2.3.10) δ := d(x0, Y ) := inf
y∈Y

∥x0 − y∥ > 0

and there exists a bounded linear functional x∗ ∈ Y ⊥ such that

∥x∗∥ = 1, ⟨x∗, x0⟩ = δ.
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Proof. We prove first that the number δ in (2.3.10) is positive. Suppose
by contradiction that δ = 0. Then, by the axiom of countable choice, there
exists a sequence (yn)n∈N in Y such that ∥x0 − yn∥ < 1/n for all n ∈ N.
This implies that yn converges to x0 and hence x0 ∈ Y , in contradiction to
our assumption. This shows that δ > 0 as claimed.

Now define the subspace Z ⊂ X by

Z := Y ⊕ Rx0 =
{
y + tx0

∣∣ y ∈ Y, t ∈ R
}

and define the linear functional ψ : Z → R by

ψ(y + tx0) := δt for y ∈ Y and t ∈ R.

This functional is well defined because x0 /∈ Y . It satisfies ψ(y) = 0 for
all y ∈ Y and ψ(x0) = δ. Moreover, if y ∈ Y and t ∈ R \ {0}, then

|ψ(y + tx0)|
∥y + tx0∥

=
|t|δ

∥y + tx0∥
=

δ

∥t−1y + x0∥
≤ 1.

Here the last inequality follows from the definition of δ. With this under-
stood, it follows from Corollary 2.3.4 that there exists a bounded linear
functional x∗ ∈ X∗ such that

∥x∗∥ ≤ 1

and

⟨x∗, x⟩ = ψ(x) for all x ∈ Z.

The norm of x∗ is actually equal to one because

∥x∗∥ ≥ sup
y∈Y

|ψ(x0 + y)|
∥x0 + y∥

= sup
y∈Y

|δ|
∥x0 + y∥

= 1

by definition of δ. Moreover,

⟨x∗, x0⟩ = ψ(x0) = δ

and

⟨x∗, y⟩ = ψ(y) = 0 for all y ∈ Y.

This proves Theorem 2.3.22. □

Corollary 2.3.23. Let X be a real normed vector space and let x0 ∈ X
be a nonzero vector. Then there exists a bounded linear functional x∗ ∈ X∗

such that

∥x∗∥ = 1, ⟨x∗, x0⟩ = ∥x0∥ .

Proof. This follows directly from Theorem 2.3.22 with Y := {0}. □

The next corollary characterizes the closure of a linear subspace and
gives rise to a criterion for a linear subspace to be dense.
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Corollary 2.3.24 (Closure of a Subspace). Let X be a real normed
vector space, let Y ⊂ X be a linear subspace, and let x ∈ X. Then

x ∈ Y ⇐⇒ ⟨x∗, x⟩ = 0 for all x∗ ∈ Y ⊥.

Proof. If x ∈ Y and x∗ ∈ Y ⊥ then there is a sequence (yn)n∈N in Y that
converges to x and so ⟨x∗, x⟩ = limn→∞⟨x∗, yn⟩ = 0. If x /∈ Y then there is
an element x∗ ∈ Y ⊥ such that ⟨x∗, x⟩ > 0 by Theorem 2.3.22. □

Corollary 2.3.25 (Dense Subspaces). Let X be a real normed vector
space and let Y ⊂ X be a linear subspace. Then Y is dense in X if and only
if Y ⊥ = {0}.

Proof. By Corollary 2.3.24 we have Y = X if and only if ⟨x∗, x⟩ = 0 for
all x∗ ∈ Y ⊥ and all x ∈ X, and this is equivalent to Y ⊥ = {0}. □

The next corollary asserts that the dual space of a quotient is a subspace
of the dual space and vice versa.

Corollary 2.3.26 (Dual Spaces of Subspaces and Quotients).

Let X be a real normed vector space and let Y ⊂ X be a linear subspace.
Then the following holds.

(i) The linear map

(2.3.11) X∗/Y ⊥ → Y ∗ : [x∗] 7→ x∗|Y
is an isometric isomorphism.

(ii) Assume Y is closed and let π : X → X/Y be the canonical projection,
given by π(x) := x+ Y for x ∈ X. Then the linear map

(2.3.12) (X/Y )∗ → Y ⊥ : Λ 7→ Λ ◦ π

is an isometric isomorphism.

Proof. We prove part (i). The linear map

X∗ → Y ∗ : x∗ 7→ x∗|Y
vanishes on Y ⊥ and hence descends to the quotient X∗/Y ⊥. The resulting
map (2.3.11) is injective by definition. Now fix any bounded linear func-
tional y∗ ∈ Y ∗. Then Corollary 2.3.4 asserts that there is a bounded linear
functional x∗ ∈ X∗ such that

x∗|Y = y∗, ∥x∗∥ = ∥y∗∥ .

Moreover, if ξ∗ ∈ X∗ satisfies ξ∗|Y = y∗, then ∥ξ∗∥ ≥ ∥y∗∥ = ∥x∗∥. Hence x∗
minimizes the norm among all bounded linear functionals on X that restrict
to y∗ on Y . Thus ∥x∗ + Y ⊥∥X∗/Y ⊥ = ∥x∗∥ = ∥y∗∥, and this shows that the

map (2.3.11) is an isometric isomorphism.
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We prove part (ii). Fix a bounded linear functional

Λ : X/Y → R

and define

x∗ := Λ ◦ π : X → R.
Then x∗ is a bounded linear functional on X and x∗|Y = 0. Thus

x∗ ∈ Y ⊥.

Conversely, fix an element x∗ ∈ Y ⊥. Then x∗ vanishes on Y and hence
descends to a unique linear map Λ : X/Y → R such that

Λ ◦ π = x∗.

To prove that Λ is bounded, observe that

Λ(x+ Y ) = ⟨x∗, x⟩ = ⟨x∗, x+ y⟩ ≤ ∥x∗∥ ∥x+ y∥

for all x ∈ X and all y ∈ Y , hence

|Λ(x+ Y )| ≤ ∥x∗∥ inf
y∈Y

∥x+ y∥ = ∥x∗∥ ∥x+ Y ∥X/Y

for all x ∈ X, and hence

∥Λ∥ ≤ ∥x∗∥ .
Conversely

⟨x∗, x⟩ = Λ(x+ Y )

≤ ∥Λ∥ ∥x+ Y ∥X/Y
≤ ∥Λ∥ ∥x∥

for all x ∈ X and so

∥x∗∥ ≤ ∥Λ∥ .
Hence the linear map (2.3.12) is an isometric isomorphism. This proves
Corollary 2.3.26. □

Corollary 2.3.27. Let X be a real normed vector space and let Y ⊂ X
be a closed linear subspace. Then

(2.3.13) inf
ξ∗∈Y ⊥

∥x∗ + ξ∗∥ = sup
y∈Y \{0}

⟨x∗, y⟩
∥y∥

for all x∗ ∈ X∗

and

(2.3.14) ∥x∗∥ = sup
x∈X\Y

⟨x∗, x⟩
infy∈Y ∥x+ y∥

for all x∗ ∈ Y ⊥.

Proof. This follows directly from Corollary 2.3.26. □
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2.3.5. Complemented Subspaces. A familiar observation in linear alge-
bra is that, for every subspace Y ⊂ X of a finite-dimensional vector space X,
there exists another subspace Z ⊂ X such that X = Y ⊕ Z. This continues
to hold for infinite-dimensional vector spaces. However, it does not hold, in
general, for closed subspaces of normed vector spaces. Here is the relevant
definition.

Definition 2.3.28 (Complemented Subspace). Let X be a normed
vector space. A closed subspace Y ⊂ X is called complemented if there
exists a closed subspace Z ⊂ X such that Y ∩ Z = {0} and X = Y ⊕ Z.
A bounded linear operator P : X → X is called a projection if P 2 = P .

Exercise 2.3.29. Let X be a Banach space, let Y ⊂ X be a closed linear
subspace, and let π : X → X/Y be the canonical projection. (Warning:
The term projection is used here with two different meanings.) Prove that
the following are equivalent.

(i) Y is complemented.

(ii) There is a projection P : X → X such that im(P ) = Y .

(iii) There is a bounded linear operator T : X/Y → X such that π ◦ T = id.
(The operator T , if it exists, is called a right inverse of π.)

Hint: For (i) =⇒ (ii) use Corollary 2.2.9. For (ii) =⇒ (i) define Z := ker(P ).
For (ii) =⇒ (iii) let T [x] := x− Px. For (iii) =⇒ (ii) let P := 1l− T ◦ π.

Lemma 2.3.30. Let X be a normed vector space and let Y ⊂ X be a
closed linear subspace such that dim(Y ) < ∞ or dim(X/Y ) < ∞. Then Y
is complemented.

Proof. Assume n := dim(X/Y ) <∞ and choose vectors x1, . . . , xn ∈ X
whose equivalence classes [xi] := xi + Y form a basis of X/Y . Then the
linear subspace Z := span{x1, . . . , xn} is closed by Corollary 1.2.7 and sat-
isfies X = Y ⊕ Z.

Now assume n := dimY <∞ and choose a basis x1, . . . , xn of Y . By the
Hahn–Banach Theorem (Corollary 2.3.4) there exist bounded linear func-
tionals x∗1, . . . , x

∗
n ∈ X∗ that satisfy ⟨x∗i , xj⟩ = δij . Then the subspace

Z := {x ∈ X | ⟨x∗i , x⟩ = 0 for i = 1, . . . , n}
is closed by Theorem 1.2.2. Moreover, x−

∑n
i=1⟨x∗i , x⟩xi ∈ Z for all x ∈ X

and hence X = Y ⊕ Z. This proves Lemma 2.3.30. □

There are examples of closed subspaces of infinite-dimensional Banach
spaces that are not complemented. The simplest such example is the sub-
space c0 ⊂ ℓ∞. Phillips’ Lemma asserts that it is not complemented. The
proof is outlined in Exercise 2.5.1 below.
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2.3.6. Orthonormal Bases.

Definition 2.3.31. Let H be an infinite-dimensional real Hilbert space.
A sequence (ei)i∈N in H is called a (countable) orthonormal basis if

(2.3.15) ⟨ei, ej⟩ = δij :=

{
1, if i = j,
0, if i ̸= j,

for all i, j ∈ N,

(2.3.16) x ∈ H, ⟨ei, x⟩ = 0 for all i ∈ N =⇒ x = 0.

If (ei)i∈N is an orthonormal basis, then (2.3.15) implies that the ei are lin-
early independent and (2.3.16) asserts that the set E := span({ei | i ∈ N})
is a dense linear subspace of H (Corollary 2.3.25).

Exercise 2.3.32. Show that an infinite-dimensional Hilbert space H
admits a countable orthonormal basis if and only if it is separable. Hint:
Assume H is separable. Choose a dense sequence, construct a linearly inde-
pendent subsequence spanning a dense subspace, and use Gram–Schmidt.

Exercise 2.3.33. Let H be a separable Hilbert space and let {ei}i∈N be
an orthonormal basis. Show that the map ℓ2 → H : x = (xi)i∈N 7→

∑∞
i=1 xiei

is well defined (i.e. ξn :=
∑n

i=1 xiei is a Cauchy sequence in H for all x ∈ ℓ2)
and defines a Hilbert space isometry. Deduce that

(2.3.17) x =

∞∑
i=1

⟨ei, x⟩ei, ∥x∥2 =
∞∑
i=1

⟨ei, x⟩2 for all x ∈ H.

Example 2.3.34. The sequences ei := (δij)j∈N for i ∈ N form an or-
thonormal basis of ℓ2.

Example 2.3.35 (Fourier Series). The functions ek(t) := e2πikt, k ∈ Z,
form an orthonormal basis of the complex Hilbert space L2(R/Z,C). It is
equipped with the complex valued Hermitian inner product

(2.3.18) ⟨f, g⟩ :=
∫ 1

0
f(t)g(t) dt for f, g ∈ L2(R/Z,C),

that is complex anti-linear in the first variable and complex linear in the
second variable. To verify completeness, one can fix a continuous func-
tion f : R/Z → C, define fn :=

∑n
k=−n⟨ek, f⟩ek for n ∈ N0, and prove that

the sequence n−1(f0 + f1 + · · ·+ fn−1) converges uniformly to f (Fejér’s
Theorem).

Example 2.3.36. The functions sn(t) :=
√
2 sin(πnt) for n ∈ N form

an orthonormal basis of the Hilbert space L2([0, 1]) and so do the func-
tions c0(t) := 1 and cn(t) :=

√
2 cos(πnt) for n ∈ N. Exercise: Use com-

pleteness in Example 2.3.35 to verify the completeness axiom (2.3.16) for
these two orthonormal bases.
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2.4. Reflexive Banach Spaces

2.4.1. The Bidual Space. Let X be a real normed vector space. The
bidual space of X is the dual space of the dual space and is denoted by

X∗∗ := (X∗)∗ = L(X∗,R).

There is a natural map ι = ιX : X → X∗∗ which assigns to every element
x ∈ X the linear functional ι(x) : X∗ → R whose value at x∗ is obtained by
evaluating the bounded linear functional x∗ : X → R at the point x ∈ X.
Thus the map ι : X → X∗∗ is defined by

(2.4.1) ι(x)(x∗) := ⟨x∗, x⟩

for x ∈ X and x∗ ∈ X∗. It is a consequence of the Hahn–Banach Theorem
that the linear map ι : X → X∗∗ is an isometric embedding.

Lemma 2.4.1. Let X be a real normed vector space. Then the linear
map ι : X → X∗∗ is an isometric embedding. In particular,

(2.4.2) ∥x∥ = sup
x∗∈X∗\{0}

|⟨x∗, x⟩|
∥x∗∥

for all x ∈ X.

Proof. That the map ι : X → X∗∗ is linear follows directly from the
definition. To prove that it preserves the norm, fix a nonzero vector x0 ∈ X.
Then, by Corollary 2.3.23, there exists a bounded linear functional x∗0 ∈ X∗

such that ∥x∗0∥ = 1 and ⟨x∗0, x0⟩ = ∥x0∥. Hence

∥x0∥ =
|⟨x∗0, x0⟩|
∥x∗0∥

≤ ∥ι(x0)∥ = sup
x∗∈X∗\{0}

|⟨x∗, x0⟩|
∥x∗∥

≤ ∥x0∥ .

Here the last inequality follows from (2.3.8). This proves Lemma 2.4.1. □

Corollary 2.4.2. Let X be a real normed vector space and let Y ⊂ X
be a closed linear subspace. Then, for every x ∈ X,

(2.4.3) inf
y∈Y

∥x+ y∥ = sup
x∗∈Y ⊥\{0}

|⟨x∗, x⟩|
∥x∗∥

.

Proof. The left hand side of equation (2.4.3) is the norm of the equiva-
lence class [x] = x + Y in the quotient space X/Y . The right hand side is
the norm of the bounded linear functional

ιX/Y (x+ Y ) : (X/Y )∗ ∼= Y ⊥ → R

(see Corollary 2.3.26). Hence equation (2.4.3) follows from Lemma 2.4.1
with X replaced by X/Y . This proves Corollary 2.4.2. □
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2.4.2. Reflexive Banach Spaces.

Definition 2.4.3 (Reflexive Banach Space). A real normed vector
spaceX is called reflexive if the isometric embedding ι : X → X∗∗ in (2.4.1)
is bijective. A reflexive normed vector space is necessarily complete by
Theorem 1.3.1.

Theorem 2.4.4. Let X be a Banach space. Then the following holds.

(i) X is reflexive if and only if X∗ is reflexive.

(ii) If X is reflexive and Y ⊂ X is a closed linear subspace, then the sub-
space Y and the quotient space X/Y are reflexive.

Proof. We prove part (i). Assume X is reflexive and let Λ : X∗∗ → R
be a bounded linear functional. Define

x∗ := Λ ◦ ι : X → R,

where ι = ιX : X → X∗∗ is the isometric embedding in (2.4.1). Since X is
reflexive, this map ι is bijective. Fix an element x∗∗ ∈ X∗∗ and define

x := ι−1(x∗∗) ∈ X.

Then

Λ(x∗∗) = Λ ◦ ι(x) = ⟨x∗, x⟩ = ⟨ι(x), x∗⟩ = ⟨x∗∗, x∗⟩.
Here the first and last equation follow from the fact that x∗∗ = ι(x), the
second equation follows from the definition of x∗ = Λ ◦ ι, and the third
equation follows from the definition of the map ι in (2.4.1). This shows that

Λ = ιX∗(x∗),

where ιX∗ : X∗ → X∗∗∗ is the isometric embedding in (2.4.1) with X re-
placed by X∗. This shows that the dual space X∗ is reflexive.

Conversely, assume X∗ is reflexive. The subspace ι(X) of X∗∗ is com-
plete by Lemma 2.4.1 and is therefore closed. We prove that ι(X) is a dense
subspace of X∗∗. To see this, let Λ : X∗∗ → R be any bounded linear func-
tional on X∗∗ that vanishes on the image of ι, so that Λ ◦ ι = 0. Since X∗ is
reflexive, there exists an element x∗ ∈ X∗ such that

Λ(x∗∗) = ⟨x∗∗, x∗⟩

for every x∗∗ ∈ X∗∗. Since Λ ◦ ι = 0, this implies

⟨x∗, x⟩ = ⟨ι(x), x∗⟩ = Λ(ι(x)) = 0

for all x ∈ X, hence x∗ = 0, and hence Λ = 0. Thus the annihilator of
the linear subspace ι(X) ⊂ X∗∗ is zero, and so ι(X) is dense in X∗∗ by
Corollary 2.3.25. Hence ι(X) = X∗∗ and this proves part (i).
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We prove part (ii). Assume X is reflexive and let

Y ⊂ X

be a closed linear subspace. We prove first that Y is a reflexive Banach
space. Define the linear operator

π : X∗ → Y ∗

by

π(x∗) := x∗|Y
for x∗ ∈ X∗. Fix an element y∗∗ ∈ Y ∗∗ and define x∗∗ ∈ X∗∗ by

x∗∗ := y∗∗ ◦ π : X∗ → R.

Since X is reflexive, there exists a unique element y ∈ X such that

ιX(y) = x∗∗.

Every element x∗ ∈ Y ⊥ satisfies π(x∗) = 0 and hence

⟨x∗, y⟩ = ⟨ιX(y), x∗⟩
= ⟨x∗∗, x∗⟩
= ⟨y∗∗ ◦ π, x∗⟩
= ⟨y∗∗, π(x∗)⟩
= 0.

In other words, ⟨x∗, y⟩ = 0 for all x∗ ∈ Y ⊥ and so

y ∈ Y = Y

by Corollary 2.3.24. Now fix any element y∗ ∈ Y ∗. Then Corollary 2.3.4
asserts that there exists an element x∗ ∈ X∗ such that

y∗ = x∗|Y = π(x∗)

and so

⟨y∗∗, y∗⟩ = ⟨y∗∗, π(x∗)⟩
= ⟨x∗∗, x∗⟩
= ⟨ι(y), x∗⟩
= ⟨x∗, y⟩
= ⟨y∗, y⟩.

This shows that

ιY (y) = y∗∗.

Since y∗∗ ∈ Y ∗∗ was chosen arbitrarily, this proves that the subspace Y is a
reflexive Banach space.



2.4. Reflexive Banach Spaces 83

Next we prove that the quotient

Z := X/Y

is reflexive. Let

π : X → X/Y

be the canonical projection given by

π(x) := [x] = x+ Y for x ∈ X

and define the linear operator T : Z∗ → Y ⊥ by

Tz∗ := z∗ ◦ π : X → R for z∗ ∈ Z∗.

Note that Tz∗ ∈ Y ⊥ because (Tz∗)(y) = z∗(π(y)) = 0 for all y ∈ Y .
Moreover, T is an isometric isomorphism by Corollary 2.3.26.

Now fix an element z∗∗ ∈ Z∗∗. Then the map

z∗∗ ◦ T−1 : Y ⊥ → R

is a bounded linear functional on a linear subspace of X∗. Hence, by Corol-
lary 2.3.4, there exists a bounded linear functional x∗∗ : X∗ → R such that

⟨x∗∗, x∗⟩ = ⟨z∗∗, T−1x∗⟩ for all x∗ ∈ Y ⊥.

This condition on x∗∗ can be expressed in the form

⟨x∗∗, z∗ ◦ π⟩ = ⟨z∗∗, z∗⟩ for all z∗ ∈ Z∗.

Since X is reflexive, there exists an element x ∈ X such that

ιX(x) = x∗∗.

Define

z := [x] = π(x) ∈ Z.

Then, for all z∗ ∈ Z∗, we have

⟨z∗∗, z∗⟩ = ⟨x∗∗, z∗ ◦ π⟩
= ⟨ι(x), z∗ ◦ π⟩
= ⟨z∗ ◦ π, x⟩
= ⟨z∗, π(x)⟩
= ⟨z∗, z⟩.

This shows that

ιZ(z) = z∗∗.

Since z∗∗ ∈ Z∗∗ was chosen arbitrarily, it follows that Z is reflexive. This
proves Theorem 2.4.4. □
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Example 2.4.5. (i) Every finite-dimensional normed vector space X is
reflexive, because dim X = dim X∗ = dim X∗∗ (see Corollary 1.2.9).

(ii) Every Hilbert space H is reflexive by Theorem 1.4.4. Exercise: The
composition of the isomorphisms H ∼= H∗ ∼= H∗∗ is the map in (2.4.1).

(iii) Let (M,A, µ) be a measure space and let 1 < p, q <∞ such that

1

p
+

1

q
= 1.

Then Lp(µ)∗ ∼= Lq(µ) (Example 1.3.3) and this implies that the Banach
space Lp(µ) is reflexive. Exercise: Prove that the composition of the iso-
morphisms Lp(µ) ∼= Lq(µ)∗ ∼= Lp(µ)∗∗ is the map in (2.4.1).

(iv) Let c0 ⊂ ℓ∞ be the subspace of sequences x = (xi)i∈N of real num-
bers that converge to zero, equipped with the supremum norm. Then
the map ℓ1 → c∗0 : y 7→ Λy, which assigns to every sequence y = (yi)i∈N ∈ ℓ1

the bounded linear functional Λy : c0 → R defined by Λy(x) :=
∑∞

i=1 xiyi
for x = (xi)i∈N ∈ c0, is a Banach space isometry (see Example 1.3.7). This
implies c∗∗0

∼= (ℓ1)∗ ∼= ℓ∞ (see Example 1.3.6), and so c0 is not reflexive. Ex-
ercise: The composition of the isometric embedding ι : c0 → c∗∗0 in (2.4.1)
with the Banach space isometry c∗∗0

∼= ℓ∞ is the canonical inclusion.

(v) The Banach space ℓ1 is not reflexive. To see this, denote by c ⊂ ℓ∞

the space of Cauchy sequences of real numbers and consider the bounded
linear functional that assigns to each Cauchy sequence x = (xi)i∈N ∈ c its
limit limi→∞ xi. By the Hahn–Banach Theorem this functional extends to
a bounded linear functional Λ : ℓ∞ → R (see Corollary 2.3.4), which does
not belong to the image of the inclusion ι : ℓ1 → (ℓ1)∗∗ ∼= (ℓ∞)∗.

(vi) Let (M,d) be a compact metric space and let X = C(M) be the Banach
space of continuous real valued functions on M with the supremum norm
(see part (v) of Example 1.1.3). Suppose M is an infinite set. Then C(M)
is not reflexive. To see this, let A = {a1, a2, . . . } ⊂M be a countably infi-
nite subset such that (ai)i∈N is a Cauchy sequence and ai ̸= aj for i ̸= j.
Then CA(M) := {f ∈ C(M) | f |A = 0} is a closed linear subspace of C(M)
and the quotient C(M)/CA(M) is isometrically isomorphic to the space c of
Cauchy sequences of real numbers via C(M)/CA(M) → c : [f ] 7→ (f(ai))

∞
i=1.

By Theorem 2.4.4 the Banach space c is not reflexive, because the closed
subspace c0 ⊂ c is not reflexive by (iv) above. Hence C(M)/CA(M) is not
reflexive, and so C(M) is not reflexive by Theorem 2.4.4.

(vii) The dual space of the Banach space C(M) in (vi) is isomorphic to the
Banach space M(M) of signed Borel measures on M (see Example 1.3.8).
Since C(M) is not reflexive, neither is the space M(M) by Theorem 2.4.4.
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2.4.3. Separable Banach Spaces. Recall that a normed vector space
is called separable if it contains a countable dense subset (see Defini-
tion 1.1.6). Thus a Banach space X is separable if and only if there exists
a sequence e1, e2, e3, . . . in X such that the linear subspace of all (finite)
linear combinations of the ei is dense in X. If such a sequence exists, the
required countable dense subset can be constructed as the set of all rational
linear combinations of the ei.

Theorem 2.4.6. Let X be a normed vector space. The following holds.

(i) If X∗ is separable then X is separable.

(ii) If X is reflexive and separable then X∗ is separable.

Proof. We prove part (i). Thus assume X∗ is separable and choose a
dense sequence (x∗i )i∈N in X∗. Choose a sequence xi ∈ X such that

∥xi∥ = 1, ⟨x∗i , xi⟩ ≥
1

2
∥x∗i ∥ for all i ∈ N.

Let Y ⊂ X be the linear subspace of all finite linear combinations of the xi.
We prove that Y is dense in X. To see this, fix any element x∗ ∈ Y ⊥. Then
there is a sequence ik ∈ N such that limk→∞∥x∗ − x∗ik∥ = 0. This implies

∥x∗ik∥ ≤ 2|⟨x∗ik , xik⟩| = 2|⟨x∗ik − x∗, xik⟩|
≤ 2∥x∗ik − x∗∥∥xik∥ = 2∥x∗ik − x∗∥.

The last term on the right converges to zero as k tends to infinity, and
hence x∗ = limk→∞ x∗ik = 0. This shows that Y ⊥ = {0}. Hence Y is dense

in X by Corollary 2.3.25 and this proves part (i). If X is reflexive and
separable then X∗∗ is separable, and so X∗ is separable by (i). This proves
part (ii) and Theorem 2.4.6. □

Example 2.4.7. (i) Finite-dimensional Banach spaces are separable.

(ii) The space ℓp is separable for 1 ≤ p <∞, and (ℓ1)∗ ∼= ℓ∞ is not separable.
The subspace c0 ⊂ ℓ∞ of all sequences that converge to zero is separable.

(iii) Let M be a second countable locally compact Hausdorff space, denote
by B ⊂ 2M its Borel σ-algebra, and let µ : B → [0,∞] be a locally finite
Borel measure. Then the space Lp(µ) is separable for 1 ≤ p <∞. (See for
example [75, Thm 4.13].)

(iv) Let (M,d) be a compact metric space. Then the Banach space C(M)
of continuous functions with the supremum norm is separable. Its dual
space M(M) of signed Borel measures is in general not separable.
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2.4.4. The James Space. In 1950 Robert C. James [37, 38] discovered
a remarkable example of a nonreflexive Banach space J that is isometri-
cally isomorphic to its bidual space J∗∗. In this example the image of the
canonical isometric embedding

ι : J → J∗∗

in (2.4.1) is a closed subspace of codimension one. Our exposition follows
Megginson [59].

Recall that c0 ⊂ ℓ∞ is the Banach space of all sequences (xi)i∈N ∈ RN

that converge to zero, equipped with the supremum norm

∥x∥∞ := sup
i∈N

|xi| for x = (xi)i∈N ∈ c0.

By Example 1.3.7 the dual space of c0 is isomorphic to the space ℓ1 of
absolutely summable sequences of real numbers with the norm

∥x∥1 :=
∞∑
i=1

|xi| for x = (xi)i∈N ∈ ℓ1.

Recall also that ℓ2 is the Hilbert space of all square summable sequences of
real numbers with the norm

∥x∥2 :=

( ∞∑
i=1

|xi|2
)1/2

for x = (xi)i∈N ∈ ℓ2.

Definition 2.4.8 (The James Space).

Let P ⊂ 2N be the collection of all nonempty finite subsets of N and write the
elements of P in the form p = (p1, p2, . . . , pk) with 1 ≤ p1 < p2 < · · · < pk.
For each p = (p1, p2, . . . , pk) ∈ P and each sequence x = (xi)i∈N of real
numbers define the number ∥x∥p ∈ [0,∞) by ∥x∥p := 0 when k = 1 and by

(2.4.4) ∥x∥p :=

√√√√√1

2

k−1∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk − xp1 |
2


when k ≥ 2. The James space is the normed vector space defined by

(2.4.5) J :=

{
x ∈ c0

∣∣∣∣ sup
p∈P

∥x∥p <∞

}
and

(2.4.6) ∥x∥J := sup
p∈P

∥x∥p

for x ∈ J .
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Before moving on to the main result of this section (Theorem 2.4.14) we
explore some of the basic properties of the James space. This is the content
of the next five lemmas.

Lemma 2.4.9. The set J in (2.4.5) is a linear subspace of c0 and ∥·∥J is
a norm on J . With this norm J is a Banach space. Moreover,

(2.4.7) ∥x∥∞ ≤ ∥x∥J ≤
√
2 ∥x∥2 for all x ∈ c0,

and thus ℓ2 ⊂ J ⊂ c0.

Proof. By definition, ∥x+ y∥J ≤ ∥x∥J + ∥y∥J and ∥λx∥J = |λ|∥x∥J for
all x, y ∈ c0 and all λ ∈ R. Hence J is a linear subspace of c0.

To prove the first inequality in (2.4.7), fix an element p = (i, j) ∈ P.
Then |xi − xj | = ∥x∥p ≤ ∥x∥J for all x ∈ c0 and all i, j ∈ N with i < j.
Hence |xi| = limj→∞|xi − xj | ≤ ∥x∥J for all x ∈ c0 and all i ∈ N. Now fix
any element p = (p1, p2, . . . , pk) ∈ P. Then

∥x∥2p =
1

2

k−1∑
j=1

∣∣xpj − xpj+1

∣∣2 + 1

2
|xpk − xp1 |

2

≤
k−1∑
j=1

∣∣xpj ∣∣2 + k−1∑
j=1

∣∣xpj+1

∣∣2 + |xpk |
2 + |xp1 |

2

= 2
k∑
j=1

∣∣xpj ∣∣2 ≤ 2 ∥x∥22

for all x ∈ c0. Take the supremum over all p ∈ P to obtain ∥x∥J ≤
√
2∥x∥2.

This proves (2.4.7). By (2.4.7) there are natural inclusions ℓ2 ⊂ J ⊂ c0.
Moreover, it follows from (2.4.7) that ∥x∥J ̸= 0 for every x ∈ J \ {0} and
so (J, ∥·∥J) is a normed vector space.

We prove that J is complete. Let (xn)n∈N be a Cauchy sequence in J .
Then (∥xn∥J)n∈N is a Cauchy sequence in R, so the limit C := limn→∞ ∥xn∥J
exists. Moreover, (xn)n∈N is a Cauchy sequence in c0 by (2.4.7) and hence
converges in the supremum norm to an element x ∈ c0. Thus

∥x∥p = lim
n→∞

∥xn∥p ≤ lim
n→∞

∥xn∥J = C

for all p ∈ P. Take the supremum over all p ∈ P to obtain x ∈ J . We must
prove that limn→∞∥xn−x∥J = 0. To see this, fix a number ε > 0 and choose
an integer n0 ∈ N such that ∥xn − xm∥J < ε/2 for all integers m,n ≥ n0.
Then ∥xn − x∥p = limm→∞∥xn − xm∥p ≤ supm≥n0

∥xn − xm∥J ≤ ε/2 for
all p ∈ P and all n ≥ n0. Thus ∥xn − x∥J = supp∈P ∥xn − x∥p ≤ ε/2 < ε for

every integer n ≥ n0. This shows that limn→∞∥xn−x∥J = 0 and completes
the proof of Lemma 2.4.9. □
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The next goal is to prove that ℓ2 is dense in J . For this it is conve-
nient to introduce another norm on J . For every sequence x = (xi)i∈N of
real numbers and every p = (p1, p2, . . . , pk) ∈ P define |||x|||p := |xp1 | in the
case k = 1 and

(2.4.8) |||x|||p :=

√√√√√1

2

|xp1 |
2 +

k−1∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk |
2


in the case k ≥ 2. Denote the supremum of these numbers over all p ∈ P
by

(2.4.9) |||x|||J := sup
p∈P

|||x|||p.

This is a norm on J that is equivalent to ∥·∥J . Care must be taken. The
second estimate in (2.4.10) below holds for x ∈ c0 but not for all x ∈ ℓ∞.

Lemma 2.4.10. Every x ∈ c0 satisfies the inequalities

(2.4.10)
1√
2
∥x∥J ≤ |||x|||J ≤ ∥x∥J .

Moreover, the function J → [0,∞) : x 7→ |||x|||J is a norm.

Proof. Let x ∈ c0 and p = (p1, . . . , pk) ∈ P. Then

∥x∥2p =
1

2

 k∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk − xp1 |
2


≤

k∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk |
2 + ∥xp1∥

2

= 2|||x|||2p ≤ 2|||x|||2J .

Take the supremum over all p ∈ P to obtain the inequality ∥x∥J ≤
√
2|||x|||J .

Now define qn := (p1, . . . , pk, n) for every integer n > pk. Then

|||x|||2p =
1

2

 k∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk |
2 + |xp1 |

2


= lim

n→∞

1

2

 k∑
j=1

∣∣xpj − xpj+1

∣∣2 + |xpk − pn|2 + |pn − xp1 |
2


= lim

n→∞
∥x∥2qn

≤ ∥x∥2J .

Take the supremum over all p ∈ P to obtain the inequality |||x|||J ≤ ∥x∥J .
This proves Lemma 2.4.10. □
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Lemma 2.4.11. The subspace ℓ2 is dense in J .

Proof. Fix a nonzero element x ∈ J and a real number ε > 0, and choose
a constant 0 < δ < |||x|||J such that

(2.4.11) 2δ|||x|||J < ε2.

We claim that there are elements n ∈ N and p = (p1, . . . , pk) ∈ P such that

(2.4.12) sup
i≥n

|xi| < δ, |||x|||p > |||x|||J − δ, pk = n.

Namely, choose n ∈ N such that supi≥n |xi| < δ and p0 = (p1, . . . , pk−1) ∈ P
such that |||x|||p0

> |||x|||J − δ. Next choose pk > pk−1 so large that pk ≥ n

and the tuple p := (p1, . . . , pk) satisfies

|||x|||p =
√
|||x|||2p0

− 1
2 |xpk−1

|2 + 1
2 |xpk−1

− xpk |2 + 1
2 |xpk |2 > |||x|||J − δ.

Then increase n, if necessary, to obtain pk = n.

Define ξ := (x1, . . . , xn, 0, . . . ). We prove that

(2.4.13) |||x− ξ|||J < ε.

To see this, let q = (q1, . . . , qℓ) ∈ P. If qℓ ≤ n then |||x− ξ|||q = 0. Thus

assume qℓ > n, let j ∈ {1, . . . , ℓ} be the smallest element such that qj > n,
and define q′ := (qj , qj+1, . . . , qℓ) ∈ P. Then

(2.4.14) |||x− ξ|||q = |||x|||q′ .

Now consider the tuple p′ := (p1, . . . , pk, qj , qj+1, . . . , qℓ) ∈ P. By (2.4.12),
it satisfies the inequality

|||x|||2J ≥ |||x|||2p′

= |||x|||2p + |||x|||2q′ + 1
2

∣∣xpk − xqj
∣∣2 − 1

2 |xpk |
2 − 1

2

∣∣xqj ∣∣2
> (|||x|||J − δ)2 − δ2 + |||x|||2q′

= |||x|||2J − 2δ|||x|||J + |||x|||2q′ .

This implies |||x|||2q′ < 2δ|||x|||J and hence

|||x− ξ|||q = |||x|||q′ <
√

2δ|||x|||J < ε

by (2.4.11) and (2.4.14). Take the supremum over all elements q ∈ P to
obtain the inequality (2.4.13). By (2.4.13) the set c00 of all finite sequences
is dense in J and so is the subspace ℓ2. This proves Lemma 2.4.11. □

The following lemma shows that the standard basis vectors ei := (δij)j∈N
form a Schauder basis of J (see Exercise 2.5.12).
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Lemma 2.4.12. For each n ∈ N define the projection Πn : J → J by

(2.4.15) Πn(x) :=
n∑
i=1

xiei for x = (xi)i∈N ∈ J.

Then

(2.4.16) ∥Πn(x)∥J ≤ ∥x∥J , ∥x−Πn(x)∥J ≤ ∥x∥J
for all n ∈ N and all x ∈ J , and

(2.4.17) lim
n→∞

∥x−Πn(x)∥J = 0

for all x ∈ J .

Proof. We prove (2.4.16). Fix an element x ∈ J , a positive integer n,
and an element p = (p1, . . . , pk) ∈ P. If pk ≤ n then ∥Πn(x)∥p = ∥x∥p and,

if p1 > n, then ∥Πn(x)∥p = 0. Thus assume

p1 ≤ n < pk,

let ℓ ∈ {1, . . . , k − 1} be the largest element such that pℓ ≤ n, and define

q := (p1, . . . , pℓ).

Then

∥Πn(x)∥2p = ∥x∥2q − 1
2 |xpℓ − xp1 |

2 + 1
2 |xpℓ |

2 + 1
2 |xp1 |

2

= |||x|||2q
≤ ∥x∥2J

by Lemma 2.4.10. Thus ∥Πn(x)∥p ≤ ∥x∥J for all p ∈ P and this proves

the first inequality in (2.4.16). To prove the second inequality in (2.4.16),
observe that ∥x−Πn(x)∥p = ∥x∥p whenever p1 > n and ∥x−Πn(x)∥p = 0

whenever pk ≤ n. Thus assume p1 ≤ n < pk, let ℓ ∈ {2, . . . , k} be the small-
est element such that pℓ > n, and define q := (pℓ, . . . , pk). Then

∥x−Πn(x)∥2p = ∥x∥2q − 1
2 |xpℓ − xpk |

2 + 1
2 |xpℓ |

2 + 1
2 |xpk |

2

= |||x|||2q
≤ ∥x∥2J

by Lemma 2.4.10. Thus ∥x−Πn(x)∥p ≤ ∥x∥J for all p ∈ P and this proves

the second inequality in (2.4.16).

We prove (2.4.17). When x ∈ ℓ2 this follows from (2.4.7). Since ℓ2

is dense in J by Lemma 2.4.11, it follows from the estimate (2.4.16) and
the Banach–Steinhaus Theorem 2.1.5 that (2.4.17) holds for all x ∈ J . This
proves Lemma 2.4.12. □
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With this preparation we are in a position to examine the dual space of
the James space J . Fix a bounded linear functional Λ : J → R. By (2.4.7),
the inclusion ℓ2 ↪→ J is a bounded linear operator and, by Lemma 2.4.11,
it has a dense image. Thus the composition of Λ with this inclusion is a
bounded linear functional Λ|ℓ2 : ℓ2 → R. Hence, by the Riesz Representation
Theorem 1.4.4, there exists a unique sequence y = (yi)i∈N ∈ ℓ2 such that

(2.4.18) Λ(x) =
∞∑
i=1

yixi = ⟨y, x⟩ for all x ∈ ℓ2 ⊂ J,

and, conversely, Λ is uniquely determined by this sequence y ∈ ℓ2. Thus the
dual space of J can be identified with the space of all y ∈ ℓ2 such that

(2.4.19) ∥y∥J∗ := sup
0̸=x∈ℓ2

|⟨y, x⟩|
∥x∥J

<∞.

By (2.4.7) and (2.4.19), every y ∈ J∗ satisfies the inequalities

(2.4.20)
1√
2
∥y∥2 ≤ ∥y∥J∗ ≤ ∥y∥1 .

Thus there are canonical inclusions

ℓ1 ⊂ J∗ ⊂ ℓ2 ⊂ J ⊂ c0.

At this point it is convenient to make use of two concepts that will only be
introduced in Chapters 3 and 4. These are the dual operator A∗ : Y ∗ → X∗

of a bounded linear operator A : X → Y (Definition 4.1.1) and the weak*
topology on the dual space of a Banach space (Example 3.1.9). A useful
fact is that the dual operator has the same operator norm as the original
operator (Lemma 4.1.2). Under our identification of J∗ with a subspace
of ℓ2, the dual operator of the projection Πn : J → J in (2.4.15) is the
operator

(2.4.21) Πn : J∗ → J∗, Πn(y) :=

n∑
i=1

yiei for y = (yi)i∈N ∈ J∗.

Thus it follows from the estimates in (2.4.16) that

(2.4.22) ∥Πn(y)∥J∗ ≤ ∥y∥J∗ , ∥y −Πn(y)∥J∗ ≤ ∥y∥J∗

for all y ∈ J∗ and all n ∈ N. Moreover, the dual space of c0 can be identified
with ℓ1 (Example 1.3.7) and the dual operator of the inclusion J ↪→ c0 is
then the inclusion ℓ1 ↪→ J∗. Hence it follows from general considerations
that ℓ1 is dense in J∗ with respect to the weak* topology (Theorem 4.1.8).
The next lemma shows that ℓ1 is dense in J∗ with respect to the norm
topology.
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Lemma 2.4.13. Every y ∈ J∗ satisfies

(2.4.23) lim
n→∞

∥y −Πn(y)∥J∗ = 0.

Proof. Fix an element y ∈ J∗. We prove that

εn := ∥y −Πn(y)∥J∗ = sup
0 ̸=x∈J

Πn(x)=0

|⟨y, x⟩|
∥x∥J

≥ εn+1(2.4.24)

for all n ∈ N. To see this, fix an integer n ∈ N and recall from Lemma 2.4.12
that ∥x−Πn(x)∥J ≤ ∥x∥J for all x ∈ J . Hence

∥y −Πn(y)∥J∗ = sup
0̸=x∈J

|⟨y −Πn(y), x⟩|
∥x∥J

≤ sup
x∈J

Πn(x)̸=x

|⟨y, x−Πn(x)⟩|
∥x−Πn(x)∥J

= sup
0 ̸=x∈J

Πn(x)=0

|⟨y, x⟩|
∥x∥J

≤ sup
0̸=x∈J

|⟨y −Πn(y), x⟩|
∥x∥J

= ∥y −Πn(y)∥J∗ .

This proves the second equality in (2.4.24). This equality also shows that
the sequence (εn)n∈N is nonincreasing. Thus we have proved (2.4.24).

Now suppose, by contradiction, that limn→∞ εn = infn∈N εn > 0. Choose
a constant 0 < ε < infn∈N εn. Then, by (2.4.24) and the axiom of countable
choice, there exists a sequence of sequences xn = (xn,i)i∈N ∈ J such that

(2.4.25) Πn(xn) = 0, ∥xn∥J = 1, ⟨y, xn⟩ > ε

for all n ∈ N. Since c00 is dense in J by Lemma 2.4.12, the sequence can be
chosen such that xn ∈ c00 for all n ∈ N. By Lemma 2.4.9 each element xn
satisfies ∥xn∥∞ ≤ ∥xn∥J = 1. Define the map κ : N → N by

(2.4.26) κ(n) := max{i ∈ N |xn,i ̸= 0} for n ∈ N.

Then κ(n) > n for all n ∈ N. Next define the sequence nj ∈ N by n1 := 1
and nj+1 := κ(nj) > nj for j ∈ N, and define the sequence ξ = (ξi)i∈N ∈ c0
by ξ1 := 0 and

(2.4.27) ξi :=
xnj ,i

j
for j ∈ N and nj + 1 ≤ i ≤ nj+1 = κ(nj).



2.4. Reflexive Banach Spaces 93

This sequence converges to zero because |xnj ,i| ≤ 1 for all i and j. Moreover,
it follows from (2.4.25), (2.4.26), and (2.4.27) that

(2.4.28) ⟨y,Πnk
(ξ)⟩ =

nk∑
i=1

yiξi =
k−1∑
j=1

⟨y, xnj ⟩
j

≥
k−1∑
j=1

ε

j
for all k ∈ N.

Now let p = (p1, . . . , pℓ) ∈ P. If p1 = 1 then |||ξ|||p = |||ξ|||(p2,...,pℓ) in the

case ℓ ≥ 2 and |||ξ|||p = 0 in the case ℓ = 1. Thus assume p1 ≥ 2 and define

J := {j ∈ N | there exists an i ∈ {1, . . . , ℓ} such that nj < pi ≤ nj+1} .

Then J ̸= ∅. Let m := maxJ and define

kj := min {i ∈ {1, . . . , ℓ} |nj < pi ≤ nj+1} ,
ℓj := max {i ∈ {1, . . . , ℓ} |nj < pi ≤ nj+1} ,
pj := (pkj , . . . , pℓj )

for each j ∈ J . Then {1, . . . , ℓ} =
⋃
j∈J {kj , . . . , ℓj} because p1 ≥ 2, and

|||ξ|||pj
= j−1

∣∣∣∣∣∣xnj

∣∣∣∣∣∣
pj

≤ j−1
∣∣∣∣∣∣xnj

∣∣∣∣∣∣
J
≤ j−1

∥∥xnj

∥∥
J
= j−1

for all j ∈ J by (2.4.10) and (2.4.25). Hence

2|||ξ|||2p =
∣∣ξp1∣∣2 + ∑

m ̸=j∈J

ℓj∑
i=kj

∣∣ξpi − ξpi+1

∣∣2 + ℓm−1∑
i=km

∣∣ξpi − ξpi+1

∣∣2 + ∣∣ξpℓ∣∣2
≤ 2

∑
j∈J

∣∣ξpkj ∣∣2 + ℓj−1∑
i=kj

∣∣ξpi − ξpi+1

∣∣2 + ∣∣ξpℓj ∣∣2


= 4
∑
j∈J

|||ξ|||2pj

≤ 4
∑
j∈J

1

j2

≤ 2

3
π2.

Take the supremum over all p ∈ P and use Lemma 2.4.10 to obtain

∥ξ∥J ≤
√
2|||ξ|||J = sup

p∈P

√
2|||ξ|||p ≤

√
2

3
π <∞

and so ξ ∈ J . It then follows from Lemma 2.4.12 that

∥Πnk
(ξ)∥J ≤ ∥ξ∥J ≤

√
2

3
π

for all k ∈ N, in contradiction to the fact that the sequence ⟨y,Πnk
(ξ)⟩ is

unbounded by (2.4.28). This proves Lemma 2.4.13. □
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We are now in a position to prove the main result of this subsection.

Theorem 2.4.14 (James). The James space J is isometrically isomor-
phic to its bidual space J∗∗ and the image of the canonical inclusion

ι : J → J∗∗

has codimension one in J∗∗.

Proof. The proof has seven steps.

Step 1. Let Λ : J∗ → R be a bounded linear functional and define

zi := Λ(ei) for i ∈ N.

Then z := (zi)i∈N ∈ ℓ∞,

(2.4.29) Λ(Πn(y)) = ⟨y,Πn(z)⟩

for all n ∈ N and all y ∈ J∗, and

(2.4.30) Λ(y) = lim
n→∞

⟨y,Πn(z)⟩

for all y ∈ J∗.

For every i ∈ N we have

|⟨ei, ei⟩| = 1 = ∥ei∥J
and thus

1 ≤ ∥ei∥J∗ = sup
0̸=x∈J

|⟨x, ei⟩|
∥x∥J

= sup
0 ̸=x∈J

|xi|
∥x∥J

≤ sup
0̸=x∈J

∥x∥∞
∥x∥J

≤ 1

by Lemma 2.4.9. Hence

∥ei∥J∗ = 1 for all i ∈ N.

This implies

|zi| = |Λ(ei)| ≤ ∥Λ∥ ∥ei∥J∗ = ∥Λ∥
for all i ∈ N and so z ∈ ℓ∞. Now let y = (yi)i∈N ∈ J∗. Then

Λ(Πn(y)) =
n∑
i=1

yiΛ(ei) =

n∑
i=1

yizi = ⟨y,Πn(z)⟩ for all n ∈ N

and this proves (2.4.29). It follows from (2.4.23) and (2.4.29) that

lim
n→∞

|Λ(y)− ⟨y,Πn(z)⟩| = lim
n→∞

|Λ(y −Πn(y))|

≤ lim
n→∞

∥Λ∥ ∥y −Πn(y)∥J∗

= 0.

This proves (2.4.30) and Step 1.
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Step 2. Let Λ : J∗ → R and z ∈ ℓ∞ be as in Step 1. Then

(2.4.31) sup
p∈P

max{∥z∥p , |||z|||p} ≤ ∥Λ∥ .

Fix an element p = (p1, . . . , pk) ∈ P and choose an integer n ≥ pk. Then

max{∥z∥p , |||z|||p} = max{∥Πn(z)∥p , |||Πn(z)|||p}
≤ ∥Πn(z)∥J

= sup
0̸=y∈J∗

|⟨y,Πn(z)⟩|
∥y∥J∗

= sup
0̸=y∈J∗

|Λ(Πn(y))|
∥y∥J∗

≤ sup
0̸=y∈J∗

∥Λ∥ ∥Πn(y)∥J∗

∥y∥J∗

≤ ∥Λ∥ .

Here the second step follows from Lemma 2.4.10, the third step follows from
Lemma 2.4.1, the fourth step follows from (2.4.29), and the last step follows
from (2.4.22). This proves (2.4.31) and Step 2.

Step 3. Let z = (zi)i∈N ∈ ℓ∞ be a bounded sequence such that

(2.4.32) sup
p∈P

max{∥z∥p , |||z|||p} <∞.

Then z is a Cauchy sequence and the sequence x := (xi)i∈N, defined by

(2.4.33) λ := lim
j→∞

zj , xi := zi − λ for i ∈ N,

is an element of J .

Suppose, by contradiction, that z is not a Cauchy sequence. Then there exist
two subsequences (zpi)i∈N and (zqi)i∈N converging to different limits. Passing
to further subsequences we may assume that pi < qi < pi+1 for all i ∈ N and
that there exists a constant ε > 0 such that |zpi − zqj | > ε for all i, j ∈ N.
For n ∈ N consider the tuple

pn := (p1, q1, p2, q2, . . . , pn, qn).

Then ∥z∥pn
>

√
nε for all n ∈ N, in contradiction to (2.4.32). This shows

that z is a Cauchy sequence. Now the sequence x in (2.4.33) converges to
zero, by definition, and satisfies

∥x∥J = sup
p∈P

∥x∥p = sup
p∈P

∥z∥p <∞

by (2.4.32). Hence x ∈ J and this proves Step 3.
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Step 4. Let z = (zi)i∈N ∈ ℓ∞ be a bounded sequence that satisfies (2.4.32)
and let λ ∈ R and x ∈ J be given by (2.4.33). Then the limit

Λ(y) := lim
n→∞

⟨y,Πn(z)⟩

= lim
n→∞

⟨y,Πn(x)⟩+ λ lim
n→∞

n∑
i=1

yi
(2.4.34)

exists for every y ∈ J∗ and defines a linear functional Λ : J∗ → R.

That the sequence (
∑n

i=1 yi)n∈N converges for y ∈ ℓ1 is obvious. Moreover,
the subspace ℓ1 is dense in J∗ by Lemma 2.4.13, and∣∣∣∣∣

n∑
i=1

yi

∣∣∣∣∣ = |⟨1ln, y⟩|

≤ ∥1ln∥J ∥y∥J∗

= ∥y∥J∗

for all n ∈ N. Here
1ln := (1, . . . , 1, 0, . . . )

denotes the sequence whose first n entries are equal to one, followed by zeros.
Hence the sequence of functionals

J∗ → R : y 7→ y1 + · · ·+ yn

is uniformly bounded and converges for all y belonging to the dense sub-
space ℓ1 ⊂ J∗. Thus it follows from the Banach–Steinhaus Theorem 2.1.5
that the sequence (

∑n
i=1 yi)n∈N converges for all y ∈ J∗. Hence it follows

from Step 3 and Lemma 2.4.12 that the limit in (2.4.34) exists for all y ∈ J∗

and this proves Step 4.

Step 5. Let z ∈ ℓ∞ be a sequence that satisfies (2.4.32) and let Λ : J∗ → R
be the linear map defined by (2.4.34) in Step 4. Then Λ is a bounded linear
functional on J∗ and its norm is

(2.4.35) ∥Λ∥ = sup
p∈P

max{∥z∥p , |||z|||p}.

We prove that

(2.4.36)
|Λ(y)|
∥y∥J∗

≤ sup
p∈P

max{∥z∥p , |||z|||p} for all y ∈ J∗ \ {0}.

To see this, note first that

(2.4.37) ∥x∥J = sup
p∈P

∥x∥p = sup
p∈P

max{∥x∥p , |||x|||p}

for all x ∈ J by Lemma 2.4.10.
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Next we prove the inequality

(2.4.38) sup
p∈P

max{∥Πn(z)∥p , |||Πn(z)|||p} ≤ sup
p∈P

max{∥z∥p , |||z|||p}

for all n ∈ N. To see this, fix two elements

p = (p1, . . . , pk) ∈ P, n ∈ N.

Then ∥Πn(z)∥p = |||Πn(z)|||p = 0 whenever p1 > n, and |||Πn(z)|||p = |||z|||p
and ∥Πn(z)∥p = ∥z∥p whenever pk ≤ n. Thus assume

p1 ≤ n < pk

and denote by ℓ ∈ {1, . . . , k − 1} the largest number such that pℓ ≤ n. Con-
sider the element

q := (p1, . . . , pℓ) ∈ P.
It satisfies

2 ∥Πn(z)∥2p = 2|||Πn(z)|||2p

= |zp1 |
2 +

ℓ−1∑
j=1

∣∣zpj − zpj+1

∣∣2 + |zpℓ |
2

= 2|||z|||2q.

This proves (2.4.38).

Now take x = Πn(z). Then, by (2.4.37) and (2.4.38),

|⟨y,Πn(z)⟩|
∥y∥J∗

≤ ∥Πn(z)∥J

= sup
p∈P

max{∥Πn(z)∥p , |||Πn(z)|||p}

≤ sup
p∈P

max{∥z∥p , |||z|||p}

for all y ∈ J∗ \ {0} and all n ∈ N. Take the limit n → ∞. Then it follows
from the definition of Λ in Step 4 via equation (2.4.34) that

|Λ(y)|
∥y∥J∗

= lim
n→∞

|⟨y,Πn(z)⟩|
∥y∥J∗

≤ sup
p∈P

max{∥z∥p , |||z|||p}

for all y ∈ J∗ \ {0}. This proves (2.4.36). Thus Λ : J∗ → R is a bounded
linear functional. Now take the supremum over all y ∈ J∗ \ {0} to obtain

∥Λ∥ = sup
0̸=y∈J∗

|Λ(y)|
∥y∥J∗

≤ sup
p∈P

max{∥z∥p , |||z|||p}.

The converse inequality was established in Step 2 and this proves Step 5.
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Step 6. The canonical inclusion ι : J → J∗∗ has a codimension-one image.

By Step 1, Step 2, Step 4, and Step 5, the bidual space of J is naturally
isomorphic to the space

J∗∗ :=

{
z ∈ ℓ∞

∣∣∣ sup
p∈P

max{∥z∥p , |||z|||p} <∞

}
.

The correspondence assigns to a sequence z ∈ J∗∗ the bounded linear func-
tional Λ : J∗ → R given by (2.4.34). That it is well defined for every z ∈ J∗∗

was proved in Step 4, that it is bounded was proved in Step 5, and that
every bounded linear functional on J∗ is of this form was proved in Steps 1
and 2. It was also proved in Step 5 that the identification of J∗∗ with the
dual space of J∗ is an isometry with respect to the norm on J∗∗, defined by

∥z∥J∗∗ := sup
p∈P

max{∥z∥p , |||z|||p} for x ∈ J∗∗.

Under this identification, the canonical inclusion ι : J → J∗∗ is the obvi-
ous inclusion of J into J∗∗ as a subset. It is an isometric embedding by
the general observation in Lemma 2.4.1 (see also Lemma 2.4.10 and equa-
tion (2.4.37)). Moreover, the constant sequence 1l := (1, 1, 1, . . . ) is a unit
vector in J∗∗ and

J∗∗ = J ⊕ R1l

by Step 3. This proves Step 6.

Step 7. The map

J → J∗∗ : x = (xi)i∈N 7→ (xi+1 − x1)i∈N

is an isometric isomorphism.

The map is bijective by Step 3. If x = (xi)i∈N ∈ J and z = (zi)i∈N ∈ J∗∗

are related by the conditions

x1 = − lim
j→∞

zj , xi+1 − x1 = zi for i ∈ N,

then

∥z∥(p1,...,pk) = ∥x∥(p1+1,...,pk+1) , |||z|||(p1,...,pk) = ∥x∥(1,p1+1,...,pk+1)

for all (p1, . . . , pk) ∈ P, and hence

∥x∥J = sup
p∈P

∥x∥p = sup
p∈P

max{∥z∥p , |||z|||p} = ∥z∥J∗∗ .

This proves Step 7 and Theorem 2.4.14. □
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Remark 2.4.15. (i) Let X be a real Banach space. A Schauder basis
of X is a sequence (ei)i∈N in X such that, for every x ∈ X, there exists a
unique sequence (xi)i∈N ∈ RN such that

(2.4.39) lim
n→∞

∥∥∥x−
n∑
i=1

xiei

∥∥∥ = 0.

Associated to every Schauder basis (ei)i∈N of X is a unique sequence of
bounded linear functionals e∗i ∈ X∗ such that ⟨e∗i , ej⟩ = δij for all i, j ∈ N
(see Exercise 2.5.12). Thus the sequence xi = ⟨e∗i , x⟩ is characterized by the
condition (2.4.39). A Schauder basis (ei)i∈N is called normalized if ∥ei∥ = 1
for all i ∈ N. Associated to every Schauder basis (ei)i∈N and every n ∈ N is
a projection Πn : X → X via

(2.4.40) Πn(x) :=

n∑
i=1

⟨e∗i , x⟩ei for x ∈ X.

The operator sequence Πn ∈ L(X) is bounded by Exercise 2.5.12. A
Schauder basis (ei)i∈N is called monotone if ∥Πn∥ ≤ 1 for all n ∈ N. It is
called shrinking if limn→∞ ∥Π∗

n(x
∗)− x∗∥X∗ = 0 for every x∗ ∈ X∗ and so

the sequence (e∗i )i∈N is a Schauder basis ofX∗. It is called boundedly com-
plete if, for every sequence (xi)i∈N ∈ RN such that supn∈N ∥

∑n
i=1 xiei∥ <∞,

the sequence
∑n

i=1 xiei converges in X.

(ii) By Lemma 2.4.12 the standard basis (ei)i∈N of the James space J is
a normalized monotone Schauder basis and, by Lemma 2.4.13, it is shrink-
ing. It is not boundedly complete, because the constant sequence xi = 1
satisfies ∥

∑n
i=1 ei∥J = 1, however, the sequence

∑n
i=1 ei does not converge

in J .

(iii) The standard basis (ei)i∈N of the dual space J∗ is again normalized and
monotone. One can deduce from Lemma 2.4.13 that this basis is boundedly
complete. However, it is not shrinking, because the closure of the span of
the dual sequence in J∗∗ is the proper subspace J ⊂ J∗∗ by Theorem 2.4.14.

(iv) A theorem of Robert C. James asserts that a Banach space X with a
Schauder basis (ei)i∈N is reflexive if and only if the basis is both shrinking
and boundedly complete.

(v) A Schauder basis (ei)i∈N of a Banach space X is called unconditional
if the sequence (eσ(i))i∈N is a Schauder basis for every bijection σ : N → N.
The James space J does not admit an unconditional Schauder basis.

(vi) There are many examples of Schauder bases, such as any orthonormal
basis of a separable Hilbert space, which is always normalized, monotone,
unconditional, shrinking, and boundedly complete.
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(vii) The reader may verify that the standard basis of ℓp for 1 < p < ∞ is
normalized, monotone, unconditional, boundedly complete, and shrinking.
For p = 1 it is still normalized, monotone, unconditional, and boundedly
complete, but no longer shrinking. The Banach space ℓ∞ does not admit a
Schauder basis, because it is not separable.

(viii) There exist separable Banach spaces that do not admit Schauder
bases. Examples are Banach spaces that do not have the approximation
property (see Exercises 4.2.11 and 4.2.12).

Remark 2.4.16. (i) A complex structure on a real Banach space X is
a bounded linear operator I : X → X such that

I2 = −1l.

Such a complex structure induces a complex structure I∗∗ : X∗∗ → X∗∗ on
the bidual space such that the canonical inclusion ι : X → X∗∗ satisfies

ι ◦ I = I∗∗ ◦ ι.

Thus the complex structure descends to the quotient space X∗∗/ι(X). In
the case of the James space X = J , this quotient has one real dimension.
Hence it does not admit a complex structure, and neither does the James
space J .

(ii) Consider the product

X := J × J∗

of the James space J with its dual, equipped with the norm

∥(x, y)∥X :=
√

∥x∥2J + ∥y∥2J∗ for (x, y) ∈ J × J∗.

By Theorem 2.4.14 the space X is isometrically isomorphic to its dual space.
However, it is not reflexive.

(iii) The James space J is an example of a nonreflexive Banach space whose
bidual space is separable.

(iv) Another question answered in the negative by the James space is of
whether a separable Banach space that is isometrically isomorphic to its
bidual space must be reflexive. The James space satisfies both conditions,
but is not reflexive.

(v) The James space J is an example of an infinite-dimensional Banach
space that is not isomorphic to the product space

X := J × J

(equipped with any product norm as in Subsection 1.2.3). This is because
the canonical inclusion ι : X → X∗∗ has codimension two by Theorem 2.4.14.
Moreover, X admits a complex structure and J does not.
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2.5. Problems

Exercise 2.5.1 (Phillips’ Lemma). Prove that the subspace

c0 ⊂ ℓ∞

of all sequences of real numbers that converge to zero is not complemented.
This result is due to Phillips [65]. The hints are based on [3, p45].

Hint 1: There exists an uncountable collection {Ai}i∈I of infinite sub-
sets Ai ⊂ N such that Ai ∩Ai′ is a finite set for all i, i′ ∈ I such that i ̸= i′.

For example, take

I := R \Q,
choose a bijection N → Q : n 7→ an, choose sequences (ni,k)k∈N in N, one for
each i ∈ I, such that limk→∞ ani,k

= i for all i ∈ I = R \Q, and define

Ai := {ni,k | k ∈ N} ⊂ N for i ∈ I.

Hint 2: Let Q : ℓ∞ → ℓ∞ be a bounded linear operator with c0 ⊂ ker(Q).
Then there exists an infinite subset A ⊂ N such that Q(x) = 0 for every
sequence x = (xj)j∈N ∈ ℓ∞ that satisfies xj = 0 for all j ∈ N \A.

The setA can be taken as one of the setsAi in Hint 1. Argue by contradiction
and suppose that, for each i ∈ I, there exists a sequence

xi = (xij)j∈N ∈ ℓ∞

such that

Q(xi) ̸= 0, ∥xi∥∞ = 1, xij = 0 for all j ∈ N \Ai.

Define the maps Qn : ℓ∞ → R by Q(x) =: (Qn(x))n∈N for x ∈ ℓ∞. For each
pair of integers n, k ∈ N define the set

In,k := {i ∈ I | |Qn(xi)| ≥ 1/k} .

Fix a finite set I ′ ⊂ In,k and consider the value of the operator Q on the
element

x :=
∑
i∈I′

εixi, εi := sign(Qn(xi)).

Use the fact that the set

B := {j ∈ N | ∃ i, i′ ∈ I ′ such that i ̸= i′ and xij ̸= 0 ̸= xi′j}

is finite to deduce that |Qn(x)| ≤ ∥Q(x)∥ ≤ ∥Q∥ and so

#In,k ≤ k ∥Q∥ for all n, k ∈ N.

This contradicts the fact that the set I =
⋃
n,k∈N In,k is uncountable.

Hint 3: There is no bounded linear operator Q : ℓ∞ → ℓ∞ with ker(Q) = c0.
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Exercise 2.5.2 (Uniform Boundedness and Open Mappings).
The uniform boundedness principle, the open mapping theorem, and the
closed graph theorem do not extend to normed vector spaces that are not
complete. Let X = R∞ be the vector space of sequences x = (xi)i∈N of real
numbers with only finitely many nonzero terms. For x ∈ X define

∥x∥1 :=
∞∑
i=1

|xi| , ∥x∥∞ := sup
i∈N

|xi|∞ .

Prove the following.

(a) For n ∈ N define the linear functional Λn : X → R by Λn(x) := nxn.
Then Λn is bounded for all n ∈ N and supn∈N |Λn(x)| < ∞ for all x ∈ X,
however, supn∈N ∥Λn∥X∗ = ∞ (for either norm on X).

(b) The identity operator id : (X, ∥·∥1) → (X, ∥·∥∞) is bounded but does
not have a bounded inverse.

(c) The identity operator id : (X, ∥·∥∞) → (X, ∥·∥1) has a closed graph but
is not bounded.

Exercise 2.5.3 (Zabrĕıko’s Lemma).

(a) Prove Zabrĕıko’s Lemma. Let X be a Banach space and let p : X → R
be a seminorm. Then the following are equivalent.

(i) p is continuous.

(ii) There exists a constant c > 0 such that p(x) ≤ c ∥x∥ for all x ∈ X.

(iii) The seminorm p is countably subadditive, i.e.

p

( ∞∑
i=1

xi

)
≤

∞∑
i=1

p(xi)

for every absolutely convergent series x =
∑∞

i=1 xi in X.

Hint: See Definition 2.3.1 for seminorms and Lemma 1.5.1 for absolutely
convergent series. To prove that (iii) implies (ii), define the sets

An := {x ∈ X | p(x) ≤ n} , Fn := {x ∈ X | p(x) ≤ n}

for n ∈ N. Show that Fn is convex and symmetric for each n. Use the Baire
Category Theorem 1.6.4 to prove that there exists an n ∈ N such that Fn
contains the open unit ball B := {x ∈ X | ∥x∥ < 1}. Prove that B ⊂ An by
mimicking the proof of the open mapping theorem (Lemma 2.2.3).

(b) Deduce the uniform boundedness principle, the open mapping theorem,
and the closed graph theorem from Zabrĕıko’s Lemma.
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Exercise 2.5.4 (Complex Hahn–Banach). The dual space of a com-
plex normed vector space X is the space of bounded complex linear func-
tionals x∗ : X → C. Adapt the Corollaries 2.3.23-2.3.26 of the Hahn–Banach
Theorem and their proofs to complex normed vector spaces.

Exercise 2.5.5 (Fourier Series of Continuous Functions).

This exercise shows that there exist continuous functions whose Fourier se-
ries do not converge uniformly. Denote by C(R/2πZ,C) be the space of
continuous 2π-periodic complex valued functions f : R → C equipped with
the supremum norm.

(a) For n ∈ N the Dirichlet kernel Dn ∈ C(R/2πZ,C) is defined by

(2.5.1) Dn(t) :=

n∑
k=−n

eikt =
sin((n+ 1

2)t)

sin(12 t)
for t ∈ R.

Prove that ∥Dn∥L1 ≥ 8
π

∑n
k=1

1
k .

(b) The nth Fourier expansion of a function f ∈ C(R/2πZ,C) is defined by

(2.5.2) (Fn(f))(x) := (Dn ∗ f)(x) =
n∑

k=−n

∫ 2π

0
f(t)eik(x−t) dt

for x ∈ R. Prove that the operator Fn : C(R/2πZ,C) → C(R/2πZ,C) has
the operator norm ∥Fn∥ = ∥Dn∥L1 .

(c) Deduce from the Uniform Boundedness Principle 2.1.1 that there exists
a function f ∈ C(R/2πZ,C) such that the sequence Fn(f) does not converge
uniformly.

Exercise 2.5.6 (Fourier Series of Integrable Functions).

The Fourier coefficients of a function f ∈ L1([0, 2π],C) are given by

(2.5.3) f̂(k) :=

∫ 2π

0
e−itf(t) dt for k ∈ Z

and the Fourier series of f is F (f) :=
(
f̂(k)

)
k∈Z.

(a) Prove the Riemann–Lebesgue Lemma, which asserts that

lim
|k|→∞

∣∣∣f̂(k)∣∣∣ = 0

for all f ∈ L1([0, 2π],C).

(b) Denote by c0(Z,C) ⊂ ℓ∞(Z,C) the closed subspace of all bi-infinite
sequences of complex numbers that converge to zero as |k| tends to infinity.
Prove that the bounded linear operator F : L1([0, 2π],C) → c0(Z,C) has a
dense image but is not surjective. Hint: Investigate the Fourier coefficients
of the Dirichlet kernels in Exercise 2.5.5.
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Exercise 2.5.7 (Banach Limits). Let ℓ∞ be the Banach space of
bounded sequences of real numbers with the supremum norm as in part (ii)
of Example 1.1.3 and define the shift operator T : ℓ∞ → ℓ∞ by

Tx := (xn+1)n∈N for x = (xn)n∈N ∈ ℓ∞.

Consider the subspace

Y := im(id− T ) = {x− Tx |x ∈ ℓ∞} .
Prove the following.

(a) The subspace c0 ⊂ ℓ∞ of all sequences that converge to zero is contained
in the closure of Y .

(b) Let 1 = (1, 1, 1, . . . ) ∈ ℓ∞ be the constant sequence with entries 1.
Prove that supn∈N |1 + xn+1 − xn| ≥ 1 for all x ∈ ℓ∞ and deduce that

d(1, Y ) = inf
y∈Y

∥1− y∥∞ = 1.

(c) By the Hahn–Banach Theorem 2.3.22 there exists a bounded linear
functional Λ : ℓ∞ → R such that

(2.5.4) Λ(1) = 1, ∥Λ∥ = 1, Λ(x− Tx) = 0 for all x ∈ ℓ∞.

Prove that any such functional has the following properties.

(i) Λ(Tx) = Λ(x) for all x ∈ ℓ∞.

(ii) If x ∈ ℓ∞ satisfies xn ≥ 0 for all n ∈ N then Λ(x) ≥ 0.

(iii) lim infn→∞ xn ≤ Λ(x) ≤ lim supn→∞ xn for all x ∈ ℓ∞.

(iv) If x ∈ ℓ∞ converges then Λ(x) = limn→∞ xn.

(d) Let Λ be as in (c). Find x, y ∈ ℓ∞ such that Λ(xy) ̸= Λ(x)Λ(y). Hint:
Consider the sequence xn := (−1)n and show that Λ(x) = 0.

(e) Let Λ be as in (c). Prove that there does not exist a sequence y ∈ ℓ1 such
that Λ(x) =

∑∞
n=1 xnyn for all x ∈ ℓ∞. Hint: Any such sequence would

have nonnegative entries yn ≥ 0 by part (ii) in (c) and satisfy
∑∞

n=1 yn = 1.

Hence
∑N

n=1 yn > 0 for some N ∈ N in contradiction to part (iv) in (c).

Exercise 2.5.8 (Minkowski Functionals). Let X be a normed vector
space and let C ⊂ X be a convex subset such that 0 ∈ C. The Minkowski
functional of C is the function

p : X → [0,∞]

defined by

(2.5.5) p(x) := inf
{
λ > 0 |λ−1x ∈ C

}
for x ∈ X.

The convex set C is called absorbing if, for every x ∈ X, there is a λ > 0
such that λ−1x ∈ C. Let p be the Minkowski functional of C.
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(a) Prove that p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X
and all λ > 0.

(b) Prove that C is absorbing if and only if p takes values in [0,∞) and
hence is a sublinear functional (see Definition 2.3.1).

(c) Suppose C is absorbing. Find conditions on C which ensure that p is a
seminorm or a norm. Do this both for real scalars and complex scalars.

(d) Prove that p is continuous if and only if zero is an interior point of C.
In this case, show that int(C) = p−1([0, 1)) and C = p−1([0, 1]).

Exercise 2.5.9 (Reflexive Banach Spaces). Let X be a normed vec-
tor space and let Y ⊂ X be a closed subspace. Assume Y and X/Y are
reflexive. Prove that X is reflexive.

Exercise 2.5.10 (Schatten’s Projective Tensor Product).

Let X and Y be real normed vector spaces.

(a) For every normed vector space Z, the space B(X,Y ;Z) of bounded
bilinear maps B : X × Y → Z is a normed vector space with the norm

∥B∥ := sup
x∈X\{0}
y∈Y \{0}

∥B(x, y)∥Z
∥x∥X ∥y∥Y

for B ∈ B(X,Y ;Z).

(b) The map

B(X,Y ;Z) → L(X,L(Y,Z)) : B 7→ (x 7→ B(x, ·))

is an isometric isomorphism.

(c) Associated to every pair (x, y) ∈ X × Y is a linear functional

x⊗ y ∈ B(X,Y ;R)∗

defined by ⟨x⊗ y,B⟩ := B(x, y) for B ∈ B(X,Y ;R). It satisfies

∥x⊗ y∥ = ∥x∥X ∥y∥Y
Hint: Use the Hahn–Banach Theorem to prove the inequality ∥x⊗ y∥ ≥
∥x∥X ∥y∥Y . Namely, consider the bilinear functional B : X×Y → R, defined
by B(x, y) := ⟨x∗, x⟩⟨y∗, y⟩ for suitable elements x∗ ∈ X∗ and y∗ ∈ Y ∗ of
the dual spaces.

(d) Let X ⊗ Y ⊂ B(X,Y ;R)∗ be the smallest closed subspace containing
the image of the bilinear map X × Y → B(X,Y ;R)∗ : (x, y) 7→ x⊗ y in (c).
Then, for every normed vector space Z, the map

L(X ⊗ Y,Z) → B(X,Y ;Z) : A 7→ BA

defined by BA(x, y) := A(x ⊗ y) for x, y ∈ X and A ∈ L(X ⊗ Y, Z) is an
isometric isomorphism.
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Exercise 2.5.11 (Strict Convexity and Hahn–Banach).

(a) ProveRuston’s Theorem: The following properties of a normed vector
space X are equivalent.

(i) If x, y ∈ X satisfy x ̸= y and ∥x∥ = ∥y∥ = 1 then ∥x+ y∥ < 2.

(ii) If x, y ∈ X satisfy x ̸= 0 ̸= y and ∥x+ y∥ = ∥x∥+ ∥y∥ then x = λy
for some λ > 0.

(iii) If x∗ ∈ X∗ is a nonzero bounded linear functional then there exists
at most one element x ∈ X such that ∥x∥ = 1 and ⟨x∗, x⟩ = ∥x∗∥.

The normed vector space X is called strictly convex if it satisfies these
equivalent conditions. Condition (i) says that the unit sphere contains no
nontrivial line segment. Condition (ii) says that equality in the triangle
inequality occurs only in the trivial situation. Condition (iii) says that the
support hyperplane Hx∗ := {x ∈ X | ⟨x∗, x⟩ = ∥x∗∥} meets the unit sphere
in at most one point. (Note that infx∈Hx∗ ∥x∥ = 1.)

(b) For which p is Lp([0, 1]) strictly convex? Is C([0, 1]) strictly convex?

(c) If X is a normed vector space such that X∗ is strictly convex, Y ⊂ X
is a linear subspace, and y∗ : Y → R is a bounded linear functional, then
there is a unique x∗ ∈ X∗ such that x∗|Y = y∗ and ∥x∗∥ = ∥y∗∥.

Exercise 2.5.12 (Schauder Bases). Let X be a separable real Banach
space and let (ei)i∈N be a Schauder basis of X. This means that, for each
element x ∈ X, there exists a unique sequence (xi)i∈N of real numbers such
that

(2.5.6) lim
n→∞

∥∥∥x−
n∑
i=1

xiei

∥∥∥ = 0.

Let n ∈ N and define the map Πn : X → X by

(2.5.7) Πn(x) :=

n∑
i=1

xiei

for x ∈ X, where (xi)i∈N is the unique sequence that satisfies (2.5.6).

(a) Prove that the operators Πn : X → X are linear and satisfy

(2.5.8) Πn ◦Πm = Πm ◦Πn = Πm

for all integers n ≥ m ≥ 1. In particular, they are projections.

(b) Define a map X → [0,∞) : x 7→ |||x||| by the formula

(2.5.9) |||x||| := sup
n∈N

∥Πn(x)∥ for x ∈ X.

Prove that this is a norm and that ∥x∥ ≤ |||x||| for all x ∈ X.
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(c) Prove that (X, |||·|||) is a Banach space. Hint: Let (xk)k∈N be a Cauchy
sequence in (X, |||·|||). Then (xk)k∈N is a Cauchy sequence in (X, ∥·∥) by (b).
Hence there is an x ∈ X such that limk→∞ ∥x− xk∥ = 0. Also, (Πn(xk))k∈N
is a Cauchy sequence in (X, ∥·∥) for all n. Thus there is a sequence (ξn)n∈N
in X such that limk→∞ ∥ξn −Πn(xk)∥ = 0 for all n ∈ N. Prove that

(2.5.10) Πm(ξn) = ξm for all integers n ≥ m ≥ 1.

(The restriction of Πm to every finite-dimensional subspace is continuous.)
Let ε > 0. Choose k0 ∈ N such that |||xk − xℓ||| < ε/3 for all k, ℓ ≥ k0. Then
choose n0 ∈ N such that ∥xk0 −Πn(xk0)∥ < ε/3 for all n ≥ n0. Then

∥x− ξn∥ = lim
k→∞

∥xk −Πn(xk)∥

≤ lim
k→∞

(
2|||xk − xk0 |||+ ∥xk0 −Πn(xk0)∥

)
< ε

for n ≥ n0. Deduce that ξn = Πn(x) for all n and limk→∞ |||x− xk||| = 0.

(d) Prove that there exists a constant c > 0 such that

(2.5.11) sup
n∈N

∥Πn(x)∥ ≤ c ∥x∥ for all x ∈ X.

Hint: Use parts (b) and (c) and the Open Mapping Theorem 2.2.1.

Exercise 2.5.13 (The Canonical Inclusion). Let X be a normed
vector space and let ιX : X → X∗∗ be the canonical inclusion defined
by (2.4.1).

(a) Show that (ιX)
∗ιX∗ = idX∗ and determine the kernel of the projection

P := ιX∗(ιX)
∗ : X∗∗∗ → X∗∗∗.

(b) Assume X is complete. Show that X is reflexive if and only if

ιX∗(ιX)
∗ = idX∗∗∗ .

(c) Linton’s Pullback. Let Y ⊂ X be a closed subspace and let j : Y → X
be the obvious inclusion. Then ιX ◦ j = j∗∗ ◦ ιY : Y → X∗∗. This map is an
isometric embedding of Y into X∗∗ whose image is

ιX ◦ j(Y ) = j∗∗ ◦ ιY (Y ) = ιX(X) ∩ j∗∗(Y ∗∗) ⊂ X∗∗.

(d) Deduce from Linton’s Pullback that Y is reflexive whenever X is reflex-
ive.

(e) Show that X is reflexive if and only if ιX∗∗ = (ιX)
∗∗.

Note. This exercise requires the notion of the dual operator, introduced in
Definition 4.1.1 below.





Chapter 3

The Weak and Weak*
Topologies

This chapter is devoted to the study of the weak topology on a Banach
space X and the weak* topology on its dual space X∗. With these topolo-
gies X and X∗ are locally convex Hausdorff topological vector spaces and
the elementary properties of such spaces are discussed in Section 3.1. In par-
ticular, it is shown that the closed unit ball in X∗ is the weak* closure of the
unit sphere, and that a linear functional on X∗ is continuous with respect
to the weak* topology if and only if it belongs to the image of the canonical
embedding ι : X → X∗∗. The central result of this chapter is the Banach–
Alaoglu Theorem in Section 3.2 which asserts that the unit ball in the dual
space X∗ is compact with respect to the weak* topology. This theorem has
important consequences in many fields of mathematics. Further properties
of the weak* topology on the dual space are established in Section 3.3. It
is shown that a linear subspace of X∗ is weak* closed if and only if its in-
tersection with the closed unit ball is weak* closed. A consequence of the
Banach–Alaoglu Theorem is that the unit ball in a reflexive Banach space
is weakly compact. A theorem of Eberlein–Šmulyan asserts that this prop-
erty characterizes reflexive Banach spaces (Section 3.4). The Krĕın–Milman
Theorem in Section 3.5 asserts that every nonempty compact convex subset
of a locally convex Hausdorff topological vector space is the convex hull of its
extremal points. Combining the Krĕın–Milman Theorem with the Banach–
Alaoglu Theorem, one can prove that every homeomorphism of a compact
metric space admits an invariant ergodic Borel probability measure. Some
properties of such ergodic measures are explored in Section 3.6.

109
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3.1. Topological Vector Spaces

3.1.1. Definition and Examples. Recall that the product topology on
a product X×Y of two topological spaces X and Y is defined as the weakest
topology on X×Y that contains all subsets of the form U×V where U ⊂ X
and V ⊂ Y are open. Equivalently, it is the weakest topology on X×Y such
that the projections πX : X × Y → X and πY : X × Y → Y are continuous.

Definition 3.1.1 (Topological Vector Space). A topological vec-
tor space is a pair (X,U ) where X is a real vector space and U ⊂ 2X is
a topology such that the structure maps

X ×X → X : (x, y) 7→ x+ y, R×X → X : (λ, x) 7→ λx

are continuous with respect to the product topologies on X ×X and R×X.
A topological vector space (X,U ) is called locally convex if, for every open
set U ⊂ X and every x ∈ U , there is an open set V ⊂ X such that

x ∈ V ⊂ U, V is convex.

Example 3.1.2 (Strong Topology). A normed vector space (X, ∥·∥) is
a topological vector space with the topology U s := U (X, ∥·∥) induced by the
norm as in Definition 1.1.2. This is sometimes called the strong topology
or norm topology to distinguish it from other weaker topologies discussed
below.

Example 3.1.3 (Smooth Functions). The space X := C∞(Ω) of
smooth functions on an open subset Ω ⊂ Rn is a locally convex Hausdorff
topological vector space. The topology is given by uniform convergence with
all derivatives on compact sets and is induced by the complete metric

d(f, g) :=
∞∑
ℓ=1

2−ℓ
∥f − g∥Cℓ(Kℓ)

1 + ∥f − g∥Cℓ(Kℓ)

.

Here Kℓ ⊂ Ω is an exhausting sequence of compact sets.

Example 3.1.4. Let X be a real vector space. Then (X,U ) is a topo-
logical vector space with U := {∅, X}, but not with the discrete topology.

Example 3.1.5 (Convergence in Measure). Let (M,A, µ) be a mea-
sure space such that µ(M) < ∞, denote by L0(µ) the vector space of all
real valued measurable functions on M , and define

L0(µ) := L0(µ)/∼,
where the equivalence relation is given by equality almost everywhere. De-
fine a metric on L0(µ) by

d(f, g) :=

∫
M

|f − g|
1 + |f − g|

dµ for f, g ∈ L0(µ).
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Then L0(µ) is a topological vector space with the topology induced by d.
A sequence fn ∈ L0(µ) converges to f ∈ L0(µ) in this topology if and only
if it converges in measure, i.e.

lim
n→∞

µ({x ∈M | |fn(x)− f(x)| > ε}) = 0 for all ε > 0.

The topological vector space L0(µ) with the topology of convergence in mea-
sure is not locally convex, in general. Exercise: Prove that every nonempty
open convex subset of L0([0, 1]) is the whole space. Deduce that every con-
tinuous linear functional Λ : L0([0, 1]) → R vanishes.

An important class of topological vector spaces is determined by sets of
linear functionals as follows. Fix a real vector space X and let

F ⊂ {f : X → R | f is linear}

be any nonempty set of linear functionals on X. Define UF ⊂ 2X to be
the weakest topology on X such that every linear functional f ∈ F is con-
tinuous. Then the pre-image of an open interval under any of the linear
functionals f ∈ F is an open subset of X. Hence so is the set

V := {x ∈ X | ai < fi(x) < bi for i = 1, . . . ,m}

for all integers m ∈ N, all f1, . . . , fm ∈ F , and all 2m-tuples of real num-
bers a1, . . . , am, b1, . . . , bm such that ai < bi for i = 1, . . . ,m. Denote the
collection of all subsets of X of this form by

(3.1.1) VF :=


m⋂
i=1

f−1
i ((ai, bi))

∣∣∣∣ m ∈ N, f1, . . . , fm ∈ F ,
a1, . . . , am, b1, . . . , bm ∈ R,
ai < bi for i = 1, . . . ,m

 .

Lemma 3.1.6. Let X be a real vector space, let F ⊂ RX be a set of real
valued linear functionals on X, and let UF ⊂ 2X be the weakest topology
on X such that all elements of F are continuous. Then the following holds.

(i) The collection VF in (3.1.1) is a basis for the topology UF , i.e.

(3.1.2) UF = {U ⊂ X | ∀ x ∈ U ∃ V ∈ VF such that x ∈ V ⊂ U} .

(ii) (X,UF ) is a locally convex topological vector space.

(iii) A sequence xn ∈ X converges to an element x0 ∈ X with respect to the
topology UF if and only if f(x0) = limn→∞ f(xn) for all f ∈ F .

(iv) The topological space (X,UF ) is Hausdorff if and only if F sepa-
rates points, i.e. for every nonzero vector x ∈ X there exists a linear func-
tional f ∈ F such that f(x) ̸= 0.
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Proof. Part (i) is an exercise with hints. Define the set UF ⊂ 2X by the
right hand side of equation (3.1.2). Then it follows directly from the def-
initions that UF ⊂ 2X is a topology, that every linear function f : X → R
in F is continuous with respect to this topology, and that every other topol-
ogy U ⊂ 2X with respect to which each element of F is continuous must
contain VF and hence also UF . This proves part (i).

We prove part (ii). We prove first that scalar multiplication is continuous
with respect to UF . Fix a set V ∈ VF and let λ0 ∈ R and x0 ∈ X such
that λ0x0 ∈ V . Then it follows from the definition of VF in (3.1.1) that
there exists a constant δ > 0 such that

δ ̸= |λ0|, (λ0 − δ)x0 ∈ V, (λ0 + δ)x0 ∈ V.

Define

U :=
1

λ0 − δ
V ∩ 1

λ0 + δ
V.

Then U ∈ VF and x0 ∈ U . Moreover, if x ∈ U and λ ∈ R satisfies

|λ− λ0| < δ,

then (λ0 − δ)x ∈ V and (λ0 + δ)x ∈ V and hence λx ∈ V , because V is
convex. This shows that scalar multiplication is continuous.

We prove that addition is continuous. Fix an element W ∈ VF and
let x0, y0 ∈ X such that x0 + y0 ∈W . Define the sets

U :=
1

2
(x0 − y0) +

1

2
W, V :=

1

2
(y0 − x0) +

1

2
W.

Then U, V ∈ VF by (3.1.1). Moreover, x0 ∈ U , y0 ∈ V , and for all x ∈ U and
all y ∈ V we have x+y ∈W becauseW is convex. This shows that addition
is continuous. Hence (X,UF ) is a topological vector space. That (X,UF ) is
locally convex follows from the fact that the elements of VF are all convex
sets. This proves part (ii).

We prove part (iii). Fix a sequence (xn)n∈N inX and an element x0 ∈ X.
Assume xn converges to x0 with respect to the topology UF . Let f ∈ F and
fix a constant ε > 0. Then the set

U := {x ∈ X | |f(x)− f(x0)| < ε}

is an element of VF and hence of UF . Since x0 ∈ U , there exists a positive
integer n0 such that xn ∈ U for every integer n ≥ n0. Thus we have proved

∀ f ∈ F ∀ ε > 0 ∃ n0 ∈ N ∀ n ∈ N :
(
n ≥ n0 =⇒ |f(xn)− f(x0)| < ε

)
.

This means that

lim
n→∞

f(xn) = f(x0)

for all f ∈ F .
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Conversely suppose that

lim
n→∞

f(xn) = f(x0)

for all f ∈ F and fix a set U ∈ UF such that

x0 ∈ U.

Then there exists a set

V =

m⋂
i=1

f−1
i ((ai, bi)) ∈ VF

such that x0 ∈ V ⊂ U . This means that ai < fi(x0) < bi for i = 1, . . . ,m.
Since limn→∞ fi(xn) = fi(x0) for i = 1, . . . ,m, there is a positive integer n0
such that ai < fi(xn) < bi for every integer n ≥ n0 and every i ∈ {1, . . . ,m}.
Thus xn ∈ V ⊂ U for every integer n ≥ n0 and this proves part (iii).

We prove part (iv). Assume first thatX is Hausdorff and let x ∈ X \ {0}.
Then there exists an open set U ⊂ X such that

0 ∈ U, x /∈ U.

Choose a set V =
⋂m
i=1 f

−1
i ((ai, bi)) ∈ VF such that

0 ∈ V ⊂ U.

Since 0 ∈ V it follows that ai < 0 < bi for all i ∈ {1, . . . ,m}. Since x /∈ V ,
there exists index i ∈ {1, . . . ,m} such that fi(x) /∈ (ai, bi) and so fi(x) ̸= 0.

Conversely suppose that, for every x ∈ X, there exists an element f ∈ F
such that f(x) ̸= 0. Let x0, x1 ∈ X such that x0 ̸= x1 and choose f ∈ F such
that f(x1 − x0) ̸= 0. Choose ε > 0 such that 2ε < |f(x1 − x0)| and consider
the sets

Ui := {x ∈ X | |f(x− xi)| < ε}
for i = 0, 1. Then U0, U1 ∈ VF ⊂ UF , x0 ∈ U0, x1 ∈ U1, and U0 ∩ U1 = ∅.
This proves part (iv) and Lemma 3.1.6. □

Example 3.1.7 (Product Topology). Let I be any set and consider
the space X := RI of all functions x : I → R. This is a real vector space.
For i ∈ I denote the evaluation map at i by πi : RI → R, i.e. πi(x) := x(i)
for x ∈ RI . Then πi : X → R is a linear functional for every i ∈ I. Let

π := {πi | i ∈ I}

be the collection of all these evaluation maps and denote by Uπ the weakest
topology on X such that the projection πi is continuous for every i ∈ I. By
Lemma 3.1.6 this topology is given by (3.1.1) and (3.1.2). It is called the
product topology on RI . Thus RI is a locally convex Hausdorff topological
vector space with the product topology.
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Example 3.1.8 (Weak Topology). Let X be a real normed vector
space.

(i) The weak topology on X is the weakest topology U w ⊂ 2X with respect
to which every bounded linear functional Λ : X → R is continuous. It is the
special case of the topology UF ⊂ 2X in Lemma 3.1.6, where F := X∗ is
the dual space. By Corollary 2.3.23 the dual space separates points, i.e.
for every x ∈ X \ {0} there is an x∗ ∈ X∗ such that ⟨x∗, x⟩ ̸= 0. Hence
Lemma 3.1.6 asserts that (X,U w) is a locally convex Hausdorff topological
vector space.

(ii) By Theorem 1.2.2 every bounded linear functional is continuous with
respect to the strong topology U s := U (X, ∥·∥) in Definition 1.1.2. Hence

U w ⊂ U s.

The weak and strong topologies agree when X is finite-dimensional.

(iii) Let (xn)n∈N be a sequence in X and let x ∈ X. Then Lemma 3.1.6
asserts that xn converges weakly to x (i.e. in the weak topology) if and
only if

⟨x∗, x⟩ = lim
n→∞

⟨x∗, xn⟩ for all x∗ ∈ X∗.

In this case we write xn
w
⇀ x or x = w−limn→∞ xn.

Example 3.1.9 (Weak* Topology). Let X be a real normed vector
space and let X∗ = L(X,R) be its dual space.

(i) The weak* topology on X∗ is the weakest topology U w∗ ⊂ 2X
∗
with

respect to which the linear functional ι(x) : X∗ → R in (2.4.1) is contin-
uous for all x ∈ X. It is the special case of the topology UF ⊂ 2X

∗
in

Lemma 3.1.6, where F := ι(X) ⊂ X∗∗. This collection of linear functionals
separates points, i.e. for every x∗ ∈ X∗ \ {0} there is an element x ∈ X such
that ⟨x∗, x⟩ ̸= 0. Hence Lemma 3.1.6 asserts that (X∗,U w∗

) is a locally
convex Hausdorff topological vector space.

(ii) Denote by U s ⊂ 2X
∗
the strong topology induced by the norm, and

denote by U w ⊂ 2X
∗
the weak topology in Example 3.1.8. Then

U w∗ ⊂ U w ⊂ U s.

These weak and weak* topologies agree when X is a reflexive Banach space.

(iii) Let (x∗n)n∈N be a sequence in X∗ and let x∗ ∈ X∗. Then Lemma 3.1.6
asserts that x∗n converges to x∗ in the weak* topology if and only if

⟨x∗, x⟩ = lim
n→∞

⟨x∗n, x⟩ for all x ∈ X.

In this case we write x∗n
w∗
⇀ x∗ or x∗ = w∗−limn→∞ x∗n.



3.1. Topological Vector Spaces 115

3.1.2. Convex Sets. This subsection picks up the topic of separating a
pair of nonempty disjoint convex sets by a hyperplane. For normed vector
spaces this problem was examined in Subsection 2.3.3. The main result
(Theorem 2.3.10) and its proof carry over almost verbatim to topological
vector spaces (see Theorem 3.1.11). The next lemma shows that the closure
and interior of a convex subset of a topological vector space are again convex.

Lemma 3.1.10. Let X be a topological vector space and let K ⊂ X be
a convex subset. Then the closure K and the interior int(K) are convex

subsets of X. Moreover, if int(K) ̸= ∅ then K ⊂ int(K).

Proof. We prove that int(K) is convex. Let x0, x1 ∈ int(K), choose a
real number 0 < λ < 1, and define

xλ := (1− λ)x0 + λx1.

Choose open sets U0, U1 ⊂ X such that x0 ⊂ U0 ⊂ K and x1 ⊂ U1 ⊂ K and
define

U := (U0 − x0) ∩ (U1 − x1) = {x ∈ X |x0 + x ∈ U0, x1 + x ∈ U1} .

Then U ⊂ X is an open set containing the origin such that

x0 + U ⊂ K, x1 + U ⊂ K.

Since K is convex, this implies that xλ +U is an open subset of K contain-
ing xλ. Hence xλ ∈ int(K).

We prove that the closure K is convex. Let x0, x1 ∈ K, choose a real
number 0 < λ < 1, and define xλ := (1− λ)x0 + λx1. Let U be an open
neighborhood of xλ. Then the set

W := {(y0, y1) ∈ X ×X | (1− λ)y0 + λy1 ∈ U}

is an open neighborhood of the pair (x0, x1), by continuity of addition and
scalar multiplication. Hence there exist open sets U0, U1 ⊂ X such that

x0 ∈ U0, x1 ∈ U1, U0 × U1 ⊂W.

Since x0, x1 ∈ K, the sets U0∩K and U1∩K are nonempty. Choose elements

y0 ∈ U0 ∩K, y1 ∈ U1 ∩K.

Then (y0, y1) ∈ U0 × U1 ⊂ W and hence yλ := (1− λ)y0 + λy1 ∈ U ∩K.
Thus U ∩K ̸= ∅ for every open neighborhood U of xλ and so xλ ∈ K.

We prove the last assertion. Assume int(K) ̸= ∅ and let x ∈ K. Then the
set Ux := {tx+ (1− t)y | y ∈ int(K), 0 < t < 1} is open and contained in K.

Hence Ux ⊂ int(K) and so x ∈ Ux ⊂ int(K). This proves Lemma 3.1.10. □
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Theorem 3.1.11 (Separation of Convex Sets). Let X be a topological
vector space and let A,B ⊂ X be nonempty disjoint convex sets such that A
is open. Then there is a continuous linear functional Λ : X → R such that

Λ(x) > sup
y∈B

Λ(y) for all x ∈ A.

Proof. Assume first that B = {0}. Then the set

P := {tx |x ∈ A, t ≥ 0}

satisfies the conditions (P1), (P2), (P3) on page 71. Hence (X,≼) is an
ordered vector space with the partial order defined by x ≼ y iff y − x ∈ P .
Let x0 ∈ A. Then the linear subspace

Y := Rx0

satisfies (O3) on page 68. Hence Theorem 2.3.7 asserts that there exists a
positive linear functional Λ : X → R such that

Λ(x0) = 1.

If x ∈ A then x− tx0 ∈ A for t > 0 sufficiently small because A is open and
hence Λ(x) ≥ t > 0.

We prove that Λ is continuous. To see this, define

U := {x ∈ X |Λ(x) > 0}

and fix an element x ∈ U . Then

V :=
{
y ∈ X |x0 + Λ(x)−1(y − x) ∈ A

}
is an open set such that x ∈ V ⊂ U . This shows that U is an open set and
hence so is the set

Λ−1((a, b)) = (ax0 + U) ∩ (bx0 − U)

for every pair of real numbers a < b. Hence Λ is continuous and this proves
the result for B = {0}.

To prove the result in general, observe that

U := A−B ⊂ X

is a nonempty open convex set such that 0 /∈ U . Hence, by the special
case, there is a continuous linear functional Λ : X → R such that Λ(x) > 0
for all x ∈ U . Thus Λ(x) > Λ(y) for all x ∈ A and all y ∈ B. De-
fine c := supy∈B Λ(y) and choose ξ ∈ X such that Λ(ξ) = 1. If x ∈ A then,
since A is open, there exists a number δ > 0 such that x− δξ ∈ A, and
so Λ(x) = Λ(x− δξ) + δ ≥ c+ δ. Hence Λ(x) > c for all x ∈ A. This proves
Theorem 3.1.11. □
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Theorem 3.1.12 (The Topology UF). Let X be a real vector space
and let F ⊂ {Λ : X → R |Λ is linear} be a linear subspace of the space of all
linear functionals on X. Let UF ⊂ 2X be the weakest topology on X such
that each Λ ∈ F is continuous. This topology has the following properties.

(i) A linear functional Λ : X → R is continuous if and only if it has a closed
kernel if and only if Λ ∈ F .

(ii) The closure of a linear subspace E ⊂ X is E =
⋂

Λ∈F , E⊂ker(Λ) ker(Λ).

(iii) A linear subspace E ⊂ X is closed if and only if, for all x ∈ X,

x ∈ E ⇐⇒ Λ(x) = 0 for all Λ ∈ F such that E ⊂ ker(Λ).

(iv) A linear subspace E ⊂ X is dense if and only if, for all Λ ∈ F ,

E ⊂ ker(Λ) =⇒ Λ = 0.

Proof. See page 118. □

Lemma 3.1.13. Let X be a real vector space and let n ∈ N. Then the
following holds for every n-tuple Λ1, . . . ,Λn : X → R of linear independent
linear functionals on X.

(i) There exist vectors x1, . . . , xn ∈ X such that

(3.1.3) Λi(xj) = δij :=

{
1, if i = j,
0, if i ̸= j

for i, j = 1, . . . , n.

(ii) If Λ : X → R is a linear functional such that
⋂n
i=1 ker(Λi) ⊂ ker(Λ)

then Λ ∈ span{Λ1, . . . ,Λn}.

Proof. The proof is by induction on n. Part (i) holds for n = 1 by defi-
nition. We prove that (i)n implies (ii)n and (ii)n implies (i)n+1 for all n ∈ N.

Fix an integer n ∈ N and assume (i)n. Let Λ : X → R be a linear
functional such that

⋂n
i=1 ker(Λi) ⊂ ker(Λ). Since (i) holds for n, there

exists vectors x1, . . . , xn ∈ N such that Λi(xj) = δij for i, j = 1, . . . , n. Fix
an element x ∈ X. Then x −

∑n
i=1 Λi(x)xi ∈

⋂n
j=1 ker(Λj) ⊂ ker(Λ) and

this implies Λ(x) =
∑n

i=1 Λi(x)Λ(xi). Thus Λ =
∑n

i=1 Λ(xi)Λi, so (ii) holds
for n.

Now assume (ii)n. Let Λ1, . . . ,Λn+1 : X → R be linearly indepen-
dent linear functionals and define Zi :=

⋂
j ̸=i ker(Λj) for i = 1, . . . , n + 1.

Then Λi /∈ span{Λj
∣∣ j ̸= i} for i = 1, . . . , n+ 1. Since (ii) holds for n, this

implies that, for each i ∈ {1, . . . , n+ 1}, there exists a vector xi ∈ Zi such
that Λi(xi) = 1. Thus (i) holds with n replaced by n + 1. This completes
the induction argument and the proof of Lemma 3.1.13. □
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Lemma 3.1.14. Let X be a real vector space and let Λ1, . . . ,Λn : X → R
and Λ : X → R be linear functionals. Then the following are equivalent.

(i)
⋂n
i=1 ker(Λi) ⊂ ker(Λ).

(ii) Λ ∈ span{Λ1, . . . ,Λn}.

(iii) There exists a constant c ≥ 0 such that

(3.1.4) |Λ(x)| ≤ c max
i=1,...,n

|Λi(x)| for all x ∈ X.

Proof. We prove that (i) implies (ii). Thus assume (i) and choose a
maximal subset J ⊂ {1, . . . , n} such that the Λj with j ∈ J are linearly
independent. Then

⋂
j∈J ker(Λj) =

⋂n
i=1 ker(Λi) ⊂ ker(Λ) by (i) and so it

follows from Lemma 3.1.13 that Λ ∈ span{Λj | j ∈ J}. Thus (ii) holds.
We prove that (ii) implies (iii). Thus assume (ii) and choose real num-

bers c1, . . . , cn such that Λ =
∑n

i=1 ciΛi. Define c :=
∑n

i=1|ci|. Then

|Λ(x)| =

∣∣∣∣∣
n∑
i=1

ciΛi(x)

∣∣∣∣∣ ≤
n∑
i=1

|ci| |Λi(x)| ≤ c max
i=1,...,n

|Λi(x)|

for all x ∈ X and so (iii) holds. That (iii) implies (i) is obvious and this
proves Lemma 3.1.14. □

Proof of Theorem 3.1.12. We prove (i). If Λ ∈ F then Λ is continuous
by definition of the topology UF . If Λ is continuous then Λ has a closed
kernel by definition of continuity. Thus it remains to prove that, if Λ has
a closed kernel, then Λ ∈ F . Thus assume Λ has a closed kernel and,
without loss of generality, that Λ ̸= 0. Choose x ∈ X such that Λ(x) = 1.
Then x ∈ X \ ker(Λ) and the set X \ ker(Λ) is open. Hence there is an
integer n > 0, a constant ε > 0, and elements Λ1, . . . ,Λn ∈ F \ {0} such
that

V :=

n⋂
i=1

{
y ∈ X

∣∣ |Λi(y)− Λi(x)| < ε
}
⊂ X \ ker(Λ).

We prove that

(3.1.5)

n⋂
i=1

ker(Λi) ⊂ ker(Λ).

Namely, choose y ∈ X such that Λi(y) = 0 for i = 1, . . . , n. Then x+ ty ∈ V
and hence x+ ty /∈ ker(Λ) for all t ∈ R. Thus 1 + tΛ(y) = Λ(x+ ty) ̸= 0
for all t ∈ R and this implies Λ(y) = 0. This proves (3.1.5). It follows
from (3.1.5) and Lemma 3.1.14 that

Λ ∈ span{Λ1, . . . ,Λn} ⊂ F

and this proves part (i).
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We prove (ii). Let E ⊂ X be a linear subspace. If Λ ∈ F vanishes
on E then E ⊂ ker(Λ) because ker(Λ) is a closed subset of X that con-
tains E. Conversely, let x ∈ X \ E. Since (X,UF ) is locally convex
by part (ii) of Lemma 3.1.6, and X \ E is open, there exists a convex
open set U ∈ UF such that x ∈ U and U ∩ E = ∅. Since U and E
are convex, Theorem 3.1.11 asserts that there exists a continuous linear
functional Λ : X → R such that Λ(x) > supy∈E Λ(y). Since E is a linear
subspace, this implies E ⊂ ker(Λ). Since Λ ∈ F by part (i), it follows
that x /∈

⋂
Λ∈F , E⊂ker(Λ) ker(Λ). This proves part (ii). Parts (iii) and (iv)

follow directly from (ii) and this proves Theorem 3.1.12. □

Theorem 3.1.12 has several important consequences for the weak and
weak* topologies. These are summarized in the next two subsections.

3.1.3. Elementary Properties of the Weak Topology. There are more
strongly closed sets in an infinite-dimensional Banach space than there are
weakly closed sets. However, for convex sets both notions agree. Thus a
linear subspace of a Banach space is closed if and only if it is weakly closed.

Lemma 3.1.15 (Closed Convex Sets Are Weakly Closed). Let X
be a real normed vector space and let K ⊂ X be a convex subset. Then K
is closed if and only if it is weakly closed.

Proof. Let K ⊂ X be a closed convex set. We prove it is weakly closed.
To see this, fix an element x0 ∈ X \K. Then there is a constant δ > 0 such
that Bδ(x0) ∩ K = ∅. By Theorem 2.3.10 with A := Bδ(x0) and B := K,
there exists an x∗ ∈ X∗ and a c ∈ R such that ⟨x∗, x⟩ > c for all x ∈ Bδ(x0)
and ⟨x∗, x⟩ ≤ c for all x ∈ K. Thus

U := {x ∈ X | ⟨x∗, x⟩ > c}

is a weakly open set that contains x0 and is disjoint from K. This shows
that X \K is weakly open and hence K is weakly closed. Conversely, every
weakly closed subset of X is closed and this proves Lemma 3.1.15. □

Lemma 3.1.16 (Bounded Linear Functionals Are Weakly Contin-
uous). Let X be a real normed vector space and let Λ : X → R be a linear
functional. Then Λ is continuous with respect to the norm topology on X if
and only if it is continuous with respect to the weak topology.

Proof. This follows from part (i) of Theorem 3.1.12. □

At this point it is useful to introduce the concept of the pre-annihilator.
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Definition 3.1.17 (Pre-Annihilator). Let X be a real normed vector
space and T ⊂ X∗ be a subset of the dual space X∗ = L(X,R). The set

(3.1.6) ⊥T := {x ∈ X | ⟨x∗, x⟩ = 0 for all x∗ ∈ T}

is called the pre-annihilator or left annihilator or joint kernel of T . It
is a closed linear subspace of X.

Corollary 3.1.18 (Weak Closure of a Subspace). Let X be a real
normed vector space and let E ⊂ X be a linear subspace. Then the following
holds.

(i) The closure of E is the subspace E = ⊥(E⊥) and agrees with the weak
closure of E.

(ii) E is closed if and only if E is weakly closed if and only if E = ⊥(E⊥).

(iii) E is dense if and only if E is weakly dense if and only if E⊥ = {0}.

Proof. The formula E = ⊥(E⊥) for the closure of E is a restatement
of Corollary 2.3.24. That this subspace is also the weak closure of E fol-
lows from part (ii) of Theorem 3.1.12 and also from Lemma 3.1.15. This
proves (i). Parts (ii) and (iii) follow directly from (i) and this proves Corol-
lary 3.1.18. □

The next lemma shows that the limit of a weakly convergent sequence
in a Banach space is contained in the closed convex hull of the sequence.

Definition 3.1.19. Let X be a real vector space and let S ⊂ X. The
set

(3.1.7) conv(S) :=

{
n∑
i=1

λixi

∣∣∣∣n ∈ N, xi ∈ S, λi ≥ 0,

n∑
i=1

λi = 1

}
is convex and is called the convex hull of S. If X is a topological vector
space then the closure of the convex hull of a set S ⊂ X is called the closed
convex hull of S and is denoted by conv(S).

Lemma 3.1.20 (Mazur). Let X be a real normed vector space and let
xi ∈ X be a sequence that converges weakly to x. Then

x ∈ conv({xi | i ∈ N}),

i.e. for every ε > 0 there exists an n ∈ N and real numbers λ1, . . . , λn such
that λi ≥ 0 for all i,

∑n
i=1 λi = 1, and ∥x−

∑n
i=1 λixi∥ < ε.

Proof. The set K := conv({xi | i ∈ N}) is convex and so is its strong
closure K by Lemma 3.1.10. Hence K is weakly closed by Lemma 3.1.15.
Since xi ∈ K converges weakly to x it follows that x ∈ K. □
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It follows from Lemma 3.1.20 that the weak limit of every weakly conver-
gent sequence in the unit sphere S ⊂ X in a Banach space X is contained in
the closed unit ball B = conv(S) = conv(S). In fact, it turns out that B is
the weak closure of S whenever X is infinite-dimensional, and so U w ⊊ U s.

Lemma 3.1.21 (Weak Closure of the Unit Sphere). Let X be an
infinite-dimensional real normed vector space and define

(3.1.8) S := {x ∈ X | ∥x∥ = 1} , B := {x ∈ X | ∥x∥ ≤ 1} .

Then B is the weak closure of S.

Proof. The set B is weakly closed by Lemma 3.1.15 and hence contains
the weak closure of S. We prove that B is contained in the weak closure of S.
To see this, let x0 ∈ B and let U ⊂ X be a weakly open set containing x0.
Then there exist elements x∗1, . . . , x

∗
n ∈ X∗ and a constant ε > 0 such that

V := {x ∈ X | |⟨x∗i , x− x0⟩| < ε for i = 1, . . . , n} ⊂ U.

Since X is infinite-dimensional, there is a nonzero vector ξ ∈ X such that

⟨x∗i , ξ⟩ = 0 for i = 1, . . . , n.

Since ∥x0∥ ≤ 1 there exists a real number t such that

∥x0 + tξ∥ = 1.

Hence x0 + tξ ∈ V ∩ S and so U ∩ S ̸= ∅. Thus x0 belongs to the weak
closure of S and this completes the proof of Lemma 3.1.21. □

In view of Lemma 3.1.21 one might ask whether every element of B is
the limit of a weakly convergent sequence in S. The answer is negative in
general. For example, the next exercise shows that a sequence in ℓ1 converges
weakly if and only if it converges strongly. Thus the limit of every weakly
convergent sequence of norm one in ℓ1 has again norm one. The upshot is
that the weak closure of a subset of a Banach space is in general much bigger
than the set of all limits of weakly convergent sequences in that subset.

Exercise 3.1.22 (Schur’s Theorem). Let xn = (xn,i)i∈N for n ∈ N be
a sequence in ℓ1 that converges weakly to an element x = (xi)i∈N ∈ ℓ1. Prove
that limn→∞ ∥xn − x∥ℓ1 = 0. (See also Exercise 3.7.3.)

Exercise 3.1.23. LetX be a Banach space and supposeX∗ is separable.
Let S ⊂ X be a bounded set and let x ∈ X be an element in the weak closure
of S. Prove that there is a sequence (xn)n∈N in S that converges weakly to x.

Exercise 3.1.24. Let X be a normed vector space. Prove that the
canonical inclusion ι : X → X∗∗ is continuous with respect to the weak
topology on X and the weak* topology on X∗∗.
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3.1.4. Elementary Properties of the Weak* Topology. When X is
a Banach space and Y is a dense subspace, the dual spaces X∗ and Y ∗

are canonically isomorphic because every bounded linear functional on Y
extends uniquely to a bounded linear functional on X. The extension has
the same norm as the original linear functional on Y and hence the canonical
isomorphism X∗ → Y ∗ : x∗ 7→ x∗|Y is an isometry. However, the weak*
topologies of X∗ and Y ∗ may differ dramatically. Namely, by part (i) of
Theorem 3.1.12 the space of weak* continuous linear functionals on Y ∗ can
be identified with the original normed vector space Y and so may be much
smaller than the space of weak* continuous linear functionals on X∗. In
other words, the completion of a normed vector space is a Banach space
and both spaces have the same dual space, however, their weak* topologies
differ. Thus great care must be taken when dealing with the weak* topology
of the dual space of a normed vector space versus that of the dual space of
a Banach space.

Corollary 3.1.25 (Weak* Continuous Linear Functionals). Let
X be a real normed vector space and let

Λ : X∗ → R

be a linear functional on its dual space. Then the following are equivalent.

(i) Λ is continuous with respect to the weak* topology on X∗.

(ii) The kernel of Λ is a weak* closed linear subspace of X∗.

(iii) Λ belongs to the image of the inclusion ι : X → X∗∗ in (2.4.1), i.e.
there exists an element x ∈ X such that Λ(x∗) = ⟨x∗, x⟩ for all x∗ ∈ X∗.

Proof. This follows directly from part (i) of Theorem 3.1.12 and the
definition of the weak* topology in Example 3.1.9. □

Corollary 3.1.26 (Weak* Closure of a Subspace). Let X be a real
normed vector space and let E ⊂ X∗ be a linear subspace of its dual space.
Then the following holds.

(i) The linear subspace (⊥E)⊥ is the weak* closure of E.

(ii) E is weak* closed if and only if E = (⊥E)⊥.

(iii) E is weak* dense in X∗ if and only if ⊥E = {0}.

Proof. By Corollary 3.1.25 the pre-annihilator of E is the space of weak*
continuous linear functionals on X∗ that vanish on E. Hence part (i) follows
from part (ii) of Theorem 3.1.12. Part (ii) follow directly from (i). Part (iii)
follows from (i) and the fact that any subset S ⊂ X satisfies S⊥ = X∗ if
and only if S ⊂ {0} by Corollary 2.3.4. This proves Corollary 3.1.26. □
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Corollary 3.1.27 (Separation of Convex Sets). Let X be a real
normed vector space and let A,B ⊂ X∗ be nonempty disjoint convex sets
such that A is weak* open. Then there exists an element x ∈ X such that

⟨x∗, x⟩ > sup
y∗∈B

⟨y∗, x⟩ for all x∗ ∈ A.

Proof. Theorem 3.1.11 and Corollary 3.1.25. □

Corollary 3.1.28 (Weak* Closure of the Unit Sphere). Let X be
an infinite-dimensional real normed vector space and define

S∗ := {x∗ ∈ X∗ | ∥x∗∥ = 1} , B∗ := {x∗ ∈ X∗ | ∥x∗∥ ≤ 1} .
Then B∗ is the weak* closure of S∗.

Proof. Let Fx := {x∗ ∈ X∗ | ⟨x∗, x⟩ ≤ 1} for x ∈ S (the unit sphere inX).
Then Fx is weak* closed for all x ∈ S, and hence so is B∗ =

⋂
x∈S Fx.

Now let K ⊂ X∗ be the weak* closure of S∗. Then K ⊂ B∗ because B∗ is a
weak* closed set containing S∗, and B∗ ⊂ K because K is a weakly closed
set containing S∗ and B∗ is the weak closure of S∗ by Lemma 3.1.21. □

Corollary 3.1.29 (Goldstine’s Theorem). Let X be a real normed
vector space and ι : X → X∗∗ be the inclusion (2.4.1). The following holds.

(i) ι(X) is weak* dense in X∗∗.

(ii) Assume X is infinite-dimensional and denote by S ⊂ X the closed unit
sphere. Then the weak* closure of ι(S) is the closed unit ball B∗∗ ⊂ X∗∗.

Proof. By definition ⊥ι(X) = {0}, so (i) holds by Corollary 3.1.26. To
prove (ii), let K ⊂ X∗∗ be the weak* closure of ι(S). Then K ⊂ B∗∗ be-
causeB∗∗ is weak* closed by Corollary 3.1.28. Moreover, the set ι−1(K) ⊂ X
is weakly closed by Exercise 3.1.24 and S ⊂ ι−1(K). Hence B ⊂ ι−1(K) by
Lemma 3.1.21, hence ι(B) ⊂ K, and so K is the weak* closure of ι(B).
Thus K is convex by Lemma 3.1.10. Now let x∗∗0 ∈ X∗∗ \K and choose
a convex weak* open neighborhood U ⊂ X∗∗ of x∗∗0 such that U ∩K = ∅.
Then, by Corollary 3.1.27, there exists an element x∗0 ∈ X∗ such that

⟨x∗∗0 , x∗0⟩ > sup
x∗∗∈K

⟨x∗∗, x∗0⟩ ≥ sup
x∈S

⟨ι(x), x∗0⟩ = sup
x∈S

⟨x∗0, x⟩ = ∥x∗0∥ .

Hence ∥x∗∗0 ∥ > 1 and so x∗∗0 /∈ B∗∗. Thus B∗∗ ⊂ K ⊂ B∗∗ and so B∗∗ = K.
This proves Corollary 3.1.29. □

Corollary 3.1.29 shows that, in contrast to the weak topology, a closed
linear subspace of X∗ is not necessarily weak* closed. For example, the
space c0 (Example 1.3.7) is a closed linear subspace of ℓ∞ ∼= (ℓ1)∗ but is
dense with respect to the weak* topology and so is not weak* closed. The
study of the weak* closed subspaces will be taken up again in Section 3.3.
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3.2. The Banach–Alaoglu Theorem

3.2.1. The Separable Case. We prove two versions of the Banach–Ala-
oglu Theorem. The first version holds for separable normed vector spaces
and asserts that every bounded sequence in the dual space has a weak*
convergent subsequence.

Theorem 3.2.1 (Banach–Alaoglu: The Separable Case).

Let X be a separable real normed vector space. Then every bounded sequence
in the dual space X∗ has a weak* convergent subsequence.

Proof. Let D = {x1, x2, x3, . . . } ⊂ X be a countable dense subset and
let (x∗n)n∈N be a bounded sequence in X∗. Then the standard diagonal se-
quence argument shows that there is a subsequence (x∗ni

)i∈N such that the
sequence of real numbers (⟨x∗ni

, xk⟩)i∈N converges for every k ∈ N. More
precisely, the sequence (⟨x∗n, x1⟩)n∈N is bounded and hence has a convergent
subsequence (⟨x∗ni,1

, x1⟩)i∈N. Since the sequence (⟨x∗ni,1
, x2⟩)i∈N is bounded

it has a convergent subsequence (⟨x∗ni,2
, x2⟩)i∈N. Continue by induction and

use the axiom of dependent choice (see page 6) to construct a sequence of
subsequences (x∗ni,k

)i∈N such that, for every k ∈ N, (x∗ni,k+1
)i∈N is a subse-

quence of (x∗ni,k
)i∈N and the sequence (⟨x∗ni,k

, xk⟩)i∈N converges. Now con-

sider the diagonal subsequence x∗ni
:= x∗ni,i

. Then the sequence (⟨x∗ni
, xk⟩)i∈N

converges for every k ∈ N as claimed.

With this understood, it follows from the equivalence of (ii) and (iii)
in Theorem 2.1.5, with Y = R and Ai replaced by the bounded linear
functional x∗ni

: X → R, that there exists an element x∗ ∈ X∗ such that

⟨x∗, x⟩ = lim
i→∞

⟨x∗ni
, x⟩

for all x ∈ X. Hence the sequence (x∗ni
)i∈N converges to x∗ in the weak*

topology as claimed. This proves Theorem 3.2.1. □

Example 3.2.2. This example shows that the hypothesis that X is sep-
arable cannot be removed in Theorem 3.2.1. The Banach space X = ℓ∞

with the supremum norm is not separable. For n ∈ N define the bounded
linear functional Λn : ℓ∞ → R by Λn(x) := xn for x = (xi)i∈N ∈ ℓ∞. Then
the sequence (Λn)n∈N in X∗ does not have a weak* convergent subsequence.
To see this, let n1 < n2 < n3 < · · · be any sequence of positive integers and
define the sequence x = (xi)i∈N ∈ ℓ∞ by xi := 1 for i = n2k with k ∈ N
and by xi := −1 otherwise. Then Λnk

(x) = xnk
= (−1)k and hence the

sequence of real numbers (Λnk
(x))k∈N does not converge. Thus the subse-

quence (Λnk
)k∈N in X∗ does not converge in the weak* topology.



3.2. The Banach–Alaoglu Theorem 125

3.2.2. Invariant Measures. Let (M,d) be a compact metric space and
let ϕ :M →M be a homeomorphism. Denote by B ⊂ 2M the Borel σ-
algebra. The space C(M) of all continuous functions f : M → R with the
supremum norm is a separable Banach space (Example 1.1.3) and its dual
space is isomorphic to the space M(M) of signed Borel measures µ : B → R
(Example 1.3.8), equipped with the norm function

∥µ∥ := sup
B∈B

(
µ(B)− µ(M \B)

)
for µ ∈ M(M). A Borel measure µ : B → [0,∞) is called a probability
measure if ∥µ∥ = µ(M) = 1. A probability measure µ : B → [0, 1] is called
ϕ-invariant if

(3.2.1)

∫
M
(f ◦ ϕ) dµ =

∫
M
f dµ for all f ∈ C(M).

The set

(3.2.2) M(ϕ) :=

{
µ ∈ M(M)

∣∣∣∣ µ(B) ≥ 0 for all B ∈ B,
µ(M) = 1, and µ satisfies (3.2.1)

}
of ϕ-invariant Borel probability measures is a weak* closed convex subset of
the unit sphere in M(M). The next lemma shows that it is nonempty.

Lemma 3.2.3. Every homeomorphism of a compact metric space admits
an invariant Borel probability measure.

Proof. Let ϕ : M → M be a homeomorphism of a compact metric
space. Fix an element x0 ∈ X and, for every integer n ≥ 1, define the Borel
probability measure µn : B → [0, 1] by∫

M
f dµn :=

1

n

n−1∑
k=0

f(ϕk(x0)) for f ∈ C(M).

Here ϕ0 := id : M → M and ϕk := ϕ ◦ · · · ◦ ϕ denotes the kth iterate of ϕ
for k ∈ N. By Theorem 3.2.1, the sequence µn has a weak* convergent
subsequence (µni)i∈N. Its weak* limit is a Borel measure µ : B → [0,∞)
such that

∥µ∥ =

∫
M

1 dµ = lim
i→∞

∫
M

1 dµni = 1

and∫
M
(f ◦ ϕ) dµ = lim

i→∞

1

ni

ni∑
k=1

f(ϕk(x0)) = lim
i→∞

1

ni

ni−1∑
k=0

f(ϕk(x0)) =

∫
M
f dµ

for all f ∈ C(M). Hence µ ∈ M(ϕ). □
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3.2.3. The General Case. The second version of the Banach–Alaoglu
Theorem applies to all real normed vector spaces and asserts that the closed
unit ball in the dual space is weak* compact.

Theorem 3.2.4 (Banach–Alaoglu: The General Case).

Let X be a real normed vector space. Then the closed unit ball

(3.2.3) B∗ := {x∗ ∈ X∗ | ∥x∗∥ ≤ 1}

in the dual space X∗ is weak* compact.

Proof. This is an application of Tychonoff’s Theorem A.2.1. The pa-
rameter space is I = X. Associated to each x ∈ X is the compact interval

Kx := [−∥x∥ , ∥x∥] ⊂ R.

The product of these compact intervals is the space

K :=
∏
x∈X

Kx = {f : X → R | |f(x)| ≤ ∥x∥ for all x ∈ X} ⊂ RX .

Define

L := {f : X → R | f is linear} ⊂ RX .

The intersection of K and L is the closed unit ball

B∗ := {x∗ ∈ X∗ | ∥x∗∥ ≤ 1} = L ∩K.

By definition, the weak* topology on B∗ = L∩K is induced by the product
topology on RX (see Example 3.1.7). Moreover L is a closed subset of RX
with respect to the product topology. To see this, fix elements x, y ∈ X
and λ ∈ R and define the maps ϕx,y : RX → R and ψx,λ : RX → R by

ϕx,y(f) := f(x+ y)− f(x)− f(y), ψx,λ(f) := f(λx)− λf(x).

By definition of the product topology, these maps are continuous and this
implies that the set

L =
⋂

x,y∈X
ϕ−1
x,y(0) ∩

⋂
x∈X,λ∈R

ψ−1
x,λ(0)

is closed with respect to the product topology. Since K is a compact subset
of RX by Tychonoff’s Theorem A.2.1 and RX is a Hausdorff space by Ex-
ample 3.1.7, it follows that B∗ = L ∩K is a closed subset of a compact set
and hence is compact. This proves Theorem 3.2.4. □

The next theorem characterizes the weak* compact subsets of the dual
space of a separable Banach space.
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Theorem 3.2.5 (Weak* Compact Subsets). Let X be a separable
Banach space and let K ⊂ X∗. Then the following are equivalent.

(i) K is weak* compact.

(ii) K is bounded and weak* closed.

(iii) K is sequentially weak* compact, i.e. every sequence in K has a
weak* convergent subsequence with limit in K.

(iv) K is bounded and sequentially weak* closed, i.e. if x∗ ∈ X∗ is the
weak* limit of a sequence in K then x∗ ∈ K.

The implications (i)⇐⇒ (ii) and (ii) =⇒ (iv) and (iii) =⇒ (iv) continue to
hold when X is not separable.

Proof. We prove that (i) implies (ii). Assume K is weak* compact.
Then K is weak* closed, because the weak* topology on X∗ is Hausdorff.
To prove that K is bounded, fix an element x ∈ X. Then the function

K → R : x∗ 7→ ⟨x∗, x⟩

is continuous with respect to the weak* topology and hence is bounded.
Thus

sup
x∗∈K

|⟨x∗, x⟩| <∞ for all x ∈ X.

Hence it follows from the Uniform Boundedness Theorem 2.1.1 that

sup
x∗∈K

∥x∗∥ <∞

and so K is bounded.

We prove that (ii) implies (i). Assume K is bounded and weak* closed.
Choose c > 0 such that

∥x∗∥ ≤ c for all x∗ ∈ K.

Since the set

cB∗ = {x∗ ∈ X∗ | ∥x∗∥ ≤ c}
is weak* compact by Theorem 3.2.4 and K ⊂ cB∗ is weak* closed, it follows
that K is weak* compact.

We prove that (ii) implies (iii). Assume K is bounded and weak* closed.
Let (x∗n)n∈N be a sequence in K. This sequence is bounded by assump-
tion and hence, by Theorem 3.2.1, has a weak* convergent subsequence be-
cause X is separable. Let x∗ ∈ X∗ be the weak* limit of that subsequence.
Since K is weak* closed it follows that x∗ ∈ K. Thus K is sequentially
weak* compact.

We prove that (iii) implies (iv). Assume K is sequentially weak* com-
pact. Then K is bounded because every weak* convergent sequence is
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bounded by the Uniform Boundedness Theorem 2.1.1. Moreover K is se-
quentially weak* closed by uniqueness of the weak* limit. (If x∗n ∈ K con-
verges to x∗ ∈ X∗ in the weak* topology, then it has a subsequence that
weak* converges to an element y∗ ∈ K and so x∗ = y∗ ∈ K.)

We prove that (iv) implies (ii). Assume K is bounded and sequen-
tially weak* closed. We must prove that K is weak* closed. Let x∗0 ∈ X∗

be an element of the weak* closure of K. Choose a countable dense sub-
set {xk | k ∈ N} of X. Then the set

Un :=

{
x∗ ∈ X∗

∣∣∣∣ |⟨x∗ − x∗0, xk⟩| <
1

n
for k = 1, . . . , n

}
is a weak* open neighborhood of x∗0 for every n ∈ N. Hence Un ∩K ̸= ∅ for
all n ∈ N and so it follows from the axiom of countable choice that there ex-
ists a sequence (x∗n)n∈N in X∗ such that, for all n ∈ N, we have x∗n ∈ Un ∩K.
This sequence satisfies |⟨x∗n − x∗0, xk⟩| ≤ 1/n for all k, n ∈ N such that n ≥ k.
Thus

lim
n→∞

⟨x∗n, xk⟩ = ⟨x∗0, xk⟩ for all k ∈ N.

Since the sequence (x∗n)n∈N in X∗ is bounded, and the sequence (xk)k∈N is
dense in X, it follows from Theorem 2.1.5 that

lim
n→∞

⟨x∗n, x⟩ = ⟨x∗0, x⟩ for all x ∈ X.

Hence (x∗n)n∈N is a sequence in K that weak* converges to x∗0 and so x∗0 ∈ K.
This proves Theorem 3.2.5. □

Corollary 3.2.6. Let (M,d) be a compact metric space and ϕ :M →M
be a homeomorphism. Then the set M(ϕ) of ϕ-invariant Borel probability
measures on M is a weak* compact convex subset of M(M) = C(M)∗.

Proof. The set M(ϕ) is convex, bounded, and weak* closed by definition
(see Subsection 3.2.2). Hence it is weak* compact by Theorem 3.2.5. □

Example 3.2.7. The hypothesis that X is complete cannot be removed
in Theorem 3.2.5. Let c00 be the set of all sequences x = (xi)i∈N ∈ ℓ∞ with
only finitely many nonzero entries, equipped with the supremum norm. Its
closure is the space c0 ⊂ ℓ∞ in Example 1.3.7 and so its dual space is isomor-
phic to ℓ1. A sequence of bounded linear functionals Λn : c00 → R converges
to the bounded linear functional Λ : c00 → R in the weak* topology if and
only if limn→∞ Λn(ei) = Λ(ei) for all i ∈ N, where ei := (δij)j∈N. For n ∈ N
define Λn : X → R by Λn(x) := xn for x = (xi)i∈N ∈ X. Then nΛn con-
verges to zero in the weak* topology, and hence K := {nΛn |n ∈ N} ∪ {0}
is an unbounded weak* compact subset of c∗00

∼= ℓ1.
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Example 3.2.8. The Banach space X = ℓ∞ is not separable. We prove
that (i) does not imply (iii) and (iv) does not imply any of the other asser-
tions in Theorem 3.2.5 for X = ℓ∞. The closed unit ball in (ℓ∞)∗ is weak*
compact by Theorem 3.2.4 but is not sequentially weak* compact. Namely,
for each n ∈ N the bounded linear functional Λn : ℓ∞ → R, defined by

Λn(x) := xn

for x = (xi)i∈N ∈ ℓ∞, has the norm ∥Λn∥ = 1 and the sequence (Λn)n∈N
in (ℓ∞)∗ does not have a weak* convergent subsequence by Example 3.2.2.
Moreover, the bounded set

K := {Λn |n ∈ N} ⊂ (ℓ∞)∗

is sequentially weak* closed, but is neither sequentially weak* compact
nor weak* compact. (Exercise: Find a sequence of weak* open sub-
sets Un ⊂ (ℓ∞)∗ such that Λn ∈ Un \ Um for all m,n ∈ N with m ̸= n.)

Example 3.2.9. Let M be a locally compact Hausdorff space which
is sequentially compact but not compact. (An example is an uncountable
well-ordered set M such that every element of M has only countably many
predecessors, equipped with the order topology, as in [75, Example 3.6].)
Let δ :M → C0(M)∗ be the embedding defined in Exercise 3.2.10 below.
Then K := δ(M) is a sequentially weak* compact set in C0(M)∗ and is not
weak* compact. So (iii) does not imply (i) in Theorem 3.2.5 for X = C0(M).

Exercise 3.2.10. Let M be a locally compact Hausdorff space. A
continuous function f : M → R is said to vanish at infinity if, for ev-
ery ε > 0, there is a compact set K ⊂M such that supx∈M\K |f(x)| < ε.

Denote by C0(M) the space of all continuous functions f :M → R that
vanish at infinity.

(i) Prove that C0(M) is a Banach space with the supremum norm.

(ii) Prove that the map δ :M → C0(M)∗, which assigns to each x ∈M the
bounded linear functional

δx : C0(M) → R

given by

δx(f) := f(x) for f ∈ C0(M),

is a homeomorphism onto its image

δ(M) ⊂ C0(M)∗,

equipped with the weak* topology.
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3.3. The Banach–Dieudonné Theorem

This section is devoted to a theorem of Banach–Dieudonné which implies
that a linear subspace of the dual space of a Banach space X is weak* closed
if and only if its intersection with the closed unit ball in X∗ is weak* closed.
This result will play a central role in the proof of the Eberlein–Šmulyan
Theorem 3.4.1, which characterizes reflexive Banach spaces in terms of weak
compactness of the closed unit ball.

Theorem 3.3.1 (Banach–Dieudonné). Let X be a real Banach space
and let E ⊂ X∗ be a linear subspace of the dual space X∗ = L(X,R), and
let B∗ := {x∗ ∈ X∗ | ∥x∗∥ ≤ 1}. Assume that the intersection

E ∩B∗ = {x∗ ∈ E | ∥x∗∥ ≤ 1}
is weak* closed and let x∗0 ∈ X∗ \ E. Then

(3.3.1) inf
x∗∈E

∥x∗ − x∗0∥ > 0

and, if 0 < δ < infx∗∈E ∥x∗ − x∗0∥, then there is a vector x0 ∈ X such that

(3.3.2) ⟨x∗0, x0⟩ = 1, ∥x0∥ ≤ δ−1, ⟨x∗, x0⟩ = 0 for all x∗ ∈ E.

Proof. See page 131. □

The last condition in (3.3.2) asserts that x0 is an element of the pre-
annihilator ⊥E (see Definition 3.1.17).

Corollary 3.3.2 (Weak* Closed Linear Subspaces). Let X be a
real Banach space and let E ⊂ X∗ be a linear subspace of its dual space.
Then the following are equivalent.

(i) E is weak* closed.

(ii) E ∩B∗ is weak* closed.

(iii) (⊥E)⊥ = E.

Proof. That (i) implies (ii) follows from the fact that the closed unit ball
B∗ ⊂ X∗ is weak* closed by Corollary 3.1.28.

We prove that (ii) implies (iii). The inclusion E ⊂ (⊥E)⊥ follows directly
from the definitions. To prove the converse, fix an element x∗0 ∈ X∗ \ E.

Then Theorem 3.3.1 asserts that there exists a vector x0 ∈ ⊥E such that
⟨x∗0, x0⟩ ≠ 0, and this implies x∗0 /∈ (⊥E)⊥.

That (iii) implies (i) follows from the fact that, for every x ∈ X, the
linear functional ι(x) : X∗ → R in (2.4.1) is continuous with respect to
the weak* topology by definition, and so the set S⊥ =

⋂
x∈S ker(ι(x)) is

a weak* closed linear subspace of X∗ for every subset S ⊂ X (see also
Corollary 3.1.26). This proves Corollary 3.3.2. □
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Proof of Theorem 3.3.1. The proof has five steps.

Step 1. infx∗∈E ∥x∗ − x∗0∥ > 0.

By assumption, the intersection E ∩ B∗ is weak* closed and hence is a
closed subset of X∗. Let (x∗i )i∈N be a sequence in E that converges to
an element x∗ ∈ X∗. Then the sequence (x∗i )i∈N is bounded. Choose a
constant c > 0 such that ∥x∗i ∥ ≤ c for all i ∈ N. Then c−1x∗i ∈ E ∩B∗ for
all i and so c−1x∗ = limi→∞ c−1x∗i ∈ E ∩B∗. Hence x∗ ∈ E. This shows
that E is a closed linear subspace of X∗. Since x∗0 /∈ E, this proves Step 1.

Step 2. Choose a real number

(3.3.3) 0 < δ < inf
x∗∈E

∥x∗ − x∗0∥ .

Then there exists a sequence of finite subsets S1, S2, S3, . . . of the closed unit
ball B ⊂ X such that, for all n ∈ N and all x∗ ∈ X∗, we have

(3.3.4)
∥x∗ − x∗0∥ ≤ δn and
maxx∈Sk

|⟨x∗ − x∗0, x⟩| ≤ kδ
for all k ∈ N with 1 ≤ k < n

=⇒ x∗ /∈ E.

For n = 1 condition (3.3.4) holds by (3.3.3). Now fix an integer n ≥ 1 and
suppose, by induction, that the finite sets Sk ⊂ B have been constructed
for k ∈ N with k < n such that (3.3.4) holds. For every finite set S ⊂ B
define

E(S) :=

x∗ ∈ E

∣∣∣∣∣
∥x∗ − x∗0∥ ≤ δ(n+ 1),
maxx∈Sk

|⟨x∗ − x∗0, x⟩| ≤ δk for 1 ≤ k < n,
maxx∈S |⟨x∗ − x∗0, x⟩| ≤ δn

 .

Define

R := ∥x∗0∥+ δ(n+ 1).

Since E ∩B∗ is weak* closed so is the set

K := R(E ∩B∗) = {x∗ ∈ E | ∥x∗∥ ≤ R = ∥x∗0∥+ δ(n+ 1)} .
Hence K is weak* compact by Theorem 3.2.5. Moreover, for every finite set

S ⊂ B,

the set E(S) is the intersection of K with the weak* closed sets{
x∗ ∈ X∗

∣∣∣ ∥x∗ − x∗0∥ ≤ δ(n+ 1)
}
,{

x∗ ∈ X∗
∣∣∣ max
x∈S

⟨x∗ − x∗0, x⟩ ≤ δn
}
,{

x∗ ∈ X∗
∣∣∣ max
x∈Sk

⟨x∗ − x∗0, x⟩ ≤ δk
}
, k ∈ N, k < n.

Hence E(S) ⊂ K is a weak* closed set for every finite set S ⊂ B.
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Now assume, by contradiction, that E(S) ̸= ∅ for every finite set S ⊂ B.
Then every finite collection S ⊂ 2B of finite subsets of B satisfies⋂

S∈S

E(S) = E

( ⋃
S∈S

S

)
̸= ∅,

and hence the collection

{E(S) |S is a finite subset of B}

of weak* closed subsets of K has the finite intersection property. Since K
is weak* compact, this implies that there exists an element x∗ ∈ X∗ such
that x∗ ∈ E(S) for every finite set S ⊂ B. This element x∗ belongs to the
subspace E and satisfies

max
x∈Sk

⟨x∗ − x∗0, x⟩ ≤ δk

for all k ∈ N with k < n as well as

∥x∗ − x∗0∥ = sup
x∈B

|⟨x∗ − x∗0, x⟩| ≤ δn

in contradiction to (3.3.4). This contradiction shows that there exists a
finite set S ⊂ B such that E(S) = ∅. With this understood, Step 2 follows
from the axiom of dependent choice (see page 6).

Step 3. Let the constant δ > 0 and the sequence of finite subsets Sn ⊂ B
for n ∈ N be as in Step 2. Choose a sequence (xi)i∈N in B such that⋃

n∈N

1

n
Sn = {x1, x2, x3, . . . } .

Then

sup
i∈N

|⟨x∗ − x∗0, xi⟩| > δ

for all x∗ ∈ E.

Let x∗ ∈ E and choose an integer

n ≥ δ−1 ∥x∗ − x∗0∥ .

Then ∥x∗ − x∗0∥ ≤ δn and therefore n ≥ 2 by (3.3.3). Hence, by Step 2,
there exists an integer k ∈ {1, . . . , n− 1} and an element x ∈ Sk such that

|⟨x∗ − x∗0, x⟩| > δk.

Choose i ∈ N such that k−1x = xi. Then

|⟨x∗ − x∗0, xi⟩| > δ

and this proves Step 3.
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Step 4. Let (xi)i∈N be as in Step 3. Then limi→∞ ∥xi∥ = 0. Moreover,
there exists a summable sequence α = (αi)i∈N ∈ ℓ1 such that

∞∑
i=1

αi⟨x∗0, xi⟩ = 1,
∞∑
i=1

αi⟨x∗, xi⟩ = 0 for all x∗ ∈ E,
∞∑
i=1

|αi| ≤ δ−1.

It follows from the definition that limi→∞ ∥xi∥ = 0. Define the bounded
linear operator T : X∗ → c0 (with values in the Banach space c0 ⊂ ℓ∞ of
sequences of real numbers that converge to zero) by

Tx∗ := (⟨x∗, xi⟩)i∈N for x∗ ∈ X∗.

Then, by Step 3,

∥Tx∗ − Tx∗0∥∞ > δ for all x∗ ∈ E.

Hence it follows from the Hahn–Banach Theorem 2.3.22 with Y = T (E) and
Example 1.3.7 that there exists an element β = (βi)i∈N ∈ ℓ1 ∼= c∗0 such that

⟨β, Tx∗0⟩ ≥ δ, ⟨β, Tx∗⟩ = 0 for all x∗ ∈ E∗, ∥β∥1 = 1.

Hence the sequence α = (αi)i∈N ∈ ℓ1 with the entries αi := ⟨β, Tx∗0⟩−1βi
for i ∈ N satisfies the requirements of Step 4.

Step 5. Let (xi)i∈N be the sequence in Step 3 and let (αi)i∈N be the summable
sequence of real numbers in Step 4. Then the limit

(3.3.5) x0 :=
∞∑
i=1

αixi = lim
n→∞

n∑
i=1

αixi

exists in X and satisfies the requirements of Theorem 3.3.1.

Since ∥xi∥ ≤ 1 for all i ∈ N, we have

∞∑
i=1

∥αixi∥ ≤
∞∑
i=1

|αi| ≤ δ−1.

Since X is a Banach space, this implies that the limit (3.3.5) exists and
satisfies ∥x0∥ ≤ δ−1 (see Lemma 1.5.1). Moreover, by Step 4,

⟨x∗0, x0⟩ =
∞∑
i=1

αi⟨x∗0, xi⟩ = 1, ⟨x∗, x0⟩ =
∞∑
i=1

αi⟨x∗, xi⟩ = 0

for all x∗ ∈ E. This proves Theorem 3.3.1. □
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3.4. The Eberlein–Šmulyan Theorem

If X is a reflexive Banach space then the weak and weak* topologies agree
on its dual space X∗ = L(X,R), hence the closed unit ball in X∗ is weakly
compact by the Banach–Alaoglu Theorem 3.2.4, and so the closed unit ball
in X is also weakly compact. The Eberlein–Šmulyan Theorem asserts that
this property characterizes reflexivity. It also asserts that weak compactness
of the closed unit ball is equivalent to sequential weak compactness.

Theorem 3.4.1 (Eberlein–Šmulyan). Let X be a real Banach space
and let B := {x ∈ X | ∥x∥ ≤ 1} be the closed unit ball. Then the following
are equivalent.

(i) X is reflexive.

(ii) B is weakly compact.

(iii) B is sequentially weakly compact.

(iv) Every bounded sequence in X has a weakly convergent subsequence.

Proof. See page 136. □

Remark 3.4.2 (James’ Theorem). A theorem of Robert C. James [39]
asserts the following.

Let C ⊂ X be a nonempty bounded weakly closed subset of a Banach space
over the reals. Then C is weakly compact if and only if every bounded linear
functional on X attains its maximum over C.

That the condition is necessary for weak compactness follows from the fact
that every bounded linear functional on X is continuous with respect to
the weak topology (Lemma 3.1.16). The converse is highly nontrivial and
requires the construction of a bounded linear functional on X that fails
to attain its maximum over C whenever C is not weakly compact. This
goes beyond the scope of this book and we refer to the original paper by
James [39] as well as the work of Holmes [36] and Pryce [70].

Combining James’ Theorem with Theorem 3.4.1, one obtains the fol-
lowing result [40]. A Banach space X is reflexive if and only if, for every
bounded linear functional x∗ ∈ X∗, there exists an element x ∈ X such that

∥x∥ = 1, ⟨x∗, x⟩ = ∥x∗∥ .

If X is reflexive, the existence of such an element x can be deduced from
the Hahn–Banach Theorem (Corollary 2.3.23).
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The proof of Theorem 3.4.1 relies on Helly’s Theorem, a precursor to the
Hahn–Banach Theorem proved in 1921, which shows when a finite system
of linear equations has a solution.

Lemma 3.4.3 (Helly’s Theorem). Let X be a real normed vector space
and let x∗1, . . . , x

∗
n ∈ X∗ and c1, . . . , cn ∈ R. Fix a real number M ≥ 0. Then

the following are equivalent.

(i) For every ε > 0 there exists an x ∈ X such that

(3.4.1) ∥x∥ < M + ε, ⟨x∗i , x⟩ = ci for i = 1, . . . , n.

(ii) Every vector λ = (λ1, . . . , λn) ∈ Rn satisfies the inequality

(3.4.2)

∣∣∣∣∣
n∑
i=1

λici

∣∣∣∣∣ ≤M

∥∥∥∥∥
n∑
i=1

λix
∗
i

∥∥∥∥∥ .
Proof. We prove that (i) implies (ii). Fix a constant ε > 0. By (i) there

exists a vector x ∈ X such that (3.4.1) holds. Hence∣∣∣∣∣
n∑
i=1

λici

∣∣∣∣∣ =
∣∣∣∣∣
〈 n∑
i=1

λix
∗
i , x

〉∣∣∣∣∣
≤ ∥x∥

∥∥∥∥∥
n∑
i=1

λix
∗
i

∥∥∥∥∥
≤ (M + ε)

∥∥∥∥∥
n∑
i=1

λix
∗
i

∥∥∥∥∥ .
Since ε > 0 was chosen arbitrarily, this proves (ii).

We prove that (ii) implies (i). Thus assume (ii) holds and suppose first
that x∗1, . . . , x

∗
n are linearly independent. Then, by Lemma 3.1.13, there exist

vectors x1, . . . , xn ∈ X such that ⟨x∗i , xj⟩ = δij for i, j = 1, . . . , n. Define

Z := ⊥{x∗1, . . . , x∗n}.

We prove that Z⊥ = span{x∗1, . . . , x∗n}. Let x∗ ∈ Z⊥. Then, for all x ∈ X,

x−
n∑
i=1

⟨x∗i , x⟩xi ∈ Z

and hence

0 =

〈
x∗, x−

n∑
i=1

⟨x∗i , x⟩xi
〉

=

〈
x∗ −

n∑
i=1

⟨x∗, xi⟩x∗i , x
〉
.

This shows that x∗ =
∑n

i=1⟨x∗, xi⟩x∗i ∈ span{x∗1, . . . , x∗n} for all x∗ ∈ Z⊥.
The converse inclusion is obvious.
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Now define

x :=
n∑
j=1

cjxj .

Then ⟨x∗i , x⟩ = ci for i = 1, . . . , n and every other solution of this equation
has the form x+ z with z ∈ Z. Hence it follows from Corollary 2.4.2 that

inf
z∈Z

∥x+ z∥ = sup
x∗∈Z⊥

|⟨x∗, x⟩|
∥x∗∥

= sup
λ∈Rn

|⟨
∑

i λix
∗
i , x⟩|

∥
∑

i λix
∗
i ∥

= sup
λ∈Rn

|
∑

i λici|
∥
∑

i λix
∗
i ∥

≤ M.

This proves (i) for linearly independent n-tuples x∗1, . . . , x
∗
n ∈ X∗.

To prove the result in general, choose a subset J ⊂ {1, . . . , n} such
that the x∗j for j ∈ J are linearly independent and span the same subspace
as x∗1, . . . , x

∗
n. Fix a constant ε > 0. Then, by what we have just proved,

there exists an x ∈ X such that ∥x∥ < M + ε and ⟨x∗j , x⟩ = cj for j ∈ J .

Let i ∈ {1, . . . , n} \ J . Then there exist real numbers λj for j ∈ J such
that

∑
j∈J λjx

∗
j = x∗i . Hence

∑
j∈J λjcj = ci by (3.4.2) and so ⟨x∗i , x⟩ = ci.

Thus x satisfies (3.4.1) and this proves Lemma 3.4.3. □

Proof of Theorem 3.4.1. Assume X is reflexive. Then ι : X → X∗∗ is
a Banach space isometry and hence is a homeomorphism with respect to
the weak topology on both spaces. Since X∗ is reflexive by Theorem 2.4.4,
the weak topology on X∗∗ agrees with the weak* topology. Hence it follows
from Theorem 3.2.4 that the closed unit ball B∗∗ ⊂ X∗∗ is weakly compact,
and hence so is the closed unit ball B ⊂ X. This shows that (i) implies (ii).

We prove that (ii) implies (i). Thus assume that the closed unit ball
in X is weakly compact and fix a nonzero element x∗∗ ∈ X∗∗.

Claim. For every finite set S ⊂ X∗ there is an element x ∈ X such that

∥x∥ ≤ 2 ∥x∗∗∥ , ⟨x∗, x⟩ = ⟨x∗∗, x∗⟩ for all x∗ ∈ S.

To see this, write S = {x∗1, . . . , x∗n} and define ci := ⟨x∗∗, x∗i ⟩ for i = 1, . . . , n.
Then every vector λ = (λ1, . . . , λn) ∈ Rn satisfies the inequality∣∣∣∣∣

n∑
i=1

λici

∣∣∣∣∣ =
∣∣∣∣∣
〈
x∗∗,

n∑
i=1

λix
∗
i

〉∣∣∣∣∣ ≤ ∥x∗∗∥

∥∥∥∥∥
n∑
i=1

λix
∗
i

∥∥∥∥∥ .
Thus the claim follows from Lemma 3.4.3 with ε :=M := ∥x∗∗∥ > 0.
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We prove that x∗∗ belongs to the image of the inclusion ι : X → X∗∗.
Denote by S ⊂ 2X

∗
the set of all finite subsets S ⊂ X∗. For S ∈ S define

K(S) :=
{
x ∈ X

∣∣ ∥x∥ ≤ 2 ∥x∗∗∥ and ⟨x∗, x⟩ = ⟨x∗∗, x∗⟩ for all x∗ ∈ S
}
.

Then, for every finite set S ⊂ X∗, the set K(S) is nonempty by the claim, is
weakly closed by Lemma 3.1.15, and is contained in cB, where c := 2 ∥x∗∗∥.
The set cB is weakly compact by (ii) and the collection {K(S) |S ∈ S } has
the finite intersection property because

m⋂
i=1

K(Si) = K

(
m⋃
i=1

Si

)
̸= ∅ for all S1, . . . , Sm ∈ S .

Hence ⋂
S∈S

K(S) ̸= ∅

and so there exists an x ∈ X such that x ∈ K(S) for all S ⊂ S . This shows
that ⟨x∗, x⟩ = ⟨x∗∗, x∗⟩ for all x∗ ∈ X∗, and thus x∗∗ = ι(x). Thus we have
proved that (ii) implies (i).

We prove that (i) implies (iii). Assume first that X is separable as well
as reflexive. Then X∗ is separable by Theorem 2.4.6 and is reflexive by
Theorem 2.4.4. Let (xn)n∈N be a sequence in the closed unit ball B ⊂ X.
Then (ι(xn))n∈N is a bounded sequence in X∗∗ and hence has a weak* con-
vergent subsequence (ι(xni))i∈N by Theorem 3.2.1. Since ι : X → X∗∗ is
a homeomorphism with respect to the weak topologies of X and X∗, it
follows that the sequence (xni)i∈N converges weakly to an element x ∈ X.
Since xni ∈ B for all i ∈ N, it then follows from Lemma 3.1.20 that x ∈ B.
This shows that the closed unit ball B ⊂ X is sequentially weakly compact
whenever X is reflexive and separable.

Now assume X is reflexive and let (xn)n∈N be a sequence in the closed

unit ball B ⊂ X. Let Y := span{xn |n ∈ N} be the smallest closed subspace
of X that contains the sequence (xn)n∈N. Then Y is reflexive by Theo-
rem 2.4.4 and Y is separable by definition. Hence the sequence (xn)n∈N
has a subsequence that converges weakly to an element of B. Thus B is
sequentially weakly compact. This shows that (i) implies (iii).

We prove that (iii) implies (iv). If (xn)n∈N is a bounded sequence, then
there exists a constant c > 0 such that ∥xn∥ ≤ c for all n ∈ N, hence the
sequence (c−1xn)n∈N in B has a weakly convergent subsequence by (iii),
and hence so does the original sequence (xn)n∈N. This shows that (iii)
implies (iv).

We prove that (iv) implies (i). Thus assume (iv) and choose an el-
ement x∗∗0 ∈ X∗∗ such that ∥x∗∗0 ∥ ≤ 1. We prove in three steps that x∗∗0
belongs to the image of the inclusion ι : X → X∗∗ in (2.4.1).
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Step 1. Let n ∈ N and x∗1, . . . , x
∗
n ∈ X∗. Then there is an x ∈ X such that

(3.4.3) ∥x∥ ≤ 1, ⟨x∗i , x⟩ = ⟨x∗∗0 , x∗i ⟩ for i = 1, . . . , n.

Denote by S ⊂ X the unit sphere and recall from Corollary 3.1.29 that the
weak* closure of ι(S) is the closed unit ball B∗∗ ⊂ X∗∗. For m ∈ N the set

Um :=

{
x∗∗ ∈ X∗∗

∣∣∣∣ |⟨x∗∗ − x∗∗0 , x
∗
i ⟩| <

1

m
for i = 1, . . . , n

}
is a weak* open neighborhood of x∗∗0 ∈ B∗∗ and so Um∩ ι(S) ̸= ∅. Hence, by
the axiom of countable choice, there exists a sequence (xm)m∈N in X such
that

∥xm∥ = 1, ι(xm) ∈ Um for all m ∈ N.

This sequence satisfies

|⟨x∗i , xm⟩ − ⟨x∗∗0 , x∗i ⟩| <
1

m
for all m ∈ N and i = 1, . . . , n.

By (iv), there exists a weakly convergent subsequence (xmk
)k∈N. Denote the

weak limit by x. It satisfies ∥x∥ ≤ 1 by Lemma 3.1.20 and

⟨x∗i , x⟩ = lim
k→∞

⟨x∗i , xmk
⟩ = ⟨x∗∗0 , x∗i ⟩ for i = 1, . . . , n.

This proves Step 1.

Step 2. Define

E :=
{
x∗ ∈ X∗ ∣∣ ⟨x∗∗0 , x∗⟩ = 0

}
and let B∗ ⊂ X∗ be the closed unit ball. Then E ∩B∗ is weak* closed.

Fix an element x∗0 in the weak* closure of E ∩B∗. Then x∗0 ∈ B∗ by Corol-
lary 3.1.28. We must prove that x∗0 ∈ E. Fix a constant ε > 0. We claim
that there are sequences xn ∈ B and x∗n ∈ E ∩B∗ such that, for all n ∈ N,

(3.4.4) ⟨x∗i , xn⟩ = ⟨x∗∗0 , x∗i ⟩ =
{

⟨x∗∗0 , x∗0⟩, if i = 0,
0, if i ≥ 1,

for i = 0, . . . , n−1,

and

(3.4.5) |⟨x∗n − x∗0, xi⟩| < ε for i = 1, . . . , n.

By Step 1 there exists an element x1 ∈ B such that ⟨x∗0, x1⟩ = ⟨x∗∗0 , x∗0⟩.
Thus x1 satisfies (3.4.4) for n = 1. Moreover, since x∗0 belongs to the weak*
closure of E ∩B∗, there exists an element x∗1 ∈ E ∩B∗ such that

|⟨x∗1 − x∗0, x1⟩| < ε.

Thus x∗1 satisfies (3.4.5) for n = 1.
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Now let n ∈ N and suppose that xi ∈ B and x∗i ∈ E∩B∗ have been found
for i = 1, . . . , n such that (3.4.4) and (3.4.5) are satisfied. Then, by Step 1,
there is an element xn+1 ∈ B such that

⟨x∗i , xn+1⟩ = ⟨x∗∗0 , x∗i ⟩ for i = 0, . . . , n.

Furthermore, since x∗0 belongs to the weak* closure of E ∩ B∗, there exists
an element x∗n+1 ∈ E ∩B∗ such that∣∣⟨x∗n+1 − x∗0, xi⟩

∣∣ < ε for i = 1, . . . , n+ 1.

By the axiom of dependent choice (page 6), this shows that there exist
sequences xn ∈ B and x∗n ∈ E ∩B∗ that satisfy (3.4.4) and (3.4.5).

Since ∥xn∥ ≤ 1 for all n ∈ N, it follows from (iv) that there exists a
weakly convergent subsequence (xnk

)k∈N. Denote the limit by x0. Then

(3.4.6) ⟨x∗m, x0⟩ = lim
k→∞

⟨x∗m, xnk
⟩ = ⟨x∗∗0 , x∗m⟩ = 0 for all m ∈ N.

Here the second equation follows from (3.4.4) and the last equation follows
from the fact that x∗m ∈ E ∩B∗ for m ≥ 1. Moreover, Lemma 3.1.20 asserts
that x0 ∈ B and that there exists an m ∈ N and λ1, . . . , λm ∈ R such that

(3.4.7) λi ≥ 0,

m∑
i=1

λi = 1,
∥∥∥x0 − m∑

i=1

λixi

∥∥∥ < ε.

Hence∣∣∣⟨x∗∗0 , x∗0⟩∣∣∣ ≤
∣∣∣⟨x∗∗0 , x∗0⟩ − m∑

i=1

λi⟨x∗m, xi⟩
∣∣∣+ ∣∣∣〈x∗m, m∑

i=1

λixi − x0

〉∣∣∣
≤

m∑
i=1

λi

∣∣∣⟨x∗∗0 , x∗0⟩ − ⟨x∗m, xi⟩
∣∣∣+ ∥∥∥ m∑

i=1

λixi − x0

∥∥∥
=

m∑
i=1

λi

∣∣∣⟨x∗0 − x∗m, xi⟩
∣∣∣+ ∥∥∥ m∑

i=1

λixi − x0

∥∥∥
< 2ε.

Here the first step uses equation (3.4.6), the second step uses (3.4.7), the
third step uses the equation ⟨x∗∗0 , x∗0⟩ = ⟨x∗0, xi⟩ in (3.4.4), and the last step
follows from (3.4.5), (3.4.6), and (3.4.7). Thus |⟨x∗∗0 , x∗0⟩| < 2ε for all ε > 0,
therefore ⟨x∗∗0 , x∗0⟩ = 0, and so x∗0 ∈ E ∩B∗. This proves Step 2.

Step 3. There exists an element x0 ∈ X such that ι(x0) = x∗∗0 .

By Corollary 3.3.2, the linear subspace E ⊂ X∗ in Step 2 is weak* closed.
(This is the only place in the proof where we use the fact thatX is complete.)
Hence it follows from Corollary 3.1.25 that there exists an element x0 ∈ X
such that ⟨x∗, x0⟩ = ⟨x∗∗0 , x∗⟩ for all x∗ ∈ X∗. This proves Step 3 and
Theorem 3.4.1. □
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3.5. The Krĕın–Milman Theorem

The Krĕın–Milman Theorem [47, 60] is a general result about compact
convex subsets of a locally convex Hausdorff topological vector space. It
asserts that every such convex subset is the closed convex hull of its set
of extremal points. In particular, the result applies to the dual space of
a Banach space, equipped with the weak* topology. Here are the relevant
definitions.

Definition 3.5.1 (Extremal Point and Face). Let X be a real vector
space and let K ⊂ X be a nonempty convex subset. A subset

F ⊂ K

is called a face of K if F is a nonempty convex subset of K and

(3.5.1)
x0, x1 ∈ K, 0 < λ < 1,
(1− λ)x0 + λx1 ∈ F

=⇒ x0, x1 ∈ F.

An element x ∈ K is called an extremal point of K if

(3.5.2)
x0, x1 ∈ K, 0 < λ < 1,
(1− λ)x0 + λx1 = x

=⇒ x0 = x1 = x.

This means that the singleton F := {x} is a face of K or, equivalently, that
there is no open line segment inK that contains x (see Figure 3.5.1). Denote
the set of extremal points of K by

E(K) := {x ∈ K |x satisfies (3.5.2)} .

extremal point

K
face

Figure 3.5.1. Extremal points and faces.

Recall that the convex hull of a set E ⊂ X is denoted by conv(E)
and that its closure, the closed convex hull of E, is denoted by conv(E)
whenever X is a topological vector space (see Definition 3.1.19).
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Theorem 3.5.2 (Krĕın–Milman). Let X be a locally convex Hausdorff
topological vector space and let K ⊂ X be a nonempty compact convex set.
Then K is the closed convex hull of its extremal points, i.e. K = conv(E(K)).
In particular, K admits an extremal point, i.e. E(K) ̸= ∅.

Proof. The proof has five steps.

Step 1. Let

K :=
{
K ⊂ X

∣∣K is a nonempty compact convex set
}

and define the relation ≼ on K by

(3.5.3) F ≼ K
def⇐⇒ F is a face of K

for F,K ∈ K . Then (K ,≼) is a partially ordered set and every nonempty
chain C ⊂ K has an infimum.

That the relation (3.5.3) is a partial order follows directly from the definition.
Moreover, every elementK ∈ K is a closed set becauseX is Hausdorff. This
implies that every nonempty chain C ⊂ K has an infimum

C0 :=
⋂
C∈C

C.

This proves Step 1.

Step 2. If K ∈ K and Λ : X → R is a continuous linear functional then

F := K ∩ Λ−1(sup
K

Λ) ∈ K

and F ≼ K.

Abbreviate c := supK Λ. Since K is compact and Λ is continuous, the
set F = K ∩ Λ−1(c) is nonempty. Since K is closed and Λ is continuous,
the set F is a closed subset of K and hence is compact. Since K is convex
and Λ is linear, F is convex. Thus F ∈ K .

To prove that F is a face of K, fix two elements x0, x1 ∈ K and a real
number 0 < λ < 1 such that

x := (1− λ)x0 + λx1 ∈ F.

Then (1− λ)Λ(x0) + λΛ(x1) = Λ(x) = c and hence

(1− λ)(c− Λ(x0)) + λ(c− Λ(x1)) = 0.

Since c− Λ(x0) ≥ 0 and c− Λ(x1) ≥ 0, this implies

Λ(x0) = Λ(x1) = c

and hence x0, x1 ∈ F . Thus F is a face of K. This proves Step 2.
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Step 3. Every minimal element of K is a singleton.

Fix an element K ∈ K which is not a singleton and choose two ele-
ments x0, x1 ∈ K such that x0 ̸= x1. Since X is a locally convex Hausdorff
space, there exists a convex open set U1 ⊂ X such that x1 ∈ U1 and x0 /∈ U1.
Hence it follows from Theorem 3.1.11 that there exists a continuous linear
functional Λ : X → R such that Λ(x0) < Λ(x) for all x ∈ U1 and so

Λ(x0) < Λ(x1).

By Step 2, the set F := K ∩ Λ−1(supK Λ) is a face of K and x0 ∈ K \ F .
Thus K is not a minimal element of K .

Step 4. Let K ∈ K . Then E(K) ̸= ∅.

By Step 1 and the Lemma of Zorn, there exists a minimal element E ∈ K
such that E ≼ K. By Step 3,

E = {x}

is a singleton. Hence x ∈ E(K).

Step 5. Let K ∈ K . Then K = conv(E(K)).

It follows directly from the definitions that

conv(E(K)) ⊂ K.

To prove the converse inclusion, assume, by contradiction, that there exists
an element

x ∈ K \ conv(E(K)).

Since X is a locally convex Hausdorff space, there exists an open convex
set U ⊂ X such that

x ∈ U, U ∩ conv(E(K)) = ∅.

Since E(K) is nonempty by Step 4, it follows from Theorem 3.1.11 that there
exists a continuous linear functional Λ : X → R such that

(3.5.4) Λ(x) > sup
conv(E(K))

Λ.

By Step 2, the set

F := K ∩ Λ−1(sup
K

Λ)

is a face of K and

F ∩ E(K) = ∅.
by (3.5.4). By Step 3, the set F has an extremal point x0. Then x0 is also
an extremal point of K in contradiction to the fact that F ∩E(K) = ∅. This
proves Theorem 3.5.2. □
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Example 3.5.3. This example shows that the extremal set of a compact
convex set need not be compact. Let X be an infinite-dimensional reflexive
Banach space. Assume X is strictly convex, i.e. for all x, y ∈ X,

(3.5.5) ∥x+ y∥ = 2 ∥x∥ = 2 ∥y∥ =⇒ x = y.

Then the closed unit ball B ⊂ X is weakly compact by Theorem 3.4.1 and its
extremal set is the unit sphere E(B) = S (see Exercises 2.5.11 and 3.7.14).
Thus the extremal set is not weakly compact and B is the weak closure of
its extremal set by Lemma 3.1.21. Exercise: Prove that B = conv(S).

Example 3.5.4 (Infinite-Dimensional Simplex). The infinite pro-
duct RN is a locally convex Hausdorff space with the product topology,
induced by the metric

d(x, y) :=
∞∑
i=1

2−i
|xi − yi|

1 + |xi − yi|

for x = (xi)i∈N and y = (yi)i∈N in RN. The infinite-dimensional simplex

∆ :=

{
x = (xi)i∈N ∈ RN

∣∣∣∣xi ≥ 0,
∞∑
i=1

xi ≤ 1

}

is a compact convex subset of RN by Tychonoff’s Theorem A.2.1. Its set of
extremal points is the compact set

E(∆) = {ei | i ∈ N} ∪ {0}, ei := (δij)j∈N.

The convex hull of E(∆) is strictly contained in ∆ and hence is not compact.
Exercise: The product topology on the infinite-dimensional simplex agrees
with the weak* topology it inherits as a subset of ℓ1 = c∗0 (see Example 1.3.7).

Example 3.5.5 (Hilbert Cube). The Hilbert cube is the set

Q :=
{
x = (xi)i∈N ∈ RN ∣∣ 0 ≤ xi ≤ 1/i

}
.

This is a compact convex subset of RN with respect to the product topology.
Its set of extremal points is the compact set

E(Q) =
{
x = (xi)i∈N ∈ RN ∣∣xi ∈ {0, 1/i}

}
.

The convex hull of any finite subset of E(Q) is nowhere dense in Q. Hence

conv(E(Q)) ⊊ Q

by the Baire Category Theorem 1.6.4. Exercise: The product topology on
the Hilbert cube agrees with the topology induced by the ℓ2 norm.
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3.6. Ergodic Theory

This section establishes the existence of an ergodic measure for any homeo-
morphism of a compact metric space. The proof is a fairly straightforward
consequence of the Banach–Alaoglu Theorem 3.2.1 and the Krĕın–Milman
Theorem 3.5.2. We also show that the ergodic measures are precisely the
extremal points of the convex set of all invariant measures (Theorem 3.6.3).
The proof that every ergodic measure is extremal requires von Neumann’s
Mean Ergodic Theorem 3.6.5, the proof of which will in turn be based on an
abstract ergodic theorem for operators on Banach spaces (Theorem 3.6.9).

3.6.1. Ergodic Measures. Let (M,d) be a compact metric space and let
ϕ :M →M be a homeomorphism. Denote by B ⊂ 2M the Borel σ-algebra.
Recall that the set M(ϕ) of all ϕ-invariant Borel probability measures onM
is a nonempty weak* compact convex subset of the space M(M) = C(M)∗

of all signed Borel measures onM (see Subsection 3.2.2 and Corollary 3.2.6).

Definition 3.6.1 (Ergodic Measure). A ϕ-invariant Borel probability
measure µ : B → [0, 1] is called ϕ-ergodic if, for every Borel set B ⊂M ,

(3.6.1) ϕ(B) = B =⇒ µ(B) ∈ {0, 1}.
The homeomorphism ϕ is called µ-ergodic if µ is an ergodic measure for ϕ.

Example 3.6.2. If x ∈ M is a fixed point of ϕ, then the Dirac mea-
sure µ = δx is ergodic for ϕ. If ϕ = id, then the Dirac measure at each point
of M is ergodic for ϕ and there are no other ergodic measures.

Theorem 3.6.3 (Ergodic Measures are Extremal).

Let µ : B → [0, 1] be a ϕ-invariant Borel probability measure. Then the fol-
lowing are equivalent.

(i) µ is an ergodic measure for ϕ.

(ii) µ is an extremal point of M(ϕ).

Proof. We prove that (ii) implies (i) by an indirect argument. Assume
that µ is not ergodic for ϕ. Then there exists a Borel set Λ ⊂M such that

ϕ(Λ) = Λ, 0 < µ(Λ) < 1.

Define µ0, µ1 : B → [0, 1] by

µ0(B) :=
µ(B \ Λ)
1− µ(Λ)

, µ1(B) :=
µ(B ∩ Λ)

µ(Λ)

for B ∈ B. These are ϕ-invariant Borel probability measures and they are
not equal because µ0(Λ) = 0 and µ1(Λ) = 1. Moreover, µ = (1−λ)µ0+λµ1
where λ := µ(Λ). Hence µ is not an extremal point of M(ϕ). This shows
that (ii) implies (i). The converse is proved on page 146. □
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Corollary 3.6.4 (Existence of Ergodic Measures). Every homeo-
morphism of a compact metric space admits an ergodic measure.

Proof. The set M(ϕ) of ϕ-invariant Borel probability measures on M is
nonempty by Lemma 3.2.3 and is a weak* compact convex subset of M(M)
by Corollary 3.2.6. Hence M(ϕ) has an extremal point µ by Theorem 3.5.2.
Thus µ is an ergodic measure by (ii) =⇒ (i) in Theorem 3.6.3. □

3.6.2. Space and Time Averages. Given a homeomorphism

ϕ :M →M

of a compact metric space M , a ϕ-ergodic measure

µ : B → [0, 1]

on the Borel σ-algebra B ⊂ 2M , a continuous function f :M → R, and an
element x ∈M , one can ask the question of whether the sequence of aver-
ages 1

n

∑n−1
k=0 f(ϕ

k(x)) converges. A theorem of Birkhoff [13] answers this
question in the affirmative for almost every x ∈M . This is Birkhoff’s Er-
godic Theorem. It asserts that, if µ is a ϕ-ergodic measure, then for every
continuous function f :M → R, there exists a Borel set Λ ⊂M such that

(3.6.2) ϕ(Λ) = Λ, µ(Λ) = 1,

and

(3.6.3)

∫
M
f dµ = lim

n→∞

1

n

n−1∑
k=0

f(ϕk(x)) for all x ∈ Λ.

In other words, the time average of f agrees with the space average for almost
every orbit of the dynamical system. If ϕ is uniquely ergodic, i.e. ϕ admits
only one ergodic measure or, equivalently, only one ϕ-invariant Borel proba-
bility measure, then equation (3.6.3) actually holds for all x ∈M . Birkhoff’s
Ergodic Theorem extends to µ-integrable functions and asserts that the se-
quence of measurable functions 1

n

∑n−1
k=0 f ◦ ϕk converges pointwise almost

everywhere to the mean value of f . A particularly interesting case is where f
is the characteristic function of a Borel set B ⊂M . Then the integral of f
is the measure of B and it follows from Birkhoff’s Ergodic Theorem that

(3.6.4) µ(B) = lim
n→∞

#
{
k ∈ {0, . . . , n− 1}

∣∣ϕk(x) ∈ B
}

n

for µ-almost all x ∈ M . A weaker result is von Neumann’s Mean Ergodic
Theorem [62]. It asserts that the sequence 1

n

∑n−1
k=0 f ◦ ϕk converges to the

mean value of f in Lp(µ) for 1 < p < ∞. This implies pointwise almost
everywhere convergence for a suitable subsequence (see [75, Cor 4.10]).
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Theorem 3.6.5 (Von Neumann’s Mean Ergodic Theorem).

Let (M,d) be a compact metric space, let ϕ :M →M be a homeomorphism,
let µ ∈ M(ϕ) be a ϕ-ergodic measure, let 1 < p <∞, and let f ∈ Lp(µ).
Then

(3.6.5) lim
n→∞

∥∥∥∥∥ 1n
n−1∑
k=0

f ◦ ϕk −
∫
M
f dµ

∥∥∥∥∥
Lp

= 0.

Proof. See page 149. □

Theorem 3.6.5 implies Theorem 3.6.3. The proof has two steps.

Step 1. Let µ0, µ1 ∈ M(ϕ) be ergodic measures such that µ0(Λ) = µ1(Λ)
for every ϕ-invariant Borel set Λ ⊂M . Then µ0 = µ1.

Fix a continuous function f : M → R. Then it follows from Theorem 3.6.5
and [75, Cor 4.10] that there exist Borel sets B0, B1 ⊂ M and a sequence
of integers 1 ≤ n1 < n2 < n3 < · · · such that µi(Bi) = 1 and

(3.6.6)

∫
M
f dµi = lim

j→∞

1

nj

nj−1∑
k=0

f(ϕk(x)) for x ∈ Bi and i = 0, 1.

For i = 0, 1 define Λi :=
⋂
n∈Z ϕ

n(Bi). So Λi is a ϕ-invariant Borel set
such that µi(Λi) = 1. Thus µ1(Λ0) = µ0(Λ0) = 1 and µ0(Λ1) = µ1(Λ1) = 1
by assumption. This implies that the ϕ-invariant Borel set Λ := Λ0 ∩ Λ1 is
nonempty. Since Λ ⊂ B0 ∩B1, it follows from (3.6.6) that∫

M
f dµ0 = lim

j→∞

1

nj

nj−1∑
k=0

f(ϕk(x)) =

∫
M
f dµ1 for all x ∈ Λ.

Thus the integrals of f with respect to µ0 and µ1 agree for every contin-
uous function f : M → R. Hence µ0 = µ1 by uniqueness in the Riesz
Representation Theorem (see [75, Cor 3.19]). This proves Step 1.

Step 2. Let µ ∈ M(ϕ) be ergodic. Then µ is an extremal point of M(ϕ).

Let µ0, µ1 ∈ M(ϕ) and 0 < λ < 1 such that µ = (1− λ)µ0 + λµ1. If B ⊂M
is a Borel set such that µ(B) = 0, then (1− λ)µ0(B) + λµ1(B) = 0, and
hence µ0(B) = µ1(B) = 0 because 0 < λ < 1. If B ⊂M is a Borel set such
that µ(B) = 1, then µ(M \B) = 0, hence µ0(M \B) = µ1(M \B) = 0, and
therefore µ0(B) = µ1(B) = 1. Now let Λ ⊂M be a ϕ-invariant Borel set.
Then µ(Λ) ∈ {0, 1} because µ is ϕ-ergodic, and hence µ0(Λ) = µ1(Λ) = µ(Λ).
Thus µ0 and µ1 are ϕ-ergodic measures that agree on all ϕ-invariant Borel
sets. Hence µ0 = µ1 = µ by Step 1 and this proves Step 2.

Step 2 shows that (i) implies (ii) in Theorem 3.6.3. The converse was
proved on page 144. □
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3.6.3. An Abstract Ergodic Theorem. Theorem 3.6.5 translates into
a theorem about the iterates of a bounded linear operator from a Banach
space to itself provided that these iterates are uniformly bounded. For an
endomorphism

T : X → X

of a vector space X and a positive integer n denote the nth iterate of T by

Tn := T ◦ · · · ◦ T.

For n = 0 define

T 0 := id.

The ergodic theorem in functional analysis asserts that, if T : X → X is a
bounded linear operator on a reflexive Banach space whose iterates Tn form
a bounded sequence of bounded linear operators, then its averages

Sn :=
1

n

n−1∑
k=1

T k

form a sequence of bounded linear operators that converge strongly to a pro-
jection onto the kernel of the operator 1l− T . Here is the relevant definition.

Definition 3.6.6 (Projection). Let X be a real normed vector space.
A bounded linear operator P : X → X is called a projection if

P 2 = P.

Lemma 3.6.7. Let X be a real normed vector space and let P : X → X
be a bounded linear operator. Then the following are equivalent.

(i) P is a projection.

(ii) There exist closed linear subspaces X0, X1 ⊂ X such that

X0 ∩X1 = {0}, X0 ⊕X1 = X,

and

P (x0 + x1) = x1

for all x0 ∈ X0 and all x1 ∈ X1.

Proof. If P is a projection then P 2 = P and hence the linear subspaces

X0 := ker(P ), X1 := im(P ) = ker(1l− P )

satisfy the requirements of part (ii). If P is as in (ii) then P 2 = P by
definition and P : X → X is a bounded linear operator by Corollary 2.2.9.
This proves Lemma 3.6.7. □
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Example 3.6.8. The direct sum of two closed linear subspaces of a
Banach space need not be closed. For example, let X := C([0, 1],R) be
the Banach space of continuous functions f : [0, 1] → R, equipped with the
supremum norm. Then the linear subspaces

Y := {(f, g) ∈ X ×X | f = 0},
Z := {(f, g) ∈ X ×X | f ∈ C1([0, 1]), f ′ = g}

of X × X are closed, their intersection Y ∩ Z is trivial, and their direct
sum Y ⊕ Z = {(f, g) ∈ X ×X | f ∈ C1([0, 1])} is not closed.

Theorem 3.6.9 (Ergodic Theorem). Let T : X → X be a bounded
linear operator on a Banach space X. Assume that there is a constant c ≥ 1
such that

(3.6.7) ∥Tn∥ ≤ c for all n ∈ N.

For n ∈ N define the bounded linear operator Sn : X → X by

(3.6.8) Sn :=
1

n

n−1∑
k=0

T k.

Then the following holds.

(i) Let x ∈ X. Then the sequence (Snx)n∈N converges if and only if it has
a weakly convergent subsequence.

(ii) The set

(3.6.9) Z :=
{
x ∈ X

∣∣ the sequence (Snx)n∈N converges
}

is a closed T -invariant linear subspace of X and

(3.6.10) Z = ker(1l− T )⊕ im(1l− T ).

Moreover, if X is reflexive then Z = X.

(iii) Define the bounded linear operator

S : Z → Z

by

(3.6.11) S(x+ y) := x for x ∈ ker(1l− T ) and y ∈ im(1l− T ).

Then

(3.6.12) lim
n→∞

Snz = Sz

for all z ∈ Z and

(3.6.13) ST = TS = S2 = S, ∥S∥ ≤ c.

Proof. See page 150. □
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Theorem 3.6.9 implies Theorem 3.6.5. Let ϕ : M → M be a homeo-
morphism of a compact metric space M and let µ ∈ M(ϕ) be an ergodic
ϕ-invariant Borel probability measure on M . Define the bounded linear
operator T : Lp(µ) → Lp(µ) by

Tf := f ◦ ϕ for f ∈ Lp(µ).

Then ∥Tf∥p = ∥f∥p for all f ∈ Lp(µ), by the ϕ-invariance of µ, and so

∥T∥ = 1.

Thus T satisfies the requirement of Theorem 3.6.9. Let f ∈ Lp(µ). Since
Lp(µ) is reflexive (Example 1.3.3), Theorem 3.6.9 asserts that the sequence

Snf :=
1

n

n−1∑
k=0

T kf =
1

n

n−1∑
k=0

f ◦ ϕk

converges in Lp(µ) to a function Sf ∈ ker(1l−T ). It remains to prove that Sf
is equal to the constant c :=

∫
M f dµ almost everywhere. The key to the

proof is the fact that every function in the kernel of the operator 1l− T is
constant (almost everywhere). Once this is understood, it follows that there
exists a constant c ∈ R such that Sf = c almost everywhere, and hence

c =

∫
M
Sf dµ = lim

n→∞

∫
M
Snf dµ = lim

n→∞

1

n

n−1∑
k=0

∫
M
(f ◦ ϕk) dµ =

∫
M
f dµ.

Thus it remains to prove that every function in the kernel of 1l− T is con-
stant. Let g ∈ Lp(µ) and suppose that Tg = g. Choose a representative of
the equivalence class of g, still denoted by g ∈ Lp(µ). Then g(x) = g(ϕ(x))
for almost all x ∈M . Define

E0 := {x ∈M | g(x) ̸= g(ϕ(x))} , E :=
⋃
k∈Z

ϕk(E0).

Then E ⊂M is a Borel set with ϕ(E) = E, µ(E) = 0, and g(ϕ(x)) = g(x)
for every x ∈M \ E. Let c :=

∫
M g dµ and define B−, B0, B+ ⊂M by

B0 := {x ∈M \ E | g(x) = c} , B± := {x ∈M \ E | ± g(x) > c} .

Each of these three Borel sets is invariant under ϕ and hence has measure
either zero or one. Moreover, B− ∪B0 ∪B+ =M \ E and this implies

µ(B−) + µ(B0) + µ(B+) = 1.

Hence one of the three sets has measure one and the other two have measure
zero. This implies that µ(B0) = 1, because otherwise either

∫
M g dµ < c

or
∫
M g dµ > c. Thus g is equal to its mean value almost everywhere. This

proves Theorem 3.6.5. □
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Proof of Theorem 3.6.9. The proof has eight steps.

Step 1. Let n ∈ N. Then ∥Sn∥ ≤ c and ∥Sn(1l− T )∥ ≤ 1+c
n .

By assumption, we have ∥Sn∥ ≤ 1
n

∑n−1
k=0∥T k∥ ≤ c for all n ∈ N. Moreover,

Sn(1l− T ) =
1

n

n−1∑
k=0

T k − 1

n

n∑
k=1

T k =
1

n
(1l− Tn)

and so

∥Sn(1l− T )∥ ≤ 1

n

(
∥1l∥+ ∥Tn∥

)
≤ 1 + c

n
for all n ∈ N. This proves Step 1.

Step 2. Let x ∈ X such that Tx = x. Then Snx = x for all n ∈ N and

∥x∥ ≤ c ∥x+ ξ − Tξ∥ for all ξ ∈ X.

Since Tx = x it follows by induction that T kx = x for all k ∈ N and hence

x =
1

n

n−1∑
k=0

T kx = Snx for all n ∈ N.

Moreover, limn→∞ ∥Sn(ξ − Tξ)∥ = 0 by Step 1 and hence

∥x∥ = lim
n→∞

∥x+ Sn(ξ − Tξ)∥ = lim
n→∞

∥Sn(x+ ξ − Tξ)∥ ≤ c ∥x+ ξ − Tξ∥ .

Here the inequality holds because ∥Sn∥ ≤ c by Step 1. This proves Step 2.

Step 3. If x ∈ ker(1l− T ) and y ∈ im(1l− T ) then ∥x∥ ≤ c ∥x+ y∥.

Choose a sequence ξn ∈ X such that y = limn→∞(ξn − Tξn). Then, by
Step 2, we have ∥x∥ ≤ c∥x+ ξn − Tξn∥ for all n ∈ N. Take the limit n→ ∞
to obtain ∥x∥ ≤ c∥x+ y∥. This proves Step 3.

Step 4. ker(1l− T ) ∩ im(1l−K) = {0} and the direct sum

(3.6.14) Z := ker(1l− T )⊕ im(1l− T )

is a closed linear subspace of X.

Let x ∈ ker(1l−T )∩im(1l− T ) and define y := −x. Then ∥x∥ ≤ c∥x+ y∥ = 0

by Step 3 and hence x = 0. This shows that ker(1l− T ) ∩ im(1l− T ) = {0}.
We prove that the subspace Z in (3.6.14) is closed. Let xn ∈ ker(1l− T )

and yn ∈ im(1l− T ) be sequences whose sum zn := xn + yn converges to
some element z ∈ X. Then (zn)n∈N is a Cauchy sequence and hence (xn)n∈N
is a Cauchy sequence by Step 3. This implies that yn = zn − xn is a
Cauchy sequence and hence z = x+ y, where x := limn→∞ xn ∈ ker(1l− T )

and y := limn→∞ yn ∈ im(1l− T ). This proves Step 4.
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Step 5. If z ∈ Z then Tz ∈ Z.

Let z ∈ Z. Then

z = x+ y, x ∈ ker(1l− T ), y ∈ im(1l− T ).

Choose a sequence ξi ∈ X such that y = limi→∞(ξi − Tξi). Then

Ty = lim
i→∞

T (ξi − Tξi) = lim
i→∞

(1l− T )Tξi ∈ im(1l− T ).

Hence

Tz = Tx+ Ty = x+ Ty ∈ Z

and this proves Step 5.

Step 6. Let x ∈ ker(1l− T ) and y ∈ im(1l− T ). Then

x = lim
n→∞

Sn(x+ y).

By Step 1, the sequence

∥Sn(1l− T )ξ∥ ≤ 1 + c

n
∥ξ∥

converges to zero as n tends to infinity for every ξ ∈ X. Hence it follows from
the estimate ∥Sn∥ ≤ c in Step 1 and the Banach–Steinhaus Theorem 2.1.5
that

lim
n→∞

Sny = 0 for all y ∈ im(1l− T ).

Moreover,

Snx = x for all n ∈ N
by Step 2. Hence

x = lim
n→∞

Snx = lim
n→∞

Sn(x+ y).

This proves Step 6.

Step 7. Let x, z ∈ X. Then the following are equivalent.

(a) Tx = x and z − x ∈ im(1l− T ).

(b) limn→∞ ∥Snz − x∥ = 0.

(c) There is a sequence of integers 1 ≤ n1 < n2 < n3 < · · · such that

lim
i→∞

⟨x∗, Sniz⟩ = ⟨x∗, x⟩ for all x∗ ∈ X∗.

That (a) implies (b) follows immediately from Step 6 and that (b) implies (c)
is obvious. We prove that (c) implies (a). Thus assume (c) and fix a bounded
linear functional x∗ ∈ X∗. Then

T ∗x∗ := x∗ ◦ T : X → R
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is a bounded linear functional and

⟨x∗, x− Tx⟩ = ⟨x∗ − T ∗x∗, x⟩
= lim

i→∞
⟨x∗ − T ∗x∗, Sniz⟩

= lim
i→∞

⟨x∗, (1l− T )Sniz⟩

= 0.

Here the last equation follows from Step 1. Hence

Tx = x

by the Hahn–Banach Theorem (Corollary 2.3.23). Next we prove that

z − x ∈ im(1l− T ).

Assume, by contradiction, that z−x ∈ X \ im(1l− T ). Then, by the Hahn–
Banach Theorem 2.3.22, there exists an element x∗ ∈ X∗ such that

(3.6.15) ⟨x∗, z − x⟩ = 1, ⟨x∗, ξ − Tξ⟩ = 0 for all ξ ∈ X.

This implies ⟨x∗, T kξ − T k+1ξ⟩ = 0 for all k ∈ N and all ξ ∈ X. Hence, by
induction, ⟨x∗, ξ⟩ = ⟨x∗, T kξ⟩ for every ξ ∈ X and every integer k ≥ 0. Thus

⟨x∗, Snz⟩ =
1

n

n−1∑
k=0

⟨x∗, T kz⟩ = ⟨x∗, z⟩

for all n ∈ N. Hence it follows from (c) that

⟨x∗, z − x⟩ = lim
i→∞

⟨x∗, Sniz − x⟩ = 0.

This contradicts (3.6.15). Thus z − x ∈ im(1l− T ) and this proves Step 7.

Step 8. We prove Theorem 3.6.9.

The subspace Z in (3.6.14) is closed by Step 4 and is T -invariant by Step 5.
Moreover, Step 7 asserts that an element z ∈ X belongs to Z if and only if the
sequence (Snz)n∈N converges in the norm topology if and only if (Snz)n∈N
has a weakly convergent subsequence. If X is reflexive, this holds for
all z ∈ X by Step 1 and Theorem 2.4.4. This proves (i) and (ii).

Define the operator S : Z → Z by (3.6.11). Then ∥S∥ ≤ c by Step 3,
the equation limn→∞ Snz = Sz for z ∈ Z follows from Step 6, and S2 = S
by definition. The equation ST = TS = S follows from the fact that S
commutes with T |Z and vanishes on the image of the operator 1l− T . This
proves Theorem 3.6.9. □



3.7. Problems 153

3.7. Problems

Exercise 3.7.1 (Weak and Strong Convergence). Let H be a real
Hilbert space and let (xi)i∈N be a sequence in H that converges weakly
to x ∈ H. Assume also that

∥x∥ = lim
i→∞

∥xi∥ .

Prove that (xi)i∈N converges strongly to x, i.e.

lim
i→∞

∥xi − x∥ = 0.

Exercise 3.7.2 (Weak Convergence and Weak Closure).

LetH be an infinite-dimensional separable real Hilbert space and let (en)n∈N
be an orthonormal basis of H. Prove the following.

(a) The sequence (en)n∈N converges weakly to zero.

(b) The set
A :=

{√
nen |n ∈ N

}
is sequentially weakly closed, but the weak closure of A contains zero. Hint:
Let U ⊂ H be a weakly open neighborhood of the origin. Show that there
are vectors y1, . . . , ym ∈ H and a number ε > 0 such that

V := {x ∈ H | max
i=1,...,m

|⟨x, yi⟩| < ε} ⊂ U.

Show that the sequence

zn := max
i=1,...m

|⟨en, yi⟩|

is square summable and deduce that V ∩A ̸= ∅.

Exercise 3.7.3 (The Weak Topology of ℓ1). Prove the following.

(a) The standard basis en of ℓ1 does not converge weakly to zero.

(b) View ℓ1 as the dual space of c0 (see Example 1.3.7). Then the standard
basis converges to zero in the weak* topology.

(c) Schur’s Theorem. A sequence in ℓ1 converges (to zero) in the weak
topology if and only if it converges (to zero) in the norm topology.

Exercise 3.7.4 (Weak* Topology and Distance Function).

Let X be a separable normed vector space and let (xn)n∈N be a dense se-
quence in the unit ball of X. Prove that the map

(3.7.1) d(x∗, y∗) :=

∞∑
n=1

2−n |⟨x∗ − y∗, xn⟩| for x∗, y∗ ∈ B∗

defines a distance function on the closed unit ball B∗ ⊂ X∗. Prove that the
topology induced by this distance function is the weak* topology on B∗.
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Exercise 3.7.5 (Compact-Open Topology). Let X be a topological
space, let Y be a metric space, and let C(X,Y ) be the space of continuous
functions f : X → Y . The compact-open topology on C(X,Y ) is the
smallest topology such that the set

S (K,V ) := {f ∈ C(X,Y ) | f(K) ⊂ V }

is open for every compact set K ⊂ X and every open set V ⊂ Y . Thus a
set U ⊂ C(X,Y ) is open with respect to the compact-open topology if and
only if, for each f ∈ U , there are finitely many compact setsK1, . . . ,Km ⊂ X
and open sets V1, . . . , Vm ⊂ Y such that f ∈

⋂m
i=1 S (Ki, Vi) ⊂ U .

(a) If X is compact, prove that the compact-open topology on C(X,Y )
agrees with the topology induced by the metric

(3.7.2) d(f, g) := sup
x∈X

dY (f(x), g(x)) for f, g ∈ C(X,Y ).

Hint 1: Let f ∈ C(X,Y ) and suppose that K1, . . . ,Km ⊂ X are compact
sets and V1, . . . , Vm ⊂ Y are open sets such that f(Ki) ⊂ Vi for i = 1, . . . ,m.
Prove that there is a constant ε > 0 such that Bε(fi(x)) ⊂ Vi for all x ∈ Ki

and all i ∈ {1, . . . ,m}. Deduce that every g ∈ C(X,Y ) with d(f, g) < ε
satisfies g(Ki) ⊂ Vi for i = 1, . . . ,m.

Hint 2: Let f ∈ C(X,Y ) and ε > 0. Find elements x1, . . . , xm ∈ X such
that X =

⋃m
i=1Ki, where Ki := {x ∈ X | dY (f(xi), f(x)) ≤ ε/4}. Define

U := {g ∈ C(X,Y ) | g(Ki) ⊂ Vi for i = 1, . . . ,m} , Vi := Bε/2(f(xi)).

Show that f ∈ U and d(f, g) < ε for all g ∈ U .

(b) For each compact subsetK ⊂ X define the seminorm pK : C(X,R) → R
by

pK(f) := sup
K

|f | for f ∈ C(X,R).

Prove that these seminorms generate the compact-open topology, i.e. the
compact-open topology on C(X,R) is the smallest topology such that pK is
continuous for every compact set K ⊂ X.

(c) Prove that C(X,R) is a locally convex topological vector space with the
compact-open topology.

(d) Prove that a subset F ⊂ C(X,Y ) is precompact with respect to the
compact-open topology if and only if, for every compact set K ⊂ X, the set

(3.7.3) FK := {f |K | f ∈ F} ⊂ C(K,Y )

is precompact. Hint: Let K ⊂ 2X be the collection of compact subsets.
Prove that the map C(X,Y ) →

∏
K∈K C(K,Y ) : f 7→ (f |K)K∈K is a

homeomorphism onto its image and use Tychonoff’s Theorem A.2.1.
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(e) Prove the following variant of the Arzelà–Ascoli Theorem.

Arzelà–Ascoli. Let X be a topological space and let Y be a metric space. A
subset F ⊂ C(X,Y ) is precompact with respect to the compact-open topology
if and only if it is pointwise precompact and the set FK ⊂ C(K,Y ) in (3.7.3)
is equi-continuous for every compact set K ⊂ X.

Hint: Use part (d) and Exercise 1.1.15.

Exercise 3.7.6 (Banach–Alaoglu). Let X be a normed vector space.
Deduce the Banach–Alaoglu Theorem 3.2.4 from the Arzelà–Ascoli Theorem
in part (e) of Exercise 3.7.5. Hint: The closed unit ball in X∗ is equi-
continuous as a subset of C(X,R). Prove that the compact-open topology
on X∗ is finer than the weak* topology, i.e. every weak* open subset of X∗

is also open with respect to the compact-open topology.

Exercise 3.7.7 (Functions Vanishing at Infinity). Let M be a lo-
cally compact Hausdorff space. A continuous real valued function f :M → R
is said to vanish at infinity if, for every ε > 0, there exists a compact
set K ⊂M such that

sup
x∈M\K

|f(x)| < ε.

Denote by C0(M) the space of all continuous functions f :M → R that
vanish at infinity (see Exercise 3.2.10).

(a) Prove that C0(M) is a Banach space with the supremum norm.

(b) The dual space C0(M)∗ can be identified with the spaceM(M) of signed
Radon measures on M with the norm (1.1.4), by the Riesz Representation
Theorem (see [75, Thm 3.15 & Ex 3.35]). Here a signed Radon measure
on M is a signed Borel measure µ with the property that, for each Borel
set B ⊂ M and each ε > 0, there exists a compact set K ⊂ B such that
|µ(A)− µ(A ∩K)| < ε for every Borel set A ⊂ B.

(c) Prove that the map δ :M → C0(M)∗, which assigns to each x ∈M the
bounded linear functional δx : C0(M) → R given by

δx(f) := f(x) for f ∈ C0(M),

is a homeomorphism onto its image δ(M) ⊂ C0(M)∗, equipped with the
weak* topology. Under the identification in (b) this image is contained in
the set

P (M) := {µ ∈ M(M) |µ ≥ 0, ∥µ∥ = µ(M) = 1}

of Radon probability measures. Determine the weak* closure of the set

δ(M) = {δx |x ∈M} ⊂ P (M).
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Exercise 3.7.8 (Alaoglu–Bourbaki Theorem). Let X and Y be real
vector spaces and let

(3.7.4) Y ×X → R : (y, x) 7→ ⟨y, x⟩
be a nondegenerate pairing. For two subsets A ⊂ X and B ⊂ Y define the
polar sets A◦ ⊂ Y and B◦ ⊂ X by

A◦ := {y ∈ Y | ⟨y, a⟩ ≤ 1 for all a ∈ A} ,
B◦ := {x ∈ X | ⟨b, x⟩ ≤ 1 for all b ∈ B} .

(3.7.5)

Thus A◦ and B◦ are intersections of half-spaces.

(a) Suppose X is a real normed vector space, Y = X∗ is its dual space,
and (3.7.4) is the standard pairing. Let S ⊂ X and S∗ ⊂ X∗ denote the
unit spheres and B ⊂ X and B∗ ⊂ X∗ the closed unit balls. Verify that

S0 = B∗, (S∗)0 = B.

(b) Bipolar Theorem. Equip X with the topology induced by the linear
maps X → R : x 7→ ⟨y, x⟩ for y ∈ Y . Then

(A0)0 = conv(A ∪ {0}).

(c) Goldstine’s Theorem. If X is a normed vector space and B is the
closed unit ball then the weak* closure of ι(B) is the closed unit ball in X∗∗.
(See also Corollary 3.1.29.)

(d) Alaoglu–Bourbaki Theorem. Suppose (X,U ) is a locally convex
topological vector space over the reals, Y is the space of U -continuous linear
functionals Λ : X → R, and (3.7.4) is the standard pairing. Equip Y with the
topology V ⊂ 2Y induced by the linear maps Y → R : y 7→ ⟨y, x⟩ for x ∈ X.
If A ⊂ X is a U -neighborhood of the origin then A◦ ⊂ Y is V -compact.

Exercise 3.7.9 (Milman–Pettis Theorem).

A normed vector space X over the reals is called uniformly convex if, for
every ε > 0, there exists a constant δ > 0 such that, for all x, y ∈ X,

∥x∥ = ∥y∥ = 1, ∥x+ y∥ > 2− δ =⇒ ∥x− y∥ < ε.

The Milman–Pettis Theorem asserts that every uniformly convex Banach
space is reflexive. This can be proved as follows.

The proof requires the concept of a net, which generalizes the concept of
a sequence. A directed set is a nonempty set A, equipped with a reflexive
and transitive relation ≼, such that, for all α, β ∈ A, there exists a γ ∈ A
with α ≼ γ and β ≼ γ. Anti-symmetry is not required, so a directed set
need not be partially ordered. An example of a directed set is the collection
of open neighborhoods of a point x0 in a topological space X, equipped with
the relation U ≼ V ⇐⇒ V ⊂ U .
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A net in a space X is a map

A→ X : α 7→ xα,

defined on a directed set A. A net (xα)α∈A in a topological space X is said
to converge to x ∈ X if, for every open neighborhood U ⊂ X of x, there
exists an element α0 ∈ A, such that xα ∈ U for all α ∈ A with α0 ≼ α.

If X and Y are topological spaces then a map f : X → Y is continuous
if and only if, for every net (xα)α∈A in X that converges to x ∈ X, the
net (f(xα))α∈A in Y converges to f(x).

Let (xα)α∈A be a net in X. A subnet of (xα)α∈A is a net of the
form (xh(β))β∈B where h : B → A is a monotone final map between directed
sets. Here the map h : B → A is called monotone if

β1 ≼ β2 =⇒ h(β1) ≼ h(β2)

for all β1, β2 ∈ B, and it is called final if, for every α ∈ A, there exists an
element β ∈ B such that

h(α) ≼ β.

With this understood, a topological space X is compact if and only if every
net in X has a convergent subnet.

A net (xα)α∈A in a normed vector space X is called a Cauchy net if
the net (∥xα − xβ∥)(α,β)∈A×A (product order on A × A) converges to zero.

If X is a Banach space then every Cauchy net in X converges.

(a) Let X be a uniformly convex normed vector space. Let (xα)α∈A be a net
in the unit sphere of X such that the net (∥xα + xβ∥)(α,β)∈A×A converges

to 2. Prove that (xα)α∈A is a Cauchy net.

(b) Let X be a normed vector space and let x∗∗ ∈ X∗∗ with ∥x∗∗∥ = 1.
Prove that there exists a net (xα)α∈A in the unit sphere of X such that the
net (ι(xα))α∈A in X∗∗ converges to x∗∗ with respect to the weak* topology.

(c) Let X be a normed vector space and let (xα)α∈A be a net in the unit
sphere of X such that the net (ι(xα))α∈A in X∗∗ converges to x∗∗ with
respect to the weak* topology, where ∥x∗∗∥ = 1. Prove that the net

(ι(xα + xβ))(α,β)∈A×A

converges to 2x∗∗ in the weak* topology. If X is uniformly convex, use (a)
to prove that (xα)α∈A is a Cauchy net.

(d) Assume X is a uniformly convex Banach space, let x∗∗ ∈ X∗∗ such
that ∥x∗∗∥ = 1, and choose a net (xα)α∈A as in (b). Use (c) to prove that
the net (xα)α∈A converges to some element x ∈ X. Deduce that ι(x) = x∗∗.
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Exercise 3.7.10 (Banach–Mazur Theorem). Let X be a Banach
space and let B∗ ⊂ X∗ be the closed unit ball in the dual space, equipped
with the weak* topology.

(a) Prove that the map X → C(B∗) : x 7→ fx, defined by fx(x
∗) := ⟨x∗, x⟩

for x ∈ X and x∗ ∈ B∗ is a linear isometric embedding.

(b) If K is a compact metric space then there is a continuous surjective
map π : F → K, defined on a closed subset F ⊂ {0, 1}N of the Cantor set.
Deduce that there exists a linear isometric embedding π∗ : C(K) → C(F ).
Hint: The Cantor function is a continuous surjection {0, 1}N → [0, 1].
Use it to construct a continuous surjection {0, 1}N → [0, 1]N and then find
an embedding K ↪→ [0, 1]N.

(c) For every closed subset F ⊂ [0, 1] of the unit interval find a linear
isometric embedding ιF : C(F ) → C([0, 1]). Hint: The complement of F is
a countable union of intervals.

(d) Banach–Mazur Theorem. Every separable Banach space is isomet-
rically isomorphic to a closed subspace of C([0, 1]).

Exercise 3.7.11 (Helly’s Theorem). (Another proof of Lemma 3.4.3.)

(a) Let X be a normed vector space, let x∗1, . . . , x
∗
n ∈ X∗, and let c1, . . . , cn

be scalars. Prove that there exists an element x ∈ X such that

(3.7.6) ⟨x∗i , x⟩ = ci for i = 1, . . . , n

if and only if there is a constant M > 0 such that, for all scalars λ1, . . . , λn,

(3.7.7)

∣∣∣∣ n∑
i=1

λici

∣∣∣∣ ≤M

∥∥∥∥ n∑
i=1

λix
∗
i

∥∥∥∥.
Hint: Assume x∗1, . . . , x

∗
m are linearly independent and span the same space

as x∗1, . . . , x
∗
n. Define the map T : X → Rm by Tx := (⟨x∗1, x⟩, . . . , ⟨x∗m, x⟩)

for x ∈ X. Then T is surjective by Lemma 3.1.13. Use the inequality (3.7.7)
to show that every element x ∈ T−1(c1, . . . , cm) satisfies (3.7.6).

(b) Assume (3.7.7) and let ε > 0. Prove that there exists an element x ∈ X
that satisfies (3.7.6) and ∥x∥ < M + ε. Hint: By (a) there exists some ele-
ment y ∈ X such that ⟨x∗i , y⟩ = ci for i = 1, . . . , n. Define Z :=

⋂n
i=1 ker(x

∗
i ).

If y /∈ Z then, by Theorem 2.3.22, there is an element x∗ ∈ X∗ such that

∥x∗∥ = 1, x∗|Z = 0, ⟨x∗, y⟩ = d(y, Z) = inf
z∈Z

∥y − z∥ .

By Lemma 3.1.14 the element x∗ is a linear combination of the x∗i . Use this
to deduce from (3.7.7) that d(y, Z) ≤M . Find z ∈ Z with ∥y + z∥ < M + ε.
(If dimX = ∞ then Z ̸= {0}, so the norm of y + z can be chosen equal to
any number bigger than M .)
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Exercise 3.7.12 (Šmulyan–James Theorem).

Let X be a normed vector space. Then the following are equivalent.

(i) X is reflexive.

(ii) Every bounded sequence in X has a weakly convergent subsequence.

(iii) If C1 ⊃ C2 ⊃ C3 ⊃ · · · is a nested sequence of nonempty bounded
closed convex subsets of X then their intersection is nonempty.

The implication (iii) =⇒ (i) of the Šmulyan–James Theorem strengthens
the Eberlein–Šmulyan Theorem 3.4.1.

(a) Prove that (i) implies (ii) and (ii) implies (iii).

(b) Prove that (iii) implies that X is complete.

(c) Let X be a nonreflexive Banach space. Prove that there exists a con-
stant 0 < α < 1 and an element x∗∗ ∈ X∗∗ such that

(3.7.8) α < d(x∗∗, ι(X)) ≤ ∥x∗∗∥ < 1.

Hint: Use the Riesz Lemma 1.2.12.

(d) Let 0 < α < 1 and x∗∗ ∈ X∗∗ be as in (c). Find sequences of unit
vectors (x∗n)n∈N in X∗ and (xk)k∈N in X such that

(3.7.9) ⟨x∗n, xk⟩ =
{

0, if k < n,
α, if k ≥ n,

⟨x∗∗, x∗n⟩ = α for all k, n ∈ N.

Hint: Argue by induction. First find unit vectors x∗1 ∈ X∗ and x1 ∈ X such
that ⟨x∗∗, x∗1⟩ = α and ⟨x∗1, x1⟩ = α. Now let N > 1 and assume by induction
that unit vectors x1, . . . , xN−1 ∈ X and x∗1, . . . , x

∗
N−1 ∈ X∗ have been found

that satisfy (3.7.9) for k, n = 1, . . . , N−1. WithM := αd(x∗∗, ι(X)) < 1 we

have |λ0α| ≤ M∥λ0x∗∗ +
∑N−1

k=1 λkι(xk)∥ for all λ0, . . . , λN−1 ∈ R. Hence,
by Helly’s Theorem, there exists a unit vector x∗N ∈ X∗ such that

⟨x∗∗, x∗N ⟩ = α, ⟨x∗N , xk⟩ = ⟨ι(xk), x∗N ⟩ = 0 for k = 1, . . . , N − 1.

Moreover,

α

∣∣∣∣∣
N∑
n=1

λn

∣∣∣∣∣ =
∣∣∣∣∣
〈
x∗∗,

N∑
n=1

λnx
∗
n

〉∣∣∣∣∣ ≤ ∥x∗∗∥

∥∥∥∥∥
N∑
n=1

λnx
∗
n

∥∥∥∥∥
for all λ1, . . . , λN ∈ R. Since ∥x∗∗∥ < 1 it follows again from Helly’s Theorem
that there is a unit vector xN ∈ X such that ⟨x∗n, xN ⟩ = α for n = 1, . . . , N .
This completes the induction step for the proof of (3.7.9).

(e) Let xk, x
∗
n be as in (d) and define CN := conv({xk | k ≥ N}) for N ∈ N.

Prove that ⟨x∗N , x⟩ = α and limn→∞⟨x∗n, x⟩ = 0 for all x ∈ CN . Deduce that
the CN have an empty intersection.
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Exercise 3.7.13 (Birkhoff–von Neumann Theorem).

An n× n-matrix M = (mij) with nonnegative coefficients mij ≥ 0 is called
doubly stochastic if its row sums and column sums are all equal to one.
The Birkhoff–von Neumann Theorem asserts the following.

Every doubly stochastic matrix
is a convex combination of permutation matrices.

Thus the doubly stochastic matrices form a convex set whose extremal points
are the permutation matrices. This can be proved as follows.

Let M be a doubly stochastic matrix and denote by ν(M) the num-
ber of positive entries. If ν(M) > n find a permutation matrix P and a
constant 0 < λ < 1 such that the matrix N :=M − λP1 has nonnegative
entries and strictly fewer positive entries than M . In the case N ̸= 0 the
matrix M1 := (1− λ)−1N is again doubly stochastic with ν(M1) < ν(M),
and M = λP1 + (1− λ)M1. Continue by induction until ν(Mk) = n and
so Mk is a permutation matrix. Here is a method to find P1 and λ.

Hall’s Marriage Theorem. Let X and Y be finite sets and let Γ ⊂ X×Y .
Then the following are equivalent.

(i) There is an injective map f : X → Y whose graph is contained in Γ.

(ii) For every A ⊂ X the set

Γ(A) := {y ∈ Y | there is an x ∈ A such that (x, y) ∈ Γ}
satisfies #Γ(A) ≥ #A.

Take X = Y = {1, . . . , n} and Γ := {(i, j) |mij > 0}. Use the fact that M
is doubly stochastic to verify that Γ satisfies (ii). Use the injective map f
in (i) to determine the permutation matrix P1 and take λ := minj=f(i)mij .

Exercise 3.7.14 (Strict Convexity and Extremal Points).

A normed vector space is strictly convex (see Example 3.5.3 and Exer-
cise 2.5.11) if and only if the unit sphere is equal to the set of extremal
points of the closed unit ball.

Exercise 3.7.15 (A Noncompact Set of Extremal Points).

Let C ⊂ R3 be the closed convex hull of the set

S :=
{
(1 + cos(θ), sin(θ), 0)

∣∣ θ ∈ R
}
∪
{
(0, 0, 1), (0, 0,−1)

}
.

Determine the extremal points of C.

Exercise 3.7.16 (Extremal Points of Unit Balls). Determine the
extremal points of the closed unit balls in the Banach spaces

c0, c, C([0, 1]), ℓ
1, ℓp, ℓ∞, L1([0, 1]), Lp([0, 1]), L∞([0, 1])

for 1 < p <∞.
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Exercise 3.7.17 (Hilbert Cube). (See Example 3.5.5.)

(a) Show that the Hilbert cube Q :=
{
x = (xi)i∈N ∈ ℓ2 | 0 ≤ xi ≤ 1/i

}
is a

compact subset of ℓ2 with respect to the norm topology.

(b) Is the set R :=
{
x = (xi)i∈N ∈ ℓ2 | 0 ≤ xi ≤ 1/

√
i
}
compact in ℓ2 with

respect to either the norm topology or the weak topology?

Exercise 3.7.18. Let X be a real normed vector space, let B∗ ⊂ X∗

be the closed unit ball in the dual space, and let Λ : X∗ → R be a linear
functional such that the restriction Λ|B∗ : B∗ → R is weak* continuous.
Then there exists an element x ∈ X such that Λ = ι(x).

Exercise 3.7.19 (Markov–Kakutani Fixed Point Theorem).

Let X be a locally convex Hausdorff topological vector space and let A be
a collection of pairwise commuting continuous linear operators A : X → X.
Let C ⊂ X be a nonempty A-invariant compact convex subset of X, so that

A(C) ⊂ C for all A ∈ A.

Then there exists an element x ∈ C such that Ax = x for all A ∈ A.

(a) For A ∈ A and k ∈ N define

Ak :=
1

k

(
1l +A+A2 + · · ·+Ak−1

)
.

Then Ak(C) is a nonempty compact convex subset of C.

(b) If A,B ∈ A and k, ℓ ∈ N then

Ak(Bℓ(C)) ⊂ Ak(C) ∩Bℓ(C).

Use this to prove that the set

F :=
⋂
k∈N

⋂
A∈A

Ak(C)

is nonempty.

(c) Prove that every element x ∈ F is a fixed point of A. Hint: Fix an
element A ∈ A. If Ax ̸= x find a continuous linear functional Λ : X → R
such that Λ(x−Ax) = 1. Prove that, for every k ∈ N, there exists an
element y ∈ C such that

Aky = x.

Now observe that

y −Aky = k(x−Ax)

and deduce that the functional Λ is unbounded on the compact set C − C,
contradicting continuity.
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Exercise 3.7.20 (Bell–Fremlin Theorem).

The axiom of choice is equivalent to the assertion that the closed unit ball
in the dual space of every nonzero Banach space has an extremal point.

(a) Let X be any nonzero Banach space. Use the Banach–Alaoglu Theo-
rem 3.2.4, the Hahn–Banach Theorem 2.3.2, and the Krĕın–Milman Theo-
rem 3.5.2 to prove that the closed unit ball in X∗ has an extremal point.

(b) Let I be any index set and, for each i ∈ I, let Xi be a nonzero Banach
space. Define the Banach spaces

(3.7.10)
⊕
i∈I

Xi :=

{
x = (xi)i∈I

∣∣∣∣xi ∈ Xi and ∥x∥1 :=
∑
i∈I

∥xi∥Xi
<∞

}
and

(3.7.11)
∏
i∈I

Xi :=

{
x = (xi)i∈I

∣∣∣∣xi ∈ Xi and ∥x∥∞ := sup
i∈I

∥xi∥Xi
<∞

}
.

Prove that
∏
i∈I X

∗
i is isomorphic to the dual space of

⊕
i∈I Xi.

(c) Let S be a nonempty set. Define c0(S) to be the space of all functions
f : S → R that satisfy # {s ∈ S | |f(s)| > ε} < ∞ for all ε > 0, equipped
with the supremum norm ∥f∥∞ := sups∈S |f(s)|. Define ℓ1(S) to be the
space of all functions g : S → R such that ∥g∥1 :=

∑
s∈S |g(s)| < ∞. Prove

that ℓ1(S) is isomorphic to the dual space of c0(S).

(d) Let (Si)i∈I be a family of pairwise disjoint nonempty sets. Then the
Banach space

∏
i∈I ℓ

1(Si) is isomorphic to the dual space of
⊕

i∈I c0(Si)

by (b) and (c). Suppose the closed unit ball in
∏
i∈I ℓ

1(Si) has an extremal
point g = (gi)i∈I . Prove that gi ̸= 0 for all i ∈ I. Show that, for each i ∈ I,
there is a unique element si ∈ Si such that gi(si) ̸= 0.



Chapter 4

Fredholm Theory

The purpose of the present chapter is to give a basic introduction to Fred-
holm operators and their indices including the stability theorem. A Fred-
holm operator is a bounded linear operator between Banach spaces that has
a finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between
two Banach spaces, with respect to the topology induced by the operator
norm. It also asserts that the sum of a Fredholm operator and a compact
operator is again Fredholm and has the same index as the original operator.
Fredholm operators play an important role in many fields of mathematics,
including topology and geometry. There are many important topics that go
beyond the scope of the present book. For example, the space of Fredholm
operators on an infinite-dimensional Hilbert space is a classifying space for
K-theory in that each continuous map from a topological space into the
space of Fredholm operators gives rise to a pair of vector bundles (roughly
speaking, the kernel and cokernel bundles) whose K-theory class is a homo-
topy invariant [5, 6, 7, 42]. Another topic not covered here is Quillen’s
determinant line bundle over the space of Fredholm operators [71, 77].

The chapter starts with an introduction to the dual of a bounded linear
operator. It includes a proof of the closed image theorem which asserts that
an operator has a closed image if and only if its dual does. It then moves
on to compact operators which map the unit ball to pre-compact subsets of
the target space, characterizes Fredholm operators in terms of invertibility
modulo compact operators, and establishes the stability theorem.

163
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4.1. The Dual Operator

4.1.1. Definition and Examples. The dual operator of a bounded lin-
ear operator between Banach spaces is the induced operator between the
dual spaces. Such a dual operator has been implicitly used in the proof of
Theorem 3.6.9. Here is the formal definition.

Definition 4.1.1 (Dual Operator). Let X and Y be real normed
vector spaces, denote their dual spaces byX∗ := L(X,R) and Y ∗ := L(Y,R),
and let A : X → Y be a bounded linear operator. The dual operator of A
is the linear operator

A∗ : Y ∗ → X∗

defined by

(4.1.1) A∗y∗ := y∗ ◦A : X → R for y∗ ∈ Y ∗.

Thus, for every bounded linear functional y∗ : Y → R, the bounded linear
functional A∗y∗ : X → R is the composition of the bounded linear opera-
tor A : X → Y with y∗, i.e.

(4.1.2) ⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩
for all x ∈ X.

Lemma 4.1.2. Let X and Y be real normed vector spaces and let

A : X → Y

be a bounded linear operator. Then the dual operator

A∗ : Y ∗ → X∗

is bounded and
∥A∗∥ = ∥A∥ .

Proof. The operator norm of A∗ is given by

∥A∗∥ = sup
y∗∈Y ∗\{0}

∥A∗y∗∥
∥y∗∥

= sup
y∗∈Y ∗\{0}

sup
x∈X\{0}

|⟨A∗y∗, x⟩|
∥y∗∥ ∥x∥

= sup
x∈X\{0}

sup
y∗∈Y ∗\{0}

|⟨y∗, Ax⟩|
∥y∗∥ ∥x∥

= sup
x∈X\{0}

∥Ax∥
∥x∥

= ∥A∥ .
Here the last but one equality follows from the Hahn–Banach Theorem in
Corollary 2.3.23. In particular, ∥A∗∥ <∞ and this proves Lemma 4.1.2. □
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Lemma 4.1.3. Let X,Y, Z be real normed vector spaces and A : X → Y
and B : Y → Z be bounded linear operators. Then the following holds.

(i) (BA)∗ = A∗B∗ and (1lX)
∗ = 1lX∗.

(ii) The bidual operator A∗∗ : X∗∗ → Y ∗∗ satisfies ιY ◦ A = A∗∗ ◦ ιX ,
where ιX : X → X∗∗ and ιY : Y → Y ∗∗ are the embeddings of Lemma 2.4.1.

Proof. This follows directly from the definitions. □

Example 4.1.4. Let (M,d) be a compact metric space and ϕ :M →M
be a homeomorphism. Let T : C(M) → C(M) be the operator in the proof
of Theorem 3.6.9, defined by Tf := f ◦ ϕ for f ∈ C(M) (the pullback of f
under ϕ). Then, under the identification C(M)∗ ∼= M(M) of the dual space
of C(M) with the space of signed Borel measures on M , the dual operator
of T is the operator T ∗ : M(M) → M(M), which assigns to every signed
Borel measure µ : B → R its pushforward T ∗µ = ϕ∗µ under ϕ. This push-
forward is given by (ϕ∗µ)(B) := µ(ϕ−1(B)) for every Borel set B ⊂M .

Example 4.1.5 (Transposed Matrix). A matrix A ∈ Rm×n induces a
linear map LA : Rn → Rm. Its dual operator corresponds to the transposed
matrix under the canonical isomorphisms ιk : R

k → (Rk)∗. This means
that (LA)

∗ ◦ ιm = ιn ◦ LAT : Rm → (Rn)∗.

Example 4.1.6 (Adjoint Operator). Let H be a real Hilbert space
and let A : H → H be a bounded linear operator and let A∗

Banach : H∗ → H∗

be the dual operator of A. In this situation one can identify the Hilbert
space H with its own dual space H∗ via the isomorphism I : H → H∗ in
Theorem 1.4.4. The operator

A∗
Hilbert := I−1 ◦A∗

Banach ◦ I : H → H

is called the adjoint operator of A. It is characterized by the formula

(4.1.3) ⟨A∗
Hilberty, x⟩ = ⟨y,Ax⟩

for all x, y ∈ H, where ⟨·, ·⟩ denotes the inner product on the Hilbert spaceH,
rather than the pairing between H∗ and H as in equation (4.1.2). When
working entirely in the Hilbert space setting, it is often convenient to use the
notation A∗ := A∗

Hilbert for the adjoint operator instead of the dual operator.

Example 4.1.7 (Self-Adjoint Operator). Let H = ℓ2 be the Hilbert
space in Example 1.4.7 and let (ai)i∈N be a bounded sequence of real num-
bers. Define the bounded linear operator A : ℓ2 → ℓ2 by Ax := (aixi)i∈N for
x = (xi)i∈N ∈ ℓ2. This operator is equal to its own adjoint A∗

Hilbert. Such an
operator is called self-adjoint or symmetric.



166 4. Fredholm Theory

4.1.2. Duality.

Theorem 4.1.8 (Duality). Let X and Y be real normed vector spaces
and let A : X → Y be a bounded linear operator. Then the following holds.

(i) im(A)⊥ = ker(A∗) and ⊥im(A∗) = ker(A).

(ii) A has a dense image if and only if A∗ is injective.

(iii) A is injective if and only if A∗ has a weak* dense image.

Proof. We prove (i). First let y∗ ∈ Y ∗. Then

y∗ ∈ im(A)⊥ ⇐⇒ ⟨y∗, Ax⟩ = 0 for all x ∈ X

⇐⇒ ⟨A∗y∗, x⟩ = 0 for all x ∈ X ⇐⇒ A∗y∗ = 0

and this shows that im(A)⊥ = ker(A∗). Now let x ∈ X. Then

x ∈ ⊥im(A∗) ⇐⇒ ⟨A∗y∗, x⟩ = 0 for all y∗ ∈ Y ∗

⇐⇒ ⟨y∗, Ax⟩ = 0 for all y∗ ∈ Y ∗ ⇐⇒ Ax = 0.

The last step uses Corollary 2.3.23. This shows that ⊥im(A∗) = ker(A).

We prove (ii). The operator A∗ is injective if and only if ker(A∗) = {0}.
This is equivalent to im(A)⊥ = {0} by part (i) and hence to the condition
that im(A) is dense in Y by Corollary 2.3.25.

We prove (iii). The operator A is injective if and only if ker(A) = {0}.
This is equivalent to ⊥im(A∗) = {0} by part (i) and hence to the condi-
tion that im(A∗) is weak* dense in X∗ by Corollary 3.1.26. This proves
Theorem 4.1.8. □

Example 4.1.9. Define the operator A : ℓ2 → ℓ2 by Ax := (i−1xi)i∈N
for x = (xi)i∈N ∈ ℓ2. This operator is self-adjoint, injective, and has a dense

image, but is not surjective. Thus im(A) ⊊ ℓ2 = ⊥ ker(A∗).

Example 4.1.10. The term “weak* dense” in part (iii) of Theorem 4.1.8
cannot be replaced by “dense”. Let X := ℓ1 and Y := c0. Then the
inclusion A : ℓ1 → c0 is injective and has a dense image. Moreover, X∗ ∼= ℓ∞

(Example 1.3.6) and Y ∗ ∼= ℓ1 (Example 1.3.7), and A∗ : ℓ1 → ℓ∞ is again the
obvious inclusion. Its image is weak* dense (Corollary 3.1.29) but not dense.
Exercise: The operator A∗∗ : (ℓ∞)∗ → ℓ∞ is not injective.

Example 4.1.11. Let X be a real normed vector space, let Y ⊂ X be
a closed linear subspace, and let π : X → X/Y be the canonical projection.
Then the dual operator π∗ : (X/Y )∗ → X∗ is the isometric embedding of
Corollary 2.3.26 whose image is the annihilator of Y . The dual operator
of the inclusion ι : Y → X is a surjective operator ι∗ : X∗ → Y ∗ with
kernel Y ⊥. It descends to the isometric isomorphism X∗/Y ⊥ → Y ∗ in
Corollary 2.3.26.
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The next two theorems establish a correspondence between an inclusion
for the images of two operators with the same target space and an estimate
for the dual operators, and vice versa. The main tools for establishing such
a correspondence are the Douglas Factorization Theorem (Corollary 2.2.17)
and the Hahn–Banach Theorem (Corollary 2.3.4 and Corollary 2.3.26).

Theorem 4.1.12. Let X, Y , and Z be real normed vector spaces and
let A : X → Y and B : X → Z be bounded linear operators. Then the fol-
lowing are equivalent.

(i) im(B∗) ⊂ im(A∗).

(ii) There exists a constant c > 0 such that

(4.1.4) ∥Bx∥Z ≤ c ∥Ax∥Y for all x ∈ X.

Proof. See page 168. □

Theorem 4.1.13. Let X,Y, Z be real Banach spaces and let A : X → Y
and B : Z → Y be bounded linear operators. Then the following holds.

(i) If im(B) ⊂ im(A) then there exists a constant c > 0 such that

(4.1.5) ∥B∗y∗∥Z∗ ≤ c ∥A∗y∗∥X∗ for all y∗ ∈ Y ∗.

(ii) If X is reflexive and (4.1.5) holds for some c > 0 then im(B) ⊂ im(A).

Proof. See page 168. □

Example 4.1.14. The hypothesis that X is reflexive cannot be removed
in part (ii) of Theorem 4.1.13. However, this hypothesis is not needed
when B is bijective (Corollary 4.1.17 below). Let X := c0, Y := ℓ2, Z := R,
and define A : c0 → ℓ2, B : R → ℓ2 by Ax := (i−1xi)i∈N for x = (xi)i∈N ∈ c0
and Bz := (i−1z)i∈N for z ∈ R. Then (4.1.5) holds and im(B) ̸⊂ im(A).

Lemma 4.1.15. Let X,Y be real normed vector spaces and A : X → Y
be a bounded linear operator. Let x∗ ∈ X∗. The following are equivalent.

(i) x∗ ∈ im(A∗).

(ii) There is a constant c ≥ 0 such that |⟨x∗, x⟩| ≤ c ∥Ax∥Y for all x ∈ X.

Proof. If x∗ = A∗y∗ then |⟨x∗, x⟩| = |⟨y∗, Ax⟩| ≤ ∥y∗∥Y ∗ ∥Ax∥Y for
all x ∈ X and so (ii) holds with c := ∥y∗∥. Conversely, suppose x∗ sat-
isfies (ii) and define the map ψ : im(A) → R as follows. Given y ∈ im(A)
choose x ∈ X such that y = Ax and define ψ(y) := ⟨x∗, x⟩. By (ii) this num-
ber depends only on y, and not on x, and ψ : im(A) → R is a bounded linear
functional. By definition, it satisfies ψ ◦A = x∗. By Corollary 2.3.4 there ex-
ists a y∗ ∈ Y ∗ such that y∗|im(A) = ψ. It satisfies x∗ = ψ◦A = y∗◦A = A∗y∗

and this proves Lemma 4.1.15. □
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Proof of Theorems 4.1.12 and 4.1.13. We prove that (ii) implies (i) in
Theorem 4.1.12. Thus assume A : X → Y and B : X → Z satisfy (4.1.4)
and fix an element x∗ ∈ im(B∗). By Lemma 4.1.15 there is a constant b > 0
such that

|⟨x∗, x⟩| ≤ b ∥Bx∥Z ≤ bc ∥Ax∥Y
for all x ∈ X. Hence x∗ ∈ im(A∗) by Lemma 4.1.15. This shows that (ii)
implies (i) in Theorem 4.1.12.

We prove part (ii) of Theorem 4.1.13. Thus assume that X is reflexive
and the bounded linear operators A : X → Y and B : Z → Y satisfy (4.1.5).
Since (ii) implies (i) in Theorem 4.1.12, we have im(B∗∗) ⊂ im(A∗∗). Now
let z ∈ Z and choose x∗∗ ∈ X∗∗ such that A∗∗x∗∗ = B∗∗ιZ(z) = ιY (Bz)
(Lemma 4.1.3). Since X is reflexive there exists an element x ∈ X such
that ιX(x) = x∗∗. Hence ιY (Ax) = A∗∗ιX(x) = A∗∗x∗∗ = ιY (Bz) and there-
fore Ax = Bz. This proves part (ii) of Theorem 4.1.13.

We prove part (i) of Theorem 4.1.13. Assume that X,Y, Z are Banach
spaces and that the bounded linear operators A : X → Y and B : Z → Y
satisfy im(B) ⊂ im(A). Define X0 := X/ ker(A) and let π : X → X0 be the
canonical projection. Then π∗ : X∗

0 → X∗ is an isometric embedding with
image ker(A)⊥ (see Corollary 2.3.26). Moreover, the operator A : X → Y
descends to a bounded linear operator A0 : X0 → Y such that A0 ◦ π = A.
It satisfies A∗ = π∗ ◦A∗

0 and hence

(4.1.6) ∥A∗y∗∥X∗ = ∥A∗
0y

∗∥X∗
0

for all y∗ ∈ Y ∗.

Since im(B) ⊂ im(A) = im(A0) and A0 is injective, Corollary 2.2.17 asserts
that there is a bounded linear operator T : Z → X0 with A0T = B. Hence

∥B∗y∗∥Z∗ = sup
z∈Z\{0}

⟨B∗y∗, z⟩
∥z∥Z

= sup
z∈Z\{0}

⟨A∗
0y

∗, T z⟩
∥z∥Z

≤ sup
z∈Z\{0}

∥A∗
0y

∗∥X∗
0
∥Tz∥X0

∥z∥Z
= ∥T∥ ∥A∗y∗∥X∗

for all y∗ ∈ Y ∗, by (4.1.6). This proves part (i) of Theorem 4.1.13.

We prove that (i) implies (ii) in Theorem 4.1.12. Thus assume that the
operators A : X → Y and B : X → Z satisfy im(B∗) ⊂ im(A∗). By part (i)
of Theorem 4.1.13 there is a c > 0 such that ∥B∗∗x∗∗∥Z∗∗ ≤ c ∥A∗∗x∗∗∥Y ∗∗

for all x∗∗ ∈ X∗∗. Hence, by Lemma 2.4.1 and Lemma 4.1.3, we have

∥Bx∥Z = ∥ιZ(Bx)∥Z∗∗ = ∥B∗∗ιX(x)∥Z∗∗ ≤ c ∥A∗∗ιX(x)∥Y ∗∗ = c ∥Ax∥Y
for all x ∈ X. This proves Theorem 4.1.12. □
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4.1.3. The Closed Image Theorem. The main theorem of this subsec-
tion asserts that a bounded linear operator between two Banach spaces has
a closed image if and only if its dual operator has a closed image. A key
tool in the proof will be Lemma 2.2.3 which can be viewed as a criterion
for surjectivity of a bounded linear operator A : X → Y between Banach
spaces. The criterion is that the closure of the image of the open unit ball
in X under A contains a neighborhood of the origin in Y .

Theorem 4.1.16 (Closed Image Theorem). Let X and Y be Banach
spaces, let A : X → Y be a bounded linear operator, and let A∗ : Y ∗ → X∗

be its dual operator. Then the following are equivalent.

(i) im(A) = ⊥ ker(A∗).

(ii) The image of A is a closed subspace of Y .

(iii) There exists a constant c > 0 such that every x ∈ X satisfies

(4.1.7) inf
Aξ=0

∥x+ ξ∥X ≤ c ∥Ax∥Y .

Here the infimum runs over all ξ ∈ X that satisfy Aξ = 0.

(iv) im(A∗) = ker(A)⊥.

(v) The image of A∗ is a weak* closed subspace of X∗.

(vi) The image of A∗ is a closed subspace of X∗.

(vii) There exists a constant c > 0 such that every y∗ ∈ Y ∗ satisfies

(4.1.8) inf
A∗η∗=0

∥y∗ + η∗∥Y ∗ ≤ c ∥A∗y∗∥X∗ .

Here the infimum runs over all η∗ ∈ Y ∗ that satisfy A∗η∗ = 0.

Proof. That (i) implies (ii) follows from the fact that the pre-annihilator
of any subset of Y ∗ is a closed subspace of Y .

We prove that (ii) implies (iii). Define

X0 := X/ ker(A), Y0 := im(A),

and let π0 : X → X0 be the projection which assigns to each element x ∈ X
the equivalence class π0(x) := [x] := x + ker(A) of x in X0 = X/ ker(A).
Since the kernel of A is closed and X is a Banach space, it follows from
Theorem 1.2.14 that the quotient X0 is a Banach space with

∥[x]∥X0
= inf

ξ∈ker(A)
∥x+ ξ∥X for x ∈ X.

Since the image of A is closed by (ii), the subspace Y0 ⊂ Y is a Banach
space. Since the value Ax ∈ Y0 ⊂ Y of an element x ∈ X under A depends
only on the equivalence class of x in the quotient space X0, there exists a
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unique linear map A0 : X0 → Y0 such that A0[x] = Ax for all x ∈ X. The
map A0 is bijective by definition. Moreover,

∥Ax∥Y = ∥A(x+ ξ)∥Y ≤ ∥A∥ ∥x+ ξ∥X
for all x ∈ X and all ξ ∈ ker(A), and hence

∥A0[x]∥Y0 = ∥Ax∥Y ≤ ∥A∥ inf
ξ∈ker(A)

∥x+ ξ∥X = ∥A∥ ∥[x]∥X0

for all x ∈ X. This shows that A0 : X0 → Y0 is a bijective bounded linear
operator. Hence A0 is open by the Open Mapping Theorem 2.2.1, so A−1

0

is continuous, and therefore A−1
0 is bounded by Theorem 1.2.2. Thus there

exists a constant c > 0 such that ∥A−1
0 y∥X0 ≤ c∥y∥Y0 for all y ∈ Y0 ⊂ Y .

This implies

inf
ξ∈ker(A)

∥x+ ξ∥X = ∥[x]∥X0
≤ c ∥A0[x]∥Y0 = c ∥Ax∥Y

for all x ∈ X. Thus we have proved that (ii) implies (iii).

We prove that (iii) implies (iv). The inclusion im(A∗) ⊂ ker(A)⊥ fol-
lows directly from the definitions. To prove the converse inclusion, fix an
element x∗ ∈ ker(A)⊥ so that ⟨x∗, ξ⟩ = 0 for all ξ ∈ ker(A). Then

|⟨x∗, x⟩| = |⟨x∗, x+ ξ⟩| ≤ ∥x∗∥X∗ ∥x+ ξ∥X
for all x ∈ X and all ξ ∈ ker(A). Take the infimum over all ξ ∈ ker(A) and
use the inequality (4.1.7) in (iii) to obtain the estimate

(4.1.9) |⟨x∗, x⟩| ≤ ∥x∗∥X∗ inf
Aξ=0

∥x+ ξ∥X ≤ c ∥x∗∥X∗ ∥Ax∥Y

for all x ∈ X. It follows from (4.1.9) and Lemma 4.1.15 that x∗ ∈ im(A∗).
This shows that (iii) implies (iv).

That (iv) implies (v) follows from the definition of the weak* topology.
Namely, the annihilator of any subset of X is a weak* closed subset of X∗.
(See the proof of Corollary 3.3.2.)

That (v) implies (vi) follows directly from the fact that every weak*
closed subset of X∗ is closed with respect to the strong topology induced by
the operator norm on the dual space.

That (vi) implies (vii) follows from the fact that (ii) implies (iii) (already
proved) with the operator A replaced by its dual operator A∗.

We prove that (vii) implies (i). Assume first that A satisfies (vii) and
has a dense image. Then A∗ is injective by Theorem 4.1.8 and so the in-
equality (4.1.8) in part (vii) takes the form

(4.1.10) ∥y∗∥Y ∗ ≤ c ∥A∗y∗∥X∗ for all y∗ ∈ Y ∗.

Define δ := c−1. We prove that

(4.1.11)
{
y ∈ Y

∣∣ ∥y∥ ≤ δ
}
⊂
{
Ax
∣∣x ∈ X, ∥x∥X < 1

}
.
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To see this, observe that the set

K := {Ax |x ∈ X, ∥x∥X < 1}
is a closed convex subset of Y . We must show that every y ∈ Y \K has
norm ∥y∥Y > δ. To see this fix an element y0 ∈ Y \K. By Theorem 2.3.10
there exists a bounded linear functional y∗0 : Y → R such that

⟨y∗0, y0⟩ > sup
y∈K

⟨y∗0, y⟩.

This implies

∥A∗y∗0∥X∗ = sup
x∈X
∥x∥<1

⟨A∗y∗0, x⟩

= sup
x∈X
∥x∥<1

⟨y∗0, Ax⟩

= sup
y∈K

⟨y∗0, y⟩

< ⟨y∗0, y0⟩
≤ ∥y0∥Y ∥y∗0∥Y ∗

and hence, by (4.1.10),

∥y0∥ >
∥A∗y∗0∥X∗

∥y∗0∥Y ∗
≥ 1

c
= δ.

This proves (4.1.11). Hence {y ∈ Y | ∥y∥ < δ} ⊂ {Ax |x ∈ X, ∥x∥X < 1} by

Lemma 2.2.3. Thus A is surjective and so im(A) = Y = ⊥ ker(A∗) be-
cause A∗ is injective. This shows that (vii) implies (i) whenever the opera-
tor A has a dense image.

Now suppose A satisfies (vii) and does not have a dense image. Define

Y0 := im(A), A0 := A : X → Y0.

Thus A0 is the same operator as A, but viewed as an operator with values
in the smaller target space Y0. The dual operator A∗

0 : Y
∗
0 → X∗ satisfies

(4.1.12) A∗
0(y

∗|Y0) = A∗y∗ for all y∗ ∈ Y ∗

by definition. Moreover, for all y∗ ∈ Y ∗, we have

∥y∗|Y0∥Y ∗
0
= inf

η∗∈ker(A∗)
∥y∗ + η∗∥Y ∗ ≤ c ∥A∗y∗∥X∗ = c ∥A∗

0(y
∗|Y 0)∥X∗ .

Here we have used the inequality (4.1.8) in (vii) and equation (4.1.12). Hence
it follows from the first part of the proof (the dense image case) that the
operator A0 : X → Y0 is surjective. Thus

im(A) = im(A0) = Y0 = im(A) = ⊥(im(A)⊥) = ⊥ ker(A∗)

by Corollary 3.1.18 and Theorem 4.1.8. This shows that (vii) implies (i) and
completes the proof of Theorem 4.1.16. □
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Corollary 4.1.17. Let X and Y be Banach spaces and let A : X → Y
be a bounded linear operator. Then the following holds.

(i) The operator A is surjective if and only if A∗ is injective and has a closed
image. Equivalently, there exists a constant c > 0 such that

(4.1.13) ∥y∗∥Y ∗ ≤ c ∥A∗y∗∥X∗ for all y∗ ∈ Y ∗.

(ii) The operator A∗ is surjective if and only if A is injective and has a
closed image. Equivalently, there exists a constant c > 0 such that

(4.1.14) ∥x∥X ≤ c ∥Ax∥Y for all x ∈ X.

Proof. The operator A has a dense image if and only if A∗ is injec-
tive by Theorem 4.1.8. Hence A is surjective if and only if it has a closed
image and A∗ is injective. Hence part (i) follows from (4.1.8) in Theo-
rem 4.1.16. Part (ii) is the special case of Theorem 4.1.13 where Z = X
and B = id : X → X. Alternatively, one can argue as in the proof of part (i).
The operator A∗ has a weak* dense image if and only if A is injective by The-
orem 4.1.8. Hence A∗ is surjective if and only if it has a weak* closed image
and A is injective. Hence part (ii) follows from (4.1.7) in Theorem 4.1.16.
This proves Corollary 4.1.17. □

Corollary 4.1.18. Let X and Y be Banach spaces and let A : X → Y
be a bounded linear operator. Then the following holds.

(i) A is bijective if and only if A∗ is bijective.

(ii) If A is bijective then (A∗)−1 = (A−1)∗.

(iii) A is an isometry if and only if A∗ is an isometry.

Proof. We prove (i). If A is bijective then A∗ is injective by Theo-
rem 4.1.8 and A satisfies the inequality (4.1.14) by Theorem 2.2.1, so A∗

is surjective by Corollary 4.1.17. Conversely, if A∗ is bijective then A is
injective by Theorem 4.1.8 and A∗ satisfies the inequality (4.1.13) by The-
orem 2.2.1, so A is surjective by Corollary 4.1.17.

We prove (ii). Assume A is bijective and define B := A−1 : Y → X.
Then B is a bounded linear operator by Theorem 2.2.1 and

AB = idY , BA = idX .

Hence B∗A∗ = (AB)∗ = (idY )
∗ = idY ∗ and A∗B∗ = (BA)∗ = (idX)

∗ = idX∗

by Lemma 4.1.3. This shows that B∗ = (A∗)−1.

We prove (iii). Assume A and A∗ are bijective. Then (A∗)−1 = (A−1)∗

by part (ii) and hence ∥A∗∥ = ∥A∥ and ∥(A∗)−1∥ = ∥A−1∥ by Lemma 4.1.2.
With this understood, part (iii) follows from the fact that A is an isometry
if and only if ∥A∥ = ∥A−1∥ = 1. This proves Corollary 4.1.18. □
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An example of a Banach space isometry is the pullback under a home-
omorphism ϕ : M → M of a compact metric space, acting on the space of
continuous functions on M , equipped with the supremum norm. Its dual
operator is the pushforward under ϕ, acting on the space of signed Borel
measures on M (see Examples 1.3.8 and 4.1.4).

In finite dimensions orthogonal transformations of real vector spaces
with inner products and unitary transformations of complex vector spaces
with Hermitian inner products are examples of isometries. These exam-
ples carry over to infinite-dimensional real and complex Hilbert spaces. In
infinite dimensions orthogonal and unitary transformations have many im-
portant applications. They arise naturally in the study of certain partial
differential equations such as the wave equation and the Schrödinger equa-
tion. The functional analytic background for the study of such equations
is the theory of strongly continuous semigroups of operators. This is the
subject of Chapter 7 below.

4.2. Compact Operators

One of the most important concepts in the study of bounded linear operators
is that of a compact operator. The notion of a compact operator can be
defined in several equivalent ways. The equivalence of these conditions is
the content of the following lemma.

Lemma 4.2.1. Let X and Y be Banach spaces and let K : X → Y be a
bounded linear operator. Then the following are equivalent.

(i) If (xn)n∈N is a bounded sequence in X then the sequence (Kxn)n∈N has
a Cauchy subsequence.

(ii) If S ⊂ X is a bounded set then the set K(S) := {Kx |x ∈ S} has a
compact closure.

(iii) The set {Kx |x ∈ X, ∥x∥X ≤ 1} is a compact subset of Y .

Proof. We prove that (i) implies (ii). Thus assume K satisfies (i) and
let S ⊂ X be a bounded set. Then every sequence in K(S) has a Cauchy

subsequence by (i). Hence Corollary 1.1.8 asserts that K(S) is a compact
subset of Y , because Y is complete.

That (ii) implies (iii) is obvious.

We prove that (iii) implies (i). Let (xn)n∈N be a bounded sequence and
choose c > 0 such that ∥xn∥X ≤ c for all n ∈ N. Then (c−1Kxn)n∈N has
a convergent subsequence (c−1Kxni)i∈N by (iii). Hence (Kxni)i∈N is the
required Cauchy subsequence. This proves Lemma 4.2.1. □
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Definition 4.2.2 (Compact Operator). Let X and Y be Banach
spaces. A bounded linear operator K : X → Y is said to be

• compact if it satisfies the equivalent conditions of Lemma 4.2.1,

• of finite rank if its image is a finite-dimensional subspace of Y ,

• completely continuous if the image of every weakly convergent sequence
in X under K converges in the norm topology on Y .

Lemma 4.2.3. Let X and Y be Banach spaces. Then the following holds.

(i) Every compact operator K : X → Y is completely continuous.

(ii) Assume X is reflexive. Then a bounded linear operator K : X → Y is
compact if and only if it is completely continuous.

Proof. We prove part (i). Assume K is compact and let (xn)n∈N be a
sequence in X that converges weakly to x ∈ X. Suppose, by contradiction,
that the sequence (Kxn)n∈N does not converge to Kx in the norm topology.
Then there exists an ε > 0 and a subsequence (xni)i∈N such that

(4.2.1) ∥Kx−Kxni∥Y ≥ ε for all i ∈ N.

Since the sequence (xni)i∈N converges weakly, it is bounded by the Uniform
Boundedness Theorem 2.1.1. Since K is compact, there exists a further
subsequence (xnik

)k∈N such that the sequence (Kxnik
)k∈N converges strongly

to some element y ∈ Y . This implies

⟨y∗, y⟩ = lim
k→∞

⟨y∗,Kxnik
⟩ = lim

k→∞
⟨K∗y∗, xnik

⟩ = ⟨K∗y∗, x⟩ = ⟨y∗,Kx⟩

for all y∗ ∈ Y ∗. Hence y = Kx by Corollary 2.3.23 and so

lim
k→∞

∥Kxnik
−Kx∥Y = 0,

in contradiction to (4.2.1). This proves (i).

We prove part (ii). Assume X is reflexive and K is completely continu-
ous. Let (xn)n∈N be a bounded sequence in X. Since X is reflexive, there ex-
ists a weakly convergent subsequence (xni)i∈N by Theorem 3.4.1. Let x ∈ X
be the limit of that subsequence. Since K is completely continuous, the se-
quence (Kxni)i∈N converges strongly to Kx. Thus K satisfies condition (i)
in Lemma 4.2.1 and hence is compact. This proves Lemma 4.2.3. □

Example 4.2.4. The hypothesis that X is reflexive cannot be removed
in part (ii) of Lemma 4.2.3. For example a sequence in ℓ1 converges weakly
if and only if it converges strongly by Exercise 3.1.22. Hence the identity
operator id : ℓ1 → ℓ1 is completely continuous. However, it is not a compact
operator by Theorem 1.2.11.

Example 4.2.5. Every finite rank operator is compact.
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Example 4.2.6. Let X := C1([0, 1]), Y := C([0, 1]) and let K : X → Y
be the obvious inclusion. Then the image of the closed unit ball is a bounded
equi-continuous subset of C([0, 1]) and hence has a compact closure by the
Arzelà–Ascoli Theorem (Corollary 1.1.13). In this example the image of the
closed unit ball in X under K is not a closed subset of Y . Exercise: If X is
reflexive and K : X → Y is a compact operator, then the image of the closed
unit ball B ⊂ X under K is a closed subset of Y . Hint: Every sequence
in B has a weakly convergent subsequence by Theorem 3.4.1.

Example 4.2.7. If K : X → Y is a bounded linear operator between
Banach spaces whose image is a closed infinite-dimensional subspace of Y ,
then K is not compact. Namely, the image of the closed unit ball in X
under K contains an open ball in im(K) by Theorem 4.1.16, and hence does
not have a compact closure by Theorem 1.2.11.

Example 4.2.8. Fix a number 1 ≤ p ≤ ∞ and a bounded sequence of
real numbers λ = (λi)i∈N. For i ∈ N let ei := (δij)j∈N ∈ ℓp. Define the
bounded linear operator Kλ : ℓp → ℓp by

Kλx := (λixi)i∈N for x = (xi)i∈N ∈ ℓp.

Then
Kλ is compact ⇐⇒ lim

i→∞
λi = 0.

The condition limi→∞ λi = 0 is necessary for compactness because, if there
exists a constant δ > 0 and a sequence 1 ≤ n1 < n2 < n3 < · · · such
that |λnk

| ≥ δ for all k ∈ N, then the sequence Kenk
= λnk

enk
, k ∈ N, in ℓp

has no convergent subsequence. The condition limi→∞ λi = 0 implies com-
pactness because then K can be approximated by a sequence of finite rank
operators in the norm topology (Example 4.2.5 and Theorem 4.2.10).

Exercise 4.2.9. Find a strongly convergent sequence of compact oper-
ators whose limit operator is not compact.

The following theorem shows that the set of compact operators between
two Banach spaces is closed with respect to the norm topology.

Theorem 4.2.10 (Compact Operators). Let X, Y , and Z be Banach
spaces. Then the following holds.

(i) Let A : X → Y and B : Y → Z be bounded linear operators and assume
that A is compact or B is compact. Then BA : X → Z is compact.

(ii) Let Ki : X → Y be a sequence of compact operators that converges to
a bounded linear operator K : X → Y in the norm topology. Then K is
compact.

(iii) Let K : X → Y be a bounded linear operator and let K∗ : Y ∗ → X∗ be
its dual operator. Then K is compact if and only if K∗ is compact.
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Proof. We prove part (i). Let (xn)n∈N be a bounded sequence in X.
If A is compact then there exists a subsequence (xnk

)k∈N such that the
sequence (Axnk

)k∈N converges, and so does the subsequence (BAxnk
)k∈N.

If B is compact then, since the sequence (Axn)n∈N is bounded, there exists a
subsequence (Axnk

)k∈N such that the sequence (BAxnk
)k∈N converges. This

proves (i).

We prove part (ii). Let (xn)n∈N be a bounded sequence in X. Then a
standard diagonal subsequence argument shows that the sequence (Kxn)n∈N
has a convergent subsequence. More precisely, sinceK1 is compact, there ex-
ists a subsequence (xn1,k

)k∈N such that the sequence (K1xn1,k
)k∈N converges

in Y . Since K2 is compact there exists a further subsequence (xn2,k
)k∈N

such that the sequence (K2xn2,k
)k∈N converges in Y . Continue by induc-

tion and use the axiom of dependent choice to find a sequence of subse-
quences (xni,k

)k∈N such that, for each i ∈ N, the sequence (xni,k+1
)k∈N is

a subsequence of (xni,k
)k∈N and the sequence (Kixni,k

)k∈N converges in Y .
Now consider the diagonal subsequence

xnk
:= xnk,k

for k ∈ N.

Then the sequence (Kixnk
)k∈N converges in Y for every i ∈ N. We prove

that the sequence (Kxnk
)k∈N converges as well. To see this, choose a con-

stant c > 0 such that

∥xn∥X ≤ c for all n ∈ N.

Fix a constant ε > 0. Then there exists a positive integer i such that

∥K −Ki∥ <
ε

3c
.

Since the sequence (Kixnk
)k∈N converges, there exists a positive integer k0

such that all k, ℓ ∈ N satisfy

k, ℓ ≥ k0 =⇒ ∥Kixnk
−Kixnℓ

∥Y <
ε

3
.

This implies

∥Kxnk
−Kxnℓ

∥Y
≤ ∥Kxnk

−Kixnk
∥Y + ∥Kixnk

−Kixnℓ
∥Y + ∥Kixnℓ

−Kxnℓ
∥Y

≤ ∥K −Ki∥ ∥xnk
∥X + ∥Kixnk

−Kixnℓ
∥Y + ∥Ki −K∥ ∥xnℓ

∥X
≤ 2c ∥K −Ki∥+ ∥Kixnk

−Kixnℓ
∥Y

< ε

for all pairs of integers k, ℓ ≥ k0. Thus (Kxnk
)k∈N is a Cauchy sequence

in Y and hence converges, because Y is complete. This shows that K is
compact and hence completes the proof of part (ii).
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We prove part (iii). Assume first that K : X → Y is a compact operator.
Then the set

M := {Kx | ∥x∥X ≤ 1} ⊂ Y

is a compact metric space with the distance function determined by the
norm on Y . For y∗ ∈ Y ∗ consider the continuous real valued function

fy∗ := y∗|M :M → R.

Define the set F ⊂ C(M) by

F :=
{
fy∗
∣∣ y∗ ∈ Y ∗, ∥y∗∥Y ∗ ≤ 1

}
.

For each y∗ ∈ Y ∗ with ∥y∗∥Y ∗ ≤ 1 the supremum norm of fy∗ is given by

∥fy∗∥ = sup
y∈M

|⟨y∗, y⟩|

= sup
x∈X, ∥x∥X≤1

|⟨y∗,Kx⟩|

= sup
x∈X, ∥x∥X≤1

|⟨K∗y∗, x⟩|

= ∥K∗y∗∥X∗ .

(4.2.2)

Thus ∥f∥ ≤ ∥K∗∥ = ∥K∥ for all f ∈ F , so F is a bounded subset of C(M).
Moreover, the set F is equi-continuous because

|fy∗(y)− fy∗(y
′)| = |⟨y∗, y − y′⟩|

≤ ∥y∗∥Y ∗

∥∥y − y′
∥∥
Y

≤
∥∥y − y′

∥∥
Y

for all y∗ ∈ Y ∗ with ∥y∗∥Y ∗ ≤ 1 and all y, y′ ∈ M . Since M is a compact
metric space, it follows from the Arzelà–Ascoli Theorem (Corollary 1.1.13)
that F has a compact closure. This implies that the operatorK∗ is compact.
To see this, let (y∗n)n∈N be a sequence in Y ∗ such that ∥y∗n∥Y ∗ ≤ 1 for
all n ∈ N. Then the sequence (fy∗n)n∈N in F has a uniformly convergent
subsequence (fy∗ni

)i∈N. Hence it follows from (4.2.2) that (K∗y∗ni
)i∈N is a

Cauchy sequence in X∗ and hence converges. This shows that K∗ is a
compact operator as claimed.

Conversely, suppose that K∗ is compact. Then, by what we have just
proved, the bidual operator K∗∗ : X∗∗ → Y ∗∗ is compact. This implies
that K is compact. To see this, let (xn)n∈N be a bounded sequence in X.
Then (ιX(xn))n∈N is a bounded sequence in X∗∗ by Lemma 2.4.1. Since K∗∗

is a compact operator, there exists a subsequence (ιX(xni))i∈N such that the
sequence K∗∗ιX(xni) = ιY (Kxni) converges in Y ∗∗ as i tends to infinity.
Hence (Kxni)i∈N is a Cauchy sequence in Y by Lemma 2.4.1. Hence K is
compact and this proves Theorem 4.2.10. □
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It follows from part (ii) of Theorem 4.2.10 that the limit of a sequence
of finite rank operators in the norm topology is a compact operator. It is a
natural question to ask whether, conversely, every compact operator can be
approximated in the norm topology by a sequence of finite rank operators.
The answer to this question was an open problem in functional analysis
for many years. It was eventually shown that the answer depends on the
Banach space in question. Here is a reformulation of the problem due to
Grothendieck [33].

Exercise 4.2.11. Let Y be a Banach space. Prove that the following
are equivalent.

(a) For every Banach space X, every compact operator K : X → Y , and
every ε > 0 there is a finite rank operator T : X → Y such that ∥K − T∥ < ε.

(b) For every compact subset C ⊂ Y and every ε > 0 there is a finite rank
operator T : Y → Y such that ∥y − Ty∥ < ε for all y ∈ C.

A Banach space Y that satisfies these two equivalent conditions is said to
have the approximation property.

Exercise 4.2.12. Let Y be a Banach space that has a Schauder ba-
sis (ei)i∈N, i.e. for every y ∈ Y there exists a unique sequence λ = (λi)i∈N
of real numbers such that the sequence

∑n
i=1 λiei converges and

y =
∞∑
i=1

λiei = lim
n→∞

n∑
i=1

λiei.

Prove that Y has the approximation property. Hint: Let Πn : Y → Y be
the unique projection such that

im(Πn) = span{e1, . . . , en}, Πnei = 0 for all i > n.

By Exercise 2.5.12, the operators Πn are uniformly bounded. Prove that

lim
n→∞

∥ΠnK −K∥ = 0

for every compact operator K : X → Y .

The first example of a Banach space without the approximation prop-
erty was found by Enflo [27] in 1973. His example is separable and reflexive.
It was later shown by Szankowski in [82] that there exist closed linear sub-
spaces of ℓp (with 1 ≤ p < ∞ and p ̸= 2) and of c0 that do not have
the approximation property. Another result of Szankovski [83] asserts that
the Banach space L(H) of all bounded linear operators from an infinite-
dimensional Hilbert space H to itself, equipped with the operator norm,
does not have the approximation property.
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4.3. Fredholm Operators

Let X and Y be real Banach spaces and let A : X → Y be a bounded linear
operator. Recall that the kernel, image, and cokernel of A are defined by

ker(A) :=
{
x ∈ X

∣∣Ax = 0
}
,

im(A) :=
{
Ax
∣∣x ∈ X

}
,

coker(A) := Y/im(A).

(4.3.1)

If the image of A is a closed subspace of Y then the cokernel is a Banach
space with the norm (1.2.4).

Definition 4.3.1 (Fredholm Operator). LetX and Y be real Banach
spaces and let A : X → Y be a bounded linear operator. A is called a
Fredholm operator if it has a closed image and its kernel and cokernel
are finite-dimensional. If A is a Fredholm operator the difference of the
dimensions of its kernel and cokernel is called the Fredholm index of A
and is denoted by

(4.3.2) index(A) := dimker(A)− dim coker(A).

The condition that the image of A is closed is actually redundant in
Definition 4.3.1. It holds necessarily when the cokernel is finite-dimensional.
In other words, while any infinite-dimensional Banach space Y admits lin-
ear subspaces Z ⊂ Y that are not closed and have finite-dimensional quo-
tients Y/Z, such a subspace can never be the image of a bounded linear
operator on a Banach space with values in Y .

Lemma 4.3.2. Let X and Y be Banach spaces and let A : X → Y be a
bounded linear operator with a finite-dimensional cokernel. Then the image
of A is a closed subspace of Y .

Proof. Let m := dim coker(A) and choose vectors y1, . . . , ym ∈ Y such
that the equivalence classes

[yi] := yi + im(A) ∈ Y/im(A), i = 1, . . . ,m,

form a basis of the cokernel of A. Define

X̃ := X × Rm, ∥(x, λ)∥
X̃

:= ∥x∥X + ∥λ∥Rm

for x ∈ X and λ = (λ1, . . . , λm) ∈ Rm. Then X̃ is a Banach space. Define

the linear operator Ã : X̃ → Y by

Ã(x, λ) := Ax+
m∑
i=1

λiyi.

Then Ã is a surjective bounded linear operator and

ker(Ã) =
{
(x, λ) ∈ X × Rm

∣∣Ax = 0, λ = 0
}
= ker(A)× {0}.
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Since Ã is surjective, it follows from Theorem 4.1.16 that there exists a
constant c > 0 such that

inf
ξ∈ker(A)

∥x+ ξ∥X + ∥λ∥Rm ≤ c

∥∥∥∥∥Ax+
m∑
i=1

λiyi

∥∥∥∥∥
Y

for all x ∈ X and all λ ∈ Rm. Take λ = 0 to obtain the inequality

inf
ξ∈ker(A)

∥x+ ξ∥X ≤ c ∥Ax∥Y for all x ∈ X.

Thus A has a closed image by Theorem 4.1.16. This proves Lemma 4.3.2. □

Theorem 4.3.3 (Duality for Fredholm Operators). Let X and Y
be Banach spaces and let A ∈ L(X,Y ). Then the following holds.

(i) If A and A∗ have closed images then

dimker(A∗) = dim coker(A), dim coker(A∗) = dimker(A).

(ii) A is a Fredholm operator if and only if A∗ is a Fredholm operator.

(iii) If A is a Fredholm operator then index(A∗) = −index(A).

Proof. Assume A and A∗ have closed images. Then

im(A∗) = ker(A)⊥, ker(A∗) = im(A)⊥

by Theorem 4.1.8 and Theorem 4.1.16. Hence it follows from Corollary 2.3.26
that the dual spaces of the linear subspace ker(A) ⊂ X and of the quotient
space coker(A) = Y/im(A) are isomorphic to

(ker(A))∗ ∼= X∗/ ker(A)⊥ = X∗/im(A∗) = coker(A∗),

(coker(A))∗ = (Y/im(A))∗ ∼= im(A)⊥ = ker(A∗).

This proves part (i). Parts (ii) and (iii) follow directly from (i) and Theo-
rem 4.1.16. This proves Theorem 4.3.3. □

Example 4.3.4. If X and Y are finite-dimensional then every linear
operator A : X → Y is Fredholm and index(A) = dimX − dimY .

Example 4.3.5. Every bijective bounded linear operator between Ba-
nach spaces is a Fredholm operator of index zero.

Example 4.3.6. Consider the Banach space X = ℓp with 1 ≤ p ≤ ∞
and let k ∈ N. Define the linear operators Ak, A−k : ℓ

p → ℓp by

Akx := (xk+1, xk+2, xk+3, . . . ),
A−kx := (0, . . . , 0, x1, x2, x3, . . . )

for x = (xi)i∈N ∈ ℓp,

where x1 is preceded by k zeros in the formula for A−k. These are Fredholm
operators of indices index(Ak) = k and index(A−k) = −k.
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Example 4.3.7. Let X, Y , and Z be Banach spaces and let A : X → Y
and Φ : Z → Y be bounded linear operators. Define the bounded linear
operator A⊕ Φ : X ⊕ Z → Y by

(A⊕ Φ)(x, z) := Ax+Φz.

If A is a Fredholm operator and dim Z < ∞, then A ⊕ Φ is a Fredholm
operator and index(A⊕ Φ) = index(A) + dimZ. (Prove this!)

The next theorem characterizes the Fredholm operators as those opera-
tors that are invertible modulo the compact operators.

Theorem 4.3.8 (Fredholm and Compact Operators). Let X and
Y be Banach spaces and let A : X → Y be a bounded linear operator. Then
the following are equivalent.

(i) A is a Fredholm operator.

(ii) There exists a bounded linear operator F : X → Y such that the opera-
tors 1lX − FA : X → X and 1lY −AF : Y → Y are compact.

Proof. See page 183. □

The proof of Theorem 4.3.8 relies on the following lemma. This lemma
also gives a partial answer to the important question of how one can recog-
nize whether a given operator is Fredholm. It characterizes bounded linear
operators with a closed image and a finite-dimensional kernel and is a key
tool for establishing the Fredholm property for many differential operators.

Lemma 4.3.9 (Main Fredholm Lemma). Let X and Y be Banach
spaces and let D : X → Y be a bounded linear operator. Then the following
are equivalent.

(i) D has a finite-dimensional kernel and a closed image.

(ii) There exists a Banach space Z, a compact operator K : X → Z, and a
constant c > 0 such that

(4.3.3) ∥x∥X ≤ c
(
∥Dx∥Y + ∥Kx∥Z

)
for all x ∈ X.

Proof. We prove that (i) implies (ii). Thus assume D has a finite-
dimensional kernel and a closed image. Definem := dimker(D) and choose a
basis x1, . . . , xm of ker(D). By the Hahn–Banach Theorem (Corollary 2.3.4)
there exist bounded linear functionals x∗1, . . . , x

∗
n ∈ X∗ such that

⟨x∗i , xj⟩ = δij =

{
1, if i = j,
0, if i ̸= j,

for i, j = 1, . . . ,m.
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Define the bounded linear operator K : X → Z := ker(D) by

Kx :=
m∑
i=1

⟨x∗i , x⟩xi.

Then K is a compact operator (Example 4.2.5). Moreover, the restric-
tion K|ker(D) : ker(D) → Z is the identity and so is bijective. Hence the
operator X → Y × Z : x 7→ (Dx,Kx) is injective and its image im(D) × Z
is a closed subspace of Y × Z. Hence it follows from Corollary 4.1.17 that
there exists a constant c > 0 such that (4.3.3) holds.

We prove that (ii) implies (i). Assume D satisfies (ii) and let K : X → Z
and c > 0 be as in part (ii). We prove in three steps that D satisfies (i).

Step 1. Every bounded sequence in ker(D) has a convergent subsequence.

Let (xn)n∈N be a bounded sequence in ker(D). Since K is a compact opera-
tor, there exists a subsequence (xni)i∈N such that (Kxni)i∈N is a Cauchy
sequence in Z. Since Dxni = 0 for all i ∈ N, it follows from (4.3.3)
that ∥xni − xnj∥X ≤ c∥Kxni −Kxnj∥Z for all i, j ∈ N. Hence (xni)i∈N is
a Cauchy sequence and therefore converges because X is complete. The
limit x := limi→∞ xni belongs to the kernel of D and this proves Step 1.

Step 2. There exists a constant C > 0 such that

(4.3.4) inf
ξ∈ker(D)

∥x+ ξ∥X ≤ C ∥Dx∥Y for all x ∈ X.

Assume, by contradiction, that there does not exist a constant C > 0 such
that (4.3.4) holds. Then it follows from the axiom of countable choice that
there exists a sequence (xn)n∈N in X such that

(4.3.5) inf
ξ∈ker(D)

∥xn + ξ∥X > n ∥Dxn∥Y for all n ∈ N.

Multiplying each element xn by a suitable constant and adding to it an
element of the kernel of D, if necessary, we may assume that

(4.3.6) inf
ξ∈ker(D)

∥xn + ξ∥X = 1, 1 ≤ ∥xn∥ ≤ 2 for all n ∈ N.

Then ∥Dxn∥Y < 1/n by (4.3.5) and (4.3.6) and so limn→∞Dxn = 0. More-
over, sinceK is compact, there is a subsequence (xni)i∈N such that (Kxni)i∈N
is a Cauchy sequence in Z. Since (Dxni)i∈N and (Kxni)i∈N are Cauchy se-
quences, it follows from (4.3.3) that (xni)i∈N is a Cauchy sequence in X.
This sequence converges because X is complete. Define x := limi→∞ xni .
Then Dx = limi→∞ xni = 0 and hence, by (4.3.6),

1 = inf
ξ∈ker(D)

∥xni + ξ∥X ≤ ∥xni − x∥X for all i ∈ N.

Since limi→∞∥xni − x∥X = 0, this is a contradiction. This proves Step 2.
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Step 3. D satisfies (i).

It follows from Step 1 and Theorem 1.2.11 that dimker(D) <∞. It follows
from Step 2 and Theorem 4.1.16 that the operator D : X → Y has a closed
image. This proves Step 3 and Lemma 4.3.9. □

Proof of Theorem 4.3.8. We prove that (i) implies (ii). Thus assume
that A : X → Y is a Fredholm operator and define

X0 := ker(A), Y1 := im(A).

Then, by Lemma 2.3.30, there exist closed linear subspaces

X1 ⊂ X, Y0 ⊂ Y

such that

X = X0 ⊕X1, Y = Y0 ⊕ Y1.

This implies that the bounded linear operator

A1 := A|X1 : X1 → Y1

is bijective. Hence A−1
1 : Y1 → X1 is bounded by the Inverse Operator

Theorem 2.2.5. Define the bounded linear operator F : Y → X by

F (y0 + y1) := A−1
1 y1 for y0 ∈ Y0 and y1 ∈ Y1.

Then AF (y0 + y1) = y1 and FA(x0 + x1) = x1 and hence

(1lY −AF )(y0 + y1) = y0, (1lX − FA)(x0 + x1) = x0

for all x0 ∈ X0, x1 ∈ X1, y0 ∈ Y0, and y1 ∈ Y1. Since X0 and Y0 are finite-
dimensional, the operators 1lY −AF and 1lX − FA have finite rank and are
therefore compact (see Example 4.2.5).

We prove that (ii) implies (i). Thus assume that there exists a bounded
linear operator F : Y → X such that the operators K := 1lX−FA : X → X
and L := 1lY −AF : Y → Y are compact. Then

∥x∥X = ∥FAx+Kx∥X ≤ c
(
∥Ax∥Y + ∥Kx∥X

)
for all x ∈ X, where c := max{1, ∥F∥}. Hence A has a finite-dimensional
kernel and a closed image by Lemma 4.3.9. Moreover, L∗ : Y ∗ → Y ∗ is a
compact operator by Theorem 4.2.10 and

∥y∗∥Y ∗ = ∥F ∗A∗y∗ + L∗y∗∥Y ∗ ≤ c
(
∥A∗y∗∥Y ∗ + ∥L∗y∗∥Y ∗

)
for all y∗ ∈ Y ∗. Hence A∗ has a finite-dimensional kernel by Lemma 4.3.9
and so A has a finite-dimensional cokernel by Theorem 4.3.3. This proves
Theorem 4.3.8. □
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4.4. Composition and Stability

Theorem 4.4.1 (Composition of Fredholm Operators). Let X,Y, Z
be Banach spaces and let A : X → Y and B : Y → Z be Fredholm operators.
Then BA : X → Z is a Fredholm operator and

index(BA) = index(A) + index(B).

Proof. By Theorem 4.3.8 there exist bounded linear operators F : Y →
X and G : Z → Y such that the operators 1lX − FA, 1lY − AF , 1lY − GB,
and 1lZ −BG are compact. Define H := FG : Z → X. Then the operators

1lX −HBA = F (1lY −GB)A+ 1lX − FA,

1lZ −BAH = B(1lY −AF )G+ 1lZ −BG

are compact by part (i) of Theorem 4.2.10. Hence BA is a Fredholm operator
by Theorem 4.3.8.

To prove the index formula, consider the operators

A0 :
ker(BA)

ker(A)
→ ker(B), A0[x] := Ax,

B0 :
Y

im(A)
→ im(B)

im(BA)
, B0[y] := [By].

These are well defined linear operators between finite-dimensional real vector
spaces. The operator A0 is injective and B0 is surjective by definition.
Second, im(A0) = im(A) ∩ ker(B) and hence

coker(A0) =
ker(B)

im(A) ∩ ker(B)
.

Third,

ker(B0) =
{
[y] ∈ Y/im(A)

∣∣By ∈ im(BA)
}

=
{
[y] ∈ Y/im(A)

∣∣ ∃x ∈ X such that B(y −Ax) = 0
}

=
{
[y] ∈ Y/im(A)

∣∣ y ∈ im(A) + ker(B)
}

=
im(A) + ker(B)

im(A)

∼=
ker(B)

im(A) ∩ ker(B)

= coker(A0).
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Hence, by Example 4.3.4, we have

0 = index(A0) + index(B0)

= dim

(
ker(BA)

ker(A)

)
− dimker(B) + dim coker(A)− dim

(
im(B)

im(BA)

)
= dimker(BA)− dimker(A)− dimker(B)

+ dim coker(A) + dim coker(B)− dim coker(BA)

= index(BA)− index(A)− index(B).

This proves Theorem 4.4.1. □

Theorem 4.4.2 (Stability of the Fredholm Index). Let X and Y
be Banach spaces and let D : X → Y be a Fredholm operator.

(i) If K : X → Y is a compact operator then D+K is a Fredholm operator
and index(D +K) = index(D).

(ii) There is a constant ε > 0 such that the following holds. If P : X → Y
is a bounded linear operator such that ∥P∥ < ε then D + P is a Fredholm
operator and index(D + P ) = index(D).

Proof. We prove the Fredholm property in part (i). Thus let D : X → Y
be a Fredholm operator and let K : X → Y be a compact operator. By The-
orem 4.3.8 there exists a bounded linear operator T : Y → X such that the
operators 1lX − TD and 1lY −DT are compact. Hence so are the opera-
tors 1lX − T (D +K) and 1lY − (D +K)T by Theorem 4.2.10, so D +K is
a Fredholm operator by Theorem 4.3.8.

We prove the Fredholm property in part (ii). Let D : X → Y be a Fred-
holm operator. By Lemma 4.3.9 there exists a compact operatorK : X → Z
and a constant c > 0 such that ∥x∥X ≤ c(∥Dx∥Y + ∥Kx∥Z) for all x ∈ X.
Now let P : X → Y be a bounded linear operator with the operator norm

∥P∥ < 1

c
.

Then, for all x ∈ X, we have

∥x∥X ≤ c
(
∥Dx∥Y + ∥Kx∥Z

)
≤ c

(
∥Dx+ Px∥Y + ∥Px∥Y + ∥Kx∥Z

)
≤ c

(
∥(D + P )x∥Y + ∥Kx∥Z

)
+ c ∥P∥ ∥x∥X

and hence
(1− c∥P∥)∥x∥X ≤ c(∥(D + P )x∥Y + ∥Kx∥Z).

So D+P has a closed image and a finite-dimensional kernel by Lemma 4.3.9.
The same argument for the dual operators shows that D∗ + P ∗ has a finite-
dimensional kernel whenever ∥P ∗∥ = ∥P∥ is sufficiently small, and so D + P
has a finite-dimensional cokernel by Theorem 4.3.3.
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We prove the index formula in part (ii). As in the proof of Theorem 4.3.8,
define X0 := ker(A) and Y1 := im(A) and use Lemma 2.3.30 to find closed
linear subspaces X1 ⊂ X and Y0 ⊂ Y such that

X = X0 ⊕X1, Y = Y0 ⊕ Y1.

For i, j ∈ {0, 1} define Pji : Xi → Yj as the composition of P |Xi : Xi → Y
with the projection Y = Y0 ⊕ Y1 → Yj : y0 + y1 7→ yj . Let D11 : X1 → Y1 be
the restriction of D to X1 with values in Y1 = im(D). Then D11 is bijective.
We prove the following.

Claim. Assume the operator D11 + P11 : X1 → Y1 is bijective and define

A0 := P00 − P01

(
D11 + P11

)−1
P10 : X0 → Y0.

Then index(D + P ) = index(A0).

The claim shows that

index(D + P ) = index(A0) = dimX0 − dimY0 = index(D)

whenever the operator D11 + P11 is bijective. By Corollary 1.5.7, this holds
whenever ∥P11∥∥(D11)

−1∥ < 1, and hence when ∥P∥ is sufficiently small.

To prove the claim, observe that the equation

(4.4.1) (D + P )(x0 + x1) = y0 + y1

can be written as

y0 = P00x0 + P01x1,

y1 = P10x0 +
(
D11 + P11

)
x1

(4.4.2)

for x0 ∈ X0, x1 ∈ X1 and y0 ∈ Y0, y1 ∈ Y1. Since D11 + P11 is bijective, the
equations in (4.4.2) can be written in the form

A0x0 = y0 − P01

(
D11 + P11

)−1
y1,

x1 =
(
D11 + P11

)−1
(y1 − P10x0).

(4.4.3)

This shows that

x0 + x1 ∈ ker(D + P ) ⇐⇒
{
x0 ∈ ker(A0),

x1 = −
(
D11 + P11

)−1
P10x0

for xi ∈ Xi and so ker(D + P ) ∼= ker(A0). Equation (4.4.3) also shows that

y0 + y1 ∈ im(D + P ) ⇐⇒ y0 − P01

(
D11 + P11

)−1
y1 ∈ im(A0)

for yi ∈ Yi. Thus the map Y → Y0 : y0 + y1 7→ y0 − P01

(
D11 + P11

)−1
y1

descends to an isomorphism from Y/im(D + P ) to Y0/im(A0). Hence

coker(D + P ) ∼= coker(A0).

This proves the claim and the index formula in part (ii).
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It remains to prove the index formula in part (i). Let K : X → Y be a
compact operator and define I :=

{
t ∈ R

∣∣ index(D + tK) = index(D)
}
. By

part (ii) the set Fk(X,Y ) ⊂ L(X,Y ) of Fredholm operators of index k is
open for every k ∈ Z, and so is their union F(X,Y ) :=

⋃
k∈ZFk(X,Y ).

Moreover, the map R → F(X,Y ) : t 7→ D+ tK is continuous and hence the
pre-image of Fk(X,Y ) under this map is open for every k ∈ Z. Thus the
set Ik := {t ∈ R | index(D + tK) = k} is open for all k ∈ Z and R =

⋃
k∈Z Ik.

Since Ik = I for k = index(D) it follows that I and R \ I =
⋃
ℓ̸=k Iℓ are open.

Since 0 ∈ I and R is connected, it follows that I = R, thus 1 ∈ I, and
so index(D +K) = index(D). This proves Theorem 4.4.2. □

Remark 4.4.3 (Fredholm Alternative). It is interesting to consider the
special case where X = Y is a Banach space and K : X → X is a compact
operator. Then Theorem 4.4.2 asserts that 1l − K is a Fredholm operator
of index zero. This gives rise to the so-called Fredholm alternative. It
asserts that either the inhomogeneous linear equation

x−Kx = y

has a solution x ∈ X for every y ∈ X, or the corresponding homogeneous
equation x−Kx = 0 has a nontrivial solution. This is simply a consequence
of the fact that the kernel and cokernel of the operator 1l−K have the same
dimension, and hence are either both trivial or both nontrivial.

Remark 4.4.4 (Calkin Algebra). Let X be a Banach space, denote
by L(X) the Banach space of bounded linear operators from X to itself,
denote by F(X) ⊂ L(X) the subset of all Fredholm operators, and denote
by K(X) ⊂ L(X) the subset of all compact operators. By part (ii) of
Theorem 4.2.10 the linear subspace K(X) ⊂ L(X) is closed and, by part (i)
of Theorem 4.2.10, the quotient space

L(X)/K(X)

is a Banach algebra, called the Calkin algebra. By part (ii) of Theo-
rem 4.4.2, the set F(X) of Fredholm operators is an open subset of L(X)
and, by part (i) of Theorem 4.4.2, this open set is invariant under the equiv-
alence relation. By Theorem 4.3.8 the corresponding open subset

F(X)/K(X) ⊂ L(X)/K(X)

of the quotient space is the group of invertible elements in the Calkin slgebra.
By part (i) of Theorem 4.4.2 the Fredholm index gives rise to a well defined
map

(4.4.4) F(X)/K(X) → Z : [D] 7→ index(D).

By Theorem 4.4.1 this map is a group homomorphism.
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Remark 4.4.5 (Fredholm Operators and K-theory). Let H be an
infinite-dimensional separable Hilbert space. A theorem of Kuiper [53] as-
serts that the group

Aut(H) :=
{
A : H → H

∣∣A is a bijective bounded linear operator
}

is contractible. This can be used to prove that the space F(H) of Fredholm
operators from H to itself is a classifying space for K-theory. The
starting point is the observation that, if M is a compact Hausdorff space
and A :M → F(H) is a continuous map such that the operator A(p) is
surjective for all p ∈M , then the kernels of these operators determine a
vector bundle E over M , defined by

(4.4.5) E := {(p, x) ∈M ×H |A(p)x = 0} .
More generally, any continuous map A :M → F(H), defined on a com-
pact Hausdorff space M , determines a so-called K-theory class on M
(an equivalence class of pairs of vector bundles under the equivalence rela-
tion (E,F ) ∼ (E′, F ′) iff E ⊕ F ′ ∼= E′ ⊕ F ), the K-theory classes associated
to two such maps agree if and only if the maps are homotopic, and every K-
theory class on a compact Hausdorff space can be obtained this way. This
is the Atiyah–Jänich Theorem [5, 6, 7, 42]. In particular, when M
is a single point, the theorem asserts that the space Fk(H) of Fredholm
operators of index k is nonempty and connected for all k ∈ Z.

Remark 4.4.6 (Banach Hyperplane Problem). In 1932 Banach [8]
asked the question of whether every infinite-dimensional real Banach spaceX
is isomorphic to X × R or, equivalently, whether every closed codimension
one subspace of X is isomorphic to X (see Exercise 4.5.9). This ques-
tion was answered by Gowers [31] in 1994. He constructed an infinite-
dimensional real Banach space X that is not isomorphic to any of its proper
subspaces and so every Fredholm operator on X has Fredholm index zero.
This example was later refined by Argyros and Haydon [4]. The Argyros–
Haydon space is an infinite-dimensional real Banach space X such that ev-
ery bounded linear operator A : X → X has the form A = λ1l +K, where λ
is a real number andK : X → X is a compact operator. Thus every bounded
linear operator on X is either a compact operator or a Fredholm operator
of index zero, the open set F(X) = F0(X) = L(X) \ K(X) of Fredholm op-
erators on X has two connected components, and the Calkin algebra is
isomorphic to the real numbers, i.e.

L(X)/K(X) ∼= R.
This shows that the Hilbert space H in the Atiyah–Jänich Theorem cannot
be replaced by an arbitrary Banach space (see Remark 4.4.5). The details of
the constructions of Gowers and Argyros–Haydon go far beyond the scope
of the present book.
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4.5. Problems

Exercise 4.5.1 (Injections and Surjections).

Let X and Y be Banach spaces. Prove the following.

(a) The set of all surjective bounded linear operators A : X → Y is an open
subset of L(X,Y ) with respect to the norm topology.

(b) The set of all injective bounded linear operators A : X → Y is not
necessarily an open subset of L(X,Y ) with respect to the norm topology.

(c) The set of all injective bounded linear operators A : X → Y with closed
image is an open subset of L(X,Y ) with respect to the norm topology.

Exercise 4.5.2 (The Image of a Compact Operator).

Let X and Y be Banach spaces and let K : X → Y be a compact operator.
Prove the following.

(a) If K has a closed image then dim im(K) <∞.

(b) The image of K is a separable subspace of Y .

(c) If Y is separable then there exists a Banach space X and a compact
operator K : X → Y with a dense image.

Exercise 4.5.3 (Compact Subsets of Banach Spaces).

Let X be a Banach space and let C ⊂ X be a closed subset. Then the
following are equivalent.

(i) C is compact.

(ii) There exists a sequence xn ∈ C such that

(4.5.1) lim
n→∞

∥xn∥ = 0, C ⊂ conv({xn |n ∈ N}).

Hint 1: To prove that (ii) implies (i) observe that

(4.5.2) conv({xn
∣∣n ∈ N}) =

{ ∞∑
n=1

λnxn

∣∣∣∣λn ≥ 0,

∞∑
n=1

λn = 1

}
whenever limn→∞ ∥xn∥ = 0.

Hint 2: To prove that (i) implies (ii), choose a sequence of compact sets
Ck ⊂ X and a sequence of finite subsets Ak ⊂ Ck such that C1 = C and

2Ck ⊂
⋃
x∈Ak

B4−k(x), Ck+1 :=
⋃
x∈Ak

((
2C ∩B4−k(x)

)
− x
)

for k ∈ N. Prove that, for every c ∈ C, there is a sequence xk ∈ Ak such
that x =

∑∞
k=1 2

−kxk. Note that ∥x∥ ≤ 4−k for all x ∈ Ak+1 and all k ∈ N.
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Exercise 4.5.4 (Continuity). Let X and Y be normed vector spaces.

(a) A linear operator A : X → Y is bounded if and only if it is continuous
with respect to the weak topologies on X and Y .

(b) A linear operator B : Y ∗ → X∗ is continuous with respect to the
weak* topologies on Y ∗ and X∗ if and only if there exists a bounded linear
operator A : X → Y such that B = A∗.

(c) A linear operator A : X → Y is continuous with respect to the weak
topology on X and the norm topology on Y if and only if it is bounded and
has finite rank.

(d) Suppose X and Y are Banach spaces and denote by B∗ ⊂ Y ∗ the closed
unit ball. Then a bounded linear operator A : X → Y is compact if and
only if A∗|B∗ : B∗ → X∗ is continuous with respect to the weak* topology
on B∗ and the norm topology on X∗.

(e) Suppose X and Y are reflexive Banach spaces and denote by B ⊂ X
the closed unit ball. Then a bounded linear operator A : X → Y is compact
if and only if A|B : B → X is continuous with respect to the weak topology
on B and the norm topology on Y .

Exercise 4.5.5 (Gantmacher’s Theorem). Let X and Y be Banach
spaces and let A : X → Y be a bounded linear operator. Then the following
are equivalent.

(i) A is weakly compact, i.e. if B ⊂ X is a bounded set then the weak
closure of A(B) is a weakly compact subset of Y .

(ii) If (xn)n∈N is a bounded sequence in X then the sequence (Axn)n∈N in Y
has a weakly convergent subsequence.

(iii) A∗∗(X∗∗) ⊂ ιY (Y ).

(iv) A∗ : Y ∗ → X∗ is continuous with respect to the weak* topology on Y ∗

and the weak topology on X∗.

(v) The dual operator A∗ : Y ∗ → X∗ is weakly compact.

Hint: To prove that (i) implies (iii) denote by

B ⊂ X, B∗∗ ⊂ X∗∗

the closed unit balls and denote by C ⊂ Y the weak closure of A(B). If (i)
holds then ιY (C) is a weak* compact subset of Y ∗∗. Use Goldstine’s Theo-
rem (Corollary 3.1.29) to prove that

A∗∗(B∗∗) ⊂ ιY (C).

(See Exercise 3.7.8.)
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Exercise 4.5.6 (Pitt’s Theorem). Let 1 ≤ p < q < ∞. Then every
bounded linear operator A : ℓq → ℓp is compact.

(a) Fix a bounded linear operator A : ℓq → ℓp such that ∥A∥ = 1 and a
sequence (xn)n∈N in ℓq that converges weakly to zero. It suffices to prove

lim
n→∞

∥Axn∥p = 0.

Hint: Use Theorem 3.4.1 and part (e) of Exercise 4.5.4.

(b) If (yn)n∈N is a sequence in ℓp that converges weakly to zero then

(4.5.3) lim sup
n→∞

∥y + yn∥pp = ∥y∥pp + lim sup
n→∞

∥yn∥pp

for every y ∈ ℓp. Hint: Assume first that y has finite support.

(c) Let xn be as in (a), fix a constant ε > 0, and choose x ∈ ℓq such that

(4.5.4) ∥x∥q = 1, 1− ε < ∥Ax∥p < 1.

Then

(4.5.5)

(
∥Ax∥pp + λp lim sup

n→∞
∥Axn∥pp

)1/p

≤
(
∥x∥qq + λq lim sup

n→∞
∥xn∥qq

)1/q

for all λ > 0. Hint: Use the equation (4.5.3) in part (b) with

yn := λAxn

and the inequality ∥Ax+ λAxn∥p ≤ ∥x+ λxn∥q.

(d) There exists a constant C > 0 such that

(4.5.6) lim sup
n→∞

∥Axn∥pp ≤
(1 + λqCq)p/q − (1− ε)p

λp

for all λ > 0 and all ε > 0. Hint: Take C ≥ supn∈N ∥xn∥q and use the

inequalities (4.5.4) and (4.5.5) in part (c).

(e) Choose λ := C−1ε1/q in (4.5.6) to obtain

(4.5.7) lim sup
n→∞

∥Axn∥pp ≤ Cpε1−p/q

(
(1 + ε)p/q − 1

ε
+

1− (1− ε)p

ε

)
for all ε > 0. Take the limit ε→ 0 in (4.5.7) to obtain limn→∞ ∥Axn∥p = 0.

Exercise 4.5.7 (Existence of Fredholm Operators).

Let X and Y be Banach spaces and suppose that there exists a Fredholm
operator from X to Y . Prove the following.

(a) X is reflexive if and only if Y is reflexive.

(b) X is separable if and only if Y is separable.
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Exercise 4.5.8 (Codimension One Subspaces). Let X be a real Ba-
nach space. Prove that any two closed codimension one subspaces of X are
isomorphic to one another. Hint: If Y and Z are distinct closed codimen-
sion one subspaces of X then each of them is isomorphic to (Y ∩ Z)× R.

Exercise 4.5.9 (Existence of Index One Fredholm Operators).

LetX be an infinite-dimensional real Banach space. Prove that the following
are equivalent.

(i) X is isomorphic to X × R.

(ii) There exists a codimension one subspace of X that is isomorphic to X.

(iii) Every closed codimension one subspace of X is isomorphic to X.

(iv) There exists a Fredholm operator A : X → X of index one.

(v) The homomorphism (4.4.4) is surjective.

Exercise 4.5.10 (Existence of Index Zero Fredholm Operators).

(a) Let X and Y be Banach spaces and suppose that there exists an index
zero Fredholm operator from X to Y . Prove that X and Y are isomorphic.

(b) Let X be a Banach space and let Y ⊂ X be a closed codimension one
subspace. Prove that there is an index one Fredholm operator A : X → Y .
If X is not isomorphic to any proper closed subspace of X, prove that every
Fredholm operator from X to Y has index one.

Exercise 4.5.11 (Fredholm Operators Between ℓp Spaces).

(a) Let 1 ≤ p ≤ ∞. For every integer n ∈ Z construct a Fredholm opera-
tor A : ℓp → ℓp of index n.

(b) Construct a family of examples in (a) that are neither injective nor
surjective.

(c) Let 1 ≤ p, q ≤ ∞ and p ̸= q. Does there exist a Fredholm operator
from ℓp to ℓq?

Exercise 4.5.12 (Fredholm Operators and Vector Bundles).

Let H be a separable infinite-dimensional Hilbert space and, for k ∈ Z,
denote by Fk(H) the space of Fredholm operators A : H → H of index k.
Find a continuous map

A : S1 → F1(H)

such that the Fredholm operator A(z) : H → H is surjective for all z ∈ S1,
and the vector bundle

E :=
{
(z, ξ) ∈ S1 ×H |A(z)ξ = 0

}
over S1 is a Möbius band.
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Exercise 4.5.13 (Fredholm Alternative).

Fix an interval I := [a, b] with a < b, let fi, gi ∈ L2(I) for i = 1, . . . , n, and
define

K(x, y) :=
n∑
i=1

fi(x)gi(y) for a ≤ x, y ≤ b.

For h ∈ L2(I) consider the equation

(4.5.8) u(x) +

∫ b

a
K(x, y)u(y) dy = h(x) for a ≤ x ≤ b.

Prove that equation (4.5.8) either has a unique solution u ∈ L2(I) for ev-
ery h, or the homogeneous equation with h = 0 has a nonzero solution u.

Exercise 4.5.14 (Hilbert Spheres).

(a) The unit sphere

S :=
{
x ∈ ℓ2 | ∥x∥2 = 1

}
is contractible, i.e. there exists a continuous map f : [0, 1]× S → S and an
element e ∈ S such that

f(0, x) = e, f(1, x) = x

for all x ∈ S.

Hint: Let e1, e2, e3, . . . be the standard orthonormal basis of ℓ2 and define
the shift operator T : ℓ2 → ℓ2 by

T (x1, x2, x3, . . . ) := (0, x1, x2, x3, . . . ) for x = (xi)i∈N ∈ ℓ2.

Then Ten = en+1 for all n ∈ N. Consider the maps g : [0, 1] × ℓ2 → ℓ2 and
h : [0, 1]× ℓ2 → ℓ2 defined by

g(t, x) := (1− t)e1 + tTx, h(t, x) := (1− t)Tx+ tx

for 0 ≤ t ≤ 1 and x ∈ ℓ2. Use these maps to show that ℓ2\{0} is contractible
and then normalize to deduce that S is contractible.

(b) Refine the construction in (a) to obtain a map f : [0, 1] × S → S that
satisfies

f(0, x) = e, f(1, x) = x, f(t, e) = e

for all x ∈ S and all t ∈ [0, 1]. This means that the singleton {e} is a
deformation retract of S.

(c) Prove that the unit sphere in any infinite-dimensional Hilbert space is
contractible.
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Exercise 4.5.15 (Fredholm Intersection Theory).

Let X be a Banach space and let X1, X2 ⊂ X be closed subspaces. The
triple (X,X1, X2) is called a Fredholm triple if the subspace X1 +X2

is closed, and the spaces X1 ∩X2 and X/(X1 +X2) are finite-dimensional.
The Fredholm index of a Fredholm triple (X,X1, X2) is defined by

(4.5.9) index(X,X1, X2) := dim(X1 ∩X2)− dim(X/(X1 +X2)).

(a) Prove that (X,X1, X2) is a Fredholm triple if and only if the operator

X1 ×X2 → X : (x1, x2) 7→ x1 + x2

is Fredholm. Show that the Fredholm indices agree. Hint: Corollary 2.2.9.

(b) Assume X1 +X2 has finite codimension in X. Prove that X1 +X2 is a
closed subspace of X. Hint: Lemma 4.3.2.

(c) Assume (X,X1, X2) is a Fredholm triple. Prove that the subspaces X1

and X2 are complemented.

(d) Define the notion of a small deformation of a complemented subspace.

(e) Prove that the Fredholm property and the Fredholm index of a Fredholm
triple (X,X1, X2) are stable under small deformations of the subspaces X1

and X2. Hint: Theorem 4.4.2.

Exercise 4.5.16 (Rellich’s Theorem). Let I := [0, 1] ⊂ R be the unit
interval and fix a real number p ≥ 1. Denote by

(4.5.10) W 1,p(I) :=

{
f : I → R

∣∣∣ f is absolutely continuous

and
∫ 1
0 |f ′(t)|p dt <∞

}
the Sobolev space of W 1,p-functions on I with the norm

(4.5.11) ∥f∥W 1,p :=

(∫ 1

0

(
|f(t)|p +

∣∣f ′(t)∣∣p) dt)1/p

for f ∈W 1,p(I,R). In particular, W 1,1(I) is the Banach space of absolutely
continuous functions.

(a) Prove that W 1,p(I) is a Banach space with the norm (4.5.11). Hint:
Use [75, Thm 6.19] or Theorem 7.5.18 with X = R.

(b) Prove that the inclusion ofW 1,p(I) into the Banach space C(I) of contin-
uous functions f : I → R, equipped with the supremum norm, is a bounded
linear operator.

(c) Prove that the inclusionW 1,p(I) ↪→ C(I) is a compact operator for p > 1
but not for p = 1. Hint: Show that the unit ball in W 1,p(I) is equi-
continuous for p > 1 and use the Arzelà–Ascoli Theorem (Corollary 1.1.13).
For p = 1 consider the functions fn(t) := tn.
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Exercise 4.5.17 (Fredholm Theory and Homological Algebra).

(a) Exact Sequences. A finite sequence

0 −→ V0
d0−→ V1

d1−→ V2
d2−→ · · · −→ Vn−1

dn−1−→ Vn −→ 0

of vector spaces and linear maps is called exact if d0 is injective, dn−1 is
surjective, and ker(dk) = im(dk−1) for k = 1, . . . , n − 1. If the sequence
is exact and the vector spaces Vk are all finite-dimensional then its Euler
characteristic vanishes, i.e.

∑n
k=0(−1)k dim Vk = 0.

(b) Two linear operators A : X → Y and B : Y → Z between vector spaces
determine a natural long exact sequence

0 −→ ker(A) −→ ker(BA) −→ ker(B)
δ−→

δ−→ coker(A) −→ coker(BA) −→ coker(B) −→ 0,

where the map δ : ker(B) → coker(A) assigns to an element y ∈ ker(B) the
equivalence class of y in the quotient space Y/im(A) = coker(A).

(c) If the vector spaces X, Y , Z in (b) are Banach spaces and two out of
the three operators A,B,BA are Fredholm operators then so is the third
and index(BA) = index(A) + index(B). (See also Theorem 4.4.1.)

(d) The Snake Lemma. Consider a commutative diagram

0 // U //

A
��

V //

B
��

W //

C
��

0

0 // X // Y // Z // 0

of vector spaces and linear operators such that the horizontal rows are short
exact sequences. Then there is a natural long exact sequence

0 −→ ker(A) −→ ker(B) −→ ker(C)
δ−→

δ−→ coker(A) −→ coker(B) −→ coker(C) −→ 0,

where the boundary map

δ : ker(C) → coker(A)

is defined as follows. Let w ∈ ker(C) and choose an element v ∈ V that maps
to w under the surjection V →W ; then Bv ∈ Y belongs to the kernel of the
map Y → Z; so there is a unique element x ∈ X that maps to Bv under
the injection X → Y and δw := [x] ∈ X/im(A) = coker(A) is independent
of the choice of v.

(e) Deduce from the Snake Lemma that, if U, V,W,X, Y, Z are Banach
spaces and two out of the three operators A,B,C are Fredholm operators
then so is the third and index(B) = index(A) + index(C).





Chapter 5

Spectral Theory

The purpose of the present chapter is to study the spectrum of a bounded
linear operator on a real or complex Banach space. In linear algebra a
real matrix may have complex eigenvalues and the situation is analogous
in infinite dimensions. To define the eigenvalues and, more generally, the
spectral values of a bounded real linear operator on a real Banach space
it will be necessary to complexify real Banach spaces. Complex Banach
spaces and the complexifications of real Banach spaces are discussed in a
first preparatory Section 5.1. Other topics in the first section are the integral
of a continuous Banach space valued function on a compact interval and
holomorphic operator valued functions. These are elementary but important
tools in spectral theory. Section 5.2 introduces the spectrum of a bounded
linear operator, examines its elementary properties, shows that the spectral
radius is the supremum of the moduli of the spectral values, examines the
spectrum of a compact operator, and establishes the holomorphic functional
calculus. The remainder of this chapter deals exclusively with operators on
Hilbert spaces. Section 5.3 discusses complex Hilbert spaces and examines
the elementary properties of the spectra of normal and self-adjoint operators.
Section 5.4 introduces C* algebras and establishes the continuous functional
calculus for self-adjoint operators. It takes the form of an isomorphism from
the C* algebra of complex valued continuous functions on the spectrum to
the smallest C* algebra containing the given operator. Section 5.5 introduces
the Gelfand spectrum of a commutative unital Banach algebra and uses it to
extend the continuous functional calculus to normal operators. Section 5.6
shows that every normal operator can be represented by a projection valued
measure on the spectrum. Section 5.7 shows that every self-adjoint operator
is isomorphic to a direct sum of multiplication operators on L2 spaces.
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5.1. Complex Banach Spaces

5.1.1. Definition and Examples.

Definition 5.1.1. (i) A complex normed vector space is a complex
vector space X, equipped with a norm function X → R : x 7→ ∥x∥ as in
Definition 1.1.2 that satisfies in addition

∥λx∥ = |λ| ∥x∥ for all x ∈ X and all λ ∈ C.

A complex normed vector space (X, ∥·∥) is called a complex Banach space
if it is complete with respect to the metric (1.1.1).

(ii) Let X and Y be complex Banach spaces and denote by

Lc(X,Y ) :=
{
A : X → Y

∣∣A is complex linear and bounded
}

the space of bounded complex linear operators from X to Y (see Defini-
tion 1.2.1). Then Lc(X,Y ) is a complex Banach space with the operator
norm (1.2.2). In the case X = Y we abbreviate Lc(X) := Lc(X,X).

(iii) The (complex) dual space of a complex Banach space X is the space

X∗ := Lc(X,C)

of bounded complex linear functionals Λ : X → C. If X and Y are com-
plex Banach spaces and A : X → Y is a bounded complex linear operator,
then the (complex) dual operator of A is the bounded complex linear
operator A∗ : Y ∗ → X∗ defined by A∗y∗ := y∗ ◦A : X → C for y∗ ∈ Y ∗.

Remark 5.1.2. A complex normed vector space X can be viewed as a
real normed vector space, equipped with a linear map J : X → X such that

(5.1.1) J2 = −1l

and

(5.1.2) ∥cos(θ)x+ sin(θ)Jx∥ = ∥x∥ for all θ ∈ R and all x ∈ X.

If J : X → X is a linear map that satisfies (5.1.1) and (5.1.2) then X has
a unique structure of a complex normed vector space such that multipli-
cation by the complex number i is given by the linear operator J . Scalar
multiplication is then given by the formula

(5.1.3) (s+ it)x := sx+ tJx for s, t ∈ R and x ∈ X.

In this notation a complex linear operator from X to itself is a real linear
operator that commutes with J .
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Remark 5.1.3. Let X be a complex Banach space and let Λ : X → C be
a bounded complex linear functional. Then ReΛ : X → R is a bounded real
linear functional of the same norm as Λ, i.e.

∥Λ∥ = sup
x∈X\{0}

|Λ(x)|
∥x∥

= sup
x∈X\{0}

|ReΛ(x)|
∥x∥

= ∥ReΛ∥ .

To see this, let x ∈ X and choose θ ∈ R such that eiθΛ(x) ∈ R. Then

|Λ(x)| = |eiθΛ(x)| = |ReΛ(eiθx)| ≤ ∥ReΛ∥∥eiθx∥ = ∥ReΛ∥∥x∥.

Hence ∥Λ∥ ≤ ∥ReΛ∥ and the converse inequality is obvious. Thus the map

Lc(X,C) → L(X,R) : Λ 7→ ReΛ

is a Banach space isometry. Its inverse sends a bounded real linear func-
tional Λ0 : X → R to the bounded complex linear functional Λ : X → C de-
fined by Λ(x) := Λ0(x)− iΛ0(ix) for x ∈ X. This shows that all the results
about dual spaces and dual operators proved in Chapters 2, 3, and 4 carry
over verbatim to the complex setting. In particular, the complex dual oper-
ator A∗ has the same operator norm as A by Lemma 4.1.2.

The reader is cautioned that for the complex dual space X∗ and the
complex dual operator A∗ the same notation is used as in the setting of real
Banach spaces although the meanings are different. It should always be clear
from the context which dual space or dual operator is used in the text. We
emphasize that the examples in Subsection 1.1.1 all have natural complex
analogues. Here is a list.

Example 5.1.4. (i) The vector space Cn of all n-tuples x = (x1, . . . , xn)
of complex numbers is a complex Banach space with each of the norms

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

, ∥x∥∞ := max
i=1,...,n

|xi|

for 1 ≤ p <∞ and x = (x1, . . . , xn) ∈ Cn.

(ii) For 1 ≤ p <∞ the set ℓp(N,C) of p-summable sequences x = (xi)i∈N of
complex numbers is a complex Banach space with the norm

∥x∥p :=

( ∞∑
i=1

|xi|p
)1/p

for x = (xi)i∈N ∈ ℓp(N,C). Likewise, the space ℓ∞(N,C) of bounded se-
quences of complex numbers is a complex Banach space with the norm

∥x∥∞ := sup
i∈N

|xi|

for x = (xi)i∈N ∈ ℓ∞(N,C).
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(iii) Let (M,A, µ) be a measure space, fix a constant 1 ≤ p <∞, and denote
the space of p-integrable complex valued functions on M by Lp(µ,C). The
function

Lp(µ,C) → R : f 7→ ∥f∥p :=
(∫

M
|f |p dµ

)1/p

descends to the quotient space

Lp(µ,C) := Lp(µ,C)/∼,

where f ∼ g iff the function f − g vanishes almost everywhere. This quotient
is a complex Banach space.

(iv) Let (M,A, µ) be a measure space and denote by L∞(µ,C) the space of
complex valued bounded measurable functions f :M → C. As in part (iii)
denote by ∼ the equivalence relation on L∞(µ,C) given by equality almost
everywhere. Then the quotient space

L∞(µ,C) := L∞(µ,C)/∼

is a complex Banach space with the norm defined by (1.1.3).

(v) Let M be a compact topological space. Then the space C(M,C) of
bounded continuous functions f : M → C is a complex Banach space with
the supremum norm

∥f∥∞ := sup
p∈M

|f(p)|

for f ∈ C(M,C).

(vi) Let (M,A) be a measurable space, i.e. M is a set and A ⊂ 2M is a
σ-algebra. A complex measure on (M,A) is a function

µ : A → C

that satisfies µ(∅) = 0 and is σ-additive, i.e.

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai) = lim
n→∞

n∑
i=1

µ(Ai)

for every sequence of pairwise disjoint measurable sets Ai ∈ A. The space

M(M,A,C) :=
{
µ : A → C

∣∣µ is a complex measure
}

of complex measures on (M,A) is a Banach space with the norm given by

(5.1.4) ∥µ∥ := sup


n∑
i=1

|µ(Ai)|

∣∣∣∣∣
n ∈ N, A1, . . . , An ∈ A,
Ai ∩Aj = ∅ for i ̸= j,⋃n
i=1Ai =M


for µ ∈ M(M,A,C).
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The next goal is to show that every real Banach space can be complex-
ified. Recall first that the complexification of a real vector space is the
complex vector space

Xc := X ×X ∼= X ⊗R C,

equipped with the scalar multiplication (s+ it) · (x, y) := (sx− ty, tx+ sy)
for λ = s+ it ∈ C and z = (x, y) ∈ Xc. With slight abuse of notation, we
write x+ iy := (x, y), x := x+ i0 = (x, 0), iy := 0 + iy = (0, y) for x, y ∈ X.
Thus we do not distinguish in notation between an element x ∈ X and the
corresponding element (x, 0) ∈ Xc. In other words, the vector spaces X
and iX are viewed as real linear subspaces of the complex vector space Xc

via the embeddings X → Xc : x 7→ (x, 0) and iX → Xc : iy 7→ (0, y). Then

Xc = X ⊕ iX

and scalar multiplication is given by the familiar formula

(s+ it)(x+ iy) := (sx− ty) + i(tx+ sy)

for s+ it ∈ C and x+ iy ∈ Xc. If z = x+ iy ∈ Xc with x, y ∈ X, then the
vector x =: Re(z) ∈ X is called the real part of z and y =: Im(z) ∈ X is
called the imaginary part of z.

Exercise 5.1.5. Let X be a real normed vector space and define

(5.1.5) ∥z∥Xc := sup
θ∈R

√
∥Re(eiθz)∥2X + ∥Im(eiθz)∥2X for z ∈ Xc.

Prove the following.

(i) (Xc, ∥·∥Xc) is a complex normed vector space.

(ii) The natural inclusionsX → Xc and iX → Xc are isometric embeddings.

(iii) If X is a Banach space then so is Xc. Hint: For all z ∈ Xc√
∥Re(z)∥2X + ∥Im(z)∥2X ≤ ∥z∥Xc ≤

√
2 ∥Re(z)∥2X + 2 ∥Im(z)∥2X .

(iv) If Y is another real normed vector space, A : X → Y is a bounded real
linear operator, and the complexified operator Ac : Xc → Y c is defined
by Ac(x1 + ix2) := Ax1 + iAx2 for x1 + ix2 ∈ Xc, then Ac is a bounded
complex linear operator and ∥Ac∥ = ∥A∥.

(v) If A : X → X is a bounded linear operator then A and Ac have the
same spectral radius (see Definition 1.5.6).

The norm (5.1.5) on the complexified Banach space Xc is a very general
construction that applies to any real Banach space, but it is not necessarily
the most useful norm in each explicit example, as the next exercise shows.
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Exercise 5.1.6. Let (M,d) be a nonempty compact metric space. The
complexification of the space C(M) of continuous real valued functions onM
is the space C(M,C) of continuous complex valued functions on M . Show
that the supremum norm on C(M,C) does not agree with the norm in (5.1.5)
unless M is a singleton. Show that both norms are equivalent.

Exercise 5.1.7. Let X be a real Banach space. Prove that the com-
plexification of the dual space, L(X,R)c, is isomorphic to the dual space of
the complexification, Lc(Xc,C). Hint: The isomorphism assigns to each
element Λ1 + iΛ2 ∈ L(X,R)c a complex linear functional Λc : Xc → C via

Λc(x+ iy) := Λ1(x)− Λ2(y) + i(Λ2(x) + Λ1(y)) for x, y ∈ X.

Prove that the isomorphism L(X,R)c → Lc(Xc,C) is an isometry when-
ever X is a Hilbert space, but not in general.

5.1.2. Integration. It is often useful to integrate continuous functions on
a compact interval with values in a Banach space. Assuming the Riemann
integral for real or complex valued functions, the integral is defined as fol-
lows.

Lemma 5.1.8 (Integral of a Continuous Function). Let X be a real
or complex Banach space, fix two real numbers a < b, and let x : [a, b] → X
be a continuous function. Then there exists a unique vector ξ ∈ X such that

(5.1.6) ⟨x∗, ξ⟩ =
∫ b

a
⟨x∗, x(t)⟩ dt for all x∗ ∈ X∗.

Proof. For n ∈ N define ξn ∈ X and δn ≥ 0 by

ξn :=

2n−1∑
k=0

b− a

2n
x

(
a+ k

b− a

2n

)
, δn := sup

|s−t|≤2−n(b−a)
∥x(s)− x(t)∥ .

Here the supremum runs over all s, t ∈ [a, b] such that |s− t| ≤ 2−n(b− a).
Then limn→∞ δn = 0 because x is uniformly continuous. Moreover,

∥ξn+m − ξn∥ ≤ (b− a)δn for all m,n ∈ N.

Hence (ξn)n∈N is a Cauchy sequence inX. SinceX is complete, this sequence
converges. Denote its limit by ξ := limn→∞ ξn. Then

⟨x∗, ξ⟩ = lim
n→∞

2n−1∑
k=0

b− a

2n

〈
x∗, x

(
a+ k

b− a

2n

)〉
=

∫ b

a
⟨x∗, x(t)⟩ dt

for all x∗ ∈ X∗, by the convergence theorem for Riemann sums. This proves
existence. Uniqueness follows from the Hahn–Banach Theorem (Corol-
lary 2.3.4 and Corollary 2.3.5). This proves Lemma 5.1.8. □
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Definition 5.1.9 (Integral). Let X be a real or complex Banach space
and suppose that x : [a, b] → X is a continuous function on a compact in-
terval [a, b] ⊂ R. The vector ξ ∈ X in Lemma 5.1.8 is called the integral

of x over [a, b] and will be denoted by
∫ b
a x(t) dt := ξ. Thus the integral of x

over [a, b] is the unique element
∫ b
a x(t) dt ∈ X that satisfies the equation

(5.1.7)

〈
x∗,

∫ b

a
x(t) dt

〉
:=

∫ b

a
⟨x∗, x(t)⟩ dt for all x∗ ∈ X∗.

With this definition in place all the main results about the one-dimen-
sional Riemann integral in first year analysis carry over to vector valued
integrals.

Lemma 5.1.10 (Properties of the Integral). Let X be a real or com-
plex Banach space, fix two real numbers a < b, and let x, y : [a, b] → X be
continuous functions. Then the following holds.

(i) The integral is a linear operator C([a, b], X) → X. In particular,∫ b

a

(
x(t) + y(t)

)
dt =

∫ b

a
x(t) dt+

∫ b

a
y(t) dt.

(ii) If a < c < b then∫ b

a
x(t) dt =

∫ c

a
x(t) dt+

∫ b

c
x(t) dt.

(iii) If Y is another (real or complex) Banach space and A : X → Y is a
bounded (real or complex) linear operator then∫ b

a
Ax(t) dt = A

∫ b

a
x(t) dt.

(iv) Assume x : [a, b] → X is continuously differentiable, i.e. the limit

ẋ(t) := lim
h→0

x(t+ h)− x(t)

h

exists for all t ∈ [a, b] and the derivative ẋ : [a, b] → X is continuous. Then∫ b

a
ẋ(t) dt = x(b)− x(a).

(v) If α < β and ϕ : [α, β] → [a, b] is a diffeomorphism then∫ b

a
x(t) dt =

∫ β

α
x(ϕ(s))ϕ̇(s) ds.
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(vi) The integral satisfies the mean value inequality∥∥∥∥∫ b

a
x(t) dt

∥∥∥∥ ≤
∫ b

a
∥x(t)∥ dt.

(vii) Let x0 ∈ X and assume

x(t) = x0 +

∫ t

a
y(s) ds for a ≤ t ≤ b.

Then x is continuously differentiable and ẋ(t) = y(t) for all t ∈ [a, b].

Proof. Parts (i), (ii), (iii) follow directly from the definitions, the additi-
vity of the Riemann integral, and the Hahn–Banach Theorem. Part (iv)
follows from the Fundamental Theorem of Calculus and the Hahn–Banach
Theorem, and part (v) follows from Change of Variables for the Riemann
integral and the Hahn–Banach Theorem. To prove part (vi), observe that∣∣∣∣〈x∗, ∫ b

a
x(t)dt

〉∣∣∣∣ = ∣∣∣∣∫ b

a
⟨x∗, x(t)⟩dt

∣∣∣∣
≤
∫ b

a
|⟨x∗, x(t)⟩| dt

≤ ∥x∗∥
∫ b

a
∥x(t)∥ dt

for all x∗ ∈ X∗ and hence, by Lemma 2.4.1,∥∥∥∥∫ b

a
x(t) dt

∥∥∥∥ = sup
x∗∈X∗\{0}

∣∣∣⟨x∗, ∫ ba x(t) dt⟩∣∣∣
∥x∗∥

≤
∫ b

a
∥x(t)∥ dt.

This proves (vi). Now let x, y be as in (vii) and let a ≤ t < t+ h ≤ b. Then∥∥∥∥y(t)− 1
h

∫ t+h

t
y(s)ds

∥∥∥∥ ≤ 1
h

∫ t+h

t
∥y(t)− y(s)∥ ds ≤ sup

t≤s≤t+h
∥y(t)− y(s)∥

by (vi). Since y : [a, b] → X is continuous, this implies

y(t) = lim
h→0,h>0

1

h

∫ t+h

t
y(s)ds = lim

h→0,h>0

x(t+ h)− x(t)

h

for a ≤ t < b. Here the second equation follows from (ii). Likewise,

y(t) = lim
h→0,h>0

x(t)− x(t− h)

h

for a < t ≤ b. This proves part (vii) and Lemma 5.1.10. □
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5.1.3. Holomorphic Functions. This is another preparatory subsection.
It discusses holomorphic functions on an open subset of the complex plane
with values in a complex Banach space. The most important examples in
spectral theory are operator valued holomorphic functions.

Definition 5.1.11 (Holomorphic Function). Let Ω ⊂ C be an open
set, let X be a complex Banach space, and let f : Ω → X be a continuous
function.

(i) The function f is called holomorphic if the limit

f ′(z) := lim
h→0

f(z + h)− f(z)

h

exists for all z ∈ Ω and the function f ′ : Ω → X is continuous.

(ii) Let γ : [a, b] → Ω be a continuously differentiable function on a compact
interval [a, b] ⊂ R. The vector

(5.1.8)

∫
γ
f dz :=

∫ b

a
f(γ(t))γ̇(t) dt

in X is called the integral of f over γ.

The next lemma characterizes operator valued holomorphic functions. It
shows, in particular, that every weakly holomorphic operator valued function
is continuous in the norm topology.

Lemma 5.1.12 (Characterization of Holomorphic Functions).

Let X and Y be complex Banach spaces and let A : Ω → Lc(X,Y ) be a weakly
continuous function, defined on an open set Ω ⊂ C. Then the following are
equivalent.

(i) The function A is holomorphic.

(ii) The function

Ω → C : z 7→ ⟨y∗, A(z)x⟩
is holomorphic for every x ∈ X and every y∗ ∈ Y ∗.

(iii) Let z0 ∈ Ω and r > 0 such that

Br(z0) = {z ∈ C | |z − z0| ≤ r} ⊂ Ω.

Define the loop γ : [0, 1] → Ω by

γ(t) := z0 + re2πit for 0 ≤ t ≤ 1.

Then, for all x ∈ X, all y∗ ∈ Y ∗, and all w ∈ C, we have

(5.1.9) |w − z0| < r =⇒ ⟨y∗, A(w)x⟩ = 1

2πi

∫
γ

⟨y∗, A(z)x⟩
z − w

dz.
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Proof. That (i) implies (ii) follows directly from the definitions and
that (ii) implies (iii) is Cauchy’s integral formula for complex valued holo-
morphic functions (see [1, page 119]).

We prove that (iii) implies (i) by extending the standard argument
for holomorphic functions to operator valued functions. For each w ∈ C
with |w − z0| < r, define B(w) ∈ Lc(X,Y ) and c ≥ 0 by

(5.1.10) B(w)x :=
1

2πi

∫
γ

A(z)x

(z − w)2
dz, c := sup

|z−z0|=r
∥A(z)∥ .

Then c is finite by Theorem 2.1.1. For h ∈ C with 0 < |h| < r − |w| we prove

(5.1.11)

∥∥∥∥A(w + h)−A(w)

h
−B(w)

∥∥∥∥ ≤ cr|h|
(r − |w|)2(r − |w| − |h|)

.

To see this, let x ∈ X and y∗ ∈ Y ∗. Then, by (5.1.9) and (5.1.10),〈
y∗,

A(w + h)x−A(w)x

h
−B(w)x

〉
=

1

2πi

∫
γ

(
1

h

(
1

z − w − h
− 1

z − w

)
− 1

(z − w)2

)
⟨y∗, A(z)x⟩ dz

=
1

2πi

∫
γ

h⟨y∗, A(z)x⟩
(z − w)2(z − w − h)

dz.

The absolute value of the integral of a function over a curve is bounded
above by the supremum norm of the function times the length of the curve.
In the case at hand the length is 2πr. Hence∣∣∣∣〈y∗, A(w + h)x−A(w)x

h
−B(w)x

〉∣∣∣∣
=

1

2π

∣∣∣∣∫
γ

h⟨y∗, A(z)x⟩
(z − w)2(z − w − h)

dz

∣∣∣∣
≤ sup

|z−z0|=r

r|h| |⟨y∗, A(z)x⟩|
|z − w|2|z − w − h|

≤ cr|h|∥y∗∥∥x∥
(r − |w|)2(r − |w| − |h|)

for all x ∈ X and all y∗ ∈ Y ∗. Thus the estimate (5.1.11) follows from the
Hahn–Banach Theorem 2.3.5.

By (5.1.11) the function A : Ω → Lc(X,Y ) is differentiable at each point
w ∈ Br(z0) and its derivative at w is equal to B(w). Thus A is continuous in
the norm topology and so is the function B : Br(z0) → Lc(X,Y ) by (5.1.10).
Hence A is holomorphic and this proves Lemma 5.1.12. □

The next three exercises show that many of the familiar results in com-
plex analysis carry over to the present setting.
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Exercise 5.1.13 (Holomorphic Functions are Smooth). Let X be
a complex Banach space, let Ω ⊂ C be an open subset, and let f : Ω → X
be a holomorphic function.

(i) Prove that its derivative f ′ : Ω → X is again holomorphic. Hint: Use
the equivalence of (i) and (ii) in Lemma 5.1.12 and use [1, Lemma 3, p 121].

(ii) Prove that f is smooth. Hint: Induction.

(iii) Let z0 ∈ Ω and r > 0 such that Br(z0) ⊂ Ω and define γ(t) := z0+re
2πit

for 0 ≤ t ≤ 1. Prove that the nth complex derivative of f at w ∈ Br(z0) is
given by the Cauchy integral formula

(5.1.12) f (n)(w) =
n!

2πi

∫
γ

f(z)

(z − w)n+1
dz.

Hint: Use the Hahn–Banach Theorem 2.3.5 and the Cauchy Integral For-
mula for derivatives (see [1, p 120] or [74, p 60]).

Exercise 5.1.14 (Power Series). Let X be a complex Banach space
and let (an)n∈N0 be a sequence in X such that

ρ :=
1

lim supn→∞ ∥an∥1/n
> 0.

Prove that the power series

f(z) :=
∞∑
n=0

anz
n

converges for every complex number z ∈ C with |z| < ρ and defines a holo-
morphic function f : Bρ(0) → X. Choose a number 0 < r < ρ and define

the loop γ : R/Z → C by γ(t) := re2πit for t ∈ R. For n ∈ N0 prove that the
coefficient an ∈ X is given by

(5.1.13) an =
f (n)(0)

n!
=

1

2πi

∫
γ

f(z)

zn+1
dz.

Hint: Use the Hahn–Banach Theorem 2.3.5 and the familiar results about
power series in complex analysis (see [1, page 38]).

Exercise 5.1.15 (Unique Continuation). Let Ω ⊂ C be a connected
open set, fix an element z0 ∈ Ω, and let f, g : Ω → X be holomorphic func-
tions with values in a complex Banach space X. Prove that f ≡ g if and
only if f (n)(z0) = g(n)(z0) for all n ∈ N0.

The archetypal example of an operator valued holomorphic function is
given by z 7→ (z1l − A)−1, where A : X → X is a bounded complex linear
operator on a complex Banach space X. It takes values in the space Lc(X)
of bounded complex linear endomorphisms of X and is defined on the open
set of all complex numbers z ∈ C such that the operator z1l−A is invertible.
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5.2. Spectrum

5.2.1. The Spectrum of a Bounded Linear Operator.

Definition 5.2.1 (Spectrum). Let X be a complex Banach space and
let A ∈ Lc(X). The spectrum of A is the set

σ(A) :=
{
λ ∈ C

∣∣ the operator λ1l−A is not bijective
}

= Pσ(A) ∪ Rσ(A) ∪ Cσ(A).
(5.2.1)

Here Pσ(A) is the point spectrum, Rσ(A) is the residual spectrum,
and Cσ(A) is the continuous spectrum. These are defined by

Pσ(A) :=
{
λ ∈ C

∣∣ the operator λ1l−A is not injective
}
,

Rσ(A) :=

{
λ ∈ C

∣∣∣∣ the operator λ1l−A is injective
and its image is not dense

}
,

Cσ(A) :=

λ ∈ C
∣∣∣∣ the operator λ1l−A is injective
and its image is dense,
but it is not surjective

 .

(5.2.2)

The resolvent set of A is the complement of the spectrum. It is denoted
by

(5.2.3) ρ(A) := C \ σ(A) =
{
λ ∈ C

∣∣ the operator λ1l−A is bijective
}
.

A complex number λ belongs to the point spectrum Pσ(A) if and only if
there exists a nonzero vector x ∈ X such that

Ax = λx.

The elements λ ∈ Pσ(A) are called eigenvalues of A and the nonzero vec-
tors x ∈ ker(λ1l − A) are called eigenvectors. When X is a real Banach
space and A ∈ L(X) we denote by σ(A) := σ(Ac) the spectrum of the com-
plexified operator Ac and similarly for the point, continuous, and residual
spectra.

Example 5.2.2. If dimX = n < ∞ then σ(A) = Pσ(A) is the set of
eigenvalues and #σ(A) ≤ n. If X = {0} then σ(A) = ∅.

Example 5.2.3. Let X = ℓ2 and define the operators A,B : ℓ2 → ℓ2 by

Ax := (x2, x3, x4, . . . ), Bx := (0, x1, x2, x3, . . . )

for x = (xi)i∈N ∈ ℓ2. Then

σ(A) = σ(B) = D

is the closed unit disc in C and

Pσ(A) = int(D), Rσ(A) = ∅, Cσ(A) = S1,
Pσ(B) = ∅, Rσ(B) = int(D), Cσ(B) = S1.
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Example 5.2.4. Let X = ℓ2 and let (λi)i∈N be a bounded sequence of
complex numbers. Define the bounded linear operator A : ℓ2 → ℓ2 by

Ax := (λixi)i∈N for x = (xi)i∈N ∈ ℓ2.

Then

σ(A) = {λi | i ∈ N}, Pσ(A) = {λi | i ∈ N}, Rσ(A) = ∅.
Thus every nonempty compact subset of C is the spectrum of a bounded
linear operator on an infinite-dimensional Hilbert space.

Lemma 5.2.5 (Spectrum). Let A : X → X be a bounded complex linear
operator on a complex Banach space X and denote by A∗ : X∗ → X∗ the
complex dual operator. Then the following holds.

(i) The spectrum σ(A) is a compact subset of C.

(ii) σ(A∗) = σ(A).

(iii) The point, residual, and continuous spectra of A and A∗ are related by

Pσ(A∗) ⊂ Pσ(A) ∪ Rσ(A), Pσ(A) ⊂ Pσ(A∗) ∪ Rσ(A∗),
Rσ(A∗) ⊂ Pσ(A) ∪ Cσ(A), Rσ(A) ⊂ Pσ(A∗),
Cσ(A∗) ⊂ Cσ(A), Cσ(A) ⊂ Rσ(A∗) ∪ Cσ(A∗).

(iv) If X is reflexive then Cσ(A∗) = Cσ(A) and

Pσ(A∗) ⊂ Pσ(A) ∪ Rσ(A), Pσ(A) ⊂ Pσ(A∗) ∪ Rσ(A∗),
Rσ(A∗) ⊂ Pσ(A), Rσ(A) ⊂ Pσ(A∗).

Proof. The spectrum is a bounded subset of C and its complement is an
open subset of C by Theorem 1.5.5. This proves (i). Part (ii) follows from
Corollary 4.1.18 and the identity (λ1lX −A)∗ = λ1lX∗ −A∗.

To prove part (iii), assume first that λ ∈ Pσ(A∗). Then λ1l− A∗ is not
injective, hence λ1l−A does not have a dense image by Theorem 4.1.8, and
hence λ ∈ Pσ(A)∪Rσ(A). Next assume λ ∈ Rσ(A∗). Then λ1l−A∗ is injec-
tive, hence λ1l−A has a dense image, and hence λ ∈ Pσ(A)∪Cσ(A). Third,
assume λ ∈ Cσ(A∗). Then λ1l − A∗ is injective and has a dense image and
therefore also has a weak* dense image. Thus it follows from Theorem 4.1.8
that λ1l − A is injective and has a dense image, so λ ∈ Cσ(A). It follows
from these three inclusions that Pσ(A) is disjoint from Cσ(A∗), that Cσ(A)
is disjoint from Pσ(A∗), and that Rσ(A) is disjoint from Rσ(A∗) ∪ Cσ(A∗).
This proves part (iii).

To prove part (iv) observe that in the reflexive case a linear subspace
of X∗ is weak* dense if and only if it is dense. Hence it follows from Theo-
rem 4.1.8 that Cσ(A) = Cσ(A∗) whenever X is reflexive. With this under-
stood, the remaining assertions of part (iv) follow directly from part (iii).
This proves Lemma 5.2.5. □
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Lemma 5.2.6 (Resolvent Identity). Let X be a complex Banach space
and let A ∈ Lc(X). Then the resolvent set ρ(A) ⊂ C is open. For λ ∈ ρ(A)
define the resolvent operator Rλ(A) ∈ Lc(X) by

(5.2.4) Rλ(A) := (λ1l−A)−1 .

Then the map ρ(A) → Lc(X) : λ 7→ Rλ(A) is holomorphic and satisfies

(5.2.5) Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A)

for all λ, µ ∈ ρ(A). Equation (5.2.5) is called the resolvent identity.

Proof. We prove the resolvent identity. Let λ, µ ∈ ρ(A). Then

(λ1l−A)
(
Rλ(A)−Rµ(A)

)
(µ1l−A) = (µ1l−A)− (λ1l−A) = (µ− λ)1l.

Multiply by Rλ(A) on the left and by Rµ(A) on the right to obtain the
resolvent identity (5.2.5).

We prove that ρ(A) is open and the map ρ(A) → Lc(X) : λ 7→ Rλ(A) is
continuous. Fix an element λ ∈ ρ(A) and choose µ ∈ C such that

|µ− λ| ∥Rλ(A)∥ < 1.

Then Corollary 1.5.7 asserts that the operator

(µ1l−A)Rλ(A) = 1l− (λ− µ)Rλ(A)

is bijective and (
(µ1l−A)Rλ(A)

)−1
=

∞∑
k=0

(λ− µ)kRλ(A)
k.

Hence µ ∈ ρ(A) and

Rµ(A) =

∞∑
k=0

(λ− µ)kRλ(A)
k+1 = Rλ(A) +

∞∑
k=1

(λ− µ)kRλ(A)
k+1,

and hence

∥Rµ(A)−Rλ(A)∥ ≤
∞∑
k=1

|λ− µ|k ∥Rλ(A)∥k+1

=
|µ− λ| ∥Rλ(A)∥2

1− |µ− λ| ∥Rλ(A)∥
.

This proves that ρ(A) is open and the map ρ(A) → Lc(X) : λ 7→ Rλ(A) is
continuous. That it is holomorphic follows from the equation

lim
µ→λ

Rµ(A)−Rλ(A)

µ− λ
= − lim

µ→λ
Rλ(A)Rµ(A) = −Rλ(A)2

for λ ∈ ρ(A) and the fact that the map λ 7→ Rλ(A)
2 is continuous. This

proves Lemma 5.2.6. □
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5.2.2. The Spectral Radius. Recall from Definition 1.5.6 that the spec-
tral radius of a bounded linear operator A : X → X on a real or complex
Banach space is the real number

rA := inf
n∈N

∥An∥1/n = lim
n→∞

∥An∥1/n ≤ ∥A∥ .

If A is a bounded linear operator on a real Banach space then its complexi-
fication Ac has the same spectral radius as A by Exercise 5.1.5. The reason
for the terminology spectral radius is the next theorem.

Theorem 5.2.7 (Spectral Radius). Let X be a nonzero complex Ba-
nach space and let A ∈ Lc(X). Then σ(A) ̸= ∅ and

(5.2.6) rA := lim
n→∞

∥An∥1/n = sup
λ∈σ(A)

|λ|.

Proof. Let λ ∈ C such that |λ| > rA. Then rλ−1A = |λ|−1 rA < 1 and
hence the operator 1l− λ−1A is invertible by Corollary 1.5.7. Thus the
operator λ1l−A = λ(1l− λ−1A) is bijective and so λ /∈ σ(A). Hence

(5.2.7) sup
λ∈σ(A)

|λ| ≤ rA.

To prove the converse inequality, define the set Ω ⊂ C by

Ω :=
{
z ∈ C | z = 0 or z−1 ∈ ρ(A)

}
and define the map R : Ω → Lc(X) by R(0) := 0 and by

R(z) := (z−11l−A)−1 for z ∈ Ω \ {0}.
Then Ω is an open subset of C and the restriction of R to Ω \ {0} is holo-
morphic by Lemma 5.2.6. Moreover, Ω contains the open disc of radius r−1

A

centered at the origin and it follows from Corollary 1.5.7 that

(5.2.8) R(z) = z(1l− zA)−1 =

∞∑
k=0

zk+1Ak

for all z ∈ C such that rA|z| < 1. Hence R is holomorphic by Lemma 5.1.12.

By Exercise 5.1.13 the nth derivative R(n) : Ω → Lc(X) of R is holomorphic
for every n ∈ N.

Now let r > supλ∈σ(A)|λ|, so the closed disc of radius r−1 centered at
the origin is contained in Ω. Let x ∈ X and x∗ ∈ X∗ and apply the Cauchy
Integral Formula in (5.1.12) or [1, page 120] to the power series

⟨x∗, R(z)x⟩ =
∞∑
k=1

⟨x∗, Ak−1x⟩zk

and the loop

γ(t) :=
e2πit

r
, 0 ≤ t ≤ 1.
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Then, for each n ∈ N, we have

⟨x∗, An−1x⟩ = 1

n!

dn

dzn

∣∣∣∣
z=0

⟨x∗, R(z)x⟩ = 1

2πi

∫
γ

⟨x∗, R(z)x⟩
zn+1

dz.

By the Hahn–Banach Theorem (Corollary 2.3.5), this implies

An =
1

2πi

∫
γ

R(z)

zn+2
dz =

1

2πi

∫ 1

0

γ̇(t)R(γ(t))

γ(t)n+2
dt =

∫ 1

0

R(γ(t))

γ(t)n+1
dt.

Hence, by part (vi) of Lemma 5.1.10, we have

∥An∥ ≤
∫ 1

0

∥R(γ(t))∥
|γ(t)|n+1

dt

= rn+1

∫ 1

0
∥R(γ(t))∥ dt

≤ rn+1 sup
0≤t≤1

∥R(γ(t))∥

= rn+1 sup
|λ|=r

∥∥(λ1l−A)−1
∥∥

for all n ∈ N. Abbreviate

c := sup
|λ|=r

∥(λ1l−A)−1∥.

Then ∥An∥1/n ≤ r(rc)1/n for all n ∈ N and hence

rA = lim
n→∞

∥An∥1/n ≤ r lim
n→∞

(rc)1/n = r.

This holds for all r > supλ∈σ(A)|λ|, so

rA ≤ sup
λ∈σ(A)

|λ|

as claimed. By (5.2.7) this proves equation (5.2.6).

We prove that σ(A) ̸= ∅. Suppose, by contradiction, that σ(A) = ∅
and so, in particular, A is invertible. Choose any nonzero element x ∈ X.
Then A−1x ̸= 0 and so, by Corollary 2.3.5, there exists an element x∗ ∈ X∗

such that ⟨x∗, A−1x⟩ = −1. Define the function f : C → C by

f(λ) := ⟨x∗, (λ1l−A)−1x⟩ for λ ∈ C = ρ(A).

Then f is holomorphic by Lemma 5.2.6, f(0) = 1 by definition, and

|f(λ)| ≤ ∥x∗∥∥x∥∥(λ1l−A)−1∥ ≤ ∥x∗∥ ∥x∥
|λ| − ∥A∥

for all λ ∈ C such that |λ| > ∥A∥. Thus f is a nonconstant bounded
holomorphic function on C, in contradiction to Liouville’s Theorem. Hence
the spectrum of A is nonempty and this proves Theorem 5.2.7. □



5.2. Spectrum 213

5.2.3. The Spectrum of a Compact Operator. The spectral theory
of compact operators is considerably simpler than that of general bounded
linear operators. In particular, every nonzero spectral value is an eigenvalue,
the generalized eigenspaces are all finite-dimensional, and zero is the only
possible accumulation point of the spectrum (i.e. each nonzero spectral value
is an isolated point of the spectrum). All these observations are fairly direct
consequences of the results in Chapter 4.

Let X be a complex Banach space and let A ∈ Lc(X) be a bounded
complex linear operator. Then ker(λ1l−A)k ⊂ ker(λ1l−A)k+1 for all λ ∈ C
and all k ∈ N. Moreover, if ker(λ1l− A)m = ker(λ1l− A)m+1 for some inte-
ger m ≥ 1, then ker(λ1l−A)m = ker(λ1l−A)m+k for all k ∈ N. The union
of these subspaces is called the generalized eigenspace of A associated to
the eigenvalue λ ∈ Pσ(A) and will be denoted by

(5.2.9) Eλ := Eλ(A) :=

∞⋃
m=1

ker(λ1l−A)m.

Theorem 5.2.8 (Spectrum of a Compact Operator). Let X be a
nonzero complex Banach space and let A ∈ Lc(X) be a compact operator.
Then the following holds.

(i) If λ ∈ σ(A) and λ ̸= 0 then λ is an eigenvalue of A, dimEλ(A) < ∞,
and there exists an integer m ∈ N such that

Eλ(A) = ker(λ1l−A)m, X = ker(λ1l−A)m ⊕ im(λ1l−A)m.

(ii) Nonzero eigenvalues of A are isolated, i.e. for every λ ∈ σ(A)\{0} there
exists a constant ε > 0 such that every µ ∈ C satisfies

0 < |λ− µ| < ε =⇒ µ ∈ ρ(A).

Proof. We prove part (i). Fix a nonzero complex number λ. Then λ1l−A
is a Fredholm operator of index zero by part (i) of Theorem 4.4.2. Hence

dimker(λ1l−A) = dim coker(λ1l−A)

and so λ1l − A is either bijective, in which case λ /∈ σ(A), or not injective,
in which case λ ∈ Pσ(A).

Now fix an element

λ ∈ Pσ(A) \ {0}
and define

K := λ−1A, En := ker(1l−K)n = ker(λ1l−A)n for n ∈ N.

Since K is a compact operator, it follows from Theorem 4.4.1 and The-
orem 4.4.2 that (1l−K)n is a Fredholm operator and hence has a finite-
dimensional kernel for all n ∈ N. Thus dim(En) <∞ for all n ∈ N.
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Next we prove that there exists an integer m ∈ N such that Em = Em+1.
Suppose, by contradiction, that this is not the case. Then En−1 ⊊ En for
all n ∈ N. Hence it follows from Lemma 1.2.12 and the axiom of countable
choice that there exists a sequence (xn)n∈N in X such that, for all n ∈ N,

(5.2.10) xn ∈ En, ∥xn∥ = 1, inf
x∈En−1

∥xn − x∥ ≥ 1

2
.

Fix two integers n > m > 0. Then Kxm ∈ En−1 and xn −Kxn ∈ En−1, so

∥Kxn −Kxm∥ = ∥xn − (Kxm + xn −Kxn)∥ ≥ 1

2
.

Hence the sequence (Kxn)n∈N does not have a convergent subsequence, in
contradiction to the fact that the operator K is compact.

Thus we have proved that there exists an integer m ∈ N such that

ker(λ1l−A)m = ker(λ1l−A)m+k for all k ∈ N.

Define

X0 := ker(λ1l−A)m, X1 := im(λ1l−A)m

Since (λ1l − A)m is a Fredholm operator these subspaces are both closed
and X0 is finite-dimensional. Moreover, these subspaces are both invariant
under A. We prove that

(5.2.11) X = X0 ⊕X1.

If x ∈ X0 ∩ X1 then (λ1l − A)mx = 0 and there exists an element ξ ∈ X
such that x = (λ1l − A)mξ. Hence ξ ∈ ker(λ1l − A)2m = ker(λ1l − A)m and
so x = (λ1l−A)mξ = 0. The annihilator of X0 ⊕X1 in X∗ = Lc(X,C) is

(X0 ⊕X1)
⊥ = (ker(λ1l−A)m)⊥ ∩ (im(λ1l−A)m)⊥

= im(λ1l−A∗)m ∩ ker(λ1l−A∗)m

= {0}.
Here the second equation follows from Theorem 4.1.8 and Theorem 4.1.16.
The last equation follows from the fact that the kernels of the linear oper-
ators (λ1l−A)k and (λ1l−A∗)k have the same dimension for all k ∈ N and
so ker(λ1l−A∗)2m = ker(λ1l−A∗)m. Now it follows from Corollary 2.3.5
that X0 ⊕X1 is dense in X and therefore is equal to X. This proves (5.2.11)
and part (i).

Now the operator λ1l−A : X1 → X1 is bijective. Hence Theorem 2.2.5
asserts that there exists a constant ε > 0 such that ε ∥x1∥ ≤ ∥λx1 −Ax1∥
for all x1 ∈ X1. Hence, by Corollary 1.5.7, the operator µ1l−A : X1 → X1

is invertible for all µ ∈ C with |µ− λ| < ε. Moreover, if µ ̸= λ then the
operator µ1l−A : X0 → X0 is bijective, because λ is the only eigenvalue
of A|X0 . Hence µ1l−A is bijective for all µ ∈ C such that 0 < |µ− λ| < ε.
This proves part (ii) and Theorem 5.2.8. □
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Example 5.2.9. Let X be the complexification of the Argyros–Haydon
space (Remark 4.4.6). Then every bounded linear operator A : X → X has
the form

A = λ1l +K,

where λ ∈ C and K : X → X is a compact operator (exercise). By Theo-
rem 5.2.8, the spectrum of K is either a finite set or a sequence that con-
verges to zero. Hence the spectrum of every bounded linear operator on X
is either a finite set or a convergent sequence. This is in sharp contrast to
infinite-dimensional Hilbert spaces where every nonempty compact subset
of the complex plane is the spectrum of some bounded linear operator (see
Example 5.2.4).

Remark 5.2.10 (Spectral Projection). Let X be a complex Banach
space, let A ∈ Lc(X) be a compact operator, let λ ∈ σ(A) be a nonzero
eigenvalue of A, and choose m ∈ N such that

Eλ := ker(λ1l−A)m = ker(λ1l−A)m+1.

By Theorem 5.2.8 such an integer m exists, Eλ is a finite-dimensional linear
subspace of X, the operator (λ1l−A)m has a closed image, and

X = ker(λ1l−A)m ⊕ im(λ1l−A)m.

Hence the formula

Pλ(x0 + x1) := x0

for x0 ∈ ker(λ1l − A)m and x1 ∈ im(λ1l − A)m defines a bounded linear
operator Pλ : X → X which is an A-invariant projection onto Eλ, i.e.

(5.2.12) P 2
λ = Pλ, PλA = APλ, im(Pλ) = Eλ.

The operator Pλ is uniquely determined by (5.2.12) and is called the spec-
tral projection associated to λ. It can also be written in the form

(5.2.13) Pλ =
1

2πi

∫
γ
(z1l−A)−1dz.

Here r > 0 is chosen such that

Br(λ) ∩ σ(A) = {λ}

(see part (ii) of Theorem 5.2.8) and the loop γ : [0, 1] → ρ(A) is defined by

γ(t) := λ+ re2πit for 0 ≤ t ≤ 1.

Equation (5.2.13) is a special case of part (vi) of Theorem 5.2.12 below.
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5.2.4. Holomorphic Functional Calculus. Let X be a nonzero com-
plex Banach space and let A ∈ Lc(X) be a bounded complex linear operator.
Then the spectrum of A is a nonempty compact subset of the complex plane
by Lemma 5.2.6 and Theorem 5.2.7. The Holomorphic Functional Calculus
assigns a bounded linear operator f(A) ∈ Lc(X) to every holomorphic func-
tion f : U → C on an open set U ⊂ C containing σ(A). The operator f(A)
is defined as the Dunford integral of the resolvent operators along a cycle
in U \ σ(A) encircling the spectrum.

σ(Α)

γ

Figure 5.2.1. A cycle encircling the spectrum.

Definition 5.2.11 (Dunford Integral). Let X be a nonzero complex
Banach space and let A ∈ Lc(X). Let U ⊂ C be an open set such that

σ(A) ⊂ U

and let γ = (γ1, . . . , γm) be a collection of smooth loops γi : R/Z → U \ σ(A)
with winding numbers

(5.2.14) w(γ, λ) :=
1

2πi

m∑
i=1

∫
γi

dz

z − λ
=

{
1, for λ ∈ σ(A),
0, for λ ∈ C \ U.

(See Figure 5.2.1.) The collection γ is called a cycle in U \ σ(A) and the
image of the cycle γ is the set im(γ) :=

⋃n
i=1 γi(R/Z). For the existence

of γ see [1, pp 139] or [74, pp 90]. The operator f(A) ∈ Lc(X) is defined by

f(A) :=
1

2πi

∫
γ
f(z)(z1l−A)−1 dz

=
1

2πi

m∑
i=1

∫
γi

f(z)(z1l−A)−1 dz.

(5.2.15)

The integral in (5.2.15) is called the Dunford Integral.

The next theorem establishes the basic properties of the operators f(A)
and examines their spectra.
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Theorem 5.2.12 (Holomorphic Functional Calculus). Let X be a
nonzero complex Banach space and A ∈ Lc(X). Then the following holds.

(i) The operator f(A) is independent of the choice of the cycle γ in U \σ(A)
satisfying (5.2.14) that is used to define it.

(ii) Let U ⊂ C be an open set such that σ(A) ⊂ U and let f, g : U → C be
holomorphic. Then

(5.2.16) (f + g)(A) = f(A) + g(A), (fg)(A) = f(A)g(A).

(iii) If p(z) =
∑n

k=0 akz
k is a polynomial then p(A) =

∑n
k=0 akA

k.

(iv) Let U ⊂ C be an open set such that σ(A) ⊂ U and let f : U → C be
holomorphic. Then

(5.2.17) σ(f(A)) = f(σ(A)).

This assertion is the Spectral Mapping Theorem.

(v) Let U, V ⊂ C be open sets such that σ(A) ⊂ U and let f : U → V
and g : V → C be holomorphic functions. Then

(5.2.18) g(f(A)) = (g ◦ f)(A).

(vi) Let Σ0,Σ1 ⊂ σ(A) be disjoint compact sets such that Σ0 ∪ Σ1 = σ(A)
and let U0, U1 ⊂ C be disjoint open sets such that Σi ⊂ Ui for i = 0, 1.
Define the function f : U := U0 ∪ U1 → C by f |U0 := 0 and f |U1 := 1, and
define P := f(A) ∈ Lc(X). Then P is a projection and commutes with A,
i.e. P 2 = P and PA = AP . Thus X0 := ker(P ) and X1 := im(P ) are closed
A-invariant subspaces of X such that X = X0 ⊕ X1. The spectrum of the
operator Ai := A|Xi : Xi → Xi is given by σ(Ai) = Σi for i = 0, 1.

Proof. We prove part (i). Let β and γ be two collections of loops
in U \ σ(A) that satisfy (5.2.14). Then their difference γ−β, understood as
a cycle in U \ σ(A), is homologous to zero, in that its winding number
about every point in the complement of U \σ(A) is zero. Hence the Cauchy
Integral Formula [1, Thm 14, p 141] asserts that the integral of every holo-
morphic function on U \ σ(A) over γ − β must vanish. This implies∫

β
f(z)⟨x∗, (z1l−A)−1x⟩ dz =

∫
γ
f(z)⟨x∗, (z1l−A)−1x⟩ dz

for every holomorphic function f : U → C and all x ∈ X and all x∗ ∈ X∗.
Hence it follows from the Hahn–Banach Theorem 2.3.5 that the integrals
of the operator valued function U \ σ(A) → Lc(X) : z 7→ f(z)(z1l − A)−1

over β and γ agree for every holomorphic function f : U → C. This proves
part (i).
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σ(Α)

β

γ

Figure 5.2.2. Two cycles encircling the spectrum.

We prove part (ii). The assertion about the sum follows directly from
the definition. To prove the assertion about the product, choose two cy-
cles β and γ in U \ σ(A) that both satisfy (5.2.14), have disjoint images so
that im(β) ∩ im(γ) = ∅, and such that the image of β is encircled by γ, i.e.

w(γ,w) = 1 for all w ∈ im(β),

w(β, z) = 0 for all z ∈ im(γ).
(5.2.19)

(See Figure 5.2.2.) Then, by the resolvent identity in Lemma 5.2.6, we have

f(A)g(A) =
1

2πi

∫
β
f(w)Rw(A) dw

1

2πi

∫
γ
g(z)Rz(A) dz

=
1

2πi

1

2πi

∫
β

∫
γ
f(w)g(z)

Rw(A)−Rz(A)

z − w
dz dw

=
1

2πi

∫
β
f(w)

(
1

2πi

∫
γ

g(z) dz

z − w

)
Rw(A) dw

+
1

2πi

∫
γ
g(z)

(
1

2πi

∫
β

f(w) dw

w − z

)
Rz(A) dz

=
1

2πi

∫
β
f(w)g(w)Rw(A) dw

= (fg)(A).

Here the penultimate step uses (5.2.19). This proves part (ii).

We prove part (iii). In view of part (ii) it suffices to prove the equations

(5.2.20) 1(A) = 1lX , id(A) = A,

associated to the holomorphic functions f(z) = 1 and f(z) = z. In these
cases we can choose U = C and γr(t) := re2πit with r > ∥A∥. Then

f(A) =
1

2πi

∫
γr

f(z)(z1l−A)−1 dz =

∫ 1

0
f(re2πit)(1l− r−1e−2πitA)−1 dt.
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For f ≡ 1 it follows from Corollary 1.5.7 that the integrand converges uni-
formly to 1l as r tends to ∞ and so 1(A) = 1l. In the case f(z) = z we
obtain

id(A) =
1

2πi

∫
γr

z(z1l−A)−1 dz

=
1

2πi

∫
γr

A(z1l−A)−1 dz

= A ◦ 1(A)
= A.

Here the difference of the second and third terms vanishes because it is the
integral of the constant operator valued function z 7→ 1l over a cycle in U
that is homologous to zero by (5.2.14). This proves part (iii).

We prove part (iv). Fix a spectral value λ ∈ σ(A). Then there exists a
holomorphic function g : U → C such that

f(z)− f(λ) = (z − λ)g(z) for all z ∈ U.

By part (ii) this implies

f(λ)1l− f(A) = (λ1l−A)g(A) = g(A)(λ1l−A).

Hence f(λ)1l− f(A) cannot be bijective and so

f(λ) ∈ σ(f(A)).

This shows that

f(σ(A)) ⊂ σ(f(A)).

To prove the converse inclusion, fix an element λ ∈ C \ f(σ(A)). Then

V := U \ f−1(λ)

is an open neighborhood of σ(A). Define gλ : V → C by

gλ(z) :=
1

λ− f(z)
for z ∈ V = U \ f−1(λ).

Then gλ is holomorphic, and it follows from parts (ii) and (iii) that

gλ(A)(λ1l− f(A)) = (λ1l− f(A))gλ(A) = 1(A) = 1l.

Hence λ1l− f(A) is invertible and so

λ ∈ C \ σ(f(A)).

This shows that

σ(f(A)) ⊂ f(σ(A))

and proves part (iv).
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To prove part (v), note first that the operator g(f(A)) is well defined,
because σ(f(A)) = f(σ(A)) ⊂ V by part (iv). Choose a cycle β in U \ σ(A)
such that w(β, λ) = 1 for λ ∈ σ(A) and w(β, λ) = 0 for λ ∈ C \ U . Then

K := im(β) ∪ {w ∈ U \ im(β) |w(β,w) ̸= 0}

is a compact neighborhood of σ(A). Then, for every z ∈ C \ f(K), the
functions w 7→ (z − f(w))−1 and w 7→ z − f(w) are holomorphic in an open
neighborhood of K and their product is the constant function 1. Hence it
follows from parts (ii), (iii), and (iv) that

(5.2.21) (z1l− f(A))−1 =
1

2πi

∫
β

(w1l−A)−1

z − f(w)
dw for z ∈ C \ f(K).

Choose a cycle γ in V \ f(K) such that

(5.2.22) w(γ, µ) =

{
1, for µ ∈ f(K),
0, for µ ∈ C \ V.

Then

g(f(A)) =
1

2πi

∫
γ
g(z)(z1l− f(A))−1 dz

=
1

2πi

∫
γ
g(z)

(
1

2πi

∫
β

(w1l−A)−1

z − f(w)
dw

)
dz

=
1

2πi

∫
β

(
1

2πi

∫
γ

g(z)

z − f(w)
dz

)
(w1l−A)−1 dw

=
1

2πi

∫
β
g(f(w))(w1l−A)−1 dw

= (g ◦ f)(A).

Here the second step uses (5.2.21) and the fourth step uses (5.2.22) and the
Cauchy Integral Formula. This proves part (v).

We prove part (vi). Since f2 = f it follows from (ii) that P 2 = P .
Moreover P commutes with A by definition. Define g : U → C by g(z) = z
for z ∈ U and let c ∈ C. Then, by parts (ii) and (iii), we have

c1lX0 ⊕A1 = c(1lX − P ) +AP = (c(1− f) + gf)(A)

and hence σ(c1lX0 ⊕A1) = {c} ∪ Σ1 by part (iv). If λ ∈ C \ Σ1, it follows
that the operator (λ− c)1lX0 ⊕ (λ1lX1 −A1) is bijective for c ̸= λ and so
the operator λ1lX1 −A1 is bijective. Conversely, suppose that λ ∈ Σ1. Then
the operator (λ− c)1lX0 ⊕ (λ1lX1 −A1) is not bijective and, for c ̸= λ, this
implies that the operator λ1lX1 −A1 is not bijective. Thus σ(A1) = Σ1.
The equation σ(A0) = Σ0 follows by interchanging Σ0 and Σ1. This proves
Theorem 5.2.12. □



5.2. Spectrum 221

Exercise 5.2.13 (Exponential Map). Let X be a nonzero complex
Banach space and let A ∈ Lc(X) be a bounded complex linear operator.
Choose a real number r > ∥A∥ and define γr(θ) := re2πiθ for 0 ≤ θ ≤ 1.
Prove that

eA :=
∞∑
k=0

Ak

k!
=

1

2πi

∫
γr

ez(z1l−A)−1 dz.

Prove that

σ(eA) =
{
eλ |λ ∈ σ(A)

}
and, for all s, t ∈ R,

e(s+t)A = esAetA, e0A = 1l

and
d

dt
etA = AetA = etAA.

Exercise 5.2.14 (Logarithm). Let X be a nonzero complex Banach
space and let T ∈ Lc(X) be a bounded complex linear operator such that

Re(λ) > 0 for all λ ∈ σ(T ).

Choose a smooth curve γ : R/Z → C \ σ(T ) such that Re(γ(t)) > 0 for all t
and w(γ, λ) = 1 for all λ ∈ σ(T ). Denote by log : {z ∈ C |Re(z) > 0} → C
the branch of the logarithm with log(1) = 0. Define

log(T ) :=
1

2πi

∫
γ
log(z)(z1l− T )−1 dz.

Prove that

elog(T ) = T, log(eA) = A

for all A ∈ Lc(X). Let n ∈ N and deduce that the operator S := elog(T )/n

satisfies Sn = T .

Exercise 5.2.15 (Inverse). Let X be a nonzero complex Banach space
and let A ∈ Lc(X) be a bijective bounded complex linear operator. Choose
real numbers ε and r such that

0 < ε < ∥A−1∥−1 ≤ ∥A∥ < r.

Show that ε < |λ| < r for all λ ∈ σ(A). With γr, γε as in Exercise 5.2.13,
show that

A−1 =
1

2πi

∫
γr

(z1l−A)−1

z
dz − 1

2πi

∫
γε

(z1l−A)−1

z
dz.

Exercise 5.2.16 (Spectral Projection). Verify the formula (5.2.13).
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5.3. Operators on Hilbert Spaces

The remainder of this chapter discusses the spectral theory of operators
on Hilbert spaces. The present section begins with an introduction to
complex Hilbert spaces (Subsection 5.3.1) and the adjoint operator (Sub-
section 5.3.2). It then moves on to examine the properties of the spec-
tra of normal operators (Subsection 5.3.3) and self-adjoint operators (Sub-
section 5.3.4). The next two sections establish the continuous functional
calculus for self-adjoint operators (Section 5.4) and normal operators (Sec-
tion 5.5). Section 5.6 introduces the spectral measure of a normal operator
and Section 5.7 examines cyclic vectors of self-adjoint operators.

5.3.1. Complex Hilbert Spaces.

Definition 5.3.1 (Hermitian Inner Product). Let H be a complex
vector space. A Hermitian inner product on H is a real bilinear map

(5.3.1) H ×H → C : (x, y) 7→ ⟨x, y⟩
that satisfies the following three axioms.

(a) The map (5.3.1) is complex anti-linear in the first variable and is complex
linear in the second variable, i.e.

⟨λx, y⟩ = λ⟨x, y⟩, ⟨x, λy⟩ = λ⟨x, y⟩
for all x, y ∈ H and all λ ∈ C.

(b) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ H.

(c) The map (5.3.1) is positive definite, i.e. ⟨x, x⟩ > 0 for all x ∈ H \ {0}.

It is sometimes convenient to denote the Hermitian inner product by ⟨·, ·⟩C,
to distinguish it from the real inner product in Definition 1.4.1.

Assume H is a complex vector space equipped with a Hermitian inner
product (5.3.1). Then the real part of the Hermitian inner product is a real
inner product as in Definition 1.4.3 and so the formula

(5.3.2) H → R : x 7→ ∥x∥ :=
√
⟨x, x⟩

defines a norm on H. The next lemma shows that Hermitian inner products
satisfy a stronger form of the Cauchy–Schwarz inequality. It is proved by
the same argument as in Lemma 1.4.2.

Lemma 5.3.2 (Complex Cauchy–Schwarz Inequality). Let H be
a complex vector space equipped with Hermitian inner product (5.3.1) and
the associated norm (5.3.2). Then the Hermitian inner product and norm
satisfy the complex Cauchy–Schwarz inequality

(5.3.3) |⟨x, y⟩| ≤ ∥x∥ ∥y∥ for all x, y ∈ H.
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Proof. The Cauchy–Schwarz inequality is obvious when x = 0 or y = 0.
Hence assume x ̸= 0 and y ̸= 0 and define

ξ := ∥x∥−1 x, η := ∥y∥−1 y.

Then ∥ξ∥ = ∥η∥ = 1 and ⟨η, ξ − ⟨η, ξ⟩η⟩ = ⟨η, ξ⟩ − ⟨η, ξ⟩ ∥η∥2 = 0, and hence

0 ≤ ∥ξ − ⟨η, ξ⟩η∥2

= ⟨ξ, ξ − ⟨η, ξ⟩η⟩
= ⟨ξ, ξ⟩ − ⟨η, ξ⟩⟨ξ, η⟩
= 1− |⟨ξ, η⟩|2 .

Thus |⟨ξ, η⟩| ≤ 1 and so |⟨x, y⟩| ≤ ∥x∥ ∥y∥. This proves Lemma 5.3.2. □

Definition 5.3.3 (Complex Hilbert Space). A complex Hilbert
space is a complex vector space H equipped with a Hermitian inner prod-
uct (5.3.1) such that the norm (5.3.2) is complete.

Remark 5.3.4. (i) Let (H, ⟨·, ·⟩C) be a complex Hilbert space. Then H
is also a real Hilbert space with the inner product

(5.3.4) ⟨x, y⟩R := Re⟨x, y⟩C.

Hence all results about real Hilbert spaces, such as Theorem 1.4.4 and The-
orem 1.4.5, continue to hold for complex Hilbert spaces.

(ii) If H is a complex Hilbert space then the Hermitian inner product and
the real inner product (5.3.4) are related by the formula

(5.3.5) ⟨x, y⟩C = ⟨x, y⟩R + i⟨ix, y⟩R for all x, y ∈ H.

(iii) Conversely, suppose that (H, ⟨·, ·⟩R) is a real Hilbert space and that
J : H → H is a linear map such that

J2 = −1l, ∥Jx∥ = ∥x∥ for all x ∈ H.

Then H carries a unique structure of a complex Hilbert space such that mul-
tiplication by i is the operator J , and ⟨·, ·⟩R is the real part of the Hermitian
inner product. The scalar multiplication is defined by (s+ it)x := sx+ tJx
for s+it ∈ C and x ∈ H, and the Hermitian inner product is given by (5.3.5).

(iv) Let (H, ⟨·, ·⟩) be a real Hilbert space. Then its complexification

Hc := H ⊕ iH

is a complex Hilbert space with the Hermitian inner product

(5.3.6) ⟨x+ iy, ξ + iη⟩c := ⟨x, ξ⟩+ ⟨y, η⟩+ i
(
⟨x, η⟩ − ⟨y, ξ⟩

)
for x, y, ξ, η ∈ H.
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Exercise 5.3.5. (i) Verify parts (iii) and (iv) of Remark 5.3.4.

(ii) Let (M,A, µ) be a measure space. Prove that L2(µ,C) is a complex
Hilbert space with the Hermitian inner product

(5.3.7) ⟨f, g⟩ :=
∫
M
fg dµ for f, g ∈ L2(µ,C).

(iii) Prove that ℓ2(N,C) is a complex Hilbert space with

(5.3.8) ⟨x, y⟩ :=
∞∑
i=1

xiyi for x = (xi)i∈N, y = (yi)i∈N ∈ ℓ2(N,C).

(iv) Prove that L2(µ,C) is the complexification of L2(µ,R) and ℓ2(N,C) is
the complexification of ℓ2(N,R).

The next theorem shows that a complex Hilbert space is isomorphic to
its complex dual space. An important caveat is that the isomorphism is
necessarily complex anti-linear. The result is a direct consequence of the
Riesz Representation Theorem 1.4.4.

Theorem 5.3.6 (Riesz). Let H be a complex Hilbert space and denote
by H∗ := Lc(H,C) its complex dual space. Define the map ι : H → H∗ by

(5.3.9) ⟨ι(x), y⟩H∗,H := ⟨x, y⟩ for x, y ∈ H.

Then ι is a complex anti-linear isometric isomorphism.

Proof. It follows directly from the definitions that the map ι : H → H∗

is complex anti-linear, i.e. ι(λx) = λι(x) for all x ∈ H and all λ ∈ C. That
it is an isometry follows from the complex Cauchy–Schwarz inequality in
Lemma 5.3.2, namely

∥x∥ =
|⟨x, x⟩|
∥x∥

≤ ∥ι(x)∥ = sup
y∈H\{0}

|⟨x, y⟩|
∥y∥

≤ ∥x∥

for all x ∈ H \ {0} and so ∥ι(x)∥ = ∥x∥ for all x ∈ H. In particular, ι is
injective. To prove that it is surjective, fix a bounded complex linear func-
tional Λ : H → C. Then ReΛ : H → R is a bounded real linear functional.
Hence Theorem 1.4.4 asserts that there exists a unique element x ∈ H such
that ReΛ(y) = Re⟨x, y⟩ for all y ∈ H. This implies

Λ(y) = ReΛ(y) + iImΛ(y) = ReΛ(y)− iReΛ(iy)

= Re⟨x, y⟩ − iRe⟨x, iy⟩ = Re⟨x, y⟩+ iIm⟨x, y⟩
= ⟨x, y⟩

for all y ∈ H. Here the last equation follows from (5.3.5). Thus ι is surjective
and this proves Theorem 5.3.6. □
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5.3.2. The Adjoint Operator. Let A : X → Y be a bounded complex
linear operator between complex Hilbert spaces. Then the dual operator
of A is the bounded linear operator A∗

Banach : Y ∗ → X∗ between the complex
dual spaces, introduced in part (iii) of Definition 5.1.1. In the Hilbert space
setting one can use the isomorphisms of Theorem 5.3.6 to replace the dual
operator A∗

Banach by the operator

A∗
Hilbert := ι−1

X ◦A∗
Banach ◦ ιY : Y → X

between the original Hilbert spaces which is called the adjoint operator
of A. Thus the dual operator and the adjoint operator are related by the
commutative diagram

Y
A∗

Hilbert //

ιY
��

X

ιX
��

Y ∗ A∗
Banach // X∗

.

From now on we drop the subscripts “Banach” and “Hilbert” and work
exclusively with the adjoint operator. Thus, throughout the remainder of
this chapter, the notation A∗ acquires a new meaning and will denote the
adjoint operator of a bounded complex linear operator between complex
Hilbert spaces. The dual operator of the Banach space setting will no longer
be used.

Definition 5.3.7 (Adjoint Operator). Let X and Y be complex Hil-
bert spaces and let A ∈ Lc(X,Y ) be a bounded complex linear operator.
The adjoint operator of A is the unique operator A∗ : Y → X that
satisfies the equation

⟨A∗y, x⟩X = ⟨y,Ax⟩Y
for all x ∈ X and all y ∈ Y . It is well-defined by Theorem 5.3.6 and it agrees
with the adjoint operator in Example 4.1.6 associated to the real parts of
the Hermitian inner products on X and Y .

If H is a complex Hilbert space then the complex orthogonal com-
plement of a subset S ⊂ H is denoted by

S⊥ := {x ∈ H | ⟨x, y⟩ = 0 for all y ∈ S} .

The complex orthogonal complement of any subset S ⊂ H is a closed com-
plex linear subspace. It is isomorphic to the complex annihilator of S under
the isomorphism ι : H → H∗ in Theorem 5.3.6 and, in general, it differs
from the orthogonal complement of S with respect to the real inner product.
The real and complex orthogonal complements agree whenever the subset S
is invariant under multiplication by i. The next two lemmas summarize the
properties of the orthogonal complement and the adjoint operator.
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Lemma 5.3.8. Let H be a complex Hilbert space and let E ⊂ H be a
complex linear subspace. Then E = E⊥⊥ and so E is closed if and only
if E = E⊥⊥.

Proof. By definition the orthogonal complement of the orthogonal com-
plement of E agrees with the pre-annihilator of the annihilator of E. Hence
the assertion follows from the complex analogue of Corollary 2.3.24. (See
also Corollary 3.1.18.) □

Lemma 5.3.9. Let X,Y, Z be complex Hilbert spaces and A ∈ Lc(X,Y )
and B ∈ Lc(Y,Z). Then the following holds.

(i) A∗ is a bounded complex linear operator and ∥A∗∥ = ∥A∥.

(ii) (AB)∗ = B∗A∗ and (λ1l)∗ = λ1l for all λ ∈ C.

(iii) A∗∗ = A.

(iv) ker(A∗) = im(A)⊥ and im(A∗) = ker(A)⊥.

(v) If A has a closed image then A∗ has a closed image.

(vi) If A is bijective then so is A∗ and (A∗)−1 = (A−1)∗.

(vii) If A is an isometry then so is A∗.

(viii) If A is compact then so is A∗.

(ix) If A is Fredholm then so is A∗ and index(A∗) = −index(A).

(x) Assume X = Y = H. Then

σ(A∗) =
{
λ |λ ∈ σ(A)

}
and

Pσ(A∗) ⊂
{
λ |λ ∈ Pσ(A) ∪ Rσ(A)

}
,

Rσ(A∗) ⊂
{
λ |λ ∈ Pσ(A)

}
,

Cσ(A∗) =
{
λ |λ ∈ Cσ(A)

}
.

Proof. Part (i) follows from the same argument as in Lemma 4.1.2 and
parts (ii) and (iii) follow directly from the definitions (see also Lemma 4.1.3).
Part (iv) follows from Theorem 4.1.8 and Lemma 5.3.8. Part (v) follows from
Theorem 4.1.16, parts (vi) and (vii) follow from Corollary 4.1.18, part (viii)
follows from Theorem 4.2.10, and part (ix) follows from Theorem 4.3.3.
Part (x) follows from parts (iv) and (vi) and the fact that

(λ1l−A)∗ = λ1l−A∗

by part (ii) (see also Lemma 5.2.5). This proves Lemma 5.3.9. □
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5.3.3. The Spectrum of a Normal Operator.

Definition 5.3.10 (Normal Operator). Let H be a complex Hilbert
space. A bounded complex linear operator A : H → H is called

• normal if A∗A = AA∗,

• unitary if A∗A = AA∗ = 1l,

• self-adjoint if A∗ = A.

Thus every self-adjoint operator and every unitary operator is normal.

Exercise 5.3.11. Let H be a complex Hilbert space and let

A = A∗ : H → H

be a self-adjoint operator. Prove that

A = 0 ⇐⇒ ⟨x,Ax⟩ = 0 for all x ∈ H.

Example 5.3.12. Consider the complex Hilbert space H := ℓ2(N,C),
choose a bounded sequence (λi)i∈N of complex numbers. Then the operator

Aλ : ℓ2(N,C) → ℓ2(N,C),

defined by

Aλx := (λixi)i∈N for x = (xi)i∈N ∈ ℓ2(N,C),

is normal and its adjoint operator is given by

A∗
λx := (λixi)i∈N for x = (xi)i∈N ∈ ℓ2(N,C).

Thus Aλ is self-adjoint if and only if λi ∈ R for all i, and Aλ is unitary if
and only if |λi| = 1 for all i.

Example 5.3.13. Define the bounded complex linear operator

A : ℓ2(N,C) → ℓ2(N,C)

by

Ax := (0, x1, x2, x3, . . . ) for x = (xi)i∈N ∈ ℓ2(N,C).

Then

A∗x := (x2, x3, x4, . . . ) for x = (xi)i∈N ∈ ℓ2(N,C)

and hence

A∗A = 1l ̸= AA∗.

Thus A is not normal. It is an isometric embedding but is not unitary.



228 5. Spectral Theory

Lemma 5.3.14 (Characterization of Normal Operators). Let H be
a complex Hilbert space and let A : H → H be a bounded complex linear
operator. Then the following holds.

(i) A is normal if and only if ∥A∗x∥ = ∥Ax∥ for all x ∈ H.

(ii) A is unitary if and only if ∥A∗x∥ = ∥Ax∥ = ∥x∥ for all x ∈ H.

(iii) A is self-adjoint if and only if ⟨x,Ax⟩ ∈ R for all x ∈ H.

Proof. We prove part (i). If A is normal then

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨x,A∗Ax⟩ = ⟨x,AA∗x⟩ = ∥A∗x∥2

for all x ∈ X. Conversely, assume ∥A∗x∥ = ∥Ax∥ for all x ∈ X. Then, for
all x, y ∈ H, we have

Re⟨Ax,Ay⟩ = 1
4

(
∥Ax+Ay∥2 − ∥Ax−Ay∥2

)
= 1

4

(
∥A∗x+A∗y∥2 − ∥A∗x−A∗y∥2

)
= Re⟨A∗x,A∗y⟩

and so Im⟨Ax,Ay⟩ = Re⟨Aix,Ay⟩ = Re⟨A∗ix,A∗y⟩ = Im⟨A∗x,A∗y⟩. Thus
⟨A∗Ax, y⟩ = ⟨Ax,Ay⟩ = ⟨A∗x,A∗y⟩ = ⟨AA∗x, y⟩

for all x, y ∈ H and hence A∗A = AA∗. This proves (i).

We prove part (ii). If A is unitary then

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨x,A∗Ax⟩ = ⟨x, x⟩ = ∥x∥2

and, by an analogous argument, ∥A∗x∥ = ∥x∥ for all x ∈ X. Conversely,
assume ∥Ax∥ = ∥A∗x∥ = ∥x∥ for all x ∈ X. Then, for all x, y ∈ H, we have

Re⟨Ax,Ay⟩ = 1
4

(
∥Ax+Ay∥2 − ∥Ax−Ay∥2

)
= 1

4

(
∥x+ y∥2 − ∥x− y∥2

)
= Re⟨x, y⟩

and so Im⟨Ax,Ay⟩ = Re⟨Aix,Ay⟩ = Re⟨ix, y⟩ = Im⟨x, y⟩. Thus
⟨A∗Ax, y⟩ = ⟨Ax,Ay⟩ = ⟨x, y⟩

for all x, y ∈ H and hence A∗A = 1l. The same argument with A and A∗

interchanged shows that AA∗ = 1l. Thus A is unitary and this proves (ii).

We prove (iii). If A is self-adjoint then ⟨x,Ax⟩ = ⟨Ax, x⟩ = ⟨x,Ax⟩ and
so ⟨x,Ax⟩ ∈ R for all x ∈ X. Conversely, assume ⟨x,Ax⟩ ∈ R for all x ∈ X.
Then, for all x, y ∈ H, we have

Im⟨x,Ay⟩ − Im⟨Ax, y⟩ = Im
(
⟨x,Ay⟩+ ⟨y,Ax⟩

)
= 1

2 Im
(
⟨x+ y,Ax+Ay⟩ − ⟨x− y,Ax−Ay⟩

)
= 0

and so Re⟨x,Ay⟩ − Re⟨Ax, y⟩ = Im⟨x,Aiy⟩ − Im⟨Ax, iy⟩ = 0. Thus

⟨A∗x, y⟩ = ⟨x,Ay⟩ = ⟨Ax, y⟩
for all x, y ∈ H and hence A∗ = A. This proves Lemma 5.3.14. □
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Theorem 5.3.15 (Spectrum of a Normal Operator). Let H be a
nonzero complex Hilbert space and let A ∈ Lc(H) be a normal operator.
Then the following holds.

(i) ∥An∥ = ∥A∥n for all n ∈ N.

(ii) ∥A∥ = supλ∈σ(A)|λ|.

(iii) Rσ(A∗) = Rσ(A) = ∅ and Pσ(A∗) =
{
λ |λ ∈ Pσ(A)

}
.

(iv) If A is unitary then σ(A) ⊂ S1.

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I ⊂ N, either equal to N or
finite, an orthonormal sequence (ei)i∈I in H, and a map I → C\{0} : i 7→ λi
such that limi→∞ λi = 0 when I = N and

Ax =
∑
i∈I

λi⟨ei, x⟩ei for all x ∈ H.

Proof. If x ∈ H is a unit vector then, by Lemma 5.3.14,

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨x,A∗Ax⟩ ≤ ∥A∗Ax∥ = ∥A2x∥.

Hence

∥A2∥ ≤ ∥A∥2 = sup
∥x∥=1

∥Ax∥2 ≤ sup
∥x∥=1

∥A2x∥ = ∥A2∥

and so ∥A2∥ = ∥A∥2. Hence it follows by induction that ∥A2m∥ = ∥A∥2m

for all m ∈ N. Given any integer n ≥ 1, choose m ∈ N such that n < 2m,
and deduce that

∥A∥2
m−n ∥A∥n = ∥A2m∥ ≤ ∥An∥ ∥A∥2

m−n .

Hence ∥A∥n ≤ ∥An∥ ≤ ∥A∥n and so ∥An∥ = ∥A∥n. This proves part (i).
Part (ii) follows from part (i) and Theorem 5.2.7.

To prove part (iii), fix an element λ ∈ C. Then (λ1l−A)∗ = λ1l−A∗ by
part (ii) of Lemma 5.3.9. Hence λ1l−A is normal and it follows from part (i)
of Lemma 5.3.14 that ker(λ1l−A∗) = ker(λ1l−A). Hence, by part (iv) of
Lemma 5.3.9, we have

im(λ1l−A) = ker(λ1l−A∗)⊥ = ker(λ1l−A)⊥.

By Lemma 5.3.8 this shows that the operator λ1l−A is injective if and only
if it has a dense image. Thus Rσ(A) = ∅ and so Pσ(A∗) = {λ |λ ∈ Pσ(A)}
by part (x) of Lemma 5.3.9. This proves part (iii).

To prove part (iv), assume A is unitary and let λ ∈ σ(A). Then |λ| ≤ 1
by Theorem 5.2.7. Moreover, λ ̸= 0 because A is invertible, and the oper-
ator λ−11l−A−1 = (λA)−1(A− λ1l) is not invertible. Hence λ−1 ∈ σ(A−1)
and so |λ|−1 ≤ ∥A−1∥ = ∥A∗∥ = ∥A∥ = 1. This proves part (iv).
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We prove part (v) in three steps. The first step shows that the eigen-
spaces are pairwise orthogonal, the second step shows that each generalized
eigenvector is an eigenvector, and the third step shows that the orthogonal
complement of the direct sum of all the eigenspaces associated to the nonzero
eigenvalues is the kernel of A.

Step 1. If λ, µ ∈ σ(A) such that λ ̸= µ and x, y ∈ H such that Ax = λx
and Ay = µy then ⟨x, y⟩ = 0.

By Lemma 5.3.14, ker(λ1l−A) = ker(λ1l−A)∗ = ker(λ−A∗). Hence

(λ− µ)⟨x, y⟩ = ⟨λx, y⟩ − ⟨x, µy⟩ = ⟨A∗x, y⟩ − ⟨x,Ay⟩ = 0

and this proves Step 1.

Step 2. Let λ ∈ σ(A) and n ∈ N. Then ker(λ1l−A)n = ker(λ1l−A).

Let x ∈ ker(λ1l − A)2. Then (λ1l − A∗)(λx − Ax) = 0 by Lemma 5.3.14,
hence

∥λx−Ax∥2 = ⟨λx−Ax, λx−Ax⟩ = ⟨x, (λ1l−A∗)(λx−Ax)⟩ = 0,

and hence x ∈ ker(λ1l−A). Thus

ker(λ1l−A)2 = ker(λ1l−A)

and this implies ker(λ1l−A)n = ker(λ1l−A) for all n ∈ N.

Step 3. Define Eλ := ker(λ1l−A) for λ ∈ σ(A) \ {0}. Then

x ⊥ Eλ for all λ ∈ σ(A) \ {0} ⇐⇒ Ax = 0

for all x ∈ H.

If x ∈ ker(A) then x ⊥ Eλ for all λ ∈ σ(A) \ {0} by Step 1. To prove the
converse, define

H0 := {x ∈ H |x ⊥ Eλ for all λ ∈ σ(A) \ {0}} .

Then H0 is a closed A-invariant subspace of H and

A0 := A|H0 : H0 → H0

is a compact normal operator. Suppose, by contradiction, that A0 ̸= 0.
Then it follows from Theorem 5.2.8 and part (ii) that A0 has a nonzero
eigenvalue. This contradicts the definition of H0 and proves Step 3.

By Theorem 5.2.8 the set σ(A) \ {0} is either finite or is a sequence
converging to zero and dimEλ < ∞ for all λ ∈ σ(A) \ {0}. Hence part (v)
follows from Step 1, Step 2, and Step 3 by choosing orthonormal bases of
the eigenspaces Eλ for all λ ∈ σ(A) \ {0}. This proves Theorem 5.3.15. □
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5.3.4. The Spectrum of a Self-Adjoint Operator. Let X and Y be
real Hilbert spaces and let T : X → Y be a bounded linear operator. Then

∥T∥2 = sup
∥x∥=1

∥Tx∥2Y = sup
∥x∥=1

⟨x, T ∗Tx⟩X ≤ ∥T ∗T∥ ≤ ∥T ∗∥ ∥T∥ = ∥T∥2

and hence

(5.3.10) ∥T∥2 = sup
∥x∥=1

⟨x, T ∗Tx⟩X = ∥T ∗T∥ .

This formula is the special case A = T ∗T of Theorem 5.3.16 below. It can
sometimes be used to compute the norm of an operator (Exercise 5.8.9).

Theorem 5.3.16 (Spectrum of a Self-Adjoint Operator). Let H
be a nonzero complex Hilbert space and let A ∈ Lc(H) be a self-adjoint
operator. Then the following holds.

(i) σ(A) ⊂ R.

(ii) supσ(A) = sup∥x∥=1⟨x,Ax⟩.

(iii) inf σ(A) = inf∥x∥=1⟨x,Ax⟩.

(iv) ∥A∥ = sup∥x∥=1 |⟨x,Ax⟩|.

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I ⊂ N, either equal to N or
finite, an orthonormal sequence (ei)i∈I in H, and a map I → R\{0} : i 7→ λi
such that limi→∞ λi = 0 when I = N and

Ax =
∑
i∈I

λi⟨ei, x⟩ei

for all x ∈ H.

Proof. We prove part (i). Let λ ∈ C \ R. Then, for all x ∈ H,

∥λx−Ax∥2 = ⟨λx−Ax, λx−Ax⟩
= |λ|2 ∥x∥2 − λ⟨Ax, x⟩ − λ⟨x,Ax⟩+ ∥Ax∥2

= |Imλ|2 ∥x∥2 + |Reλ|2 ∥x∥2 − 2(Reλ)⟨Ax, x⟩+ ∥Ax∥2

= |Imλ|2 ∥x∥2 + ∥(Reλ)x−Ax∥2

≥ |Imλ|2 ∥x∥2 .

This shows that λ1l−A is injective and has a closed image (Theorem 4.1.16).
Replace λ by λ to deduce that the adjoint operator

(λ1l−A)∗ = λ1l−A∗ = λ1l−A

is also injective and so λ1l−A has a dense image by part (iv) of Lemma 5.3.9.
Hence λ1l−A is bijective and this proves (i).
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We prove part (ii). It suffices to assume

(5.3.11) ⟨x,Ax⟩ ≥ 0 for all x ∈ H.

(Otherwise replace A by A+ a1l for a suitable constant a > 0.) Under this
assumption we prove that

(5.3.12) σ(A) ⊂ [0,∞), ∥A∥ = sup
∥x∥=1

⟨x,Ax⟩.

To see this, let ε > 0. Then

ε ∥x∥2 = ⟨x, εx⟩ ≤ ⟨x, εx+Ax⟩ ≤ ∥x∥ ∥εx+Ax∥
and so ε ∥x∥ ≤ ∥εx+Ax∥ for all x ∈ X. Hence ε1l+A is injective and has a

closed image by Theorem 4.1.16. Thus im(ε1l +A) = (ker(ε1l+A))⊥ = H by
part (iv) of Lemma 5.3.9, so ε1l+A is bijective. Hence −ε /∈ σ(A). Since the
spectrum of A is real by part (i), this proves the first assertion in (5.3.12).
Next define

a := sup
∥x∥=1

⟨x,Ax⟩.

If x ∈ H satisfies ∥x∥ = 1 then

⟨x,Ax⟩ ≤ ∥x∥ ∥Ax∥ ≤ ∥A∥ ∥x∥2 = ∥A∥ .
Thus a ≤ ∥A∥. To prove the converse inequality observe that, for all
x, y ∈ H, we have Re⟨x,Ay⟩ = 1

4⟨x + y,A(x + y)⟩ − 1
4⟨x − y,A(x − y)⟩

and hence

−1

4
⟨x− y,A(x− y)⟩ ≤ Re⟨x,Ay⟩ ≤ 1

4
⟨x+ y,A(x+ y)⟩.

If ∥x∥ = ∥y∥ = 1, it follows that

−a ≤ −a
4
∥x− y∥2 ≤ −1

4
⟨x− y,A(x− y)⟩

≤ Re⟨x,Ay⟩ ≤ 1

4
⟨x+ y,A(x+ y)⟩ ≤ a

4
∥x+ y∥2 ≤ a.

Thus |Re⟨x,Ay⟩| ≤ a for all x, y ∈ H with ∥x∥ = ∥y∥ = 1 and hence

∥A∥ = sup
∥x∥=∥y∥=1

|Re⟨x,Ay⟩| ≤ a.

This proves (5.3.12). It follows from (5.3.12) and part (ii) of Theorem 5.3.15
that

supσ(A) = sup
λ∈σ(A)

|λ| = ∥A∥ = sup
∥x∥=1

⟨x,Ax⟩

for every self-adjoint operator A = A∗ ∈ Lc(H) that satisfies (5.3.11) and
this proves (ii).

Part (iii) follows from (ii) by replacing A with −A, part (iv) follows
from (ii), (iii), and Theorem 5.3.15, and part (v) follows from (i) and The-
orem 5.3.15. This proves Theorem 5.3.16. □
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Definition 5.3.17 (Singular value). Let X and Y be complex Hilbert
spaces and let T ∈ Lc(X,Y ). A real number λ ≥ 0 is called a singular value
of T if λ2 ∈ σ(T ∗T ).

Thus the singular values of T are the square roots of the (nonnegative)
spectral values of the self-adjoint operator T ∗T : X → X. Equation (5.3.10)
shows that the supremum of the singular values is the norm of T .

Corollary 5.3.18 (Compact Operators). Let X and Y be complex
Hilbert spaces and let 0 ̸= K ∈ Lc(X,Y ). Then the following are equivalent.

(i) K is compact.

(ii) There exists a set I ⊂ N, either equal to N or equal to {1, . . . , n} for
some n ∈ N, and orthonormal sequences (xi)i∈I in X and (yi)i∈I in Y , and
a sequence (λi)i∈I of positive real numbers, such that limi→∞ λi = 0 in the
case I = N and

(5.3.13) Kx =
∑
i∈I

λi⟨xi, x⟩yi for all x ∈ X.

Proof. That (ii) implies (i) follows from Theorem 4.2.10. To prove the
converse, consider the operator

A := K∗K : X → X.

This operator is self-adjoint by Lemma 5.3.9 and is compact by Theo-
rem 4.2.10. Hence σ(K∗K)\{0} is a discrete subset of the positive real axis
(0,∞) by Theorems 5.2.8 and 5.3.16. Write σ(K∗K) \ {0} =

{
λ2i | i ∈ I

}
,

where I = N when the spectrum is infinite and I = {1, . . . , n} otherwise,
the λi are chosen positive, and #{i ∈ I |λi = λ} = dimker(λ21l−K∗K) for
all λ > 0. Choose an orthonormal sequence (xi)i∈I in X such that

K∗Kxi = λ2ixi for all i ∈ I

and define yi := λ−1
i Kxi. Then ⟨yi, yj⟩Y = (λiλj)

−1⟨xi,K∗Kxj⟩ = δij for
all i, j ∈ I. Moreover, K∗Kx =

∑
i∈I λ

2
i ⟨xi, x⟩xi and hence

∥Kx∥2 = ⟨x,K∗Kx⟩ =
∑
i∈I

λ2i |⟨xi, x⟩|
2

for all x ∈ X. Since K∗yi = λixi for all i ∈ I, this implies∥∥∥∥Kx−
∑
i∈I

λi⟨xi, x⟩yi
∥∥∥∥2 = ∥Kx∥2 +

∑
i∈I

λ2i |⟨xi, x⟩|
2

− 2
∑
i∈I

λiRe
(
⟨xi, x⟩⟨Kx, yi⟩

)
= 0.

Since K is compact, the sequence (λi)i∈N converges to zero whenever I = N.
This proves Corollary 5.3.18. □
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5.4. Functional Calculus for Self-Adjoint Operators

In Subsection 5.2.4 we have introduced the holomorphic functional calcu-
lus for general bounded linear operators on complex Banach spaces. In the
special case of normal operators on Hilbert spaces this functional calcu-
lus extends to arbitrary complex valued continuous functions on the spec-
trum. The complex valued continuous functions on any compact Hausdorff
space Σ form a C* algebra C(Σ) as do the bounded complex linear op-
erators on a complex Hilbert space. The continuous functional calculus
assigns to every normal operator A ∈ Lc(H) on a complex Hilbert space H
the unique C* algebra homomorphism ΦA : C(σ(A)) → Lc(H) that satis-
fies ΦA(id) = A. The Spectral Mapping Theorem asserts that the spectrum
of the image of a function f ∈ C(σ(A)) under this homomorphism is the
image of the spectrum under f . We prove this in Subsection 5.4.3 for self-
adjoint operators and in Subsection 5.5.3 for normal operators.

5.4.1. C* Algebras. Recall the definition of a complex Banach algebra in
Definition 1.5.2.

Definition 5.4.1. (i) A (unital) C* algebra is a complex unital Ba-
nach algebra A, equipped with an anti-linear involution A → A : a 7→ a∗

that reverses the product and satisfies the C* identity, i.e.

(ab)∗ = b∗a∗, 1l∗ = 1l, a∗∗ = a, (λa)∗ = λa∗, ∥a∗a∥ = ∥a∥2

for all a, b ∈ A and all λ ∈ C, where a∗∗ := (a∗)∗.

(ii) A C* algebra A is called commutative if ab = ba for all a, b ∈ A.

(iii) Let A and B be unital C* algebras. A C* algebra homomorphism
is a bounded complex linear operator Φ : A → B such that

Φ(1lA) = 1lB, Φ(aa′) = Φ(a)Φ(a′), Φ(a∗) = Φ(a)∗

for all a, a′ ∈ A.

Example 5.4.2. Let M be a nonempty compact Hausdorff space. Then
the space C(M) := C(M,C) of complex valued continuous functions on M
with the supremum norm is a commutative C* algebra. The complex anti-
linear involution C(M) → C(M) : f 7→ f is given by complex conjugation.

Example 5.4.3. Let H be a nonzero complex Hilbert space. Then the
space Lc(H) of bounded complex linear operators A : H → H with the op-
erator norm is a C* algebra. The complex anti-linear involution is the
map Lc(H) → Lc(H) : A 7→ A∗ which assigns to each operator A ∈ Lc(H)
its adjoint operator A∗ (see Definition 5.3.7 and (5.3.10)). The C* algebra
Lc(H) is commutative if and only if H has complex dimension one.
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The goal of the present section is to show that, for every self-adjoint oper-
ator A ∈ Lc(H) on a nonzero complex Hilbert space H, there exists a unique
C* algebra homomorphism ΦA : C(σ(A)) → Lc(H) such that ΦA(id) = A.
This homomorphism is an isometric embedding and its image is the smallest
C* algebra A ⊂ Lc(H) that contains A. The first step is the next lemma.

Lemma 5.4.4. Let H be a nonzero complex Hilbert space and A ∈ Lc(H)
be a bounded complex linear operator. For a polynomial p(z) =

∑n
k=0 akz

k

with complex coefficients a0, a1, . . . , an ∈ C define

p(A) :=

n∑
k=0

akA
k ∈ Lc(H).

Then the following holds for any two polynomials p, q : C → C.

(i) (p+ q)(A) = p(A) + q(A) and (pq)(A) = p(A)q(A).

(ii) σ(p(A)) = p(σ(A)).

(iii) If A is normal then so is p(A) and

(5.4.1) ∥p(A)∥ = sup
λ∈σ(A)

|p(λ)| .

Proof. Assertion (i) follows directly from the definitions and assertion (ii)
follows from parts (iii) and (iv) of Theorem 5.2.12 (see also Exercise 5.8.3).
To prove (iii), consider the polynomial

q(z) :=
n∑
k=0

akz
k

and recall that (Ak)∗ = (A∗)k and (λA)∗ = λA∗ for all k ∈ N and all λ ∈ C
by Lemma 5.3.9. Hence

p(A)∗ =

( n∑
k=0

akA
k

)∗
=

n∑
k=0

ak(A
∗)k = q(A∗).

Now assume A is normal. Then

p(A)q(A∗) = q(A∗)p(A)

and therefore

p(A)∗p(A) = q(A∗)p(A) = p(A)q(A∗) = p(A)p(A)∗.

Thus p(A) is normal and so (5.4.1) follows from (ii) and Theorem 5.3.15.
This proves Lemma 5.4.4. □
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5.4.2. The Stone–Weierstraß Theorem. The second ingredient in the
construction of the C* algebra homomorphism from C(σ(A)) to Lc(H) is
the Stone–Weierstraß Theorem.

Theorem 5.4.5 (Stone–Weierstraß). Let M be a nonempty compact
Hausdorff space and let A ⊂ C(M) be a subalgebra of the algebra of complex
valued continuous functions on M that satisfies the following axioms.

(SW1) Each constant function is an element of A.

(SW2) A separates points, i.e. for all x, y ∈ M such that x ̸= y there
exists a function f ∈ A such that f(x) ̸= f(y).

(SW3) If f ∈ A then f ∈ A.

Then A is dense in C(M).

Proof. The proof is taken from [18]. The real subalgebra

AR := A ∩ C(M,R)

contains the real and imaginary parts of every function f ∈ A by (SW3).
Hence it contains the constant functions by (SW1) and separates points
by (SW2). We prove in six steps that AR is dense in C(M,R). Then A is
dense in C(M) = C(M,C) by (SW1). Denote the closure of AR with respect
to the supremum norm by AR ⊂ C(M,R).

Step 1. AR is a subalgebra of C(M,R) that contains the constant functions
and separates points.

This follows directly from the assumptions.

Step 2. There exists a sequence of polynomials

Pn : [−1, 1] → [0, 1]

such that

(5.4.2) lim
n→∞

Pn(s) = |s| for all s ∈ [−1, 1]

and the convergence is uniform on the interval [−1, 1].

The existence of such a sequence follows from the Weierstraß Approxi-
mation Theorem. More explicitly, one can use the ancient Babylonian
method for constructing square roots. Define a sequence of polynomi-
als pn : [0, 1] → [0, 1] with real coefficients by the recursion formula

(5.4.3) p0(t) := 0, pn(t) :=
t+ pn−1(t)

2

2
for n ∈ N.
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Then each pn is monotonically increasing on the interval [0, 1] and

pn+1(t)− pn(t) =
pn(t)

2 − pn−1(t)
2

2

=
(pn(t)− pn−1(t))(pn(t) + pn−1(t))

2

(5.4.4)

for each integer n ≥ 2 and each t ∈ [0, 1]. This implies, by induction, that

pn+1(t) ≥ pn(t)

for all n ∈ N and all t ∈ [0, 1]. Hence the sequence (pn(t))n∈N converges
for all t ∈ [0, 1] and it follows from the recursion formula (5.4.3) that the
limit r(t) := limn→∞ pn(t) ∈ [0, 1] satisfies the equation 2r(t) = t+ r(t)2 and
therefore (1− r(t))2 = 1− t. Thus

(5.4.5) lim
n→∞

(
1− pn(t)

)
=

√
1− t for all t ∈ [0, 1].

The formula (5.4.4) also shows that the polynomial pn+1 − pn : [0, 1] → [0, 1]
is nondecreasing for all n ∈ N. Hence pn+1(t)− pn(t) ≤ pn+1(1)− pn(1) and
thus pm(t)− pn(t) ≤ pm(1)− pn(1) for all m > n and all t ∈ [0, 1]. Take the
limit m→ ∞ to obtain

0 ≤ 1− pn(t)−
√
1− t ≤ 1− pn(1) for all n ∈ N and all t ∈ [0, 1].

This shows that the convergence in (5.4.5) is uniform on [0, 1]. Hence

(5.4.6) lim
n→∞

(
1− pn(1− s2)

)
=

√
s2 = |s| for all s ∈ [−1, 1]

and the convergence is uniform on the interval [−1, 1]. This proves Step 2.

Step 3. If f ∈ AR then |f | ∈ AR.

Let f ∈ AR \ {0} and ε > 0. Then the function

h :=
f

∥f∥
∈ AR

takes values in the interval [−1, 1]. Moreover, by Step 2, there exists a
polynomial P : [−1, 1] → [0, 1] with real coefficients such that

sup
|s|≤1

∣∣∣|s| − P (s)
∣∣∣ < ε

∥f∥
.

This implies∥∥∥|f | − ∥f∥P ◦ h
∥∥∥ = ∥f∥ sup

x∈M

∣∣∣|h(x)| − P (h(x))
∣∣∣ < ε.

Since ∥f∥P ◦ h ∈ AR, this proves Step 3.
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Step 4. If f, g ∈ AR then

max{f, g} ∈ AR, min{f, g} ∈ AR.

This follows from Step 3 and the equations

max{f, g} =
1

2

(
f + g + |f − g|

)
,

min{f, g} =
1

2

(
f + g − |f − g|

)
.

Step 5. If f ∈ C(M,R) and x, y ∈M then there exists an element g ∈ AR
such that

g(x) = f(x), g(y) = f(y).

This follows from the fact that AR contains the constant functions and
separates points. Namely, choose h ∈ AR with

h(x) ̸= h(y)

and define g ∈ AR by

g(z) :=
h(z)− h(y)

h(x)− h(y)
f(x) +

h(z)− h(x)

h(y)− h(x)
f(y)

for z ∈M .

Step 6. AR = C(M,R).

Let f ∈ C(M,R). By Step 5 and the axiom of choice, there exists a collection
of functions gx,y ∈ AR, one for each pair x, y ∈M , such that

gx,y(x) = f(x), gx,y(y) = f(y)

for all x, y ∈M . Let ε > 0 and, for x, y ∈M , define

Ux,y := {z ∈M | gx,y(z) > f(z)− ε} ,
Vx,y := {z ∈M | gx,y(z) < f(z) + ε} .

(5.4.7)

These sets are open and

{x, y} ⊂ Ux,y ∩ Vx,y
for all x, y ∈ M . Fix an element y ∈M . Then {Ux,y}x∈M is an open cover
ofM . SinceM is compact, there are finitely many elements x1, . . . , xm ∈M
such that

M =

m⋃
i=1

Uxi,y.

For y, z ∈M define

gy(z) := max
i=1,...,m

gxi,y(z), Vy := Vx1,y ∩ Vx2,y ∩ · · · ∩ Vxm,y.
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Then gy ∈ AR by Step 4 and Vy is an open neighborhood of y by defini-
tion. Moreover, for every z ∈M , there exists an index i ∈ {1, . . . ,m} such
that z ∈ Uxi,y and so

gy(z) ≥ gxi,y(z) > f(z)− ε

by (5.4.7). Also, if z ∈ Vy then z ∈ Vxi,y and hence gxi,y(z) < f(z) + ε for
all i ∈ {1, . . . ,m} by (5.4.7), and therefore

gy(z) < f(z) + ε.

To sum up, we have proved that

gy(z) > f(z)− ε for all z ∈M,

gy(z) < f(z) + ε for all z ∈ Vy.
(5.4.8)

Since {Vy}y∈M is an open cover of M , there exist elements y1, . . . , yn ∈ M
such that M =

⋃n
j=1 Vyj . Define the function g :M → R by

g(z) := min
j=1,...,n

gyj (z)

for z ∈M . Then g ∈ AR by Step 4 and it follows from (5.4.8) that

f(z)− ε < g(z) < f(z) + ε

for all z ∈M . This shows that for every ε > 0 there exists a g ∈ AR such
that ∥f − g∥ < ε. Thus f ∈ AR for all f ∈ C(M,R). This proves Step 6 and
Theorem 5.4.5. □

Example 5.4.6 (Hardy Space). The hypothesis (SW3) cannot be re-
moved in Theorem 5.4.5. Let M = S1 ⊂ C be the unit circle and define

H :=

{
f : S1 → C

∣∣∣∣ f is continuous and∫ 1
0 e

2πiktf(e2πit) dt = 0 for all k ∈ N

}
.

This is the Hardy space. A continuous function f : S1 → C belongs to H
if and only if its Fourier expansion has the form

f(e2πit) =

∞∑
k=0

ake
2πikt for t ∈ R,

where

ak :=

∫ 1

0
e−2πiktf(e2πit) dt

for k ∈ N0. This means that f extends to a continuous function u : D → C
on the closed unit disc D ⊂ C that is holomorphic in the interior of D.
The Hardy space H contains the constant functions and separates points
because it contains the identity map on S1. However, it is not invariant
under complex conjugation and the only real valued functions in H are the
constant ones. Thus H is not dense in C(S1).
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5.4.3. Continuous Functional Calculus.

Theorem 5.4.7 (Continuous Functional Calculus). Let H be a non-
zero complex Hilbert space and A : H → H be a bounded self-adjoint complex
linear operator. Denote its spectrum by Σ := σ(A) ⊂ R. Then there exists a
bounded complex linear operator

(5.4.9) C(Σ) → Lc(H) : f 7→ f(A)

that satisfies the following axioms.

(Product) 1(A) = 1l and (fg)(A) = f(A)g(A) for all f, g ∈ C(Σ).

(Conjugation) f(A) = f(A)∗ for all f ∈ C(Σ).

(Normalization) If f(λ) = λ for all λ ∈ Σ then f(A) = A.

(Isometry) ∥f(A)∥ = supλ∈Σ|f(λ)| =: ∥f∥ for all f ∈ C(Σ).

(Commutative) If B ∈ Lc(H) satisfies AB = BA then f(A)B = Bf(A)
for all f ∈ C(Σ).

(Image) The image A := {f(A) | f ∈ C(Σ)} of the linear operator (5.4.9)
is the smallest C* subalgebra of Lc(H) that contains the operator A.

(Eigenvector) If λ ∈ Σ and x ∈ H satisfy Ax = λx then f(A)x = f(λ)x
for all f ∈ C(Σ).

(Spectrum) f(A) is normal and σ(f(A)) = f(σ(A)) for all f ∈ C(Σ).

(Composition) If f ∈ C(Σ,R) and g ∈ C(f(Σ)) then (g◦f)(A) = g(f(A)).

The bounded complex linear operator (5.4.9) is uniquely determined by the
(Product) and (Normalization) axioms. The (Product) and (Conjugation)
axioms assert that (5.4.9) is a C* algebra homomorphism.

Proof. See page 241. □

The (Eigenvector) and (Spectrum) axioms in Theorem 5.4.7 are called
the Spectral Mapping Theorem. Theorem 5.4.7 carries over verba-
tim to normal operators, with the caveat that Σ = σ(A) is then an ar-
bitrary nonempty compact subset of the complex plane (see Theorem 5.5.14
below). One approach is to replace polynomials in one real variable by
polynomials p in z and z and show that σ(p(A)) = p(σ(A)) for every
such polynomial. In the simple case p(z) = z + z this is the identity
σ(A + A∗) =

{
λ+ λ |λ ∈ σ(A)

}
and to verify this already requires some

effort (see Exercise 5.8.2). Once the formula σ(p(A)) = p(σ(A)) has been
established for all polynomials in z and z the proof proceeds essentially as
in the self-adjoint case. Another approach via Gelfand representations is
explained in Section 5.5.
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Proof of Theorem 5.4.7. Denote the space of polynomials in one real
variable with complex coefficients by

C[t] :=

p : R → C

∣∣∣∣∣
there exists an n ∈ N and complex
numbers a0, a1, . . . , an such that
p(t) =

∑n
k=0 akt

k for all t ∈ R

 .

Thus a polynomial p ∈ C[t] is thought of as a continuous function from R
to C for the purpose of this proof. Since A is self-adjoint, its spectrum

Σ = σ(A)

is a nonempty compact subset of the real axis by Theorem 5.3.16. Define
the subalgebra P(Σ) ⊂ C(Σ) by

P(Σ) := {p|Σ | p ∈ C[t]} ⊂ C(Σ).

This subalgebra contains the constant functions, is invariant under conju-
gation, and separates points because it contains the identity map on Σ.
Hence P(Σ) is dense in C(Σ) by the Stone–Weierstraß Theorem 5.4.5. With
this understood, the proof has five steps.

Step 1. There exists a unique bounded complex linear operator

ΦA : C(Σ) → Lc(H)

such that

ΦA(p|Σ) = p(A)

for all p ∈ C[t].

The map C[t] → P(Σ) : p 7→ p|Σ need not be injective. Its kernel

I(Σ) :=
{
p ∈ C[t]

∣∣ p|Σ = 0
}

is an ideal in C[t], which is nontrivial if and only if Σ is a finite set. The
algebra homomorphism C[t] → P(Σ) : p 7→ p|Σ descends to an algebra
isomorphism C[t]/I(Σ) → P(Σ). Given a polynomial

p =

n∑
k=0

akt
k

with complex coefficients consider the bounded complex linear operator

p(A) :=

n∑
k=0

akA
k ∈ Lc(H).

This operator is normal and σ(p(A)) = p(σ(A)) by Lemma 5.4.4. Hence

(5.4.10) ∥p(A)∥ = sup
µ∈σ(p(A))

|µ| = sup
λ∈σ(A)

|p(λ)| = ∥p|Σ∥

by Theorem 5.3.15.
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Equation (5.4.10) shows that the kernel of the complex linear operator

C[t] → Lc(H) : p 7→ p(A)

agrees with the kernel I(Σ) of the surjective complex linear operator

C[t] → P(Σ) : p 7→ p|Σ.

Hence there is a unique map

ΦA : P(Σ) → Lc(H)

such that

(5.4.11) ΦA(p|Σ) = p(A) for all p ∈ C[t].

In other words, if p, q ∈ C[t] are two polynomials such that p(λ) = q(λ)
for all λ ∈ Σ then ∥p(A)− q(A)∥ = ∥p|Σ − q|Σ∥ = 0 by (5.4.10) and
so p(A) = q(A). Thus the operator p(A) ∈ Lc(H) depends only on the re-
striction of p to Σ, and this shows that there is a unique map ΦA : P(Σ) →
Lc(H) that satisfies (5.4.11). Equation (5.4.11) asserts that the following
diagram commutes

C[t] //

&&

Lc(H)

P(Σ)

ΦA

77
.

The operator ΦA : P(Σ) → Lc(H) is complex linear by definition and is
an isometric embedding by (5.4.10). Since P(Σ) is a dense subspace of
C(Σ), it extends uniquely to an isometric embedding of C(Σ) into Lc(H),
still denoted by ΦA. More precisely, fix a continuous function f : Σ → C.
By the Stone–Weierstraß Theorem 5.4.5 there exists a sequence of poly-
nomials pn ∈ C[t] such that the sequence pn|Σ converges uniformly to f .
Then pn(A) ∈ Lc(H) is a Cauchy sequence by (5.4.10). Since Lc(H) is com-
plete by Theorem 1.3.1 the sequence pn(A) converges. Denote the limit
by

ΦA(f) := lim
n→∞

pn(A).

It is independent of the choice of the sequence of polynomials pn ∈ C[t] used
to define it. Namely, let qn ∈ C[t] be another sequence of polynomials such
that qn|Σ converges uniformly to f . Then pn|Σ − qn|Σ converges uniformly
to zero, hence

lim
n→∞

∥pn(A)− qn(A)∥ = lim
n→∞

∥pn|Σ − qn|Σ∥ = 0

by (5.4.10), and so

lim
n→∞

pn(A) = lim
n→∞

qn(A).

This proves Step 1.
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Step 2. The map ΦA : C(Σ) → Lc(H) in Step 1 satisfies the (Product),
(Conjugation), (Normalization), (Isometry), (Commutative), (Image), and
(Eigenvector) axioms.

The map satisfies the (Normalization) and (Isometry) axioms by its defini-
tion in Step 1. To prove the (Product) axiom, let f, g ∈ C(Σ) and choose two
sequences of polynomials pn, qn ∈ C[t] such that pn|Σ converges uniformly
to f and qn|Σ converges uniformly to g as n tends to infinity. Then pnqn|Σ
converges uniformly to fg as n tends to infinity and hence

ΦA(fg) = lim
n→∞

ΦA(pnqn) = lim
n→∞

ΦA(pn)ΦA(qn) = ΦA(f)ΦA(g).

Likewise pn converges uniformly to f and hence

ΦA(f) = lim
n→∞

ΦA(pn) = lim
n→∞

ΦA(pn)
∗ = ΦA(f)

∗.

This proves the (Conjugation) axiom. The (Commutative) and (Eigenvec-
tor) axioms hold for all functions in P(Σ) by definition and hence the same
approximation argument as above shows that they hold for all f ∈ C(Σ).

To prove the (Image) axiom, denote by A ⊂ Lc(H) the smallest C*
subalgebra containing A. Then ΦA(P(Σ)) ⊂ A because A is a C* subalgebra
containing A. Moreover, C(Σ) is the closure of P(Σ) and so ΦA(C(Σ)) ⊂ A
because A is closed. Conversely, A ⊂ ΦA(C(Σ)) because ΦA(C(Σ)) is a C*
subalgebra of Lc(H) that contains A. This proves Step 2.

Step 3. The map ΦA in Step 1 satisfies the (Spectrum) axiom.

Fix a continuous function f : Σ → C. Then

f(A)∗f(A) = f(A)f(A) = |f |2(A) = f(A)f(A) = f(A)f(A)∗

by the (Product) and (Conjugation) axioms and hence f(A) is normal. To
prove the assertion about the spectrum we first show that

σ(f(A)) ⊂ f(Σ).

To see this, let µ ∈ C \ f(Σ) and define the function g : Σ → C by

g(λ) :=
1

µ− f(λ)

for λ ∈ Σ. This function is continuous and satisfies

g(µ− f) = (µ− f)g = 1.

Hence

g(A)(µ1l− f(A)) = (µ1l− f(A))g(A) = 1l

by the (Product) axiom. Thus the operator µ1l− f(A) is bijective and this
shows that µ /∈ σ(f(A)).
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To prove the converse inclusion f(Σ) ⊂ σ(f(A)), fix a spectral value
λ ∈ Σ = σ(A) and define µ := f(λ). We must prove that µ ∈ σ(f(A)).
Suppose, by contradiction, that µ /∈ σ(f(A)). Then the operator µ1l−f(A) is
bijective. Choose a sequence pn ∈ C[t] such that the sequence pn|Σ converges
uniformly to f . Then the sequence of operators pn(λ)1l − pn(A) converges
to µ1l − f(A) in the norm topology. Hence the operator pn(λ)1l − pn(A) is
bijective for n sufficiently large by the Open Mapping Theorem 2.2.1 and
Corollary 1.5.7. Hence pn(λ) /∈ σ(pn(A)) for large n, contradicting part (ii)
of Lemma 5.4.4. This proves Step 3.

Step 4. The map ΦA in Step 1 satisfies the (Composition) axiom.

Let f ∈ C(Σ,R) and let g ∈ C(f(Σ)). Assume first that

g = q|f(Σ)

for a polynomial q : R → C. Choose a sequence of polynomials pn : R → R
with real coefficients such that pn|Σ converges uniformly to f . Then q ◦pn|Σ
converges uniformly to q ◦ f and

(q ◦ pn|Σ)(A) = q(pn(A))

for all n ∈ N. Hence
(q ◦ f)(A) = lim

n→∞
(q ◦ pn)(A) = lim

n→∞
q(pn(A)) = q(f(A)).

Here the last step follows from the definition of q(B) for B ∈ Lc(H) and
the fact that pn(A) converges to f(A) in the norm topology as n tends to
infinity.

Now let g : f(Σ) → C be any continuous function and choose a sequence
of polynomials qn : R → C such that the sequence qn|f(Σ) converges uni-
formly to g as n tends to infinity. Then qn ◦ f converges uniformly to g ◦ f
as n tends to infinity and

(qn ◦ f)(A) = qn(f(A))

for all n ∈ N by what we have proved above. Hence

(g ◦ f)(A) = lim
n→∞

(qn ◦ f)(A) = lim
n→∞

qn(f(A)) = g(f(A)).

This proves Step 4.

Step 5. The map ΦA in Step 1 is uniquely determined by the (Product) and
(Normalization) axioms.

Let Ψ : C(Σ) → Lc(H) be any bounded complex linear operator that sat-
isfies the (Product) and (Normalization) axioms. Then Ψ(f) = ΦA(f) for
all f ∈ P(Σ). Since P(Σ) is dense in C(Σ) it follows from the continuity
of Ψ and ΦA that Ψ(f) = ΦA(f) for all f ∈ C(Σ). This proves Step 5 and
Theorem 5.4.7. □
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Definition 5.4.8 (Positive Semidefinite Operator). Let H be a
complex Hilbert space. A self-adjoint operator A = A∗ ∈ Lc(H) is called
positive semidefinite if ⟨x,Ax⟩ ≥ 0 for all x ∈ H. The notation A ≥ 0 or
A = A∗ ≥ 0 signifies that A is a positive semidefinite self-adjoint operator.

Corollary 5.4.9 (Square Root). Let H be a complex Hilbert space,
let A = A∗ ∈ Lc(H) be a self-adjoint operator, and let f ∈ C(σ(A)). Then
the following holds.

(i) f(A) = f(A)∗ if and only if f(σ(A)) ⊂ R.

(ii) Assume f(σ(A)) ⊂ R. Then f(A) ≥ 0 if and only if f ≥ 0.

(iii) Assume A ≥ 0. Then there exists a unique positive semidefinite self-
adjoint operator B = B∗ ∈ Lc(H) such that B2 = A.

Proof. Assume without loss of generality that H ̸= {0}.
We prove part (i). Since f(A) − f(A)∗ = (f − f)(A) = 2i(Imf)(A) by

the (Conjugation) axiom, we have ∥f(A)−f(A)∗∥ = 2 supλ∈σ(A)|Imf(λ)| by
the (Isometry) axiom. This proves (i).

We prove part (ii). Thus assume f(σ(A)) ⊂ R. Then it follows from
Theorem 5.3.16 and Theorem 5.4.7 that inf∥x∥=1⟨x, f(A)x⟩ = infλ∈σ(A) f(λ).
This proves (ii).

We prove existence in (iii). Since A is positive semidefinite we have

σ(A) ⊂ [0,∞) by Theorem 5.3.16. Define f : σ(A) → [0,∞) by f(λ) :=
√
λ

for λ ∈ σ(A). Then B := f(A) ∈ Lc(H) is self-adjoint by part (i), is
positive semidefinite by part (ii), and B2 = f(A)2 = f2(A) = id(A) = A by
the (Product) and (Normalization) axioms. This proves existence.

We prove uniqueness in (iii). Assume that C ∈ Lc(H) is any positive
semidefinite self-adjoint operator such that C2 = A. Then CA = C3 = AC
and hence it follows from the (Commutative) axiom that CB = BC. This
implies (B + C)(B − C) = B2 − C2 = 0 and hence

0 = ⟨Bx− Cx, (B + C)(Bx− Cx)⟩
= ⟨Bx− Cx,B(Bx− Cx)⟩+ ⟨Bx− Cx,C(Bx− Cx)⟩

for all x ∈ H. Since both summands on the right are nonnegative, we have

⟨Bx− Cx,B(Bx− Cx)⟩ = ⟨Bx− Cx,C(Bx− Cx)⟩ = 0

for all x ∈ H. Hence ⟨x, (B − C)3x⟩ = 0 for all x ∈ H. Since (B − C)3 is
self-adjoint, it follows from Theorem 5.3.16 that

0 = ∥(B − C)3∥ = ∥B − C∥3.

Here the last equation follows from part (i) of Theorem 5.3.15. Thus C = B
and this proves Corollary 5.4.9. □
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5.5. Gelfand Spectrum and Normal Operators

This section extends the continuous functional calculus for self-adjoint op-
erators, developed in Section 5.4, to normal operators, following the elegant
approach of Schwartz [78, p 155–161] and Yosida [88, p 294–309].

5.5.1. The Gelfand Representation. Recall the definition of a complex
commutative unital Banach algebra as a complex Banach space A, equipped
with an associative and commutative bilinear map A×A → A : (a, b) 7→ ab
that satisfies the inequality

∥ab∥ ≤ ∥a∥∥b∥

for all a, b ∈ A and a nonzero element 1l ∈ A that satisfies

1la = a1l = a

for all a ∈ A (Definition 1.5.2).

Definition 5.5.1 (Ideal). Let A be a complex commutative unital Ba-
nach algebra such that

∥1l∥ = 1.

An ideal in A is a complex linear subspace J ⊂ A such that

a ∈ A, b ∈ J =⇒ ab ∈ J .

An ideal J ⊂ A is called nontrivial if J ̸= A. It is called maximal if it is
nontrivial and if it is not contained in any other nontrivial ideal. The set

Spec(A) := {J ⊂ A |J is a maximal ideal}

is called the Gelfand spectrum of A. The Jacobson radical of A is the
ideal

R(A) :=
⋂

J∈Spec(A)

J .

The Banach algebra A is called semisimple if R = {0}. The spectrum of
an element a ∈ A is the set

σ(a) := {λ ∈ C |λ1l− a is not invertible} .

IfM is a nonempty compact Hausdorff space, then the space A := C(M)
of continuous complex valued functions on M is a complex commutative
unital Banach algebra, the spectrum of an element f ∈ C(M) is its image
σ(f) = f(M), every maximal ideal has the form J = {f ∈ C(M) | f(p) = 0}
for some element p ∈M , and so the set Spec(A) can be naturally identified
with M . The only maximal ideal in A := C is J = {0}. In these examples
the quotient algebra A/J is isomorphic to C for every maximal ideal J ⊂ A.
The next theorem shows that this continues to hold in general.
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Theorem 5.5.2 (Maximal Ideals). Let A be a complex commutative
unital Banach algebra such that ∥1l∥ = 1. Then the following holds.

(i) Every nontrivial ideal in A is contained in a maximal ideal.

(ii) An element a ∈ A is invertible if and only if it is not contained in any
maximal ideal.

(iii) Every maximal ideal is a closed linear subspace of A.

(iv) σ(a) ̸= ∅ for all a ∈ A.

(v) If J ⊂ A is a maximal ideal then A/J is isomorphic to C and

(5.5.1) inf
a∈J

∥λ1l− a∥ = |λ|

for all λ ∈ C.

Proof. We prove (i). The set

J := {J ⊂ A |J is an ideal and J ⊊ A}

of nontrivial ideals is nonempty because {0} ∈ J and is partially ordered
by inclusion. If

C ⊂ J

is a nonempty chain, then the set

J :=
⋃
I∈C

I ⊂ A

is an ideal, and J ̸= A because otherwise there would exist an element I ∈ C
containing 1l, in contradiction to the fact that I ⊊ A. Thus J ∈ J and so
every nonempty chain in J has a supremum. Hence part (i) follows from
the Lemma of Zorn.

We prove (ii). Let a0 ∈ A and define

J0 := {aa0 | a ∈ A} .

Then J0 is an ideal and every ideal J ⊂ A that contains a0 also contains J0.
If a0 is invertible then J0 = A and so a0 is not contained in any maximal
ideal. If a0 is not invertible, then J0 is a nontrivial ideal and hence there
exists a maximal ideal J containing J0 by part (i). This proves part (ii).

We prove (iii). The group G ⊂ A of invertible elements is an open subset
of A by Theorem 1.5.5. Let J ⊂ A be a maximal ideal and denote by J
the closure of J . Then J ∩ G = ∅ by part (ii) and hence

J ∩ G = ∅

because G is open. Hence J is a nontrivial ideal and so J = J because J
is maximal. This proves part (iii).
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We prove (iv). Fix an element a ∈ A and assume, by contradiction,
that σ(a) = ∅. In particular, a is invertible and, by Corollary 2.3.5, there
exists a bounded complex linear functional Λ : A → C such that Λ(a−1) = 1.
Since λ1l− a is invertible for all λ ∈ C, the same argument as in the proof of
Lemma 5.2.6 shows that the map C → A : λ 7→ (λ1l− a)−1 is holomorphic.
Moreover, by part (iii) of Theorem 1.5.5,

∥(λ1l− a)−1∥ ≤ 1

|λ| − ∥a∥
for all λ ∈ C with |λ| > ∥a∥. Hence the function

C → C : λ 7→ f(λ) := Λ((λ1l− a)−1)

is holomorphic and bounded. Thus it is constant by Liouville’s theorem,
and this is impossible because lim|λ|→∞|f(λ)| = 0 and f(0) = 1. This con-
tradiction proves part (iv).

We prove (v). Let J ⊂ A be a maximal ideal and consider the quotient
space B := A/J with the norm

∥[a]J ∥ := inf
b∈J

∥a+ b∥ for [a]J := a+ J ∈ A/J .

By part (iii) and Theorem 1.2.14 this is a Banach space and, since J is
an ideal, the product in A descends to the quotient. It satisfies the in-
equalities ∥[ab]J ∥ ≤ ∥[a]J ∥∥[bJ ]∥ for all a, b ∈ A and ∥[1l]J ∥ ≤ ∥1l∥ = 1 by
definition. Moreover ∥[1l]J ∥ = 1, because otherwise there would exist an
element a ∈ J such that ∥1l− a∥ < 1, so a would be invertible by Theo-
rem 1.5.5, in contradiction to part (ii). This shows that B is a complex
commutative unital Banach algebra whose unit [1l]J has norm one. Thus

|λ| = ∥[λ1l]J ∥ = inf
a∈J

∥λ1l− a∥

for all λ ∈ C and this proves (5.5.1).

Next we observe that every nonzero element [a]J ∈ B = A/J is invert-
ible in B. To see this, let a ∈ A \ J . Then the set

Ja := {ab+ c | b ∈ A, c ∈ J }

is an ideal such that J ⊊ Ja and so Ja = A. Thus there exists a b ∈ A such
that ab− 1l ∈ J . Hence [a]J is invertible in B and [a]−1

J = [b]J .

Now the Gelfand–Mazur Theorem asserts that every complex com-
mutative unital Banach algebra B in which every nonzero element is in-
vertible and whose unit has norm one is isometrically isomorphic to C. To
prove it, fix an element b ∈ B. Then σ(b) ̸= ∅ by part (iv). Choose an
element λ ∈ σ(b). Then λ1l − b is not invertible and so b = λ1l. Hence the
map C → B : λ 7→ λ1l is an isometric isomorphism of Banach algebras. This
proves the Gelfand–Mazur Theorem, part (v), and Theorem 5.5.2. □
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Definition 5.5.3 (Gelfand Representation). Let A be a complex
commutative unital Banach algebra such that ∥1l∥ = 1. By Theorem 5.5.2
there exists a unique function

(5.5.2) A× Spec(A) → C : (a,J ) 7→ fa(J )

such that

(5.5.3) fa(J )1l− a ∈ J for all a ∈ A and all J ∈ Spec(A).

The map a 7→ fa is called the Gelfand representation or the Gelfand
transform. It assigns to each element a ∈ A a function fa : Spec(A) → C.
The Gelfand topology on Spec(A) is the weakest topology such that fa is
continuous for every element a ∈ A.

To understand the Gelfand topology on Spec(A) it will be convenient
to change the point of view by fixing a maximal ideal J ∈ Spec(A) and
considering the function A → C : a 7→ fa(J ). Lemma 5.5.6 below shows
that this construction gives rise to a one-to-one correspondence between
maximal ideals and unital algebra homomorphisms Λ : A → C.

Definition 5.5.4. Let A be a complex commutative unital Banach al-
gebra such that ∥1l∥ = 1. A map Λ : A → C is called a unital algebra
homomorphism if it satisfies the conditions

Λ(a+ b) = Λ(a) + Λ(b), Λ(ab) = Λ(a)Λ(b), Λ(z1l) = z

for all a, b ∈ A and all z ∈ C. Define

Â :=

{
Λ : A → C

∣∣∣∣ Λ is a unital
algebra homomorphism

}
.

The next two lemmas show that every unital algebra homomorphism is a

bounded linear functional of norm one. Hence Â is a subset of the unit
sphere in the complex dual space A∗ = Lc(A,C).

Lemma 5.5.5. Let A be a complex commutative unital Banach algebra
with ∥1l∥ = 1, let J ∈ Spec(A), and define the map ΛJ : A → C by

(5.5.4) ΛJ (a) := fa(J ) for a ∈ A.

Then the following holds.

(i) ΛJ is a unital algebra homomorphism.

(ii) ker(ΛJ ) = J .

(iii) ΛJ is a bounded linear functional of norm one, i.e.

(5.5.5) |ΛJ (a)| = |fa(J )| ≤ ∥a∥

for all a ∈ A and equality holds for a = 1l.
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Proof. We prove (i). Let a, b ∈ A and define λ := fa(J ) and µ := fb(J ).
Then λ1l− a ∈ J and µ1l− b ∈ J and hence

(λ+ µ)1l− (a+ b) = (λ1l− a) + (µ1l− b) ∈ J

and

λµ1l− ab = (λ1l− a)b+ λ(µ1l− b) ∈ J .
Thus fa+b(J ) = λ+ µ and fab(J ) = λµ. Since f1l(J ) = 1, this proves (i).

We prove (ii). Let a ∈ A. Then we have ΛJ (a) = fa(J ) = 0 if and only
if a ∈ J , by definition of the map fa in (5.5.4). Hence kerΛJ = J and this
proves (ii).

We prove (iii). Observe that

|ΛJ (a)| = |fa(J )| = inf
b∈J

∥fa(J )1l− b∥ = inf
b∈J

∥a− b∥ ≤ ∥a∥

for all a ∈ A and all J ∈ Spec(A). Here the second equality follows
from (5.5.1) and the third from the fact that fa(J )1l− a ∈ J . This proves
equation (5.5.5) and thus ∥ΛJ ∥ ≤ 1. Since ΛJ (1l) = 1, we have ∥ΛJ ∥ = 1.
This proves (iii) and Lemma 5.5.5. □

Lemma 5.5.6. Let A be a complex commutative unital Banach algebra
with ∥1l∥ = 1. Then Spec(A) is a compact Hausdorff space with the Gelfand

topology, Â is a weak* compact subset of the dual space A∗, and the map

(5.5.6) Spec(A) → Â : J 7→ ΛJ

defined by (5.5.4) is a homeomorphism.

Proof. We prove that the map (5.5.6) is bijective. Let Λ ∈ Â and de-
fine J := ker(Λ). Then J is a linear subspace of A. Moreover, if a ∈ A
and b ∈ J then we have Λ(ab) = Λ(a)Λ(b) = 0 and so ab ∈ J . Thus J is an
ideal of codimension one and hence is a maximal ideal. Now let a ∈ A and
define λ := fa(J ). Then λ1l− a ∈ J = ker(Λ) and hence

Λ(a) = Λ(λ1l) = λ · Λ(1l) = λ = fa(J ).

Thus Λ = ΛJ and so the map (5.5.6) is surjective. To prove that it is
injective, fix two distinct maximal ideals I,J ∈ Spec(A) and choose an el-
ement a ∈ I \ J . Then ΛI(a) = 0 and ΛJ (a) ̸= 0, and so ΛI ̸= ΛJ .

Since the map (5.5.6) is bijective, it follows from part (iii) of Lemma 5.5.5

that Â is contained in the unit sphere of the complex dual space A∗. More-

over, Â is a weak* closed subset of A∗ by definition of a unital algebra ho-

momorphism. Hence Â is a weak* compact subset of A∗ by Theorem 3.2.5.
Now the Gelfand topology on Spec(A) is, by definition, induced by the

weak* topology on A∗ under the inclusion Spec(A) ∼= Â ⊂ A∗. Thus the
map (5.5.6) is a homeomorphism and this proves Lemma 5.5.6. □
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Denote by C(Spec(A)) the space of complex valued continuous functions
on the compact Hausdorff space Spec(A) equipped with the Gelfand topol-
ogy of Definition 5.5.3. Then C(Spec(A)) is a unital Banach algebra with
the supremum norm and the unit (the constant function one) has norm one.
The next theorem shows that the Gelfand representation

(5.5.7) A → C(Spec(A)) : a 7→ fa

defined by (5.5.3) is a unital algebra homomorphism.

Theorem 5.5.7 (Gelfand). Let A be a complex commutative unital
Banach algebra such that ∥1l∥ = 1. Then the following holds.

(i) The Gelfand representation (5.5.7) is a unital algebra homomorphism
and a bounded complex linear operator of norm one.

(ii) Every a ∈ A satisfies

(5.5.8) σ(a) = fa(Spec(A))

and

(5.5.9) lim
n→∞

∥an∥1/n = inf
n∈N

∥an∥1/n = ∥fa∥.

(iii) The kernel of the Gelfand representation (5.5.7) is the Jacobson radical

(5.5.10) R(A) =
⋂

J∈Spec(A)

J = {a ∈ A | fa = 0} .

(iv) The image of the Gelfand representation (5.5.7) is a subalgebra of the
space C(Spec(A)) that separates points and contains the constant functions.

(v) The Gelfand representation (5.5.7) is an isometric embedding if and
only if

∥a2∥ = ∥a∥2

for all a ∈ A.

Proof. We prove part (i). That (5.5.7) is a unital algebra homomorphism
follows from part (i) of Lemma 5.5.5 and that it is a bounded linear operator
of norm one follows from part (iii) of Lemma 5.5.5. This proves (i).

We prove part (ii). Fix an element a ∈ A and a complex number λ.
If λ ∈ σ(a) then λ1l− a is not invertible, hence part (ii) of Theorem 5.5.2
asserts that there exists a maximal ideal J such that λ1l− a ∈ J , and
hence fa(J ) = λ. Conversely, suppose that λ = fa(J ) for some maximal
ideal J . Then λ1l− a ∈ J by definition of fa, hence λ1l− a is not invertible
by part (ii) of Theorem 5.5.2, and hence λ ∈ σ(a). This proves (5.5.8).
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To prove (5.5.9), recall that

r := lim
n→∞

∥an∥1/n = inf
n∈N

∥an∥1/n

by Theorem 1.5.5. Now the proof of Theorem 5.2.7 carries over verbatim to
complex unital Banach algebras with ∥1l∥ = 1. Hence, by (5.5.8),

r = sup
λ∈σ(a)

|λ| = sup
J∈Spec(A)

|fa(J )| = ∥fa∥

and this proves (5.5.9) and part (ii).

Part (iii) follows from the fact that an element a ∈ A satisfies fa = 0 if
and only if a ∈ J for all J ∈ Spec(A).

Part (iv) follows from the fact that f1l(J ) = 1 for all J ∈ Spec(A) and

that the map Spec(A) → Â : J 7→ ΛJ in Lemma 5.5.6 is injective. Namely,
if I,J ∈ Spec(A) are two distinct maximal ideals then ΛI ̸= ΛJ , and hence
there exists an element a ∈ A such that

fa(I) = ΛI(a) ̸= ΛJ (a) = fa(J ).

This proves (iv).

We prove part (v). If the Gelfand representation

A → C(Spec(A)) : a 7→ fa

is an isometric embedding then

∥a∥ = ∥fa∥ = inf
n∈N

∥an∥1/n for all a ∈ A

by (5.5.9) and hence

∥an∥ = ∥a∥n for all a ∈ A and all n ∈ N.

Conversely, suppose that

∥a2∥ = ∥a∥2 for all a ∈ A.

Then one shows as in the proof of Theorem 5.3.15 that

∥an∥ = ∥a∥n

for all a ∈ A and all n ∈ N. Hence ∥fa∥ = ∥a∥ for all a ∈ A and so the
Gelfand representation is an isometric embedding. This proves part (v) and
Theorem 5.5.7. □

In view of Theorem 5.5.7 it is a natural question to ask under which
conditions the Gelfand representation (5.5.7) is an isometric isomorphism of
commutative unital Banach algebras. For C* algebras (Definition 5.4.1) the
next theorem gives an affirmative answer to this question.
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Theorem 5.5.8 (Gelfand). Let A be a commutative C* algebra, so that

(5.5.11) ∥a∗a∥ = ∥a∥2 for all a ∈ A.

Then ∥1l∥ = 1 and the Gelfand representation A → C(Spec(A)) : a 7→ fa
in (5.5.7) is an isometric C* algebra isomorphism. In particular,

fa∗ = fa for all a ∈ A.

Proof. See page 254. □

Lemma 5.5.9. Let A be a commutative C* algebra. Then the following
are equivalent.

(i) Every maximal ideal is invariant under the involution A → A : a 7→ a∗.

(ii) If a ∈ A satisfies a = a∗ then fa(J ) ∈ R for all J ∈ Spec(A).

(iii) fa∗ = fa for all a ∈ A.

Proof. We prove that (i) implies (ii). Fix an element a = a∗ ∈ A and a
maximal ideal J ∈ Spec(A) and define

λ := fa(J ).

Then λ1l− a ∈ J and hence

λ1l− a = λ1l− a∗ = (λ1l− a)∗ ∈ J

by part (i). This implies λ = λ ∈ R. Thus (ii) holds.
We prove that (ii) implies (iii). Let a ∈ A and define b, c ∈ A by

b :=
1

2
(a+ a∗), c :=

1

2i
(a− a∗).

Then b = b∗ and c = c∗ and a = b+ ic and a∗ = b− ic. Hence fb and fc are
real valued functions on Spec(A) by part (ii) and therefore

fa∗ = fb − ifc = fb + ifc = fa.

Thus (iii) holds.

We prove that (iii) implies (i). Fix a maximal ideal J ⊂ A and define
the function Λ : A → C by

Λ(a) := fa(J )

for a ∈ A. By part (iii) it satisfies Λ(a∗) = Λ(a) for all a ∈ A. Since

ker(Λ) = J

this shows that J is invariant under the involution a 7→ a∗. Thus (i) holds.
This proves Lemma 5.5.9. □



254 5. Spectral Theory

Proof of Theorem 5.5.8. Let A be a commutative C* algebra. Following
Schwartz [78, p 159-161], we prove in four steps that the Gelfand represen-
tation is an isometric C* algebra isomorphism.

Step 1. ∥fa∥ = ∥a∥ for all a ∈ A. In particular, ∥1l∥ = 1.

By (5.5.11), every a ∈ A satisfies∥∥a2∥∥2 = ∥∥(a2)∗a2∥∥ = ∥(a∗a)∗(a∗a)∥ = ∥a∗a∥2 = ∥a∥4

and so ∥a2∥ = ∥a∥2. Hence Step 1 follows from part (v) of Theorem 5.5.7.

Step 2. feia(J ) = eifa(J ) for all a ∈ A and all J ∈ Spec(A).

This follows directly from the fact that the Gelfand representation is a con-
tinuous homomorphism of complex Banach algebras.

Step 3. If a ∈ A satisfies a = a∗ then fa(J ) ∈ R for all J ∈ Spec(A).

Let a ∈ A such that a = a∗. Then

(eia)∗eia = e−ia∗eia = ei(a−a
∗) = 1l

and hence
∥eia∥2 = ∥(eia)∗eia∥ = 1

by (5.5.11) and Step 1. Thus

|feia(J )| ≤ ∥eia∥ = 1

and, likewise, |fe−ia(J )| ≤ 1 for all J ∈ Spec(A). Hence

1 = |f1l(J )| = |feia(J )fe−ia(J )| = |feia(J )| |fe−ia(J )| ≤ 1

and therefore, by Step 2,

|eifa(J )| = |feia(J )| = 1 for all J ∈ Spec(A).

Hence fa(J ) ∈ R for all J ∈ Spec(A). This proves Step 3.

Step 4. The Gelfand representation is an isometric C* algebra isomor-
phism.

By Step 1 and part (v) of Theorem 5.5.7, the Gelfand representation is
an isometric embedding and, by Step 3 and Lemma 5.5.9, it is a C* alge-
bra homomorphism. We must prove that it is surjective. To see this, de-
fine FA := {fa | a ∈ A}. This is a closed subspace of C(Spec(A)) by Step 1,
it is a subalgebra of C(Spec(A)) that contains the constant functions and
separates points by part (iv) of Theorem 5.5.7, and it is invariant under
complex conjugation by Step 3 and Lemma 5.5.9. Hence the set FA satis-
fies the requirements of the Stone–Weierstraß Theorem 5.4.5 and therefore
is dense in C(Spec(A)). Thus FA = C(Spec(A)). This proves Step 4 and
Theorem 5.5.8. □
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5.5.2. C* Algebras of Normal Operators. The construction of the con-
tinuous functional calculus for normal operators is based on several lem-
mas. Assume throughout that H is a nonzero complex Hilbert space and
that A0 ∈ Lc(H) is a normal operator. Let A0 ⊂ Lc(H) be the smallest
(unital) C* subalgebra that contains A0.

Lemma 5.5.10. A0 is commutative and every operator A ∈ A0 is normal.
Moreover, if B ∈ Lc(H) satisfies BA0 = A0B and BA∗

0 = A∗
0B, then B

commutes with every element of A0.

Proof. Define

B := {B ∈ Lc(H) |A0B = BA0 and BA∗
0 = A∗

0B} .
Then B is a closed subspace of Lc(H) that contains the identity and is in-
variant under composition. Moreover, A0 ∈ B because A0 and A∗

0 commute,
and B ∈ B implies B∗ ∈ B. Hence B is a C* subalgebra of Lc(H) that
contains A0. Hence the set

C := {C ∈ Lc(H) |BC = CB for all B ∈ B}
is also a C* subalgebra of Lc(H) that contains A0. Moreover, since A0

and A∗
0 are elements of B, we have C ⊂ B. Hence C is commutative, and

therefore every element C ∈ C is normal. Since C is a C* subalgebra of Lc(H)
and A0 ∈ C, we have A0 ⊂ C and this proves Lemma 5.5.10. □

Lemma 5.5.11. Let Spec(A0) be the set of maximal ideals in A0. Then,
for each A ∈ A0, there is a unique function fA : Spec(A0) → C such that

(5.5.12) fA(J )1l−A ∈ J
for all J ∈ Spec(A0). Equip Spec(A0) with the weakest topology such that fA
is continuous for every A ∈ A0. Then Spec(A0) is a compact Hausdorff
space, the Gelfand representation

(5.5.13) A0 → C(Spec(A0)) : A 7→ fA

is an isometric C* algebra isomorphism and

(5.5.14) fA(Spec(A0)) = σ(A) for all A ∈ A0.

Proof. Existence and uniqueness of the fA follows from Theorem 5.5.2,
the topology on Spec(A0) is compact and Hausdorff by Lemma 5.5.6, the
map (5.5.13) is a unital algebra homomorphism by part (i) of Theorem 5.5.7,
and (5.5.14) holds by part (ii) of Theorem 5.5.7. By Theorem 5.3.16, we
have

∥A∗A∥ = sup
∥x∥=1

⟨x,A∗Ax⟩ = sup
∥x∥=1

∥Ax∥2 = ∥A∥2

for all A ∈ A0. Hence the Gelfand representation (5.5.13) is an isometric C*
algebra isomorphism by Theorem 5.5.8. This proves Lemma 5.5.11. □
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Lemma 5.5.12. Let A ∈ A0. Then

(5.5.15) A = A∗ ⇐⇒ fA(J ) ∈ R for all J ∈ Spec(A0)

and

(5.5.16) A = A∗ ≥ 0 ⇐⇒ fA(J ) ≥ 0 for all J ∈ Spec(A0).

Proof. If A ∈ A0 is self-adjoint then

fA(J ) = fA∗(J) = fA(J )

by Lemma 5.5.11 and so fA(J ) ∈ R for all J ∈ Spec(A0). Alternatively, it
follows from (5.5.14) and Theorem 5.3.16 that fA(Spec(A0)) = σ(A) ⊂ R.

Conversely, let A ∈ A0 such that fA(Spec(A0)) ⊂ R. Then

fA−A∗(J ) = fA(J )− fA∗(J ) = fA(J )− fA(J ) = 0

for all J ∈ Spec(A0) and so

∥A−A∗∥ = ∥fA−A∗∥ = 0

by Lemma 5.5.11. Hence A = A∗ and this proves (5.5.15).

To prove (5.5.16), fix an element A ∈ A0. If A is self-adjoint and positive
semidefinite then

fA(Spec(A0)) = σ(A) ⊂ [0,∞)

by (5.5.14) and Theorem 5.3.16. Conversely, assume fA(Spec(A0)) ⊂ [0,∞).
Then A is self-adjoint by (5.5.15) and σ(A) ⊂ [0,∞) by (5.5.14). Hence A
is positive semidefinite by Theorem 5.3.16. This proves Lemma 5.5.12. □

Lemma 5.5.13. The function fA0 : Spec(A0) → σ(A0) is a homeomor-
phism.

Proof. By (5.5.14) we have fA0(Spec(A0)) = σ(A0). We prove that fA0

is injective. Assume, by contradiction, that there exist two distinct maximal
ideals I,J ∈ Spec(A0) such that fA0(I) = fA0(J ) =: λ. Then λ ∈ σ(A0)
and λ1l − A0 ∈ I ∩ J . Define A1 := {z1l +A | z ∈ C, A ∈ I ∩ J } . This set
is a proper C* subalgebra of A0 that contains A0, in contradiction to the
definition of A0. This contradiction shows that the map

fA0 : Spec(A0) → σ(A0)

is bijective. Since fA0 is continuous, its domain is compact, and its target
space is Hausdorff, it is a homeomorphism. This proves Lemma 5.5.13. □
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5.5.3. Functional Calculus for Normal Operators. With these prepa-
rations in place we are ready to establish the continuous functional calculus
for normal operators on Hilbert spaces.

Theorem 5.5.14 (Continuous Functional Calculus).

Let H be a nonzero complex Hilbert space, let

A ∈ Lc(H)

be a bounded normal operator, and let

Σ := σ(A) ⊂ C

be the spectrum of A. Then there exists a bounded complex linear operator

(5.5.17) C(Σ) → Lc(H) : f 7→ f(A)

that satisfies the following axioms.

(Product) 1(A) = 1l and (fg)(A) = f(A)g(A) for all f, g ∈ C(Σ).

(Conjugation) f(A) = f(A)∗ for all f ∈ C(Σ).

(Positive) Let f ∈ C(Σ,R). Then f ≥ 0 if and only if f(A) = f(A)∗ ≥ 0.

(Normalization) If f(λ) = λ for all λ ∈ Σ then f(A) = A.

(Isometry) ∥f(A)∥ = supλ∈Σ|f(λ)| =: ∥f∥ for all f ∈ C(Σ).

(Commutative) If B ∈ Lc(H) satisfies AB = BA and A∗B = BA∗ then

f(A)B = Bf(A) for all f ∈ C(Σ).

(Image) The image

A := {f(A) | f ∈ C(Σ)}
of the linear operator (5.5.17) is the smallest C* subalgebra of Lc(H) that
contains the operator A.

(Eigenvector) If λ ∈ Σ and x ∈ H satisfy Ax = λx then

f(A)x = f(λ)x for all f ∈ C(Σ).

(Spectrum) For every f ∈ C(Σ) the operator f(A) is normal and

σ(f(A)) = f(σ(A)).

(Composition) If f ∈ C(Σ) and g ∈ C(f(Σ)) then (g ◦ f)(A) = g(f(A)).

The bounded complex linear operator (5.5.17) is uniquely determined by the
(Product), (Conjugation), and (Normalization) axioms. The (Product) and
(Conjugation) axioms assert that (5.5.17) is a C* algebra homomorphism.
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Proof. Fix a normal operator A0 ∈ Lc(H) and denote by

A0 ⊂ Lc(H)

the smallest C* subalgebra that contains A0, as in Subsection 5.5.2. Denote
the spectrum of the operator A0 by

Σ0 := σ(A0) ⊂ C.

Then the Gelfand representation

(5.5.18) A0 → C(Spec(A0)) : A 7→ fA,

introduced in Definition 5.5.3, is an isometric C* algebra isomorphism by
Lemma 5.5.11. Moreover, the map

fA0 : Spec(A0) → Σ0

is a homeomorphism by Lemma 5.5.13. These two observations give rise to
an isometric C* algebra isomorphism

(5.5.19) C(Σ0) → A0 : f 7→ f(A0),

defined as the composition of the isometric C* algebra isomorphism

C(Σ0) → C(Spec(A0)) : f 7→ f ◦ fA0

with the inverse of the isomorphism (5.5.18). Thus

(5.5.20) A = f(A0) ⇐⇒ fA = f ◦ fA0

for all A ∈ A0 and all f ∈ C(Σ0). The resulting C* algebra isomor-
phism (5.5.19) satisfies the (Positive) axiom by Lemma 5.5.12, the (Normal-
ization) and (Image) axioms by definition, the (Isometry) axiom because
the Gelfand representation (5.5.18) is an isometry, the (Commutative) ax-
iom by Lemma 5.5.10, and the (Spectrum) axiom by equation (5.5.14) in
Lemma 5.5.11.

We prove that the C* algebra homomorphism (5.5.19) is uniquely de-
termined by continuity and the (Normalization) axiom id(A0) = A0. To see
this, let Ψ : C(Σ0) → Lc(H) be any continuous C* algebra homomorphism
such that Ψ(id) = A0 and let

P(Σ0) ⊂ C(Σ0)

be the space of all functions p : Σ0 → C that can be expressed as polyno-
mials in z and z. Then P(Σ0) is a subalgebra of C(Σ0) that contains the
constant functions, separates points because it contains the identity map,
and is invariant under complex conjugation. Hence P(Σ0) is a dense sub-
space of C(Σ0) by Theorem 5.4.5. Moreover, Ψ(p) = p(A) for all p ∈ P(Σ0)
by linearity and the (Product), (Conjugation), and (Normalization) axioms.
Since the map C(Σ0) → Lc(H) : f 7→ Ψ(f)− f(A) is continuous and P(Σ0)
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is dense in C(Σ0), it follows that Ψ(f) = f(A) for all f ∈ C(Σ0). This proves
uniqueness of the continuous functional calculus for normal operators.

We prove the (Eigenvector) axiom. Fix an eigenvalue

λ ∈ Pσ(A0)

and choose a nonzero vector x ∈ H such that

A0x = λx.

Then ∥λx−A∗
0x∥ = ∥λx−A0x∥ = 0 by Lemma 5.3.14 and hence

A∗
0x = λx.

This implies

p(A0)x = p(λ)x

for every polynomial p ∈ P(Σ0) in z and z. Now let f ∈ C(Σ0) and choose
a sequence pn ∈ P(Σ0) that converges uniformly to f . Then

lim
n→∞

∥f(A0)− pn(A0)∥ = lim
n→∞

∥f − pn∥ = 0

by the (Isometry) axiom, and hence

f(A0)x = lim
n→∞

pn(A0)x = lim
n→∞

pn(λ)x = f(λ)x.

This proves the (Eigenvector) axiom.

We prove the (Composition) axiom. Fix a continuous function

f : Σ0 → C.

Then f(A0) ∈ Lc(H) is a normal operator whose spectrum is

σ(f(A0)) = f(Σ0)

by the (Spectrum) axiom. Now consider the map

C(f(Σ0)) → Lc(H) : g 7→ (g ◦ f)(A0).

This map is a continuous C* algebra homomorphism and it sends the identity
map g = id : f(Σ0) → C to the operator f(A0). Hence it follows from the
uniqueness statement, with A0 replaced by f(A0), that

(g ◦ f)(A0) = g(f(A0)) for all g ∈ C(f(Σ0)).

This proves Theorem 5.5.14. □

In Theorem 5.4.7 the continuous functional calculus was established for
self-adjoint operators. Theorem 5.5.14 extends this result to normal oper-
ators and at the same time provides an alternative proof. The next goal
is to extend the continuous functional calculus further to the C* algebra of
complex valued bounded measurable functions on the spectrum. Taking the
characteristic functions of Borel sets one then obtains the spectral measure
associated to a normal operator. This is the content of Section 5.6 below.
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Remark 5.5.15. Let H be an infinite-dimensional complex Hilbert space.
It is useful to examine the special case of Theorem 5.4.7 where the normal
operator A ∈ Lc(H) is compact, which we now assume.

(i) By part (v) of Theorem 5.3.16 the Hilbert space H admits an orthonor-
mal basis {ei}i∈I of eigenvectors of A. Here I is an infinite index set, un-
countable whenever H is not separable, and

⟨ei, ej⟩ = δij for all i, j ∈ I.

Here ⟨ei, ej⟩ denotes the Hermitian inner product and the ei are linearly
independent over the complex numbers. There exists a map I → C : i 7→ λi
such that Aei = λiei for all i ∈ I and hence

(5.5.21) Ax =
∑
i∈I

λi⟨ei, x⟩ei for all x ∈ H.

The numbers λi are the eigenvalues of A and σ(A) = {λi | i ∈ I} ∪ {0}. Thus
we have supi∈I |λi| <∞. Moreover, the set {i ∈ I | |λi| > ε} is finite for
every ε > 0, because A is compact. The eigenvalues λi appear with the
multiplicities

# {i ∈ I |λi = λ} = dimker(λ1l−A) for all λ ∈ R.

If f : σ(A) → C is any continuous function then the operator f(A) ∈ Lc(H)
is given by

(5.5.22) f(A)x =
∑
i∈I

f(λi)⟨ei, x⟩ei for all x ∈ H.

Note that f(A) is compact if and only if f(0) = 0.

(ii) It is also useful to rewrite the formula (5.5.22) in terms of the spectral
projections. Let σ(A) = {λ0, λ1, λ2, . . . } where λi ̸= λj for i ̸= j and λ0 = 0.
For each i let Pi ∈ Lc(H) be the orthogonal projection onto the eigenspace
of λi, i.e.

(5.5.23) P 2
i = Pi = P ∗

i , im(Pi) = Ei := ker(λi1l−A), ker(Pi) = E⊥
i .

Then PiPj = 0 for i ̸= j and

(5.5.24) x =
∑
i

Pix, Ax =
∑
i

λiPix, f(A)x =
∑
i

f(λi)Pix

for all x ∈ H. Here the sums may be either finite or infinite, depend-
ing on whether or not σ(A) is a finite set. If σ(A) is an infinite set, we
emphasize that the sequence of projections

∑n
i=0 Pi converges to the iden-

tity in the strong operator topology, but not in the norm topology, be-
cause ∥1l−

∑n
i=0 Pi∥ = 1 for all n ∈ N. However, the sequence

∑n
i=0 λiPi

converges to A in the norm topology because limi→∞ λi = 0.
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5.6. Spectral Measures

Assume that H is a nonzero complex Hilbert space and A ∈ Lc(H) is a
normal operator. Then the spectrum

Σ := σ(A) ⊂ C

is a nonempty compact subset of the complex plane by Theorem 5.3.15. Let

C(Σ) → Lc(H) : f 7→ f(A)

be the C* algebra homomorphism introduced in Theorem 5.5.14. The pur-
pose of the present section is to assign to A a Borel measure on Σ with values
in the space of orthogonal projections on H, called the spectral measure
of A. When A is a compact operator this measure assigns to each Borel
set Ω ⊂ Σ the spectral projection

PΩ :=
∑

λ∈σ(A)∩Ω

Pλ

associated to all the eigenvalues of A in Ω (see Remark 5.5.15). The gen-
eral construction of the spectral measure is considerably more subtle and is
closely related to an extension of the homomorphism in Theorem 5.5.14 to
the C* algebra B(Σ) of all bounded Borel measurable functions on Σ. The
starting point for the construction of this extension and the spectral mea-
sure is the observation that every element x ∈ H determines a conjugation
equivariant bounded linear functional Λx : C(Σ) → C via the formula

(5.6.1) Λx(f) := ⟨x, f(A)x⟩ for f ∈ C(Σ).

Since Λx(f) = Λx(f) for all f ∈ C(Σ), the functional Λx is uniquely deter-
mined by its restriction to the subspace C(Σ,R) of real valued continuous
functions. This restriction takes values in R and the restricted functio-
nal Λx : C(Σ,R) → R is positive by Theorem 5.5.14, i.e. for all f ∈ C(Σ,R),

f ≥ 0 =⇒ Λx(f) ≥ 0.

Hence the Riesz Representation Theorem asserts that Λx can be represented
by a Borel measure. Namely, let B ⊂ 2Σ be the Borel σ-algebra. Then, for
every x ∈ Σ, there exists a unique Borel measure µx : B → [0,∞) such that

(5.6.2)

∫
Σ
f dµx = ⟨x, f(A)x⟩ for all f ∈ C(Σ,R).

(See [75, Cor 3.19].) These Borel measures can be used to define the desired
extension of the C* algebra homomorphism C(Σ) → Lc(H) to B(Σ) as well
as the spectral measure of A.
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5.6.1. Projection Valued Measures.

Definition 5.6.1 (Projection Valued Measure). Let H be a com-
plex Hilbert space, let

Σ ⊂ C

be a nonempty closed subset, and denote by B ⊂ 2Σ the Borel σ-algebra. A
projection valued Borel measure on Σ is a map

(5.6.3) B → Lc(H) : Ω → PΩ

which assigns to every Borel set Ω ⊂ Σ a bounded complex linear opera-
tor PΩ : H → H and satisfies the following axioms.

(Projection) For every Borel set Ω ⊂ Σ the operator PΩ is an orthogonal
projection, i.e.

(5.6.4) P 2
Ω = PΩ = P ∗

Ω.

(Normalization) The projections associated to Ω = ∅ and Ω = Σ are

(5.6.5) P∅ = 0, PΣ = 1l.

(Intersection) If Ω1,Ω2 ⊂ Σ are two Borel sets then

(5.6.6) PΩ1∩Ω2 = PΩ1PΩ2 = PΩ2PΩ1 .

(σ-Additive) If (Ωi)i∈N is a sequence of pairwise disjoint Borel sets in Σ so
that Ωi ∩ Ωj = ∅ for i ̸= j and Ω :=

⋃∞
i=1Ωi, then

(5.6.7) PΩx = lim
n→∞

n∑
i=1

PΩix

for all x ∈ H.

For every nonempty compact Hausdorff space Σ define

B(Σ) := {f : Σ → C | f is bounded and Borel measurable} .

This space is a C* algebra with the supremum norm

∥f∥ := sup
λ∈Σ

|f(λ)|

for f ∈ B(Σ), and with the complex anti-linear isometric involution given
by complex conjugation. The next theorem shows that, if Σ is a closed
subset of C and B ⊂ 2Σ is the Borel σ-algebra, then every projection valued
measure B → Lc(H) : Ω 7→ PΩ gives rise to a C* algebra homomorphism
from B(Σ) to Lc(H).
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Theorem 5.6.2. Let H,Σ,B be as in Definition 5.6.1 and fix a pro-
jection valued measure (5.6.3). Denote by B(Σ) the C* algebra of complex
valued bounded Borel measurable functions on Σ, equipped with the supre-
mum norm. For x, y ∈ H define the signed Borel measure µx,y : B → R
by

(5.6.8) µx,y(Ω) := Re⟨x, PΩy⟩ for Ω ∈ B.

Then, for each f ∈ B(Σ), there exists a unique operator Ψ(f) ∈ Lc(H) such
that

(5.6.9) Re⟨x,Ψ(f)y⟩ =
∫
Σ
Ref dµx,y +

∫
Σ
Imf dµx,iy for all x, y ∈ H.

The resulting map Ψ : B(Σ) → Lc(H) is a C* algebra homomorphism and

a bounded linear operator and it satisfies σ(Ψ(f)) ⊂ f(Σ) for all f ∈ B(Σ).

Proof. See page 264. □

Assume the situation of Theorem 5.6.2 and suppose, in addition, that
Σ is compact. Since the map Ψ : B(Σ) → Lc(H) is a C* algebra homo-
morphism, the operator Ψ(f) is normal for every f ∈ B(Σ). Thus every
projection valued measure on Σ determines a normal operator A := Ψ(id)
associated to the identity map and the spectrum of A is contained in Σ.
Conversely, every normal operator A ∈ Lc(H) gives rise to a unique projec-
tion valued measure in H with support on its spectrum Σ := σ(A). Thus
there is a one-to-one correspondence between compactly supported projec-
tion valued measures on C and bounded normal operators on H.

Theorem 5.6.3 (Spectral Measure). Let H be a nonzero complex
Hilbert space, let A ∈ Lc(H) be a normal operator, let Σ := σ(A) ⊂ C be
its spectrum, and denote by B ⊂ 2Σ the Borel σ-algebra. Then there exists
a unique projection valued Borel measure

(5.6.10) B → Lc(H) : Ω 7→ PΩ

such that

(5.6.11)

∫
Σ
Reλ dµx,y(λ) +

∫
Σ
Imλ dµx,iy(λ) = Re⟨x,Ay⟩

for all x, y ∈ H, where the signed Borel measures µx,y : B → R are given by

(5.6.12) µx,y(Ω) := Re⟨x, PΩy⟩

for x, y ∈ H and Ω ∈ B. The projection valued measure (5.6.10) is called
the spectral measure of A.

Proof. See page 273. □
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Example 5.6.4. Let Σ ⊂ C be a nonempty compact set, equipped with
the Lebesgue measure, and let H := L2(Σ) be the Hilbert space of com-
plex valued L2 functions on Σ. For a Borel set Ω ⊂ Σ define PΩ : H → H
by PΩψ := χΩψ for ψ ∈ H, where χΩ : Σ → R denotes the characteristic
function of Ω. These operators define a projection valued measure on H
and the operator Ψ : B(Σ) → Lc(L2(Σ)) in Theorem 5.6.3 is given by

Ψ(f)ψ = fψ

for all f ∈ B(Σ) and all ψ ∈ L2(Σ). In the case Σ = [0, 1] ⊂ R and

f(λ) :=

{
λ, for 0 ≤ λ < 1,
2, for λ = 1.

we obtain f(Σ) = [0, 1) ∪ {2} and σ(Ψ(f)) = [0, 1]. Thus f(Σ) is not closed

and f(Σ) ̸⊂ σ(Ψ(f)) ⊊ f(Σ).

The proof of Theorem 5.6.2 is carried out in the present subsection,
while the proof of Theorem 5.6.3 is postponed to Subsection 5.6.2. As in
part (vi) of Example 1.1.3, denote by M(Σ) the Banach space of signed
Borel measures µ : B → R with the norm

∥µ∥ = sup
Ω∈B

(
µ(Ω)− µ(Σ \ Ω)

)
for µ ∈ M(Σ).

Proof of Theorem 5.6.2. The proof has five steps.

Step 1. The map H × H → M(Σ) : (x, y) 7→ µx,y is real bilinear and
symmetric and satisfies the inequality

∥µx,y∥ ≤ ∥x∥ ∥y∥

for all x, y ∈ H.

That the map is real bilinear and symmetric follows directly from the defini-
tion of µx,y. Moreover, for all x, y ∈ H and all Ω ∈ B we have PΩPΣ\Ω = 0,
hence the vectors PΩy and PΣ\Ωy are orthogonal to each other, hence∥∥PΩy − PΣ\Ωy

∥∥2 = ∥PΩy∥2 + ∥PΣ\Ωy∥2

=
∥∥PΩy + PΣ\Ωy

∥∥2
= ∥PΣy∥2

= ∥y∥2

and hence

µx,y(Ω)− µx,y(Σ \ Ω) = Re⟨x, (PΩ − PΣ\Ω)y⟩ ≤ ∥x∥∥y∥

by (5.6.8). This proves Step 1.
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Step 2. Let B ∈ Lc(H) such that PΩB = BPΩ for all Ω ∈ B. Then

µx,By = µB∗x,y

for all x, y ∈ H.

Let Ω ∈ B and x, y ∈ H. Then, by (5.6.8) we have

µx,By(Ω) = Re⟨x, PΩBy⟩ = Re⟨x,BPΩy⟩ = Re⟨B∗x, PΩy⟩ = µB∗x,y(Ω).

This proves Step 2.

Step 3. For every f ∈ B(Σ) there exists a unique bounded complex linear
operator Ψ(f) : H → H that satisfies (5.6.9). Moreover, Ψ(f) = Ψ(f)∗ for
all f ∈ B(Σ) and the map Ψ : B(Σ) → Lc(H) is a bounded complex linear
operator.

Let f ∈ B(Σ,R) and define the real bilinear form Bf : H ×H → R by

Bf (x, y) :=

∫
Σ
f dµx,y.

Then, for all x, y ∈ H, we have

|Bf (x, y)| ≤ ∥f∥∥µx,y∥ ≤ ∥f∥∥x∥∥y∥

by Step 1 and [75, Exercise 5.35 (i)]. Hence there exists a unique bounded
real linear operator Ψ(f) ∈ L(H) such that

Re⟨x,Ψ(f)y⟩ = Bf (x, y) for all x, y ∈ H.

This operator is self-adjoint because Bf is symmetric by Step 1, and

∥Ψ(f)∥ ≤ ∥f∥.

Hence the resulting map Ψ : B(Σ,R) → L(H) is a bounded linear operator.
Moreover, Bf (x, iy) = −Bf (ix, y) by Step 2 with B = i1l, and hence

Re⟨x,Ψ(f)iy⟩ = Bf (x, iy)

= −Bf (ix, y)
= −Re⟨ix,Ψ(f)y⟩
= Re⟨x, iΨ(f)y⟩

for all x, y ∈ H. Thus the operator Ψ(f) : H → H is complex linear.
For f ∈ B(Σ) define

Ψ(f) := Ψ(Ref) + iΨ(Imf) ∈ Lc(H).

Then Ψ(f) satisfies condition (5.6.9) and is uniquely determined by this
equation. Moreover, the map B(Σ) → Lc(H) : f 7→ Ψ(f) is complex lin-
ear and the formula Ψ(f) = Ψ(f)∗ follows from the fact that the opera-
tors Ψ(Ref) and Ψ(Imf) are self-adjoint. This proves Step 3.



266 5. Spectral Theory

Step 4. Let Ψ : B(Σ) → Lc(H) be as in Step 3. Then

Ψ(fg) = Ψ(f)Ψ(g)

for all f, g ∈ B(Σ).

Since the operator Ψ : B(Σ) → Lc(H) is complex linear it suffices to verify
the equation Ψ(fg) = Ψ(f)Ψ(g) for real valued functions f, g ∈ B(Σ,R).
Assume first that g = χΩ for some Borel set Ω ⊂ Σ. Then

µPΩx,y(Ω
′) = Re⟨PΩx, PΩ′y⟩
= Re⟨x, PΩPΩ′y⟩
= Re⟨x, PΩ∩Ω′y⟩
= µx,y(Ω ∩ Ω′)

=

∫
Ω′
χΩ dµx,y

for all Ω′ ∈ B. By [75, Thm 1.40] this implies∫
Ω
g dµx,y =

∫
Σ
gχΩ dµx,y

=

∫
Σ
g dµPΩx,y

= Re⟨PΩx,Ψ(g)y⟩
= Re⟨x, PΩΨ(g)y⟩
= µx,Ψ(g)y(Ω)

for all g ∈ B(Σ,R). Apply [75, Thm 1.40] again to obtain

Re⟨x,Ψ(fg)y⟩ =
∫
Σ
fg dµx,y =

∫
Σ
f dµx,Ψ(g)y = Re⟨x,Ψ(f)Ψ(g)y⟩

for all f, g ∈ B(Σ,R) and all x, y ∈ H. This proves Step 4.

Step 5. σ(Ψ(f)) ⊂ f(Σ) for all f ∈ B(Σ).

Let f ∈ B(Σ) and λ ∈ C \ f(Σ) and define the function g : Σ → C by

g(µ) := (λ− f(µ))−1 for µ ∈ Σ.

Then g ∈ B(Σ) and g(λ− f) = (λ− f)g = 1. Hence

Ψ(g)(λ1l−Ψ(f)) = (λ1l−Ψ(f))Ψ(g) = Ψ(1) = 1l.

Thus λ1l − Ψ(f) is invertible and so λ ∈ ρ(Ψ(f)). This proves Step 5 and
Theorem 5.6.2. □
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5.6.2. Measurable Functional Calculus. The next theorem extends the
continuous functional calculus for normal operators, established in Theo-
rem 5.5.14, to bounded measurable functions. The new ingredients are the
(Convergence) axiom, the (Contraction) axiom in place of the (Isometry)
axiom, and the modified (Image) and (Spectrum) axioms.

Theorem 5.6.5 (Measurable Functional Calculus).

Let H be a nonzero complex Hilbert space, let A ∈ Lc(H) be a normal
operator, and let Σ := σ(A). Then there exists a complex linear operator

(5.6.13) B(Σ) → Lc(H) : f 7→ f(A)

that satisfies the following axioms.

(Product) 1(A) = 1l and (fg)(A) = f(A)g(A) for all f, g ∈ B(Σ).

(Conjugation) f(A) = f(A)∗ for all f ∈ B(Σ).

(Positive) If f ∈ B(Σ,R) and f ≥ 0 then f(A) = f(A)∗ ≥ 0.

(Normalization) If f(λ) = λ for all λ ∈ Σ then f(A) = A.

(Contraction) ∥f(A)∥ ≤ supλ∈Σ|f(λ)| = ∥f∥ for all f ∈ B(Σ).

(Convergence) Let fi ∈ B(Σ) be a sequence such that supi∈N ∥fi∥ < ∞
and let f ∈ B(Σ) such that limi→∞ fi(λ) = f(λ) for all λ ∈ Σ. Then

lim
i→∞

fi(A)x = f(A)x for all x ∈ H.

(Commutative) If B ∈ Lc(H) satisfies AB = BA and A∗B = BA∗

then f(A)B = Bf(A) for all f ∈ B(Σ).

(Image) The image of the operator (5.6.13) is the smallest C* subalgebra
of Lc(H) that contains A and is closed under strong convergence.

(Eigenvector) If λ ∈ Σ and x ∈ H satisfy Ax = λx then

f(A)x = f(λ)x

for all f ∈ B(Σ).

(Spectrum) If f ∈ B(Σ) then f(A) is normal and σ(f(A)) ⊂ f(Σ). More-
over, σ(f(A)) = f(Σ) for all f ∈ C(Σ).

(Composition) If f ∈ C(Σ) and g ∈ B(f(Σ)) then (g ◦ f)(A) = g(f(A)).

The complex linear operator (5.6.13) is uniquely determined by the (Pro-
duct), (Conjugation), (Normalization), and (Convergence) axioms. The
(Product) and (Conjugation) axioms assert that it is a C* algebra homo-
morphism.

Proof. See page 276. □
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The proofs of both Theorems 5.6.3 and 5.6.5 will be based on a se-
ries of lemmas. Assume throughout that H is a nonzero complex Hilbert
space, that A ∈ Lc(H) is a normal operator with spectrum Σ := σ(A) ⊂ C,
and that B ⊂ 2Σ is the Borel σ-algebra. The starting point is the Riesz
Representation Theorem which asserts that, for every positive linear func-
tional Λ : C(Σ,R) → R, there exists a unique Borel measure µ : B → [0,∞)
such that Λ(f) =

∫
Σ f dµ for all f ∈ C(Σ,R) (see [75, Cor 3.19]). By The-

orem 5.5.14, this implies that, for each x ∈ H, there exists a unique Borel
measure µx : B → [0,∞) that satisfies (5.6.2), i.e.∫

Σ
f dµx = ⟨x, f(A)x⟩ for all f ∈ C(Σ,R).

For x, y ∈ H define the signed measure µx,y : B → R by

(5.6.14) µx,y :=
1

4

(
µx+y − µx−y

)
.

The next lemma summarizes some basic properties of these signed measures.

Lemma 5.6.6. (i) The map

(5.6.15) H ×H → M(Σ) : (x, y) 7→ µx,y

defined by (5.6.14) is real bilinear and symmetric.

(ii) The signed measures µx,y satisfy

(5.6.16)

∫
Σ
f dµx,y = Re⟨x, f(A)y⟩

for all x, y ∈ H and all f ∈ C(Σ,R).

(iii) Let B ∈ Lc(H) such that AB = BA and A∗B = BA∗. Then

(5.6.17) µx,By = µB∗x,y

and, in particular,

µx,iy = −µix,y
for all x, y ∈ H.

(iv) The signed measures µx,y satisfy

(5.6.18) ∥µx,y∥ ≤ ∥x∥ ∥y∥

for all x, y ∈ H.

Proof. Equation (5.6.16) follows from (5.6.2) and the definition of µx,y
in (5.6.14). It implies that the map (5.6.15) is real bilinear and symmetric.
This proves parts (i) and (ii).
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To prove part (iii), assume B ∈ Lc(H) commutes with A and A∗ and
let x, y ∈ H. If f ∈ C(Σ,R) then f(A)B = Bf(A) by the (Commutative)
axiom in Theorem 5.5.14. Hence it follows from (ii) that∫

Σ
fµx,By = Re⟨x, f(A)By⟩ = Re⟨B∗x, f(A)y⟩ =

∫
Σ
fµB∗x,y

for all f ∈ C(Σ,R). This implies µx,By = µB∗x,y by uniqueness in the Riesz
Representation Theorem. This proves part (iii).

We prove part (iv). The Hahn Decomposition Theorem asserts that,
for every µ ∈ M(Σ), there exists a Borel set P ⊂ Σ such that µ(Ω ∩ P ) ≥ 0
and µ(Ω \ P ) ≤ 0 for every Borel set Ω ⊂ Σ (see [75, Thm 5.19]). The norm
of µ is then given by

∥µ∥ = µ(P )− µ(Σ \ P )

= sup
f∈C(Σ,R)

∫
Σ f dµ

∥f∥

= sup
f∈B(Σ,R)

∫
Σ f dµ

∥f∥
.

(5.6.19)

(See [75, Exercise 5.35 (i)].) Hence

∥µx,y∥ = sup
f∈C(Σ,R)

∫
M f dµx,y

∥f∥

= sup
f∈C(Σ,R)

Re⟨x, f(A)y⟩
∥f∥

≤ sup
f∈C(Σ,R)

∥x∥ ∥f(A)∥ ∥y∥
∥f∥

= ∥x∥ ∥y∥

for all x, y ∈ H. Here the first step follows from (5.6.19) and the last step fol-
lows from the identity ∥f(A)∥ = ∥f∥ for f ∈ C(Σ,R) (see Theorem 5.5.14).
This proves Lemma 5.6.6. □

Lemma 5.6.6 allows us to define the map B(Σ) → Lc(H) : f 7→ f(A)
in Theorem 5.6.5 and the map B → Lc(H) : Ω → PΩ in Theorem 5.6.3.
This is the content of Lemma 5.6.7 below. The task at hand will then be
to verify that these maps satisfy all the axioms in Theorems 5.6.3 and 5.6.5
and, finally, to prove the uniqueness statements. A key step for verifying the
properties of these maps will be the proof of the (Product) axiom in The-
orem 5.6.5. This is the content of Lemma 5.6.8 below. The (Convergence)
axiom will be verified in Lemma 5.6.9.
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Lemma 5.6.7 (The Operator ΨA). There exists a unique bounded com-
plex linear operator ΨA : B(Σ) → Lc(H) such that

(5.6.20) Re⟨x,ΨA(f)y⟩ =
∫
Σ
f dµx,y

for all x, y ∈ H and all f ∈ B(Σ,R), where µx,y ∈ M(Σ) is defined
by (5.6.14). The operator ΨA satisfies the (Conjugation), (Positive), (Nor-
malization), (Contraction), and (Commutative) axioms in Theorem 5.6.5.
Its restriction to C(Σ) is the operator (5.5.17) in Theorem 5.5.14.

Proof. Fix a bounded real valued Borel measurable function f : Σ → R
and define the map Bf : H ×H → R by

Bf (x, y) :=

∫
Σ
f dµx,y for x, y ∈ H.

This map is real bilinear and symmetric by part (i) of Lemma 5.6.6 and

(5.6.21) |Bf (x, y)| ≤ ∥f∥ ∥µx,y∥ ≤ ∥f∥ ∥x∥ ∥y∥ for all x, y ∈ H

by (5.6.19) and part (iv) of Lemma 5.6.6. Hence, by Theorem 1.4.4, there
exists a unique bounded real linear operator ΨA(f) : H → H such that

Re⟨x,ΨA(f)y⟩ = Bf (x, y) =

∫
Σ
f dµx,y

for all x, y ∈ H. Since Bf is symmetric the operator ΨA(f) is self-adjoint.
Moreover, ∥ΨA(f)∥ ≤ ∥f∥ by (5.6.21). Since

Re⟨x,ΨA(f)iy⟩ =
∫
Σ
f dµx,iy = −

∫
Σ
f dµix,y

= −Re⟨ix,ΨA(f)y⟩ = Re⟨x, iΨA(f)y⟩

for all x, y ∈ H by part (iii) of Lemma 5.6.6, the operator ΨA(f) is complex
linear. The resulting map ΨA : B(Σ,R) → Lc(H) extends uniquely to a
bounded complex linear operator ΨA : B(Σ) → Lc(H) via

ΨA(f) := ΨA(Ref) + iΨA(Imf) for f ∈ B(Σ).

By definition, this operator satisfies (5.6.20) as well as the (Conjugation),
(Positive), (Normalization), and (Contraction) axioms. If B ∈ Lc(H) com-
mutes with A and A∗ then

Re⟨x,ΨA(f)By⟩ =
∫
Σ
f dµx,By =

∫
Σ
f dµB∗x,y = Re⟨B∗x,ΨA(f)y⟩

for all x, y ∈ H by part (iii) of Lemma 5.6.6 and so ΨA(f)B = BΨA(f).
Thus ΨA satisfies the (Commutative) axiom. That ΨA is uniquely deter-
mined by (5.6.20) is obvious and that ΨA(f) = f(A) is the operator in The-
orem 5.5.14 for every f ∈ C(Σ) follows from part (ii) of Lemma 5.6.6. This
proves Lemma 5.6.7. □
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Lemma 5.6.8 (Product Axiom). The map ΨA : B(Σ) → Lc(H) in
Lemma 5.6.7 satisfies the (Product) axiom in Theorem 5.6.5.

Proof. Assume first that f : Σ → [0,∞) is continuous and let x ∈ H.
Then it follows from the (Product) axiom in Theorem 5.5.14 that∫

Σ
g dµx,f(A)x = Re⟨x, g(A)f(A)x⟩

= Re⟨x, (gf)(A)x⟩

=

∫
Σ
gf dµx

for all g ∈ C(Σ,R). The last term on the right is the integral of g with
respect to the Borel measure

B → [0,∞) : Ω 7→
∫
Ω
f dµx

by [75, Thm 1.40]. Hence it follows from uniqueness in the Riesz Represen-
tation Theorem that

(5.6.22) µx,f(A)x(Ω) =

∫
Ω
f dµx

for every Borel set Ω ⊂ Σ. Now let g ∈ B(Σ,R). Then, for all x ∈ H,

Re⟨x,ΨA(g)ΨA(f)x⟩ =
∫
Σ
g dµx,f(A)x

=

∫
Σ
gf dµx

= Re⟨x,ΨA(gf)x⟩.

(5.6.23)

Here the second equality follows from (5.6.22) and [75, Thm 1.40]. Moreover,
the operator ΨA(f) = f(A) commutes with A and A∗ by Theorem 5.5.14,
and hence ΨA(f) commutes with ΨA(g) by Lemma 5.6.7. Since both oper-
ators are self-adjoint, so is their composition as is ΨA(gf). Hence it follows
from (5.6.23) that

ΨA(f)ΨA(g) = ΨA(g)ΨA(f) = ΨA(gf)

whenever f : Σ → [0,∞) is continuous and g : Σ → R is bounded and Borel
measurable. Now take differences and multiply by i, to obtain the (Product)
axiom for all f ∈ C(Σ) and all g ∈ B(Σ).

Now fix any bounded measurable function f : Σ → [0,∞) and repeat the
above argument to obtain that (5.6.22) holds for all Ω ∈ B and hence (5.6.23)
holds for all g ∈ B(Σ,R). Then the (Product) axiom holds for all f, g ∈ B(Σ)
by taking differences and multiplying by i. This proves Lemma 5.6.8. □
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Lemma 5.6.9 (Convergence Axiom). The map ΨA : B(Σ) → Lc(H)
in Lemma 5.6.7 satisfies the (Convergence) axiom in Theorem 5.6.5.

Proof. It suffices to establish the convergence axiom for real valued func-
tions. Thus assume that

fi : Σ → R, i ∈ N,

is a sequence of bounded Borel measurable functions that satisfies

sup
i∈N

∥fi∥ <∞

and converges pointwise to a Borel measurable function

f : Σ → R,

i.e.

lim
i→∞

fi(λ) = f(λ) for all λ ∈ Σ.

Fix an element x ∈ H. Then it follows from equation (5.6.20) in Lemma 5.6.7
and the Lebesgue Dominated Convergence Theorem [75, Thm 1.45] that

Re⟨y,ΨA(f)x⟩ =
∫
Σ
f dµy,x

= lim
i→∞

∫
Σ
fi dµy,x

= lim
i→∞

Re⟨y,ΨA(fi)x⟩

for all y ∈ H. Replace fi by f
2
i and use Lemma 5.6.8 to obtain

∥ΨA(f)x∥2 = ⟨ΨA(f)x,ΨA(f)x⟩
= ⟨x,ΨA(f

2)x⟩
= lim

i→∞
⟨x,ΨA(f

2
i )x⟩

= lim
i→∞

⟨ΨA(fi)x,ΨA(fi)x⟩

= lim
i→∞

∥ΨA(fi)x∥2 .

Thus we have proved that the sequence

(ΨA(fi)x)i∈N

in H converges weakly to ΨA(f)x and the norm of the limit is the limit of
the norms. Hence it follows from Exercise 3.7.1 that

lim
i→∞

∥ΨA(fi)x−ΨA(f)x∥ = 0.

This proves Lemma 5.6.9. □
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Proof of Theorem 5.6.3. Denote the characteristic function of Ω ⊂ Σ by

χΩ : Σ → R, χΩ(λ) :=

{
1, for λ ∈ Ω,
0, for λ ∈ Σ \ Ω.

Let ΨA : B(Σ) → Lc(H) be the bounded complex linear operator introduced
in Lemma 5.6.7 and define the map B → Lc(H) : Ω 7→ PΩ by

(5.6.24) PΩ := ΨA(χΩ) for Ω ∈ B.
Since χΩ is real valued the operator PΩ is self-adjoint and, since

χΩχΩ′ = χΩ∩Ω′ ,

it follows from Lemma 5.6.8 that

PΩPΩ′ = ΨA(χΩ)ΨA(χΩ′) = ΨA(χΩχΩ′) = ΨA(χΩ∩Ω′) = PΩ∩Ω′

for all Ω,Ω′ ∈ B. Thus PΩ is an orthogonal projection for every Ω ∈ B.
Moreover,

P∅ = ΨA(χ∅) = ΨA(0) = 0, PΣ = ΨA(χΣ) = ΨA(1) = 1l.

Now let (Ωi)i∈N be a sequence of pairwise disjoint Borel subsets of Σ and
define

Ω :=

∞⋃
i=1

Ωi.

Then

fn :=

n∑
i=1

χΩi : Σ → R

is a sequence of bounded Borel measurable functions that satisfies ∥fn∥ ≤ 1
for all n and that converges pointwise to

f := χΩ.

Hence, by Lemma 5.6.9, we have

PΩx = Ψ(χΩ)x = lim
n→∞

Ψ(fn)x = lim
n→∞

n∑
i=1

Ψ(χΩi)x = lim
n→∞

n∑
i=1

PΩix

for all x ∈ H. This shows that the map (5.6.24) satisfies all the axioms
in Definition 5.6.1 and hence is a projection valued Borel measure on Σ.
By definition of ΨA in Lemma 5.6.7, this projection valued measure satisfies

Re ⟨x, PΩy⟩ = Re ⟨x,ΨA(χΩ)y⟩ =
∫
Σ
χΩ dµx,y = µx,y(Ω)

for all x, y ∈ H and all Ω ∈ B, where the signed measures µx,y ∈ M(Σ) are
given by (5.6.14). Thus the signed measures µx,y are related to the projec-
tion valued Borel measure {PΩ}Ω∈B via equation (5.6.12). Hence (5.6.11)
follows the (Normalization) axiom ΨA(id) = A and (5.6.20) with f(λ) = Reλ
and f(λ) = Imλ. This proves existence.
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To prove uniqueness, fix any projection valued measure

B → Lc(H) : Ω 7→ P̃Ω,

define the signed Borel measures µ̃x,y : B → R by equation (5.6.12), i.e.

µ̃x,y(Ω) := Re⟨x, P̃Ωy⟩

for x, y ∈ H and Ω ∈ B, and suppose that (5.6.11) holds, i.e.

(5.6.25)

∫
Σ
Reλ dµ̃x,y(λ) +

∫
Σ
Imλ dµ̃x,iy(λ) = Re⟨x,Ay⟩

for all x, y ∈ H. Let Ψ̃ : B(Σ) → Lc(H) be the continuous C* algebra homo-

morphism associated to {P̃Ω}Ω∈B in Theorem 5.6.2, i.e.

(5.6.26) Re⟨x, Ψ̃(f)y⟩ =
∫
Σ
Ref dµ̃x,y +

∫
Σ
Imf dµ̃x,iy

for all x, y ∈ H and all f ∈ B(Σ). Then the restriction of Ψ̃ to C(Σ) is a con-
tinuous C* algebra homomorphism from C(Σ) to Lc(H) by Theorem 5.6.2,
and it follows from (5.6.25) and (5.6.26) that

Ψ̃(id) = A.

Hence it follows from the uniqueness statement in Theorem 5.5.14 that

Ψ̃(f) = f(A) for all f ∈ C(Σ),

where C(Σ) → Lc(H) : f 7→ f(A) is the C* algebra homomorphism associ-
ated to A in Theorem 5.5.14. By (5.6.26) this implies∫

Σ
f dµ̃x,x = ⟨x, Ψ̃(f)x⟩ = ⟨x, f(A)x⟩ =

∫
Σ
fdµx

for all f ∈ C(Σ,R) and all x ∈ H. Here the Borel measures

µx : B → [0,∞)

are defined by (5.6.2). Hence it follows from uniqueness in the Riesz Repre-
sentation Theorem (see [75, Cor 3.19]) that

µ̃x,x = µx

for all x ∈ H. This implies

⟨x, P̃Ωx⟩ = µ̃x,x(Ω) = µx(Ω) = ⟨x,ΨA(χΩ)x⟩

for every x ∈ H and every Borel set Ω ⊂ Σ. Here ΨA : B(Σ) → Lc(H) is the

complex linear operator of Lemma 5.6.7. Since the operators P̃Ω and ΨA(χΩ)
are self-adjoint, we obtain for each Borel set Ω ⊂ Σ that

P̃Ω = ΨA(χΩ).

This proves the uniqueness statement in Theorem 5.6.3. □



5.6. Spectral Measures 275

The next lemma is useful in preparation for the proof of Theorem 5.6.5.

Lemma 5.6.10. Let Σ be a nonempty compact Hausdorff space such that
every open subset of Σ is σ-compact. Let B(Σ) be the Banach space of
bounded Borel measurable complex valued functions on Σ equipped with the
supremum norm and let C(Σ) ⊂ B(Σ) be the subalgebra of continuous func-
tions. Let F ⊂ B(Σ) be a subset that satisfies the following conditions.

(a) F is a complex unital subalgebra of B(Σ).

(b) The subalgebra F ∩ C(Σ) separates points.

(c) If f ∈ F then f ∈ F .

(d) If (fi)i∈N is a sequence in F and f ∈ B(Σ) such that supi∈N ∥fi∥ < ∞
and limi→∞ fi(λ) = f(λ) for all λ ∈ Σ then f ∈ F .

Then F = B(Σ).

Proof. By (a), (b), (c), and Theorem 5.4.5 the set F ∩ C(Σ) is dense
in C(Σ) with respect to the supremum norm. By (d) this subset is also
closed and hence C(Σ) ⊂ F .

Let B ⊂ 2Σ be the Borel σ-algebra and define

BF := {Ω ∈ B |χΩ ∈ F} .

We prove that BF is a σ-algebra. First, ∅,Σ ∈ BF by (a) because the char-
acteristic functions χ∅ = 0 and χΣ = 1 are constant. Second, if Ω1,Ω2 ∈ BF
then χΩ1\Ω2

= χΩ1(1 − χΩ2) ∈ F by (a) and so Ω1 \ Ω2 ∈ BF . Third, if Ωi
is a pairwise disjoint sequence of Borel sets in BF and Ω :=

⋃∞
i=1Ωi then

the sequence
∑n

i=1 χΩi belongs to F by (a) and converges pointwise to χΩ.
Hence χΩ ∈ F by (d) and so Ω ∈ BF . This shows that BF is a σ-algebra.

Let U ⊂ Σ be open. Since U is σ-compact, there is a sequence of compact
sets Ki ⊂ Σ such that Ki ⊂ Ki+1 for all i and U =

⋃∞
i=1Ki. By Urysohn’s

Lemma, there is a sequence of continuous functions fi : Σ → [0, 1] such that

fi(λ) =

{
1, for all x ∈ Ki,
0, for all x ∈ Σ \ U.

This sequence converges pointwise to the characteristic function χU of U .
Since fi ∈ C(Σ) ⊂ F for all i, it follows that χU ∈ F by (d) and so U ∈ BF .
This shows that BF ⊂ B is a σ-algebra that contains all open sets, so BF = B.
Thus χΩ ∈ F for all Ω ∈ B.

Now let f : Σ → C be any bounded Borel measurable function. Then
there exists a sequence of Borel measurable step functions fi : Σ → C (whose
images are finite sets) such that fi converges pointwise to f and ∥fi∥ ≤ ∥f∥
for all i (see [75, Thm 1.26]). Hence it follows from (d) that f ∈ F . This
proves Lemma 5.6.10. □
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Proof of Theorem 5.6.5. Let ΨA : B(Σ) → Lc(H) be the bounded com-
plex linear operator introduced in Lemma 5.6.7. It satisfies the (Conjuga-
tion), (Normalization), (Positive), (Contraction), and (Commutative) ax-
ioms by Lemma 5.6.7, the (Product) axiom by Lemma 5.6.8, and the (Con-
vergence) axiom by Lemma 5.6.9.

We prove that ΨA satisfies the (Image) axiom. Denote by A ⊂ Lc(H)
the smallest C* subalgebra that contains A and is closed under strong con-
vergence (i.e. if (Ai)i∈N is a sequence in A and A ∈ Lc(H) is an operator
satisfying Ax = limi→∞Aix for all x ∈ H, then A ∈ A). Since the image
of the operator ΨA : B(Σ) → Lc(H) is such a C* subalgebra of Lc(H), by
the (Product), (Conjugation), (Normalization), and (Convergence) axioms,
it must contain A. To prove the converse inclusion, consider the set

F := {f ∈ B(Σ) |ΨA(f) ∈ A} .

This is a complex unital subalgebra of B(Σ) because A ⊂ Lc(H) is a com-
plex unital subalgebra and the map ΨA : B(Σ) → Lc(H) is a unital algebra
homomorphism by Lemma 5.6.8. It contains the identity map because ΨA

satisfies the (Normalization) axiom, and it is invariant under complex con-
jugation because ΨA satisfies the (Conjugation) axiom. Moreover, F is
closed under pointwise convergence of bounded sequences by Lemma 5.6.9.
Hence F satisfies the requirements of Lemma 5.6.10 and therefore F = B(Σ).
This shows that ΨA satisfies the (Image) axiom.

We prove that ΨA satisfies the (Eigenvector) axiom. Fix a real num-
ber λ ∈ Pσ(A) ⊂ Σ and vector x ∈ H such that Ax = λx. Define

F := {f ∈ B(Σ) |ΨA(f)x = f(λ)x} .

This set is a complex unital subalgebra of B(Σ) that contains the iden-
tity and is invariant under complex conjugation, because ΨA satisfies the
(Product), (Normalization), and (Conjugation) axioms. Moreover, if fi ∈ F
is a bounded sequence that converges pointwise to a function f : Σ → C
then f ∈ F by Lemma 5.6.9. Hence F = B(Σ) by Lemma 5.6.10. This
shows that ΨA satisfies the (Eigenvector) axiom.

We prove that ΨA satisfies the (Spectrum) axiom. Let f ∈ B(Σ) and

let µ ∈ C \ f(Σ). Define the function g : Σ → C by

g(λ) := (µ− f(λ))−1 for λ ∈ Σ.

Then g is measurable and bounded and g(µ− f) = (µ− f)g = 1. Hence

ΨA(g) (µ1l−ΨA(f)) = (µ1l−ΨA(f))ΨA(g) = 1l

by Lemma 5.6.8. Thus µ1l−ΨA(f) is bijective and so µ /∈ σ(ΨA(f)). Hence
the spectrum of the operator ΨA(f) is contained in the closure of the
set f(Σ). This shows that ΨA satisfies the (Spectrum) axiom.
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We prove uniqueness. Thus assume that

Ψ : B(Σ) → Lc(H)

is any complex linear operator that satisfies the (Product), (Conjugation),
(Normalization), and (Convergence) axioms. Then

Ψ(f) = ΨA(f)

for every polynomial f = p|Σ : Σ → C in z and z by the (Product), (Conju-
gation), and (Normalization) axioms. Define

F := {f ∈ B(Σ) |Ψ(f) = ΨA(f)} .

This set is a complex subalgebra of B(Σ) and contains the polynomials in z
and z by what we have just observed. It is invariant under complex conju-
gation because both Ψ and ΨA satisfy the (Conjugation) axiom. Moreover,
if (fi)i∈N is a bounded sequence in F that converges pointwise to a func-
tion f : Σ → C, then f is a bounded Borel measurable function and

Ψ(f)x = lim
i→∞

Ψ(fi)x = lim
i→∞

ΨA(fi)x = ΨA(f)x for all x ∈ H,

by the (Convergence) axiom for Ψ and by Lemma 5.6.9 for ΨA, and so
f ∈ F . Thus the set F satisfies the requirements of Lemma 5.6.10 and so

F = B(Σ).

This proves uniqueness.

We prove the (Composition) axiom. Fix a continuous function f : Σ → R
and define the set

G := {g ∈ B(f(Σ)) | (g ◦ f)(A) = g(f(A))} .

This set is a complex unital subalgebra of B(f(Σ)) because the maps

B(f(Σ)) → Lc(H) : g 7→ (g ◦ f)(A)

and

B(f(Σ)) → Lc(H) : g 7→ g(f(A))

are both unital C* algebra homomorphisms. Second, the set G contains the
identity map by definition and is invariant under complex conjugation by
the (Conjugation) axiom. Third, the subspace G is closed under pointwise
convergence of bounded sequences by the (Convergence) axiom. Hence

G = B(f(Σ))

by Lemma 5.6.10. This proves Theorem 5.6.5. □

The final theorem of this subsection establishes some useful additional
properties of the spectral measure and the measurable functional calculus
of a normal operator.
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Theorem 5.6.11 (Spectral Projections for Normal Operators).

Let H be a nonzero complex Hilbert space and let A ∈ Lc(H) be a normal
operator. Denote its spectrum by Σ := σ(A) ⊂ C.

(i) Let Ω ⊂ Σ be a nonempty Borel set and let χΩ : Σ → {0, 1} be the
characteristic function of Ω. Then

PΩ := χΩ(A)

is an orthogonal projection, its image

EΩ := im(PΩ)

is an A-invariant subspace of H, and

(5.6.27) Σ \ Σ \ Ω ⊂ σ(A|EΩ
) ⊂ Ω.

(ii) Let f ∈ B(Σ) and let λ ∈ Σ. If f is continuous at λ then

f(λ) ∈ σ(f(A)).

(iii) Let λ ∈ Σ and define Pλ := P{λ} ∈ Lc(H). Then

(5.6.28) Pλ = P 2
λ = P ∗

λ , im(Pλ) = ker(λ1l−A).

Proof. We prove (i). When Ω = Σ or Ω = ∅ there is nothing to prove.
(The zero operator on the zero vector space has an empty spectrum.) Thus
assume Ω ̸= Σ and Ω ̸= ∅. Since χΩ = χ2

Ω = χΩ, the operator PΩ is an or-
thogonal projection. It commutes with A and hence its image EΩ := im(PΩ)
is invariant under A.

For c ∈ C define fc : σ(A) → C by

fc(λ) :=

{
λ, for λ ∈ Ω,
c, for λ ∈ σ(A) \ Ω.

Then fc = χΩid + cχσ(A)\Ω, hence

fc(A) = APΩ + c(1l− PΩ),

and hence

σ(APΩ + c(1l− PΩ)) ⊂ Ω ∪ {c} for all c ∈ C,

by the (Spectrum) axiom in Theorem 5.6.5. If λ ∈ C \ Ω and c ̸= λ, it
follows that the operator

λ1l− fc(A) = (λ1l−A)PΩ + (λ− c)(1l− PΩ)

is invertible and hence so is the operator λ1l−A|EΩ
: EΩ → EΩ. This shows

that σ(A|EΩ
) ⊂ Ω. Now let λ ∈ Σ \ Σ \ Ω. Then

λ /∈ σ(A|EΣ\Ω) = σ(A|E⊥
Ω
)

by what we have just proved and hence λ ∈ σ(A|EΩ
). This proves part (i).
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We prove (ii). Suppose, by contradiction, that the operator

f(λ)1l− f(A)

is invertible and define

ε := ∥(f(λ)1l− f(A))−1∥−1.

Then Corollary 1.5.7 asserts that the operator µ1l− f(A) is invertible for
every µ ∈ C with |µ− f(λ)| < ε. Hence

(5.6.29) σ(f(A)) ∩Bε(f(λ)) = ∅.

Since f is continuous at λ, there exists a δ > 0 such that every λ′ ∈ Σ satisfies

(5.6.30) |λ− λ′| ≤ δ =⇒ |f(λ)− f(λ′)| ≤ ε

2
.

Define

Ω := Bδ(λ) ∩ Σ.

Then Ω ⊂ Bδ(λ) ∩ Σ, hence f(Ω) ⊂ Bε/2(f(λ)) by (5.6.30), and so

f(Ω) ⊂ Bε/2(f(λ)) ⊂ Bε(f(λ)) ⊂ C \ σ(f(A)).(5.6.31)

Here the last step follows from (5.6.29). Moreover, Σ \ Ω = Σ \Bδ(λ) is a
closed subset of C and so

(5.6.32) Σ \ Σ \ Ω = Ω.

Now let

PΩ := χΩ(A), EΩ := im(PΩ)

as in (i) and define

AΩ := A|EΩ
.

Then Ω ⊂ σ(AΩ) ⊂ Ω by (5.6.27) and (5.6.32). This implies

σ(AΩ) = Ω ⊂ Σ,

because σ(AΩ) is closed. Moreover, λ ∈ Ω ⊂ σ(AΩ) and so

(5.6.33) EΩ ̸= {0}.

For g ∈ B(Σ) define

gΩ := g|Ω.
Then the operator PΩ = χΩ(A) commutes with g(A) and so the subspace EΩ

is invariant under g(A) for all g ∈ B(Σ). We claim that

(5.6.34) gΩ(AΩ) = g(A)|EΩ
: EΩ → EΩ for all g ∈ B(Σ).

This formula clearly holds when g is a polynomial in z and z, hence it
holds for every continuous function g : Σ → C by the Stone–Weierstraß
Theorem 5.4.5, and hence it holds for all g ∈ B(Σ) by Lemma 5.6.10. In
particular, equation (5.6.34) holds for our fixed function g = f .
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It follows from (5.6.31), (5.6.34), and the (Spectrum) axiom in Theo-
rem 5.6.5 that

σ(f(A)|EΩ
) = σ(fΩ(AΩ))

⊂ f(σ(AΩ))

= f
(
Ω
)

⊂ C \ σ(f(A)).

Since σ(f(A)|EΩ
) ⊂ σ(f(A)), this implies

σ(f(A)|EΩ
) = ∅,

in contradiction to the fact that EΩ ̸= {0} by (5.6.33). This proves part (ii).

We prove (iii). Write

χλ := χ{λ}.

If x ∈ H satisfies Ax = λx then

Pλx = χλ(A)x = χλ(λ)x = x

by the (Eigenvector) axiom in Theorem 5.6.5. Thus

ker(λ1l−A) ⊂ im(Pλ).

Conversely, let x ∈ im(Pλ) and consider the map

g := id : Σ → Σ ⊂ C.

Then

x = Pλx, gχλ = λχλ

and hence

Ax = APλx

= g(A)χλ(A)x

= (gχλ)(A)x

= λχλ(A)x

= λPλx

= λx.

This shows that

im(Pλ) ⊂ ker(λ1l−A).

Hence im(Pλ) = ker(λ1l−A). This proves part (iii) and Theorem 5.6.11. □
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5.7. Cyclic Vectors

The spectral measure can be used to identify a self-adjoint operator on a
real or complex Hilbert space with a multiplication operator. This is the
content of the next theorem, as formulated in [72, p 227].

Theorem 5.7.1 (Spectral Theorem). Let H be a nonzero complex
Hilbert space and let

A = A∗ ∈ Lc(H)

be a self-adjoint complex linear operator. Then there exists a collection of
compact sets

Σi ⊂ σ(A),

each equipped with a Borel measure µi, indexed by i ∈ I, and an isomorphism

U : H →
⊕
i∈I

L2(Σi, µi) :=

{
ψ = (ψi)i∈I

∣∣∣∣ ψi ∈ L2(Σi, µi) for all i ∈ I

and
∑

i∈I ∥ψi∥
2
L2(Σi,µi)

<∞

}
such that the operator UAU−1 sends a tuple

ψ = (ψi)i∈I ∈
⊕
i∈I

L2(Σi, µi)

to the tuple

UAU−1ψ = ((UAU−1ψ)i)i∈I ∈
⊕
i∈I

L2(Σi, µi)

given by

(UAU−1ψ)i(λ) = λψi(λ) for i ∈ I and λ ∈ Σi.

Moreover, µi(Ω) > 0 for every i ∈ I and every nonempty relatively open
subset Ω ⊂ Σi. If H is separable then the index set I can be chosen countable.

Proof. See page 285. □

Theorem 5.7.1 can be viewed as a diagonalization of the operator A,
extending the notion of diagonalization of a symmetric matrix. The proof
is based on the notion of a cyclic vector.

Definition 5.7.2 (Cyclic Vector). Let H be a nonzero complex Hil-
bert space and let A = A∗ ∈ Lc(H) be a self-adjoint complex linear operator.
A vector x ∈ H is called cyclic for A if

H = span {Anx |n = 0, 1, 2, . . . }.

If such a cyclic vector exists, the Hilbert space H is necessarily separable.
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Theorem 5.7.3 (Cyclic Vectors and Multiplication Operators).

Let H be a nonzero complex Hilbert space, let A = A∗ ∈ Lc(H) be a self-
adjoint complex linear operator, let Σ := σ(A) ⊂ R be the spectrum of A,
and let B ⊂ 2Σ be the Borel σ-algebra. Let x ∈ H be a cyclic vector for A,
let µx : B → [0,∞) be the unique Borel measure that satisfies (5.6.2), and
denote by L2(Σ, µx) the complex L2 space of µx. Then the following holds.

(i) There is a unique Hilbert space isometry U : H → L2(Σ, µx) such that

(5.7.1) U−1ψ = ψ(A)x for all ψ ∈ C(Σ).

(ii) Let f : Σ → C be a bounded Borel measurable function. Then

(5.7.2) Uf(A)U−1ψ = fψ

for all ψ ∈ L2(Σ, µx).

(iii) The operator U in part (i) satisfies

(5.7.3) (UAU−1ψ)(λ) = λψ(λ)

for all ψ ∈ L2(Σ, µx) and all λ ∈ Σ.

(iv) If Ω ⊂ Σ is a nonempty (relatively) open subset then µx(Ω) > 0.

Proof. We prove part (i). Define the map T : C(Σ) → H by

(5.7.4) Tψ := ψ(A)x for ψ ∈ C(Σ).

Here ψ(A) ∈ Lc(H) is the operator in Theorem 5.4.7. The operator T is
complex linear and it satisfies

∥Tψ∥2H = ⟨ψ(A)x, ψ(A)x⟩
= ⟨x, ψ(A)∗ψ(A)x⟩

= ⟨x, ψ(A)ψ(A)x⟩
= ⟨x, |ψ|2(A)x⟩

=

∫
Σ
|ψ|2 dµx

= ∥ψ∥2L2

(5.7.5)

for all ψ ∈ C(Σ). Here the penultimate step follows from the definition of
the Borel measure µx on Σ in (5.6.2). Equation (5.7.5) shows the opera-
tor T : C(Σ) → H is an isometric embedding with respect to the L2 norm
on C(Σ). By a standard result in measure theory, C(Σ) is a dense subset
of L2(Σ, µx) (see for example [75, Thm 4.15]). More precisely, the obvious
map from C(Σ) to L2(Σ, µx) has a dense image. Hence the usual approxima-
tion argument shows that T extends to an isometric embedding of L2(Σ, µx)
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into H which will still be denoted by

(5.7.6) T : L2(Σ, µx) → H.

(Given ψ ∈ L2(Σ, µx), choose a sequence ψn ∈ C(Σ) that L2 converges to f ;
then (Tψn)n∈N is a Cauchy sequence inH by (5.7.5); so (Tψn)n∈N converges;
the limit is independent of the choice of the sequence ψn that L2 converges
to ψ and is by definition the image Tψ := limn→∞ Tψn of ψ under T .) Since
the extended operator (5.7.6) is an isometric embedding it is, in particular,
injective and has a closed image.

We prove that it is surjective. To see this, consider the sequence of
continuous functions ψn : Σ → R defined by

ψn(λ) := λn

for n ∈ N and λ ∈ Σ. Then ψn(A) = An by the (Normalization) and (Prod-
uct) axioms in Theorem 5.4.7. By definition of T in (5.7.4) this implies that
the vector Anx = ψn(A)x = Tψn belongs to the image of T for all n ∈ N.
Since T is complex linear it follows that span{x,Ax,A2x, . . . } ⊂ im(T ).
Since x a cyclic vector for A, this implies

H = span{x,Ax,A2x, . . . } ⊂ im(T ) = im(T ).

Thus the extended operator T : L2(Σ, µx) → H is an isometric isomorphism
by (5.7.5). Its inverse U := T−1 : H → L2(Σ, µx) satisfies equation (5.7.1)
by definition and is uniquely determined by this condition in view of the
above extension argument. This proves part (i).

We prove part (ii). Since C(Σ) is dense in L2(Σ, µx), it suffices to prove
the identity (5.7.2) for ψ ∈ C(Σ). Assume first that f ∈ C(Σ). If ψ ∈ C(Σ)
then it follows from (5.7.1) and the (Product) axiom in Theorem 5.6.5 that

f(A)U−1ψ = f(A)ψ(A)x = (fψ)(A)x = U−1(fψ)

and hence

Uf(A)U−1ψ = fψ.

Thus (5.7.2) holds for all ψ ∈ C(Σ), and hence for all ψ ∈ L2(Σ, µx) by
continuity. Define

F :=
{
f ∈ B(Σ) |Uf(A)U−1ψ = fψ for all ψ ∈ L2(Σ, µx)

}
.

This set is a subalgebra ofB(Σ) by definition and C(Σ) ⊂ F by what we have
just proved. Moreover, F is closed under pointwise convergence of bounded
functions by the (Convergence) axiom in Theorem 5.6.5. Hence F = B(Σ)
by Lemma 5.6.10 and this proves part (ii).

Part (iii) follows from part (ii) by taking f = id : Σ → Σ ⊂ C.
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We prove part (iv). Let Ω ⊂ Σ be a nonempty relatively open subset
and suppose, by contradiction, that µx(Ω) = 0. Fix an element λ0 ∈ Ω and
define the functions f, g : Σ → C by

f(λ) :=

{ 1
λ0−λ , for λ ∈ Σ \ Ω,
0, for λ ∈ Ω,

g(λ) :=

{
1, for λ ∈ Σ \ Ω,
0, for λ ∈ Ω.

Then f is a bounded measurable function because Ω is open, and g
a.e.
= 1

because µx(Ω) = 0. Moreover,

f(λ0 − id) = (λ0 − id)f = g

and hence it follows from parts (ii) and (iii) that

(U−1f(A)(λ01l−A)U)ψ = (U−1(λ01l−A)f(A)U)ψ

= (U−1g(A)U)ψ

= gψ
a.e.
= ψ

for all ψ ∈ L2(Σ, µx). Thus the operator λ01l − A is bijective and there-
fore λ0 ∈ Σ \ σ(A), a contradiction. This proves Theorem 5.7.3. □

The essential hypothesis in Theorem 5.7.3 is the existence of a cyclic
vector and not every self-adjoint operator admits a cyclic vector. However,
given a self-adjoint operator A = A∗ ∈ Lc(H) and any nonzero vector x ∈ H
one can restrict A to the smallest closed A-invariant subspace of H that
contains x and apply Theorem 5.7.3 to the restriction of A to this subspace.

Corollary 5.7.4. Let H be a complex Hilbert space, let x ∈ H \ {0},
and let A = A∗ ∈ Lc(H). Then

(5.7.7) Hx := span{x,Ax,A2x, . . . }

is the smallest closed A-invariant linear subspace of H that contains x.
Define Ax := A|Hx : Hx → Hx, let Σx := σ(Ax), let Bx ⊂ 2Σx be the Borel
σ-algebra, and let µx : Bx → [0,∞) be the unique Borel measure that sat-
isfies (5.6.2) for all f ∈ C(Σx). Then there exists a unique Hilbert space
isometry Ux : Hx → L2(Σx, µx) such that

(5.7.8) U−1
x ψ = ψ(Ax)x for all ψ ∈ C(Σx).

This operator satisfies

(5.7.9) Uxf(Ax)U
−1
x ψ = fψ

for all f ∈ B(Σx) and all ψ ∈ L2(Σx, µx). Moreover, µx(Ω) > 0 for every
nonempty relatively open subset Ω ⊂ Σx.

Proof. This follows directly from Theorem 5.7.3. □
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Proof of Theorem 5.7.1. Here is a reformulation of the assertion.

Let H be a nonzero complex Hilbert space and let

A = A∗ ∈ Lc(H).

Then there exists a nonempty collection of nontrivial pairwise orthogonal
closed A-invariant complex linear subspaces Hi ⊂ H for i ∈ I such that

Ai := A|Hi : Hi → Hi

admits a cyclic vector for each i ∈ I and

H =
⊕
i∈I

Hi.

Thus there is a collection of nonempty compact subsets Σi ⊂ σ(A), Borel
measures µi on Σi, and Hilbert space isometries

Ui : Hi → L2(Σi, µi)

for i ∈ I, such that µi(Ω) > 0 for all i ∈ I and all nonempty relatively open
subsets Ω ⊂ Σi and

(5.7.10) (UiAiUi
−1ψi)(λ) = λψi(λ)

for all i ∈ I, all ψi ∈ L2(Σi, µi), and all λ ∈ Σi.

Call a subset S ⊂ H A-orthonormal if it satisfies the condition

(5.7.11) ⟨x,Aky⟩ =
{

1, if x = y, k = 0,
0, if x ̸= y,

for all x, y ∈ S and k ∈ N0.

The collection S := {S ⊂ H |S satisfies (5.7.11)} of all A-orthonormal sub-
sets of H is nonempty because {x} ∈ S for every unit vector x ∈ H. More-
over, S is partially ordered by inclusion and every nonempty chain in S
has a supremum. Hence it follows from the Lemma of Zorn that S contains
a maximal element S ∈ S . If S ∈ S is a maximal element, then Corol-
lary 5.7.4 implies that the collection {Hx}x∈S defined by (5.7.7) satisfies the
requirements of Theorem 5.7.1 as formulated above. □

Exercise 5.7.5. Let Σ ⊂ R be a nonempty compact set and let µ be a
Borel measure on Σ such that every nonempty relatively open subset of Σ
has positive measure. Define the operator A : L2(Σ, µ) → L2(Σ, µ) by

(5.7.12) (Aψ)(λ) := λψ(λ) for ψ ∈ L2(Σ, µ) and λ ∈ Σ.

Prove that A is self-adjoint and σ(A) = Σ. Find a cyclic vector for A.
Theorem 5.7.1 shows that every self-adjoint operator on a complex Hilbert
space is a direct sum of operators of the form (5.7.12).
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Exercise 5.7.6. Let H be a nonzero complex Hilbert space and let A be
a compact self-adjoint operator on H. Prove that A admits a cyclic vector
if and only if A is injective and Eλ := ker(λ1l − A) has dimension one for
every λ ∈ Pσ(A).

Exercise 5.7.7. Let

A = A∗ ∈ Cn×n

be a Hermitian matrix and e1, . . . , en be an orthonormal basis of eigenvec-
tors, so Aei = λiei for i = 1, . . . , n with λi ∈ R. Thus

Σ := σ(A) = {λ1, . . . , λn}.

Assume λi ̸= λj for i ̸= j.

(i) Prove that f(A)x =
∑n

i=1 f(λi)⟨ei, x⟩ei for x ∈ Cn and f : Σ → C.

(ii) Prove that x :=
∑n

i=1 ei is a cyclic vector and that µx =
∑n

i=1 δλi is the
sum of the Dirac measures, so∫

Σ
f dµx =

n∑
i=1

f(λi)

for f : Σ → C.

(iii) Let U : Cn → L2(Σ, µx) be the isometry in Theorem 5.7.3. Prove that
(Ux)(λi) = ⟨ei, x⟩ for x ∈ Cn and U−1ψ =

∑n
i=1 ψ(λi)ei for ψ ∈ L2(Σ, µx).

Exercise 5.7.8. Let H be an infinite-dimensional separable complex
Hilbert space and let A = A∗ ∈ Lc(H) be a self-adjoint operator. Assume
that (ei)i∈N is an orthonormal basis of eigenvectors of A so that Aei = λiei
for all i ∈ N, where λi ∈ R. Thus supi∈N |λi| <∞ and Σ = {λi | i ∈ N}. As-
sume λi ̸= λj for i ̸= j.

(i) Prove that

f(A)x =
∞∑
i=1

f(λi)⟨ei, x⟩ei

for every x ∈ H and every bounded function f : Σ → C.

(ii) Choose a sequence εi > 0 such that
∑∞

i=1 ε
2
i <∞. Prove that the vector

x :=
∑∞

i=1 εiei is cyclic for A and that µx =
∑∞

i=1 ε
2
i δλi .

(iii) Prove that the map ψ 7→ (ψ(λi))i∈N defines an isomorphism

L2(Σ, µx) ∼=
{
η = (ηi)

∞
i=1 ∈ CN

∣∣∣∣ ∞∑
i=1

ε2i |ηi|2 <∞
}
.

Prove that the operator U : H → L2(Σ, µx) in Theorem 5.7.3 is given
by (U−1ψ) =

∑∞
i=1 εiψ(λi)ei. Prove that the operator Λ := UAU−1 on the

Hilbert space L2(Σ, µx) is given by η 7→ (λiηi)i∈N.
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Exercise 5.7.9. Here is an example with a rather different flavor. Con-
sider the Hilbert space

H := ℓ2(Z,C) =

{
x = (xn)n∈Z ∈ CZ

∣∣∣∣ ∞∑
n=−∞

|xn|2 <∞

}
and define the operator A : H → H by

Ax := (xn−1 + xn+1)n∈Z for x = (xn)n∈Z ∈ H.

Thus A = L + L∗, where L : H → H is given by Lx = (xn+1)n∈Z. The
vectors ei = (δin)n∈Z for i ∈ Z form an orthonormal basis of H.

(i) Define aev := e0 and aodd := e1 − e−1. Then

Hev := span{Akaev | k = 0, 1, 2, . . . }
= {x = (xn)n∈Z ∈ H |xn − x−n = 0 for all n ∈ Z} ,

Hodd := span{Akaodd | k = 0, 1, 2, . . . }
= {x = (xn)n∈Z ∈ H |xn + x−n = 0 for all n ∈ Z} ,

H = Hev ⊕Hodd.

(ii) Define the operator Φ : H → L2([0, 1]) by (Φx)(t) :=
∑

n∈Z e
2πintxn

for x ∈ H and t ∈ [0, 1]. Then Φ is an isometric isomorphism and

(ΦAΦ−1f)(t) = 2 cos(2πt)f(t) for f ∈ L2([0, 1]) and 0 ≤ t ≤ 1.

Find a formula for Φg(A)Φ−1 for every continuous function g : [−2, 2] → C.

(iii) Pσ(A) = ∅ and Σ := σ(A) = [−2, 2].

(iv) Let µev, respectively µodd, be the Borel measure on [−2, 2] determined
by equation (5.6.2) with x replaced by aev, respectively aodd. Then

µev =
1

π
√
4− λ2

dλ, µodd =

√
4− λ2

π
dλ.

Hint: Use parts (ii) and (iii) with (Φaev)(t) = 1, (Φaodd)(t) = 2i sin(2πt).

(v) There exists a unique isomorphism U ev : Hev → L2([−2, 2], µev) such
that U evf(A)aev = f for all f ∈ C([−2, 2]). It satisfies

(U evA(U ev)−1ψ)(λ) = λψ(λ)

for ψ ∈ L2([−2, 2], µev) and λ ∈ [−2, 2].

(vi) There exists a unique isomorphism Uodd : Hodd → L2([−2, 2], µodd)
such that Uoddf(A)aodd = f for all f ∈ C([−2, 2]). It satisfies

(UoddA(Uodd)−1ψ)(λ) = λψ(λ)

for ψ ∈ L2([−2, 2], µodd) and λ ∈ [−2, 2].
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5.8. Problems

Exercise 5.8.1 (Invariant Subspaces). Let H be a complex Hilbert
space and A ∈ Lc(H). Let E ⊂ H be a closed complex linear subspace of H.
The subspace E is called invariant under A if, for all x ∈ H,

x ∈ E =⇒ Ax ∈ E.

Prove that E is invariant under A if and only if E⊥ is invariant under A∗.

Exercise 5.8.2 (The Spectrum of A+A∗). Let A : H → H be a
normal operator on a nonzero complex Hilbert space H.

(a) Prove that

(5.8.1) Reλ ≥ 0 for all λ ∈ σ(A) ⇐⇒ Re⟨x,Ax⟩ ≥ 0 for all x ∈ H.

Hint: If Re⟨x,Ax⟩ ≥ 0 for all x ∈ H use the Cauchy–Schwarz inequality
for Re⟨x,Ax − λx⟩ with Reλ < 0. If Reλ ≥ 0 for all λ ∈ σ(A) prove
that ∥e−tA∥ ≤ 1 for all t ≥ 0 and differentiate the function t 7→ ∥e−tAx∥2.

(b) Prove that

sup
∥x∥=1

Re⟨x,Ax⟩ = sup
λ∈σ(A)

Reλ,

inf
∥x∥=1

Re⟨x,Ax⟩ = inf
λ∈σ(A)

Reλ.
(5.8.2)

(c) Prove that

(5.8.3) σ(A) ∩ iR = ∅ ⇐⇒ A+A∗ is bijective.

Hint 1: If A + A∗ is bijective use the Open Mapping Theorem 2.2.1 and
Lemma 5.3.14 to deduce that A is bijective. Then replace A with A+ iλ1l.

Hint 2: If σ(A) ∩ iR = ∅, use Theorem 5.2.12 to find an A-invariant direct
sum decomposition H = H−⊕H+ such that ±Reλ > 0 for all λ ∈ σ(A|H±).
Prove that H± is invariant under A∗ and use part (b) for A|H± .

(d) Prove that

(5.8.4) σ(A+A∗) =
{
λ+ λ |λ ∈ σ(A)

}
.

Hint: Apply part (c) to the operator A− µ1l for µ ∈ R.

(e) Prove that the hypothesis that A is normal cannot be removed in (a-d).

Hint: Find a matrix A ∈ R2×2 and a vector x ∈ R2 such that σ(A) = {0}
and ⟨x,Ax⟩ > 0.
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Exercise 5.8.3 (The Spectrum of p(A)). Let A : X → X be a boun-
ded complex linear operator on a nonzero complex Banach space X and
let p(z) =

∑n
k=0 akz

k be a polynomial with complex coefficients. Prove di-
rectly, without using Theorem 5.2.12, that the operator

p(A) :=

n∑
k=0

akA
k

satisfies

(5.8.5) σ(p(A)) = p(σ(A)).

Hint: To prove that p(σ(A)) ⊂ σ(p(A)) fix an element λ ∈ σ(A) and use
the fact that there exists a polynomial q with complex coefficients such that
p(z) − p(λ) = (z − λ)q(z) for all z ∈ C. To prove the converse inclusion,
assume a := an ̸= 0, fix an element µ ∈ σ(p(A)), and let λ1, . . . , λn be the
zeros of the polynomial p−µ so that p(z)−µ = a

∏n
i=1(z−λi) for all z ∈ C.

Show that A− λi1l is not bijective for some i.

Exercise 5.8.4 (Stone–Weierstraß Theorem (real)). Here is an-
other proof of the Stone–Weierstraß Theorem 5.4.5 for real valued functions.

Let M be a compact Hausdorff space and let A ⊂ C(M) be a subalgebra
of the algebra of real valued continuous functions on M . Assume that A
contains the constant functions and separates points (i.e. for all x, y ∈ M
there exists an f ∈ A such that f(x) ̸= f(y)). Then A is dense in C(M).

(a) The proof is by contradiction. Assume A is not dense in C(M) and
choose an element f ∈ C(M) such that d(f,A) := infg∈A ∥f − g∥ = 1.

(b) For a closed subset K ⊂M define ∥g∥K := supx∈K |g(x)| for g ∈ C(M)
and dK(f,A) := infg∈A ∥f − g∥K . Prove that there exists a smallest closed
subset K ⊂M such that dK(f,A) = 1. Hint: Zorn’s Lemma.

(c) Prove that K contains more than one point. Deduce that there exists a
function h ∈ A such that minK h = 0 and maxK h = 1.

(d) Define

K0 := {x ∈ K |h(x) ≤ 2/3} , K1 := {x ∈ K |h(x) ≥ 1/3} .
Find functions g0, g1 ∈ A such that ∥f − g0∥K0

< 1 and ∥f − g1∥K1
< 1.

(e) For n ∈ N define hn := (1− hn)2
n ∈ A. Prove that

∥f − hng0 − (1− hn)g1∥K < 1

for n sufficiently large and this contradicts the definition of K.

Hint: Use Bernoulli’s inequality (1 + t)n ≥ 1 + nt for t ≥ −1 and the
inequality (1 − t) ≤ (1 + t)−1 for 0 ≤ t ≤ 1 to show that hn converges
uniformly to one on K0 \K1 and converges uniformly to zero on K1 \K0.
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Exercise 5.8.5 (Stone–Weierstraß Theorem (complex)).

Let M be a compact Hausdorff space and let A ⊂ C(M,C) be a complex sub-
algebra of the algebra of complex valued continuous functions onM . Assume
that A contains the constant functions, separates points, and is invariant
under complex conjugation. Then A is dense in C(M,C).

(a) Deduce the complex Stone–Weierstraß Theorem from the real Stone–
Weierstraß Theorem.

(b) Find an example which shows that the hypothesis that A is invari-
ant under complex conjugation cannot be removed in the complex Stone–
Weierstraß Theorem. Hint: See Example 5.4.6.

Exercise 5.8.6 (Trigonometric Polynomials). Trigonometric poly-
nomials are the elements of the smallest algebra A ⊂ C(R/2πZ) that con-
tains the functions sin and cos.

(a) Every element p ∈ A has the form

p(t) =
n∑
k=0

(
ak cos(kt) + bk sin(kt)

)
for t ∈ R,

where ak, bk ∈ R.

(b) The trigonometric polynomials form a dense subalgebra of the space
C(R/2πZ) of continuous 2π-periodic real valued functions on R.

(c) Why does this not contradict the fact that there exist continuous real
valued 2π-periodic functions on the real axis whose Fourier series do not
converge uniformly? (See Exercise 2.5.5.)

Exercise 5.8.7 (The Spectrum in a Banach Algebra). Let A be a
complex unital Banach algebra. Define the spectrum of an element a ∈ A
by

σ(a) :=
{
λ ∈ C

∣∣λ1l− a is not invertible
}
.

Prove the following.

(a) The spectrum σ(a) is a nonempty compact subset of C for every a ∈ A.

(b) The Gelfand–Mazur Theorem. If every nonzero element of A is
invertible then A is isomorphic to C. Hint: See the proof of Theorem 5.5.2.

(c) Every nonzero quaternion is invertible. Why does the Gelfand–Mazur
Theorem not apply?

(d) σ(ab) ∪ {0} = σ(ba) ∪ {0} for all a, b ∈ A.
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Exercise 5.8.8 (Cayley–Hamilton). Let A be a complex n×n-matrix
with spectral radius rA. Prove the Cauchy integral formula

(5.8.6) p(A) =
1

2πi

∫
|z|=r

p(z)
(
z1l−A)−1dz

for every r > rA and every polynomial p(z) ∈ C[z]. Deduce that pA(A) = 0,
where

pA(z) := det(z1l−A)

is the characteristic polynomial of A.

Exercise 5.8.9 (Volterra Operator). Let H := L2([0, 1]) and define
the operator T : H → H by

(Tf)(t) :=

∫ t

0
f(s) ds

for f ∈ L2([0, 1]).

(a) Verify the formula

(Tnf)(t) :=
1

(n− 1)!

∫ t

0
(t− s)nf(s) ds

for n ∈ N, 0 ≤ t ≤ 1, and f ∈ L2([0, 1]).

(b) Determine the spectrum and the spectral radius of T .

(c) Prove that T is compact and injective. Hint: Arzelà–Ascoli.

(d) Compute the adjoint operator T ∗.

(e) Is T self-adjoint? Is T normal?

(f) Prove that the operator

P := T + T ∗

is an orthogonal projection, i.e. it satisfies

P 2 = P = P ∗.

What is its image?

(g) Compute the eigenvalues and eigenvectors, the spectral radius, and the
norm of the operator T ∗T . Hint: Differentiate T ∗Tf = λf twice.

(h) Prove that

∥T∥ =
2

π
.

Hint: Compute the largest eigenvalue of T ∗T and use equation (5.3.10).
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Exercise 5.8.10 (Exponential Function and Logarithm). Let A
be a unital Banach algebra.

(a) For a ∈ A define

exp(a) :=
∞∑
n=0

an

n!
.

If a, b ∈ A commute, prove that

exp(a+ b) = exp(a) exp(b).

Prove that exp(a) is invertible for every a ∈ A.

(b) Let a ∈ A and suppose that the spectrum of a is contained in the open
unit disc in C. Show that the element

log(a) := −
∞∑
n=1

(1− a)n

n

is a well-defined element of A and satisfies

exp(log(a)) = a.

(c) Show that exp(A) contains an open neighborhood of the unit 1l.

(d) Let G ⊂ A denote the group of invertible elements of A. Recall that G
is an open subset of A and denote by G0 the identity component of G.
Show that G0 is an open and closed normal subgroup of G. Show that G0 is
the smallest subgroup of G that contains the set exp(A). Show that every
element of G0 is a composition of finitely many elements of exp(A).

(e) Suppose A is commutative. Prove that

G0 = exp(A).

Deduce that G/G0 is torsion free. Hint: Let g ∈ G and assume

gn ∈ exp(A).

Choose an element a ∈ A with

gn = exp(a)

and define

h := g exp
(
−a
n

)
.

Then hn = 1l. Use this to prove that the set

{λ ∈ C | (1− λ)1l + λh /∈ G}

is finite. Deduce that h ∈ G0 and so g ∈ G0.
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Exercise 5.8.11 (The Gelfand Spectrum). This exercise expands
the discussion in Subsection 5.5.1, with an emphasis on the complex valued
unital algebra homomorphisms rather than the maximal ideals. Let A be a
complex commutative unital Banach algebra with ∥1l∥ = 1.

(a) Show that every maximal ideal J ⊂ A is closed and satisfies A/J ∼= C.
Show that every noninvertible element of A is contained in a maximal ideal.

(b) Let Λ : A → C be a unital algebra homomorphism, i.e. it is linear and

Λ(ab) = Λ(a)Λ(b), Λ(1l) = 1

for all a, b ∈ A. Show that Λ is surjective and

∥Λ∥ = 1.

(c) Show that the set of unital algebra homomorphisms Λ : A → R is a

weak* closed subset Â of the unit ball in the complex dual space A∗ of A.

Show that there is a one-to-one correspondence between the elements Λ ∈ Â
and the maximal ideals J ⊂ A. Thus the set Â can be identified with the
Gelfand spectrum Spec(A) (the set of maximal ideals in A).

(d) Show that the spectrum of an element a ∈ A is determined by Â, i.e.

σ(a) =
{
Λ(a)

∣∣Λ ∈ Â
}
.

(e) Let A := C([0, 1]) be the space of complex valued continuous functions
on the unit interval. Show that there is a homeomorphism

ev : [0, 1] → Â
that assigns to each element x ∈ [0, 1] the evaluation map at x.

(f) The Gelfand transform is the map

Γ : A → C(Â)

that assigns to each a ∈ A the evaluation map Γa : Â → C given by

Γa(Λ) := Λ(a)

for Λ ∈ Â. Show that the Gelfand transform is a norm decreasing algebra

homomorphism. Show that the functions in Γ(A) := {Γa | a ∈ A} ⊂ C(Â)

separate the points in Â.

(g) In the case A = C([0, 1]) show that the Gelfand transform is an isomet-
ric isomorphism. Extend this result to the case where the unit interval is
replaced by any compact metric space. (More generally, by Theorem 5.5.8,
the Gelfand transform is an isometric isomorphism whenever A admits the
structure of a C* algebra such that ∥a∗a∥ = ∥a∥2 for all a ∈ A.)





Chapter 6

Unbounded Operators

This chapter is devoted to the spectral theory of unbounded linear opera-
tors on a Banach space X. The domain of an unbounded operator A is a
linear subspace of X denoted by dom(A). In most of the relevant examples
this subspace is dense and the linear operator A : dom(A) → X has a closed
graph. Section 6.1 examines the basic definition, discusses several examples,
and examines the spectrum of an unbounded operator. Section 6.2 intro-
duces the dual of an unbounded operator. Section 6.3 deals with unbounded
operators on Hilbert spaces. It introduces the adjoint of an unbounded op-
erator and examines the spectra of unbounded normal and self-adjoint oper-
ators. Section 6.4 extends the functional calculus and the spectral measure
to unbounded self-adjoint operators.

6.1. Unbounded Operators on Banach Spaces

6.1.1. Definition and Examples.

Definition 6.1.1 (Unbounded Operator). Let X and Y be real or
complex Banach spaces. An unbounded (complex) linear operator
from X to Y is a pair (A,dom(A)), where dom(A) ⊂ X is a (complex)
linear subspace and

A : dom(A) → Y

is a (complex) linear map. An unbounded operator A : dom(A) → Y is
called densely defined if its domain is a dense subspace of X. It is called
closed if its graph, defined by

graph(A) := {(x,Ax) |x ∈ dom(A)} ,

is a closed linear subspace of X × Y with respect to the product topology.
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We have already encountered unbounded operators in Definition 2.2.11.
Recall that the domain dom(A) ⊂ X of an unbounded operator

A : dom(A) → Y

is a normed vector space with the graph norm of A, defined in (2.2.8) by

∥x∥A := ∥x∥X + ∥Ax∥Y for x ∈ dom(A).

Thus an unbounded operator can also be viewed as a bounded operator
from its domain, equipped with the graph norm, to its target space. By
Exercise 2.2.12 an unbounded operator A : dom(A) → Y has a closed graph
if and only if its domain is a Banach space with respect to the graph norm.
By Lemma 2.2.19 an unbounded operator A : dom(A) → Y is closeable, i.e.
it extends to an unbounded operator with a closed graph, if and only if every
sequence (xn)n∈N in dom(A) such that limn→∞ ∥xn∥X = 0 and (Axn)n∈N is
a Cauchy sequence in Y satisfies limn→∞ ∥Axn∥Y = 0. We emphasize that
the case dom(A) = X is not excluded in Definition 6.1.1. Thus bounded
operators are examples of unbounded operators. The Closed Graph Theo-
rem 2.2.13 asserts in the case dom(A) = X that A has a closed graph if and
only if A is bounded. The emphasis in the present chapter is on unbounded
operators A : dom(A) → Y whose domains are proper linear subspaces of X
and whose graphs are closed.

Example 6.1.2. Let X := C([0, 1]) be the Banach space of continuous
real valued functions on [0, 1] with the supremum norm. Then the formula

(6.1.1) dom(A) := C1([0, 1]), Af := f ′,

defines an unbounded operator on C([0, 1]) with a dense domain and a closed
graph. The graph norm of A is the standard C1 norm on C1([0, 1]). (See
Example 2.2.10 and equation (2.2.9).)

Example 6.1.3. Let H be a separable complex Hilbert space, let (ei)i∈N
be a complex orthonormal basis, and let (λi)i∈N be a sequence of complex
numbers. Define the operator

Aλ : dom(Aλ) → H

by

dom(Aλ) :=

{
x ∈ H

∣∣∣∣ ∞∑
i=1

|λi⟨ei, x⟩|2 <∞

}
,

Aλx :=

∞∑
i=1

λi⟨ei, x⟩ei for x ∈ dom(A).

(6.1.2)

This is an unbounded operator with a dense domain and a closed graph. It
is bounded if and only if the sequence (λi)i∈N is bounded.
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Example 6.1.4 (Vector Fields). Here is an example for readers who
are familiar with some basic notions of differential topology (smooth man-
ifolds, tangent bundles, and vector fields). Let M be a compact smooth
manifold and let v :M → TM be a smooth vector field. Consider the Ba-
nach space

X := C(M)

of continuous functions f : M → R equipped with the supremum norm.
Define the operator Dv : dom(Dv) → C(M) by

dom(Dv) :=

f ∈ C(M)

∣∣∣∣∣
the partial derivative of f
in the direction v(p)
exists for every p ∈M
and depends continuously on p

 ,

(Dvf)(p) :=
d

dt

∣∣∣∣
t=0

f(γ(t)), γ : R →M, γ(0) = p, γ̇(0) = v(p).

(6.1.3)

Here γ : R →M is chosen as any smooth curve in M that passes through p
at t = 0 and whose derivative at t = 0 is the tangent vector v(p) ∈ TpM . The
operator Dv has a dense domain and a closed graph. With the appropriate
modifications this discussion carries over to manifolds with boundary. Then
Example 6.1.2 is the special case M = [0, 1] and v = ∂/∂t.

Example 6.1.5 (Derivative). Fix a constant 1 ≤ p ≤ ∞ and consider
the Banach space X := Lp(R,C). Define the operator A : dom(A) → X by

dom(A) :=W 1,p(R,C)

:=

{
f ∈ Lp(R,C)

∣∣∣∣ f is absolutely continuous

and df
ds ∈ Lp(R,C)

}
,

Af :=
df

ds
for f ∈W 1,p(R,C).

(6.1.4)

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [75, Thm 6.19]). The opera-
tor (6.1.4) has a closed graph and, for 1 ≤ p <∞, it has a dense domain.
For p = ∞ its domain is the spaceW 1,∞(R,C) of bounded globally Lipschitz
continuous functions f : R → C. These are the bounded absolutely contin-
uous functions with bounded derivative and do not form a dense subspace
of L∞(R,C). The closure of the subspace W 1,∞(R,C) in L∞(R,C) is the
space of bounded uniformly continuous functions f : R → C.
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Example 6.1.6 (Laplace Operator). Fix an integer n ∈ N and a real
number 1 < p <∞. Consider the Laplace operator

(6.1.5) ∆ :=
n∑
i=1

∂2

∂x2i
:W 2,p(Rn) → Lp(Rn).

Its domain is the Sobolev spaceW 2,p(Rn) of equivalence classes, up to equal-
ity almost everywhere, of real valued Lp functions on Rn whose distributional
derivatives up to order two can be represented by Lp functions. This sub-
space contains the compactly supported smooth functions and so is dense
in Lp(Rn). The proof that this operator has a closed graph requires elliptic
regularity and the Calderón–Zygmund Inequality (see [75, Thm 7.43]).

Example 6.1.7 (Schrödinger Operator). Define the unbounded lin-
ear operator A on the Hilbert space H := L2(R,C) by

dom(A) :=

{
ψ ∈ L2(R,C)

∣∣∣∣ ψ is absolutely continuous,
dψ
dx is absolutely continuous,

and d2ψ
dx2

∈ L2(R,C)

}
,

Aψ := iℏ
d2ψ

dx2
for ψ ∈ dom(A) =W 2,2(R,C).

(6.1.6)

Here ℏ is a positive real number and x is the variable in R. Another variant
of the Schrödinger operator on L2(R,C) is given by

dom(A) :=

{
ψ ∈ L2(R,C)

∣∣∣∣∣
ψ is absolutely continuous and
dψ
dx is absolutely continuous and∫∞
−∞|−ℏ2 d

2ψ
dx2

+ x2ψ|2 dx <∞

}
,

(Aψ)(x) := iℏ
d2ψ

dx2
(x) +

x2

iℏ
ψ(x) for ψ ∈ dom(A) and x ∈ R.

(6.1.7)

The operators (6.1.6) and (6.1.7) are both densely defined and closed.

Example 6.1.8 (Multiplication Operator). Let (M,A, µ) be a mea-
sure space and let f : M → R be a measurable function. Let 1 ≤ p <∞
and define the operator Af : dom(Af ) → Lp(µ) by

dom(Af ) := {ψ ∈ Lp(µ) | fψ ∈ Lp(µ)} ,
Afψ := fψ for ψ ∈ dom(Af ).

(6.1.8)

This operator has a dense domain and a closed graph.

There are many other interesting examples of unbounded operators that
play important roles in differential geometry and topology and other fields of
mathematics. Their study goes beyond the scope of the present book, whose
purpose is merely to provide the necessary functional analytic background.
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6.1.2. The Spectrum of an Unbounded Operator. The following defi-
nition is the natural analogue of the definition of the spectrum of a bounded
complex linear operator in Definition 5.2.1. We restrict the discussion to
operators with closed graphs.

Definition 6.1.9 (Spectrum). Let X be a complex Banach space and
let A : dom(A) → X be an unbounded complex linear operator with a closed
graph (whose domain is a complex linear subspace of X). The spectrum
of A is the set

σ(A) :=

{
λ ∈ C

∣∣∣∣ the operator λ1l−A : dom(A) → X
is not bijective

}
= Pσ(A) ∪ Rσ(A) ∪ Cσ(A).

(6.1.9)

Here Pσ(A) is the point spectrum, Rσ(A) is the residual spectrum,
and Cσ(A) is the continuous spectrum. These are defined by

Pσ(A) :=
{
λ ∈ C

∣∣ the operator λ1l−A is not injective
}
,

Rσ(A) :=

{
λ ∈ C

∣∣∣∣ the operator λ1l−A is injective
and its image is not dense

}
,

Cσ(A) :=

λ ∈ C
∣∣∣∣ the operator λ1l−A is injective
and its image is dense,
but it is not surjective

 .

(6.1.10)

The resolvent set of A is the complement of the spectrum, denoted by

(6.1.11) ρ(A) := C \ σ(A) =

λ ∈ C
∣∣∣∣ the operator
λ1l−A : dom(A) → X
is bijective

 .

For λ ∈ ρ(A) the linear operator Rλ(A) := (λ1l−A)−1 : X → X is called
the resolvent operator of A associated to λ. A complex number λ be-
longs to the point spectrum Pσ(A) if and only if there exists a nonzero
vector x ∈ dom(A) such that Ax = λx. The elements λ ∈ Pσ(A) are called
eigenvalues of A and the nonzero vectors x ∈ ker(λ1l−A) are called eigen-
vectors.

The first observation about this definition is that, for every λ ∈ ρ(A),
the resolvent operator Rλ(A) := (λ1l−A)−1 has a closed graph because A
does, and hence is bounded by the Closed Graph Theorem 2.2.13 (see Ex-
ercise 6.5.2). The resolvent set may actually be empty for unbounded op-
erators with closed graphs or it may be the entire complex plane as we will
see below. The second observation is that the resolvent set is always an
open subset of the complex plane and the map ρ(A) → Lc(X) : λ 7→ Rλ(A)
is holomorphic. This is the content of the next lemma.
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Lemma 6.1.10 (Resolvent Operator). Let X be a complex Banach
space and let A : dom(A) → X be an unbounded complex linear operator
with a closed graph. Let µ ∈ ρ(A) and let λ ∈ C such that

(6.1.12) |λ− µ| ∥(µ1l−A)−1∥ < 1.

Then λ ∈ ρ(A) and

(6.1.13) (λ1l−A)−1 =

∞∑
k=0

(µ− λ)k(µ1l−A)−k−1.

Proof. Define the bounded linear operator Tλ ∈ L(X) by

Tλx := x− (µ− λ)(µ1l−A)−1x

for x ∈ X. By (6.1.12) and Corollary 1.5.7 this operator is bijective and

T−1
λ =

∞∑
k=0

(
µ− λ)k(µ1l−A)−k.

Moreover, for all x ∈ dom(A),

Tλ(µ1l−A)x = (µ1l−A)x− (µ− λ)x = (λ1l−A)x.

Hence the operator λ1l−A : dom(A) → X is bijective and

(λ1l−A)−1 = (µ1l−A)−1T−1
λ =

∞∑
k=0

(µ− λ)k(µ1l−A)−k−1.

This proves (6.1.13) and Lemma 6.1.10. □

The third observation is that the resolvent identity of Lemma 5.2.6 con-
tinues to hold for unbounded operators.

Lemma 6.1.11 (Resolvent Identity). Let X be a complex Banach
space, let A : dom(A) → X be an unbounded complex linear operator with
a closed graph, and let λ, µ ∈ ρ(A). Then the resolvent operators

Rλ(A) := (λ1l−A)−1, Rµ(A) := (µ1l−A)−1

commute and

(6.1.14) Rλ(A)−Rµ(A) = (µ− λ)Rλ(A)Rµ(A).

Proof. Let x ∈ X. Then

(λ1l−A) (Rλ(A)x−Rµ(A)x) = x− (µ1l−A)Rµ(A)x+ (µ− λ)Rµ(A)x

= (µ− λ)Rµ(A)x

and hence Rλ(A)x−Rµ(A)x = (µ− λ)Rλ(A)Rµ(A)x. This proves (6.1.14).
Interchange the roles of λ and µ to obtain that Rλ(A) and Rµ(A) commute.
This proves Lemma 6.1.11. □
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The fourth observation is that the spectrum of an unbounded operator
with a nonempty resolvent set is related to the spectrum of its resolvent
operator as follows.

Lemma 6.1.12 (Spectrum and Resolvent Operator). Let X be a
complex Banach space and let A : dom(A) → X be an unbounded complex
linear operator with a closed graph such that dom(A) ⊊ X. Let µ ∈ ρ(A).
Then

Pσ(Rµ(A)) =

{
1

µ− λ

∣∣∣∣λ ∈ Pσ(A)

}
,

Rσ(Rµ(A)) \ {0} =

{
1

µ− λ

∣∣∣∣λ ∈ Rσ(A)

}
,

Cσ(Rµ(A)) \ {0} =

{
1

µ− λ

∣∣∣∣λ ∈ Cσ(A)

}
,

σ(Rµ(A)) =

{
1

µ− λ

∣∣∣∣λ ∈ σ(A)

}
∪ {0},

ρ(Rµ(A)) =

{
1

µ− λ

∣∣∣∣λ ∈ ρ(A) \ {µ}
}
.

(6.1.15)

Moreover, if λ ∈ ρ(A) \ {µ} then

(6.1.16) R(µ−λ)−1(Rµ(A)) = (µ− λ)(µ1l−A)Rλ(A),

and if λ ∈ Pσ(A) and k ∈ N then

ker((µ− λ)−11l−Rµ(A))
k = ker(λ1l−A)k.

Proof. First observe that Rµ(A) is injective and

im(Rµ(A)) = dom(A) ⊊ X.

Hence

0 ∈ Rσ(Rµ(A)) ∪ Cσ(Rµ(A)).

Second, if λ ∈ C \ {µ} then

(6.1.17)
1

µ− λ
1l−Rµ(A) =

1

µ− λ
(λ1l−A)Rµ(A) ∈ Lc(X).

The left hand side is injective if and only if λ1l−A is injective, has a dense
image if and only if λ1l−A has a dense image, and is surjective if and only
if λ1l−A is surjective. This proves (6.1.15) and (6.1.16). Now let λ ∈ Pσ(A)
and k ∈ N and consider the linear subspace

Ek := ker(λ1l−A)k =
{
x ∈ dom(A∞) | (λ1l−A)kx = 0

}
.
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This subspace is invariant under the operator Rµ(A) and so under Rµ(A)
k.

Thus it follows from (6.1.17) that

Ek ⊂ ker
(
(µ− λ)−11l−Rµ(A)

)k
.

To prove the converse inclusion, we proceed by induction on k. Suppose
first that x ∈ ker

(
(µ− λ)−11l−Rµ(A)

)
. Then

x = (µ− λ)Rµ(A)x ∈ dom(A)

and hence

Ax = (µ− λ)ARµ(A)x

= (µ− λ)(µRµ(A)x− x)

= µ(µ− λ)Rµ(A)x+ (λ− µ)x

= λx.

This implies x ∈ E1. Now let k ≥ 2, assume

Ek−1 = ker((µ− λ)−11l−Rµ(A))
k−1,

and fix an element

x ∈ ker
(
(µ− λ)−11l−Rµ(A)

)k
.

Then
x− (µ− λ)Rµ(A)x ∈ Ek−1 ⊂ dom(A∞)

by the induction hypothesis. This implies x ∈ dom(A) and

Rµ(A)(λx−Ax) = x− (µ− λ)Rµ(A)x ∈ Ek−1

by (6.1.17). Hence λx−Ax ∈ Ek−1, because Ek−1 is invariant under µ1l−A,
and hence x ∈ Ek. This proves Lemma 6.1.12. □

Lemma 6.1.12 allows us to carry over the results about the spectra of
bounded linear operators to unbounded operators. An important special
case concerns operators with compact resolvent.

Definition 6.1.13 (Operator with Compact Resolvent). An un-
bounded operator A : dom(A) → X on a complex Banach space X with
a closed graph and dom(A) ⊂ X is said to have a compact resolvent
if ρ(A) ̸= ∅ and the resolvent operator Rλ(A) = (λ1l−A)−1 ∈ Lc(X) is com-
pact for all λ ∈ ρ(A).

Exercise 6.1.14. Let A : dom(A) → X be an unbounded operator on a
complex Banach space X with a closed graph and dom(A) ⊂ X.

(i) Prove that Rλ(A) is compact for some λ ∈ ρ(A) if and only if it is
compact for all λ ∈ ρ(A).

(ii) Let λ ∈ Pσ(A) and define Ek := ker(λ1l−A)k for k ∈ N. Assume
that Em = Em+1. Prove that Em = Ek for every integer k ≥ m.
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Theorem 6.1.15 (Spectrum and Compact Resolvent). Let X be
a complex Banach space and let A : dom(A) → X be an unbounded com-
plex linear operator on X with compact resolvent. Then σ(A) = Pσ(A) is
a discrete subset of C and the subspace Eλ :=

⋃∞
k=1 ker(λ1l−A)k is finite-

dimensional for all λ ∈ Pσ(A).

Proof. Let µ ∈ ρ(A). Then zero is not an eigenvalue of Rµ(A). Since
the operator Rµ(A) is compact, it follows from Theorem 5.2.8 that

σ(Rµ(A)) \ {0} = Pσ(Rµ(A))

is a discrete subset of C \ {0} and that the generalized eigenspace of Rµ(A)
associated to every eigenvalue z = (µ− λ)−1 is finite-dimensional. Hence
Lemma 6.1.12 asserts that

σ(A) =

{
µ− 1

z

∣∣∣∣ z ∈ σ(Rµ(A)) \ {0}
}

=

{
µ− 1

z

∣∣∣∣ z ∈ Pσ(Rµ(A))

}
= Pσ(A)

is a discrete subset of C and that dimEλ <∞ for all λ ∈ σ(A). This proves
Theorem 6.1.15. □

Example 6.1.16. Consider the complex Hilbert spaceH := ℓ2(N,C) (see
part (ii) of Exercise 5.3.5). Let (λi)i∈N be a sequence of complex numbers
and define the unbounded operator Aλ : dom(Aλ) → H by

dom(Aλ) :=

{
x = (xi)i∈N ∈ CN

∣∣∣∣ ∞∑
i=1

|xi|2 <∞,

∞∑
i=1

|λixi|2 <∞

}
and

Aλx := (λixi)i∈N for x = (xi)i∈N ∈ dom(Aλ).

This operator has a dense domain and a closed graph by Example 6.1.3 and
its spectrum is given by Rσ(Aλ) = ∅ and

Pσ(Aλ) = {λi | i ∈ N} , σ(Aλ) = {λi | i ∈ N}.

Here the overline denotes the closure (and not complex conjugation). Thus
the resolvent set ρ(Aλ) is empty if and only if the sequence (λi)i∈N is dense
in C. The operator Aλ has a compact resolvent if and only if the sequence |λi|
diverges to infinity as i tends to ∞.

Example 6.1.16 shows that the spectrum of an unbounded densely de-
fined closed operator on a separable Hilbert space can be any nonempty
closed subset of the complex plane. The next example shows that the spec-
trum can also be empty.
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Example 6.1.17. Consider the complex Hilbert space H := L2([0, 1],C)
(Exercise 5.3.5) and let W 1,2([0, 1],C) be the space of all absolutely contin-
uous functions u : [0, 1] → C with square integrable derivatives. Let t be the
variable in the unit interval [0, 1].

(i) Define the operator A0 : dom(A0) → H by

dom(A0) :=
{
u ∈W 1,2([0, 1],C)

∣∣u(0) = 0
}
, A0u := u̇.

Let f ∈ L2([0, 1],C) and λ ∈ C. A function u ∈ dom(A0) satisfies the equa-
tion λu−A0u = f if and only if u ∈W 1,2([0, 1],C) and

u̇ = λu− f, u(0) = 0.

This equation has a unique solution given by

u(t) = −
∫ t

0
eλ(t−s)f(s) ds for 0 ≤ t ≤ 1.

Hence λ1l−A0 is invertible for all λ ∈ C and so σ(A0) = ∅.

(ii) Define AP : dom(AP ) → H (periodic boundary conditions) by

dom(AP ) :=
{
u ∈W 1,2([0, 1],C)

∣∣u(0) = u(1)
}
, APu := iu̇.

Let f ∈ L2([0, 1],C) and λ ∈ C. A function u ∈ dom(AP ) satisfies the equa-
tion λu−APu = f if and only if u ∈W 1,2([0, 1],C) and

u̇ = −iλu+ if, u(0) = u(1).

This equation has a unique solution if and only if e−iλ ̸= 1, and in this case
the solution is given by

u(t) = e−iλtu0 + i

∫ t

0
e−iλ(t−s)f(s) ds, u0 :=

∫ 1

0

ie−iλ(1−s)f(s)

1− e−iλ
ds.

Thus σ(AP ) = Pσ(AP ) = 2πZ.

(iii) Define AL : dom(AL) → H ×H (Lagrangian boundary conditions) by

dom(AL) :=
{
(u, v) ∈W 1,2([0, 1],C2)

∣∣ v(0) = v(1) = 0
}

and AL(u, v) := (−v̇, u̇). Exercise: Show that σ(AL) = Pσ(AL) = πZ.

(iv) The operators in (i), (ii), and (iii) have compact resolvent. Removing
the boundary conditions one obtains the operator

A =
d

dt
: dom(A) =W 1,2([0, 1],C) → L2([0, 1],C)

with σ(A) = Pσ(A) = C, which has no resolvent at all.
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6.1.3. Spectral Projections. The holomorphic functional calculus in Sec-
tion 5.2.4 does not carry over to unbounded operators unless one imposes
rather stringent conditions on the asymptotic behavior of the holomorphic
functions in question. However, the basic construction can be used to define
certain spectral projections.

Definition 6.1.18 (Dunford Integral). Let A : dom(A) → X be an
unbounded complex linear operator with a closed graph on a complex Ba-
nach spaceX and let Σ ⊂ σ(A) be a compact set. Call Σ isolated if σ(A) \ Σ
is a closed subset of C. Call an open set U ⊂ C an isolating neighbor-
hood of Σ if σ(A) ∩ U = Σ. Assume U is an isolating neighborhood of Σ
and let γ be a cycle in U \ Σ such that

(6.1.18) w(γ, λ) :=
1

2πi

∫
γ

dz

z − λ
=

{
1, for λ ∈ Σ,
0, for λ ∈ C \ U.

(See Figure 5.2.1.) The operator ΦΣ,A(f) ∈ Lc(X) is defined by

(6.1.19) ΦΣ,A(f) :=
1

2πi

∫
γ
f(z)(z1l−A)−1 dz.

Theorem 6.1.19 (Spectral Projection). Let X,A,Σ, U be as in Def-
inition 6.1.18. Then the following holds.

(i) The operator ΦA,Σ(f) is independent of the choice of the cycle γ in U \Σ
satisfying (6.1.18) that is used to define it.

(ii) Let f, g : U → C be holomorphic. Then ΦA,Σ(f+g) = ΦA,Σ(f)+ΦA,Σ(g)
and ΦA,Σ(fg) = ΦA,Σ(f)ΦA,Σ(g).

(iii) Let f : U → C be holomorphic. Then σ(ΦA,Σ(f)) = f(Σ).

(iv) Let V ⊂ C be an open set and let f : U → V and g : V → C be
holomorphic functions. Then g(ΦA,Σ(f)) = ΦA,Σ(g ◦ f).

(v) Let γ be a cycle in U \ Σ satisfying (6.1.18) and define

(6.1.20) PΣ := ΦA,Σ(1) =
1

2πi

∫
γ
(z1l−A)−1 dz.

Then PΣ is a projection, its image XΣ := im(PΣ) ⊂ dom(A) is A-invariant,
the operator AΣ := A|XΣ

: XΣ → XΣ is bounded, its spectrum is σ(AΣ) = Σ,
and the unbounded operator A|YΣ∩dom(A) : YΣ ∩ dom(A) → YΣ := ker(PΣ)
has the spectrum σ(A) \ Σ.

Proof. The proof of Theorem 6.1.19 is verbatim the same as that of
Theorem 5.2.12 and will be omitted. □
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6.2. The Dual of an Unbounded Operator

Definition 6.2.1 (Dual Operator). Let X and Y be real or complex
Banach spaces and let

A : dom(A) → Y

be an unbounded operator with a dense domain dom(A) ⊂ X. The dual
operator of A is the linear operator

A∗ : dom(A∗) → X∗, dom(A∗) ⊂ Y ∗,

defined as follows. Its domain is the linear subspace

dom(A∗) :=

{
y∗ ∈ Y ∗

∣∣∣∣ there exists a constant c ≥ 0 such that
|⟨y∗, Ax⟩| ≤ c ∥x∥ for all x ∈ dom(A)

}
and, for y∗ ∈ dom(A∗), the element A∗y∗ ∈ X∗ is the unique bounded linear
functional on X that satisfies

⟨A∗y∗, x⟩ = ⟨y∗, Ax⟩ for all x ∈ dom(A).

Thus the graph of the linear operator A∗ is the linear subspace of Y ∗ ×X∗

that is characterized by the condition

(6.2.1)
y∗ ∈ dom(A∗)
and x∗ = A∗y∗

⇐⇒ ⟨x∗, x⟩ = ⟨y∗, Ax⟩
for all x ∈ dom(A).

The next theorem summarizes some fundamental correspondences be-
tween the domains, kernels, and images of an unbounded linear operator
and its dual. It is the analogue of Theorem 4.1.8 for unbounded operators.

Theorem 6.2.2 (Duality). Let X and Y be Banach spaces and suppose
that A : dom(A) → Y is a linear operator with a dense domain dom(A) ⊂ X.
Then the following holds.

(i) The dual operator A∗ : dom(A∗) → X∗ is closed.

(ii) Let x ∈ X and y ∈ Y . Then

(6.2.2) (x, y) ∈ graph(A) ⇐⇒ ⟨y∗, y⟩ = ⟨A∗y∗, x⟩
for all y∗ ∈ dom(A∗).

(iii) A is closeable if and only if dom(A∗) is weak* dense in Y ∗.

(iv) im(A)⊥ = ker(A∗) and, if A has a closed graph, then ⊥im(A∗) = ker(A).

(v) The operator A has a dense image if and only if A∗ is injective.

(vi) Assume A has a closed graph. Then A is injective if and only if A∗ has
a weak* dense image.
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Proof. Part (i) follows directly from (6.2.1).

We prove part (ii). Let x ∈ X and y ∈ Y . By Corollary 2.3.25, we

have (x, y) ∈ graph(A) if and only if, for all (x∗, y∗) ∈ X∗ × Y ∗,

⟨x∗, ξ⟩+ ⟨y∗, Aξ⟩ = 0 for all ξ ∈ dom(A) =⇒ ⟨x∗, x⟩+ ⟨y∗, y⟩ = 0.

By (6.2.1) the equation ⟨x∗, ξ⟩+ ⟨y∗, Aξ⟩ = 0 holds for all ξ ∈ dom(A) if and
only if

y∗ ∈ dom(A∗), A∗y∗ = −x∗.
Thus (x, y) ∈ graph(A) if and only if

⟨y∗, y⟩ = ⟨A∗y∗, x⟩ for all y∗ ∈ dom(A∗).

This proves part (ii).

We prove part (iii). Fix an element y ∈ Y . Then it follows from (6.2.2) in

part (ii) that (0, y) ∈ graph(A) if and only if ⟨y∗, y⟩ = 0 for all y∗ ∈ dom(A∗),

and this means that y ∈ ⊥dom(A∗). Thus

(6.2.3) y ∈ ⊥dom(A∗) ⇐⇒ (0, y) ∈ graph(A).

Now Lemma 2.2.19 asserts that the operator A is closeable if and only if the
projection graph(A) → X is injective, i.e. for all y ∈ Y ,

(0, y) ∈ graph(A) =⇒ y = 0.

By (6.2.3) this shows that A is closeable if and only if

⊥dom(A∗) = {0},

and, by Corollary 3.1.26, this condition holds if and only if the domain of A∗

is a weak* dense subspace of Y ∗. This proves part (iii).

We prove part (iv). Note that

y∗ ∈ ker(A∗) ⇐⇒ y∗ ◦A = 0

⇐⇒ y∗ ∈ im(A)⊥

and, if A is closed, then

x ∈ ⊥im(A∗) ⇐⇒ ⟨A∗y∗, x⟩ = 0 for all y∗ ∈ dom(A∗)

⇐⇒ (x, 0) ∈ graph(A)

⇐⇒ x ∈ dom(A) and Ax = 0.

Here the second step follows from (6.2.2) in part (ii) and the last step holds
because A has a closed graph. This proves part (iv).

Part (v) follows from part (iv) and Corollary 2.3.25 and part (vi) follows
from part (iv) and Corollary 3.1.26. This proves Theorem 6.2.2. □

The next result extends the Closed Image Theorem 4.1.16 to unbounded
operators. In this form it was proved by Stefan Banach in 1932.
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Theorem 6.2.3 (Closed Image Theorem). Let X and Y be Ba-
nach spaces and let A : dom(A) → Y be a linear operator with a dense do-
main dom(A) ⊂ X and a closed graph. Then the following are equivalent.

(i) im(A) = ⊥ ker(A∗).

(ii) The image of A is a closed subspace of Y .

(iii) There exists a constant c > 0 such that

(6.2.4) inf
Aξ=0

∥x+ ξ∥X ≤ c ∥Ax∥Y for all x ∈ dom(A).

Here the infimum runs over all ξ ∈ dom(A) that satisfy Aξ = 0.

(iv) im(A∗) = ker(A)⊥.

(v) The image of A∗ is a weak* closed subspace of X∗.

(vi) The image of A∗ is a closed subspace of X∗.

(vii) There exists a constant c > 0 such

(6.2.5) inf
A∗η∗=0

∥y∗ + η∗∥Y ∗ ≤ c ∥A∗y∗∥X∗ for all y∗ ∈ dom(A∗).

Here the infimum runs over all η∗ ∈ dom(A∗) that satisfy A∗η∗ = 0.

Proof. We prove that (i) is equivalent to (ii). By Corollary 3.1.18 and
part (iv) of Theorem 6.2.2, we have

im(A) = ⊥(im(A)⊥) = ⊥ ker(A∗).

Hence (i) is equivalent to (ii).

We prove that (ii) is equivalent to (iii). By Exercise 2.2.12, the do-
main of A is a Banach space with the graph norm ∥x∥A := ∥x∥X + ∥Ax∥Y
for x ∈ dom(A). Thus A is also a bounded linear operator from the Banach
spaces dom(A) to the Banach space Y . Hence it follows from the equivalence
of (ii) and (iii) in Theorem 4.1.16 that A has a closed image if and only if
there exists a constant c > 0 such that

inf
Aξ=0

∥x+ ξ∥A ≤ c ∥Ax∥Y for all x ∈ dom(A).

Since ∥x+ ξ∥A = ∥x+ ξ∥X + ∥Ax∥Y for x ∈ dom(A) and ξ ∈ ker(A), this
is equivalent to part (iii). This shows that (ii) is equivalent to (iii).

We prove that (iii) implies (iv) by the same argument as in the proof
of Theorem 4.1.16. The inclusion im(A∗) ⊂ ker(A)⊥ follows directly from
the definition of the dual operator. To prove the converse inclusion, fix an
element x∗ ∈ ker(A)⊥ so that

⟨x∗, ξ⟩ = 0 for all ξ ∈ ker(A).
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Then, for all x ∈ dom(A) and all ξ ∈ ker(A), we have

|⟨x∗, x⟩| = |⟨x∗, x+ ξ⟩| ≤ ∥x∗∥X∗ ∥x+ ξ∥X .
Take the infimum over all ξ to obtain the estimate

|⟨x∗, x⟩| ≤ ∥x∗∥X∗ inf
Aξ=0

∥x+ ξ∥X ≤ c ∥x∗∥X∗ ∥Ax∥Y

for all x ∈ dom(A). Here the second step follows from (6.2.4). This im-
plies that there exists a unique bounded linear functional Λ on im(A) ⊂ Y
such that Λ ◦A = x∗. The functional Λ extends to an element y∗ ∈ Y ∗

by the Hahn–Banach Theorem (Corollaries 2.3.4 and 2.3.5). The extended
functional satisfies y∗ ◦A = x∗. Hence y∗ ∈ dom(A∗) and x∗ = A∗y∗ by def-
inition of the dual operator, and so x∗ ∈ im(A∗). This shows that (iii)
implies (iv).

That (iv) implies (v) and (v) implies (vi) follows directly from the def-
inition of the weak* topology. That (vi) is equivalent to (vii) follows from
the fact that (ii) is equivalent to (iii) (already proved).

We prove that (vi) implies (ii), following [88, p 205/206]. Assume A∗

has a closed image. Consider the product space X × Y with the norm

∥(x, y)∥X×Y := ∥x∥X + ∥y∥Y for (x, y) ∈ X × Y.

The dual space of X × Y is the product space X∗ × Y ∗ with the norm

∥(x∗, y∗)∥X∗×Y ∗ := max
{
∥x∗∥X∗ , ∥y∗∥Y ∗

}
for (x∗, y∗) ∈ X∗ × Y ∗. The graph of A is the closed subspace

Γ :=
{
(x, y) ∈ X × Y

∣∣∣x ∈ dom(A), y = Ax
}
⊂ X × Y

and the projection B : Γ → Y onto the second factor is given by

B(x, y) := y = Ax for (x, y) ∈ Γ.

This is a bounded linear operator with im(B) = im(A). We prove in four
steps that A has a closed image.

Step 1. The annihilator of Γ is given by

Γ⊥ =
{
(x∗, y∗) ∈ X∗ × Y ∗

∣∣∣ y∗ ∈ dom(A∗), x∗ = −A∗y∗
}
.

Thus Γ⊥ ⊂ im(A∗)× Y ∗.

Fix a pair (x∗, y∗) ∈ X∗ × Y ∗. Then we have (x∗, y∗) ∈ Γ⊥ if and only if

⟨x∗, x⟩+ ⟨y∗, Ax⟩ = 0 for all x ∈ dom(A),

and this is equivalent to the conditions

y∗ ∈ dom(A∗), x∗ = −A∗y∗

by (6.2.1). This proves Step 1.
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Step 2. Define the map X∗ × Y ∗ → Γ∗ : (x∗, y∗) 7→ Λx∗,y∗ by

Λx∗,y∗(x,Ax) := ⟨x∗, x⟩+ ⟨y∗, Ax⟩ for x ∈ dom(A).

This map induces an isometric isomorphism from X∗×Y ∗/Γ⊥ to Γ∗ and so

∥Λx∗,y∗∥ = inf
η∗∈dom(A∗)

max
{
∥x∗ −A∗η∗∥X∗ , ∥y∗ + η∗∥Y ∗

}
for all (x∗, y∗) ∈ X∗ × Y ∗.

This follows from Step 1 and Corollary 2.3.26, respectively Corollary 2.4.2.

Step 3. The image of the dual operator B∗ : Y ∗ → Γ∗ is given by

im(B∗) = {Λx∗,y∗ |x∗ ∈ im(A∗), y∗ ∈ Y ∗} .

If y∗ ∈ Y ∗ then

B∗y∗ = y∗ ◦B = Λ0,y∗ .

Conversely, let (x∗, y∗) ∈ im(A∗)× Y ∗ and choose η∗ ∈ dom(A∗) such that

A∗η∗ = x∗.

Then Λ−x∗,η∗ = 0 by Step 1 and so

Λx∗,y∗ = Λ0,y∗+η∗ = B∗(y∗ + η∗) ∈ im(B∗).

This proves Step 3.

Step 4. B∗ has a closed image.

Let Λi ∈ im(B∗) ⊂ Γ∗ be a sequence that converges to Λ ∈ Γ∗ in the norm
topology. Choose (x∗, y∗) ∈ X∗ × Y ∗ such that Λ = Λx∗,y∗ and, by Step 3,
choose a sequence (x∗i , y

∗
i ) ∈ X∗ × Y ∗ such that

Λi = Λx∗i ,y∗ , x∗i ∈ im(A∗) for all i ∈ N.

Then, by Step 2, there exists a sequence η∗i ∈ dom(A∗) such that

max
{
∥x∗ − x∗i −A∗η∗i ∥X∗ , ∥y∗ − y∗i + η∗i ∥Y ∗

}
≤ ∥Λ− Λi∥+ 2−i

for all i and so

lim
i→∞

∥x∗ − x∗i −A∗η∗i ∥X∗ = 0.

Thus

x∗ = lim
i→∞

(x∗i +A∗η∗i ) ∈ im(A∗)

because A∗ has a closed image by assumption. Hence Λ = Λx∗,y∗ ∈ im(B∗)
by Step 3 and this proves Step 4.

It follows from Step 4 and Theorem 4.1.16 that B has a closed image.
Hence so does A because im(A) = im(B). This shows that (vi) implies (ii)
and completes the proof of Theorem 6.2.3. □
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Corollary 6.2.4. Let X and Y be Banach spaces and A : dom(A) → Y
be a linear operator with a dense domain dom(A) ⊂ X and a closed graph.
Then A is bijective if and only if its dual operator A∗ is bijective. If this
holds then A−1 : Y → X is a bounded linear operator and (A∗)−1 = (A−1)∗.

Proof. Assume A is bijective and recall from Exercise 2.2.12 that dom(A)
is a Banach space with the graph norm because A has a closed graph.
Thus A : dom(A) → Y is a bijective bounded linear operator between Ba-
nach spaces. Hence A−1 : Y → dom(A) is bounded by the Open Map-
ping Theorem 2.2.1 and so is A−1 : Y → X (same notation, different target
space). Now let x∗ ∈ X∗ and y∗ ∈ Y ∗. We prove that

(6.2.6)
y∗ ∈ dom(A∗)
x∗ = A∗y∗

⇐⇒ (A−1)∗x∗ = y∗.

By (6.2.1), y∗ ∈ dom(A∗) and A∗y∗ = x∗ if and only if ⟨x∗, x⟩ = ⟨y∗, Ax⟩ for
all x ∈ dom(A), and this is equivalent to the condition ⟨x∗, A−1y⟩ = ⟨y∗, y⟩
for all y ∈ Y , because A is bijective. This is equivalent to (A−1)∗x∗ = y∗,
and this proves (6.2.6). By (6.2.6), we have im(A−1)∗ = dom(A∗) and

A∗(A−1)∗ = id : X∗ → X∗, (A−1)∗A∗ = id : dom(A∗) → dom(A∗).

Thus A∗ is bijective and (A∗)−1 = (A−1)∗. Conversely, if A∗ is bijective,
then A is injective by part (vi) of Theorem 6.2.2, has a dense image by
part (v) of Theorem 6.2.2, and has a closed image by Theorem 6.2.3, and
hence is bijective. This proves Corollary 6.2.4. □

Example 6.2.5. This example shows that the domain of the dual oper-
ator of a closed densely defined operator need not be dense (see part (iii)
of Theorem 6.2.2). Consider the real Banach space X = ℓ1 and define the
unbounded operator A : dom(A) → ℓ1 by

dom(A) :=
{
x = (xi)i∈N ∈ ℓ1

∣∣∣ ∞∑
i=1

i|xi| <∞
}
,

Ax := (ixi)i∈N for x = (xi)i∈N ∈ dom(A).

This operator has a dense domain. Moreover, it is bijective and has a
bounded inverse, given by A−1y = (i−1yi)i∈N for y = (yi)i∈N ∈ ℓ1. Hence A
has a closed graph. Identify the dual space X∗ with ℓ∞ in the canonical
way. Then the dual operator A∗ : dom(A∗) → ℓ∞ is given by

dom(A∗) :=
{
y = (yi)i∈N ∈ ℓ∞

∣∣∣ sup
i∈N

i|yi| <∞
}
,

A∗y := (iyi)i∈N for y = (yi)i∈N ∈ dom(A∗).

This operator is again bijective. However, its domain is contained in the
proper closed subspace c0 ⊂ ℓ∞ of sequences of real numbers that converge
to zero. It is weak* dense in X∗ = ℓ∞ but not dense.
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The next lemma shows that the relation between the spectrum of a
bounded linear operator and that of the dual operator in Lemma 5.2.5 carries
over verbatim to densely defined unbounded operators with closed graphs.

Lemma 6.2.6 (Spectrum of A and A∗). Let X be a complex Banach
space, let A : dom(A) → X be an unbounded complex linear operator with a
closed graph and a dense domain dom(A) ⊂ X, and denote by

A∗ : dom(A∗) → X∗

the dual operator. Then the following holds.

(i) σ(A∗) = σ(A).

(ii) The point, residual, and continuous spectra of A and A∗ are related by

Pσ(A∗) ⊂ Pσ(A) ∪ Rσ(A), Pσ(A) ⊂ Pσ(A∗) ∪ Rσ(A∗),
Rσ(A∗) ⊂ Pσ(A) ∪ Cσ(A), Rσ(A) ⊂ Pσ(A∗),
Cσ(A∗) ⊂ Cσ(A), Cσ(A) ⊂ Rσ(A∗) ∪ Cσ(A∗).

(iii) If X is reflexive then Cσ(A∗) = Cσ(A) and

Pσ(A∗) ⊂ Pσ(A) ∪ Rσ(A), Pσ(A) ⊂ Pσ(A∗) ∪ Rσ(A∗),
Rσ(A∗) ⊂ Pσ(A), Rσ(A) ⊂ Pσ(A∗).

Proof. Part (i) follows from the identity

(λ1lX −A)∗ = λ1lX∗ −A∗

and Corollary 6.2.4.

Part (ii) follows from the same arguments as part (iii) of Lemma 5.2.5,
with Theorem 4.1.8 replaced by Theorem 6.2.2. If λ ∈ Pσ(A∗) then λ1l−A∗

is not injective, hence λ1l−A does not have a dense image by part (v) of The-
orem 6.2.2, and therefore λ ∈ Pσ(A) ∪ Rσ(A). If λ ∈ Rσ(A∗), then λ1l−A∗

is injective, hence λ1l−A has a dense image, and so λ ∈ Pσ(A) ∪ Cσ(A).
Third, if λ ∈ Cσ(A∗) then λ1l−A∗ is injective and has a dense image and
therefore also has a weak* dense image, thus it follows from parts (v) and (vi)
of Theorem 6.2.2 that λ1l−A is injective and has a dense image, and there-
fore λ ∈ Cσ(A). This proves part (ii).

Part (iii) follows from part (ii) and the fact that

Cσ(A) = Cσ(A∗)

in the reflexive case, again by parts (v) and (vi) of Theorem 6.2.2. This
proves Lemma 6.2.6. □
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6.3. Unbounded Operators on Hilbert Spaces

The dual operator of an unbounded operator between Banach spaces was
introduced in Definition 6.2.1. For Hilbert spaces this leads to the notion
of the adjoint of an unbounded densely defined operator which we explain
next. As in Example 4.1.6 and Definition 5.3.7, the idea is to replace the dual
space of a Hilbert space by the original Hilbert space via the isomorphism
of Theorem 1.4.4, respectively Theorem 5.3.6 in the complex case.

6.3.1. The Adjoint of an Unbounded Operator.

Definition 6.3.1 (Adjoint Operator). Let X,Y be complex Hilbert
spaces and let A : dom(A) → Y be an unbounded operator with a dense
domain dom(A) ⊂ X. The adjoint operator

A∗ : dom(A∗) → X, dom(A∗) ⊂ Y,

of A is defined as follows. Its domain is the linear subspace

dom(A∗) :=

{
y ∈ Y

∣∣∣ there exists a constant c ≥ 0 such that
|⟨y,Aξ⟩Y | ≤ c ∥ξ∥X for all ξ ∈ dom(A)

}
and, for y ∈ dom(A∗), the element A∗y ∈ X is the unique element of X that
satisfies the equation

⟨A∗y, ξ⟩X = ⟨y,Aξ⟩Y for all ξ ∈ dom(A).

Thus the graph of the adjoint operator is characterized by the condition

(6.3.1)
y ∈ dom(A∗)
and x = A∗y

⇐⇒ ⟨A∗y, ξ⟩X = ⟨y,Aξ⟩Y
for all ξ ∈ dom(A).

The operator A is called self-adjoint if X = Y and A = A∗.

Observe that an element y ∈ Y belongs to the domain of A∗ if and only
if the complex linear functional dom(A) → C : ξ 7→ ⟨y,Aξ⟩ is bounded. In
this case, the linear functional extends uniquely to a bounded complex linear
functional on all of X, because dom(A) is a dense subspace of X, and The-
orem 5.3.6 asserts that this extended complex linear functional is uniquely
represented by an element of X. The reader may verify that dom(A∗) is a
complex subspace of Y and that the operator A∗ : dom(A∗) → X is complex
linear. Throughout the remainder of this chapter the symbol A∗ will always
denote the adjoint of an unbounded operator between Hilbert spaces as in
Definition 6.3.1. The dual operator of Definition 6.2.1 is no longer used.

The next lemma summarizes the basic properties of the adjoint operator.
Recall that in the Hilbert space setting the notation

S⊥ := {y ∈ H | ⟨x, y⟩ = 0 for all x ∈ S}
refers to the (complex) orthogonal complement of a subset S ⊂ H.



314 6. Unbounded Operators

Lemma 6.3.2 (Properties of the Adjoint Operator). Let X and Y
be complex Hilbert spaces and let A : dom(A) → Y be a linear operator with
a dense domain dom(A) ⊂ X. Then the following holds.

(i) If P ∈ Lc(X,Y ) and λ ∈ C, then (A+P )∗ = A∗+P ∗ and (λA)∗ = λA∗.

(ii) A is closeable if and only if dom(A∗) is a dense subspace of Y .

(iii) If A is closed then A∗∗ = A.

(iv) im(A)⊥ = ker(A∗) and, if A is closed, then ker(A) = im(A∗)⊥.

(v) A has a dense image if and only if A∗ is injective.

(vi) Assume A is closed. Then A has a closed image if and only if A∗ has
a closed image if and only if im(A∗) = ker(A)⊥.

(vii) If A is bijective then so is A∗ and (A−1)∗ = (A∗)−1.

(viii) If X = Y = H and A is closed then σ(A∗) =
{
λ |λ ∈ σ(A)

}
and

Pσ(A∗) ⊂
{
λ |λ ∈ Pσ(A) ∪ Rσ(A)

}
,

Rσ(A∗) ⊂
{
λ |λ ∈ Pσ(A)

}
,

Cσ(A∗) =
{
λ |λ ∈ Cσ(A)

}
.

Proof. These assertions are proved by carrying over Theorem 6.2.2, The-
orem 6.2.3, Corollary 6.2.4, and Lemma 6.2.6 to the Hilbert space setting.
The details are left to the reader. □

6.3.2. Unbounded Self-Adjoint Operators. By definition, every self-
adjoint operator on a Hilbert space H = X = Y is symmetric, i.e. it satisfies

⟨x,Ay⟩ = ⟨Ax, y⟩ for all x, y ∈ dom(A).

However, the converse does not hold, even for operators with dense do-
mains and closed graphs. (By Example 2.2.23 every symmetric operator is
closeable.) Exercise 6.3.3 below illustrates the difference between symmet-
ric and self-adjoint operators and shows how one can construct self-adjoint
extensions of symmetric operators.

A skew-symmetric bilinear form

ω : V × V → R

on a real vector space V is called symplectic if it is nondegenerate, i.e. for
every nonzero vector v ∈ V there exists a vector u ∈ V such that ω(u, v) ̸= 0.
Assume ω : V × V → R is a symplectic form. A linear subspace Λ ⊂ V is
called a Lagrangian subspace if ω(u, v) = 0 for all u, v ∈ Λ and if, for
every v ∈ V \ Λ, there exists a vector u ∈ Λ such that ω(u, v) ̸= 0.
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Exercise 6.3.3 (Gelfand–Robbin Quotient). LetH be a real Hilbert
space and let A : dom(A) → H be a densely defined symmetric operator.

(i) Prove that dom(A) ⊂ dom(A∗) and A∗|dom(A) = A.

(ii) Let V := dom(A∗)/dom(A) and define the map ω : V × V → R by

(6.3.2) ω(u, v) := ⟨A∗x, y⟩ − ⟨x,A∗y⟩

for x, y ∈ dom(A∗), where u := [x] ∈ V and v := [y] ∈ V . Prove that ω is a
well-defined skew-symmetric bilinear form. Prove that ω is nondegenerate
if and only if the operator A has a closed graph.

(iii) Assume A has a closed graph. For a subspace Λ ⊂ V define the operator

AΛ : dom(AΛ) → H

by

(6.3.3) dom(AΛ) := {x ∈ dom(A∗) | [x] ∈ Λ} , AΛ := A∗|dom(AΛ).

Prove that AΛ is self-adjoint if and only if Λ is a Lagrangian subspace of V .

(iv) Prove that A admits a self-adjoint extension. Hint: The Lemma of
Zorn.

(v) Prove that Λ0 := (ker(A∗)+dom(A))/dom(A) is a Lagrangian subspace
of V whenever A has a closed graph and a closed image.

Exercise 6.3.4. This example illustrates how the Gelfand–Robbin quo-
tient gives rise to symplectic forms on the spaces of boundary data for sym-
metric differential operators. Let n ∈ N and consider the matrix

J :=

(
0 −1l
1l 0

)
∈ R2n×2n.

Define the operator A on the Hilbert space H := L2([0, 1],R2n) by

dom(A) :=
{
u ∈W 1,2([0, 1],R2n) |u(0) = u(1) = 0

}
, Au := Ju̇.

Here W 1,2([0, 1],R2n) denotes the space of all absolutely continuous func-
tions u : [0, 1] → R2n with square integrable derivatives. Prove the following.

(i) A is a symmetric operator with a closed graph.

(ii) dom(A∗) =W 1,2([0, 1],R2n) and A∗u = Ju̇ for all u ∈W 1,2([0, 1],R2n).

(iii) The map W 1,2([0, 1],R2n) → R2n × R2n : u 7→ (u(0), u(1)) descends to
an isomorphism from the quotient space V = dom(A∗)/dom(A) to R2n×R2n.
The resulting symplectic form determined by (6.3.2) on R2n × R2n is

ω((u0, u1), (v0, v1)) = ⟨Ju1, v1⟩ − ⟨Ju0, v0⟩

for (u0, u1), (v0, v1) ∈ R2n × R2n. Here ⟨·, ·⟩ denotes the standard inner
product on R2n.
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Exercise 6.3.5. Let H be a separable complex Hilbert space, let (ei)i∈N
be a complex orthonormal basis, let (λi)i∈N be a sequence of complex num-
bers, and let Aλ : dom(Aλ) → H be the operator in Example 6.1.3. Prove
that its adjoint is the operator A∗

λ = Aλ associated to the sequence (λi)i∈N.
Deduce that Aλ is self-adjoint if and only if λi ∈ R for all i.

Exercise 6.3.6. Prove that the operator Af in Example 6.1.8 is self-
adjoint for p = 2 and every measurable function f :M → R.

Another example of an unbounded self-adjoint operator is the Laplace
operator on ∆ :W 2,2(Rn,C) → L2(Rn,C) in Example 6.1.6. The proof that
this operator is self-adjoint requires elliptic regularity and goes beyond the
scope of this book. However, this example can be recast as a special case
of a general abstract setup, which is useful for many applications and which
we now explain.

Definition 6.3.7 (Gelfand Triple). A Gelfand triple consists of a
real Hilbert space (H, ⟨·, ·⟩H) and a dense subspace V ⊂ H, equipped with
an inner product ⟨·, ·⟩V which renders V into a Hilbert space in its own right
and the inclusion V ↪→ H into a bounded linear operator. Thus there exists
a constant κ > 0 such that

(6.3.4) ∥v∥H ≤ κ ∥v∥V for all v ∈ V.

We identify H with its dual space H∗ via the isomorphism of Theorem 1.4.4.
However, we do not identify V with its own dual space. Thus

(6.3.5) V ⊂ H ⊂ V ∗,

where the inclusion H ∼= H∗ ↪→ V ∗ assigns to each u ∈ H the bounded
linear functional V → R : v 7→ ⟨u, v⟩H . This is the dual operator of the
inclusion V ↪→ H and so is injective and has a dense image by Theorem 4.1.8.

Theorem 6.3.8 (Gelfand Triples). Let V ⊂ H ⊂ V ∗ be a Gelfand
triple and let B : V × V → R be a symmetric bilinear form. Suppose that
there exist positive constants δ, c, and C such that

(6.3.6) δ ∥v∥2V − c ∥v∥2H ≤ B(v, v) ≤ C ∥v∥2V for all v ∈ V.

Then the linear subspace

(6.3.7) dom(A) :=

{
u ∈ V

∣∣∣∣ sup
v∈V \{0}

|B(u, v)|
∥v∥H

<∞

}
is dense in V , there is a unique linear operator A : dom(A) → H such that

(6.3.8) ⟨Au, v⟩H = B(u, v) for all u ∈ dom(A) and all v ∈ V,

and this operator A is self-adjoint. If H is a complex Hilbert space and V is
a complex subspace of H such that the complex structure preserves the inner
product on V and the bilinear form B, then A is complex linear.
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Proof. The existence and uniqueness of an operator A : dom(A) → H
that satisfies (6.3.7) and (6.3.8) follows directly from the definitions and
Theorem 1.4.4. Namely, if u ∈ dom(A) then, since V is dense in H, there
exists a unique bounded linear functional Λu : H → R such that

Λu(v) = B(u, v) for all v ∈ V,

and so, by Theorem 1.4.4, there exists a unique element Au ∈ H such that

⟨Au, f⟩H = Λu(f) for all f ∈ H.

Then A : dom(A) → H is a symmetric linear operator that satisfies (6.3.8).
We prove in seven steps that A is self-adjoint.

Step 1. If u, v ∈ V then |B(u, v)| ≤ C ∥u∥V ∥v∥V .

By Theorem 1.4.4 there exists a unique linear operator B : V → V such
that ⟨u,Bv⟩V = B(u, v) for all u, v ∈ V . Since B is symmetric, so is B.
Hence B is bounded by the Hellinger–Toeplitz Theorem (Corollary 2.2.16).
Moreover, |⟨v,Bv⟩V | = |B(v, v)| ≤ C for all v ∈ V with ∥v∥V = 1 by (6.3.6).
Hence ∥B∥L(V ) ≤ C by part (iv) of Theorem 5.3.16 and so

|B(u, v)| = |⟨u,Bv⟩V | ≤ ∥u∥V ∥Bv∥V ≤ C ∥u∥V ∥v∥V
for all u, v ∈ V . This proves Step 1.

Step 2. If u ∈ dom(A) then ∥u∥V ≤ δ−1κ ∥cu+Au∥H .

By (6.3.4) and (6.3.6) and (6.3.8), every u ∈ dom(A) satisfies

δ ∥u∥2V ≤ c ∥u∥2H +B(u, u)

= ⟨cu+Au, u⟩H
≤ ∥cu+Au∥H ∥u∥H
≤ κ ∥cu+Au∥H ∥u∥V

and this proves Step 2. (Exercise: Use Step 2 to show that A is closed.)

Step 3. The formula

(6.3.9) ⟨u, v⟩B := c ⟨u, v⟩H +B(u, v) for u, v ∈ V

defines an inner product on V whose norm V → R : v 7→ ∥v∥B :=
√
⟨v, v⟩B

is compatible with ∥·∥V . Thus (V, ⟨·, ·⟩B) is a Hilbert space.

The bilinear form (6.3.9) is symmetric because B is symmetric and satisfies

the inequality δ ∥v∥2V ≤ B(v, v) ≤ c ∥v∥2H + C ∥v∥2V ≤
(
cκ2 + C

)
∥v∥2V for

all v ∈ V by (6.3.4) and (6.3.6). This proves Step 3.

The next step is the heart of the proof. It can be viewed as an abstract
variant of the Dirichlet principle.
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Step 4. The operator c1lH +A : dom(A) → H is bijective.

The operator is injective by Step 2. To prove that it is surjective, fix an
element f ∈ H and define the bounded linear functional Λ : V → R by

Λ(v) := ⟨f, v⟩H for v ∈ V.

Then, by Step 3 and Theorem 1.4.4, there exists an element u ∈ V that
satisfies ⟨u, v⟩B = Λ(v) for all v ∈ V . This implies

c ⟨u, v⟩H +B(u, v) = ⟨f, v⟩H
for all v ∈ V and hence

|B(u, v)| = |⟨f − cu, v⟩H | ≤ ∥f − cu∥H ∥v∥H .

Thus u ∈ dom(A) and, for all v ∈ V , we have

⟨cu+Au− f, v⟩H = c ⟨u, v⟩H +B(u, v)− ⟨f, v⟩H = 0.

Since V is dense in H, it follows that cu+Au = f and this proves Step 4.

Step 5. The subspace dom(A) ⊂ V defined by (6.3.7) is dense in V .

Let ι : V → H denote the canonical inclusion and let ι∗ : H → V be its ad-
joint operator with respect to the inner products ⟨·, ·⟩H on H and ⟨·, ·⟩B
on V (see Step 3). Then ι∗ has a dense image by Theorem 4.1.8. Let f ∈ H
and define u := (c1lH +A)−1f ∈ dom(A) by Step 4. Then cu+Au = f and

⟨ι∗(f), v⟩B = ⟨f, ι(v)⟩H = ⟨cu+Au, v⟩H = ⟨u, v⟩B =
〈
(c1l +A)−1f, v

〉
B

for all v ∈ V . This shows that ι∗ = (c1lH −A)−1 : H → V and hence the
subspace dom(A) = im(ι∗) is dense in V . This proves Step 5.

Step 6. Let v ∈ H and suppose that there is a constant K ≥ 0 such that

(6.3.10) |⟨v,Au⟩H | ≤ K ∥u∥V for all u ∈ dom(A).

Then v ∈ V .

By (6.3.4) and (6.3.10) we have |⟨v, cu+Au⟩H | ≤ (cκ ∥v∥H +K) ∥u∥V for
all u ∈ dom(A). Since dom(A) is dense in V by Step 5, this implies that
there exists a unique bounded linear functional Λ : V → R such that

(6.3.11) Λ(u) = ⟨v, cu+Au⟩H for all u ∈ dom(A).

Hence, by Step 3 and Theorem 1.4.4, there exists a w ∈ V such that

(6.3.12) Λ(u) = ⟨w, u⟩B = c ⟨w, u⟩H +B(w, u) for all u ∈ V.

Take u ∈ dom(A) in (6.3.12) to obtain Λ(u) = ⟨w, cu+Au⟩H . Hence it fol-
lows from (6.3.11) that ⟨v − w, cu+Au⟩H = 0 for all u ∈ dom(A). Since the
operator c1lH +A : dom(A) → H is surjective by Step 4, we have v = w ∈ V .
This proves Step 6.
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Step 7. The operator A : dom(A) → H is self-adjoint.

The operator A is symmetric by definition. Hence dom(A) ⊂ dom(A∗)
and A∗|dom(A) = A. It remains to prove that dom(A∗) ⊂ dom(A). To see
this, fix an element v ∈ dom(A∗). Then

|⟨v,Au⟩H | = |⟨A∗v, u⟩H | ≤ ∥A∗v∥H ∥u∥H ≤ κ ∥A∗v∥H ∥u∥V
for all u ∈ dom(A) by (6.3.4). Hence v ∈ V by Step 6. This implies

|B(v, u)| = |⟨v,Au⟩H | = |⟨A∗v, u⟩H | ≤ ∥A∗v∥H ∥u∥H
for all u ∈ dom(A). Since dom(A) is dense in V by Step 5, and the func-
tions V → R : u 7→ ∥u∥H and V → R : u 7→ B(v, u) are continuous by (6.3.4)
and Step 1, this implies |B(v, u)| ≤ ∥A∗v∥H ∥u∥H for all u ∈ V and there-
fore v ∈ dom(A). This proves Step 7 and Theorem 6.3.8. □

The next corollary explains how every closed densely defined unbounded
operator gives rise to a self-adjoint operator by composition with its ad-
joint. The composition of two unbounded linear operators A : dom(A) → Y
with dom(A) ⊂ X and B : dom(B) → Z with dom(B) ⊂ Y is the opera-
tor BA : dom(BA) → Z defined by

dom(BA) :=
{
x ∈ dom(A)

∣∣Ax ∈ dom(B)
}
,

BAx := B(Ax) for x ∈ dom(BA).
(6.3.13)

The domain of BA can be trivial even if A and B are densely defined. In the
next theorem X and Y can either be real Hilbert spaces or complex Hilbert
spaces with Hermitian inner products. In the latter case we assume that D
is an unbounded complex linear operator and so D∗D is also complex linear.

Corollary 6.3.9 (The Operator D∗D). Let X and Y be Hilbert
spaces and let D : dom(D) → Y be a closed unbounded operator with a dense
domain dom(D) ⊂ X. Then the operator D∗D : dom(D∗D) → X is self-
adjoint and its domain is dense in dom(D) with respect to the graph norm.

Proof. This is a Gelfand triple with

H := X, V := dom(D), ⟨u, v⟩V := ⟨u, v⟩X + ⟨Du,Dv⟩Y
for u, v ∈ dom(D), and the bilinear form B : V × V → R is given by

B(u, v) := ⟨Du,Dv⟩Y for u, v ∈ dom(D) ⊂ X.

These data satisfy the hypotheses of Theorem 6.3.8 with δ = c = C = 1. In
particular, ∥v∥2V = ∥v∥2X + ∥Dv∥2Y = ∥v∥2X +B(v, v) = ∥v∥2B for all v ∈ V .

The condition supv∈V \{0} ∥v∥
−1
X |⟨Du,Dv⟩Y | <∞ for u ∈ V = dom(D) in

equation (6.3.7) is equivalent to Du ∈ dom(D∗), so the operator A in (6.3.8)
agrees with D∗D. Hence the operator D∗D is self-adjoint by Theorem 6.3.8.
This proves Corollary 6.3.9. □
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Example 6.3.10 (Dirichlet Problem). The archetypal example of the
situation in Theorem 6.3.8 and Corollary 6.3.9 is the operator

∇ =

(
∂

∂x1
, . . . ,

∂

∂xn

)
:W 1,2

0 (Ω) → L2(Ω,Rn).

Here Ω ⊂ Rn is a bounded open set with smooth boundary (i.e. ∂Ω is a

smooth (n−1)-dimensional submanifold of Rn and Ω = int(Ω)) andW 1,2
0 (Ω)

is the completion of the space C∞
0 (Ω) of smooth functions u : Ω → R with

compact support with respect to the norm

∥u∥
W 1,2

0
:=

√√√√∫
Ω

n∑
i=1

∣∣∣∣ ∂u∂ui (x)
∣∣∣∣2 dx =

√∫
Ω
|∇u(x)|2 dx.

The Poincaré inequality asserts that this norm controls the L2 norm of u.
This example corresponds to the Gelfand triple with

H = X = L2(Ω), V = dom(D) =W 1,2
0 (Ω),

where the bilinear form

B :W 1,2
0 (Ω)×W 1,2

0 (Ω) → R

is given by

B(u, v) :=

∫
Ω
⟨∇u(x),∇v(x)⟩ dx

for u, v ∈W 1,2
0 (Ω). The operator D = ∇ : dom(D) → Y takes values in the

Hilbert space Y = L2(Ω,Rn), and A = D∗D is the Laplace operator

(6.3.14) ∆ =

n∑
i=1

∂2

∂x2i
:W 2,2(Ω) ∩W 1,2

0 (Ω) → L2(Ω).

HereW 2,2(Ω) denotes the space of equivalence classes, up to equality almost
everywhere, of all L2 functions u : Ω → R whose distributional derivatives
up to order two can be represented by L2 functions. The proof that

dom(D∗D) =W 2,2(Ω) ∩W 1,2
0 (Ω)

(for all domains Ω ⊂ Rn with “sufficiently nice boundary”) requires elliptic
regularity and goes beyond the scope of this book. Once this is established,
Corollary 6.3.9 asserts that the Laplace operator (6.3.14) is self-adjoint.
Moreover, this example satisfies condition (6.3.6) with c = 0. Hence it fol-
lows from Step 4 in the proof of Theorem 6.3.8 that the operator (6.3.14) is
bijective. This translates into the observation that the Dirichlet problem

∆u = f in Ω,

u = 0 on ∂Ω
(6.3.15)

has a unique solution u ∈W 2,2(Ω) ∩W 1,2
0 (Ω) for every f ∈ L2(Ω).
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6.3.3. Unbounded Normal Operators. The next theorem introduces
unbounded normal operators on Hilbert spaces.

Theorem 6.3.11 (Unbounded Normal Operator). Let H be a com-
plex Hilbert space and A : dom(A) → H be a closed unbounded complex linear
operator with a dense domain dom(A) ⊂ H. The following are equivalent.

(i) AA∗ = A∗A.

(ii) dom(A) = dom(A∗) and ∥Ax∥ = ∥A∗x∥ for all x ∈ dom(A).

(iii) There exist complex linear self-adjoint operators Ai : dom(Ai) → H
for i = 1, 2 such that dom(A) = dom(A∗) = dom(A1) ∩ dom(A2) and

Ax = A1x+ iA2x, A∗x = A1x− iA2x, ∥Ax∥2 = ∥A1x∥2 + ∥A2x∥2

for all x ∈ dom(A).

Definition 6.3.12 (Unbounded Normal Operator). A closed un-
bounded complex linear operator A : dom(A) → H on a Hilbert space H
with a dense domain dom(A) ⊂ H is called normal if it satisfies the equiv-
alent conditions of Theorem 6.3.11.

Proof. We prove that (i) implies (ii). Assume AA∗ = A∗A. Then ev-
ery element x ∈ dom(A∗A) = dom(AA∗) satisfies x ∈ dom(A) ∩ dom(A∗) as
well as Ax ∈ dom(A∗) and A∗x ∈ dom(A), and hence

∥Ax∥2 = ⟨Ax,Ax⟩ = ⟨x,A∗Ax⟩ = ⟨x,AA∗x⟩ = ⟨A∗x,A∗x⟩ = ∥A∗x∥2 .
Next we prove that dom(A) ⊂ dom(A∗). Let x ∈ dom(A). Then Corol-
lary 6.3.9 asserts that there exists a sequence xi ∈ dom(A∗A) such that

lim
i→∞

∥x− xi∥ = 0, lim
i→∞

∥Ax−Axi∥ = 0.

Thus (Axi)i∈N is a Cauchy sequence in H and so is the sequence (A∗xi)i∈N
because ∥A∗xi −A∗xj∥ = ∥Axi −Axj∥ for all i, j ∈ N by what we already
proved. Hence (A∗xi)i∈N converges to some element y := limi→∞A∗xi. Since
the sequence (xi)i∈N converges to x and (A∗xi)i∈N converges to y and A∗

has a closed graph, it follows that x ∈ dom(A∗) and A∗x = y. Hence

∥A∗x∥ = ∥y∥ = lim
i→∞

∥A∗xi∥ = lim
i→∞

∥Axi∥ = ∥Ax∥ .

This shows that dom(A) ⊂ dom(A∗) and ∥A∗x∥ = ∥Ax∥ for all x ∈ dom(A).
The converse inclusion dom(A∗) ⊂ dom(A) follows by interchanging the
roles of A and A∗. This shows that (i) implies (ii).

We prove that (ii) implies (i). Assume dom(A) = dom(A∗) and

∥Ax∥ = ∥A∗x∥ for all x ∈ dom(A).

Then the same argument as in the proof of Lemma 5.3.14 shows that

(6.3.16) ⟨Ax,Ay⟩ = ⟨A∗x,A∗y⟩ for all x, y ∈ dom(A).
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Now let x ∈ dom(A∗A). Then x ∈ dom(A) and Ax ∈ dom(A∗) and, by
equation (6.3.16), we have

|⟨A∗x,A∗ξ⟩| = |⟨Ax,Aξ⟩| = |⟨A∗Ax, ξ⟩| ≤ ∥A∗Ax∥ ∥ξ∥

for all ξ ∈ dom(A∗). This implies A∗x ∈ dom(A) and hence x ∈ dom(AA∗).
Thus we have proved that dom(A∗A) ⊂ dom(AA∗). The same argument,
with the roles of A and A∗ reversed, shows that

dom(A∗A) = dom(AA∗).

Now let x ∈ dom(A∗A) = dom(AA∗). Then, by equation (6.3.16), we have

⟨A∗Ax, ξ⟩ = ⟨Ax,Aξ⟩ = ⟨A∗x,A∗ξ⟩ = ⟨AA∗x, ξ⟩

for all ξ ∈ dom(A) = dom(A∗). Since dom(A) is dense in H, this im-
plies A∗Ax = AA∗x. Thus we have proved that (ii) implies (i).

We prove that (ii) implies (iii). Assume dom(A) = dom(A∗) and

∥Ax∥ = ∥A∗x∥ for all x ∈ dom(A).

Define the operators B1, B2 : dom(A) → H by

B1x :=
1

2

(
Ax+A∗x

)
, B2x :=

1

2i

(
Ax−A∗x

)
for x ∈ dom(A). These operators are symmetric and hence closeable by
Example 2.2.23. Thus they admit self-adjoint extensions Ai : dom(Ai) → H
for i = 1, 2 by Exercise 6.3.3. Moreover, dom(A) ⊂ dom(A1) ∩ dom(A2) and
every element x ∈ dom(A) = dom(A∗) satisfies

Ax = A1x+ iA2x, A∗x = A1x− iA2x,

and

∥Ax∥2 =
1

2

(
∥Ax∥2 + ∥A∗x∥2

)
=

1

4

(
∥Ax+A∗x∥2 + ∥Ax−A∗x∥2

)
= ∥A1x∥2 + ∥A2x∥2 .

Now let x ∈ dom(A1) ∩ dom(A2). Then

|⟨x,Aξ⟩| = |⟨x,A1ξ + iA2ξ⟩|
= |⟨A1x, ξ⟩+ ⟨A2x, iξ⟩|

≤
(
∥A1x∥+ ∥A2x∥

)
∥ξ∥

for every ξ ∈ dom(A) and hence

x ∈ dom(A∗) = dom(A).

This shows that (ii) implies (iii).
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We prove that (iii) implies (ii). Assume Ai : dom(Ai) → H for i = 1, 2
are self-adjoint operators that satisfy the following four conditions.

(a) dom(A1) ∩ dom(A2) is a dense subspace of H.

(b) ∥A1x+ iA2x∥2 = ∥A1x∥2 + ∥A2x∥2 for all x ∈ dom(A1) ∩ dom(A2).

(c) Let y ∈ H and c > 0 such that |⟨y,A1x+ iA2x⟩| ≤ c ∥x∥ for every
element x ∈ dom(A1) ∩ dom(A2). Then y ∈ dom(A1) ∩ dom(A2).

(d) Let x ∈ H and c > 0 such that |⟨x,A1y − iA2y⟩| ≤ c ∥y∥ for every
element y ∈ dom(A1) ∩ dom(A2). Then x ∈ dom(A1) ∩ dom(A2).

Define the operator A : dom(A) → H by

dom(A) := dom(A1) ∩ dom(A2),

Ax := A1x+ iA2x for x ∈ dom(A1) ∩ dom(A2).
(6.3.17)

Its domain is dense by (a). We prove that its adjoint operator is given by

dom(A∗) = dom(A1) ∩ dom(A2),

A∗y = A1y − iA2y for y ∈ dom(A1) ∩ dom(A2).
(6.3.18)

Let y ∈ dom(A∗). Then ⟨y,Ax⟩ = ⟨A∗y, x⟩ for all x ∈ dom(A) and this
implies y ∈ dom(A1) ∩ dom(A2) by (c). Hence

⟨A∗y, x⟩ = ⟨y,A1x+ iA2x⟩ = ⟨A1y − iA2y, x⟩

for all x ∈ dom(A1) ∩ dom(A2), and hence A∗y = A1y − iA2y by (a). The
converse inclusion dom(A1)∩dom(A2) ⊂ dom(A∗) follows directly from the
assumptions. This shows that (6.3.18) is the adjoint operator of (6.3.17)
and vice versa by the same argument, using (d) instead of (c). In particular,
A has a closed graph. Moreover, it follows from (b) that ∥Ax∥ = ∥A∗x∥ for
all x ∈ dom(A) = dom(A∗). This shows that (iii) implies (ii) and completes
the proof of Theorem 6.3.11. □

Let H be a separable complex Hilbert space, equipped with an orthonor-
mal basis (ei)i∈N. Then the operator Aλ : dom(Aλ) → H in Example 6.1.3
is normal for every sequence of complex numbers (λi)i∈N. The operator Aλ
is bounded if and only if the sequence (λi)i∈N is bounded, it is self-adjoint
if and only if λi ∈ R for all i (Exercise 6.3.5), it is compact if and only
if limi→∞|λi| = 0 (Example 4.2.8), and it has a compact resolvent if and
only if limi→∞|λi| = ∞. This example shows that the domains of the self-
adjoint operators A1 = AReλ and A2 = AImλ in Theorem 6.3.11 may differ
dramatically from the domain of A = Aλ. It also shows that every nonempty
closed subset of the complex plane can be the spectrum of an unbounded
normal operator (Example 6.1.16). In particular, the resolvent set can be
empty. The next theorem shows that every normal operator has a nonempty
spectrum.
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Theorem 6.3.13 (Spectrum of a Normal Operator).

Let H be a nonzero complex Hilbert space and let A : dom(A) → H be an
unbounded normal operator with dom(A) ⊊ H. Then the following holds.

(i) If λ ∈ C then λ1l − A is normal and, if λ ∈ ρ(A), then the resolvent
operator Rλ(A) = (λ1l−A)−1 is normal.

(ii) σ(A) ̸= ∅.

(iii) Rσ(A) = ∅ and Pσ(A∗) =
{
λ |λ ∈ Pσ(A)

}
.

(iv) If A has a compact resolvent then the spectrum σ(A) = Pσ(A) is
discrete, for each λ ∈ Pσ(A) the eigenspace Eλ := ker(λ1l − A) is finite-
dimensional, and A admits an orthonormal basis of eigenvectors.

(v) If A is self-adjoint, then σ(A) ⊂ R and

supσ(A) = sup
{
⟨x,Ax⟩

∣∣x ∈ dom(A), ∥x∥ = 1
}
,

inf σ(A) = inf
{
⟨x,Ax⟩

∣∣x ∈ dom(A), ∥x∥ = 1
}
.

(6.3.19)

Proof. We prove part (i). Let λ ∈ C. Then (λ1l−A)∗ = λ1l−A∗ by
part (i) of Lemma 6.3.2. Hence

∥λx−Ax∥2 = |λ|2 ∥x∥2 − 2Re⟨λx,Ax⟩+ ∥Ax∥2

= |λ|2 ∥x∥2 − 2Re⟨A∗x, λx⟩+ ∥A∗x∥2

=
∥∥λx−A∗x

∥∥2
for all x ∈ dom(A) = dom(λ1l−A) = dom(λ1l−A∗). Thus λ1l−A is nor-
mal. If A is invertible then

A−1(A−1)∗ = A−1(A∗)−1

= (A∗A)−1

= (AA∗)−1

= (A∗)−1A−1

= (A−1)∗A−1

by part (vii) of Lemma 6.3.2, and hence A−1 is normal. This proves part (i).

We prove part (ii). If ρ(A) = ∅ then σ(A) = C ̸= ∅. If ρ(A) ̸= ∅
and µ ∈ ρ(A), then Rµ(A) is normal by part (i), hence

sup
z∈σ(Rµ(A))

|z| = ∥Rµ(A)∥ > 0

by Theorem 5.3.15, and hence

σ(A) =
{
µ− z−1 | z ∈ σ(Rµ(A)) \ {0}

}
̸= ∅

by Lemma 6.1.12. This proves part (ii).



6.3. Unbounded Operators on Hilbert Spaces 325

We prove part (iii). Fix an element λ ∈ C \ (Pσ(A)∪Cσ(A)). Then the
operator λ1l−A is normal by part (i) and is injective because λ /∈ Pσ(A).
Hence the adjoint operator (λ1l−A)∗ = λ1l−A∗ is injective by definition
of a normal operator in Theorem 6.3.11. Thus λ1l−A has a dense image
by part (v) of Lemma 6.3.2 and so λ1l−A is surjective because λ /∈ Cσ(A).
Thus λ ∈ ρ(A) and this proves part (iii).

We prove part (iv). By assumption ρ(A) ̸= ∅ and the resolvent oper-
ator Rµ(A) is compact for all µ ∈ ρ(A). Fix an element µ ∈ ρ(A). Then
Theorem 5.2.8 asserts that σ(Rµ(A)) \ {0} = Pσ(Rµ(A)), that the spec-
trum of Rµ(A) can only accumulate at the origin, and that the eigenspaces
of Rµ(A) are all finite-dimensional. Moreover, Theorem 5.3.15 asserts that
the operator Rµ(A) admits an orthonormal basis of eigenvectors. Hence
part (iv) follows from Lemma 6.1.12.

We prove part (v). Assume A is self-adjoint and let λ ∈ C \ R. Then

∥λx−Ax∥2 = (Imλ)2 ∥x∥2 + ∥(Reλ)x−Ax∥2 ≥ (Imλ)2 ∥x∥2

for all x ∈ dom(A) as in the proof of Theorem 5.3.16. Hence λ1l − A is
injective and has a closed image by Theorem 6.2.3. Replace λ by λ to
deduce that the adjoint operator λ1l−A∗ = λ1l−A is also injective, hence
λ1l−A has a dense image by part (iv) of Lemma 6.3.2, so λ1l−A is bijective
and λ ∈ ρ(A).

Now let λ ∈ R and assume

λ > sup
x∈dom(A), ∥x∥=1

⟨x,Ax⟩ =: c.

Then

∥x∥∥λx−Ax∥ ≥ ⟨x, λx−Ax⟩ ≥ (λ− c)∥x∥2 for all x ∈ dom(A).

Hence λ1l− A is injective and has a closed image by Theorem 6.2.3 and so
is bijective by Lemma 6.3.2. This shows that σ(A) ⊂ (−∞, c].

Conversely, assume

c := supσ(A) <∞.

We must prove that ⟨x,Ax⟩ ≤ c for all x ∈ dom(A) with ∥x∥ = 1. Suppose,
by contradiction, that there exists an element x ∈ dom(A) such that ∥x∥ = 1
and ⟨x,Ax⟩ > c. Choose a real number µ such that c < µ < ⟨x,Ax⟩ and
define ξ := µx−Ax. Then µ ∈ ρ(A) by assumption and

⟨ξ,Rµ(A)ξ⟩ = ⟨µx−Ax, x⟩ = µ− ⟨Ax, x⟩ < 0.

However, by Lemma 6.1.12, we have

σ(Rµ(A)) = {(µ− λ)−1 |λ ∈ σ(A)} ∪ {0} ⊂ [0,∞)

in contradiction to Theorem 5.3.16. This proves Theorem 6.3.13. □
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6.4. Functional Calculus and Spectral Measures

The purpose of the present section is to extend the measurable functional
calculus and the spectral measure to unbounded self-adjoint operators.

6.4.1. Functional Calculus. For a topological space Σ let B(Σ) denote
the C* algebra of bounded Borel measurable functions f : Σ → C with
the supremum norm ∥f∥ := supλ∈Σ|f(λ)|. Denote by Cb(Σ) ⊂ B(Σ) the
C* subalgebra of complex valued bounded continuous functions on Σ. The
next theorem extends the functional calculus of Theorem 5.6.5 to unbounded
self-adjoint operators.

Theorem 6.4.1 (Functional Calculus). Let H be a nonzero complex
Hilbert space, let A : dom(A) → H be an unbounded self-adjoint operator,
and let Σ := σ(A) ⊂ R. Then there exists a C* algebra homomorphism

(6.4.1) B(Σ) → Lc(H) : f 7→ f(A) =: ΨA(f)

that satisfies the following axioms.

(Normalization) Let fi ∈ B(Σ) be a sequence such that supi∈N |fi(λ)| ≤ |λ|
and limi→∞ fi(λ) = λ for all λ ∈ Σ. Then

lim
i→∞

fi(A)x = Ax for all x ∈ dom(A).

(Convergence) Let fi ∈ B(Σ) be a sequence such that supi∈N ∥fi∥ < ∞
and let f ∈ B(Σ) such that limi→∞ fi(λ) = f(λ) for all λ ∈ Σ. Then

lim
i→∞

fi(A)x = f(A)x for all x ∈ H.

(Positive) If f ∈ B(Σ,R) and f ≥ 0 then f(A) = f(A)∗ ≥ 0.

(Contraction) ∥f(A)∥ ≤ ∥f∥ for all f ∈ B(Σ) and ∥f(A)∥ = ∥f∥ for all
f ∈ Cb(Σ).

(Commutative) If B ∈ Lc(H) satisfies AB = BA then f(A)B = Bf(A)
for all f ∈ B(Σ).

(Eigenvector) If λ ∈ Σ and x ∈ dom(A) satisfy Ax = λx then every
function f ∈ B(Σ) satisfies f(A)x = f(λ)x.

(Spectrum) If f ∈ B(Σ) then f(A) is normal and σ(f(A)) ⊂ f(Σ). More-

over, σ(f(A)) = f(Σ) for all f ∈ Cb(Σ).

(Composition) If f ∈ Cb(Σ) and g ∈ B(f(Σ)) then (g ◦ f)(A) = g(f(A)).

The C* algebra homomorphism (6.4.1) is uniquely determined by the (Nor-
malization) and (Convergence) axioms.

Proof. See page 329. □
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Theorem 6.4.2 (Cayley Transform). Let H be a complex Hilbert
space.

(i) Let A : dom(A) → H be a self-adjoint operator. Then the operator

(6.4.2) U := (A− i1l)(A+ i1l)−1 : H → H

is unitary, the operator 1l− U : H → H is injective, and

(6.4.3) dom(A) = im(1l− U), A = i(1l + U)(1l− U)−1.

The operator U is called the Cayley transform of A.

(ii) Let U ∈ Lc(H) be a unitary operator such that 1l−U is injective. Then
the operator

A := i(1l + U)(1l− U)−1 : dom(A) → H, dom(A) := im(1l− U),

is self-adjoint and U is the Cayley transform of A.

(iii) Let A : dom(A) → H be a self-adjoint operator and let U ∈ Lc(H) be
its Cayley transform. Define the Möbius transformation ϕ : R → S1 \ {1}
by

(6.4.4) ϕ(λ) :=
λ− i

λ+ i
, ϕ−1(µ) = i

1 + µ

1− µ

for λ ∈ R and µ ∈ S1 \ {1}. Then

(6.4.5) σ(U) \ {1} = ϕ(σ(A)), Pσ(U) = ϕ(Pσ(A)),

and

(6.4.6) ker(λ1l−A) = ker(ϕ(λ)1l− U)

for all λ ∈ R.

Proof. We prove (i). The operators

A± i1l : dom(A) → H

are bijective and have bounded inverses by part (v) of Theorem 6.3.13 and
they are normal by part (i) of Theorem 6.3.13. Hence

∥Ax− ix∥ = ∥Ax+ ix∥ for all x ∈ dom(A)

and so the Cayley transform

U := (A− i1l)(A+ i1l)−1

in (6.4.2) is a unitary operator on H (Lemma 5.3.14). The operator U
satisfies

1l− U = 2i(A+ i1l)−1, 1l + U = 2A(A+ i1l)−1.

Thus 1l − U is injective, im(1l − U) = dom(A), and i−1A(1l − U) = 1l + U ,
and hence A and U satisfy (6.4.3). This proves part (i).
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We prove (ii). Assume U ∈ Lc(H) is a unitary operator such that 1l− U
is injective. Then 1 ∈ C \ Pσ(U) and hence the operator 1l− U has a dense
image by Theorem 5.3.15. Define the operator A : dom(A) → H by (6.4.3).
We prove that A is self-adjoint. Thus let

x ∈ dom(A∗), y := A∗x.

Then
⟨y, ζ⟩ = ⟨x,Aζ⟩ = ⟨x, i(1l + U)(1l− U)−1ζ⟩

for all ζ ∈ dom(A) = im(1l− U) and hence

⟨y, ξ − Uξ⟩ = ⟨x, i(ξ + Uξ)⟩ for all ξ ∈ H.

This implies U∗y − y = i(U∗x+ x) and hence

(6.4.7) y − Uy = i(x+ Ux).

Thus

x = 1
2(x− Ux) + 1

2(x+ Ux) = 1
2(1l− U)(x− iy) ∈ im(1l− U) = dom(A),

hence
(1l− U)−1x = 1

2(x− iy),

and therefore

Ax = i(1l + U)(1l− U)−1x = 1
2(1l + U)(ix+ y) = y.

Here the last equation follows from (6.4.7). This shows that A is self-adjoint.
Moreover, A + i1l = 2i(1l − U)−1 and A − i1l = 2iU(1l − U)−1, and hence
U = (A− i1l)(A+ i1l)−1 is the Cayley transform of A. This proves part (ii).

We prove (iii). Fix a real number λ. Then, by (6.4.2) and (6.4.4),

(λ+ i)(ϕ(λ)1l− U)(Ax+ ix) = (λ− i)(Ax+ ix)− (λ+ i)(Ax− ix)

= 2i(λx−Ax)

for all x ∈ dom(A). Since the operator A+ i1l : dom(A) → H is surjective,
this implies that λ1l−A : dom(A) → H is bijective if and only if ϕ(λ)1l−U
is bijective. Moreover, if x ∈ dom(A) satisfies Ax = λx then

(λ+ i)2(ϕ(λ)x− Ux) = (λ+ i)(ϕ(λ)1l− U)(λx+ ix)

= (λ+ i)(ϕ(λ)1l− U)(Ax+ ix)

= 2i(λx−Ax)

= 0.

Conversely, let x ∈ H such that Ux = ϕ(λ)x. Then (1 − ϕ(λ))x = x − Ux
and so x ∈ im(1l−U) = dom(A). Moreover, ξ := (1l−U)−1x = (1−ϕ(λ))−1x
and so

Ax = i(ξ + Uξ) = i
x+ Ux

1− ϕ(λ)
= i

1 + ϕ(λ)

1− ϕ(λ)
x = λx.

This proves part (iii) and Theorem 6.4.2. □
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With these preparations we are now ready to establish the functional cal-
culus for general unbounded self-adjoint operators. We give a proof of The-
orem 6.4.1 which reduces the result to the functional calculus for bounded
normal operators in Theorem 5.6.5 via the Cayley transform.

Proof of Theorem 6.4.1. Let A : dom(A) → H be a self-adjoint operator
with domain dom(A) ⊊ H (so A is not bounded) and spectrum

Σ := σ(A) ⊂ R.

Let

U := (A− i1l)(A+ i1l)−1 ∈ Lc(H)

be the Cayley transform of A. Then U is a unitary operator and 1l − U is
injective and not surjective, because im(1l− U) = dom(A) ̸= H, and so

1 ∈ σ(U).

Hence it follows from part (iii) of Theorem 6.4.2 that the spectrum of U is
the (compact) set

(6.4.8) σ(U) = ϕ(Σ) ∪ {1} ⊂ S1.

Now denote by

B(σ(U)) → Lc(H) : g 7→ g(U)

the C* algebra homomorphism in Theorem 5.6.5, and define the map

B(Σ) → Lc(H) : f 7→ f(A)

by

(6.4.9) f(A) := (f ◦ ϕ−1)(U) for f ∈ B(Σ).

Here the bounded measurable function f ◦ ϕ−1 : S1 \ {1} → C is extended
to all of S1 by setting (f ◦ ϕ−1)(1) := 0. We prove in seven steps that the
map (6.4.9) satisfies the requirements of Theorem 6.4.1.

Step 1. The map (6.4.9) is a C* algebra homomorphism. In particular, it
satisfies 1(A) = 1l.

Define g0 : σ(U) → C by g0(1) := 1 and

g0(µ) := 0 for µ ∈ σ(U) \ {1}.

Then the operator g0(U) is the orthogonal projection onto the kernel of
the operator 1l− U by part (iii) of Theorem 5.6.11, and so g0(U) = 0 be-
cause 1l− U is injective. This implies

1(A) = (1 ◦ ϕ−1)(U) = (1− g0)(U) = 1l.

That the map (6.4.9) is linear and preserves multiplication follows directly
from the definition. This proves Step 1.
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Step 2. The map (6.4.9) satisfies the (Normalization) axiom.

Let fi : Σ → C be a sequence of bounded measurable functions such that

sup
i∈N

|fi(λ)| ≤ |λ|, lim
i→∞

fi(λ) = λ for all λ ∈ Σ.

For i ∈ N define the function hi : σ(U) → C by

hi(µ) := (fi ◦ ϕ−1)(µ)(1− µ) for µ ∈ σ(U),

so hi : σ(U) → C is a bounded measurable function and

(6.4.10) hi(U) = fi(A)(1l− U).

Moreover, ϕ−1(µ) = i(1 + µ)(1− µ)−1 for µ ∈ σ(U) \ {1} and hence

|hi(µ)| =
∣∣∣∣fi(i1 + µ

1− µ

)∣∣∣∣ |1− µ|

≤ |1 + µ|
≤ 2

for all µ ∈ σ(U) \ {1}. Since hi(1) = 0 for all i, this implies

(6.4.11) sup
i∈N

|hi(µ)| ≤ 2, lim
i→∞

hi(µ) = i(1+µ− 2g0(µ)) for all µ ∈ σ(U),

where g0 : σ(U) → C is as in the proof of Step 1. Now let

x ∈ dom(A) = im(1l− U)

and define

ξ := (1l− U)−1x.

Then it follows from (6.4.3), (6.4.10), (6.4.11), and the (Convergence) axiom
in Theorem 5.6.5 that

lim
i→∞

fi(A)x = lim
i→∞

fi(A)(ξ − Uξ)

= lim
i→∞

hi(U)ξ

= i(ξ + Uξ)

= Ax.

This proves Step 2.

Step 3. The map (6.4.9) satisfies the (Convergence), (Positive), (Commu-
tative), and (Eigenvector) axioms.

The (Convergence) and (Positive) axioms follow directly from the definition
and the corresponding axioms in Theorem 5.6.5. The (Commutative) axiom
follows from the (Commutative) axiom in Theorem 5.6.5 and the fact that
an operator B ∈ Lc(H) commutes with A if and only if it commutes with U
(and hence also with U∗ = U−1). The (Eigenvector) axiom follows from
equation (6.4.6) and the (Eigenvector) axiom in Theorem 5.6.5.
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Step 4. The map (6.4.9) satisfies the (Spectrum) axiom.

Let f ∈ B(Σ) and µ ∈ C \ f(Σ), and define the function g : Σ → C by

g(λ) :=
1

µ− f(λ)
for λ ∈ Σ.

Then g is bounded and measurable and satisfies g(µ − f) = (µ − f)g = 1.
Hence g(A)(µ1l− f(A)) = (µ1l− f(A))g(A) = 1l by Step 1, so µ1l− f(A) is

invertible and thus µ ∈ ρ(f(A)). This shows that σ(f(A)) ⊂ f(Σ).

Let f ∈ Cb(Σ) and define the function g : σ(U) → C by

g(z) :=

{
f(ϕ−1(z)), for z ∈ σ(U) \ {1},
0, for z = 1.

Then g is continuous at every point z ∈ σ(U)\{1} and f(A) = g(U). Hence

f(λ) = g(ϕ(λ)) ∈ σ(g(U)) = σ(f(A)) for all λ ∈ Σ

by part (ii) of Theorem 5.6.11. Hence f(Σ) ⊂ σ(f(A)) because the spectrum
of f(A) is a closed subset of C. This proves Step 4.

Step 5. The map (6.4.9) satisfies the (Contraction) axiom.

This follows from Step 4 and the formula ∥f(A)∥ = supµ∈σ(f(A))|µ| in

part (ii) of Theorem 5.3.15.

Step 6. The map (6.4.9) satisfies the (Composition) axiom.

Fix a function f ∈ Cb(Σ) and define Af := f(A). Then Σf := σ(Af ) = f(Σ)
by Step 4. Consider the map B(Σf ) → Lc(H) : g 7→ g(Af ) := (g ◦ f)(A).
This map is a C* algebra homomorphism by Step 1, it is continuous by
Step 5, it satisfies the (Normalization) axiom id(Af ) = Af by definition,
and it satisfies the (Convergence) axiom by Step 3. Hence Step 6 follows
from uniqueness in Theorem 5.6.5.

Step 7. The C* algebra homomorphism (6.4.9) is uniquely determined by
the (Normalization) and (Convergence) axioms.

Let B(Σ) → Lc(H) : f 7→ f(A) be any C* algebra homomorphism that sat-
isfies the (Normalization) and (Convergence) axioms and define U := ϕ(A).
Then U(A + i1l) = A − i1l by the (Normalization) axiom, so U is the
Cayley transform of A. Define the map B(σ(U)) → Lc(H) : g 7→ g(U)
by g(U) := (g ◦ ϕ)(A) for g ∈ B(σ(U)). By definition, this map is a C* al-
gebra homomorphism that satisfies the (Convergence) axiom. Moreover, it
satisfies id(U) = ϕ(A) = U . Hence the map g 7→ g(U) agrees with the func-
tional calculus in Theorem 5.6.5. This proves Step 7 and Theorem 6.4.1. □
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6.4.2. Spectral Measures. Let B ⊂ 2R be the Borel σ-algebra. Theo-
rem 6.4.1 allows us to assign to every unbounded self-adjoint operator on a
complex Hilbert space a projection valued measure (see Definition 5.6.1).

Definition 6.4.3 (Spectral Measure). Let H be a nonzero complex
Hilbert space and let A : dom(A) → H be an unbounded self-adjoint oper-
ator with spectrum Σ := σ(A) ⊂ R, and let

ΨA : B(Σ) → Lc(H)

be the C* algebra homomorphism of Theorem 6.4.1. For every Ω ∈ B define
the operator PΩ ∈ Lc(H) by

(6.4.12) PΩ := ΨA(χΩ|Σ).

By Theorem 6.4.1 these operators are orthogonal projections and the map

(6.4.13) B → Lc(H) : Ω 7→ PΩ

is a projection valued measure. It is called the spectral measure of A.

Conversely, every projection valued measure (6.4.12) on the real axis
gives rise to a family of self-adjoint operators Af : dom(Af ) → H, one
for every Borel measurable function f : R → R. If f is bounded, then
this operator is bounded, so dom(Af ) = H, and it is given by the formula
Af := Ψ(f) in Theorem 5.6.2. For unbounded functions f the operator Af
will in general be unbounded.

Theorem 6.4.4 (The Operator Af).

Let H be a nonzero complex Hilbert space and fix any projection valued
measure B → Lc(H) : Ω 7→ PΩ on the real axis. Define the signed Borel
measures µy,x : B → R by

(6.4.14) µy,x(Ω) := Re⟨y, PΩx⟩ for x, y ∈ H and Ω ∈ B.

Let f : R → R be a Borel measurable function. Then the formula

dom(Af ) :=

{
x ∈ H

∣∣∣∣ ∫
R
f2 dµx,x <∞

}
,

Re⟨y,Afx⟩ :=
∫
R
f dµy,x for x ∈ dom(Af ) and y ∈ H,

(6.4.15)

defines a self-adjoint operator Af : dom(Af ) → H. This operator satisfies
the equation

∥Afx∥2 =
∫
R
f2 dµx,x

for all x ∈ dom(Af ).
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Proof. For x, y ∈ H the function µy,x : B → R is a signed Borel measure.
Its total variation is the Borel measure |µy,x| : B → [0,∞), defined by

|µy,x|(Ω) := sup
{
µy,x(Ω

′)− µy,x(Ω \ Ω′)
∣∣Ω′ ∈ B, Ω′ ⊂ Ω

}
for every Borel set Ω ⊂ R (see [75, Thm 5.12]). By definition, the total
variation satisfies |µy,x(Ω)| ≤ |µy,x|(Ω) for all Ω ∈ B. The positive and
negative parts of µy,x are the Borel measures µ±y,x : B → [0,∞), defined by

µ±y,x(Ω) :=
|µy,x|(Ω)± µy,x(Ω)

2
for Ω ∈ B.

They satisfy

µy,x = µ+y,x − µ−y,x, |µy,x| = µ+y,x + µ−y,x.

Let us now fix a Borel measurable function f : R → R. Then two vec-
tors x, y ∈ H satisfy

∫
R|f |d|µy,x| <∞ if and only if

∫
R|f |dµ

±
y,x <∞, and

if this holds then the integral of f with respect to µy,x is defined by∫
R
f dµy,x :=

∫
R
f dµ+y,x −

∫
R
f dµ−y,x.

With this understood, we prove in eight steps that the operator Af is well de-

fined and self-adjoint and satisfies ∥Afx∥2 =
∫
R f

2 dµx,x for all x ∈ dom(Af ).

Step 1. The signed Borel measures µy,x in (6.4.14) satisfy the inequality

(6.4.16) |µy,x|(Ω) ≤
√
µx,x(Ω)

√
µy,y(Ω)

for all x, y ∈ H and all Ω ∈ B.

Fix two elements x, y ∈ H. If Ω1,Ω2 ∈ B are disjoint and Ω1∪Ω2 =: Ω then

∥PΩ1x∥
2 + ∥PΩ1x∥

2 = ⟨x, PΩ1x⟩+ ⟨x, PΩ2x⟩
= ⟨x, PΩx⟩
= µx,x(Ω).

By the Cauchy–Schwarz inequality, this implies

µy,x(Ω
′)− µy,x(Ω \ Ω′) = Re⟨PΩ′y, PΩ′x⟩ − Re⟨PΩ\Ω′y, PΩ\Ω′x⟩

≤ ∥PΩ′x∥ ∥PΩ′y∥+
∥∥PΩ\Ω′x

∥∥∥∥PΩ\Ω′y
∥∥

≤
√

∥PΩ′x∥2 +
∥∥PΩ\Ω′x

∥∥2√∥PΩ′y∥2 +
∥∥PΩ\Ω′y

∥∥2
=
√
µx,x(Ω)

√
µy,y(Ω)

for every pair of Borel sets Ω′ ⊂ Ω ⊂ R. Fix a Borel set Ω ⊂ R and take the
supremum over all Borel sets Ω′ ⊂ Ω to obtain (6.4.16). This proves Step 1.
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Step 2. Let g : R → R be a Borel measurable function. Then

(6.4.17)

∫
R
|g| d|µy,x| ≤ ∥y∥

√∫
R
g2 dµx,x

for all x, y ∈ H.

For every finite collection of pairwise disjoint Borel sets Ω1, . . . ,Ωn ⊂ R and
every finite collection of positive real numbers a1, . . . , an, we have

n∑
i=1

ai|µy,x|(Ωi) ≤

(
n∑
i=1

a2iµx,x(Ωi)

)1/2( n∑
i=1

µy,y(Ωi)

)1/2

by Step 1 and the Cauchy–Schwarz inequality. Moreover,

n∑
i=1

µy,y(Ωi) = µy,y

(
n⋃
i=1

Ωi

)
≤ ∥y∥2 .

This proves (6.4.17) for the Borel measurable step function g :=
∑n

i=1 aiχΩi .
Since every nonnegative Borel measurable function can be approximated
pointwise from below by a sequence of Borel measurable step functions (see
for example [75, Thm 1.26]), Step 2 follows from the Lebesgue Monotone
Convergence Theorem.

Step 3. The operator Af : dom(Af ) → H in (6.4.15) is well defined. More
precisely, fix an element x ∈ dom(Af ). Then the function |f | : R → [0,∞)
is integrable with respect to the Borel measure |µy,x| for every y ∈ H, and
there exists a unique element Afx ∈ H such that

Re⟨y,Afx⟩ =
∫
R
f dµy,x

for all y ∈ H. Moreover, ∥Afx∥2 ≤
∫
R f

2 dµx,x.

Fix an element x ∈ dom(Af ) and define c :=
(∫

R f
2 dµx,x

)1/2
<∞. Then

Step 2 asserts that
∫
R|f |d|µy,x| ≤ c ∥y∥ <∞ and so the integral

∫
R fdµy,x is

well defined for all y ∈ H. Now define the map Λx : H → R by

Λx(y) :=

∫
R
f dµy,x for y ∈ H.

This map is real linear and satisfies the inequality

|Λx(y)| ≤
∫
R
|f | d|µy,x| ≤

(∫
R
f2 dµx,x

)1/2

∥y∥ = c ∥y∥

for all y ∈ H by Step 2. Hence, by Theorem 1.4.4, there exists a unique
element Afx ∈ H such that Re⟨y,Afx⟩ =

∫
R f dµy,x for all y ∈ H. More-

over ∥Afx∥ = ∥Λx∥ ≤ c and this proves Step 3.
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Step 4. The set dom(Af ) ⊂ H is a complex linear subspace and the opera-
tor Af in (6.4.15) is complex linear and symmetric.

Let x, x′ ∈ dom(Af ). Then

µx+x′,x+x′(Ω) = ⟨x+ x′, PΩx+ PΩx
′⟩

= ∥PΩx∥2 + 2Re⟨PΩx
′, PΩx⟩+

∥∥PΩx
′∥∥2

≤ 2 ∥PΩx∥2 + 2
∥∥PΩx

′∥∥2
= 2µx,x(Ω) + 2µx′,x′(Ω)

for all Ω ∈ B and this implies x+x′ ∈ dom(Af ). Moreover, µλx,λx = |λ|2µx,x,
so λx ∈ dom(Af ) for all λ ∈ C. Thus dom(Af ) is a complex subspace of H.
Since µy,x+x′ = µy,x + µy,x′ and µy,λx = λµy,x for all x, x′ ∈ dom(Af ) and
all λ ∈ R, the operator Af is real linear. To prove that it is complex linear,
let x ∈ dom(Af ) and y ∈ H. Then µy,ix = −µiy,x and hence

Re⟨y,Af ix⟩ =
∫
R
f dµy,ix = −

∫
R
f dµiy,x = −Re⟨iy,Afx⟩ = Re⟨y, iAfx⟩.

This shows that Af ix = iAfx for all x ∈ dom(Af ), so Af is complex linear.
Moreover, Af is symmetric because the bilinear map

dom(Af )× dom(Af ) → M(R) : (x, y) 7→ µx,y

is symmetric. This proves Step 4.

Step 5. The operator Af : dom(Af ) → H in (6.4.15) has a dense domain.

For n ∈ N define Ωn := {λ ∈ R | |f(λ)| ≤ n}. Then R =
⋃∞
n=1Ωn. Hence it

follows from the (σ-Additive) and (Normalization) axioms in Definition 5.6.1
that limn→∞ PΩnx = x for all x ∈ H. Now let x ∈ H and define xn := PΩnx.
Then µxn,xn(Ω) = µx,x(Ω∩Ωn) for all Ω ∈ B by the (Intersection) axiom in
Definition 5.6.1. Hence∫

R
f2 dµxn,xn =

∫
Ωn

f2 dµx,x ≤ n2∥x∥2

and so xn ∈ dom(Af ) for all n ∈ N. This proves Step 5.

Step 6. Let x ∈ dom(Af ) and Ω ∈ B. Then PΩx ∈ dom(Af ) and

AfPΩx = PΩAfx.

The estimate
∫
R f

2 dµPΩx,PΩx =
∫
Ω f

2 dµx,x <∞ implies PΩx ∈ dom(Af ).
Moreover,

Re⟨y,AfPΩx⟩ =
∫
R
f dµy,PΩx =

∫
R
f dµPΩy,x = Re⟨PΩy,Afx⟩

for all y ∈ H and this proves Step 6.
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Step 7. Let x ∈ dom(Af ). Then f is integrable with respect to the Borel
measure |µx,Afx| and

(6.4.18)

∫
R
f2 dµx,x =

∫
R
f dµx,Afx = ∥Afx∥2 .

That f is integrable with respect to |µx,Afx| = |µAfx,x| was proved in Step 3.
Next we observe that∫

R
χΩ dµx,Afx = µx,Afx(Ω) = Re⟨PΩx,Afx⟩ =

∫
R
f dµPΩx,x =

∫
R
χΩfdµx,x

for every Borel set Ω ⊂ R. This shows that
∫
R g dµx,Afx =

∫
R gfdµx,x for

every Borel measurable step function g : R → R. Now approximate f point-
wise by a sequence of Borel measurable step functions gn : R → R such
that |gn(λ)| ≤ |f(λ)| for all n ∈ N and all λ ∈ R (see [75, Thm 1.26]). Then
the Lebesgue Dominated Convergence Theorem asserts that∫

R
f dµx,Afx = lim

n→∞

∫
R
gn dµx,Afx = lim

n→∞

∫
R
gnf dµx,x =

∫
R
f2dµx,x.

This proves the first equality in (6.4.18). The second equality follows from
Step 3 and this proves Step 7.

Step 8. The operator Af : dom(Af ) → H in (6.4.15) is self-adjoint.

By Step 4 it suffices to prove that dom(A∗
f ) ⊂ dom(Af ). Let x ∈ dom(A∗

f )

and define y := A∗
fx. Then, for all ξ ∈ dom(Af ), we have

(6.4.19)

∫
R
fdµx,ξ = Re⟨x,Afξ⟩ = Re⟨A∗

fx, ξ⟩ = Re⟨y, ξ⟩

by Step 3. For n ∈ N let Ωn := {λ ∈ R | |f(λ)| ≤ n} and xn := PΩnx as in
the proof of Step 5. Then∫

R
f2 dµx,x = lim

n→∞

∫
Ωn

f2 dµx,x = lim
n→∞

∫
R
f2 dµxn,xn

by the Lebesgue Monotone Convergence Theorem. Moreover, it follows from
Steps 5 and 6 that Afxn = AfPΩnxn = PΩnAfxn ∈ dom(Af ). Hence∫

R
f2 dµxn,xn =

∫
R
f dµx,Afxn = Re⟨y,Afxn⟩ ≤ ∥y∥

√∫
R
f2 dµxn,xn .

Here the first equality uses Step 7 and the fact that the signed Borel mea-
sures µxn,Afxn and µx,Afxn agree, the second equality follows from (6.4.19)
with ξ := Afxn ∈ dom(Af ), and the inequality follows from Step 3. Thus∫

R
f2 dµx,x = lim

n→∞

∫
R
f2 dµxn,xn ≤ ∥y∥2

and so x ∈ dom(Af ). This proves Step 8 and Theorem 6.4.4. □
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Remark 6.4.5. (i) Theorem 6.4.4 can be used to extend the functional
calculus for self-adjoint operators to unbounded functions f : R → R, start-
ing from a projection valued measure as in Theorem 5.6.2. This functional
calculus can then be used to prove that the operator Af + i1l is invertible
and thus gives rise to an alternative proof that Af is self-adjoint. This
approach is used in Kato [44, p 355]. Steps 6 and 7 in the above proof of
Theorem 6.4.4 can be understood as a special case of this functional calculus,
using one unbounded function f and the bounded functions χΩ for Ω ∈ B.

(ii) There is an entirely different approach to the measurable functional cal-
culus for unbounded self-adjoint operators. One can start by assigning to
an unbounded self-adjoint operator A its spectral measure and use Theo-
rem 5.6.2 to construct the C* algebra homomorphism ΨA : B(Σ) → Lc(H).
For the construction of the spectral measure one can proceed as follows.
First show that every self-adjoint operator A : dom(A) → H can be writ-
ten as a difference A = A+ − A− of two positive semidefinite self-adjoint
operators A± : dom(A±) → H with dom(A+) ∩ dom(A−) = dom(A). Then
the operators 1l +A± are invertible by Theorem 6.3.13 and one can use the
spectral measures of their inverses in Theorem 5.6.3 to find the spectral
measure for A. This approach is taken in Kato [44, pp 353–361]. It does
not require the functional calculus for normal operators in Section 5.5.

(iii) Suppose the projection valued measure is supported on a closed sub-
set Σ ⊂ R. Then the functional calculus for unbounded functions can be
used as in Step 5 of the proof of Theorem 5.6.2 to show that σ(Af ) ⊂ f(Σ).

(iv) The functional calculus extends to unbounded normal operators. It can
be reduced to the self-adjoint case by writing an unbounded normal operator
as A = A1 + iA2 where A1 and A2 are self-adjoint (Theorem 6.3.11). For
bounded normal operators this approach is outlined in [72, pp 245–247].

The next theorem shows that (6.4.13), (6.4.14), (6.4.15) give rise to a
one-to-one correspondence between projection valued measures on the real
axis with values in Lc(H) and unbounded self-adjoint operators on H.

Theorem 6.4.6 (Spectral Measures). Let H be a nonzero complex
Hilbert space and let B ⊂ 2R be the Borel σ-algebra.

(i) Let A : dom(A) → H be a self-adjoint operator and let {PΩ}Ω∈B be the
spectral measure of A in Definition 6.4.3. Then A = Aid is the operator in
Theorem 6.4.4 with f = id : R → R.

(ii) Let B → Lc(H) : Ω 7→ PΩ be a projection valued measure and let Aid be
the operator in Theorem 6.4.4 with f = id : R → R. Then {PΩ}Ω∈B is the
spectral measure of Aid in Definition 6.4.3.

Proof. See page 338. □
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Corollary 6.4.7 (Characterization of the Spectral Measure).

Let A : dom(A) → H be a self-adjoint operator on a nonzero complex Hilbert
space H. Then there exists a unique projection valued measure {PΩ}Ω∈B on
the real axis such that

dom(A) =

{
x ∈ H

∣∣∣∣ ∫
R
λ2 dµx,x(λ) <∞

}
,

Re⟨y,Ax⟩ =
∫
R
λ dµy,x(λ) for x ∈ dom(A) and y ∈ H,

(6.4.20)

where {µy,x}x,y∈H is the collection of signed Borel measures on the real axis
defined by µy,x(Ω) := Re ⟨y, PΩx⟩ for all x, y ∈ H and all Borel sets Ω ⊂ R.
It agrees with the spectral measure of Definition 6.4.3.

Proof. Uniqueness follows from part (ii) of Theorem 6.4.6, and existence
follows from Theorem 6.4.4 and part (i) of Theorem 6.4.6. □

Proof of Theorem 6.4.6. We prove part (i). Let A : dom(A) → H be an
unbounded self-adjoint operator with spectrum

Σ := σ(A)

and take {PΩ}Ω∈B to be the projection valued measure in Definition 6.4.3,
associated to the C* algebra homomorphism ΨA : B(Σ) → Lc(H) in Theo-
rem 6.4.1. For i ∈ N define the function fi : R → R by

fi(λ) :=

{
λ, if |λ| ≤ i,
0, if |λ| > i.

Then the (Normalization) axiom in Theorem 6.4.1 asserts that

(6.4.21) lim
i→∞

ΨA(fi|Σ)x = Ax for all x ∈ dom(A).

Moreover, by definition of PΩ in (6.4.12) and of µy,x in (6.4.14), we have

µy,x(Ω) = Re⟨y, PΩx⟩ = Re⟨y,ΨA(χΣ∩Ω)x⟩

for all x, y ∈ H and all Ω ∈ B. Hence the (Convergence) axiom implies∫
R
f dµy,x = Re⟨y,ΨA(f |Σ)x⟩

for all x, y ∈ H and all bounded Borel measurable functions f : R → R. In
particular,

(6.4.22)

∫
R
fi dµy,x = Re⟨y,ΨA(fi|Σ)x⟩,

∫
R
f2i dµx,x = ∥ΨA(fi|Σ)x∥2

for all i ∈ N and all x, y ∈ H.
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Now let x ∈ dom(A). Then, by equations (6.4.21) and (6.4.22) and the
Lebesgue Monotone Convergence Theorem, we have∫

R
λ2 dµx,x(λ) = lim

i→∞

∫
R
f2i dµx,x = lim

i→∞
∥ΨA(fi|Σ)x∥2 = ∥Ax∥2 .

This implies x ∈ dom(Aid) and hence, by equations (6.4.21) and (6.4.22)
and the Lebesgue Dominated Convergence Theorem,

Re⟨y,Aidx⟩ =
∫
R
λ dµy,x

= lim
i→∞

∫
R
fi dµy,x

= lim
i→∞

Re⟨y,ΨA(fi|Σ)x⟩

= Re⟨y,Ax⟩

for all y ∈ H. Thus dom(A) ⊂ dom(Aid) and Aid|dom(A) = A. This im-
plies Aid = A by Exercise 6.5.4 and proves part (i).

We prove part (ii). Thus let B → Lc(H) : Ω 7→ PΩ be a projection
valued measure on the real axis, let

A := Aid

be the operator in Theorem 6.4.4 with f = id, and let Ψ : B(R) → Lc(H)
be the C* algebra homomorphism in Theorem 5.6.2 associated to {PΩ}Ω∈B.
Then Ψ satisfies the (Convergence) axiom in Theorem 6.4.1 by definition.
We prove that

(6.4.23) PR\Σ = 0, Σ := σ(Aid).

Suppose, by contradiction, that PR\Σ ̸= 0, choose a vector x ∈ X such
that PR\Σx ̸= 0, and consider the Borel measure µx : B → [0,∞) defined
by µx(Ω) := ⟨x, PΩx⟩ for Ω ∈ B. Then µx(R \ Σ) > 0 and so, since every
Borel measure on R is inner regular by [75, Thm 3.18], there exists a compact
set K ⊂ R \ Σ such that µx(K) > 0. Hence PK ̸= 0 and so

EK := im(PK)

is a nonzero closed subspace ofH. Since the identity function f = id : R → R
is bounded on K, it follows from the definition of the operator A = Aid

in (6.4.15) that EK ⊂ dom(A) and EK is invariant under A. Since EK ̸= {0}
and the operator AK := A|EK

: EK → EK is self-adjoint, its spectrum is
nonempty. Since µy,x(Ω) = µy,x(Ω ∩K) for x, y ∈ EK and Ω ∈ B, we have

Re⟨y,AKx⟩ =
∫
R
λ dµy,x(λ) =

∫
K
λ dµy,x(λ) for all x, y ∈ EK .

Hence σ(AK) ⊂ K by Theorem 5.6.2 and so ∅ ≠ σ(AK) ⊂ σ(A) ∩K = ∅, a
contradiction. This proves (6.4.23).
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Since PR\Σ = 0, the C* algebra homomorphism Ψ of Theorem 5.6.2
descends to a unique C* algebra homomorphism

ΨΣ : B(Σ) → Lc(H)

such that Ψ(f) = ΨΣ(f |Σ) for all f ∈ B(R). We prove that ΨΣ satisfies the
(Normalization) axiom in Theorem 6.4.1 with A = Aid. To see this, choose
a sequence of bounded Borel measurable functions fi : R → R that satisfy

sup
i∈N

|fi(λ)| ≤ |λ|, lim
i→∞

fi(λ) = λ for all λ ∈ R.

Fix an element x ∈ dom(Aid). Then the identity function id : R → R is
square integrable with respect to the Borel measure µx,x, and is integrable
with respect to the Borel measure |µy,x| for every y ∈ H. Hence it fol-
lows from the Lebesgue Dominated Convergence Theorem and the Hahn
Decomposition Theorem that

⟨y,Aidx⟩ =
∫
R
λ dµy,x(λ)

= lim
i→∞

∫
R
fi dµy,x

= lim
i→∞

⟨y,ΨΣ(fi|Σ)x⟩

for all y ∈ H and

∥Aidx∥2 =
∫
R
λ2 dµx,x(λ)

= lim
i→∞

∫
R
f2i dµx,x

= lim
i→∞

∥ΨΣ(fi|Σ)x∥2 .

Hence the sequence ΨΣ(fi|Σ)x converges weakly to Aidx and its norm con-
verges to that of Aidx. By Exercise 3.7.1 this implies

lim
i→∞

∥Aidx−ΨΣ(fi|Σ)x∥ = 0.

Thus the reduced C* algebra homomorphism ΨΣ : B(Σ) → Lc(H) satisfies
the (Normalization) axiom in Theorem 6.4.1 with A = Aid. Hence it follows
from uniqueness in Theorem 6.4.1 that ΨΣ = ΨAid

is the functional calculus
associated to the self-adjoint operator Aid. Hence

PΩ = Ψ(χΩ) = ΨΣ(χΩ|Σ) = ΨAid
(χΩ|Σ)

for every Borel set Ω ⊂ R. Here the first equality holds by definition of
the C* algebra homomorphism Ψ : B(R) → Lc(H) in Theorem 5.6.2. Hence
the projection valued measure {PΩ}Ω∈B is the spectral measure of Aid as
introduced in Definition 6.4.3. This proves part (ii) and Theorem 6.4.6. □
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Example 6.4.8. Let A : dom(A) → H be a self-adjoint operator on a
nonzero complex Hilbert space H.

(i) Consider the operator family

R → L(H) : t 7→ U(t)

associated to the functions λ 7→ eiλt via the functional calculus of Theo-
rem 6.4.1. In terms of the spectral measure the operators U(t) are deter-
mined by the formula

⟨y, U(t)x⟩ :=
∫ ∞

−∞
eiλt d⟨y, Pλx⟩ for all x, y ∈ H and all t ∈ R.

Here the expression
∫
R f(λ) d⟨y, Pλx⟩ denotes the integral of a Borel measur-

able function f : R → C with respect to the complex valued Borel measure

B → C : Ω 7→ ⟨y, PΩx⟩

on the real axis. The operator family R → Lc(H) : t 7→ U(t) is strongly
continuous, by the (Convergence) axiom, and satisfies

U(s+ t) = U(s)U(t), U(0) = 1l

for all s, t ∈ R. This means that U is a strongly continuous group of (unitary)
operators. Such groups play an important role in quantum mechanics. For
example, they appear as solutions of the Schrödinger equation.

(ii) Assume, in addition, that

⟨x,Ax⟩ ≤ 0 for all x ∈ dom(A).

Then σ(A) ⊂ (−∞, 0] and a similar construction leads to an operator family

[0,∞) → Lc(H) : t 7→ S(t)

associated to the functions λ 7→ eλt on the negative real axis. In terms of
the spectral measure the operators S(t) are determined by the formula

⟨y, S(t)x⟩ :=
∫ 0

−∞
eλt d⟨y, Pλx⟩ for all x, y ∈ H and all t ≥ 0.

The restriction t ≥ 0 is needed to obtain bounded functions on the negative
real axis and bounded linear operators S(t). These operators form a strongly
continuous semigroup of operators on H. For example, the solutions of the
heat equation on Rn can be expressed in this form with A the Laplace
operator. The study of strongly continuous semigroups is the subject of the
next and final chapter of this book.
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6.5. Problems

Exercise 6.5.1 (Unbounded Operators and their Inverses).

Let X and Y be Banach spaces and let A : dom(A) → Y be an unbounded
operator with a dense domain dom(A) ⊂ X. Assume A is injective and let

A−1 : dom(A−1) → X

be its inverse with the domain

dom(A−1) := im(A) = {Ax |x ∈ dom(A)} ⊂ Y.

(a) Prove that A has a closed graph if and only if A−1 has a closed graph.

(b) Assume A is surjective. Prove that A−1 is bounded if and only if A has
a closed graph.

(c) Assume that A is surjective, dom(A) is a dense subspace of X, and A−1

is a compact operator. Prove that X is separable. (See Exercise 4.5.2.)

(d) Assume Y = X and A has a closed graph. Prove that

σ(A−1) \ {0} =
{
λ−1 |λ ∈ σ(A) \ {0}

}
.

(e) AssumeX = Y and A has a closed graph. Prove that 0 /∈ σ(A) ∪ σ(A−1)
if and only if dom(A) = X and A : X → X is bijective and bounded.

(f) Find an example of an injective unbounded operator A : dom(A) → X
with a closed graph such that 0 ∈ σ(A) ∩ σ(A−1).

Exercise 6.5.2 (Closed Graphs and Inverses). Let X be a complex
Banach space and let A : dom(A) → X be an unbounded complex linear
operator. Let λ ∈ C and suppose that the operator λ1l−A : dom(A) → X
is bijective. Prove that the following are equivalent.

(i) The operator (λ1l−A)−1 : X → X is bounded.

(ii) A has a closed graph.

Hint: Show that λ1l − A has a closed graph if and only if A has a closed
graph. Use Exercise 2.2.12 and the Open Mapping Theorem 2.2.1.

Exercise 6.5.3 (Symmetric and Surjective Implies Self-Adjoint).
LetH be a complex Hilbert space and let A : dom(A) → H be an unbounded
symmetric complex linear operator with a dense domain. Prove that the
following are equivalent.

(i) There exists a λ ∈ C such that λ1l−A : dom(A) → H is surjective.

(ii) A is self-adjoint.
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Exercise 6.5.4 (Uniqueness of Self-Adjoint Operators).

Let H be a complex Hilbert space and let A,B be unbounded self-adjoint
operators on H such that

dom(A) ⊂ dom(B), B|dom(A) = A.

Then B = A.

Exercise 6.5.5 (Bounded Self-Adjoint Operators).

Let H be a complex Hilbert space and let A : dom(A) → H be a self-adjoint
operator on H. Prove that dom(A) = H if and only if σ(A) is a bounded
subset of R. Hint: Theorem 6.4.1 with f = id.

Exercise 6.5.6 (The Unbounded Open Mapping Theorem).

(a) Let X and Y be Banach spaces and let A : dom(A) → Y be a closed
unbounded operator with a dense domain dom(A) ⊂ X. Let δ > 0 and
assume

(6.5.1)
{
y ∈ Y

∣∣ ∥y∥ ≤ δ
}
⊂
{
Ax
∣∣x ∈ dom(A), ∥x∥X < 1

}
.

Prove that

(6.5.2)
{
y ∈ Y

∣∣ ∥y∥ < δ
}
⊂
{
Ax
∣∣x ∈ dom(A), ∥x∥X < 1

}
.

Hint: The proof of Lemma 2.2.3 carries over almost verbatim to operators
with dense domains and closed graphs.

(b) Prove that (vii) implies (i) in Theorem 6.2.3 by carrying over the proof
of the corresponding statement in Theorem 4.1.16 to unbounded operators.
Hint: Use part (a).

Exercise 6.5.7 (Spectral Projection).

Let A : dom(A) → X be an operator on a complex Banach space X with a
compact resolvent (see Definition 6.1.13).

(a) If dom(A) = X prove that dimX <∞.

(b) Let λ ∈ σ(A) and define Pλ ∈ Lc(X) by (6.1.20) with Σ := {λ}, i.e.

(6.5.3) Pλ :=
1

2πi

∫
γ
(z1l−A)−1 dz,

where γ(t) := λ+ re2πit for 0 ≤ t ≤ 1 and r > 0 sufficiently small. Prove
that Pλ is the unique projection that commutes with A and whose image is
the generalized eigenspace

(6.5.4) im(Pλ) = Eλ :=

∞⋃
k=1

ker(λ1l−A)k.
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Exercise 6.5.8 (Square Root). Let H be a complex Hilbert space.

(a) Call an unbounded self-adjoint operator A : dom(A) → H positive
semidefinite if it satisfies

⟨x,Ax⟩ ≥ 0 for all x ∈ dom(A).

Assume A : dom(A) → H is a positive semidefinite operator. Prove that
there exists a unique self-adjoint operator B : dom(B) → H such that

B2 = A, ⟨x,Bx⟩ ≥ 0 for all x ∈ dom(B).

The operator B is called the square root of A and is denoted by

B =:
√
A =: A1/2.

Hint: Theorem 6.4.4 with f(λ) :=
√
λ.

(b) Let A : dom(A) → H be an unbounded self-adjoint operator. Prove
that the positive semidefinite operator

|A| :=
√
A2

has the same domain as A and satisfies

0 ≤ |⟨x,Ax⟩| ≤ ⟨x, |A|x⟩ for all x ∈ dom(A).

Let A± be self-adjoint extensions of the symmetric operators 1
2(|A| ± A).

Show that A± are positive semidefinite and satisfy

dom(A) = dom(A+) ∩ dom(A−)

and

A = A+ −A−, |A| = A+ +A−.

Hint: Theorem 6.4.4 with f(λ) = |λ|.

Exercise 6.5.9 (Densely Defined Operators and their Adjoints).

Let X and Y be real Hilbert spaces and let A : dom(A) → Y be an un-
bounded operator with a dense domain dom(A) ⊂ X.

(a) The graph of the adjoint operator A∗ : dom(A∗) → X is the orthog-
onal complement of the subspace {(y, x) ∈ Y ×X |x ∈ dom(A), y = −Ax}.
Thus A∗ has a closed graph.

(b) The operator A is closeable if and only if dom(A∗) is a dense subspace
of Y . Hint: Carry over the proof of part (iii) of Theorem 6.2.2 to the
Hilbert space setting.

(c) If A is closed then A∗∗ = A. Hint: Use (a).
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Exercise 6.5.10 (Symplectic Vector Spaces). Let (V, ω) be a sym-
plectic vector space, i.e. V is a real vector space and ω : V × V → R is
a nondegenerate skew-symmetric bilinear form, so for every nonzero vec-
tor v ∈ V , there is a vector w ∈ V such that ω(v, w) ̸= 0. The symplectic
complement of a linear subspace W ⊂ V is the linear subspace

Wω := {v ∈ V |ω(v, w) = 0 for all w ∈W} .

A linear subspaceW ⊂ V is called ω-reflexive ifWωω =W . An ω-reflexive
subspace W ⊂ V is called isotropic if W ⊂Wω, coistropic if Wω ⊂W ,
and Lagrangian if W =Wω. A complex structure on V is a linear op-
erator J : V → V such that J2 = −1l. A complex structure is called com-
patible with ω if the formula

(6.5.5) ⟨u, v⟩ := ω(u, Jv) for u, v ∈ V

defines an inner product on V .

(a) Let J be an ω-compatible complex structure on V and let W ⊂ V be
a linear subspace. Prove that the orthogonal and symplectic complements
of W are related by

Wω = JW⊥, Wωω =W⊥⊥.

Deduce that W is ω-reflexive if and only if it is closed with respect to the
inner product (6.5.5).

(b) Let W ⊂ V be an isotropic subspace and define V :=Wω/W . Prove
that the formula ω([u], [v]) := ω(u, v) for u, v ∈Wω defines a symplectic
form on V . This construction is called symplectic reduction.

(c) Let H be a real Hilbert space. Show that the formulas

ω(z, ζ) := ⟨x, η⟩H − ⟨y, ξ⟩H , J(x, y) := (−y, x)

for z = (x, y), ζ = (ξ, η) ∈ H × H define a symplectic form ω and an ω-
compatible complex structure J on the Hilbert space H ×H that induce
the standard inner product.

(d) Let H be a real Hilbert space, let A : dom(A) → H be a densely defined
unbounded operator on H, and let ω be the symplectic form on H ×H
in (c). Define graph(A) := {(Ax, x) |x ∈ dom(A)}. Show that

graph(A∗) = graph(A)ω.

Deduce that A is closed if and only if its graph is an ω-reflexive sub-
space of H ×H, and that A is self-adjoint if and only if its graph is a
Lagrangian subspace. If A is closed and symmetric, show that the reduced
space graph(A∗)/graph(A) in (b) is naturally isomorphic to the Gelfand–
Robbin quotient dom(A∗)/dom(A) in Exercise 6.3.3.
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Exercise 6.5.11 (The Gelfand–Robbin Quotient). The purpose of
this exercise is to introduce a natural inner product on the Gelfand–Robbin
quotient and to examine its properties. Assume throughout that H is a real
Hilbert space and that A : dom(A) → H is a densely defined symmetric
operator with a closed graph.

(a) Prove that the domain of A∗ is a Hilbert space with the inner product

(6.5.6) ⟨x, y⟩A∗ := ⟨x, y⟩H + ⟨A∗x,A∗y⟩H for x, y ∈ dom(A∗)

and that dom(A) is a closed subspace of dom(A∗). Let V ⊂ dom(A∗) be the
orthogonal complement of dom(A). Prove that

(6.5.7) V = {x ∈ dom(A∗) |A∗x ∈ dom(A∗), A∗A∗x+ x = 0} .

Thus V is canonically isomorphic to the Gelfand–Robbin quotient in Exer-
cise 6.3.3 and the inner product (6.5.6) renders V into a Hilbert space.

(b) Prove that the linear map A∗|V : V → V is a complex structure on V
and that it is compatible with the symplectic form

(6.5.8) ω(x, y) = ⟨A∗x, y⟩H − ⟨x,A∗y⟩H for x, y ∈ V.

Prove that ω(x,A∗y) = ⟨x, y⟩A∗ for all x, y ∈ V . Prove that every La-
grangian subspace of V is closed.

(c) Assume A has a closed image. Prove that

(6.5.9) Λ0 := {x ∈ V |A∗x ∈ im(A)}

is a Lagrangian subspace of V .

Hint 1: If x, y ∈ Λ0 and ξ, η ∈ dom(A) satisfy that Aξ = A∗x and Aη = A∗y
then ⟨A∗x, y⟩ = ⟨ξ, A∗y⟩ = ⟨ξ, Aη⟩ = ⟨Aξ, η⟩ = ⟨A∗x, η⟩ = ⟨x,A∗y⟩.

Hint 2: Let x ∈ V such that ω(x, y) = 0 for all y ∈ Λ0. Prove that

⟨A∗x, y⟩ = 0 for all y ∈ ker(A∗)

and so A∗x ∈ im(A) by Lemma 6.3.2. To see this, let y ∈ ker(A∗) and
choose η ∈ dom(A) such that ⟨y − η, ξ⟩A∗ = 0 for all ξ ∈ dom(A). Deduce
that Aη ∈ dom(A∗) and A∗Aη = y − η. This implies y − η ∈ Λ0 and hence

0 = ⟨A∗x, y − η⟩A∗ = ⟨A∗x, y⟩.

(d) Assume A has a closed image. Prove that the orthogonal complement
of Λ0 with respect to the inner product (6.5.6) is the Lagrangian subspace

(6.5.10) Λ⊥
0 = A∗Λ0 = V ∩ im(A).

Hint: The first equation is a general fact about symplectic vector spaces
with compatible complex structures (see part (a) of Exercise 6.5.10).
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(e) Assume A has a closed image and let Λ0 ⊂ V be as in (6.5.9). Prove
that

(6.5.11) dom(A)⊕ Λ0 = dom(A) + ker(A∗), im(A)⊕ Λ0 = im(A∗).

Hint: To prove the inclusion ker(A∗) ⊂ dom(A) ⊕ Λ0 use the argument in
Hint 2 for part (c). That im(A) ∩ Λ0 = {0} follows from (6.5.10). To prove
the inclusion im(A∗) ⊂ im(A)⊕ Λ0 use the fact that, by (6.5.10),

dom(A∗) = dom(A)⊕ Λ0 ⊕ (V ∩ im(A))

= (dom(A) + ker(A∗))⊕ (V ∩ im(A)).

This implies that, for every y ∈ im(A∗), there exist elements ξ ∈ dom(A)
and x ∈ V ∩ im(A) such that y = Aξ + A∗x. Thus we have A∗x ∈ V
and A∗A∗x = −x ∈ im(A), and so A∗x ∈ Λ0.

(f) Assume A∗ is surjective and let Λ ⊂ V be a Lagrangian subspace of V .
Denote by

AΛ : dom(AΛ) = dom(A)⊕ Λ → H

the corresponding self-adjoint extension as in part (iii) of Exercise 6.3.3.
Prove that AΛ is a Fredholm operator if and only if (V,Λ0,Λ) is a Fredholm
triple with respect to the inner product (6.5.6) (see Exercise 4.5.15).

Hint: The domain of AΛ is a closed subspace of the domain of A∗ with
respect to the graph norm and AΛ : dom(AΛ) → H is a bounded linear
operator with respect to the graph norm of A∗ on its domain. Moreover,

(6.5.12) im(AΛ) = im(A) +A∗Λ.

Use this to prove that

(6.5.13) H = im(AΛ)⊕ (Λ0 ∩ Λ).

Let y ∈ im(AΛ) ∩ Λ0 ∩ Λ, ξ ∈ dom(A), and x ∈ Λ such that y = Aξ + A∗x.
Then Aξ ∈ V ∩ im(A) = A∗Λ0, hence y ∈ A∗(Λ0+Λ)∩Λ0∩Λ, and so y = 0.
Next, let y ∈ H and use (6.5.11) to find ξ ∈ dom(A), y0 ∈ Λ0 ∩ Λ, x1 ∈ Λ
such that y1 := A∗x1 ∈ Λ0 ∩ A∗Λ and y = Aξ + y0 + y1 = AΛ(ξ + x1) + y0.
If (V,Λ0,Λ) is a Fredholm triple, then dim coker(AΛ) <∞ by (6.5.13), and
hence AΛ has a closed image by Lemma 4.3.2.





Chapter 7

Semigroups of
Operators

Strongly continuous semigroups play an important role in the study of many
linear partial differential equations such as the heat equation, the wave
equation, and the Schrödinger equation. The finite-dimensional model of
a strongly continuous semigroup is the exponential matrix associated to a
first order linear ordinary differential equation. The concept of the exponen-
tial operator carries over naturally to infinite-dimensional Banach spaces X
and can be used to find a solution of the Cauchy problem

ẋ = Ax, x(0) = x0

for every bounded linear operator A ∈ L(X) and every initial value x0 ∈ X.
The unique solution x : R → X of this equation is given by

x(t) = etAx0 =

∞∑
k=0

tk

k!
Akx0 for t ∈ R.

(See Exercise 5.2.13.) The aforementioned partial differential equations can
be expressed in the same form, however, with the caveat that the operator A
is unbounded with a dense domain and that the solutions may only exist
in forward time. In such situations it is convenient to use the solutions,
rather than the equation, as the starting point. This leads to the notion of
a strongly continuous semigroup, introduced in Section 7.1 along with sev-
eral examples. That section also derives some of their basic properties and
discusses the infinitesimal generator. The main result is the Hille–Yosida–
Phillips Theorem in Section 7.2 which characterizes infinitesimal generators
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of strongly continuous semigroups. The dual semigroup is the subject of Sec-
tion 7.3 and analytic semigroups are discussed in Section 7.4. A preparatory
Section 7.5 is devoted to Banach space valued measurable functions, and in-
homogeneous equations are examined in Section 7.6.

7.1. Strongly Continuous Semigroups

7.1.1. Definition and Examples. The existence and uniqueness theorem
for solutions of a time-independent ordinary differential equation implies
that the solutions define a flow. This means that the value of the solution
with initial condition x0 at time s+ t agrees with the value at time s of
the solution whose initial condition is taken to be the value of the origi-
nal solution at time t. For linear differential equations on Banach spaces
this translates into a semigroup condition on the family of linear opera-
tors, parametrized by a nonnegative real variable t, that assign to a given
initial condition the solution of the respective linear differential equation
at time t. Continuous dependence on time translates into strong continu-
ity of the semigroup of operators and continuous dependence on the initial
condition translates into boundedness of the operators.

Definition 7.1.1 (Strongly Continuous Semigroup).

Let X be a real Banach space. A one-parameter semigroup (of opera-
tors on X) is a map S : [0,∞) → L(X) that satisfies

(7.1.1) S(0) = 1l, S(s+ t) = S(s)S(t)

for all s, t ≥ 0. A one-parameter group (of operators on X) is a
map S : R → L(X) that satisfies (7.1.1) for all s, t ∈ R. A strongly con-
tinuous semigroup (of operators on X) is a map S : [0,∞) → L(X)
that satisfies (7.1.1) for all s, t ≥ 0 and satisfies

(7.1.2) lim
t→0

∥S(t)x− x∥ = 0

for all x ∈ X. A strongly continuous group (of operators on X) is a
map S : R → L(X) that satisfies (7.1.1) for all s, t ∈ R and satisfies (7.1.2)
for all x ∈ X.

Example 7.1.2 (Groups Generated by Bounded Operators).

Let X be a real Banach space and let A : X → X be a bounded linear
operator. Then the operators

(7.1.3) S(t) := etA =

∞∑
k=0

tkAk

k!

for t ∈ R form a strongly continuous group of operators on X. In this
example the map R → L(X) : t 7→ S(t) is continuous with respect to the
norm topology on L(X) (see Exercise 5.2.13).
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Example 7.1.3 (Semigroups and Orthonormal Bases).

Let H be a separable complex Hilbert space, let (ei)i∈N be a complex or-
thonormal basis, and let (λi)i∈N be a sequence of complex numbers such
that

sup
i∈N

Reλi <∞.

Define the map S : [0,∞) → Lc(H) by

(7.1.4) S(t)x :=
∞∑
i=1

eλit⟨ei, x⟩ei

for x ∈ H and t ≥ 0. Exercise: Show that this is a strongly continuous
semigroup of operators on H. Show that it extends to a strongly continuous
group S : R → Lc(H) if and only if

sup
i∈N

|Reλi| <∞.

Example 7.1.4 (Shift Semigroups). Fix a constant 1 ≤ p < ∞ and
letX = Lp([0,∞)) be the Banach space of real valued Lp-functions on [0,∞)
with respect to the Lebesgue measure.

(i) Define the map L : [0,∞) → L(X) by

(7.1.5) (L(t)f)(s) := f(s+ t)

for f ∈ Lp([0,∞)) and s, t ≥ 0. Exercise: Show that this is a strongly
continuous semigroup of operators. Show that this example extends to the
space of continuous functions on [0,∞) that converge to zero at infinity.
Show that strong continuity fails when Lp([0,∞)) is replaced by L∞([0,∞))
or by the space of bounded continuous real valued functions on [0,∞). Show
that the formula (7.1.5) defines a group on Lp(R) for 1 ≤ p <∞.

(ii) Define the map R : [0,∞) → L(X) by

(7.1.6) (R(t)f)(s) :=

{
0, if s < t,

f(s− t), if s ≥ t,

for f ∈ Lp([0,∞)) and s, t ≥ 0. Exercise: Show that this is a strongly
continuous semigroup of isometric embeddings. Show that this example
extends to the space of continuous functions f : [0,∞) → R that vanish at
the origin and converge to zero at infinity.

(iii) Define the map S : [0,∞) → L(Lp([0, 1])) by

(7.1.7) (S(t)f)(s) :=

{
f(s+ t), if s+ t ≤ 1,

0, if s+ t > 1,

for f ∈ Lp([0, 1]), s ∈ [0, 1], and t ≥ 0. Exercise: Show that this is a
strongly continuous semigroup of operators such that S(t) = 0 for t ≥ 1.
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Example 7.1.5 (Flows). Let (M,d) be a compact metric space and
suppose that the map

R×M →M : (t, p) 7→ ϕt(p)

is a continuous flow, i.e. it is continuous and satisfies

ϕ0 = id, ϕs+t = ϕs ◦ ϕt

for all s, t ∈ R. Let X := C(M) be the Banach space of continuous real
valued functions on M equipped with the supremum norm. Define

(7.1.8) S(t)f := f ◦ ϕt for t ∈ R and f ∈ C(M).

Then S : R → L(C(M)) is a strongly continuous group of operators.

Example 7.1.6 (Heat Equation). Fix a positive integer n and a real
number 1 ≤ p <∞. Define the heat kernel Kt : Rn → R by

(7.1.9) Kt(x) :=
1

(4πt)n/2
e−|x|2/4t for x ∈ Rn and t > 0.

Here |x| :=
√∑n

i=1 x
2
i denotes the Euclidean norm of x = (x1, . . . , xn) ∈ Rn.

These functions are nonnegative and Lebesgue integrable and satisfy

(7.1.10)

∫
Rn

Kt(ξ) dξ = 1, Ks+t = Ks ∗Kt

for all s, t > 0, where (f∗g)(x) :=
∫
Rn f(x−ξ)g(ξ) dξ denotes the convolution

of two Lebesgue integrable functions f, g : Rn → R. Equation (7.1.10)
implies that the operators S(t) : Lp(Rn) → Lp(Rn), defined by

(7.1.11) S(t)f :=

{
Kt ∗ f, for t > 0,

f, for t = 0,

define a semigroup of operators. Since limt→0 sup|x|≥δKt(x) = 0 for all δ > 0

and
∫
Rn Kt = 1 for all t > 0, the functions S(t)f = Kt∗f converge uniformly

to f for every continuous function f : Rn → R with compact support. The
convergence is also in Lp(Rn). Since Cc(Rn) is dense in Lp(Rn) by [75,
Thm 4.15] and ∥S(t)∥ ≤ 1 for all t ≥ 0 by Young’s inequality, it follows from
Theorem 2.1.5 that limt→0 ∥S(t)f − f∥Lp = 0 for all f ∈ Lp(Rn). Thus the
semigroup (7.1.11) is strongly continuous. Moreover, for each f ∈ Lp(Rn),
the function u : (0,∞)× Rn → R, defined by u(t, x) := (Kt ∗ f)(x) for t > 0
and x ∈ Rn, is smooth and satisfies the heat equation

(7.1.12)
∂u

∂t
=

n∑
i=1

∂2u

∂x2i
, lim

t→0

∫
Rn

|u(t, x)− f(x)|p dx = 0.

Exercise: Fill in the details.



7.1. Strongly Continuous Semigroups 353

Example 7.1.7 (Wave Equation). Let L2(R) be the space of square
integrable real valued functions on R with respect to the Lebesgue measure,
modulo equality almost everywhere, and let W 1,2(R) denote the space of
absolutely continuous functions f : R → R such that f and f ′ are square
integrable. Then H :=W 1,2(R)× L2(R) is a Hilbert space with the norm

∥(f, g)∥H :=

√√√√∫ ∞

−∞

(
|f(x)|2 +

∣∣∣∣ dfdx(x)
∣∣∣∣2 + |g(x)|2

)
dx

for f ∈W 1,2(R) and g ∈ L2(R). Given a pair (f, g) ∈ H, define the func-
tion u : R2 → R by

(7.1.13) u(t, x) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds

for t, x ∈ R. Then u(t, ·) ∈W 1,2(R) and ∂tu(t, ·) ∈ L2(R) for all t ∈ R, and
the linear operators S(t) : H → H given by S(t)(f, g) := (u(t, ·), ∂tu(t, ·))
for (f, g) ∈ H and t ∈ R define a strongly continuous group of operators
on H. If f and g are smooth, then the function (7.1.13) is the unique
solution of the one-dimensional wave equation

(7.1.14)
∂2u

∂t2
=
∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x).

The energy identity asserts that the function

E(t) :=
1

2

∫ ∞

−∞

(∣∣∣∣∂u∂x(t, x)
∣∣∣∣2 + ∣∣∣∣∂u∂t (t, x)

∣∣∣∣2
)
dx

is constant for every solution of (7.1.14). Thus the operators S(t) ∈ L(H)
extend to isometries of the completion H of H with respect to the norm

∥(f, g)∥H :=

√√√√∫ ∞

−∞

(∣∣∣∣ dfdx(x)
∣∣∣∣2 + |g(x)|2

)
dx.

The completion can be identified with the quotient of the space of all
pairs (f, g), where g ∈ L2(R) and f : R → R is absolutely continuous with
square integrable derivative, under the equivalence relation (f1, g1) ∼ (f2, g2)
iff g1 = g2 and f1 − f2 is constant (Exercise 7.7.5). If one identifies H
with H := L2(R,R2) via the isomorphism H → H : (f, g) 7→ (f ′, g), one
obtains the strongly continuous group S : R → L(H ) of isometries, given
by S (t)(f, g) := (u(t, ·), v(t, ·)) for t ∈ R and f, g ∈ L2(R), where

u(t, x) :=
f(x+ t) + f(x− t)

2
+
g(x+ t)− g(x− t)

2
,

v(t, x) :=
f(x+ t)− f(x− t)

2
+
g(x+ t) + g(x− t)

2
.

(7.1.15)
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7.1.2. Basic Properties. The next two lemmas examine some of the ele-
mentary properties of strongly continuous semigroups.

Lemma 7.1.8. Let X be a real Banach space and let S : [0,∞) → L(X)
be a strongly continuous semigroup. Then the following holds.

(i) sup0≤t≤T ∥S(t)∥ <∞ for all T > 0.

(ii) The function [0,∞) → X : t 7→ S(t)x is continuous for all x ∈ X.

(iii) The function t−1 log ∥S(t)∥ converges in R∪{−∞} as t tends to infinity
and

(7.1.16) lim
t→∞

t−1 log∥S(t)∥ = inf
t>0

t−1 log∥S(t)∥ =: ω0.

(iv) Let ω0 be as in (iii) and fix a real number ω > ω0. Then there exists a
constant M ≥ 1 such that

(7.1.17) ∥S(t)∥ ≤Meωt for all t ≥ 0.

Proof. To prove (i) we show first that there exist constants δ > 0
and M ≥ 1 such that, for all t ∈ R,

(7.1.18) 0 ≤ t ≤ δ =⇒ ∥S(t)∥ ≤M.

Suppose by contradiction that there do not exist such constants. Then

sup
0≤t≤δ

∥S(t)∥ = ∞

for all δ > 0. Hence there exists a sequence of real numbers tn > 0 such
that limn→∞ tn = 0 and the sequence ∥S(tn)∥ is unbounded. By the Uniform
Boundedness Theorem 2.1.1 this implies that there exists an element x ∈ X
such that the sequence ∥S(tn)x∥ is unbounded. This contradicts the fact
that limn→∞ ∥S(tn)x− x∥ = 0. Thus we have proved (7.1.18).

Now fix a number T > 0 and choose N ∈ N such that Nδ > T . Fix an
element t ∈ [0, T ]. Then there exists a unique integer k ∈ {0, 1, . . . , N − 1}
such that kδ ≤ t < (k + 1)δ and hence, by (7.1.18),

∥S(t)∥ = ∥S(δ)kS(t− kδ)∥ ≤ ∥S(δ)∥k ∥S(t− kδ)∥ ≤Mk+1 ≤MN .

This proves part (i).

Part (ii) follows from part (i) and the inequalities

∥S(t+ h)x− S(t)x∥ ≤ ∥S(t)∥ ∥S(h)x− x∥

and

∥S(t− h)x− S(t)x∥ ≤ ∥S(t− h)∥ ∥x− S(h)x∥
for 0 ≤ h ≤ t.
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We prove part (iii). Equation (7.1.16) holds obviously with ω0 = −∞
whenever S(t) = 0 for some t > 0. Hence assume S(t) ̸= 0 for all t > 0.
Then for every t > 0 there is a constant c ≥ 1 such that c−1 ≤ ∥S(s)∥ ≤ c
for 0 ≤ s ≤ t. Define the function g : [0,∞) → R by

g(t) := log ∥S(t)∥ for t ≥ 0.

Then it follows from the semigroup property and part (i) that

g(0) = 0, g(s+ t) ≤ g(s) + g(t), M(t) := sup
0≤s≤t

|g(s)| <∞

for all s, t ≥ 0. Fix a real number t0 > 0 and let t > 0 be any positive real
number. Then there exists an integer k ≥ 0 and a real number s such that

t = kt0 + s, 0 ≤ s < t0.

Hence

g(t)

t
≤ kg(t0) + g(s)

t
=
g(t0)

t0
− sg(t0)

t0t
+
g(s)

t
≤ g(t0)

t0
+

2M(t0)

t
.

This implies

lim sup
t→∞

g(t)

t
≤ g(t0)

t0
.

Since this holds for all t0 > 0, we have lim supt→∞ t−1g(t) ≤ inft>0 t
−1g(t)

and this proves part (iii).

We prove part (iv). Fix a real number ω > ω0. By part (iii) there exists
a constant T > 0 such that

log ∥S(t)∥
t

≤ ω for all t ≥ T.

Thus log ∥S(t)∥ ≤ ωt and so ∥S(t)∥ ≤ eωt for all t ≥ T . Define

M := sup
0≤t≤T

∥S(t)∥ e−ωt.

Then ∥S(t)∥ ≤Meωt for all t ≥ 0 and this proves Lemma 7.1.8. □

Lemma 7.1.9. Let X be a real Banach space and let S : [0,∞) → L(X)
be a strongly continuous semigroup. Then the following holds.

(i) The operator S(t) is injective for some t > 0 if and only if it is injective
for all t > 0.

(ii) The operator S(t) is surjective for some t > 0 if and only if it is surjec-
tive for all t > 0.

(iii) The operator S(t) has a dense image for some t > 0 if and only if it
has a dense image for all t > 0.

(iv) Assume S(t) is injective for all t > 0. Then S(t) has a closed image
for some t > 0 if and only if it has a closed image for all t > 0.
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Proof. We prove part (i). Assume that there exists a real number t0 > 0
such that S(t0) is injective. Let t > 0 and choose an integer k > 0 such
that kt0 ≥ t. If x ∈ X satisfies S(t)x = 0 then S(t0)

kx = S(kt0−t)S(t)x = 0
and hence x = 0. Thus S(t) is injective for all t > 0.

We prove part (ii). Assume that there exists a real number t0 > 0
such that S(t0) is surjective. Let t > 0 and choose an integer k > 0
such that kt0 ≥ t. Then S(kt0) = S(t0)

k is surjective and this implies
that im(S(t)) ⊃ im(S(t)S(kt0 − t)) = im(S(kt0)) = X. Thus S(t) is surjec-
tive for all t > 0.

We prove part (iii). Assume that there exists a real number t0 > 0
such that S(t0) has a dense image. Let t > 0 and choose an integer k > 0
such that kt0 ≥ t. Then the operator S(kt0) = S(t0)

k has a dense image.
Since im(S(t)) ⊃ im(S(t)S(kt0 − t)) = im(S(kt0)) this implies that S(t) has
a dense image.

We prove part (iv). Thus assume S(t) is injective for all t > 0 and
that there exists a real number t0 > 0 such that S(t0) has a closed image.
Then it follows from part (ii) of Corollary 4.1.17 that there exists a con-
stant δ > 0 such that δ ∥x∥ ≤ ∥S(t0)x∥ for all x ∈ X. By induction this
implies δk ∥x∥ ≤ ∥S(kt0)x∥ for all x ∈ X and all k ∈ N. Let t > 0 and
choose an integer k > 0 such that kt0 ≥ t. Then

∥S(kt0 − t)∥ ∥S(t)x∥ ≥ ∥S(kt0)x∥ ≥ δk ∥x∥

and so ∥S(t)x∥ ≥ ∥S(kt0 − t)∥−1 δk ∥x∥ for all x ∈ X. Hence S(t) has a
closed image by Theorem 4.1.16 and this proves Lemma 7.1.9. □

Example 7.1.10. This example shows that the hypothesis that S(t)
is injective for all t > 0 cannot be removed in part (iv) of Lemma 7.1.9.
Consider the real Banach space

X :=
{
f ∈ L2([0, 1])

∣∣∣ f is continuous on [0, 12 ] and f(0) = 0
}/

∼ .

Here the equivalence relation is defined by f ∼ g if and only if f−g vanishes
almost everywhere on the interval [12 , 1], and the norm is defined by

∥f∥X := sup
0≤s≤1

2

|f(s)|+
√∫ 1

1
2

f(s)2 ds

for f ∈ X. Then the formula

(S(t)f)(s) :=

{
f(s− t), if s ≥ t,
0, if s < t,

for f ∈ X, t ≥ 0, and 0 ≤ s ≤ 1 defines a strongly continuous semigroup
on X. The operator S(t) has a nontrivial kernel for all t > 0, does not have
a closed image for 0 < t < 1, and vanishes for all t ≥ 1.
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7.1.3. The Infinitesimal Generator. The starting point of the present
section was to introduce strongly continuous semigroups of operators as
a generalization of the space of solutions of a linear differential equation.
Given such a space of “solutions” it is then a natural question to ask whether
there is actually a linear differential equation that a given strongly contin-
uous semigroup provides the solutions of. The quest for such an equation
leads to the following definition.

Definition 7.1.11 (Infinitesimal Generator). Let X be a real Ba-
nach space and let S : [0,∞) → L(X) be a strongly continuous semigroup.
The infinitesimal generator of S is the linear operator A : dom(A) → X,
whose domain is the linear subspace dom(A) ⊂ X defined by

(7.1.19) dom(A) :=

{
x ∈ X

∣∣∣∣ the limit lim
h↘0

S(h)x− x

h
exists

}
,

and which is given by

(7.1.20) Ax := lim
h↘0

S(h)x− x

h
for x ∈ dom(A).

Example 7.1.12. LetH be a separable complex Hilbert space, let (ei)i∈N
be a complex orthonormal basis, and let (λi)i∈N be a sequence of complex
numbers such that

sup
i∈N

Reλi <∞.

Let S : [0,∞) → Lc(H) be the strongly continuous semigroup in Exam-
ple 7.1.3, i.e.

S(t)x =
∞∑
i=1

eλit⟨ei, x⟩ei

for x ∈ H and t ≥ 0. Then the infinitesimal generator of S is the linear
operator

A : dom(A) → H

in Example 6.1.3, given by

(7.1.21) dom(A) =

{
x ∈ H

∣∣∣∣ ∞∑
i=1

|λi⟨ei, x⟩|2 <∞

}
and

(7.1.22) Ax =
∞∑
i=1

λi⟨ei, x⟩ei for x ∈ dom(A).

Exercise: Prove this.
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Lemma 7.1.13. Let X be a real Banach space and let S : [0,∞) → L(X)
be a strongly continuous semigroup with infinitesimal generator

A : dom(A) → X.

Let x ∈ X. Then the following are equivalent.

(i) x ∈ dom(A).

(ii) The function [0,∞) → X : t 7→ S(t)x is continuously differentiable,
takes values in the domain of A, and satisfies the differential equation

(7.1.23)
d

dt
S(t)x = AS(t)x = S(t)Ax for all t ≥ 0.

Proof. That (ii) implies (i) follows directly from the definitions. To prove
the converse, fix an element x ∈ dom(A). Then, for t ≥ 0, we have

S(t)Ax = lim
h↘0

S(t)
S(h)x− x

h
= lim

h↘0

S(t+ h)x− S(t)x

h

and, for t > 0,

S(t)Ax = lim
h↘0

S(t− h)
S(h)x− x

h
= lim

h↘0

S(t− h)x− S(t)x

−h
.

This shows that the function [0,∞) → X : t 7→ S(t)x is continuously differ-
entiable and that its derivative at t ≥ 0 is S(t)Ax. Moreover,

lim
h↘0

S(h)S(t)x− S(t)x

h
= lim

h↘0
S(t)

S(h)x− x

h
= S(t)Ax.

Thus S(t)x ∈ dom(A) and

AS(t)x = S(t)Ax.

This proves Lemma 7.1.13. □

Lemma 7.1.14 (Variation of Constants). Let X be a real Banach
space and let S : [0,∞) → L(X) be a strongly continuous semigroup with
infinitesimal generator A : dom(A) → X. Let f : [0,∞) → X be a continu-
ously differentiable function and define the function x : [0,∞) → X by

(7.1.24) x(t) :=

∫ t

0
S(t− s)f(s) ds for t ≥ 0.

Then x is continuously differentiable, x(t) ∈ dom(A) for all t ≥ 0, and

(7.1.25) ẋ(t) = Ax(t) + f(t) = S(t)f(0) +

∫ t

0
S(t− s)ḟ(s) ds

for all t ≥ 0.
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Proof. Fix a constant t ≥ 0 and let h > 0. Then

S(h)x(t)− x(t)

h
=
S(h)− 1l

h

∫ t

0
S(s)f(t− s) ds

=
1

h

∫ t

0
S(s+ h)f(t− s) ds− 1

h

∫ t

0
S(s)f(t− s) ds

=
1

h

∫ t+h

h
S(s)f(t+ h− s) ds− 1

h

∫ t

0
S(s)f(t− s) ds

=
1

h

∫ t+h

t
S(s)f(t+ h− s) ds− 1

h

∫ h

0
S(s)f(t+ h− s) ds

+

∫ t

0
S(s)

f(t+ h− s)− f(t− s)

h
ds.

Take the limit h→ 0 to obtain x(t) ∈ dom(A) and

(7.1.26) Ax(t) = S(t)f(0)− f(t) +

∫ t

0
S(t− s)ḟ(s) ds.

This proves the second equation in (7.1.25) and shows that Ax is continuous.
Next observe that

x(t+ h)− x(t)

h
=

1

h

∫ t+h

0
S(t+ h− s)f(s) ds− 1

h

∫ t

0
S(t− s)f(s) ds

=
S(h)x(t)− x(t)

h
+

1

h

∫ t+h

t
S(t+ h− s)f(s) ds

for all h > 0. Take the limit h→ 0 to obtain that x is right differentiable
and d

dt+
x(t) = Ax(t) + f(t). Third, observe that

x(t)− x(t− h)

h
=

1

h

∫ t

0
S(t− s)f(s) ds− 1

h

∫ t−h

0
S(t− h− s)f(s) ds

=
1

h

∫ t

0
S(t− s)f(s) ds− 1

h

∫ t

h
S(t− s)f(s− h) ds

=
1

h

∫ h

0
S(t− s)f(s) ds+

∫ t

h
S(t− s)

f(s)− f(s− h)

h
ds

for 0 < h < t. Take the limit h → 0 to obtain that x is left differentiable
and d

dt−x(t) = S(t)f(0) +
∫ t
0 S(t − s)ḟ(s) ds = Ax(t) + f(t). Here the last

equation follows from (7.1.26). This proves Lemma 7.1.14. □

Example 7.1.15. Let x ∈ X and take f(t) = x in Lemma 7.1.14. Then∫ t

0
S(s)x ds ∈ dom(A), A

∫ t

0
S(s)x ds = S(t)x− x

for all t > 0.
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Lemma 7.1.16. Let X be a real Banach space and let S : [0,∞) → L(X)
be a strongly continuous semigroup with infinitesimal generator

A : dom(A) → X.

For n ∈ N define the linear subspaces dom(An) ⊂ X recursively by

dom(A1) := dom(A), dom(An) :=
{
x ∈ dom(A) |Ax ∈ dom(An−1)

}
for n ≥ 2. Then the linear subspace dom(A∞) :=

⋂
n∈N dom(An) is dense

in X and A has a closed graph.

Proof. The proof has three steps.

Step 1. Let x ∈ X and let ϕ : R → X be a smooth function with compact
support contained in the interval [δ, δ−1] for some constant 0 < δ < 1. Then,
for every n ∈ N, we have

∫∞
0 ϕ(t)S(t)x dt ∈ dom(An) and

An
∫ ∞

0
ϕ(t)S(t)x dt = (−1)n

∫ ∞

0
ϕ(n)(t)S(t)x dt.

For n = 1 this follows from Lemma 7.1.14 with t > δ−1 and f(s) := ϕ(t−s)x
for s ≥ 0. For n ≥ 2 the assertion follows by induction.

Step 2. dom(A∞) is dense in X.

Let x ∈ X and choose a smooth function ϕ : R → [0,∞), with compact

support in the interval [1/2, 1], such that
∫ 1
0 ϕ(t) dt = 1. Define

xn := n

∫ ∞

0
ϕ(nt)S(t)x dt for n ∈ N.

Then xn ∈ dom(A∞) by Step 1 and

∥xn − x∥ =

∥∥∥∥∥n
∫ 1/n

0
ϕ(nt)(S(t)x− x) dt

∥∥∥∥∥ ≤ sup
0≤t≤1/n

∥S(t)x− x∥ .

Hence limn→∞∥xn − x∥ = 0 and this proves Step 2.

Step 3. A has a closed graph.

Choose a sequence xn ∈ dom(A) and x, y ∈ X such that

lim
n→∞

∥xn − x∥ = 0, lim
n→∞

∥Axn − y∥ = 0.

Then, by Lemma 7.1.13,

S(t)x− x = lim
n→∞

(
S(t)xn − xn

)
= lim

n→∞

∫ t

0
S(s)Axn ds =

∫ t

0
S(s)y ds

for all t > 0. Hence y = limt↘0 t
−1(S(t)x− x) and this implies x ∈ dom(A)

and Ax = y. This proves Step 3 and Lemma 7.1.16. □
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Recall from Exercise 2.2.12 that the domain of a closed densely defined
operator A : dom(A) → X is a Banach space with the graph norm

∥x∥A := ∥x∥X + ∥Ax∥X for x ∈ dom(A).

Moreover, the operator A can be viewed as a bounded operator from dom(A)
to X rather than as an unbounded densely defined operator from X to itself.

Lemma 7.1.17. Let X be a real Banach space and let S : [0,∞) →
L(X) be a strongly continuous semigroup. Let A : dom(A) → X be a linear
operator with a dense domain dom(A) ⊂ X and a closed graph. Then the
following are equivalent.

(i) The operator A is the infinitesimal generator of the semigroup S.

(ii) If x ∈ dom(A) and t > 0, then S(t)x ∈ dom(A), AS(t)x = S(t)Ax,

and S(t)x− x =
∫ t
0 S(s)Axds.

(iii) If x0 ∈ dom(A), then the function [0,∞) → X : t 7→ x(t) := S(t)x0 is
continuously differentiable, takes values in dom(A), and satisfies the differ-
ential equation ẋ(t) = Ax(t) for all t ≥ 0.

Proof. That (i) implies (ii) follows directly from Lemma 7.1.13. That (ii)
implies (iii) follows directly from part (vii) of Lemma 5.1.10. We prove in
three steps that (iii) implies (i). Assume A satisfies (iii).

Step 1. Let x ∈ dom(A) and t > 0. Then

(7.1.27)

∫ t

0
S(s)x ds ∈ dom(A), A

∫ t

0
S(s)x ds = S(t)x− x.

By part (iii) the function ξ : [0, t] → X defined by ξ(s) := S(s)x for 0 ≤ s ≤ t

takes values in dom(A) and the function Aξ = ξ̇ : [0, t] → X is continuous.
Hence the function ξ : [0, t] → dom(A) is continuous with respect to the
graph norm. Thus it follows from part (iii) of Lemma 5.1.10 that∫ t

0
ξ(s) ds ∈ dom(A)

and

A

∫ t

0
ξ(s) ds =

∫ t

0
Aξ(s) ds = ξ(t)− ξ(0) = S(t)x− x.

This proves Step 1.

Step 2. If x ∈ X and t > 0 then (7.1.27) holds.

Let x ∈ X and t > 0. Choose a sequence xi ∈ dom(A) that converges

to x. Then ξi :=
∫ t
0 S(s)xi ds ∈ dom(A) and Aξi = S(t)xi − xi by Step 1.

Since A has a closed graph, ξi converges to
∫ t
0 S(s)x ds, and Aξi converges

to S(t)x− x, it follows that x and t satisfy (7.1.27). This proves Step 2.
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Step 3. Let x, y ∈ X. Then

(7.1.28) lim
h→0

S(h)x− x

h
= y ⇐⇒ x ∈ dom(A), Ax = y.

If x ∈ dom(A) and y = Ax then limh→0 h
−1(S(h)x − x) = y by part (iii).

Conversely, suppose that limh→0 h
−1(S(h)x− x) = y. For each h > 0 de-

fine xh := h−1
∫ h
0 S(s)x ds. Then limh→0 xh = x and by Step 2 xh ∈ dom(A)

and Axh = h−1(S(h)x− x). Hence limh→0Axh = y. Since A has a closed
graph this implies x ∈ dom(A) and Ax = y. This proves Lemma 7.1.17. □

Lemma 7.1.18. Let X be a real Banach space and let S : [0,∞) → L(X)
be a strongly continuous semigroup with infinitesimal generator A. Then the
following are equivalent.

(i) dom(A) = X.

(ii) A is bounded.

(iii) The semigroup S is continuous in the norm topology on L(X).

Proof. The Closed Graph Theorem 2.2.13 asserts that (i) and (ii) are
equivalent. That (ii) implies (iii) follows from Exercise 1.5.4 and Corol-
lary 7.2.3 below. We prove that (iii) implies (i), following [26, p 615]. As-
sume that S : [0,∞) → L(X) is continuous with respect to the norm topol-
ogy on L(X). Then limt→0 ∥S(t)− 1l∥ = 0. Hence there exists a δ > 0 such
that sup0≤t≤δ ∥S(t)− 1l∥ < 1. For 0 ≤ t ≤ δ define

B(t) :=

∞∑
n=1

(−1)n−1

n

(
S(t)− 1l

)n
.

Then the following holds.

(I) The function B : [0, δ] → L(X) is norm-continuous.

(II) eB(t) = S(t) for 0 ≤ t ≤ δ.

(III) If k ∈ N and 0 ≤ t ≤ δ/k then B(kt) = kB(t).

Part (II) uses the fact that the power series f(z) :=
∑∞

n=1(−1)n−1(z−1)n/n
satisfies exp(f(z)) = z for all z ∈ C with |z− 1| < 1. Part (III) follows from
the fact that f(zk) = kf(z) whenever |zj − 1| < 1 for j = 1, 2, . . . , k.

By (III), B(δ) = ℓB(δ/ℓ) and so B(kδ/ℓ) = kB(δ/ℓ) = (k/ℓ)B(δ) for all
integers 0 ≤ k ≤ ℓ. Since B is continuous by (I), this implies

B(t) = tδ−1B(δ) for 0 ≤ t ≤ δ.

(Approximate tδ−1 by a sequence of rational numbers in [0, 1].) Now define

the operator A := δ−1B(δ) ∈ L(X). Then by (II) we have S(t) = eB(t) = etA

for 0 ≤ t ≤ δ. So S(t) = etA for all t ≥ 0 and this proves Lemma 7.1.18. □
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7.2. The Hille–Yosida–Phillips Theorem

7.2.1. Well-Posed Cauchy Problems. Let us now change the point of
view and suppose that A : dom(A) → X is a linear operator on a Banach
space X whose domain is a linear subspace dom(A) ⊂ X. Consider the
Cauchy problem

(7.2.1) ẋ = Ax, x(0) = x0.

Definition 7.2.1. (i) Let I ⊂ [0,∞) be a closed interval with 0 ∈ I. A
continuously differentiable function x : I → X is called a solution of (7.2.1)
if it takes values in dom(A) and x(0) = x0 and ẋ(t) = Ax(t) for all t ∈ I.

(ii) The Cauchy problem (7.2.1) is called well-posed if it satisfies the fol-
lowing axioms.

(Existence) For each x0 ∈ dom(A) there is a solution of (7.2.1) on [0,∞).

(Uniqueness) Let x0 ∈ dom(A) and T > 0. If x, y : [0, T ] → X are solu-
tions of (7.2.1) then x(t) = y(t) for all t ∈ [0, T ].

(Continuous Dependence) Define the map ϕ : [0,∞) × dom(A) → X
by ϕ(t, x0) := x(t) for t ≥ 0 and x0 ∈ dom(A), where x : [0,∞) → X is the
unique solution of (7.2.1). Then, for every T > 0, there is a constantM ≥ 1
such that ∥ϕ(t, x0)∥ ≤M∥x0∥ for all t ∈ [0, T ] and all x0 ∈ dom(A).

The next theorem characterizes well-posed Cauchy problems and was
proved by Ralph S. Phillips [68] in 1954.

Theorem 7.2.2 (Phillips). Let A : dom(A) → X be a linear operator
with a dense domain dom(A) ⊂ X and a closed graph. The following are
equivalent.

(i) A is the infinitesimal generator of a strongly continuous semigroup.

(ii) The Cauchy problem (7.2.1) is well-posed.

Proof. We prove that (i) implies (ii). Thus assume that A is the infini-
tesimal generator of a strongly continuous semigroup S : [0,∞) → L(X) and
fix an element x0 ∈ dom(A). Then the function [0,∞) → X : t 7→ S(t)x0
is a solution of equation (7.2.1) by Lemma 7.1.13. To prove uniqueness,
assume that x : [0,∞) → X is any solution of (7.2.1). Fix a constant t > 0.
We will prove that the function [0, t] → X : s 7→ S(t − s)x(s) is constant.
To see this, note that x(s) ∈ dom(A) and so

lim
h→0

h≤t−s

S(t− s− h)x(s)− S(t− s)x(s)

−h
= S(t− s)Ax(s) for 0 ≤ s ≤ t.
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This implies

lim
h→0

S(t− s− h)x(s+ h)− S(t− s)x(s)

h

= lim
h→0

S(t− s− h)

(
x(s+ h)− x(s)

h
−Ax(s)

)
+ lim
h→0

(
S(t− s− h)x(s)− S(t− s)x(s)

h
+ S(t− s)Ax(s)

)
+ lim
h→0

(
S(t− s− h)Ax(s)− S(t− s)Ax(s)

)
= 0.

Hence the function [0, t] → X : s 7→ S(t−s)x(s) is everywhere differentiable
and its derivative vanishes. Thus it is constant and hence x(t) = S(t)x0.
Since t > 0 was chosen arbitrarily this proves uniqueness. Continuous de-
pendence follows from the estimate ∥S(t)∥ ≤ Meωt in Lemma 7.1.8. This
shows that (i) implies (ii).

We prove that (ii) implies (i). Assume the Cauchy problem (7.2.1) is
well-posed and let

ϕ : [0,∞)× dom(A) → dom(A)

be the map that assigns to each element x0 ∈ dom(A) the unique solution
[0,∞) → X : t 7→ ϕ(t, x0) of (7.2.1). We claim that, for each t ≥ 0, there is
a unique bounded linear operator S(t) : X → X such that

(7.2.2) S(t)x0 = ϕ(t, x0) for all x0 ∈ dom(A).

To see this, note first that the space of solutions x : [0,∞) → X of (7.2.1)
is a linear subspace of the space of all functions from [0,∞) to X. Hence
it follows from uniqueness that the map dom(A) → X : x0 7→ ϕ(t, x0) is lin-
ear. Second, it follows from continuous dependence that the linear opera-
tor dom(A) → X : x0 7→ ϕ(t, x0) is bounded. Since dom(A) is a dense linear
subspace of X it follows that this operator extends uniquely to a bounded
linear operator S(t) ∈ L(X). More precisely, fix an element x ∈ X. Then
there exists a sequence xn ∈ dom(A) that converges to x. Hence (xn)n∈N is
a Cauchy sequence in X and so is the sequence (ϕ(t, xn))n∈N by continuous
dependence. Hence it converges and the limit

S(t)x := lim
n→∞

ϕ(t, xn)

is independent of the choice of the sequence xn ∈ dom(A) used to define
it. This proves the existence of a bounded linear operator S(t) that satis-
fies (7.2.2).
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We prove that these operators form a one-parameter semigroup. Fix a
real number t ≥ 0 and an element x0 ∈ dom(A). Then

S(t)x0 = ϕ(t, x0) ∈ dom(A)

and the function [0,∞) → X : s 7→ S(s+ t)x0 = ϕ(s+ t, x0) is a solution of
the Cauchy problem (7.2.1) with x0 replaced by S(t)x0 = ϕ(t, x0). Hence

S(s+ t, x0) = ϕ(s, S(t)x0) = S(s)S(t)x0.

Since this holds for all x0 ∈ dom(A), the set dom(A) is dense in X, and
the operators S(s + t) and S(s)S(t) are both continuous maps, it follows
that S(s+ t) = S(s)S(t) for all s ≥ 0. This shows that S : [0,∞) → L(X)
is a one-parameter semigroup.

We prove that S is strongly continuous. To see this, fix an element x ∈ X
and a constant ε > 0. By continuous dependence there exists an M ≥ 1
such that sup0≤t≤1∥ϕ(t, x0)∥ ≤ M ∥x0∥ for all x0 ∈ dom(A). This shows
that sup0≤t≤1∥S(t)∥ ≤M . Choose an element y ∈ dom(A) such that

∥x− y∥ ≤ ε

2(M + 1)
.

Next choose a constant 0 < δ < 1 such that, for all t ∈ R,

0 ≤ t < δ =⇒ ∥ϕ(t, y)− y∥ < ε

2
.

Fix a real number 0 ≤ t < δ. Then

∥S(t)x− x∥ ≤ ∥S(t)x− S(t)y∥+ ∥S(t)y − y∥+ ∥y − x∥

≤ (M + 1) ∥x− y∥+ ∥ϕ(t, y)− y∥ < ε

2
+
ε

2
= ε.

This shows that S is strongly continuous.

We prove that A is the infinitesimal generator of S. Let x0 ∈ dom(A)
and define the function x : [0,∞) → X by x(t) := S(t)x0 = ϕ(t, x0). It is
continuously differentiable, takes values in dom(A), and satisfies the equa-
tion ẋ(t) = Ax(t) for all t ≥ 0. Thus A and S satisfy condition (iii) in
Lemma 7.1.17, so A is the infinitesimal generator of S. This proves Theo-
rem 7.2.2. □

Corollary 7.2.3 (Uniqueness). A linear operator on a Banach space
is the infinitesimal generator of at most one strongly continuous semigroup.

Proof. Let A be the infinitesimal generator of two strongly continuous
semigroups S, T : [0,∞) → L(X). Let x0 ∈ dom(A). Then the func-
tions x(t) := S(t)x0 and y(t) := T (t)x0 both satisfy (7.2.1) and hence agree
by Theorem 7.2.2. Since dom(A) is dense in X by Lemma 7.1.16, it follows
that S(t)x = T (t)x for all x ∈ X and all t ≥ 0. □
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Theorem 7.2.4 (Strongly Continuous Groups). Let X be a real
Banach space, let S : [0,∞) → L(X) be a strongly continuous semigroup,
and let A : dom(A) → X be the infinitesimal generator of S. Then the
following are equivalent.

(i) The semigroup S extends to a strongly continuous group S : R → L(X).

(ii) −A is the infinitesimal generator of a strongly continuous semigroup.

(iii) The operator S(t) is bijective for all t > 0.

Proof. We prove that (i) implies (ii). Thus assume that S extends to a
strongly continuous group S : R → L(X). Then

S(t)S(−t) = S(−t)S(t) = 1l

for all t > 0 by definition of a one-parameter group of operators. This
implies that S(t) is bijective and

S(t)−1 = S(−t)

for all t > 0. Define the map T : [0,∞) → L(X) by

T (t) := S(−t) = S(t)−1 for t ≥ 0.

Then T is a strongly continuous semigroup by definition. Denote its infini-
tesimal generator by B : dom(B) → X. We must prove that B = −A. To
see this, choose a constant M ≥ 1 such that

∥S(t)∥ ≤M and ∥T (t)∥ ≤M for 0 ≤ t ≤ 1.

Now let x ∈ dom(A). Then∥∥∥∥T (h)x− x

h
+Ax

∥∥∥∥ ≤
∥∥∥∥T (h)(x− S(h)x

h
+Ax

)∥∥∥∥+ ∥Ax− T (h)Ax∥

≤ M

∥∥∥∥x− S(h)x

h
+Ax

∥∥∥∥+ ∥Ax− T (h)Ax∥

for 0 < h < 1. Since the right hand side converges to zero it follows that

x ∈ dom(B), Bx = −Ax.

Thus we have proved that

dom(A) ⊂ dom(B), B|dom(A) = −A.

Interchange the roles of S and T to obtain

dom(B) = dom(A), B = −A.

This shows that (i) implies (ii).
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We prove that (ii) implies (iii). Let T : [0,∞) → L(X) be the strongly
continuous semigroup generated by −A. We prove that S(t) is bijective
and T (t) = S(t)−1 for all t > 0. To see this, fix an element x ∈ dom(A) and
a real number t > 0. Define the functions y, z : [0, t] → X by

y(s) := S(t− s)x, z(s) := T (t− s)x for 0 ≤ s ≤ t.

Then y and z are continuously differentiable, take values in the domain of A,
and satisfy the Cauchy problems

ẏ(s) = −Ay(s) for 0 ≤ s ≤ t, y(0) = S(t)x,

and

ż(s) = Az(s) for 0 ≤ s ≤ t, z(0) = T (t)x.

By Theorem 7.2.2 this implies

y(s) = T (s)S(t)x, z(s) = S(s)T (t)x for 0 ≤ s ≤ t.

Take s = t to obtain T (t)S(t)x = y(t) = x and S(t)T (t)x = z(t) = x.
Thus we have proved that S(t)T (t)x = T (t)S(t)x = x for all t > 0 and
all x ∈ dom(A). Since the domain of A is dense in X this implies

S(t)T (t) = T (t)S(t) = 1l for all t > 0.

Hence S(t) is bijective for all t > 0. This shows that (ii) implies (iii).

We prove that (iii) implies (i). Thus assume that S(t) is bijective for
all t > 0. Then S(t)−1 : X → X is a bounded linear operator for every t > 0
by the Open Mapping Theorem 2.2.1. Define

S(−t) := S(t)−1 for t > 0.

We prove that the extended function S : R → L(X) is a one-parameter
group. The formula S(t+s) = S(t)S(s) holds by definition whenever s, t ≥ 0
or s, t ≤ 0. Moreover, if 0 ≤ s < t then S(t− s)S(s) = S(t) and hence

S(t− s) = S(t)S(s)−1 = S(t)S(−s).

This implies that, for 0 ≤ t < s, we have S(s− t) = S(s)S(−t) and hence

S(t− s) = S(s− t)−1 = S(−t)−1S(s)−1 = S(t)S(−s).

This shows that S is a one-parameter group. Strong continuity at t = 0
follows from the equation

S(−h)x− x = S(h)−1(x− S(h)x)

for h > 0. Strong continuity at −t < 0 follows from the equation

S(−t+ h)x− S(−t)x = S(t)−1
(
S(h)x− x

)
for h ∈ R. This proves Theorem 7.2.4. □
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7.2.2. The Hille–Yosida–Phillips Theorem. The following theorem is
the main result of this chapter. For the special caseM = 1 it was discovered
by Hille [35] and Yosida [87] independently in 1948. It was extended to the
case M > 1 by Phillips [67] in 1952.

Theorem 7.2.5 (Hille–Yosida–Phillips). Let X be a real Banach
space and let A : dom(A) → X be a linear operator with a dense domain
dom(A) ⊂ X. Fix real numbers ω and M ≥ 1. Then the following are
equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → L(X) that satisfies

(7.2.3) ∥S(t)∥ ≤Meωt for all t ≥ 0.

(ii) For every real number λ > ω the operator λ1l − A : dom(A) → X is
invertible and

(7.2.4) ∥(λ1l−A)−k∥ ≤ M

(λ− ω)k
for all λ > ω and all k ∈ N.

Proof. See page 371. □

The necessity of the condition (7.2.4) is a straightforward consequence
of Lemma 7.2.6 below which expresses the resolvent operator (λ1l−A)−1 in
terms of the semigroup. At this point it is convenient to allow for λ to be a
complex number and therefore to extend the discussion to complex Banach
spaces. When X is a real Banach space we will tacitly assume that X has
been complexified so as to make sense of the operator λ1l−A : dom(A) → X
for complex numbers λ (see Exercise 5.1.5).

Lemma 7.2.6 (Resolvent Identity for Semigroups). Let X be a com-
plex Banach space and let

A : dom(A) → X

be the infinitesimal generator of a strongly continuous semigroup

S : [0,∞) → Lc(X).

Let λ ∈ C such that

(7.2.5) Reλ > ω0 := lim
t→∞

log∥S(t)∥
t

.

Then λ ∈ ρ(A) and

(7.2.6) (λ1l−A)−kx =
1

(k − 1)!

∫ ∞

0
tk−1e−λtS(t)x dt

for all x ∈ X and all k ∈ N.
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Proof. We first prove the assertion for k = 1. Fix a complex number λ
such that Reλ > ω0 and choose a real number ω such that ω0 < ω < Reλ.
By Lemma 7.1.8, there exists a constantM ≥ 1 such that ∥S(t)∥ ≤Meωt for

all t ≥ 0. Hence ∥e−λtS(t)x∥ ≤ Me(ω−Reλ)t∥x∥ for all x ∈ X and all t ≥ 0.
This implies that the formula

Rλx :=

∫ ∞

0
e−λtS(t)x dt = lim

T→∞

∫ T

0
e−λtS(t)x dt for x ∈ X

defines a bounded linear operator Rλ ∈ Lc(X). We prove the following.

Claim 1. If x ∈ X and T > 0 then ξT :=
∫ T
0 e−λtS(t)x dt ∈ dom(A) and

AξT = e−λTS(T )x− x+ λ

∫ T

0
e−λtS(t)x dt =: ηT .

Claim 2. If x ∈ dom(A) and T > 0 then
∫ T
0 e−λtS(t)Axds = ηT .

Claim 1 follows from Lemma 7.1.14 with t = T and f(t) := e−λ(T−t)x.
Claim 2 follows from integration by parts with d

dtS(t)x = S(t)Ax. Now

AξT = ηT , lim
T→∞

ξT = Rλx, lim
T→∞

ηT = λRλx− x

by Claim 1. Since A has a closed graph this implies

Rλx ∈ dom(A), ARλx = λRλx− x for all x ∈ X.

If x ∈ dom(A) it follows from Claim 2 that

RλAx = lim
T→∞

∫ T

0
e−λtS(t)Axdt = λRλx− x.

Thus (λ1l−A)Rλx = x for all x ∈ X andRλ(λ1l−A)x = x for all x ∈ dom(A).
Hence λ1l−A is bijective and (λ1l−A)−1 = Rλ. This proves (7.2.6) for k = 1.
To prove the equation for k ≥ 2 observe that the function

ρ(A) → X : λ 7→ (λ1l−A)−1x

is holomorphic by Lemma 6.1.10 and satisfies

(λ1l−A)−kx =
(−1)k−1

(k − 1)!

dk−1

dλk−1
(λ1l−A)−1x

=
(−1)k−1

(k − 1)!

dk−1

dλk−1

∫ ∞

0
e−λtS(t)x dt

=
1

(k − 1)!

∫ ∞

0
tk−1e−λtS(t)x dt

for all x ∈ X and all λ ∈ C with Reλ > ω0. This proves Lemma 7.2.6. □
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It follows from Lemma 7.2.6 that

(7.2.7) sup
λ∈σ(A)

Reλ ≤ ω0 = lim
t→∞

log∥S(t)∥
t

for every strongly continuous semigroup S with infinitesimal generator A.
The following example by Einar Hille shows that the inequality in (7.2.7)
can be strict.

Example 7.2.7. Fix a real number ω > 0 and consider the Banach space

X :=

{
f : [0,∞) → C

∣∣∣∣ f is continuous and bounded
and

∫∞
0 eωs|f(s)| ds <∞

}
,

equipped with the norm

∥f∥ := sup
s≥0

|f(s)|+
∫ ∞

0
eωs|f(s)| ds for f ∈ X.

The formula

(S(t)f)(s) := f(s+ t) for f ∈ X and s, t ≥ 0

defines a strongly continuous semigroup on X and its infinitesimal generator
is the operator A : dom(A) → X given by

dom(A) =

{
u : [0,∞) → C

∣∣∣∣ u is continuously differentiable
and u, u̇ ∈ X

}
,

Au = u̇.

The operator S(t) satisfies ∥S(t)∥ = 1 for all t ≥ 0 and so

ω0 = lim
t→∞

log∥S(t)∥
t

= 0.

Now let λ ∈ C with Reλ > −ω and let f ∈ X. Then, for u ∈ dom(A),

λu−Au = f ⇐⇒ u̇ = λu− f.

This equation has a unique solution u ∈ dom(A) given by

u(s) =

∫ ∞

s
eλ(s−t)f(t) dt for s ≥ 0.

Thus the operator λ1l− A is bijective for all λ ∈ C with Reλ > −ω. It has
a one-dimensional kernel for all λ ∈ C with Reλ < −ω. Thus

sup
λ∈σ(A)

Reλ = −ω < 0 = lim
t→∞

log∥S(t)∥
t

.

Exercise: For t > 0 the spectrum of S(t) is the closed unit disc and the
point spectrum of S(t) is the open disc of radius e−ωt centered at the origin.
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Proof of Theorem 7.2.5. We prove that (i) implies (ii). Thus assume
that A : dom(A) → X is the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → L(X) that satisfies (7.2.3). Fix a real number

λ > ω

and a positive integer k. Then

(λ1l−A)−kx =
1

(k − 1)!

∫ ∞

0
tk−1e−λtS(t)x dt

for all x ∈ X by Lemma 7.2.6 and hence

∥(λ1l−A)−kx∥ ≤ 1

(k − 1)!

∫ ∞

0
tk−1e−λt ∥S(t)x∥ dt

≤ M ∥x∥
(k − 1)!

∫ ∞

0
tk−1e−(λ−ω)t dt

=
M∥x∥

(λ− ω)k
.

Hence the operator A satisfies (ii).

We prove that (ii) implies (i). Thus assume that A : dom(A) → X is a
linear operator with a dense domain such that

λ1l−A : dom(A) → X

is bijective and satisfies the estimate (7.2.4) for λ > ω. We prove in five steps
that A is the infinitesimal generator of a strongly continuous semigroup that
satisfies the estimate (7.2.3).

Step 1. x = limλ→∞ λ(λ1l−A)−1x for all x ∈ X.

If x ∈ dom(A) then

λ(λ1l−A)−1x− x = A(λ1l−A)−1x = (λ1l−A)−1Ax

for all λ > ω and so it follows from (7.2.4) that∥∥λ(λ1l−A)−1x− x
∥∥ ≤ M

λ− ω
∥Ax∥ .

Thus

x = lim
λ→∞

λ(λ1l−A)−1x

for all x ∈ dom(A). Moreover∥∥λ(λ1l−A)−1
∥∥ ≤ Mλ

λ− ω
≤ 2M for all λ > 2ω.

Hence Step 1 follows from Theorem 2.1.5.
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Step 2. For λ > ω and t ≥ 0 define

Aλ := λA(λ1l−A)−1, Sλ(t) := etAλ =
∞∑
k=0

tkAkλ
k!

.

Then

∥Sλ(t)∥ ≤Me
λωt
λ−ω

for all λ > ω and all t ≥ 0.

The operator Aλ can be written as

Aλ = λ2(λ1l−A)−1 − λ1l.

Hence

∥Sλ(t)∥ = e−λt
∥∥∥etλ2(λ1l−A)−1

∥∥∥
≤ e−λt

∞∑
k=0

tkλ2k

k!

∥∥∥(λ1l−A)−k
∥∥∥

≤ e−λt
∞∑
k=0

tkλ2k

k!

M

(λ− ω)k

= Me−λte
λ2t
λ−ω =Me

λωt
λ−ω

for all λ > ω and all t ≥ 0. This proves Step 2.

Step 3. Fix real numbers λ > µ > ω. Then

∥Sλ(t)x− Sµ(t)x∥ ≤M2e
µωt
µ−ω t ∥Aλx−Aµx∥

for all x ∈ X and all t ≥ 0.

Since AλAµ = AµAλ, we have AλSµ(t) = Sµ(t)Aλ and so

Sλ(t)x− Sµ(t)x =

∫ t

0

d

ds
Sµ(t− s)Sλ(s)x ds

=

∫ t

0
Sµ(t− s)Sλ(s)(Aλx−Aµx) ds

for all x ∈ X and all t ≥ 0. Hence

∥Sλ(t)x− Sµ(t)x∥ ≤
∫ t

0
∥Sµ(t− s)∥ ∥Sλ(s)∥ ds ∥Aλx−Aµx∥

≤ M2e
µωt
µ−ω

∫ t

0
e
− µωs

µ−ω e
λωs
λ−ω ds ∥Aλx−Aµx∥

≤ M2e
µωt
µ−ω t ∥Aλx−Aµx∥ .

Here the last step uses the inequality λω
λ−ω ≤ µω

µ−ω . This proves Step 3.
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Step 4. The limit

(7.2.8) S(t)x := lim
λ→∞

Sλ(t)x

exists for all x ∈ X and all t ≥ 0. The resulting map S : [0,∞) → L(X) is
a strongly continuous semigroup that satisfies (7.2.3).

Assume first that x ∈ dom(A). Then limλ→∞Aλx = Ax by Step 1. Hence
the limit (7.2.8) exists for all t ≥ 0 by Step 3 and the convergence is uniform
on every compact interval [0, T ]. Since the operator family {Sλ(t)}λ≥2ω is
bounded by Step 2 it follows from Theorem 2.1.5 that the limit (7.2.8) exists
for all x ∈ X and that S(t) ∈ L(X) for all t ≥ 0. Apply Theorem 2.1.5
to the operator family X → C([0, T ], X) : x 7→ Sλ(·)x to deduce that
the map [0, T ] → X : t 7→ S(t)x is continuous for all x ∈ X and all T > 0.
Moreover,

S(s)S(t)x = lim
λ→∞

Sλ(s)Sλ(t)x = lim
λ→∞

Sλ(s+ t)x = S(s+ t)x

for all s, t ≥ 0 and all x ∈ X and S(0)x = limλ→∞ Sλ(t)x = x for all x ∈ X.
Thus S is a strongly continuous semigroup. By Step 2 it satisfies the estimate

∥S(t)x∥ = lim
λ→∞

∥Sλ(t)x∥ ≤ lim
λ→∞

Me
λωt
λ−ω ∥x∥ =Meωt ∥x∥

and this proves Step 4.

Step 5. The operator A is the infinitesimal generator of S.

Let B be the infinitesimal generator of S and let x ∈ dom(A). Then

∥Sλ(t)Aλx− S(t)Ax∥ ≤ ∥Sλ(t)∥ ∥Aλx−Ax∥+ ∥Sλ(t)Ax− S(t)Ax∥

for all t ≥ 0. Hence it follows from Step 1 and Step 2 that the func-
tions Sλ(·)Aλx : [0, h] → X converge uniformly to S(·)Ax as λ tends to in-
finity. This implies∫ h

0
S(t)Axdt = lim

λ→∞

∫ h

0
Sλ(t)Aλx dt = lim

λ→∞
Sλ(h)x− x = S(h)x− x

for all h > 0 and so

lim
h→0

S(h)x− x

h
= lim

h→0

1

h

∫ h

0
S(t)Axdt = Ax.

This shows that dom(A) ⊂ dom(B) and B|dom(A) = A. Now let y ∈ dom(B)

and λ > ω. Define x := (λ1l−A)−1(λy −By). Then x ∈ dom(A) ⊂ dom(B)
and λx−Bx = λx−Ax = λy −By. Since λ1l−B : dom(B) → X is injec-
tive by Lemma 7.2.6, this implies y = x ∈ dom(A). Thus dom(B) ⊂ dom(A)
and so dom(B) = dom(A). This proves Step 5 and Theorem 7.2.5. □
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Corollary 7.2.8. Let X be a complex Banach space and let

A : dom(A) → X

be a complex linear operator with a dense domain dom(A) ⊂ X. Fix two
real numbers M ≥ 1 and ω. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → Lc(X) that satisfies the estimate (7.2.3).

(ii) For every real number λ > ω the operator λ1l − A : dom(A) → X is
bijective and satisfies the estimate (7.2.4).

(iii) For every λ ∈ C with Reλ > ω the operator λ1l − A : dom(A) → X is
bijective and satisfies the estimate

(7.2.9) ∥(λ1l−A)−k∥ ≤ M

(Reλ− ω)k
for all k ∈ N.

Proof. That (i) implies (iii) follows from Lemma 7.2.6 by the same ar-
gument that was used in the proof of Theorem 7.2.5. That (iii) implies (ii)
is obvious and that (ii) implies (i) follows from Theorem 7.2.5 and the fact
that the operators Sλ(t) in the proof of Theorem 7.2.5 are complex linear
whenever A is complex linear. This proves Corollary 7.2.8. □

7.2.3. Contraction Semigroups. The archetypal example of a contrac-
tion semigroup is the heat flow in Example 7.1.6. Here is the general defi-
nition.

Definition 7.2.9 (Contraction Semigroup). Let X be a real Banach
space. A contraction semigroup on X is a strongly continuous semi-
group S : [0,∞) → L(X) that satisfies the inequality

(7.2.10) ∥S(t)∥ ≤ 1

for all t ≥ 0.

Definition 7.2.10 (Dissipative Operator). Let X be a complex Ba-
nach space. A complex linear operator A : dom(A) → X with a dense
domain dom(A) ⊂ X is called dissipative if, for every x ∈ dom(A), there
exists an element x∗ ∈ X∗ such that

(7.2.11) ∥x∗∥2 = ∥x∥2 = ⟨x∗, x⟩, Re⟨x∗, Ax⟩ ≤ 0.

When X = H is a complex Hilbert space, a linear operator A : dom(A) → H
with a dense domain dom(A) ⊂ H is dissipative if and only if

(7.2.12) Re⟨x,Ax⟩ ≤ 0

for all x ∈ dom(A).



7.2. The Hille–Yosida–Phillips Theorem 375

The next theorem characterizes the infinitesimal generators of contrac-
tion semigroups. It was proved by Lumer–Phillips [58] in 1961. They also
introduced the notion of a dissipative operator.

Theorem 7.2.11 (Lumer–Phillips). Let X be a complex Banach space
and let A : dom(A) → X be a complex linear operator with a dense do-
main dom(A) ⊂ X. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a contraction semigroup.

(ii) For every real number λ > 0 the operator λ1l − A : dom(A) → X is
bijective and satisfies the estimate

(7.2.13)
∥∥(λ1l−A)−1

∥∥ ≤ 1

λ
.

(iii) For every λ ∈ C with Reλ > 0 the operator λ1l − A : dom(A) → X is
bijective and satisfies the estimate

(7.2.14)
∥∥(λ1l−A)−1

∥∥ ≤ 1

Reλ
.

(iv) The operator A is dissipative and there exists a λ > 0 such that the
operator λ1l−A : dom(A) → X has a dense image.

Proof. The equivalence of (i), (ii), and (iii) follows from Corollary 7.2.8
with M = 1 and ω = 0. We prove the remaining implications in three steps.

Step 1. If A is dissipative then

(7.2.15) ∥λx−Ax∥ ≥ Reλ ∥x∥

for all x ∈ dom(A) and all λ ∈ C with Reλ > 0.

Let x ∈ dom(A) and λ ∈ C such that Reλ > 0. Since A is dissipative, there
exists an element x∗ ∈ X∗ such that (7.2.11) holds. This implies

∥x∥ ∥λx−Ax∥ = ∥x∗∥ ∥λx−Ax∥
≥ Re⟨x∗, λx−Ax⟩
= Reλ⟨x∗, x⟩ − Re⟨x∗, Ax⟩
≥ Reλ ∥x∥2 .

Hence

∥λx−Ax∥ ≥ Reλ ∥x∥

and this proves Step 1.
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Step 2. We prove that (iv) implies (iii).

Assume A satisfies (iv) and define the set

Ω = {λ ∈ C |Reλ > 0 and λ1l−A has a dense image} .

This set is nonempty by (iv). Moreover, it follows from Step 1 that the
operator λ1l−A : dom(A) → X is injective and has a closed image for every
λ ∈ C with Reλ > 0. Hence Ω ⊂ ρ(A) and

(7.2.16)
∥∥(λ1l−A)−1

∥∥ ≤ 1

Reλ
for all λ ∈ Ω ⊂ ρ(A).

If λ ∈ Ω and |µ − λ| < Reλ then Reµ > 0 and |µ − λ|∥(λ1l − A)−1∥ < 1,
hence µ ∈ ρ(A) by Lemma 6.1.10, and hence µ ∈ Ω. Thus

(7.2.17) λ ∈ Ω and |µ− λ| < Reλ =⇒ µ ∈ Ω.

Fix an element λ ∈ Ω. Then it follows from (7.2.17) that

{µ ∈ C | Imµ = Imλ, 0 < Reµ < 2Reλ} ⊂ Ω.

Thus an induction argument shows that

{µ ∈ C | Imµ = Imλ, Reµ > 0} ⊂ Ω.

Hence it follows from (7.2.17) that BReµ(µ) ⊂ Ω for every µ ∈ C such that
Imµ = Imλ and Reµ > 0. The union of these open discs is the entire positive
half-plane in C. Thus {z ∈ C |Rez > 0} = Ω ⊂ ρ(A) and hence it follows
from (7.2.16) that A satisfies (iii). This proves Step 2.

Step 3. We prove that (i) implies (iv).

Assume that A : dom(A) → X is the infinitesimal generator of a contraction
semigroup S : [0,∞) → Lc(X). Let x ∈ dom(A). By the Hahn–Banach
Theorem (Corollary 2.3.23) there exists an element x∗ ∈ X∗ such that

∥x∗∥2 = ∥x∥2 = ⟨x∗, x⟩.

Since S is a contraction semigroup this implies

Re⟨x∗, S(h)x− x⟩ ≤ ∥x∗∥∥S(h)x∥ − ∥x∥2 ≤ 0

for all h > 0 and hence

Re⟨x∗, Ax⟩ = lim
h→0

Re⟨x∗, S(h)x− x⟩
h

≤ 0.

This proves Step 3 and Theorem 7.2.11. □
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7.3. The Dual Semigroup

When S : [0,∞) → L(X) is a strongly continuous semigroup on a real
Banach space X the dual operators define a semigroup

S∗ : [0,∞) → L(X∗),

called the dual semigroup. One might expect that the dual semigroup
is again strongly continuous, however, an elementary example shows that
this need not always be the case (see Example 7.3.3 below). The failure
of strong continuity of the dual semigroup is related to the fact that the
Banach space X in Example 7.3.3 is not reflexive. On a reflexive Banach
space it turns out that the dual semigroup is always strongly continuous
and this is the content of Corollary 7.3.2 below, which will be derived as
a consequence of the main theorem about the dual semigroup. The other
subsections deal with self-adjoint semigroups and with unitary groups.

7.3.1. The Dual Semigroup and its Infinitesimal Generator. The
following theorem is the main result of the present section. It was proved
in 1955 by R.S. Phillips [69].

Theorem 7.3.1 (Phillips). Let S : [0,∞) → L(X) be a strongly contin-
uous semigroup on a real Banach space X and let A : dom(A) → X be its
infinitesimal generator. Denote by

[0,∞) → L(X∗) : t 7→ S∗(t) := S(t)∗

the dual semigroup and by

(7.3.1) E :=

{
x∗ ∈ X∗

∣∣∣∣ there exists a sequence x∗i ∈ dom(A∗)
such that limi→∞ ∥x∗i − x∗∥ = 0

}
the strong closure of the domain of the dual operator A∗ : dom(A∗) → X∗.
Then the following holds.

(i) Let x∗ ∈ X∗. Then x∗ ∈ E if and only if limt→0 ∥S∗(t)x∗ − x∗∥ = 0.

(ii) The closed subspace E ⊂ X∗ is invariant under the operator S∗(t) for
every t ≥ 0 and the map T : [0,∞) → L(E), defined by

T (t) := S∗(t)|E for t ≥ 0,

is a strongly continuous semigroup.

(iii) The infinitesimal generator of the strongly continuous semigroup T in
part (ii) is the operator B : dom(B) → E with

dom(B) = {x∗ ∈ dom(A∗) |A∗x∗ ∈ E}

and Bx∗ = A∗x∗ for x∗ ∈ dom(B).
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Proof. It follows directly from Lemma 4.1.3 that S∗ is a one-parameter
semigroup. The remaining assertions are proved in eight steps.

Step 1. Let x∗ ∈ X∗ and h > 0 and define the element x∗h ∈ X∗ by

(7.3.2) ⟨x∗h, x⟩ =
1

h

∫ h

0
⟨x∗, S(t)x⟩ dt

for x ∈ X. Then x∗h ∈ dom(A∗) and A∗x∗h = h−1(S∗(h)x∗ − x∗).

Let M := sup0≤t≤h ∥S(t)∥. The functional X → R : x 7→ 1
h

∫ h
0 ⟨x

∗, S(t)x⟩dt
is linear and satisfies the inequality∣∣∣∣1h

∫ h

0
⟨x∗, S(t)x⟩ dt

∣∣∣∣ ≤ 1

h

∫ h

0
|⟨x∗, S(t)x⟩| dt

≤ 1

h

∫ h

0
∥x∗∥ ∥S(t)x∥ dt

≤M ∥x∗∥ ∥x∥

for all x ∈ X. Hence (7.3.2) defines an element x∗h ∈ X∗. For x ∈ dom(A)
this element satisfies the equation

⟨x∗h, Ax⟩ =
〈
x∗,

∫ h

0

S(t)Ax

h
dt

〉
=

〈
x∗,

S(h)x− x

h

〉
=

〈
S∗(h)x∗ − x∗

h
, x

〉
.

Here the second step follows from Lemma 7.1.13. This implies x∗h ∈ dom(A∗)
and A∗x∗h = h−1(S∗(h)x∗ − x∗). This proves Step 1.

Step 2. Let x∗ ∈ dom(A∗) and t > 0. Then S∗(t)x∗ ∈ dom(A∗) and

A∗S∗(t)x∗ = S∗(t)A∗x∗.

If x ∈ dom(A) then S(t)x ∈ dom(A) and S(t)Ax = AS(t)x by Lemma 7.1.13
and hence ⟨S∗(t)A∗x∗, x⟩ = ⟨A∗x∗, S(t)x⟩ = ⟨x∗, AS(t)x⟩ = ⟨S∗(t)x∗, Ax⟩.
By definition of the dual operator, this implies that S∗(t)x∗ ∈ dom(A∗)
and A∗S∗(t)x∗ = S∗(t)A∗x∗. This proves Step 2.

Step 3. Let x∗ ∈ E and t ≥ 0. Then S∗(t)x∗ ∈ E.

Choose a sequence x∗i ∈ dom(A∗) such that limi→∞ ∥x∗i − x∗∥ = 0. Then it
follows from Step 2 that S∗(t)x∗i ∈ dom(A∗). Since S∗(t) : X∗ → X∗ is a
bounded linear operator, we also have limi→∞ ∥S∗(t)x∗i − S∗(t)x∗∥ = 0, and
hence S∗(t)x∗ ∈ E. This proves Step 3.
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Step 4. Let x∗ ∈ dom(A∗) and x ∈ X. Then

⟨S∗(t)x∗ − x∗, x⟩ =
∫ t

0
⟨S∗(s)A∗x∗, x⟩ ds.

By Example 7.1.15 we have∫ t

0
S(s)x ds ∈ dom(A), A

∫ t

0
S(s)x ds = S(t)x− x,

and hence

⟨S∗(t)x∗ − x∗, x⟩ = ⟨x∗, S(t)x− x⟩

= ⟨x∗, A
∫ t

0
S(s)x ds⟩

= ⟨A∗x∗,

∫ t

0
S(s)x ds⟩

=

∫ t

0
⟨A∗x∗, S(s)x⟩ ds

=

∫ t

0
⟨S∗(s)A∗x∗, x⟩ ds.

Here the fourth equality follows from Lemma 5.1.8. This proves Step 4.

Step 5. If x∗ ∈ E then limt→0 ∥S∗(t)x∗ − x∗∥ = 0.

Define M := sup0≤t≤1 ∥S(t)∥ and let x∗ ∈ dom(A∗). Then, by Step 4,

⟨S∗(t)x∗ − x∗, x⟩ =
∫ t

0
⟨A∗x∗, S(s)x⟩ ds

≤ ∥A∗x∗∥
∫ t

0
∥S(s)x∥ ds

≤ tM ∥A∗x∗∥ ∥x∥

for 0 ≤ t ≤ 1. This implies

∥S∗(t)x∗ − x∗∥ = sup
x∈X\{0}

⟨S∗(t)x∗ − x∗, x⟩
∥x∥

≤ tM ∥A∗x∗∥

for 0 ≤ t ≤ 1 and so limt→0 ∥S∗(t)x∗ − x∗∥ = 0. Since dom(A∗) is dense
in E and ∥S∗(t)∥ = ∥S(t)∥ ≤M for 0 ≤ t ≤ 1, it follows from the Banach–
Steinhaus Theorem 2.1.5 that

lim
t→0

∥S∗(t)x∗ − x∗∥ = 0 for all x∗ ∈ E.

This proves Step 5.
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Step 6. Let x∗ ∈ X∗ such that limt→0 ∥S∗(t)x∗ − x∗∥ = 0. Then x∗ ∈ E.

For h > 0 let x∗h ∈ X∗ be as in Step 1. Then x∗h ∈ dom(A∗) and

⟨x∗h − x∗, x⟩ = 1

h

∫ h

0
⟨x∗, S(t)x− x⟩ dt.

Now fix a constant ε > 0 and choose δ > 0 such that

0 ≤ t < δ =⇒ ∥S∗(t)x∗ − x∗∥ < ε.

Let 0 < h < δ. Then

⟨x∗, S(t)x− x⟩
∥x∥

=
⟨S∗(t)x∗ − x∗, x⟩

∥x∥
≤ ∥S∗(t)x∗ − x∗∥
≤ ε

for 0 ≤ t ≤ h and x ∈ X \ {0}, and hence

⟨x∗h − x∗, x⟩
∥x∥

=
1

h

∫ h

0

⟨x∗, S(t)x− x⟩
∥x∥

dt ≤ ε.

Take the supremum over all x ∈ X \ {0} to obtain the inequality

∥x∗h − x∗∥ = sup
x∈X\{0}

⟨x∗h − x∗, x⟩
∥x∥

≤ ε

for 0 < h < δ. Thus we have proved that

lim
h→0

∥x∗h − x∗∥ = 0,

and hence x∗ ∈ E. This proves Step 6.

Step 7. Let x∗ ∈ dom(A∗) such that y∗ := A∗x∗ ∈ E. Then

lim
t→0

∥∥∥∥S∗(t)x∗ − x∗

t
− y∗

∥∥∥∥ = 0.

By Step 3 and Step 5, S∗ restricts to a strongly continuous semigroup on
the subspace E. Thus the function [0,∞) → E : t 7→ S∗(t)y∗ = S∗(t)A∗x∗

is continuous and so

S∗(t)x∗ − x∗ =

∫ t

0
S∗(s)y∗ ds

for all t > 0 by Step 4. Hence∥∥∥∥S∗(t)x∗ − x∗

t
− y∗

∥∥∥∥ =

∥∥∥∥1t
∫ t

0

(
S∗(s)y∗ − y∗

)
ds

∥∥∥∥ ≤ sup
0≤s≤t

∥S∗(s)y∗ − y∗∥

and this proves Step 7.
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Step 8. Let x∗, y∗ ∈ X∗ such that limh→0

∥∥∥S∗(t)x∗−x∗
t − y∗

∥∥∥ = 0. Then

x∗ ∈ dom(A∗), y∗ = A∗x∗ ∈ E.

It follows from the assumptions of Step 8 that limt→0 ∥S∗(t)x∗ − x∗∥ = 0
and hence x∗ ∈ E by Step 6. This implies t−1(S∗(t)x∗ − x∗) ∈ E by Step 3,
and so y∗ ∈ E because E is a closed subspace of X∗. Since the func-
tion [0, h] → E : t 7→ S∗(t)x∗ is continuous by Step 3 and Step 5, the ele-
ment x∗h ∈ X∗ in Step 1 is given by

x∗h =
1

h

∫ h

0
S∗(t)x∗ dt

and converges to x∗ as h tends to zero. Moreover, by Step 1, we have
that x∗h ∈ dom(A∗) and A∗x∗h = h−1(S∗(h)x∗ − x∗) converges to y∗ as h
tends to zero. Since A∗ is a closed operator, this implies x∗ ∈ dom(A∗)
and A∗x∗ = y∗ ∈ E. This proves Step 8.

Part (i) follows from Steps 5 and 6, part (ii) from Steps 3 and 5, and
part (iii) from Steps 7 and 8. This proves Theorem 7.3.1. □

Corollary 7.3.2. Let X be a real reflexive Banach space and let S be
a strongly continuous semigroup on X with the infinitesimal generator A.
Then the dual semigroup S∗ : [0,∞) → L(X∗) is strongly continuous and its
infinitesimal generator is the dual operator A∗ : dom(A∗) → X∗.

Proof. The domain of the dual operator A∗ is weak* dense in X∗ by
part (iii) of Theorem 6.2.2, and so it is dense because X is reflexive. Hence
the result follows from Theorem 7.3.1 with E = X∗. □

The shift group in the following example shows that Corollary 7.3.2 does
not extend to nonreflexive Banach spaces. In Example 7.3.3 the subspace E
is not invariant under A∗ although it is invariant under S∗(t) for all t.

Example 7.3.3. Let X := L1(R) and, for t ∈ R, define the linear oper-
ator S(t) : L1(R) → L1(R) for t ∈ R by

(S(t)f)(s) := f(s+ t) for f ∈ L1(R) and s, t ∈ R.

Then X∗ ∼= L∞(R) and under this identification the dual group is given by

(S∗(t)g)(s) := g(s− t) for g ∈ L∞(R) and s, t ∈ R.

For a general element g ∈ L∞(R) the function R → L∞(R) : t 7→ S∗(t)g
is weak* continuous but not continuous. In this example the domain of A∗

is the space of bounded Lipschitz continuous functions on R. This space is
weak* dense in L∞(R) but not dense. Its closure is the space E ⊂ L∞(R)
of bounded uniformly continuous functions on R.
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7.3.2. Self-Adjoint Semigroups. The next theorem characterizes the in-
finitesimal generators of self-adjoint semigroups.

Theorem 7.3.4 (Self-Adjoint Semigroups). Let H be a real Hilbert
space and let A : dom(A) → H be a linear operator with a dense domain
dom(A) ⊂ H. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → L(H) such that S(t) = S(t)∗ for all t ≥ 0.

(ii) The operator A is self-adjoint and

sup
x∈dom(A)\{0}

⟨x,Ax⟩
∥x∥2

<∞.

If these equivalent conditions are satisfied then

(7.3.3)
log∥S(t)∥

t
= sup

x∈dom(A)
x ̸=0

⟨x,Ax⟩
∥x∥2

for all t > 0.

Proof. We prove that (i) implies (ii) and

(7.3.4) sup
x∈dom(A)

x̸=0

⟨x,Ax⟩
∥x∥2

≤ log∥S(t)∥
t

= lim
s→∞

log∥S(s)∥
s

for all t > 0.

For Hilbert spaces Theorem 7.3.1 asserts that the adjoint A∗ of the infini-
tesimal generator A of a semigroup S is the infinitesimal generator of the
adjoint semigroup S∗. Since S(t)∗ = S(t) for all t ≥ 0 in the case at hand,
it follows that the infinitesimal generator A is self-adjoint. Moreover,

∥S(t)∥ = ∥S(t)n∥1/n = ∥S(nt)∥1/n

by part (i) of Theorem 5.3.15 and hence

log∥S(t)∥
t

=
log∥S(nt)∥

nt
for all t > 0 and all n ∈ N.

Take the limit n→ ∞ and use Lemma 7.1.8 to obtain

log∥S(t)∥
t

= ω0 := lim
s→∞

log∥S(s)∥
s

for all t > 0.

This implies log∥S(t)∥ = tω0 and so ∥S(t)∥ = etω0 for all t > 0. Thus

⟨x, S(t)x⟩ ≤ etω0∥x∥2 for all x ∈ H and all t ≥ 0.

Differentiate this inequality at t = 0 to obtain ⟨x,Ax⟩ ≤ ω0∥x∥2 for ev-
ery x ∈ dom(A). This shows that (i) implies (ii) and (7.3.4).
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We prove that (ii) implies (i). Thus assume A is self-adjoint and

ω := sup
x∈dom(A)

x ̸=0

⟨x,Ax⟩
∥x∥2

<∞.

We prove in five steps that A generates a self-adjoint semigroup.

Step 1. If λ > ω and x ∈ dom(A) then ∥λx−Ax∥ ≥ (λ− ω)∥x∥.

Let x ∈ dom(A) and λ > ω. Then ⟨x,Ax⟩ ≤ ω ∥x∥2 and so

∥x∥∥λx−Ax∥ ≥ ⟨x, λx−Ax⟩ ≥ (λ− ω)∥x∥2.

This proves Step 1.

Step 2. If λ > ω then λ1l−A is injective and has a closed image.

Let λ > ω. Assume xn is a sequence in dom(A) such that yn := λxn −Axn
converges to y. Then xn is a Cauchy sequence by Step 1 and so con-
verges to some element x ∈ H. Hence Axn = λxn − yn converges to λx− y.
Since A has a closed graph by Theorem 6.2.2, this implies x ∈ dom(A)
and Ax = λx− y. Thus y = λx−Ax ∈ im(λ1l−A), and so λ1l−A has a
closed image. That it is injective follows directly from the estimate in Step 1.
This proves Step 2.

Step 3. If λ > ω then λ1l−A is surjective.

Let λ > ω and suppose y ∈ H is orthogonal to the image of λ1l − A.
Then ⟨y, λx⟩ = ⟨y,Ax⟩ for all x ∈ dom(A). Hence y ∈ dom(A∗) = dom(A)
and Ay = A∗y = λy. Thus y = 0 by Step 2. This shows that λ1l−A has a
dense image. Hence it is surjective by Step 2. This proves Step 3.

Step 4. The operator A is the infinitesimal generator of a strongly contin-
uous semigroup S : [0,∞) → L(H) such that ∥S(t)∥ ≤ eωt for all t ≥ 0.

Let λ > ω. Then λ1l − A : dom(A) → H is bijective by Step 2 and Step 3
and ∥(λ1l − A)−1∥ ≤ (λ − ω)−1 by Step 1. Hence Step 4 follows from the
Hille–Yosida–Phillips Theorem 7.2.5 with M = 1.

Step 5. The semigroup S in Step 4 is self-adjoint and satisfies (7.3.3).

The operator A = A∗ is the infinitesimal generator of S by Step 4 and of
the adjoint semigroup S∗ by Theorem 7.3.1. Hence Corollary 7.2.3 asserts
that S(t) = S∗(t) for all t ≥ 0. This implies that A and S satisfy (7.3.4).
By (7.3.4), we have ω ≤ t−1 log ∥S(t)∥ and by Step 4 we have ∥S(t)∥ ≤ eωt

and hence t−1 log ∥S(t)∥ ≤ ω for all t > 0. Thus equality holds in (7.3.4).
This proves (7.3.3) and Theorem 7.3.4. □
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7.3.3. Unitary Groups. On complex Hilbert spaces it is interesting to
examine the infinitesimal generators of strongly continuous unitary groups.
This is the content of Theorem 7.3.6 below which was proved in 1932 by
M.H. Stone [81].

Definition 7.3.5. LetH be a complex Hilbert space. A strongly contin-
uous group S : R → Lc(H) is called unitary if ∥S(t)x∥ = ∥x∥ for all t ∈ R
and all x ∈ H or, equivalently,

S∗(t) = S(t)−1 = S(−t)

for all t ∈ R, where S∗(t) = S(t)∗ denotes the adjoint operator of S(t).

Theorem 7.3.6 (Stone). Let H be a complex Hilbert space and suppose
that A : dom(A) → H is a linear operator with a dense domain dom(A) ⊂ H.
Then the following are equivalent.

(i) A is the infinitesimal generator of a unitary group.

(ii) The operator iA : dom(A) → H is self-adjoint.

Proof. We prove that (i) implies (ii). Thus assume that A is the infini-
tesimal generator of a unitary group S : R → Lc(H). Then

S∗(t) = S(t)−1 = S(−t) for all t ∈ R.

The operator −A : dom(A) → H is the infinitesimal generator of the
group R → Lc(H) : t 7→ S(−t) by Theorem 7.2.4 and A∗ : dom(A∗) → H
is the infinitesimal generator of the group R → Lc(H) : t 7→ S∗(t) by Theo-
rem 7.3.1. Hence

A∗ = −A
and so

(iA)∗ = −iA∗ = iA.

Thus iA is self-adjoint.

We prove that (ii) implies (i). Suppose that

A = iB,

where B : dom(B) → H is a complex linear self-adjoint operator. Then A
has a dense domain dom(A) = dom(B) and a closed graph. Moreover,

A∗ = (iB)∗ = −iB∗ = −iB = −A.

This implies

(7.3.5) Re⟨x,Ax⟩ = ⟨x,Ax⟩+ ⟨Ax, x⟩
2

=
⟨x, (A+A∗)x⟩

2
= 0

for all x ∈ dom(A).
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We prove that the operator 1l − A : dom(A) → H has a dense image.
Assume that y ∈ H is orthogonal to the image of 1l−A. Then

0 = ⟨y, x−Ax⟩ = ⟨y, x⟩ − ⟨y,Ax⟩ for all x ∈ dom(A).

Hence it follows from the definition of the adjoint operator that

y ∈ dom(A∗) = dom(A), y = A∗y = −Ay.

This implies ∥y∥2 = −⟨y,Ay⟩ = −⟨A∗y, y⟩ = −∥y∥2 and so y = 0. Hence the
operator 1l−A has a dense image by the Hahn–Banach Theorem 2.3.25.

Since 1l − A has a dense image it follows from (7.3.5) and the Lumer–
Phillips Theorem 7.2.11 that A is the infinitesimal generator of a contraction
semigroup S : [0,∞) → Lc(H). The adjoint semigroup S∗ : [0,∞) → Lc(H)
is also a contraction semigroup and is generated by the operator A∗ by
Theorem 7.3.1. Hence −A = A∗ is the infinitesimal generator of the semi-
group S∗ and so S extends to a strongly continuous group S : R → Lc(H)
by Theorem 7.2.4. Since S∗ is the group generated by −A = A∗ it follows
that S(t)−1 = S(−t) = S∗(t) for all t ∈ R and this proves Theorem 7.3.6. □

Example 7.3.7 (Shift Group). Consider the Hilbert space

H := L2(R,C)

and define the operator A : dom(A) → H by

dom(A) :=W 1,2(R,C)

:=

{
f : R → C

∣∣∣∣ f is absolutely continuous

and f, dfds ∈ L2(R,C)

}
,

Af :=
df

ds
for f ∈W 1,2(R,C).

(7.3.6)

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [75, Thm 6.19]). The operator

iA = i
d

ds
:W 1,2(R,C) → L2(R,C)

is self-adjoint and hence A generates a unitary group U : R → Lc(L2(R,C)).
This group is in fact the shift group in Example 7.1.4 given by

(U(t)f)(s) = f(s+ t) for f ∈ L2(R,C) and s, t ∈ R.

(See also Example 7.3.3 and Exercise 7.7.3.) Exercise: Verify the details.
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Example 7.3.8 (Schrödinger Equation). (i) Define the unbounded
linear operator A on the Hilbert space H := L2(R,C) by

dom(A) :=W 2,2(R,C)

:=

f : R → C

∣∣∣∣∣
f is absolutely continuous and
df
dx is absolutely continuous and∫∞
−∞(|f |2 + | dfdx |

2 + |d
2f
dx2

|2) dx <∞

 ,

Af := iℏ
d2f

dx2
for f ∈W 2,2(R,C).

(7.3.7)

(See Example 6.1.7.) Here ℏ is a positive real number (Planck’s constant)
and x is the variable in R. The operator

iA = −ℏ
d2

dx2
:W 2,2(R,C) → L2(R,C)

is self-adjoint and hence A generates a unitary group U : R → Lc(L2(R,C)).
If f : R → C is a smooth function with compact support and u : R2 → C is
defined by u(t, x) := (U(t)f)(x), then u satisfies the Schrödinger equation

(7.3.8) iℏ
∂u

∂t
= −ℏ2

∂2u

∂x2

with the initial condition u(0, ·) = f . Exercise: Prove that the operator iA
is self-adjoint.

(ii) Another variant of the Schrödinger equation is associated to the opera-
tor A : dom(A) → L2(R,C), defined by

dom(A) :=

f : R → C

∣∣∣∣∣
f is absolutely continuous and
df
dx is absolutely continuous and∫∞
−∞(|f |2 + |−ℏ2 d

2f
dx2

+ x2f |2) dx <∞

 ,

(Af)(x) := iℏ
d2f

dx2
(x) +

x2

iℏ
f(x) for f ∈W 2,2(R,C) and x ∈ R.

(7.3.9)

The operator iA is again self-adjoint and hence the operator A generates
a unitary group U : R → Lc(L2(R,C)). If f : R → C is a smooth function
with compact support and u : R2 → C is defined by u(t, x) := (U(t)f)(x),
then u satisfies the Schrödinger equation with quadratic potential

(7.3.10) iℏ
∂u

∂t
(t, x) = −ℏ2

∂2u

∂x2
(t, x) + x2u(t, x)

with the initial condition u(0, ·) = f . Exercise: Prove that the operator iA
is self-adjoint.
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Corollary 7.3.9 (Groups of Isometries). Let H be a real Hilbert
space and suppose that A : dom(A) → H is a linear operator with a dense
domain dom(A) ⊂ H. Then the following are equivalent.

(i) A is the infinitesimal generator of a group of isometries.

(ii) If λ ∈ R \ {0} then λ1l−A is bijective and
∥∥(λ1l−A)−1

∥∥ ≤ |λ|−1.

(iii) dom(A∗) = dom(A) and A∗x+Ax = 0 for all x ∈ dom(A).

Proof. By Theorem 7.2.4, a map S : R → L(H) is a strongly con-
tinuous group of isometries if and only if both [0,∞) → L(H) : t 7→ S(t)
and [0,∞) → L(H) : t 7→ S(−t) are contraction semigroups. Hence the equi-
valence of (i) and (ii) follows from the Lumer–Phillips Theorem 7.2.11. The
equivalence of (i) and (iii) follows from Theorem 7.3.6 for the complexified
operator Ac : dom(Ac) := dom(A)c → Hc. □

Example 7.3.10 (Shift Group). (i) The formula (L(t)f)(s) := f(s+ t)
for s, t ∈ R and f ∈ H := L2(R) defines a shift group L : R → L(H) of isome-
tries. Its infinitesimal generator A : dom(A) =W 1,2(R) → L2(R) is given
by Af = f ′ for f ∈W 1,2(R) and satisfies A∗ = −A. (See Example 7.1.4.)

(ii) The formulas (R(t)f)(s) := f(s− t) for s ≥ t ≥ 0 and (R(t)f)(s) := 0
for t > s ≥ 0 and f ∈ H := L2([0,∞)) define a semigroupR : [0,∞) → L(H)
of isometric embeddings. The infinitesimal generator B : dom(B) → H has

the domain dom(B) =W 1,2
0 ([0,∞)) := {f ∈W 1,2([0,∞)) | f(0) = 0} and is

given by Bf = −f ′. Its adjoint has the domain dom(B∗) =W 1,2([0,∞))
and satisfies Bf +B∗f = 0 for f ∈ dom(B) ⊊ dom(B∗).

Example 7.3.11 (Wave Equation). (i) The group S : R → L(H )
on the Hilbert space H = L2(R,R2), given by (7.1.15) in Example 7.1.7,
consists of isometries and has the infinitesimal generator A = −A ∗ on H ,
given by dom(A ) =W 1,2(R,R2) and A (f, g) = (g′, f ′).

(ii) Fix real numbers a < b and consider the wave equation

(7.3.11)
∂2u

∂t2
=
∂2u

∂x2
, u(t, a) = u(t, b) = 0,

on the compact interval I := [a, b]. Equation (7.3.11) gives rise to a strongly

continuous group of isometries on the Hilbert space H :=W 1,2
0 (I)× L2(I),

where W 1,2
0 (I) :=

{
f ∈W 1,2(I) | f(a) = f(b) = 0

}
and

∥(f, g)∥H :=

√∫ b

a

(
|f ′(x)|2 + |g(x)|2

)
dx

for f ∈W 1,2
0 (I) and g ∈ L2(I). Its infinitesimal generator is the operator

dom(A) = (W 2,2(I) ∩W 1,2
0 (I))×W 1,2

0 (I), A(f, g) = (g, f ′′).
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7.4. Analytic Semigroups

7.4.1. Properties of Analytic Semigroups. For a strongly continuous
semigroup

S : [0,∞) → Lc(X)

on a complex Banach space X an important question is of whether the
function t 7→ S(t)x extends to a holomorphic function on a neighborhood of
the positive real axis for all x ∈ X. A necessary condition for the existence
of such an extension is instant regularity, i.e. the image of the operator S(t)
must be contained in the domain of the infinitesimal generator for all t > 0.
The formal definition involves the sectors

Uδ :=
{
z ∈ C \ {0}

∣∣ |arg(z)| < δ
}

=
{
reiθ

∣∣ r > 0 and − δ < θ < δ
}(7.4.1)

for 0 < δ < π/2.

Definition 7.4.1 (Analytic Semigroups). Let X be a complex Ba-
nach space. A strongly continuous semigroup S : [0,∞) → Lc(X) is called
analytic if there exists a number 0 < δ < π/2 and an extension of S to U δ,
still denoted by

S : U δ → Lc(X),

such that, for every x ∈ X, the function

U δ → X : z 7→ S(z)x

is continuous and its restriction to the interior Uδ ⊂ C is holomorphic.

The next theorem summarizes the basic properties of analytic semi-
groups. In particular, it shows that the map Sθ : [0,∞) → Lc(X), defined
by

(7.4.2) Sθ(t) := S(teiθ) for t ≥ 0,

is a strongly continuous semigroup for −δ ≤ θ ≤ δ, and that its infinitesimal
generator is the operator Aθ : dom(A) → X defined by

(7.4.3) Aθx := eiθAx for x ∈ dom(A).

It also shows that the semigroups Sθ satisfy an exponential estimate of the
form ∥Sθ(t)∥ ≤ Meω cos(θ)t, where the constants ω ∈ R and M ≥ 1 can be
chosen independent of θ. Let ω0 be the infimum of all ω ∈ R for which such
an estimate exists. Then the spectrum of A is contained in the sector

(7.4.4) Cδ :=
{
ω0 + reiθ | r ≥ 0, π/2 + δ ≤ |θ| ≤ π

}
(see Figure 7.4.1).
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ω
0

σ(Α) 0 U

π/2−δ
δ

δ

Figure 7.4.1. The spectrum of the generator of an analytic semigroup.

Theorem 7.4.2 (Analytic Semigroups). Let X be a complex Banach
space, let 0 < δ < π/2, let S : U δ → Lc(X) be an analytic semigroup, and
let A be its infinitesimal generator. Then the following holds.

(i) S(t+ z) = S(t)S(z) for all t, z ∈ U δ.

(ii) If z ∈ Uδ then im(S(z)) ⊂ dom(A), AS(z) ∈ Lc(X), and

(7.4.5) lim
h→0

h∈C\{0}

∥∥∥∥S(z + h)− S(z)

h
−AS(z)

∥∥∥∥ = 0.

Moreover, the function Uδ → Lc(X) : z 7→ AS(z) is holomorphic.

(iii) If x ∈ dom(A) and z ∈ U δ then

S(z)x ∈ dom(A), AS(z)x = S(z)Ax.

(iv) If z ∈ Uδ then im(S(z)) ⊂ dom(A∞).

(v) For each

(7.4.6) ω > ω0 := inf
r>0

r−1 sup{log∥S(z)∥ | z ∈ U δ, Re(z) = r}

there exists a constant M ≥ 1 such that ∥S(z)∥ ≤MeωRe(z) for all z ∈ U δ.

(vi) Let x ∈ X and z0 ∈ Uδ. Choose r > 0 such that Br(z0) ⊂ Uδ. Then

(7.4.7) S(z)x =
∞∑
n=0

(z − z0)
n

n!
AnS(z0)x for all z ∈ Br(z0).

The power series in (7.4.7) converges absolutely and uniformly on every
compact subset of Br(z0).

(vii) For −δ ≤ θ ≤ δ the map Sθ in (7.4.2) is a strongly continuous semi-
group whose infinitesimal generator is the operator Aθ in (7.4.3).

(viii) If ω0 is as in (v) then σ(A) ⊂ Cδ (see equation (7.4.4)).
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Proof. We prove part (i). Fix a number t > 0 and two elements x ∈ X
and x∗ ∈ X∗. Define functions u, v, w : Uδ → C by

u(z) := ⟨x∗, S(t+ z)x⟩,
v(z) := ⟨x∗, S(z)S(t)x⟩,
w(z) := ⟨x∗, S(t)S(z)x⟩ = ⟨S(t)∗x∗, S(z)x⟩

for z ∈ Uδ. By assumption these functions are holomorphic and agree on
the positive real axis. Hence they agree on all of Uδ by unique continuation.
This shows that

S(t+ z) = S(z)S(t) = S(t)S(z)

for all t > 0 and all z ∈ U δ. Repeat the argument with t ∈ Uδ to obtain

S(t+ z) = S(t)S(z)

for all t, z ∈ U δ. This proves part (i).

We prove part (ii). Let x ∈ X and define f : Uδ → X by

f(z) := S(z)x

for z ∈ Uδ. This function is holomorphic by assumption and

f(z + h)− f(z)

h
=
S(h)S(z)x− S(z)x

h
for all h > 0

by part (i). The difference quotient on the left converges to f ′(z) as h tends
to zero because f is holomorphic. Hence it follows from the definition of the
infinitesimal generator that

S(z)x ∈ dom(A), AS(z)x = f ′(z)

for all z ∈ Uδ. Since f
′ is holomorphic by Exercise 5.1.13, and every weakly

holomorphic operator valued function is holomorphic by Lemma 5.1.12, this
proves part (ii).

We prove part (iii). Let x ∈ dom(A) and define f, g : Uδ → X by

f(z) := S(z)Ax, g(z) := AS(z)x for z ∈ Uδ.

Then f is holomorphic by assumption and g is holomorphic by part (ii).
Moreover, the functions agree on the positive real axis by Lemma 7.1.13.
Hence they agree on all of Uδ by unique continuation. This proves part (iii)
for z ∈ Uδ. Now let z ∈ U δ and choose a sequence zn ∈ Uδ that converges
to z. Then it follows from the strong continuity of the map S : U δ → Lc(X)
and from what we have just proved that

lim
n→∞

S(zn)x = S(z)x, lim
n→∞

AS(zn)x = lim
n→∞

S(zn)Ax = S(z)Ax.

Since A is closed, it follows that S(z)x ∈ dom(A) and AS(z)x = S(z)Ax.
This proves part (iii).
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We prove part (iv). We prove by induction on n that S(z)x ∈ dom(An)
for all z ∈ Uδ and all x ∈ X. For n = 1 this was established in part (ii).
Assume by induction that S(z)x ∈ dom(An) for all z ∈ Uδ and all x ∈ X.
Fix two elements x ∈ X and z ∈ Uδ. Then it follows from parts (i), (ii), (iii)
and the induction hypothesis that

AS(z)x = AS(z/2)S(z/2)x = S(z/2)AS(z/2)x ∈ dom(An)

and hence S(z)x ∈ dom(An+1). This completes the induction argument and
the proof of part (iv).

We prove part (v). The function U δ → [0,∞) : z 7→ ∥S(z)x∥ is bounded
on every compact subset of Uδ and for every x ∈ X by strong continuity.
Hence it follows from the Uniform Boundedness Theorem 2.1.1 and the
analyticity of the semigroup that, for every real number r > 0, there exists
a constant c ≥ 1 such that c−1 ≤ ∥S(z)∥ ≤ c for all z ∈ U δ with Re(z) ≤ r.
Define

(7.4.8) ω0 := inf
r>0

ω(r)

r
, ω(r) := sup

{
log∥S(z)∥

∣∣ z ∈ U δ, Re(z) = r
}
,

and define the functions g : U δ → R and M : [0,∞) → [0,∞) by

(7.4.9) g(z) := log∥S(z)∥, M(r) := sup
z∈Uδ,Re(z)≤r

|g(z)|

for z ∈ U δ and r ≥ 0. Then it follows from part (i) that

g(t+ z) ≤ g(t) + g(z)

for all t, z ∈ U δ. Fix a real number r > 0 and let z ∈ U δ \ {0}. Then there
exists an integer k ≥ 0 and a number 0 ≤ s < r such that Re(z) = kr + s.
Define ζ := Re(z)−1z. Then g(z) = g(krζ + sζ) and hence

g(z)

Re(z)
≤ kg(rζ) + g(sζ)

Re(z)
=
g(rζ)

r
− sg(rζ)

rRe(z)
+
g(sζ)

Re(z)
≤ ω(r)

r
+

2M(r)

Re(z)
.

Now fix a constant ω > ω0, choose r > 0 such that r−1ω(r) < ω, and
then choose R > 0 such that r−1ω(r) + 2R−1M(r) ≤ ω. Then each z ∈ U δ
with |z| ≥ R satisfies |z|−1g(z) ≤ ω and hence ∥S(z)∥ = eg(z) ≤ eωRe(z). This

proves part (v) with M := supz∈Uδ,Re(z)≤R e
−ωRe(z)∥S(z)∥.

We prove part (vi). Let x ∈ X and x∗ ∈ X∗ and define f : Uδ → C
by f(z) := ⟨x∗, S(z)x⟩. By parts (ii), (iii), and (iv) the derivatives of f are

given by f (n)(z) = ⟨x∗, AnS(z)x⟩ for n ∈ N and z ∈ Uδ. Hence part (vi)
follows by carrying over the familiar result in complex analysis about the
convergence of power series (e.g. [1, p 179] or [74, Thm 3.43]) to operator
valued holomorphic functions. (See also Exercises 5.1.13 and 5.1.14.) This
proves part (vi).
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We prove part (vii). Fix a real number −δ ≤ θ ≤ δ. That Sθ is strongly
continuous follows directly from the definition and that it is a semigroup
follows from part (i). We must prove that its infinitesimal generator is
the operator Aθ = eiθA : dom(A) → X in (7.4.3). To see this, fix an
element x0 ∈ dom(A) and define the function

x : [0,∞) → X

by

x(t) := Sθ(t)x0 = S(teiθ)x0 for t ≥ 0.

This function is continuous by assumption and takes values in the sub-
space dom(Aθ) = dom(A) by part (ii). Moreover, it follows from part (ii)
that x is differentiable and

d

dt
Sθ(t)x = lim

h→0

S(teiθ + heiθ)x− S(teiθ)x

h

= eiθAS(teiθ)x

= Sθ(t)Aθx

for all t ≥ 0. Here the last equality follows from part (iii). Thus x is
continuously differentiable and satisfies the differential equation ẋ = Aθx.
Hence Sθ and Aθ satisfy condition (iii) in Lemma 7.1.17 and so Aθ is the
infinitesimal generator of Sθ. This proves part (vii)

We prove part (viii). Recall the definition of the spectrum of a closed un-
bounded operator in (6.1.9). Let λ ∈ σ(A) and fix a real number −δ ≤ θ ≤ δ.
Then eiθλ ∈ σ(Aθ). Let ω > ω0. Then part (v) asserts that there is a con-

stant M ≥ 1 such that ∥Sθ(t)∥ ≤Meω cos(θ)t for all t ≥ 0. By Theorem 7.2.5
this implies that Re(eiθλ) ≤ ω cos(θ). Since ω > ω0 was chosen arbitrarily,
this implies Re(eiθλ) ≤ ω0 cos(θ), i.e.

Re(eiθ(λ− ω0)) ≤ 0 for − δ ≤ θ ≤ δ.

Thus λ ∈ Cδ. This proves part (viii) and Theorem 7.4.2. □

Example 7.4.3. This elementary example shows that the number ω0

in (7.4.6) may depend on the domain Uδ on which the semigroup is (chosen to
be) defined. Let λ ∈ C and consider the analytic semigroup S : U δ → Lc(X)
on one-dimensional complex Banach space X = C, given by

S(z)x = eλzx

for z ∈ U δ and x ∈ X = C. This semigroup extends to a holomorphic func-
tion on the entire complex plane, so the number 0 < δ < π/2 can be chosen
arbitrarily. We have log ∥S(z)∥ = log|eλz| = Re(λz) for all z ∈ U δ and hence

sup
{
log ∥S(z)∥

∣∣ z ∈ U δ, Re(z) = r
}
= r
(
Re(λ) + tan(δ) |Im(λ)|

)
.

Thus ω0 = Re(λ) + tan(δ) |Im(λ)| and so σ(A) = {λ} ⊂ Cδ.
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7.4.2. Generators of Analytic Semigroups. The next theorem is the
main result of this section. It characterizes the infinitesimal generators of
analytic semigroups.

Theorem 7.4.4 (Generators of Analytic Semigroups). Let X be a
complex Banach space and let A : dom(A) → X be a complex linear operator
with a dense domain and a closed graph. Fix a real number ω0. Then the
following are equivalent.

(i) There exists a number 0 < δ < π/2 such that A generates an analytic
semigroup S : U δ → Lc(X) that satisfies

(7.4.10) lim
t→∞

log∥S(t)∥
t

= inf
t>0

log∥S(t)∥
t

≤ ω0.

(ii) For each ω > ω0 there exists a constant M ≥ 1 such that

(7.4.11) ∥(λ1l−A)−1∥ ≤ M

|λ− ω|
for all λ ∈ C with Reλ > ω.

If these equivalent conditions are satisfied then im(S(t)) ⊂ dom(A) for
all t > 0 and, for each ω > ω0, there exists a constant M ≥ 1 such that

(7.4.12) ∥AS(t)x∥ ≤ M

t
eωt∥x∥ for all t > 0 and all x ∈ X.

Proof. We prove that (i) implies the last assertion. Thus assume part (i).
Then im(S(t)) ⊂ dom(A) for all t > 0 by Theorem 7.4.2. Let ω > ω0

and assume ω1 := infr>0 sup{ log∥S(z)∥
r | z ∈ U δ, Re(z) = r} < ω. (Shrink δ if

necessary.) Choose r > 0 so small that

Br(1) ⊂ Uδ, ω1 <
ω

1 + r
, ω1 <

ω

1− r
.

(Note that ω might be negative.) Let t > 0 and define γt : [0, 1] → Uδ
by γt(s) := t+ rte2πis for 0 ≤ s ≤ 1. Fix an element x ∈ X. Then AS(t)x
is the derivative at z = t of the holomorphic function Uδ → X : z 7→ S(z)x
by Theorem 7.4.2. Hence the Cauchy integral formula asserts that

AS(t)x =
1

2πi

∫
γt

S(z)x

(z − t)2
dz =

1

rt

∫ 1

0
e−2πisS(t+ rte2πis)x ds.

Choose M ≥ 1 such that ∥S(z)∥ ≤ Me
ωRe(z)
1+r and ∥S(z)∥ ≤ Me

ωRe(z)
1−r

for z ∈ U δ. Since (1− r)t ≤ Re(t+ rte2πis) ≤ (1 + r)t this implies

∥AS(t)x∥ ≤ 1

rt
sup
s∈R

∥∥∥S(t+ rte2πis)x
∥∥∥ ≤ M

rt
eωt∥x∥.

This shows that (i) implies (7.4.12).
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We prove that (i) implies (ii). Thus assume part (i). Let ω > ω0 and
assume

ω1 := inf
r>0

sup

{
log∥S(z)∥

r

∣∣∣∣ z ∈ U δ, Re(z) = r

}
< ω.

(Shrink δ if necessary.) Then, by part (v) of Theorem 7.4.2, there exists a
constant M ≥ 1 such that

∥S(z)∥ ≤MeωRe(z) for all z ∈ U δ.

Thus the semigroup S−δ in (7.4.2) satisfies the inequality

∥S−δ(t)∥ = ∥S(te−iδ)∥ ≤Meω cos(δ)t

for all t ≥ 0. Since the operator A−δ = e−iδA in (7.4.3) is the infinitesi-
mal generator of S−δ, it follows from Corollary 7.2.8 that every complex
number λ′ with Re(λ′) > ω cos(δ) belongs to the resolvent set of A−δ and
satisfies

(7.4.13) ∥(λ′1l− e−iδA)−1∥ ≤ M

Re(λ′)− ω cos(δ)
.

Define

(7.4.14) c :=

√
1

sin2(δ)
+

1

cos2(δ)
.

Let λ ∈ C such that Re(λ) > ω and Imλ ≥ 0. Define λ′ := e−iδλ. Then

Re(λ′)− ω cos(δ) = cos(δ)(Re(λ)− ω) + sin(δ)Im(λ) > 0,

hence

Re(λ)− ω ≤ Re(λ′)− ω cos(δ)

cos(δ)
, Im(λ) ≤ Re(λ′)− ω cos(δ)

sin(δ)
,

and so

(7.4.15) |λ− ω| ≤ c
(
Re(λ′)− ω cos(δ)

)
.

Since Reλ′ > ω cos(δ), the operator λ1l− A = eiδ(λ′1l− e−iδA) is invertible
and, by (7.4.13), (7.4.14), and (7.4.15), it satisfies the estimate

∥(λ1l−A)−1∥ = ∥(λ′1l− e−iδA)−1∥ ≤ M

Reλ′ − ω cos(δ)
≤ cM

|λ− ω|
.

This shows that A satisfies (7.4.11) whenever Im(λ) ≥ 0. When Im(λ) ≤ 0
repeat this argument with A−δ replaced by Aδ and λ′ := eiδλ to obtain
that A satisfies (7.4.11). This shows that (i) implies (ii).

We prove that (ii) implies (i). Thus assume part (ii). We prove in eight
steps that A generates an analytic semigroup satisfying (7.4.10).
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Step 1. Let ω > ω0 and choose M ≥ 1 such that (7.4.11) holds. Choose the
real number 0 < ε0 ≤ π/2 such that sin(ε0) = 1/M and define

(7.4.16) Mε :=
M

1−M sin(ε)
for 0 < ε < ε0.

Then

σ(A) ⊂ {ω + reiθ | r ≥ 0, π/2 + ε0 ≤ |θ| ≤ π}
and, if 0 < ε < ε0, then

(7.4.17)
∥∥(λ1l−A)−1

∥∥ ≤ Mε

|λ− ω|

for all λ = ω + reiθ with r > 0 and |θ| ≤ π/2 + ε.

We prove first that, for all λ ∈ C,

(7.4.18) Reλ ≥ ω, λ ̸= ω =⇒
∥∥(λ1l−A)−1

∥∥ ≤ M

|λ− ω|
.

If Reλ > ω, this holds by assumption. Thus assume λ = ω+it for t ∈ R\{0}
and define λs := ω + s + it for s > 0. Then ∥(λs1l − A)−1∥ ≤ M/|t| for
all s > 0. With 0 < s < |t|/M this implies

|λ− λs|∥(λs1l−A)−1∥ ≤ sM

|t|
< 1

and so it follows from Lemma 6.1.10 that λ ∈ ρ(A) and ∥(λ1l − A)−1∥ ≤
M

|t|−sM . Take the limit s→ 0 to obtain the estimate (7.4.18).

Now let 0 < ε < ε0 and let λ = ω ± ire±iθ with r > 0 and 0 < θ ≤ ε.
Consider the number µ := ω ± ir/ cos(θ). It satisfies |λ− µ| = r tan(θ) and

∥(µ1l−A)−1∥ ≤ M

|µ− ω|
=
M cos(θ)

r
≤ M

r

by (7.4.18). Hence

|λ− µ|∥(µ1l−A)−1∥ ≤ M cos(θ)

r
|λ− µ| =M sin(θ) ≤M sin(ε) < 1.

Thus λ ∈ ρ(A) and

(λ1l−A)−1 =
∞∑
k=0

(µ− λ)k(µ1l−A)−k−1

by Lemma 6.1.10. Hence

∥(λ1l−A)−1∥ ≤ ∥(µ1l−A)−1∥
1− |λ− µ|∥(µ1l−A)−1∥

≤ M/r

1−M sin(ε)
=

Mε

|λ− ω|
.

Here the last step uses the equation |λ− ω| = r. This proves Step 1.
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Figure 7.4.2. Integration along γr.

Step 2. Let ω > ω0 and 0 < ε < ε0 ≤ π/2 be as in Step 1. For r > 0 define
the curve γr = γr,ε : R → C by

(7.4.19) γr(t) :=

 ω + 1
re

irt(π
2
+ε), for − 1/r ≤ t ≤ 1/r,

ω + ite−iε, for t ≤ −1/r,
ω + iteiε, for t ≥ 1/r

(see Figure 7.4.2). Then the formula

(7.4.20) S(z) :=
1

2πi

∫
γr

ezζ(ζ1l−A)−1 dζ for z ∈ Uε

defines a holomorphic map S : Uε → Lc(X), which is independent of r.

Step 1 asserts that ω + iteiε ∈ ρ(A) and ω − ite−iε ∈ ρ(A) for t > 0 and∥∥∥((ω ± ite±iε)1l−A)−1
∥∥∥ ≤ Mε

t
for all t > 0.

Let z = |z|eiθ ∈ Uε with |θ| < ε. Then

Re(zieiε) = −|z| sin(ε+ θ) < 0, Re(−zie−iε) = −|z| sin(ε− θ) < 0.

Hence∥∥∥∥e±iε

2π
ez(ω±ite±iε)((ω ± ite±iε)1l−A)−1

∥∥∥∥ ≤ Mεe
|z|ω cos(θ)

2π

e−t|z| sin(ε±θ)

t

for all t ≥ 1/r. This shows that the integrals

S±(z) :=
e±iε

2π

∫ ∞

1/r
ez(ω±ite±iε)((ω ± ite±iε)1l−A)−1 dt

converge in Lc(X). That the map S : Uε → Lc(X) is holomorphic follows
from the definition and the convergence of the integrals. That it is indepen-
dent of the choice of r follows from Step 1 and the Cauchy integral formula.
This proves Step 2.
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Step 3. Let ε and S be as in Step 2 and let 0 < δ < ε. Then there exists a
constant Mδ,ε ≥ 1 such that

∥S(z)∥ ≤Mδ,εe
ωRe(z)

for all z ∈ U δ \ {0}.

Let z ∈ U δ \ {0} and choose r := |z| in (7.4.19). Then z = reiθ with |θ| ≤ δ.
Hence, by Step 2,

S(z) =
1

2πi

∫
γr

ezζ(ζ1l−A)−1 dζ

=
1

2πi

∫ ∞

−∞
ezγr(t)γ̇r(t)(γr(t)1l−A)−1 dt

=
π + 2ε

4π

∫ 1/r

−1/r
ez(ω+

1
r
eirt(

π
2 +ε))eirt(

π
2
+ε)

((
ω +

eirt(
π
2
+ε)

r

)
1l−A

)−1

dt

+
e−iε

2π

∫ −1/r

−∞
ez(ω+ite−iε)((ω + ite−iε)1l−A)−1 dt

+
eiε

2π

∫ ∞

1/r
ez(ω+iteiε)((ω + iteiε)1l−A)−1 dt

=: S0(z) + S−(z) + S+(z).

By Step 1, ∥((ω + r−1eirt(
π
2
+ε))1l−A)−1∥ ≤Mεr and hence∥∥S0(z)

∥∥ ≤ π + 2ε

2πr
eωr cos(θ)+1Mεr ≤Mεe

ωr cos(θ)+1.

Now use the fact that Re(±zie±iε) = −r sin(ε± θ) < 0 to obtain∥∥S±(z)
∥∥ ≤ Mεe

ωr cos(θ)

2π

∫ ∞

1/r

e−tr sin(ε±θ)

t
dt

≤ Mεe
ωr cos(θ)

2π

∫ ∞

1/r

e−tr sin(ε−δ)

t
dt

=
Mεe

ωr cos(θ)

2π

∫ ∞

1

e−s sin(ε−δ)

s
ds

≤ Mεe
ωr cos(θ)

2π sin(ε− δ)
.

Since r cos(θ) = Re(z), the last two estimates imply

∥S(z)∥ ≤Mε

(
e+

1

π sin(ε− δ)

)
eωRe(z) for all z ∈ U δ \ {0}.

This proves Step 3.



398 7. Semigroups of Operators

Step 4. Let 0 < δ < ε < π/2 and let z ∈ U δ. Choose a real number r > 0
and let

γr = γr,ε : R → C
be given by (7.4.19) as in Step 2. Then

1

2πi

∫
γr

ezζ

ζ − ω
dζ = eωz.

The loop obtained from γr|[−T,T ] by joining the endpoints with a straight line
encircles the number ω with winding number one for T ≥ 1/r. Moreover,
the straight line

βT : [−1, 1] → C
joining the endpoints (from top to bottom) is given by

βT (s) := ω − T sin(ε)− isT cos(ε)

and so∣∣∣∣ 1

2πi

∫
βT

ezζ

ζ − ω
dζ

∣∣∣∣ =
∣∣∣∣∣−T cos(ε)

2π

∫ 1

−1

ez(ω−T sin(ε)−isT cos(ε))

−T sin(ε)− isT cos(ε)
ds

∣∣∣∣∣
≤ cos(ε)eωRe(z)

sin(ε)π
e−T sin(ε)Re(z)+T cos(ε)|Im(z)|.

Since z ∈ U δ, the last factor is bounded above by e−|z|T sin(ε−δ) and so
converges exponentially to zero as T tends to infinity. This proves Step 4.

Step 5. For 0 < δ < ε < ε0 the map

S : U δ \ {0} → Lc(X)

in Step 2 satisfies

lim
r→0

sup
{
∥S(z)x− x∥

∣∣ z ∈ U δ, |z| = r
}
= 0

for all x ∈ X.

Assume first that x ∈ dom(A). Let z ∈ U δ \ {0}, define r := |z|, and let the
curve γr : R → C be given by equation (7.4.19). Then, by Step 2 and Step 4,

S(z)x− eωzx =
1

2πi

∫
γr

ezζ
(
(ζ1l−A)−1x− (ζ − ω)−1x

)
dζ

=
1

2πi

∫
γr

ezζ

ζ − ω
(ζ1l−A)−1(Ax− ωx) dζ

=
1

2πi

∫ ∞

−∞

γ̇r(t)e
zγr(t)

γr(t)− ω
(γr(t)1l−A)−1(Ax− ωx) dt.
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Since

∥(γr(t)1l−A)−1∥ ≤ Mε

|γr(t)− ω|
by Step 1 and

|γr(t)− ω| ≥ 1

r
by (7.4.19), it follows that

∥S(z)x− eωzx∥ ≤ Mε

2π

∫ ∞

−∞

|γ̇r(t)|eRe(zγr(t))

|γr(t)− ω|2
dt ∥Ax− ωx∥

≤ Mε

2π

∫ ∞

−∞
|γ̇r(t)|eRe(zγr(t)) dt ∥Ax− ωx∥ r2.

Now

γr(t)− ω =
1

r
eirt(

π
2
+ε) for |t| ≤ 1

r
and

γr(t)− ω = tei(
π
2
+ε) for t ≥ 1

r
and

γr(t)− ω = −te−i(π
2
+ε) for t ≤ −1

r
.

Thus |γ̇r(t)| ≤ π for |t| < 1/r and |γ̇r(t)| = 1 for |t| > 1/r. Write z = reiθ

with |θ| ≤ δ < ε and use the inequality

Re
(
tzei(

π
2
+ε)
)
= tr cos

(π
2
+ ε+ θ

)
= −tr sin(ε+ θ) ≤ −tr sin(ε− δ)

to obtain∫ ∞

−∞
|γ̇r(t)| eRe(zγr(t)) dt = eωRe(z)

∫ 1/r

−1/r
|γ̇r(t)| eRe( z

r
eirt(

π
2 +ε)) dt

+ 2eωRe(z)

∫ ∞

1/r
eRe(tzei(

π
2 +ε)) dt

≤ eωRe(z)

(
2πe

r
+ 2

∫ ∞

1/r
e−tr sin(ε−δ) dt

)

≤ eωRe(z)

(
2πe

r
+

2

r sin(ε− δ)

)
.

Combine these inequalities to obtain

∥S(z)x− eωzx∥ ≤ Mε

2π

∫ ∞

−∞
|γ̇r(t)|eRe(zγr(t)) dt ∥Ax− ωx∥ r2

≤ Mεe
ωRe(z)

(
e+

1

π sin(ε− δ)

)
∥Ax− ωx∥ r

for all z ∈ U δ \{0} with |z| = r. This proves Step 5 in the case x ∈ dom(A).
The general case follows from the special case by Step 3 and Theorem 2.1.5.
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Step 6. Let 0 < ε < ε0 and S be as in Step 2 and let 0 < δ < ε. Extend
the map S : U δ \ {0} → Lc(X) to all of U δ by setting S(0) := 1l. Then

S : U δ → Lc(X)

is strongly continuous and satisfies

(7.4.21)
S(z + h)x− S(z)x

h
=

∫ 1

0
S(z + th)Axdt

for all x ∈ dom(A) and all z, h ∈ U δ.

Strong continuity follows from Step 5. To prove (7.4.21), let x ∈ dom(A)
and z, h ∈ U δ. Assume first that z ̸= 0. Define the curve γr = γr,ε : R → C
by (7.4.19) as in Step 2. Then∫ 1

0
S(z + th)Axdt =

1

2πi

∫ 1

0

∫
γr

e(z+th)ζ(ζ1l−A)−1Axdζ dt

=
1

2πi

∫
γr

∫ 1

0
e(z+th)ζ dt(ζ1l−A)−1Axdζ

=
1

2πi

∫
γr

e(z+h)ζ − ezζ

hζ
(ζ1l−A)−1Axdζ

=
1

2πi

∫
γr

e(z+h)ζ − ezζ

h

(
(ζ1l−A)−1x− x

ζ

)
dζ

=
S(z + h)x− S(z)x

h
.

Here the last assertion follows from the fact that, by the same argument as
in Step 4, we have

1

2πi

∫
γr,ε

ezζ(ehζ − 1)

hζ
dζ = 1

whenever r > 0 and 0 < δ < ε < π/2 and z, h ∈ U δ. This proves (7.4.21)
in the case z ̸= 0. In the case z = 0 the equation then follows from strong
continuity. This proves Step 6.

Step 7. The map S : U δ → Lc(X) in Step 2 and Step 6 satisfies

(7.4.22) S(w + z) = S(w)S(z)

for all z, w ∈ U δ.

By strong continuity it suffices to prove equation (7.4.22) for z, w ∈ Uδ.
Fix two elements w, z ∈ Uδ. Choose two numbers 0 < ρ < r, define the
curve γ = γr,ε : R → C by equation (7.4.19) as in Step 2, and define the
curve β := βρ,δ : R → C by the same formula with ε replaced by δ and r
replaced by ρ (see Figure 7.4.3).
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ωσ(Α)

π/2−ε
1/r

γ

β

Figure 7.4.3. Integration along β and γ.

With this notation in place, the argument in the proof of Step 4 yields

1

2πi

∫
γ

ezη

η − β(s)
dη = 0,

1

2πi

∫
β

ewξ

ξ − γ(t)
dξ = ewγ(t)

for all s, t ∈ R and all z, w ∈ C. The key observation is that the integrals
along the relevant vertical straight lines converge to zero as in Step 4,
and that in the first case the resulting γ-loops have winding number zero
about β(s), while in the second case the resulting β-loops have winding
number one about γ(t) for sufficiently large T . Hence

S(w)S(z) =
1

2πi

∫
β
ewξ (ξ1l−A)−1 S(z) dξ

=
1

2πi

∫
β
ewξ (ξ1l−A)−1

(
1

2πi

∫
γ
ezη (η1l−A)−1 dη

)
dξ

=
1

2πi

∫
β

(
1

2πi

∫
γ
ewξ+zη (ξ1l−A)−1 (η1l−A)−1 dη

)
dξ

=
1

2πi

∫
β

(
1

2πi

∫
γ

ewξ+zη

η − ξ

(
(ξ1l−A)−1 − (η1l−A)−1

)
dη

)
dξ

=
1

2πi

∫
β

(
1

2πi

∫
γ

ewξ+zη

η − ξ
dη

)
(ξ1l−A)−1 dξ

+
1

2πi

∫
γ

(
1

2πi

∫
β

ewξ+zη

ξ − η
dξ

)
(η1l−A)−1 dη

=
1

2πi

∫
γ
e(w+z)η (η1l−A)−1 dη

= S(w + z).

This proves Step 7.
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Step 8. The map S : U δ → Lc(X) is an analytic semigroup. It satis-
fies (7.4.10) and its infinitesimal generator is the operator A.

That S is an analytic semigroup follows from Step 6 and Step 7, and the
estimate (7.4.10) follows from Step 3 by taking the limit ω → ω0. Now
let x ∈ dom(A) and t > 0. Then the integral

S(t)x =
1

2πi

∫
γr

etζ(ζ1l−A)−1x dζ

in (7.4.20) converges in the Banach space dom(A) with the graph norm.
Hence we have S(t)x ∈ dom(A) and

AS(t)x =
1

2πi

∫
γr

etζ(ζ1l−A)−1Axdζ = S(t)Ax.

Moreover,

S(t)x− x =

∫ t

0
S(s)Axds

by Step 6. Hence A and S satisfy condition (ii) in Lemma 7.1.17 and so A is
the infinitesimal generator of S. This proves Step 8 and Theorem 7.4.4. □

7.4.3. Examples of Analytic Semigroups. By Theorem 7.4.2 an ana-
lytic semigroup S : [0,∞) → Lc(X) on a complex Banach space X with
infinitesimal generator A : dom(A) → X satisfies im(S(t)) ⊂ dom(A) for
all t > 0. Hence a group of operators S : R → Lc(X) cannot be analytic
unless its infinitesimal generator is a bounded operator (see Lemma 7.1.18
and Theorem 7.2.4).

Example 7.4.5 (Self-Adjoint Semigroups). Let H be a complex Hil-
bert space and let A : dom(A) → H be a self-adjoint operator such that

ω0 := sup
x∈dom(A)\{0}

⟨x,Ax⟩
∥x∥2

<∞.

By Theorem 7.3.4 the operator A is the infinitesimal generator of a strongly
continuous self-adjoint semigroup S : [0,∞) → Lc(H). Moreover, if λ ∈ C
satisfies Reλ > ω0, then λ ∈ ρ(A) and

|λ− ω0| ∥x∥2 =
∣∣λ∥x∥2 − ω0∥x∥2

∣∣ ≤ ∣∣λ∥x∥2 − ⟨x,Ax⟩
∣∣ ≤ ∥x∥∥λx−Ax∥

for all x ∈ X. This implies

∥(λ1l−A)−1∥ ≤ 1

|λ− ω0|
for all λ ∈ C with Reλ > ω0.

Hence it follows from Theorem 7.4.4 that S is an analytic semigroup. In fact,
the proof of Theorem 7.4.4 with M = 1 and ε0 = π/2 shows that S extends
to a holomorphic function S : {z ∈ C |Rez > ω0} → Lc(H) on an open half-
space and that the spectrum of A is contained in the half-axis (−∞, ω0].
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Example 7.4.6 (Heat Equation). The solutions of the heat equation

(7.4.23) ∂tu = ∆u, ∆ :=

n∑
i=1

∂2

∂x2i
,

determine a contraction semigroup on Lp(Rn) for 1 < p <∞, given by

(7.4.24) S(t)f := Kt ∗ f, Kt(x) :=
1

(4πt)n/2
e−|x|2/4t,

for t > 0 and f ∈ L2(Rn) (see Example 7.1.6). Its infinitesimal genera-
tor is the Laplace operator ∆ :W 2,p(Rn) → Lp(Rn) in Example 6.1.6. In
the case p = 2 the semigroup S is self-adjoint, and so is analytic by Exam-
ple 7.4.5. In general, one can verify directly that the formula (7.4.24) is
well-defined for every complex number t with positive real part and defines
a holomorphic function on the right half-plane.

Example 7.4.7. This example shows that every closed subset of a sector
of the form Cδ in (7.4.4) is the spectrum of the infinitesimal generator of an
analytic semigroup on a Hilbert space. LetH be a separable complex Hilbert
space, let (ei)i∈N be a complex orthonormal basis of H, and let (λi)i∈N be a
sequence of complex numbers. Define the operator Aλ : dom(Aλ) → H by

dom(Aλ) :=

{
x ∈ H

∣∣∣∣ ∞∑
i=1

|λi|2|⟨ei, x⟩|2 <∞

}
,

Aλx :=

∞∑
i=1

λi⟨ei, x⟩ei for x ∈ dom(Aλ).

(7.4.25)

By Example 7.1.12 this operator generates a strongly continuous semigroup
if and only if supi∈NReλi <∞. In this case the semigroup is given by

(7.4.26) Sλ(t)x :=

∞∑
i=1

eλit⟨ei, x⟩ei for t ≥ 0 and x ∈ H.

(See Example 7.1.3.) The semigroup (7.4.26) is analytic if and only if

(7.4.27) sup
i∈N

|Imλi|
ω − Reλi

<∞ for ω > ω0 := sup
i∈N

Reλi.

Exercise: Show that this condition holds for some ω > ω0 if and only if it
holds for all ω > ω0. Assuming (7.4.27), let ω > ω0, choose 0 < δ < π/2 such
that sin(δ)|Imλi| ≤ cos(δ)(ω − Reλi) for all i, and define M := 1/ sin(δ).
Show that, for all µ ∈ C,

Re(µ) ≥ ω =⇒
∥∥(µ1l−Aλ)

−1
∥∥ = sup

i∈N

1

|µ− λi|
≤ M

|µ− ω|
.

Show that σ(Aλ) = {λi | i ∈ N} ⊂ {ω + reiθ | r ≥ 0, π/2 + δ ≤ |θ| ≤ π}.
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7.5. Banach Space Valued Measurable Functions

This is a preparatory section. It studies measurable functions on an inter-
val with values in a Banach space, a subject with many applications and
of interest in its own right. The first subsection introduces the concept
of a strongly measurable function and proves Pettis’ theorem. The next
four subsections deal with the Banach space Lp(I,X), the Radon–Nikodým
property of a Banach space, the dual space of Lp(I,X), and the Sobolev
space W 1,p(I,X). All these results will be used in Section 7.6 on the inho-
mogeneous equation ẋ = Ax+ f associated to a semigroup.

7.5.1. Measurable Functions. The following definition summarizes the
different notions of measurability for functions with values in a Banach
space. Although these definitions and many of the results carry over to
functions on general measure spaces, in this book we will only use Banach
space valued functions on an interval and restrict the discussion to that case.

Definition 7.5.1. Let X be a real Banach space and let I ⊂ R be an
interval. A function f : I → X is called

• weakly continuous if the function

⟨x∗, f⟩ : I → R

is continuous for all x∗ ∈ X∗,

• weakly measurable if the function

⟨x∗, f⟩ : I → R

is Borel measurable for all x∗ ∈ X∗,

• measurable if f−1(B) ⊂ I is a Borel set for every Borel set B ⊂ X,

• a measurable step function if it is measurable and f(I) is a finite set,

• strongly measurable if there exists a sequence of measurable step func-
tions fn : I → X such that limn→∞ fn(t) = f(t) for almost all t ∈ I.

The basic example, which illustrates the subtlety of this story is the
function [0, 1] → L∞([0, 1]) : t 7→ ft, defined by ft := χ[0,t], i.e. ft(s) = 1
for 0 ≤ s ≤ t and ft(s) = 0 for t < s ≤ 1. This function is weakly measur-
able, but not strongly measurable and is everywhere discontinuous. The
same function, understood with values in the Banach space L1([0, 1]), is an
example of a Lipschitz continuous function which is nowhere differentiable.

It follows directly from the definition that the image of a strongly mea-
surable function f : I → X is contained in a separable subspace of X.
Example 7.5.3 below shows that weakly measurable functions need not sat-
isfy this condition.
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Theorem 7.5.2 (Pettis). Let X be a real Banach space. Fix two num-
bers a < b and a function f : [a, b] → X. Then the following holds.

(i) Assume X is separable and let E ⊂ X∗ be a linear subspace such that

(7.5.1) ∥x∥ = sup
x∗∈E\{0}

|⟨x∗, x⟩|
∥x∗∥

for all x ∈ X.

If ⟨x∗, f⟩ is measurable for all x∗ ∈ E then f is strongly measurable.

(ii) If X is separable and f is weakly measurable then f is strongly measur-
able.

(iii) If f is weakly continuous then f is strongly measurable.

(iv) If f is strongly measurable then the function [a, b] → R : t 7→ ∥f(t)∥ is
Borel measurable.

Proof. We prove part (i). Thus assume X is separable and E ⊂ X∗ is a
linear subspace that satisfies (7.5.1). Abbreviate I := [a, b] and let f : I → X
be a function such that ⟨x∗, f⟩ : I → R is measurable for all x∗ ∈ E. We
prove in three steps that f is strongly measurable.

Step 1. Let ξ ∈ X and r > 0. Then f−1(Br(ξ)) is a Borel subset of I.

Choose a dense sequence xn ∈ X \Br(ξ) and define

εn :=
1

2

(
∥xn − ξ∥ − r

)
> 0 for n ∈ N.

Then X \Br(ξ) =
⋃∞
n=1Bεn(xn). For n ∈ N choose x∗n ∈ E such that

∥x∗n∥ = 1, ⟨x∗n, xn − ξ⟩ > ∥xn − ξ∥ − εn.

Then, for all n ∈ N, all η ∈ Br(ξ), and all x ∈ Bεn(xn), we have

⟨x∗n, η⟩ ≤ ⟨x∗n, ξ⟩+ r = ⟨x∗n, ξ⟩+ ∥xn − ξ∥ − 2εn < ⟨x∗n, xn⟩ − εn < ⟨x∗n, x⟩.

This implies Br(ξ) =
⋂∞
n=1{y ∈ X | ⟨x∗n, y⟩ ≤ ⟨x∗n, ξ⟩+ r}. Hence

f−1(Br(ξ)) =

∞⋂
n=1

{
t ∈ I

∣∣ ⟨x∗n, f(t)⟩ ≤ ⟨x∗n, ξ⟩+ r
}

is a Borel set. This proves Step 1.

Step 2. f is measurable.

Let U ⊂ X be open. Since X is separable, there exists a sequence xn ∈ X
and a sequence of real numbers εn > 0 such that U =

⋃∞
n=1Bεn(xn). Hence

it follows from Step 1 that f−1(U) =
⋃∞
n=1 f

−1(Bεn(xn)) is a Borel subset
of I. This shows that f is Borel measurable by [75, Thm 1.20].
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Step 3. f is strongly measurable.

Since X is separable there exists a dense sequence xk ∈ X. For k, n ∈ N
define the set

(7.5.2) Σk,n :=

{
t ∈ I

∣∣∣∣ ∥f(t)− xk∥ < 1/n and
∥f(t)− xi∥ ≥ 1/n for i = 1, . . . , k − 1

}
.

This is a Borel subset of I by Step 2. Moreover Σk,n ∩ Σℓ,n = ∅ for k ̸= ℓ
and

⋃∞
k=1Σk,n = I. Hence, for each n ∈ N, there is an Nn ∈ N such that

(7.5.3) µ

 ∞⋃
k=Nn+1

Σk,n

 < 2−n.

Here µ denotes the restriction of the Lebesgue measure to the Borel σ-
algebra of I. Define the functions fn : I → X by

(7.5.4) fn(t) :=

{
xk, for t ∈ Σk,n and k = 1, . . . , Nn,
0, for t ∈

⋃∞
k=Nn+1Σk,n.

These are measurable step functions. Define

Ω :=

∞⋂
m=1

∞⋃
n=m

∞⋃
k=Nn+1

Σk,n, I \ Ω =

∞⋃
m=1

∞⋂
n=m

Nn⋃
k=1

Σk,n.

Then µ(Ω) = 0 by (7.5.3) and ∥fn(t)− f(t)∥ < 1/n for all t ∈
⋃Nn
k=1Σk,n

by (7.5.2) and (7.5.4). If t ∈ I \ Ω then there exists an integer m ∈ N
such that t ∈

⋂∞
n=m

⋃Nn
k=1Σk,n and hence ∥fn(t)− f(t)∥ < 1/n for every in-

teger n ≥ m. Thus

lim
n→∞

fn(t) = f(t) for all t ∈ I \ Ω.

This proves Step 3 and part (i).

Part (ii) follows from (i) with E = X∗ and the Hahn–Banach Theorem
(Corollary 2.3.4).

We prove part (iii). Assume f : I → X is weakly continuous and define

X0 := span{f(t) | t ∈ I ∩Q}.

If t ∈ I and x∗ ∈ X⊥
0 then ⟨x∗, f(t)⟩ = 0 by weak continuity. Hence it follows

from Corollary 2.3.24 that f(I) ⊂ X0. Since X0 is separable by definition,
it follows from (ii) that f is strongly measurable.

We prove part (iv). Assume f : I → X is strongly measurable and
choose a sequence of measurable step functions fn : I → X that converges
almost everywhere to f . Then the sequence ∥fn∥ : I → R of measurable
step functions converges almost everywhere to ∥f∥ : I → R and hence the
function ∥f∥ : I → R is measurable. This proves Theorem 7.5.2. □
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The next example shows that the hypothesis that X is separable cannot
be removed in part (ii) of Theorem 7.5.2.

Example 7.5.3. (i) Let H be a nonseparable real Hilbert space, equip-
ped with an uncountable orthonormal basis

{et}0≤t≤1.

Thus the vectors et ∈ H are parametrized by the elements of the unit in-
terval [0, 1] ⊂ R and satisfy ⟨es, et⟩ = 0 for s ̸= t and ∥et∥ = 1 for all t.
The function f : [0, 1] → H defined by f(t) := et is not strongly measur-
able because every Borel set Ω ⊂ [0, 1] of measure zero has an uncountable
complement, so f([0, 1] \ Ω) is not contained in a separable subspace of H.
However, the function f is weakly measurable because each x ∈ H has the
form x =

∑∞
i=1 λiesi for a sequence λi ∈ R such that

∑∞
i=1 λ

2
i <∞ and a se-

quence of pairwise distinct elements si ∈ [0, 1]; thus ⟨x, f(t)⟩ = λi for t = si
and ⟨x, f(t)⟩ = 0 for t /∈ {si | i ∈ N}.

(ii) Let X := L∞([0, 1]) and define the function f : [0, 1] → L∞([0, 1]) by

(f(t))(x) := f(t, x) :=

{
1, if 0 ≤ x ≤ t,
0, if t < x ≤ 1.

This function satisfies ∥f(s)− f(t)∥L∞ = 1 for all s ̸= t and the same argu-
ment as in part (i) shows that f is not strongly measurable. However, when
the same function is considered with values in the Banach space Lp([0, 1])
for 1 ≤ p <∞, it is continuous and hence strongly measurable.

Theorem 7.5.4. Let X be a Banach space. Fix real numbers 1 ≤ p <∞
and a < b and a function f : I := [a, b] → X. The following are equivalent.

(i) f is strongly measurable and∫ b

a
∥f(t)∥p dt <∞.

(ii) For every ε > 0 there exists a measurable step function g : I → X such
that the function I → R : t 7→ ∥f(t)− g(t)∥ is Borel measurable and∫ b

a
∥f(t)− g(t)∥p dt < ε.

(iii) For every ε > 0 there exists a continuous function g : I → X such that
the function I → R : t 7→ ∥f(t)− g(t)∥ is Borel measurable and∫ b

a
∥f(t)− g(t)∥p dt < ε.
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Proof. We prove that (i) implies (ii). Choose a sequence of measurable
step functions gn : I → X that converges almost everywhere to f . For n ∈ N
define the function fn : I → X by

fn(t) :=

{
gn(t), if ∥gn(t)∥ < ∥f(t)∥+ 1,
0, if ∥gn(t)∥ ≥ ∥f(t)∥+ 1,

for t ∈ I.

Then fn is a measurable step function for every n ∈ N by part (iv) of
Theorem 7.5.2. Moreover, limn→∞ ∥fn(t)− f(t)∥p = 0 for almost all t ∈ I
and

∥f(t)− fn(t)∥p ≤
(
2 ∥f(t)∥+ 1

)p ≤ 4p ∥f(t)∥p + 2p

for all t ∈ I and all n ∈ N. The function on the right is integrable by (i).

Hence limn→∞
∫ b
a ∥f(t)− fn(t)∥p dt = 0 by the Lebesgue Dominated Con-

vergence Theorem. This shows that (i) implies (ii).

We prove that (ii) implies (i). Choose a sequence of measurable step
functions fn : I → X such that the function ∥f − fn∥ : I → R is Borel

measurable and limn→∞
∫ b
a ∥f(t)− fn(t)∥p dt = 0. Then there exists a sub-

sequence fni such that limi→∞ ∥f(t)− fni(t)∥ = 0 for almost every t ∈ I
by [75, Cor 4.10]. Hence f is strongly measurable. Now choose an integer n
such that ∫ b

a
∥f(t)− fn(t)∥p dt < 1.

Then, by Minkowski’s inequality,(∫ b

a
∥f(t)∥p dt

)1/p

≤
(∫ b

a
∥fn(t)∥p dt

)1/p

+ 1 <∞.

Hence (ii) implies (i) and the same argument shows that (iii) implies (i).

We prove that (i) implies (iii). For this it suffices to assume that f is a
measurable step function with precisely one nonzero value. Let B ⊂ I be a
Borel set and let x ∈ X \ {0} and assume f = χBx. Fix a constant ε > 0.
Since the Lebesgue measure is regular by [75, Thm 2.13], there exists a
compact set K ⊂ I and an open set U ⊂ I such that

K ⊂ B ⊂ U, µ(U \K) <
ε

∥x∥p
.

By Urysohn’s Lemma there exists a continuous function ψ : I → [0, 1] such
that ψ(t) = 1 for all t ∈ K and ψ(t) = 0 for all t ∈ I \ U . Define the func-
tion g : I → X by g := ψx. Then |ψ − χB| ≤ χU\K and hence∫ b

a
∥f(t)− g(t)∥p dt ≤

∫
U\K

∥x∥p dt = µ(U \K)∥x∥p < ε.

This proves Theorem 7.5.4. □
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The next lemma is a direct consequence of Theorem 7.5.4. It will play
a central role in Exercise 7.7.11.

Lemma 7.5.5. Let X be a Banach space and fix real numbers 1 ≤ p <∞
and a < b. Let f : [a, b] → X be a strongly measurable function such that∫ b

a
∥f(t)∥p dt <∞.

Then, for every ε > 0, there exists a δ > 0 such that, for all h ∈ R,

0 < h < δ =⇒
∫ b−h

a
∥f(t+ h)− f(t)∥p dt < ε.

Proof. Exercise. Hint: Prove this first when f is continuous and then
use Theorem 7.5.4. □

7.5.2. The Banach Space Lp(I,X). The remainder of this section begins
with a discussion of Banach space valued Lp functions on an interval, and
then moves on to the Radon–Nikodým property, the dual space of Lp, and
the Sobolev spaceW 1,p. These are important topics with many applications.
In particular, this material will be used in Section 7.6 on the inhomogeneous
equation associated to a semigroup.

Let X be a real Banach space, fix real numbers 1 ≤ p < ∞ and a < b,
and abbreviate I := [a, b]. Define Lp(I,X) := Lp(I,X)/∼, where

(7.5.5) Lp(I,X) :=

{
f : I → X

∣∣∣∣ f is strongly measurable

and
∫ b
a ∥f(t)∥

p dt <∞

}
and the equivalence relation is equality almost everywhere. It is often conve-
nient to abuse notation and use f to denote an equivalence class in Lp(I,X)
as well as a representative of this class in Lp(I,X). For f ∈ Lp(I,X) define

(7.5.6) ∥f∥Lp :=

(∫ b

a
∥f(t)∥p dt

)1/p

.

By the Minkowski inequality Lp(I,X) is a normed vector space. For p = ∞
we define L∞(I,X) := L∞(I,X)/∼, where

(7.5.7) L∞(I,X) :=

{
f : I → X

∣∣∣∣ f is strongly measurable
and bounded

}
and the equivalence relation is again given by equality almost everywhere.
The norm on L∞(I,X) is the essential supremum

(7.5.8) ∥f∥L∞ := inf

{
sup
t∈I\E

∥f(t)∥
∣∣∣∣ E ⊂ I is a Borel set
of Lebesgue measure zero

}
for f ∈ L∞(I,X). We emphasize that these definitions have been chosen
such that the functions in Lp(I,X) are all strongly measurable.
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Theorem 7.5.6. Let X be a Banach space, let I ⊂ R be a compact in-
terval, and let 1 ≤ p ≤ ∞. Then the following holds.

(i) Let (fn)n∈N be a Cauchy sequence in Lp(I,X). If p = ∞ then the
sequence (fn(t))n∈N converges in X for almost every t ∈ I. If 1 ≤ p <∞
then there exists a subsequence (fni)i∈N such that the sequence (fni(t))i∈N
converges in X for almost every t ∈ I.

(ii) Lp(I,X) is a Banach space.

(iii) For 1 ≤ p <∞, the subspace C∞
0 (I,X) of smooth functions f : I → X

that vanish near the boundary is a dense subset of Lp(I,X).

(iv) There exists a unique linear operator

Lp(I,X) → X : f 7→
∫ b

a
f(t) dt,

called the integral, such that

(7.5.9)

〈
x∗,

∫ b

a
f(t) dt

〉
=

∫ b

a
⟨x∗, f(t)⟩ dt

for all f ∈ Lp(I,X) and all x∗ ∈ X∗.

Proof. We prove the assertions only for p <∞. The case p = ∞ is left
to the reader. Let fn ∈ Lp(I,X) be a Cauchy sequence. Choose a sub-
sequence fni such that

∥∥fni − fni+1

∥∥
Lp < 2−i for all i ∈ N. Then the same

argument as in [75, p 139] shows that fni converges almost everywhere to
a function f : I → X. Namely, the sequence of Borel measurable func-

tions ϕk :=
∑k

i=1

∥∥fni+1 − fni

∥∥ : I → [0,∞) is monotonically increasing and
satisfies ∥ϕk∥Lp < 1 for all k. Hence, by the Lebesgue Monotone Conver-
gence Theorem, the sequence ϕpk : I → [0,∞) converges to a Borel measur-
able function ψ : I → [0,∞] and∫ b

a
ψ(t) dt = lim

k→∞

∫ b

a
ϕk(t)

p dt ≤ 1.

Thus there is a Borel set E ⊂ I of Lebesgue measure zero such that ψ(t) <∞
for all t ∈ I \ E (see [75, Lemma 1.47]). Hence the sequence (fni(t))i∈N
converges in X for all t ∈ I \ E by Lemma 1.5.1. Define f : I → X by

f(t) :=

{
limi→∞ fni(t), for t ∈ I \ E,
0, for t ∈ E.

By Theorem 7.5.4 and the axiom of countable choice, there exists a sequence
of measurable step functions gi : I → X such that ∥gi − fni∥Lp < 2−i for
all i ∈ N. Use the same argument as above, pass to a further subsequence,
and enlarge the Borel set E of Lebesgue measure zero, if necessary, to obtain
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that the sequence (gi(t)− fni(t))i∈N converges to zero for every t ∈ I \ E.
Then gi converges to f almost everywhere, and so f is strongly measurable.

We must prove that f ∈ Lp(I,X) and limn→∞ ∥f − fn∥Lp = 0. To see
this, fix a constant ε > 0 and choose n0 ∈ N such that ∥fn − fm∥Lp < ε for
all integers n,m ≥ n0. Then, by the Lemma of Fatou [75, Thm 1.41],∫ b

a
∥fn(t)− f(t)∥p dt =

∫ b

a
lim inf
k→∞

∥∥fn(t)− fnk
(t)χI\E(t)

∥∥p dt
≤ lim inf

k→∞

∫ b

a

∥∥fn(t)− fnk
(t)χI\E(t)

∥∥p dt
= lim inf

k→∞

∫ b

a
∥fn(t)− fnk

(t)∥p dt

≤ εp

for all n ≥ n0. Hence ∥f∥Lp ≤ ∥fn0∥Lp
+ε <∞, and so f ∈ Lp(I,X) and the

sequence (fn)n∈N converges to f in Lp(I,X). Hence Lp(I,X) is a Banach
space and this proves (i) and (ii).

We prove (iii). That C(I,X) is dense in Lp(I,X) follows directly from
Theorem 7.5.4. Hence multiplication with smooth cutoff functions that van-
ish near the boundary shows that the space Cc(I,X) of continuous functions
with support in the interior of I is also dense in Lp(I,X). Now fix a func-
tion f ∈ Cc(I,X) and choose a smooth function ρ : R → [0,∞) with sup-
port in the interval [−1, 1] and mean value 1, and define ρδ(t) := δ−1ρ(δ−1t)
for δ > 0 and t ∈ R. Then the function fδ : I → R, defined by

fδ(t) := (ρδ ∗ f)(t) :=
∫
R
ρδ(t− s)f(s) ds

for t ∈ R, is smooth for every δ > 0 and vanishes near the boundary of I
for δ > 0 sufficiently small. Moreover, fδ converges to f uniformly, because

sup
t∈I

∥fδ(t)− f(t)∥ = sup
t∈I

∥∥∥∥∫
R
ρδ(t− s)(f(s)− f(t)) ds

∥∥∥∥
≤ sup {∥f(s)− f(t)∥ | s, t ∈ I, |s− t| ≤ δ}

and f is uniformly continuous. Since ∥fδ − f∥Lp ≤ |I|1/p ∥fδ − f∥L∞ , this
implies limδ→0 ∥fδ − f∥Lp = 0 and this proves part (iii).

Next observe that the operator C(I,X) → X : f 7→
∫ b
a f(t) dt in

Lemma 5.1.8 is bounded with respect to the Lp norm on C(I,X) by part (vi)
of Lemma 5.1.10 and the Hölder inequality. Since the subspace C(I,X) is
dense in Lp(I,X) by part (i), the integral extends uniquely to a bounded
linear functional on Lp(I,X). Since every linear operator satisfying (7.5.9)
is necessarily bounded, this proves part (iv) and Theorem 7.5.6. □
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7.5.3. The Radon–Nikodým Property. The next goal is to examine the
dual space of Lp(I,X). This is a surprisingly delicate topic and many math-
ematicians have worked on this problem, starting with Bochner [15, 16]. It
has led to the question of whether an absolutely continuous function on an
interval with values in a Banach space is almost everywhere differentiable.
We begin this discussion by examining the derivative of a continuous func-
tion on the domain where it exists.

Lemma 7.5.7. Let X be a Banach space, let I = [0, 1] be the unit interval,
and let F : I → X be a continuous function. Then the set

(7.5.10) Z := {t ∈ I |F is not differentiable at t}

is a Borel set, and the function f : I → X defined by

(7.5.11) f(t) :=

{
0, for t ∈ Z,
F ′(t), for t ∈ I \ Z,

is strongly measurable.

Proof. Let ε > 0. Then the set

E(ε, h, h′) :=

{
t ∈ I

∣∣∣∣∣ if t+ h ∈ I and t+ h′ ∈ I then∣∣∣F (t+h)−F (t)
h − F (t+h′)−F (t)

h′

∣∣∣ ≤ ε

}
is a Borel set for all h, h′ ∈ R \ {0} and hence so is the set

Eε,δ :=
⋂

h,h′∈Q
0<|h|,|h′|<δ

E(ε, h, h′) =
⋂

h,h′∈R
0<|h|,|h′|<δ

E(ε, h, h′)

for all δ > 0. Here the second equality holds because F is continuous. Thus

E :=
⋂
ε∈Q
ε>0

⋃
δ∈Q
δ>0

Eε,δ =
⋂
ε>0

⋃
δ>0

Eε,δ

is a Borel set. Now the function F is differentiable at an element t ∈ I if
and only if t ∈ E. Thus Z = I \ E is a Borel set.

For each n ∈ N define the function fn : I → X by

(7.5.12) fn(t) :=


0, if t ∈ Z,
2n
(
F (t+ 2−n)− F (t)

)
, if t ∈ E and 0 ≤ t ≤ 1/2,

2n
(
F (t)− F (t− 2−n)

)
, if t ∈ E and 1/2 < t ≤ 1.

Let X0 ⊂ X be the smallest closed subspace that contains the image of F .
Then X0 is a separable subspace of X. For each n the function fn takes
values in X0 and is weakly measurable, and hence is strongly measurable by
part (ii) of Theorem 7.5.2. Moreover, f(t) = limt→∞ fn(t) for every t ∈ I.
Hence f takes values in X0 and is weakly measurable, and so is strongly
measurable by part (ii) of Theorem 7.5.2. This proves Lemma 7.5.7. □
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Let I ⊂ R be a compact interval and let F : I → X be a continuous
function with values in a Banach space. Recall that F is called Lipschitz
continuous if there exists a c ≥ 0 such that ∥F (s)− F (t)∥ ≤ c |s− t| for
all s, t ∈ I. Recall that F is called absolutely continuous if for every ε > 0
there exists a δ > 0 such that every sequence s1 ≤ t1 ≤ · · · ≤ sN ≤ tN in I
with

∑
i|si − ti| < δ satisfies

∑
i ∥F (si)− F (ti)∥ < ε.

Lemma 7.5.8. Let X be a Banach space, let I = [0, 1], and let F : I → X
be a Lipschitz continuous function that is almost everywhere differentiable.
Then the function f : I → X defined by (7.5.10) and (7.5.11) is bounded and
strongly measurable and satisfies

F (t)− F (0) =

∫ t

0
f(s) ds for all t ∈ I.

Proof. Choose c > 0 such that ∥F (s)− F (t)∥ ≤ c |s− t| for all s, t ∈ I.
Then the functions fn : I → X in (7.5.12) satisfy ∥fn(t)∥ ≤ c for all t ∈ I and
all n ∈ N. Hence ∥f(t)∥ ≤ c for all t ∈ I. Second, f is strongly measurable
by Lemma 7.5.7. Third, the set Z ⊂ I in Lemma 7.5.7 has Lebesgue measure
zero by assumption. Hence for each x∗ ∈ X∗ the function ⟨x∗, F ⟩ : I → R is
absolutely continuous and its derivative agrees almost everywhere with the
function ⟨x∗, f⟩ : I → R. By [75, Thm 6.19], this implies

⟨x∗, F (t)− F (0)⟩ =
∫ t

0
⟨x∗, f(s)⟩ ds

for all t ∈ I and all x∗ ∈ X∗. This proves Lemma 7.5.8. □

Lemma 7.5.9. Let X be a Banach space, let I = [0, 1], let f : I → X be

a strongly measurable function with
∫ 1
0 ∥f(t)∥ dt <∞, and define F : I → X

by F (t) :=
∫ t
0 f(s) ds for t ∈ I. Then F is absolutely continuous and almost

everywhere differentiable with F ′(t) = f(t) for almost every t ∈ I.

Proof. The absolute continuity of F follows as in [75, Thm 6.29]. That F
is almost everywhere differentiable with F ′ = f follows from the Lebesgue
Differentiation Theorem [75, Thm 6.14] whose proof carries over verbatim
to Banach space valued functions. This proves Lemma 7.5.9. □

With these preparations in place we are now ready to formulate the main
problem of this subsection, namely whether or not every Lipschitz contin-
uous function with values in a given Banach space X is almost everywhere
differentiable. If it is, then Lemma 7.5.7 shows that its derivative is strongly
measurable and Lemma 7.5.8 shows that it is the integral of its derivative.
Lemma 7.5.9 shows that the integrals of bounded measurable functions are
necessarily almost everywhere differentiable. The next lemma relates this
problem to the differentiability of absolutely continuous functions.
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Lemma 7.5.10. Let X be a Banach space and let I := [0, 1] be the unit
interval. Then the following are equivalent.

(i) Every Lipschitz continuous function F : I → X is almost everywhere dif-
ferentiable.

(ii) Every absolutely continuous function F : I → X is almost everywhere
differentiable.

If these equivalent conditions are satisfied, and F : I → X is an absolutely
continuous function, then its derivative f := F ′ : I → X is strongly measur-

able,
∫ 1
0 ∥f(s)∥ ds <∞, and F (t)− F (0) =

∫ t
0 f(s) ds for all t ∈ I.

Proof. That (ii) implies (i) is obvious, because every Lipschitz continu-
ous function is absolutely continuous. Hence assume (i) and let F : I → X
be an absolutely continuous function. Define Φ : [0, 1] → [0,∞) by

Φ(t) := Var(F |[0,t]) = sup
0=t0<t1<···<tN=t

N∑
i=1

∥F (ti)− F (ti−1)∥ .

Then Φ is absolutely continuous and monotone. Denote

c := Φ(1) = Var(F ).

Since ∥F (t)− F (s)∥ ≤ Φ(t)− Φ(s) for all 0 ≤ s ≤ t ≤ 1, there is a unique
function G : [0, c] → X such that G(Φ(t)) = F (t) for all t ∈ [0, 1], and G
is Lipschitz continuous with Lipschitz constant 1. Hence, by part (i), G
is almost everywhere differentiable and so, by Lemma 7.5.8, there exists a
strongly measurable g : I → X such that

sup
0≤τ≤c

∥g(τ)∥ ≤ 1, G(θ) = G(0) +

∫ θ

0
g(τ) dτ

for all θ ∈ [0, c]. Moreover, by [75, Thm 6.19], there exists a Borel measur-

able function ϕ : I → [0,∞) with
∫ 1
0 |ϕ(s)| ds <∞ such that

Φ(t) =

∫ t

0
ϕ(s) ds

for all t ∈ I. Hence the function f := ϕ(g ◦ Φ) : I → X is strongly measur-

able and satisfies
∫ 1
0 ∥f(s)∥ ds ≤

∫ 1
0 ϕ(s) ds <∞ and∫ t

0
f(s) ds =

∫ t

0
ϕ(s)g(Φ(s)) ds =

∫ Φ(t)

0
g(τ) dτ = F (t)− F (0)

for all t ∈ I. Here the second step uses the fact that C(I) is dense in L1(I)
and so there exists a sequence of continuous functions ϕi : [0, 1] → [0,∞)

with
∫ 1
0 ϕi(t) dt = c and limi→∞

∫ 1
0 |ϕi(t)− ϕ(t)| = 0. Now it follows from

Lemma 7.5.9 that F is differentiable almost everywhere and F ′ = f . This
proves Lemma 7.5.10. □
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Definition 7.5.11. A Banach space X is said to have the Radon–
Nikodým property if every Lipschitz continuous function f : [0, 1] → X
is almost everywhere differentiable or, equivalently, every absolutely contin-
uous function f : [0, 1] → X is almost everywhere differentiable.

Remark 7.5.12. The reason for this terminology lies in the fact that a
Banach space X has the Radon–Nikodým property if and only if it sat-
isfies the following for every measurable space (M,A). Let ν : A → X be
a countably additive map, i.e. if Ai ∈ A is a sequence of pairwise dis-
joint measurable sets then ν (

⋃∞
i=1Ai) = limn→∞

∑n
i=1 ν(Ai) =

∑∞
i=1 ν(Ai).

Assume ν has bounded variation, i.e.

µ(A) := sup


N∑
i=1

∥ν(Ai)∥
∣∣∣∣ A1, . . . , AN ∈ A,
Ai ∩Aj = ∅ for i ̸= j,
A1 ∪ · · · ∪AN = A

 <∞

for all A ∈ A. Then there exists a strongly A-measurable map f :M → X
with

∫
M ∥f∥ dµ <∞ and ν(A) =

∫
A f dµ for all A ∈ A.

That this condition is indeed equivalent to the Radon–Nikodým property
in Definition 7.5.11 was proved by Bochner–Taylor [17] in the late 1930s.
For other expositions see [10, 21, 22].

Theorem 7.5.13 (Dunford–Pettis).

(i) If X is a Banach space and its dual space X∗ is separable, then X∗ has
the Radon–Nikodým property.

(ii) Every reflexive Banach space has the Radon–Nikodým property.

Proof. See page 416. □

Remark 7.5.14. (i) Part (i) of Theorem 7.5.13 was proved by Gelfand [29]
using the notion in Definition 7.5.11, and then by Dunford–Pettis [25] using
the notion in Remark 7.5.12. That Hilbert spaces have the Radon–Nikodým
property was first proved by Birkhoff [14], and this was extended to all re-
flexive spaces by Dunford–Pettis [25].

(ii) By part (i) of Theorem 7.5.13 the Banach space X = ℓ1 has the Radon–
Nikodým property. This was first noted by Clarkson [20] and was ex-
tended by Dunford–Morse [24] to all Banach spaces with boundedly com-
plete Schauder bases. Clarkson [20] also proved that all uniformly convex
Banach spaces have the Radon–Nikodým property.

(iii) Banach spaces that do not have the Radon–Nikodým property include
the examples X = L∞([0, 1]) (Bochner [16]) and X = c0 and X = L1([0, 1])
(Clarkson [20]). Hence c0 and L1([0, 1]) cannot be isomorphic to the dual
space of any Banach space.
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Proof of Theorem 7.5.13. We prove part (i), following the exposition by
Kreuter [50]. Let X be a real Banach space with a separable dual space X∗

and let G : I = [0, 1] → X∗ be a Lipschitz continuous function with G(0) = 0
and Lipschitz constant 1. Since X∗ is separable, so is X by Theorem 2.4.6.
Hence there exists a linearly independent sequence (xk)k∈N in X such that

X = Y , Y :=

{
N∑
k=1

λkxk

∣∣∣∣N ∈ N, λ1, . . . , λN ∈ R

}
.

For each x ∈ X the function ⟨G, x⟩ : I → R is Lipschitz continuous with
Lipschitz constant ∥x∥. Hence ⟨G, x⟩ is almost everywhere differentiable.
For each k ∈ N let Zk ⊂ I be the set of all t ∈ I such that ⟨G, xk⟩ is not
differentiable at t. Then Zk is a Borel set by Lemma 7.5.7 and it has
Lebesgue measure zero. Hence the Borel set Z :=

⋃∞
k=1 Zk has Lebesgue

measure zero and ⟨G, y⟩ is differentiable on I \ Z for each y ∈ Y . For y ∈ Y
define the function gy : I → R by

(7.5.13) gy(t) :=

{
limh→0 h

−1⟨G(t+ h)−G(t), y⟩, if t ∈ I \ Z,
0, if t ∈ Z.

This function is measurable and satisfies

(7.5.14) ⟨G(t), y⟩ =
∫ t

0
gy(s) ds, ∥gy(t)∥ ≤ ∥y∥ for all t ∈ I.

Moreover, for each t ∈ I the functional Y → R : y 7→ gy(t) is linear and
bounded by (7.5.14), and so extends uniquely to a bounded linear functional
on all of X. Thus there exists a unique function g : I → X∗ such that

(7.5.15) ⟨g(t), y⟩ = gy(t) for t ∈ I and y ∈ Y, sup
0≤t≤1

∥g(t)∥ ≤ 1.

By (7.5.14) we have

(7.5.16) ⟨G(t), x⟩ =
∫ t

0
⟨g(s), x⟩ ds

for all x ∈ Y and all t ∈ I. By continuity in x the function ⟨g, x⟩ is Borel mea-
surable for all x ∈ X and equation (7.5.16) continues to hold for all x ∈ X
and all t ∈ I. Since X∗ is separable, it follows from part (i) of Theorem 7.5.2
(with X replaced by X∗ and E := ι(X) ⊂ X∗∗) that the function g : I → X∗

is strongly measurable. Hence G(t) =
∫ t
0 g(s) ds for all t ∈ I by (7.5.16), and

so it follows from the Lebesgue Differentiation Theorem that G is almost
everywhere differentiable (see Lemma 7.5.9). This proves part (i).

We prove part (ii). Let X be a reflexive Banach space and let G : I → X
be a Lipschitz continuous function. Denote by Y ⊂ X the smallest closed
subspace of X that contains the image of G. Then Y is separable and is
reflexive by Theorem 2.4.4. Hence it follows from part (i) that G is almost
everywhere differentiable, and this proves Theorem 7.5.13. □
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7.5.4. The Dual Space of Lp(I,X). It is a natural question to ask how
the dual space of Lp(I,X) can be characterized. The obvious candidate for
the dual space is Lq(I,X∗) with 1/p+ 1/q = 1.

Lemma 7.5.15. Let X be a real Banach space, let I = [a, b] be a compact
interval, let 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1, and let g ∈ Lq(I,X∗). Then
the map Λg : L

p(I,X) → R, defined by

(7.5.17) Λg(f) :=

∫ b

a
⟨g(t), f(t)⟩ dt for f ∈ Lp(I,X),

is a bounded linear functional with ∥Λg∥ = ∥g∥Lq .

Proof. The function I → R : t 7→ ⟨g(t), f(t)⟩ is measurable because f
and g are strongly measurable. Moreover, by the Hölder inequality, this func-

tion is integrable and satisfies |
∫ b
a ⟨g(t), f(t)⟩ dt| ≤ ∥g∥Lq∥f∥Lp . Hence the

map Λg : L
p(I,X) → R is a bounded linear functional with ∥Λg∥ ≤ ∥g∥Lq .

Thus the map Lq(I,X∗) → Lp(I,X)∗ is a bounded linear operator of norm
less than or equal to one. To prove that it is an isometry, it suffices to prove
the equation ∥Λg∥ = ∥g∥Lq for all elements g of a dense subset of Lq(I,X∗).
Such a dense subset is the set of measurable step functions by Theorem 7.5.4,
provided that q <∞. Here we focus on the case 1 < p, q <∞ and leave the
remaining cases to the reader. Consider a function of the form

g =
m∑
i=1

χBix
∗
i

for x∗1, . . . , x
∗
m ∈ X∗ \ {0} and pairwise disjoint Borel sets B1, . . . , Bm ⊂ I.

Fix a number ε > 0 and choose elements x1, . . . , xm ∈ X such that ∥xi∥ = 1
and ⟨x∗i , xi⟩ > (1− ε) ∥x∗i ∥ for all i. Define the function f : I → X by

f :=
∑
i

χBi ∥x∗i ∥
q−1 xi.

Then ∫
I
⟨g, f⟩ =

∑
i

µ(Bi) ∥x∗i ∥
q−1 ⟨x∗i , xi⟩ > (1− ε) ∥g∥qLq

and

∥f∥Lp =

(∑
i

µ(Bi) ∥x∗i ∥
p(q−1)

)1/p

=

(∑
i

µ(Bi) ∥x∗i ∥
q

)1−1/q

= ∥g∥q−1
Lq .

This implies ∥Λg∥ ≥ ∥f∥−1
Lp

∫
I⟨g, f⟩ > (1 − ε) ∥g∥Lq

. Since ε > 0 was cho-

sen arbitrarily, we find that ∥Λg∥ = ∥g∥Lq
for every measurable step func-

tion g : I → X∗ and this proves Lemma 7.5.15. □
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The central question is now under which conditions the isometric em-
bedding Lq(I,X∗) → Lp(I,X)∗ in Lemma 7.5.15 is surjective. The answer
depends on the Banach space X and is surprisingly subtle. It was first noted
by Bochner [15, 16] that a positive answer requires that every absolutely
continuous function with values in the dual space X∗ is almost everywhere
differentiable.

Theorem 7.5.16 (Bochner). Let X be a Banach space, let I := [0, 1],
and let p, q > 1 with 1/p+ 1/q = 1. Then the following are equivalent.

(i) The isometric embedding Lq(I,X∗) → Lp(I,X)∗ is surjective.

(ii) The isometric embedding L∞(I,X∗) → L1(I,X)∗ is surjective.

(iii) The dual space X∗ has the Radon–Nikodým property.

Proof. We prove that (i) implies (ii). Let Λ : L1(I,X) → R be a bounded
linear functional and denote

c := ∥Λ∥ .
Then Λ restricts to a bounded linear functional on Lp(I,X). Hence by
part (i) there is a function g ∈ Lq(I,X∗) such that∫

I
⟨g, f⟩ = Λ(f) ≤ c ∥f∥L1

for all f ∈ Lp(I,X). We claim that ∥g∥L∞ ≤ c. Otherwise, there exists a
constant δ > 0 such that the set

A := {t ∈ I | ∥g(t)∥ > c+ δ}

has positive measure. By Theorem 7.5.6 there is a sequence of measurable
step functions gi : I → X∗ \ {0} that converges in Lq and almost everywhere
to g. For each i let fi : I → X be a measurable step function that satis-
fies ⟨gi(t), fi(t)⟩ ≥ (1− 1

i ) ∥gi(t)∥ and ∥fi(t)∥ = 1 for all i and t. Then

⟨g(t), fi(t)⟩ ≥
(
1− 1

i

)
∥gi(t)∥ − ∥gi(t)− g(t)∥

for all i and t, and hence

lim inf
i→∞

∫
I
⟨g, χAfi⟩ ≥ lim

i→∞

∫
A
∥gi∥ =

∫
A
∥g∥ ≥ (c+ δ)µ(A).

Thus ∫
I
⟨g, χAfi⟩ > cµ(A) = c ∥χAfi∥L1

for i sufficiently large. This contradiction shows that ∥g∥L∞ ≤ c as claimed.
This proves that (i) implies (ii).
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We prove that (ii) implies (iii). LetG : I → X∗ be a Lipschitz continuous
function with Lipschitz constant c so that

∥G(s)−G(t)∥ ≤ c |s− t|

for all s, t ∈ I. For a step function f : I → X of the form

f =
N∑
i=0

χ[ti−1,ti)xi

with 0 = t0 < t1 < · · · < tN = 1 and xi ∈ X define

Λ(f) :=

N∑
i=1

⟨G(ti)−G(ti−1), xi⟩.

Then

|Λ(f)| ≤ c

N∑
i=1

(ti − ti−1) ∥xi∥ = c ∥f∥L1 .

Thus Λ is a bounded linear functional on a dense subset of L1(I,X), by
Theorem 7.5.6, and hence extends uniquely to a bounded linear functional
on L1(I,X) which will still be denoted by

Λ : L1(I,X) → R.

By part (ii), there exists a bounded strongly measurable function g : I → X∗

such that ∫ 1

0
⟨g(t), f(t)⟩ dt = Λ(f)

for all f ∈ L1(I,X). Take f := χ[0,t)x to obtain〈∫ t

0
g(s) ds, x

〉
=

∫ t

0
⟨g(s), x⟩ ds

= Λ(χ[0,t)x)

= ⟨G(t)−G(0), x⟩

for all t ∈ I and all x ∈ X. This implies∫ t

0
g(s) ds = G(t)−G(0)

for all t ∈ I. Hence it follows from the Lebesgue Differentiation Theorem
(see for example [75, Thm 6.14]) that the function G is almost everywhere
differentiable and

G′ = g.

This shows that X∗ has the Radon–Nikodým property.
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We prove that (iii) implies (i). Let Λ : Lp(I,X) → R be a bounded linear
functional and let B ⊂ 2I be the Borel σ-algebra. Define the map ν : B → X∗

by

(7.5.18) ⟨ν(B), x⟩ := Λ(χBx) for B ∈ B and x ∈ X.

More precisely, the linear functional X → R : x 7→ Λ(χBx) is bounded be-

cause |Λ(χBx)| ≤ ∥Λ∥ ∥χBx∥L1 ≤ ∥Λ∥µ(B)1/p ∥x∥. We prove that every fi-
nite sequence of pairwise disjoint Borel sets B1, . . . , BN ∈ B satisfies

(7.5.19)
N∑
i=1

∥ν(Bi)∥ ≤ ∥Λ∥µ

(
N⋃
i=1

Bi

)1/p

.

To see this, fix a constant ε > 0 and, for each i, choose a vector xi ∈ X
such that ∥xi∥ = 1 and ⟨ν(Bi), xi⟩ ≥ (1− ε) ∥ν(Bi)∥. Define f :=

∑
i χBixi.

Then∑
i

∥ν(Bi)∥ ≤
∑
i

⟨ν(Bi), xi⟩
1− ε

=
Λ(f)

1− ε
≤

∥Λ∥ ∥f∥Lp

1− ε
=

∥Λ∥µ(
⋃
iBi)

1/p

1− ε
.

This proves (7.5.19).

Now define the function G : I → X∗ by

(7.5.20) G(t) := ν([0, t]) for t ∈ I.

This function satisfies G(0) = 0 and is absolutely continuous by (7.5.19).
Hence, by (iii) there exists a function g ∈ L1(I,X∗) such that

(7.5.21) G(t) =

∫ t

0
g(s) ds for all t ∈ I.

For each x ∈ X consider the bounded linear functional Λx : Lp(I) → R de-
fined by Λx(ϕ) := Λ(ϕx) for ϕ ∈ Lp(I). By [75, Thm 4.35] there exists a
function gx ∈ Lq(I) such that

(7.5.22)

∫
I
gxϕ = Λx(ϕ) = Λ(ϕx) for all ϕ ∈ Lp(I).

Then, for each t ∈ I and each x ∈ X, we have∫ t

0
gx(s) ds = Λ(χ[0,t]x) = ⟨ν([0, t]), x⟩ = ⟨G(t), x⟩ =

∫ t

0
⟨g(s), x⟩ ds.

Here the first equality follows from the definition of gx in (7.5.22), the sec-
ond from the definition of ν in (7.5.18), the third from the definition of G
in (7.5.20), and the last from (7.5.21). This shows that

(7.5.23) gx(t) = ⟨g(t), x⟩

for every x ∈ X and almost every t ∈ I.



7.5. Banach Space Valued Measurable Functions 421

We prove that every f ∈ Lp(I,X) satisfies

(7.5.24) ⟨g, f⟩ ∈ L1(I),

∫
I
⟨g, f⟩ = Λ(f),

∫
I
|⟨g, f⟩| ≤ ∥Λ∥ ∥f∥Lp .

First let f : I → X be a measurable step function of the form f =
∑

i χBixi,
where the Bi ⊂ I are pairwise disjoint Borel sets and xi ∈ X \ {0}. Then

⟨g, f⟩ =
∑
i

χBi⟨g, xi⟩
a.e.
=
∑
i

χBigxi ,

where the last equation follows from (7.5.23). Thus ⟨g, f⟩ is integrable be-
cause χBi is bounded and gxi ∈ Lq(I) for each i. Moreover, it follows from
the definition of the functions gxi in (7.5.22) that∫

I
⟨g, f⟩ =

∑
i

∫
I
gxiχBi =

∑
i

Λ(χBixi) = Λ(f).

Now define the function ϕi : I → R by ϕi(t) := 0 for t ∈ I \Bi, by ϕi(t) := 1
for t ∈ Bi with gxi(t) ≥ 0, and by ϕi(t) := −1 for t ∈ Bi with gxi(t) < 0.

Let f̃ :=
∑

i χBiϕixi. Then

|⟨g, f⟩| =
∑
i

χBi |gxi | =
∑
i

χBiϕigxi
a.e.
=

〈
g,
∑
i

χBiϕixi

〉
=
〈
g, f̃
〉

and hence∫
I
|⟨g, f⟩| =

∫
I

〈
g, f̃
〉
= Λ(f̃) ≤ ∥Λ∥

∥∥f̃∥∥
Lp = ∥Λ∥ ∥f∥Lp .

This proves (7.5.24) for measurable step functions f : I → X.

Now let f ∈ Lp(I,X) and choose a sequence of measurable step func-
tions fi : I → X that converges in Lp and almost everywhere to f . Then∫

I
|⟨g, fi⟩ − ⟨g, fj⟩| =

∫
I
|⟨g, fi − fj⟩| ≤ ∥Λ∥ ∥fi − fj∥Lp

and so (⟨g, fi⟩)i∈N is a Cauchy sequence in L1(I). Thus it converges to a
function h ∈ L1(I). Passing to a suitable subsequence, we may assume the
sequence converges almost everywhere to h. Hence

h(t)
a.e.
= lim

i→∞
⟨g(t), fi(t)⟩

a.e.
= ⟨g(t), f(t)⟩.

Hence ⟨g, f⟩ is integrable and∫
I
⟨g, f⟩ =

∫
I
h = lim

i→∞

∫
I
⟨g, fi⟩ = lim

i→∞
Λ(fi) = Λ(f).

Moreover,

∥⟨g, f⟩∥L1 = ∥h∥L1 = lim
i→∞

∥⟨g, fi⟩∥L1 ≤ lim
i→∞

∥Λ∥ ∥fi∥Lp = ∥Λ∥ ∥f∥Lp

and this proves (7.5.24).
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With the help of (7.5.24) we are now able to prove that g ∈ Lq(I,X∗).
For n ∈ N define the function gn : I → X∗ by

gn(t) :=

{
g(t), if ∥g(t)∥ ≤ n,
0, if ∥g(t)∥ > n,

for t ∈ I.

These functions are strongly measurable and satisfy limn→∞ gn(t) = g(t) for
all t ∈ I. Moreover, it follows from (7.5.24) that∫

I
|⟨gn, f⟩| ≤

∫
I
|⟨g, f⟩| ≤ ∥Λ∥ ∥f∥Lp

for every n ∈ N and every f ∈ Lp(I,X). Since each function gn is bounded,
and hence an element of the space Lq(I,X∗), this implies

∥gn∥Lq = sup
f∈Lp(I,X)\{0}

∣∣∫
I⟨gn, f⟩

∣∣
∥f∥Lp

≤ sup
f∈Lp(I,X)\{0}

∫
I |⟨gn, f⟩|
∥f∥Lp

≤ ∥Λ∥ .

Here the equality follows from Lemma 7.5.15. By the Lebesgue Monotone
Convergence Theorem, this implies∫

I
∥g(t)∥q dt = lim

n→∞

∫
I
∥gn(t)∥q dt ≤ ∥Λ∥q .

Thus g ∈ Lq(I,X∗), ∥g∥Lq ≤ ∥Λ∥, and
∫
I⟨g, f⟩ = Λ(f) for all f ∈ Lp(I,X)

by (7.5.24). This completes the proof of Theorem 7.5.16. □

The following result was proved by R.S. Phillips [66] in 1943.

Corollary 7.5.17 (Phillips). Fix a constant 1 < p <∞, let X be a re-
flexive Banach space, and let I ⊂ R be a compact interval. Then the Banach
space Lp(I,X) is reflexive.

Proof. Choose the real number 1 < q <∞ such that 1/p+ 1/q = 1. The
dual space X∗ is reflexive by Theorem 2.4.4, and so has the Radon–Nikodým
property by part (ii) of Theorem 7.5.13. Hence Theorem 7.5.16 asserts that
the isometric embeddings

(7.5.25) Lq(I,X∗) → Lp(I,X)∗

and

(7.5.26) Lp(I,X∗∗) → Lq(I,X∗)∗

are isomorphisms. Now the canonical inclusion ι : Lp(I,X) → Lp(I,X)∗∗ is
the composition

(7.5.27) Lp(I,X) → Lp(I,X∗∗) → Lq(I,X∗)∗ → Lp(I,X)∗∗,

where the first map is induced by the canonical isomorphism ι : X → X∗∗,
the second map is the isomorphism (7.5.26), and the third map is the in-
verse of the dual operator of (7.5.25) (see Corollary 4.1.18). This proves
Corollary 7.5.17. □
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7.5.5. The Sobolev Space W 1,p(I,X). Let X be a Banach space, fix a
real number 1 ≤ p <∞, and let I = [a, b] ⊂ R be a compact interval. The
Sobolev space W 1,p(I,X) can be defined as the completion of the space
of continuously differentiable functions f : I → X with respect to the norm

(7.5.28) ∥f∥W 1,p :=

(∫ b

a

(
∥f(t)∥p +

∥∥f ′(t)∥∥p) dt)1/p

.

Alternatively, W 1,p(I,X) is the space of all functions f : I → R that can be
expressed as the integrals of Lp functions, i.e.

(7.5.29) W 1,p(I,X) :=

f : I → X

∣∣∣∣∣
there exists a strongly
measurable function g : I → X

such that
∫ b
a ∥g(t)∥

p dt <∞
and f(t)− f(a) =

∫ t
a g(s) ds

for all t ∈ I

 .

The Lebesgue Differentiation Theorem asserts that the function g : I → X
in (7.5.29) is uniquely determined by f up to equality almost everywhere
and agrees with the derivative of f (Lemma 7.5.9). The norm is again given
by equation (7.5.28). With this definition the functions in W 1,p(I,X) are
absolutely continuous, are almost everywhere differentiable, have derivatives
in Lp(I,X), and can be expressed as the integrals of their derivatives. If X
has the Radon–Nikodým property, then every absolutely continuous func-
tion f : I → X is almost everywhere differentiable and we have

W 1,p(I,X) :=

{
f : I → X

∣∣∣∣∣ f is absolutely continuous
and f ′ ∈ Lp(I,X)

}
.

If X does not have the Radon–Nikodým property, this last definition does
not even make sense, because absolutely continuous functions need not be
differentiable. Thus we will work with the definition (7.5.29). However, in all
the relevant examples in this book the Banach space in question is reflexive
and therefore does have the Radon–Nikodým property by Theorem 7.5.13.
The next theorem asserts that the Sobolev space W 1,p(I,X) is a Banach
space and that the space C∞(I,X) of smooth functions f : I → X is dense
in W 1,p(I,X).

Theorem 7.5.18. Let X be a Banach space, let I = [a, b] ⊂ R be a com-
pact interval, and fix a constant 1 ≤ p <∞. Then the following holds.

(i) There exists a c > 0 such that ∥f∥L∞ ≤ c ∥f∥W 1,p for all f ∈W 1,p(I,X).

(ii) The Sobolev space W 1,p(I,X) is complete with the norm (7.5.28).

(iii) The subspace C∞(I,X) is dense in W 1,p(I,X).

(iv) If X is reflexive and 1 < p <∞ then W 1,p(I,X) is reflexive.
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Proof. We prove part (i). Let f ∈W 1,p and choose g ∈ Lp(I,X) such

that
∫ t
a g(s) ds = f(t)− f(a) for all t ∈ I. Then, by Hölder’s inequality,

∥f(t)− f(s)∥ =

∥∥∥∥∫ t

s
g(r) dr

∥∥∥∥ ≤
∣∣∣∣∫ t

s
∥g(r)∥ dr

∣∣∣∣ ≤ (b− a)1/q ∥g∥Lp

for all s, t ∈ [a, b]. Here 1 < q ≤ ∞ is chosen such that 1/p+ 1/q = 1. In

the case q = ∞ we use the standard convention (b − a)1/q = (b − a)0 := 1.
Now raise this inequality to the power p and integrate to obtain∫ b

a
∥f(t)− f(s)∥p ds ≤ (b− a)1+p/q ∥g∥pLp ≤ (b− a)p ∥g∥pLp .

Take the pth root of this estimate to obtain(∫ b

a
∥f(t)− f(s)∥p ds

)1/p

≤ (b− a) ∥g∥Lp .

Hence (b− a)1/p ∥f(t)∥ ≤ ∥f∥Lp + (b− a) ∥g∥Lp for all t ∈ I by Minkowski’s
inequality. This proves part (i).

We prove part (ii). Let fn : I → X be a Cauchy sequence in W 1,p(I,X)

and choose a sequence gn ∈ Lp(I,X) such that
∫ t
a gn(s) ds = fn(t)− fn(a)

for all t ∈ I and all n ∈ N. Then (fn)n∈N is a Cauchy sequence in the Banach
space C(I,X) of continuous functions with the supremum norm, and (gn)n∈N
is a Cauchy sequence in the Banach space Lp(I,X). Hence the sequence fn
converges uniformly to a continuous function f : I → X and gn converges to
a function g ∈ Lp(I,X) by Theorem 7.5.6. The limit functions satisfy

f(t)− f(a) = lim
n→∞

(fn(t)− fn(a)) = lim
n→∞

∫ t

a
gn(s) ds =

∫ t

a
g(s) ds

for all t ∈ I. Thus f ∈W 1,p(I,X) and

lim
n→∞

∥f − fn∥W 1,p = lim
n→∞

(
∥f − fn∥pLp + ∥g − gn∥pLp

)1/p
= 0.

This proves part (ii).

We prove part (iii) by a standard mollifier argument. Let f ∈W 1,p(I,X)
and extend f to all of R by f(t) := f(b) for t > b and f(t) := f(a) for t < a.
Choose a smooth function ρ : R → [0,∞) with compact support and mean
value 1 and define ρδ(t) := δ−1ρ(δ−1t) for δ > 0 and t ∈ R. Then the
function fδ : I → R, defined by fδ(t) := (ρδ ∗ f)(t) :=

∫
R ρδ(t− s)f(s) ds

for t ∈ R, is smooth for every δ > 0, and fδ converges to f uniformly, and
hence also in the Lp-norm. Moreover, f ′δ = ρδ ∗ f ′ converges to f ′ in the
Lp-norm and thus limδ→0 ∥f − fδ∥W 1,p = 0. This proves part (iii).

We prove part (iv). The map W 1,p(I,X) → Lp(I,X ×X) : f 7→ (f, f ′)
is an isometric embedding. The target space is reflexive by Corollary 7.5.17,
soW 1,p(I,X) is reflexive by Theorem 2.4.4. This proves Theorem 7.5.18. □
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7.6. Inhomogeneous Equations

Let X be a real Banach space and let A : dom(A) → X be the infinitesimal
generator of a strongly continuous semigroup S : [0,∞) → L(X). This sec-
tion is devoted to the study of the solutions of the inhomogeneous equation

(7.6.1) ẋ = Ax+ f, x(0) = x0.

Here we assume that the function f : [0,∞) → R is strongly measurable and
locally integrable. In this situation we consider the function x : [0,∞) → X,
defined by the variation of constants formula

(7.6.2) x(t) := S(t)x0 +

∫ t

0
S(t− s)f(s) ds

for t ≥ 0. If x0 ∈ dom(A) and f : [0,∞) → X is continuously differentiable,
then, by Lemma 7.1.14, the function x : [0,∞) → X in (7.6.2) is contin-
uously differentiable, takes values in the domain of A, and satisfies equa-
tion (7.6.1). While this is a rather crude general observation, it is the start-
ing point for any more refined study of the solutions of (7.6.1).

7.6.1. Weak Solutions. As a first step we use the concepts developed in
Section 7.5 to introduce the notion of a weak solution. This notion uses
test functions g : I → X∗ on a compact interval I ⊂ R that take values
in dom((A∗)∞) and have the property that the function (A∗)kg : I → X∗

is smooth for every k ∈ N. The space of such functions will be denoted
by C∞(I, dom(A∗)∞).

Definition 7.6.1 (Weak Solution). Let X be a real Banach space
and let A : dom(A) → X be the infinitesimal generator of a strongly con-
tinuous semigroup S : [0,∞) → L(X). Fix a compact interval I = [0, T ], a

strongly measurable function f : I → X with
∫ T
0 ∥f(t)∥ dt <∞, and an ele-

ment x0 ∈ X. A weak solution of equation (7.6.1) is a strongly measur-

able function x : I → X with
∫ T
0 ∥x(t)∥ dt <∞ that satisfies the condition

(7.6.3) ⟨g(0), x0⟩+
∫ T

0
⟨g(s), f(s)⟩ ds+

∫ T

0
⟨ġ(s) +A∗g(s), x(s)⟩ ds = 0

for every test function g ∈ C∞(I, dom(A∗)∞) with g(T ) = 0.

The next theorem shows that equation (7.6.1) admits a unique (almost
everywhere) weak solution and that it is given by (7.6.2).

Theorem 7.6.2 (Existence and Uniqueness). Let X, I, S,A, f, x0 be
as in Definition 7.6.1 and let x ∈ L1(I,X). The following are equivalent.

(i) x is a weak solution of (7.6.1).

(ii) x is given by (7.6.2) for almost every t ∈ I.
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Proof. We prove that (ii) implies (i). Let g ∈ C∞(I, dom(A∗)∞) be a
test function with g(T ) = 0. Recall from Theorem 7.3.1 that the restriction
of the dual semigroup S∗(t) to the strong closure E ⊂ X∗ of the domain
of A∗ is a strongly continuous semigroup, whose infinitesimal generator is the
restriction of the operator A∗ to the subspace {x∗ ∈ dom(A∗) |A∗x∗ ∈ E}.
This implies that the function I → X∗ : t 7→ S∗(t)g(t) is continuously differ-
entiable with the derivative

d

dt
S∗(t)g(t) = S∗(t)(ġ(t) +A∗g(t))

for t ∈ I. Hence the function x0(t) := S(t)x0 satisfies∫ T

0
⟨ġ(t) +A∗g(t), x0(t)⟩ dt =

∫ T

0
⟨ġ(t) +A∗g(t), S(t)x0⟩ dt

=

∫ T

0
⟨S∗(t)(ġ(t) +A∗g(t)), x0⟩ dt

=

∫ T

0

d

dt
⟨S∗(t)g(t), x0⟩ dt

= ⟨S∗(T )g(T ), x0⟩ − ⟨g(0), x0⟩
= −⟨g(0), x0⟩

and for x1(t) :=
∫ t
0 S(t− s)f(s) ds we obtain∫ T

0
⟨ġ(t) +A∗g(t), x1(t)⟩ dt

=

∫ T

0

∫ t

0
⟨ġ(t) +A∗g(t), S(t− s)f(s)⟩ dsdt

=

∫ T

0

∫ t

0
⟨S∗(t− s)(ġ(t) +A∗g(t)), f(s)⟩ dsdt

=

∫ T

0

∫ T

s
⟨S∗(t− s)(ġ(t) +A∗g(t)), f(s)⟩ dtds

=

∫ T

0

∫ T−s

0
⟨S∗(t)(ġ(s+ t) +A∗g(s+ t)), f(s)⟩ dtds

=

∫ T

0

∫ T−s

0

d

dt
⟨S∗(t)g(s+ t), f(s)⟩ dtds

=

∫ T

0

(
⟨S∗(T − s)g(T ), f(s)⟩ − ⟨g(s), f(s)⟩

)
ds

= −
∫ T

0
⟨g(s), f(s)⟩ ds.

Take the sum of these equations to obtain that x := x0 + x1 : I → X is a
weak solution of (7.6.1).
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We prove that (i) implies (ii). Thus assume that x : I → X is a weak
solution of (7.6.1) and define the function y : I → X by

y(t) := x(t)− S(t)x0 −
∫ t

0
S(t− s)f(s) ds for 0 ≤ t ≤ T.

Then, by what we have just proved, y is a weak solution of equation (7.6.1)
with x0 = 0 and f = 0, i.e. y ∈ L1(I,X) and

(7.6.4)

∫ T

0
⟨ġ(s) +A∗g(s), y(s)⟩ ds = 0

for all g ∈ C∞(I, dom(A∗)∞) with g(T ) = 0. We must prove that y(t) = 0
for almost every t ∈ I. To see this, fix an element x∗ ∈ dom((A∗)∞) and a
smooth function ϕ : I → R, and define the function g : I → X∗ by

g(s) :=

∫ T−s

0
ϕ(r)S∗(T − s− r)x∗ dr for 0 ≤ s ≤ T.

Then g(T ) = 0. Moreover, it follows from Theorem 7.3.1 by induction that,
for k ∈ N0, the restriction of S∗(t) to Ek :=

{
ξ∗ ∈ dom(A∗)k | (A∗)k ∈ E

}
is

a strongly continuous semigroup whose infinitesimal generator is the restric-
tion Bk := A∗|Ek+1

: Ek+1 → Ek. Apply Lemma 7.1.14 to this semigroup to
deduce that, for every integer k ≥ 0, the function g : I → X∗ takes values
in Ek+1, is continuously differentiable as a function with values in Ek, and
satisfies d

dsg(T − s) = A∗g(T − s) + ϕ(T − s)x∗ or equivalently

(7.6.5) ġ(s) +A∗g(s) = ϕ(s)x∗ for 0 ≤ s ≤ T.

This implies g ∈ Cℓ(I, Ek) for all k, ℓ ∈ N0 and so g ∈ C∞(I, dom((A∗)∞)).
Thus it follows from (7.6.4) and (7.6.5) that

(7.6.6)

∫ T

0
ϕ(s)⟨x∗, y(s)⟩ ds = 0

for all x∗ ∈ dom((A∗)∞) and all ϕ ∈ C∞(I). Choose a sequence of smooth
functions ϕi : [0, 1] → [0, 1] converging pointwise to the characteristic func-
tion of the subinterval [0, t] and use Lebesgue dominated convergence and

equation (7.6.6) to obtain
∫ t
0 ⟨x

∗, y(s)⟩ ds = 0 and hence

(7.6.7)

〈
x∗,

∫ t

0
y(s) ds

〉
= 0

for all x∗ ∈ dom((A∗)∞) and all t ∈ I. Since dom((A∗)∞) is dense in E
by Lemma 7.1.16, equation (7.6.7) continues to hold for all x∗ ∈ E and
all t ∈ I. Since E contains the domain of A∗, it is weak* dense in X∗ by

part (iii) of Theorem 6.2.2. This implies
∫ t
0 y(s) ds = 0 for 0 ≤ t ≤ T . Now

it follows from Lebesgue differentiation that y(t) = 0 for almost every t ∈ I
(Lemma 7.5.9). This proves Theorem 7.6.2. □
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7.6.2. Regular Solutions. The next theorem examines the properties of
weak solutions of (7.6.1) that belong to the Sobolev space W 1,1(I,X).

Theorem 7.6.3 (Regular Solutions). Let X, I, S,A, f, x0 be as in Def-
inition 7.6.1 and let x : I → X be a strongly measurable function. Then the
following are equivalent.

(i) x ∈W 1,1(I,X) and x is a weak solution of equation (7.6.1).

(ii) There exists a Borel set Z ⊂ I of Lebesgue measure zero such that

• x(t) ∈ dom(A) for every t ∈ I \ Z,
• the function x : I → X is differentiable on I \ Z and

ẋ(t) = Ax(t) + f(t) for all t ∈ I \ Z,
• the function y : I → X, defined by

y(t) :=

{
ẋ(t), for t ∈ I \ Z,
0, for t ∈ Z,

is strongly measurable and satisfies
∫ T
0 ∥y(s)∥ ds <∞ and

x(t) = x0 +

∫ t

0
y(s) ds for all t ∈ I.

Proof. We prove that (i) implies (ii). Thus assume that x ∈W 1,1(I,X)
is a weak solution of equation (7.6.1). Then x is continuous and

x(t) = S(t)x0 +

∫ t

0
S(t− s)f(s) ds for 0 ≤ t ≤ T

by Theorem 7.6.2. For 0 ≤ t < t+ h ≤ T this implies

S(h)x(t)− x(t)

h
=
x(t+ h)− x(t)

h
− 1

h

∫ h

0
S(s)f(t) ds

− 1

h

∫ h

0
S(h− s)

(
f(t+ s)− f(t)

)
ds.

(7.6.8)

Moreover, by definition of W 1,1(I,X) there exists a function ξ ∈ L1(I,X)

such that x(t) = x0 +
∫ t
0 ξ(s) ds for all t ∈ I. Hence, by Lebesgue differenti-

ation, there exists a Borel set Z ⊂ I of Lebesgue measure zero such that

• x is differentiable on I \ Z and ẋ(t) = ξ(t) for all t ∈ I \ Z,
• limh↘0

1
h

∫ h
0 ∥f(t+ s)− f(t)∥ ds = 0 for all t ∈ I \ Z.

For t ∈ I \ Z this implies that the right hand side of (7.6.8) converges
to ξ(t)−f(t) as h tends to zero. Thus x(t) ∈ dom(A) and Ax(t) = ξ(t)− f(t)
for all t ∈ I \ Z. This shows that x satisfies (ii) with this Borel set Z
and the function y : I → X defined by y(t) := ξ(t) = ẋ(t) for t ∈ I \ Z and
by y(t) = 0 for t ∈ Z.
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We prove that (ii) implies (i). Thus assume that Z ⊂ I is a Borel
set of Lebesgue measure zero that satisfies the requirements of part (ii).
Let E ⊂ X∗ be the strong closure of the domain of the dual operator A∗.
Fix an element x∗ ∈ dom(A∗) with A∗x∗ ∈ E and a real number 0 < t ≤ T .
Then, by Theorem 7.3.1, the function [0, t] → X∗ : s 7→ S∗(t− s)x∗ is con-
tinuously differentiable and has the derivative

d

ds
S∗(t− s)x∗ = −S∗(t− s)A∗x∗ = −A∗S∗(t− s)x∗.

Moreover, by assumption, the function x : I → X is absolutely continuous
and differentiable in I \ Z. This implies that the function

(7.6.9) [0, t] → R : s 7→ ⟨S∗(t− s)x∗, x(s)⟩

is absolutely continuous and differentiable in [0, t] \ Z. Since x(t) ∈ dom(A)
and ẋ(t) = Ax(t) + f(t) for t ∈ I \ Z, the function (7.6.9) has the derivative

d

ds
⟨S∗(t− s)x∗, x(s)⟩ = ⟨S∗(t− s)x∗, ẋ(s)⟩ − ⟨A∗S∗(t− s)x∗, x(s)⟩

= ⟨S∗(t− s)x∗, ẋ(s)−Ax(s)⟩
= ⟨x∗, S(t− s)f(s)⟩

for s ∈ [0, t] \ Z. Since Z has measure zero and (7.6.9) is absolutely contin-

uous, this implies ⟨x∗, x(t)⟩ − ⟨S∗(t)x∗, x(0)⟩ =
∫ t
0 ⟨x

∗, S(t − s)f(s)⟩ ds and
hence

(7.6.10)

〈
x∗, x(t)− S(t)x0 −

∫ t

0
S(t− s)f(s) ds

〉
= 0

for all x∗ ∈ dom(A∗) with A∗x∗ ∈ E. By Theorem 7.3.1 the set of all such x∗

is the domain of the infinitesimal generator of the strongly continuous semi-
group [0,∞) → L(E) : t 7→ S∗(t)|E and so is dense in E by Lemma 7.1.16.
Hence equation (7.6.10) continues to hold for all x∗ ∈ E and hence, in par-
ticular, for all x∗ ∈ dom(A∗). Since the domain of A∗ is weak* dense in X∗,
by Theorem 6.2.2, it follows that x(t) is given by equation (7.6.2) for ev-
ery t ∈ [0, T ]. This proves Theorem 7.6.3. □

Theorem 7.6.3 leads to the question under which conditions on x0 and f
the weak solution (7.6.2) of (7.6.1) belongs to the Sobolev spaceW 1,1(I,X).
This is the fundamental regularity problem for semigroups. It has two
parts, one for the inhomogeneous term f when x0 = 0 (see Subsection 7.6.3)
and one for the initial condition x0 when f = 0 (see Subsection 7.6.4).
By Lemma 7.1.14, the weak solution (7.6.2) belongs to W 1,1(I,X) when-
ever x0 ∈ dom(A) and f : I → X is continuously differentiable. By Exer-
cise 7.7.12 this continues to hold for f ∈W 1,1(I,X).
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7.6.3. Maximal Regularity. In applications one is interested in a re-
fined regularity problem associated to a number 1 ≤ q <∞, which asks for
weak solutions in the Sobolev space W 1,q(I,X) when f ∈ Lq(I,X). The
sharp answer would be that, for every f ∈ Lq(I,X), the formula (7.6.2)
with x0 = 0 defines a weak solution x : I → X of (7.6.1) in the Sobolev
space W 1,q(I,X), i.e. both ẋ and Ax, and not just their difference, belong
to the space Lq(I,X). This property is called maximal q-regularity.

Definition 7.6.4 (Maximal Regularity). Let X be a Banach space,
let A : dom(A) → X be the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → L(X), and fix a real number q ≥ 1. The semigroup S
is called maximal q-regular if, for every T > 0, there exists a cT > 0 such
that every continuously differentiable function f : [0, T ] → X satisfies

(7.6.11)

(∫ T

0

∥∥∥∥A∫ t

0
S(t− s)f(s) ds

∥∥∥∥q dt)1/q

≤ cT

(∫ T

0
∥f(t)∥q dt

)1/q

.

This condition is independent of T . The semigroup S is called uniformly
maximal q-regular if it is maximal q-regular and the constant in (7.6.11)
can be chosen independent of T .

Lemma 7.6.5 (Maximal Regularity). Let X be a Banach space and
let A : dom(A) → X be the infinitesimal generator of a strongly continuous
semigroup S : [0,∞) → L(X). Fix two real numbers q ≥ 1 and T > 0 and
abbreviate I := [0, T ]. Then the following are equivalent.

(i) For every strongly measurable function f : I → X with
∫
I ∥f∥

q <∞ equa-

tion (7.6.1) has a weak solution x ∈W 1,q(I,X) with x(0) = x0 = 0.

(ii) For every strongly measurable function f : I → X with
∫
I ∥f∥

q <∞ the
continuous function x : I → X defined by (7.6.2) with x0 = 0 belongs to the
Sobolev space W 1,q(I,X).

(iii) The semigroup S is maximal q-regular.

Proof. That (i) implies (ii) follows directly from Theorem 7.6.2. To
prove that (ii) implies (iii), denote by ι :W 1,q(I,X) → C(I,X) the obvious
inclusion and define the linear operator S : Lq(I,X) → C(I,X) by

(S f)(t) :=

∫ t

0
S(t− s)f(s) ds

for f ∈ Lq(I,X) and t ∈ I. Then ι is a bounded linear operator by part (i)
of Theorem 7.5.18. To prove that S is a bounded linear operator, choose a
constant M ≥ 1 such that ∥S(t)∥ ≤M for 0 ≤ t ≤ T (Lemma 7.1.8). Then

∥(S f)(t)∥ ≤
∫ t

0
∥S(t− s)f(s)∥ ds ≤M

∫ T

0
∥f(s)∥ ds ≤MT 1−1/q ∥f∥Lq
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for all t ∈ I and all f ∈ Lq(I,X). Moreover, im(S ) ⊂ im(ι) by (ii). Since ι
is injective, Corollary 2.2.17 (Douglas factorization) asserts that the lin-
ear operator ι−1 ◦ S : Lq(I,X) →W 1,q(I,X) is bounded. Thus there ex-
ists a constant C > 0 such that ∥S f∥W 1,q ≤ C ∥f∥Lq for all f ∈ Lq(I,X).
For f ∈ C1(I,X) this is equivalent to the estimate (7.6.11). Thus S is max-
imal q-regular.

We prove that (iii) implies (i). Assume S is maximal q-regular and

let f : I → X be a strongly measurable function with
∫ T
0 ∥f(t)∥q dt <∞.

By part (iii) of Theorem 7.5.4, there exists a sequence of smooth func-
tions fi : I → X such that limi→∞ ∥fi(t)− f(t)∥Lq = 0. Define the func-
tions x : I → X and xi : I → X, i ∈ N, by

x(t) :=

∫ t

0
S(t− s)f(s) ds, xi(t) :=

∫ t

0
S(t− s)fi(s) ds

for t ∈ I. Then limi→∞ supt∈I ∥xi(t)− x(t)∥ = 0. By Lemma 7.1.14, we
have xi(t) ∈ dom(A) and ẋi(t) = Axi(t) + fi(t) =: yi(t) for all t and i.
Moreover, ∥Axi −Axj∥Lq ≤ cT ∥fi − fj∥Lq for all i, j by maximal regularity.
Thus (yi)i∈N is a Cauchy sequence in Lq(I,X) and so, by Theorem 7.5.6,
there exists a function y ∈ Lq(I,X) with limi→∞ ∥yi − y∥Lq = 0. Hence

x(t) = lim
i→∞

xi(t) = lim
i→∞

∫ t

0
yi(s) ds =

∫ t

0
y(s) ds

for all t ∈ I and so x ∈W 1,q(I,X). Since x is a weak solution of (7.6.1) by
Theorem 7.6.2, this proves Lemma 7.6.5. □

The next lemma shows that there are many semigroups that cannot
be maximal q-regular for any q ≥ 1. Such examples include all strongly
continuous groups generated by unbounded operators.

Lemma 7.6.6. Let S : [0,∞) → L(X) be a strongly continuous semigroup
on a Banach space X that is maximal q-regular for some q ≥ 1. Then

im(S(t)) ⊂ dom(A) for all t > 0.

Proof. Assume that there exists a T > 0 such that im(S(T )) ̸⊂ dom(A),
abbreviate I := [0, T ], and choose ξ ∈ X such that S(T )ξ ∈ X \ dom(A).
Define the function f : I → X by f(t) := S(t)ξ for 0 ≤ t ≤ T . Then we
have f ∈ C(I,X) ⊂ Lq(I,X) and

x(t) :=

∫ t

0
S(t− s)f(s) ds = tS(t)ξ ∈ X \ dom(A)

for 0 < t ≤ T . Hence the function x : I → X cannot belong to the Sobolev
space W 1,1(I,X) by Theorem 7.6.3. This shows that the semigroup S vio-
lates condition (i) in Lemma 7.6.5 for any q ≥ 1 and hence cannot be max-
imal q-regular. This proves Lemma 7.6.6. □
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Remark 7.6.7. LetX be a reflexive Banach space. Let S : [0,∞) → L(X)
be a strongly continuous semigroup with infinitesimal generator A such that

(7.6.12) im(S(t)) ⊂ dom(A2),
∥∥A2S(t)x

∥∥ ≤ ct−2 ∥x∥

for all t > 0 and all x ∈ X and some c > 0. Under these assumptions it was
proved by Benedek–Calderón–Panzone [9] that S is (uniformly) maximal q-
regular for some q > 1 if and only if it is (uniformly) maximal q-regular for
all q > 1. Another exposition of their theorem can be found in [76]. Note
that analytic contraction semigroups satisfy (7.6.12) by Theorem 7.4.4.

Remark 7.6.8. Let (M,A, µ) be a measure space and let

S : [0,∞) → L(L2(µ))

be an analytic semigroup that satisfies the estimate

(7.6.13) ∥S(t)f∥Lp ≤ ∥f∥Lp

for all p ≥ 1, all t ≥ 0, and all f ∈ Lp(µ) ∩ L2(µ). Under this assumption a
theorem of Lamberton [54] asserts that the induced contraction semigroup
on Lp(µ) is uniformly maximal q-regular for all p, q > 1. For the heat flow
in Example 7.1.6 an exposition can be found in [76]. The proof goes far
beyond the scope of the present book. However, for p = q = 2 the result
follows from an elementary abstract observation that is explained below.

For the study of maximal regularity it is convenient to introduce a Ba-
nach space that contains all the regular solutions of equation (7.6.1). For
each q ≥ 1 and each interval I = [0, T ] this is the space

W 1,q
A (I,X) :=W 1,q(I,X) ∩ Lq(I, dom(A))

:=


x ∈W 1,q(I,X)

∣∣∣∣∣
there is a Borel set Z ⊂ I
of measure zero such that
x(t) ∈ dom(A) for t ∈ I \ Z,
the function Ax : I → X
is strongly measurable,

and
∫ T
0 ∥Ax(t)∥q dt <∞


(7.6.14)

equipped with the norm

(7.6.15) ∥x∥W 1,q
A

:=

(∫ T

0

(
∥x(t)∥q + ∥ẋ(t)∥q + ∥Ax(t)∥q

)
dt

)1/q

.

In this definition the function Ax : I → X is understood to be zero for t ∈ Z.
The next lemma summarizes some basic properties of this space. In particu-
lar, it is a Banach space and is reflexive when X is reflexive and 1 < q <∞.
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Lemma 7.6.9. Let A : dom(A) → X be the infinitesimal generator of a
strongly continuous semigroup on a Banach space X, let 1 ≤ q <∞, and
let T > 0 and I := [0, T ]. Then the following holds.

(i) Let x : I → dom(A) be any function. Then x is strongly measurable
in the Banach space dom(A) with the graph norm if and only if both func-
tions x : I → X and Ax : I → X are strongly measurable in X.

(ii) W 1,q
A (I,X) is a Banach space with the norm (7.6.15).

(iii) The space

C∞(I, dom(A)) :=

{
x : I → dom(A)

∣∣∣∣ the functions x : I → X
and Ax : I → X are smooth

}
is dense in W 1,q

A (I,X).

(iv) If X is reflexive and 1 < q <∞ then W 1,q
A (I,X) is reflexive.

Proof. We prove part (i). Let us temporarily denote by ι : dom(A) → X
the obvious inclusion and think of x : I → dom(A) solely as a function
with values in the Banach space dom(A), equipped with the graph norm.
Then the operator λι−A : dom(A) → X is invertible for λ > 0 sufficiently
large and for such a λ we have x = (λι−A)−1 ◦ (λι ◦ x−A ◦ x). Thus,
if x : I → dom(A) is strongly measurable, so are ι ◦ x,A ◦ x : I → X, and
conversely if those two are strongly measurable, so is λι ◦ x−A ◦ x and
hence also x.

We prove part (ii). Let (xi)i∈N be a Cauchy sequence in W 1,q
A (I,X).

Then (xi)i∈N is a Cauchy sequence in W 1,q(I,X) and hence converges to
a function x ∈W 1,q(I,X), both with respect to the W 1,q-norm and with
respect to the supremum norm by Theorem 7.5.18. Moreover, the func-
tions yi := Axi : I → X form a Cauchy sequence in Lq(I,X). Hence Theo-
rem 7.5.6 asserts that there exists a strongly measurable function y : I → X
such that

∫
I ∥y∥

q <∞ and limi→∞ ∥yi − y∥Lq = 0, and that a subsequence
of yi converges almost everywhere to y. Since A is closed, this implies that
there exists a Borel set Z ⊂ I of measure zero such that x(t) ∈ dom(A)

and Ax(t) = y(t) for all t ∈ I \ Z. Hence x ∈ W 1,q
A (I,X) and

lim
i→∞

∥x− xi∥W 1,q
A

= lim
i→∞

(
∥x− xi∥qW 1,q + ∥y − yi∥qLq

)1/q
= 0.

This proves part (ii). Part (iii) follows from the same mollifier argument
as in the proof of Theorem 7.5.18, and part (iv) follows from the fact that

the map W 1,q
A (I,X) →W 1,q(I,X ×X ×X) : x 7→ (x, ẋ, Ax) is an isometric

embedding, by definition, and the target space is reflexive whenever X is
reflexive and 1 < q <∞, by Corollary 7.5.17. This proves Lemma 7.6.9. □
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It follows from Theorem 7.6.3 that the weak W 1,q solutions of equa-
tion (7.6.1) with f ∈ Lq(I,X) are elements of the space W 1,q

A (I,X) and
that the inhomogeneous term in the equation can be recovered from the
element x ∈ W 1,q

A (I,X) via the formula f = ẋ−Ax. Thus the semigroup
generated by A is maximal q-regular if and only if the map

(7.6.16)
{
x ∈ W 1,q

A (I,X)
∣∣x(0) = 0

}
→ Lq(I,X) : x 7→ ẋ−Ax

is a Banach space isomorphism. If that holds, then the bounded linear
operator ι−1 ◦ S : Lq(I,X) →W 1,q(I,X) in the proof of Lemma 7.6.5 is
the inverse of the operator (7.6.16).

7.6.4. Regular Initial Conditions. With these preparations we are ready
to formulate the second regularity problem for equation (7.6.1). The ques-
tion is, which initial conditions x0 ∈ X give rise to solutions of the homoge-
neous equation in the space W 1,q

A (I,X). Define the normed vector space

(7.6.17) XA,q :=

{
x ∈ X

∣∣∣ S(t)x ∈ dom(A) for all t > 0

and
∫ T
0 ∥AS(t)x∥qX dt <∞

}
,

(7.6.18) ∥x∥A,q := ∥x∥X +

(∫ T

0
∥AS(t)x∥qX dt

)1/q

for x ∈ XA,q.

Lemma 7.6.10. Let A : dom(A) → X be the infinitesimal generator of
a strongly continuous semigroup S : [0,∞) → L(X) on a Banach space X,
let I = [0, T ], and let 1 ≤ q <∞. Then the following holds.

(i) XA,q is a Banach space with the norm (7.6.18) and dom(A) ⊂ XA,q ⊂ X
with continuous dense inclusions.

(ii) The subspace XA,q ⊂ X is invariant under the operator S(t) for all t ≥ 0
and S(t) restricts to a strongly continuous semigroup on the space XA,q.

(iii) Let x0 ∈ X and define the function x : I → X by x(t) := S(t)x0
for 0 ≤ t ≤ T . Then x0 ∈ XA,q if and only if x ∈ W 1,q

A (I,X).

(iv) Assume S is maximal q-regular. Then there exists a c > 0 such that
every continuously differentiable function x : I → dom(A) satisfies

(7.6.19) sup
0≤t≤T

∥x(t)∥A,q ≤ c ∥x∥W 1,q
A

.

Thus there is a continuous inclusion W 1,q
A (I,X) ↪→ C(I,XA,q).

(v) Assume S is maximal q-regular. Then the map

(7.6.20) W 1,q
A (I,X) → XA,q × Lq(I,X) : x 7→ (x(0), ẋ−Ax)

is a Banach space isomorphism. If this holds, then the inverse of (7.6.20) is

the operator XA,q ×Lq(I,X) → W 1,q
A (I,X) : (x0, f) 7→ x defined by (7.6.2).
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Proof. Let (xi)i∈N be a Cauchy sequence in XA,q and define the func-
tions yi : I → X by yi(0) := 0 and

yi(t) := AS(t)xi

for 0 < t ≤ T and i ∈ N. Then (xi)i∈N is a Cauchy sequence in X and (yi)i∈N
is a Cauchy sequence in Lq(I,X). Thus there exists an element x ∈ X and,
by Theorem 7.5.6, a strongly measurable function y : I → X with∫ T

0
∥y(t)∥qX dt <∞

such that

lim
i→∞

∥x− xi∥X = 0, lim
i→∞

∫ T

0
∥y(t)− yi(t)∥qX dt = 0.

Passing to a subsequence, if necessary, we may also assume that the se-
quence (yi)i∈N converges almost everywhere to y by part (i) of Theorem 7.5.6.
Thus there is a Borel set Z ⊂ I of measure zero such that

y(t) = lim
i→∞

AS(t)xi for all t ∈ I \ Z.

Since A is closed and

lim
i→∞

S(t)xi = S(t)x,

this implies

S(t)x ∈ dom(A), AS(t)x = y(t) for all t ∈ I \ Z.

Since Z has measure zero, we obtain S(t)x ∈ dom(A) for all t > 0 and∫ T

0
∥AS(t)x∥qX dt =

∫ T

0
∥y(t)∥qX dt <∞.

Hence x ∈ XA,q and

lim
i→∞

∥x− xi∥A,q = lim
i→∞

∥x− xi∥X + lim
i→∞

(∫ T

0
∥y(t)−AS(t)xi∥qX dt

)1/q

= 0.

This shows that XA,q is a Banach space. That the obvious inclusions

dom(A) ↪→ XA,q, XA,q ↪→ X

are continuous follows directly from the definition of the norms. That XA,q

is dense in X follows from Lemma 7.1.16 and the fact that dom(A) ⊂ XA,q.
To prove that dom(A) is dense in XA,q, one can use part (ii), which is an
easy exercise left to the reader, and observe that the domain of the infinites-
imal generator of the restricted semigroup S(t)|XA,q

contains dom(A). This
proves parts (i) and (ii). Part (iii) follows directly from the definitions.
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To prove part (iv), assume that S is maximal q-regular, and define the
bounded linear operator

S : Lq(I,X) → W 1,q
A (I,X)

by

(S f)(t) :=

∫ t

0
S(t− s)f(s) ds

for f ∈ Lq(I,X) and 0 ≤ t ≤ T . Composing S with the bounded linear
operator

W 1,q
A (I,X) → Lq(I,X) : x 7→ ẋ−Ax

we obtain a bounded linear operator

T : W 1,q
A (I,X) → W 1,q

A (I,X)

given by

(T x)(t) :=

∫ t

0
S(t− s)

(
ẋ(s)−Ax(s)

)
ds

for x ∈ W 1,q
A (I,X) and 0 ≤ t ≤ T . For x ∈ C1(I, dom(A)) and 0 ≤ t ≤ T

we obtain from Lemma 7.1.14 the equation

(T x)(t)− x(t) = S(t)x(0).

This implies the inequality

∥x(0)∥A,q ≤ ∥S(·)x(0)∥W 1,q
A

≤
(
1 + ∥T ∥

)
∥x∥W 1,q

A

for all x ∈ C1(I, dom(A)). Since C1(I, dom(A)) is dense in W 1,q
A (I,X), this

inequality continues to hold for all x ∈ W 1,q
A (I,X). Similar estimates, with

a constant independent of t, for all the evaluation maps

W 1,q
A (I,X) → XA,q : x 7→ x(t)

can be obtained by shortening the interval for 0 ≤ t ≤ T/2 and in addition
reversing time for T/2 ≤ t ≤ T . Here one must use the fact that in the
definition of the norm (7.6.18) on the space XA,q, the number T can be
chosen arbitrarily. Different choices of T give rise to equivalent norms. This
proves part (iv). Part (v) follows directly from part (iv) and this completes
the proof of Lemma 7.6.10. □

The preceding discussion sets up a general abstract framework for suit-
able Banach spaces of initial conditions and solutions for linear Cauchy
problems. Under the assumption of maximal q-regularity these spaces can
be used to obtain well-posed Cauchy problems for PDEs with nonlinearities
in the highest order terms (see Remark 7.6.14 below).
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7.6.5. Regularity in Hilbert Spaces. For self-adjoint semigroups on
Hilbert spaces maximal q-regularity is easy to verify for q = 2.

Theorem 7.6.11. Every self-adjoint semigroup on a Hilbert space is
maximal 2-regular.

Proof. Let H be a Hilbert space and let S : [0,∞) → L(H) be a strongly
continuous semigroup of self-adjoint operators with infinitesimal genera-
tor A : dom(A) → H. Then, by Theorem 7.3.4, we have

(7.6.21) ω := sup
x∈dom(A)\{0}

⟨x,Ax⟩H
∥x∥2H

<∞.

Let V ⊂ H be the completion of dom(A) with respect to the norm

(7.6.22) ∥x∥V :=
√

⟨x, cx−Ax⟩, c := ω + 1.

Now let x0 ∈ dom(A), let f : [0, T ] → H be a continuously differentiable
function, and define the function x : [0, T ] → H by

(7.6.23) x(t) := S(t)x0 +

∫ t

0
S(t− s)f(s) ds for 0 ≤ t ≤ T.

Then x(t) ∈ dom(A) for all t and the function x : [0, T ] → H is continu-
ously differentiable and satisfies ẋ(t) = Ax(t) + f(t) for all t (Lemma 7.1.14).

Thus the function t 7→ 1
2 ∥x(t)∥

2
V is continuously differentiable and

d

dt

1

2
∥x(t)∥2V = ⟨ẋ(t), cx(t)−Ax(t)⟩H

= ⟨f(t) +Ax(t), cx(t)−Ax(t)⟩H
≤ ∥f(t)∥H ∥cx(t)∥H + ∥Ax(t)∥H ∥cx(t)∥H
+ ∥f(t)∥H ∥Ax(t)∥H − ∥Ax(t)∥2H

≤ 3

2
∥f(t)∥2H +

3c2

2
∥x(t)∥2H − 1

2
∥Ax(t)∥2H .

Integrate this inequality over the interval [0, T ] to obtain

∥x(T )∥2V +

∫ T

0
∥Ax(t)∥2H dt ≤ ∥x0∥2V + 3

∫ T

0

(
∥f(t)∥2H + c2 ∥x(t)∥2H

)
dt.

Now take x0 = 0 and define cT := (2ω)−1(e2ωT − 1) when ω ̸= 0 and cT := T

when ω = 0. Then
∫ T
0 ∥x(t)∥2H dt ≤ TcT

∫ T
0 ∥f(t)∥2H dt and so∫ T

0
∥Ax(t)∥2H dt ≤ 3

(
1 + c2TcT

) ∫ T

0
∥f(t)∥2H dt.

This proves Theorem 7.6.11. □



438 7. Semigroups of Operators

Remark 7.6.12. Let A and ω be as in the proof of Theorem 7.6.11.
Let B : dom(B) → H be the unique self-adjoint operator with ⟨x,Bx⟩ ≥ 0
for all x ∈ dom(B) that satisfies B2 = ω1l−A (see Exercise 6.5.8). Then
the space V in (7.6.22) is the domain of B, equipped with the graph norm
of B. Moreover, V agrees with the space XA,2 in (7.6.17) and hence there is

a canonical inclusion W 1,2
A (I,H) ↪→ C(I, V ) (see part (iv) of Lemma 7.6.10).

Remark 7.6.13. For parabolic (second order) equations in an Lp-space,
the question of finding the space of initial conditions that give rise to solu-
tions inW 1,q(I, Lp) ∩ Lq(I,W 2,p) has been studied by many mathematicians
(see [11, 12, 32, 46, 63, 64, 84, 85]). For the heat equation a theorem
of Grigor’yan–Liu [32], which is based on work of Triebel [84, 85], asserts
that the initial conditions in the Besov space

Bs,p
q (Rn), s = 2− 2

q
,

give rise to solutions in the space

W 1,q,p :=W 1,q([0, T ], Lp(Rn)) ∩ Lq([0, T ],W 2,p(Rn)).

For p = q = 2 the relevant Besov space is the Hilbert spaceW 1,2(Rn) and the
proof reduces to the simple abstract argument in Theorem 7.6.11. For p ̸= 2
the Grigor’yan–Liu Theorem is a deep result which goes far beyond the
scope of the present book. Another exposition is given in [76].

Remark 7.6.14. One reason for the importance of such results is that
one can reformulate the existence and uniqueness problem for nonlinear
parabolic equations of the form

(7.6.24) ∂tu = ∆u+ f(u), u(0, ·) = u0,

as a fixed point problem for the map W 1,q,p → W 1,q,p : u 7→ F(u) given by

(7.6.25) (F(u))(t) := S(t)u0 +

∫ t

0
S(t− s)f(u(s)) ds.

Here S : [0,∞) → L(Lp(Rn)) is the heat semigroup and f can be a map from
W 2,p(Rn) to Lp(Rn). Thus one can deal with nonlinearities in the highest
order terms. Moreover, by standard regularity arguments, one can replace
the Laplace operator by a general second order elliptic operator. In this
situation it is sometimes important to choose p > n/2 to obtain the relevant
nonlinear estimates, and so the easy case p = 2 may not suffice. Many
important geometric PDEs, such as the Ricci flow, the mean curvature flow,
the Yang-Mills flow, the harmonic map flow, or the Donaldson geometric flow
for symplectic four-manifolds [51, 52] can be formulated in this manner.
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7.7. Problems

Exercise 7.7.1 (Semigroups on Complex Banach Spaces). Let X
be a complex Banach space and let A : dom(A) → X be the infinitesimal
generator of a strongly continuous semigroup S : [0,∞) → L(X). Suppose
that dom(A) is a complex subspace of X and that A is complex linear. Prove
that S(t) ∈ Lc(X) for all t ≥ 0. Hint: Define the operator T (t) ∈ L(X) by

T (t)x := −iS(t)ix

for x ∈ X and t ≥ 0. Show that T is a strongly continuous semigroup with
infinitesimal generator A and use Corollary 7.2.3.

Exercise 7.7.2 (Contraction Semigroups). Let X be a complex Ba-
nach space and let A : dom(A) → X be a complex linear operator with a
dense domain dom(A) ⊂ X. Consider the following conditions.

(i) A generates a contraction semigroup.

(ii) A has a closed graph and both A and A∗ are dissipative.

Prove that (ii) implies (i). If X is reflexive prove that (i) is equivalent
to (ii). Find an example of an operator on a nonreflexive Banach space that
satisfies (i) but not (ii). Hint: Definition 7.2.10.

Exercise 7.7.3 (Dual Semigroup). Prove that the domain of the in-
finitesimal generator A of the group on L1(R) in Example 7.3.3 is the space
of absolutely continuous real valued functions on R with integrable deriv-
ative. Prove that the domain of the dual operator A∗ on L∞(R) is the
space of bounded Lipschitz continuous functions from R to itself. Prove
that σ(A) = σ(A∗) = iR. Prove that the operator A∗ does not satisfy the
requirements of the Hille–Yosida–Phillips Theorem 7.2.5 because its domain
is not dense.

Exercise 7.7.4 (Infinitesimal Generators of Unitary Groups).
LetH be a complex Hilbert space and let A : dom(A) → H be an unbounded
complex linear operator with a dense domain dom(A) ⊂ H. Prove that the
following are equivalent.

(i) If λ ∈ R \ {0} then λ1l−A is bijective and
∥∥(λ1l−A)−1

∥∥ ≤ |λ|−1.

(ii) If λ ∈ C \ iR then λ1l−A is bijective and
∥∥(λ1l−A)−1

∥∥ ≤ |Reλ|−1.

(iii) dom(A∗) = dom(A) and A∗x+Ax = 0 for all x ∈ dom(A).

Hint: Each of these conditions is equivalent to the assertion that A gen-
erates a unitary group, by Theorem 7.2.11 and Theorem 7.3.6. The exer-
cise is to establish their equivalence without using semigroup theory. Show
that (i) =⇒ (iii) =⇒ (ii) =⇒ (i).
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Exercise 7.7.5 (The Sobolev Space W 1,2(R)). Prove that the space
of smooth functions f : R → R with compact support and mean value zero
is dense in L2(R). Deduce that the completion of C∞

0 (R) with respect to the
norm f 7→ ∥f ′∥L2 in Example 7.1.7 can be identified with the space of equiv-

alence classes of absolutely continuous functions f : R → R with df
dx ∈ L2(R)

under the equivalence relation f1 ∼ f2 iff f1 − f2 is constant.

Exercise 7.7.6 (Maximal Regularity). Let S : [0,∞) → L(X) be a
strongly continuous semigroup on a Banach space X with infinitesimal gen-
erator A and let q > 1. If the estimate (7.6.11) holds for some T > 0, prove
that it holds for all T > 0 with a constant depending on T .

Exercise 7.7.7 (The Banach Space Lp(I,X) and its Dual).

(a) Verify the assertions of Theorem 7.5.6 for p = ∞.

(b) Verify the assertions of Lemma 7.5.15 for p = 1 and p = ∞.

(c) Prove that the composition (7.5.27) in the proof of Corollary 7.5.17 is
the canonical inclusion ι : Lp(I,X) → Lp(I,X)∗∗.

Exercise 7.7.8 (The Radon–Nikodým Property). Let I := [0, 1] be
the unit interval and 1 ≤ p ≤ ∞. Define the function f : [0, 1] → Lp(I) by

(f(t))(s) :=

{
1, if 0 ≤ s ≤ t,
0, if t < s ≤ 1,

for s, t ∈ I.

When p = ∞, prove that f is everywhere discontinuous. When 1 < p <∞,
prove that f is Hölder continuous. When p = 1, prove that f is Lipschitz
continuous and nowhere differentiable. Deduce that L1(I) is not isomorphic
to the dual space of any Banach space. Hint: Theorem 7.5.13.

Exercise 7.7.9 (Lebesgue Differentiation). Let X be a Banach
space and let f : I := [0, 1] → X be a strongly measurable function such

that
∫ 1
0 ∥f(t)∥ dt <∞. Define the function F : [0, 1] → X by

F (t) :=

∫ t

0
f(s) ds for 0 ≤ t ≤ 1.

Prove that F is absolutely continuous and that there is a Borel set Z ⊂ I of
Lebesgue measure zero such that F is differentiable on I \ Z and

F ′(t) = lim
h→0

F (t+ h)− F (t)

h
= f(t) for every t ∈ I \ Z.

Hint: The proof of the Lebesgue Differentiation Theorem in [75, Thm 6.14]
carries over verbatim to Banach space valued functions.

Exercise 7.7.10 (Bounded Lipschitz Continuous Functions).

Prove that the closure of the space of bounded Lipschitz continuous functions
in L∞(R) is the space of bounded uniformly continuous functions on R.
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Exercise 7.7.11 (Weak and Strong Continuity). Let X be a real
Banach space and let S : [0,∞) → L(X) be a one-parameter semigroup.
Prove that the following are equivalent.

(i) The function [0,∞) → X : t 7→ S(t)x is continuous for all x ∈ X.

(ii) The function [0,∞) → R : t 7→ ⟨x∗, S(t)x⟩ is continuous for all x ∈ X
and all x∗ ∈ X∗.

Hint: To prove that (ii) implies (i), show first that

(7.7.1) sup
0≤t≤T

∥S(t)∥ <∞ for all T > 0,

using the Uniform Boundedness Theorem 2.1.1. Second, use part (iii) of
Theorem 7.5.2 and Lemma 7.5.5 to prove that

(7.7.2) lim
h→0
h>0

∫ T−h

0
∥S(t+ h)x− S(t)x∥ dt = 0.

Third, fix a constant ε > 0, define

M := sup
0≤s≤ε

∥S(s)∥ ,

prove the estimate

(7.7.3) ∥S(t+ h)x− S(t)x∥ ≤ M

ε

∫ t

t−ε
∥S(s+ h)x− S(s)x∥ ds

for x ∈ X and 0 < |h| < ε < t/2, and use this estimate to show that the
function [0,∞) → X : t 7→ S(t)x is continuous for t > 0. Fourth, prove that

(7.7.4) lim
t→0

∥S(t)x− x∥ = 0

for all x ∈ X, by observing that x belongs to the closure of the linear
subspace

Z := span
{
S(t)x

∣∣ 0 < t < 1
}

and using limt→0 ∥S(t)z − z∥ = 0 for all z ∈ Z.

Exercise 7.7.12 (Regularity of Weak Solutions).

Let X be a Banach space and let S : [0,∞) → L(X) be a strongly continu-
ous semigroup with infinitesimal generator A : dom(A) → X. Let I := [0, T ]

and f ∈ L1(I,X) and define x(t) :=
∫ t
0 S(t− s)f(s) ds for 0 ≤ t ≤ T .

(a) If f ∈W 1,1(I,X), prove that x ∈W 1,1(I,X).

(b) If f(t) ∈ dom(A) for all t and Af ∈ L1(I,X), prove that x ∈W 1,1(I,X).

Hint: For part (a) use Lemma 7.1.14 and approximation. For part (b)
assume first that Af : I → X is continuous and then use approximation.
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Exercise 7.7.13 (Semigroups and Compact Operators).

Let I = [0, 1] be the unit interval, let U,X, Y be real Banach spaces, and
let [0,∞) → L(X) : t 7→ S(t) be a strongly continuous semigroup.

(a) Let I → L(X,Y ) : t 7→ K(t) be a strongly continuous family of opera-
tors. Prove that the operator

(7.7.5) X → C(I, Y ) : x 7→ K(·)x

is compact if and only if the operator K(t) ∈ L(X,Y ) is compact for ev-
ery t ∈ I and the map K : I → L(X,Y ) is continuous with respect to the
operator norm on L(X,Y ). Hint: Consider the set F ⊂ C(I, Y ) whose
elements are the functions fx := K(·)x for all x ∈ X with ∥x∥ ≤ 1. Prove
that F is equi-continuous if and only if the map K : I → L(X,Y ) is con-
tinuous with respect to the operator norm. Use Theorem 1.1.11.

(b) For t ∈ I let K(t) ∈ L(X,Y ) be a compact operator and suppose that
the function K : I → L(X,Y ) is continuous with respect to the norm topol-
ogy. Prove that the operator

(7.7.6) L1(I,X) → Y : f 7→
∫ 1

0
K(t)f(t) dt

is compact. Hint: Show first that the function I → Y : t 7→ K(t)f(t) is
strongly measurable whenever f : I → X is strongly measurable. Second,
use part (a) to prove that the operator Y ∗ → C(I,X∗) : y∗ 7→ K∗(·)y∗ is
compact. Third, show that the composition of this operator with the canon-
ical isometric inclusion C(I,X∗) → L1(I,X)∗ (Lemma 7.5.15) is the dual
operator of (7.7.6). Then use Theorem 4.2.10.

(c) Let B ∈ L(U,X) be a compact operator. Prove that the operator

(7.7.7) L1(I, U) → X : f 7→
∫ 1

0
S(t)Bf(t) dt

is compact. Hint: Show that the map I → L(U,X) : t 7→ S(t)B is continu-
ous in the norm topology and use part (b).

(d) Let C ∈ L(X,Y ) be a compact operator. If X is reflexive, prove that
the operator

(7.7.8) X → C(I, Y ) : x 7→ CS(·)x

is compact. Find an example of a semigroup on a nonreflexive Banach
space X and a compact operator C : X → Y such that the operator (7.7.8)
is not compact. Hint: Consider the shift semigroup on X = L1([0, 1]) and

let C : X → R be the bounded linear functional x 7→
∫ 1
0 x(t) dt. Relate this

to the fact that the inclusion ofW 1,1(I) into C(I) is not a compact operator.
(See Exercise 4.5.16.)
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Exercise 7.7.14 (Semigroups and Functional Calculus).

Let H be a complex Hilbert space, let A : dom(A) → H be an unbounded
self-adjoint operator on H with spectrum

Σ := σ(A) ⊂ (−∞, 0],

and let ΨA : Cb(Σ) → Lc(H) be the functional calculus in Theorem 6.4.1.
Let B ⊂ 2Σ be the Borel σ-algebra and, for x, y ∈ H, define the signed Borel
measure µx,y : B → R by µx,y(Ω) := Re⟨x,ΨA(χΩ)y⟩ for all Ω ∈ B as in Def-
inition 6.4.3 and Theorem 6.4.4. For z ∈ C with Re(z) ≥ 0 define the linear
operator S(z) ∈ Lc(H) by

(7.7.9) Re⟨x, S(z)y⟩ :=
∫
Σ
ezλdµx,y(λ)

for x, y ∈ H (see Theorem 5.6.2).

(a) Verify that S(z) = ΨA(fz) for all z ∈ C with Re(z) ≥ 0, where the func-
tion fz : Σ → C is defined by fz(λ) := eλz for λ ∈ Σ.

(b) Verify the formulas S(0) = id and S(z + w) = S(w)S(z) for all w, z ∈ C
with Re(z) ≥ 0 and Re(w) ≥ 0.

(c) Show that the map z 7→ S(z) is continuous in the norm topology on
the open right half plane and is strongly continuous on the closed right
half-plane.

(d) Show that the map z 7→ S(z) is the analytic semigroup generated by A
(see Example 7.4.5 and Theorem 7.4.4).

(e) Show that the map R → Lc(H) : t 7→ S(it) is the unitary group gener-
ated by iA (see Theorem 7.3.6).

(f) By considering the Laplace operator on Rn, deduce from (e) that the heat
equation in Example 7.1.6 and the Schrödinger equation in Example 7.3.8
(adapted to dimension n) fit into a single strongly continuous semigroup on
the right half-plane.





Appendix A

Zorn and Tychonoff

This appendix establishes the equivalence of the Axiom of Choice and the
Lemma of Zorn and gives a self-contained proof of Tychonoff’s Theorem.

A.1. The Lemma of Zorn

Our proof of the equivalence of the Axiom of Choice and the Lemma of Zorn
follows the exposition by Imre Leader [56] and is based on the Bourbaki–Witt
Fixed Point Theorem. Here are some basic definitions.

Definition A.1.1. A relation ≼ on a set P is called a partial order if
it is reflexive, anti-symmetric, and transitive, i.e. if it satisfies the conditions

• p ≼ p,

• if p ≼ q and q ≼ p then p = q,

• if p ≼ q and q ≼ r then p ≼ r

for all p, q, r ∈ P . A partially ordered set is a pair (P,≼) consisting of a
set P and a partial order ≼ on P .

Definition A.1.2. Let (P,≼) be a partially ordered set.

(i) An element m ∈ P is called maximal if m ̸≼ p for all p ∈ P \ {m}.

(ii) A chain in P is a totally ordered subset C ⊂ P , i.e. any two distinct
elements p, q ∈ C satisfy either p ≼ q or q ≼ p.

(iii) Let C ⊂ P be a nonempty chain. An element a ∈ P is called an upper
bound of C if every element p ∈ C satisfies p ≼ a. It is called a supre-
mum of C if it is an upper bound of C and every upper bound b ∈ P of C
satisfies a ≼ b. The supremum, if it exists, is unique and denoted by supC.

445
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The Lemma of Zorn. Let (P,≼) be a partially ordered set such that every
nonempty chain C ⊂ P admits an upper bound. Let p ∈ P . Then there
exists a maximal element m ∈ P such that p ≼ m.

The Axiom of Choice. Let I and X be two nonempty sets and, for
each element i ∈ I, let Xi ⊂ X be a nonempty subset. Then there exists a
map g : I → X such that every i ∈ I satisfies g(i) ∈ Xi.

Theorem A.1.3. The Axiom of Choice is equivalent to the Lemma of
Zorn.

Proof. See page 448. □

Theorem A.1.4 (Bourbaki–Witt). Let (P,≼) be a nonempty partially
ordered set such that every nonempty chain C ⊂ P admits a supremum and
let f : P → P be a map such that

p ≼ f(p) for all p ∈ P.

Then there exists an element p ∈ P such that f(p) = p.

Proof. Fix any element p0 ∈ P and denote by A ⊂ 2P be the set of all
subsets A ⊂ P that satisfy the following three conditions.

(I) p0 ∈ A.

(II) If p ∈ A then f(p) ∈ A.

(III) If C ⊂ A is a nonempty chain then supC ∈ A.

Then A is nonempty because P ∈ A. Now let

E :=
⋂
A∈A

A ⊂ P

be the intersection of all subsets A ∈ A. Then the set E also satisfies
the conditions (I), (II), and (III) and hence is itself an element of A. In
particular, E is nonempty. We prove in five steps that E is a chain.

Step 1. Every element p ∈ E satisfies p0 ≼ p.

The set P0 := {p ∈ P | p0 ≼ p} satisfies the conditions (I), (II), and (III),
and hence is an element of A. Thus E ⊂ P0 and this proves Step 1.

Step 2. Let F ⊂ E be the subset

F :=

{
q ∈ E

∣∣∣∣ every element p ∈ E \ {q}
with p ≼ q also satisfies f(p) ≼ q

}
.

Then p0 ∈ F .

By Step 1 there is no element p ∈ E \ {p0} with p ≼ p0. Hence p0 ∈ F .
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Step 3. Let p ∈ E and q ∈ F . Then p ≼ q or f(q) ≼ p.

Fix an element q ∈ F and consider the set

Eq :=
{
p ∈ E

∣∣ p ≼ q
}
∪ {p ∈ E | f(q) ≼ p} .

We will prove that Eq ∈ A. Since q ∈ F ⊂ E we have p0 ≼ q by Step 1.
Since p0 ∈ E, this implies p0 ∈ Eq and so Eq satisfies condition (I).

We prove that Eq satisfies (II). Fix an element p ∈ Eq. Then f(p) ∈ E
because E satisfies (II). If p ≼ q and p ̸= q then f(p) ≼ q, because q is an
element of F , and this implies f(p) ∈ Eq. If p = q then f(q) ≼ f(p) and this
implies f(p) ∈ Eq. If p ̸≼ q then we must have f(q) ≼ p, because p ∈ Eq,
and this implies again f(q) ≼ f(p) and therefore f(p) ∈ Eq. This shows
that Eq satisfies condition (II).

We prove that Eq satisfies (III). Thus let C ⊂ Eq be a nonempty chain
and s := supC. Then s ∈ E because E satisfies (III). If p ≼ q for all p ∈ C
then s ≼ q und therefore s ∈ Eq. Otherwise there exists an element p ∈ C
with p ̸≼ q. Since p ∈ Eq, we must have f(q) ≼ p ≼ s and therefore s ∈ Eq.
This shows that Eq satisfies condition (III).

Thus we have proved that Eq ∈ A and thus E ⊂ Eq, by definition of the
set E. This proves Step 3.

Step 4. F = E.

We will prove that F ∈ A. By Step 2 we have p0 ∈ F and so F satisfies (I).

We prove that F satisfies (II). Fix an element q ∈ F . We must prove
that f(q) ∈ F . To see this, note first that f(q) ∈ E because E satisfies (II).
Now let p ∈ E \ {f(q)} with p ≼ f(q). Under these assumptions we must
show that f(p) ≼ f(q). Since f(q) ̸≼ p, we have p ≼ q by Step 3. If p ̸= q
then it follows from the definition of F that f(p) ≼ q ≼ f(q). If p = q then
we also have f(p) ≼ f(q). Thus we have shown that f(p) ≼ f(q) for every el-
ement p ∈ E \ {f(q)} with p ≼ f(q). Hence f(q) ∈ F and this shows that F
satisfies condition (II).

We prove that F satisfies (III). Let C ⊂ F be a nonempty chain and
define s := supC. We must prove that s ∈ F . To see this, note first
that s ∈ E because E satisfies (III). Now let p ∈ E \ {s} with p ≼ s. Under
these assumptions we must show that f(p) ≼ s. Since s ̸= p, we have s ̸≼ p.
Thus there exists an element q ∈ C with q ̸≼ p, and hence also f(q) ̸≼ p.
Since q ∈ C ⊂ F , this implies p ≼ q by Step 3. Since p ̸= q and q ∈ F , this
implies f(p) ≼ q. Since q ∈ C and s = supC, this implies f(p) ≼ s. Thus
we have proved that s ∈ F and so F satisfies condition (III).

Thus we have proved that F ∈ A, hence E ⊂ F , and therefore E = F .
This proves Step 4.
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Step 5. E is a chain.

Let p, q ∈ E. Then q ∈ F by Step 4, and so p ≼ q or f(q) ≼ p by Step 3.
Thus p ≼ q or q ≼ p and this proves Step 5.

By Step 5, the set E has a supremum s := supE ∈ P . Since E sat-
isfies condition (III) we have s ∈ E. Since E also satisfies (II), this im-
plies f(s) ∈ E and hence f(s) ≼ s. Since s ≼ f(s) by assumption, we
have f(s) = s and this proves Theorem A.1.4. □

We remark that the Lemma of Zorn implies the existence of a maximal
element m ∈ P under the assumptions of Theorem A.1.4, and that any such
maximal element must be a fixed point of f . However, the above proof of
the Bourbaki–Witt Theorem does not use the Lemma of Zorn (nor does it
use the Axiom of Choice) and so the result can be used to show that the
Axiom of Choice implies the Lemma of Zorn.

Proof of Theorem A.1.3. First assume the Lemma of Zorn. Let I and X
be nonempty sets and, for each i ∈ I, let Xi ⊂ X be a nonempty subset, as
in the assumptions of the Axiom of Choice. Define

P :=

{
(J, g)

∣∣∣∣ ∅ ≠ J ⊂ I, g : J → X,
g(i) ∈ Xi for all i ∈ J

}
.

This set is partially ordered by the relation

(J, g) ≼ (K,h)
def⇐⇒ J ⊂ K and h|J = g

for (J, g), (K,h) ∈ P. It is nonempty, because each pair (i0, x0) with i0 ∈ I
and x0 ∈ Xi0 determines a pair (J0, g0) ∈ P with J0 := {i0}, g0(i0) := x0.
Moreover, each nonempty chain C ⊂ P has a supremum

(K,h) = supC ∈ P

given by

K :=
⋃

(J,g)∈C

J, h(i) := g(i) for (J, g) ∈ C and i ∈ J.

Hence it follows from the Lemma of Zorn that there exists a maximal ele-
ment (J, g) ∈ P. This element must satisfy J = I. Otherwise J ⊊ I, hence
there exists an element i0 ∈ I \ J and an element x0 ∈ Xi0 , and then the
pair (K,h) ∈ P with

K := J ∪ {i0}, h(i) :=

{
g(i), if i ∈ J,
x0, if i = i0,

for i ∈ K,

satisfies (J, g) ≼ (K,h) and (J, g) ̸= (K,h), in contradiction to maximality.
This shows that there exists a map g : I → X that satisfies g(i) ∈ Xi for
all i ∈ I, and so the Axiom of Choice holds.
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Conversely, assume the Axiom of Choice. Under this assumption we
prove the Lemma of Zorn in two steps.

Step 1. Let (P,≼) be a nonempty partially ordered set such that every
nonempty chain C ⊂ P has a supremum. Then P has a maximal element.

Assume, by contradiction, that P does not have a maximal element. Then
the set

S(p) := {q ∈ P | p ≼ q, p ̸= q} ⊂ P

is nonempty for every element p ∈ P . Hence the Axiom of Choice asserts
that there exists a map f : P → P such that f(p) ∈ S(p) for every p ∈ P .
This map f satisfies the condition

p ≼ f(p) for all p ∈ P

but does not have a fixed point, in contradiction to Theorem A.1.4. This
contradiction shows that our assumption, that P does not have a maximal
element, must have been wrong. This proves Step 1.

Step 2. Let (P,≼) be a partially ordered set such that every nonempty
chain C ⊂ P admits an upper bound. Let p ∈ P . Then there exists a maxi-
mal element m ∈ P with p ≼ m.

Let P ⊂ 2P be the set of all chains C ⊂ P that contain the point p. Then P
is a nonempty set, partially ordered by inclusion. Now let C ⊂ P be a
nonempty chain in P and define the set

S :=
⋃
C∈C

C.

This set contains the point p and we claim that it is a chain in P . To see this,
let p0, p1 ∈ S and choose chains C0, C1 ∈ C such that p0 ∈ C0 and p1 ∈ C1.
Since C is a chain we have C0 ⊂ C1 or C1 ⊂ C0. Hence C := C0 ∪ C1 ∈ C
is a chain in P that contains both p0 and p1, and thus p0 ≼ p1 or p1 ≼ p0.
This shows that S is an element of P and therefore is the supremum of the
chain of chains C ⊂ P. Thus we have proved that every nonempty chain
in P has a supremum. Hence Step 1 asserts that there exists a maximal
chainM ⊂ P that contains the point p. Letm ∈ P be an upper bound ofM .
Then p ≼ m. Moreover, m is a maximal element of P , because otherwise
there would exist an element q ∈ P with m ≼ q and m ̸= q, so q /∈M , and
then M ′ :=M ∪ {q} would be a larger chain containing p, in contradiction
to the maximality of M . This proves Step 2 and Theorem A.1.3. □
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A.2. Tychonoff’s Theorem

The purpose of this appendix is to state and prove Tychonoff’s Theorem.
It plays a central role in the proof of the Banach–Alaoglu Theorem for non-
separable Banach spaces (Theorem 3.2.4).

Theorem A.2.1 (Tychonoff). Let I be any set and, for each i ∈ I,
let Ki be a compact topological space. Then the product

K :=
∏
i∈I

Ki =
{
x = (xi)i∈I

∣∣xi ∈ Ki for all i ∈ I
}

is compact with respect to the product topology (i.e. the weakest topology on K
such that the obvious projection πi : K → Ki is continuous for every i ∈ I).

Proof. See page 451. □

The proof of Theorem A.2.1 uses the characterization of compactness in
terms of the finite intersection property in part (i) of Remark A.2.3 below.

Definition A.2.2. Let K be a set. A collection A ⊂ 2K of subsets of K
is said to have the finite intersection property if

A ≠ ∅
and

n ∈ N, A1, . . . , An ∈ A =⇒ A1 ∩ · · · ∩An ̸= ∅.
A collection A ⊂ 2K with the finite intersection property is called maximal
if every collection B ⊂ 2K that has the finite intersection property and
contains A is equal to A.

The significance of this definition rests on the following observations.

Remark A.2.3. (i) A topological space K is compact if and only if every
collection A ⊂ 2K of closed subsets ofK with the finite intersection property
has a nonempty intersection, i.e. there is an element x ∈ K such that x ∈ A
for all A ∈ A.

(ii) Let K be any set and let A ⊂ 2K be a collection of subsets of K that
has the finite intersection property. Then, by the Lemma of Zorn, there
exists a maximal collection B ⊂ 2K with the finite intersection property
that contains A.

(iii) Let B ⊂ 2K be a maximal collection with the finite intersection prop-
erty. Then

n ∈ N, B1, . . . , Bn ∈ B =⇒ B1 ∩ · · · ∩Bn ∈ B
and, for every subset C ⊂ K,

C ∩B ̸= ∅ for all B ∈ B =⇒ C ∈ B.
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Proof of Theorem A.2.1. Let

K =
∏
i∈I

Ki

be a product of compact topological spaces and denote the canonical pro-
jections by πi : K → Ki for i ∈ I. Let A ⊂ 2K be a collection of closed
subsets of K that has the finite intersection property. Then, by part (ii)
of Remark A.2.3, there exists a maximal collection B ⊂ 2K of subsets of K
that has the finite intersection property and contains A. We prove that
there exists an x ∈ X such that x ∈ B for all B ∈ B. To see this, define

Bi :=
{
πi(B)

∣∣∣B ∈ B
}
⊂ 2Ki

for i ∈ I. Then Bi is a collection of closed subsets of Ki that has the
finite intersection property. Since Ki is compact, it follows from part (i) of
Remark A.2.3 that ⋂

B∈B
πi(B) ̸= ∅

for all i ∈ I. Hence it follows from the axiom of choice that there exists an
element x = (xi)i∈I ∈ K such that

xi ∈ πi(B) for all i ∈ I and all B ∈ B.
We claim that x ∈ B for every B ∈ B. To see this, let U ⊂ K be an open
set containing x. Then, by definition of the product topology, there exists a
finite set J ⊂ I and a collection of open sets Uj ⊂ Kj for j ∈ J such that

x ∈
⋂
j∈J

π−1
j (Uj) ⊂ U.

Hence

xj = πj(x) ∈ Uj ∩ πj(B) for all j ∈ J and all B ∈ B.
Since Uj is open, this implies Uj ∩ πj(B) ̸= ∅ and hence

π−1
j (Uj) ∩B ̸= ∅ for all j ∈ J and all B ∈ B.

By part (iii) of Remark A.2.3 this implies π−1
j (Uj) ∈ B for all j ∈ J . Use

part (iii) of Remark A.2.3 again to deduce that
⋂
j∈J π

−1
j (Uj) ∈ B, and hence⋂

j∈J
π−1
j (Uj) ∩B ̸= ∅ for all B ∈ B.

This shows that U ∩B ̸= ∅ for every B ∈ B and every open set U ⊂ K con-
taining x. Thus x ∈ B for all B ∈ B and therefore x ∈ A for all A ∈ A.
Hence K is compact, by part (i) of Remark A.2.3, and this proves Theo-
rem A.2.1. □
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Notation

2X , set of all subsets of a set X, 2

A, Banach algebra, 35

A∗, dual operator, 164 (real), 198 (complex), 306 (unbounded)

A∗, adjoint operator, 165 (real), 225 (complex), 313 (unbounded)

Â, space of unital algebra homomorphism Λ : A → C, 249, 293
B ⊂ 2M , Borel σ-algebra, 30

c0, space of sequences converging to zero, 29

C(M), space of continuous functions, 30

C(X,Y ), space of continuous maps, 12

coker(A), cokernel of an operator, 179

conv(S), convex hull, 120

conv(S), closed convex hull, 120

∆, Laplace operator, 298, 320

dom(A), domain of an unbounded operator, 59, 295

graph(A), graph of an operator, 59

G ⊂ A, group of invertible elements in a unital Banach algebra, 35

H, Hilbert space, 31 (real), 223 (complex)

im(A), image of an operator, 18, 179

index(A), Fredholm index, 179

ker(A), kernel of an operator, 18, 179

L(X,Y ), space of bounded linear operators, 17
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458 Notation

L(X) = L(X,X), space of bounded linear endomorphisms, 36

Lc(X,Y ), space of bounded complex linear operators, 198

Lc(X) = Lc(X,X), space of bounded complex linear endomorphisms, 198

ℓp, space of p-summable sequences, 3

ℓ∞, space of bounded sequences, 3

Lp(µ) = Lp(µ)/∼, Banach space of p-integrable functions, 4

L∞(µ) = L∞(µ)/∼, Banach space of bounded measurable functions, 4

Lp(I,X), Banach space of Banach space valued p-integrable functions, 409

(M,A, µ), measure space, 3

M(M,A), space of signed measures, 4

M(M), space of signed Borel measures, 30

M(ϕ), set of ϕ-invariant Borel probability measures, 125

ρ(A), resolvent set, 208 (bounded), 299 (unbounded)

Rλ(A) = (λ1l−A)−1, resolvent operator, 210 (bounded), 299 (unbounded)

σ(A), spectrum of an operator, 208 (bounded), 299 (unbounded)

Spec(A), spectrum of a commutative unital Banach algebra, 246

S(t), strongly continuous semigroup, 350

S⊥, orthogonal complement, 225

S⊥, annihilator, 74
⊥T , pre-annihilator, 120

U (X, d), topology of a metric space, 2

U (X, ∥·∥), topology of a normed vector space, 3

V ⊂ H ⊂ V ∗, Gelfand triple, 316

W 1,1(I), Banach space of absolutely continuous functions, 194,

W 1,p(I,C), Sobolev space on an interval I ⊂ R, 194, 297, 304, 315, 353
W 1,∞(R,C), Banach space of Lipschitz continuous functions, 297,

W 2,p(Rn,C), Sobolev space on Rn, 298, 386 (p = 2, n = 1)

W 2,2(Ω) ∩W 1,2
0 (Ω), Sobolev space and Dirichlet problem on Ω ⊂ Rn, 320

W 1,p(I,X), Sobolev space of Banach space valued functions, 423

Xc, complexification of a real vector space, 201

(X, d), metric space, 2

(X, ∥·∥), normed vector space, 3 (real), 198 (complex)

X∗ = L(X,R), dual space, 26
X∗ = Lc(X,C), complex dual space, 198
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X∗∗ = L(X∗,R), bidual space, 80
⟨x∗, x⟩, pairing of a normed vector space with its dual space, 74





Index

absolutely continuous, 413

adjoint operator, 165

complex, 225

unbounded, 313

affine hyperplane, 72

Alaoglu–Bourbaki Theorem, 156

almost everywhere, 4

annihilator, 74

left, 120

approximation property, 178

Argyros–Haydon space, 188

Arzelà–Ascoli Theorem, 13, 15, 16, 155

Atiyah–Jänich Theorem, 188

axiom of choice, 446

Bell–Fremlin Theorem, 162

axiom of countable choice, 6

axiom of dependent choice, 6, 48

Babylonian method

for square roots, 236

Baire Category Theorem, 42

Banach algebra, 35, 234

ideal, 246

semisimple, 246

Banach Hyperplane Problem, 188

Banach limit, 104

Banach space, 3

approximation property, 178

complex, 100, 198

complexified, 201

product, 25

quotient, 24

Radon–Nikodým property, 415

reflexive, 81, 134

separable, 85

strictly convex, 143

Banach–Alaoglu Theorem

general case, 126, 155

separable case, 124

Banach–Dieudonné Theorem, 130

Banach–Mazur Theorem, 158

Banach–Steinhaus Theorem, 52

basis

orthonormal, 79

Schauder, 99, 106, 178

Bell–Fremlin Theorem, 162

bidual

operator, 165

space, 80

bilinear form

continuous, 53

positive definite, 31

symmetric, 31

symplectic, 314, 345

Birkhoff’s Ergodic Theorem, 145

Birkhoff–von Neumann Theorem, 160

Borel σ-algebra, 30

Borel measurable operator, 48

bounded

bilinear map, 53

linear operator, 17

invertible, 39

pointwise, 50

Bourbaki–Witt Theorem, 446

C* algebra, 234
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462 Index

Calkin algebra, 187
Cantor function, 158
category

in the sense of Baire, 40
Cauchy integral formula, 207
Cauchy problem, 349, 363

well-posed, 363
Cauchy sequence, 2
Cauchy–Schwarz inequality, 31

complex, 222
Cayley transform, 327
Cayley–Hamilton Theorem, 291
chain, 445
closeable linear operator, 62
closed convex hull, 120
Closed Graph Theorem, 59
Closed Image Theorem, 169, 308
closed linear operator, 59
cokernel, 179
comeagre, 40
compact

subset of a topological space, 5
finite intersection property, 450
operator, 173–177
pointwise, 12
subset of a Banach space, 189
subset of a metric space, 5

compact-open topology, 154
complemented subspace, 78
complete

metric space, 3
subset of a metric space, 5

completely continuous operator, 174
completion of a metric space, 45
complexification

of a linear operator, 201
of a norm, 201
of a vector space, 201
of the dual space, 202

continuous function
vanishing at infinity, 129, 155
weakly, 404

contraction semigroup, 374
convergence

in measure, 111
weak, 114
weak*, 114

convex hull, 120
convex set

absorbing, 104
closure and interior, 73, 115

extremal point, 140
face, 140
separation, 70, 116, 123

cyclic vector, 281

deformation retract, 193
dense

linear subspace, 76
subset, 11

direct sum, 57
Dirichlet Problem, 320
dissipative operator, 374
doubly stochastic matrix, 160
dual operator, 164, 306

complex, 198
dual space, 26

complex, 198
of ℓ1, 29
of ℓp, 28
of C(M), 30
of c0, 29
of Lp(µ), 26
of a Hilbert space, 32
of a quotient, 76
of a subspace, 76

Dunford Integral, 216, 305

Eberlein–Šmulyan Theorem, 134
eigenspace

generalized, 213
eigenvalue, 208, 299
eigenvector, 208, 299
equi-continuous, 12, 16
equivalent norms, 18
ergodic

measure, 144
theorem, 148

Birkhoff, 145
von Neumann, 146

uniquely, 145
exact sequence, 195

Euler characteristic, 195
extremal point, 140

Fejér’s Theorem, 79
finite intersection property, 450
first category, 40
flow, 352
formal adjoint

of a differential operator, 64
Fourier series, 79, 103
Fredholm
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alternative, 187, 193
index, 179
operator, 179
Stability Theorem, 185
triple, 194

functional
bounded linear, 17
sublinear, 65

functional calculus
bounded measurable, 267
continuous, 240, 257
holomorphic, 217, 305
normal, 257, 267
self-adjoint, 240, 326
unbounded, 326

Gantmacher’s Theorem, 190
Gelfand representation, 249
Gelfand spectrum, 246, 293
Gelfand transform, 249, 293
Gelfand triple, 316
Gelfand–Mazur Theorem, 248, 290
Gelfand–Robbin quotient, 315, 346
graph norm, 59, 296, 361

Hahn–Banach Theorem, 65
closure of a subspace, 74
for bounded linear functionals, 67
for convex sets, 70, 116, 123
for positive linear functionals, 68

Hardy space, 239
heat

equation, 352, 403
kernel, 352, 403

Hellinger–Toeplitz Theorem, 61
Helly’s Theorem, 135, 158
Hermitian inner product, 222

on ℓ2(N,C), 224
on L2(µ,C), 224
on L2(R/Z,C), 79

Hilbert Cube, 161
Hilbert cube, 143
Hilbert space, 31

complex, 223
complexification, 223
dual space, 26
orthonormal basis, 79
separable, 79
unit sphere contractible, 193

Hille–Yosida–Phillips, 368–374
Hölder inequality, 26
holomorphic

function, 205
functional calculus, 216–221

hyperplane, 72
affine, 72

image, 18
infinitesimal generator, 357

of a contraction semigroup, 375
of a group, 366
of a self-adjoint semigroup, 382
of a shift group, 385
of a unitary group, 384
of an analytic semigroup, 393
of the dual semigroup, 377
of the heat semigroup, 403
Schrödinger operator, 386
uniqueness of the semigroup, 365
well-posed Cauchy problem, 363

inner product, 31
Hermitian, 79, 222
on L2(µ), 34

integral
Banach space valued, 203, 410
mean value inequality, 204
over a curve, 205

invariant measure, 125
ergodic, 144

inverse in a Banach algebra, 35
inverse operator, 39
Inverse Operator Theorem, 56

Jacobson radical, 246
James’ space, 86–100
James’ Theorem, 134
joint kernel, 120

K-Theory, 188
kernel, 18, 179
Krĕın–Milman Theorem, 141
Kronecker symbol, 28
Kuiper’s Theorem, 188

Lagrangian subspace, 314, 345
Laplace operator, 298, 320
linear functional

bounded, 17
positive, 68

linear operator
adjoint, 165, 225
bidual, 165
bounded, 17
closeable, 62
closed, 59
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cokernel, 179
compact, 174, 233
completely continuous, 174
complexified, 201
cyclic vector, 281
dissipative, 374
dual, 164
exponential map, 221
finite rank, 174
Fredholm, 179
image, 179
inverse, 39
kernel, 179
logarithm, 221
normal, 227, 321
positive semidefinite, 245
projection, 78, 147
right inverse, 78
self-adjoint, 165, 227, 313
singular value, 233
spectrum, 208
square root, 221, 245
symmetric, 61, 63
unitary, 227
weakly compact, 190

linear subspace
closure, 76
complemented, 78
dense, 76
dual of, 76
invariant, 288
orthogonal complement, 225
weak* closed, 130
weak* dense, 122
weakly closed, 119

Lipschitz continuous, 413
long exact sequence, 195
Lumer–Phillips Theorem, 375

Markov–Kakutani
Fixed Point Theorem, 161

maximal ideal, 246
meagre, 40
Mean Ergodic Theorem, 145
measurable function

Banach space valued, 404
strongly, 404
weakly, 404

measure
complex, 200
ergodic, 144
invariant, 125

probability, 125
projection valued, 262
pushforward, 165
signed, 4
spectral, 263

metric space, 2
compact, 5
complete, 3
completion, 45

Milman–Pettis Theorem, 156
Minkowski functional, 104

nonmeagre, 40
norm, 3

equivalent, 18
operator, 17

normal operator, 227
spectrum, 229
unbounded, 321

normed vector space, 3
dual space, 26

weak* topology, 114
product, 24
quotient, 23
strictly convex, 106
uniformly convex, 156
weak topology, 114

nowhere dense, 40

open
ball, 2
half-space, 72
map, 54
set in a metric space, 2

Open Mapping Theorem, 54
for unbounded operators, 343

operator norm, 17
ordered vector space, 68
orthogonal complement, 34

complex, 225
orthonormal basis, 79

partial order, 445
Pettis’ Lemma, 48
Pettis’ Theorem, 405
Phillips’ Lemma, 101
Pitt’s Theorem, 191
pointwise

bounded, 50
compact, 12
precompact, 12

polar set, 156
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positive cone, 68
positive linear functional, 68
pre-annihilator, 120
precompact

pointwise, 12
subset of a metric space, 5
subset of a topological space, 5

probability measure, 125
product space, 25
product topology, 110, 113, 450
projection, 78, 147

quotient space, 23
dual of, 76

Radon measure, 155
Radon–Nikodým property, 415
reflexive Banach space, 80–84, 134
residual, 40
resolvent

identity, 210, 300
for semigroups, 368

operator, 210, 299
set, 208, 299

Riemann–Lebesgue Lemma, 103
Riesz Lemma, 22
Ruston’s Theorem, 106

Schatten’s tensor product, 105
Schauder basis, 99, 106, 178
Schrödinger equation, 386
Schrödinger operator, 298
Schur’s Theorem, 121, 153
second category, 40
self-adjoint operator, 165, 227

spectrum, 231
unbounded, 313

semigroup
strongly continuous, 350

seminorm, 65
separable

Banach space, 85
Hilbert space, 79
topological space, 11

signed measure, 4
total variation, 333

simplex
infinite-dimensional, 143

singular value, 233
Šmulyan–James Theorem, 159
Snake Lemma, 195
Sobolev space, 423

spectral
measure, 263, 332
projection, 215, 305
radius, 37, 39, 211

Spectral Mapping Theorem
bounded linear operators, 217
normal operators, 267
self-adjoint operators, 240, 326
unbounded operators, 326

Spectral Theorem, 281
spectrum, 208

continuous, 208, 299
in a unital Banach algebra, 246
of a commutative algebra, 246
of a compact operator, 213
of a normal operator, 229, 324
of a self-adjoint operator, 231
of a unitary operator, 229
of an unbounded operator, 299
point, 208, 299
residual, 208, 299

square root, 245, 344
Babylonian method, 236

Stone’s Theorem, 384
Stone–Weierstraß

Theorem, 236, 289, 290
strictly convex, 106, 143, 160
strong convergence, 52
strongly continuous semigroup, 350

analytic, 388–403
contraction, 374
dual semigroup, 377
extension to a group, 366
heat kernel, 352, 403
Hille–Yosida–Phillips, 368
infinitesimal generator, 357
on a Hilbert space, 351
regularity problem, 429
Schrödinger equation, 386
self-adjoint, 382
shift operators, 351, 385
unitary group, 384
well-posed Cauchy problem, 363

sublinear functional, 65
symmetric linear operator, 61, 165
symplectic

form, 314, 345
reduction, 345
vector space, 314, 345

tensor product, 105
topological vector space, 110
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locally convex, 110
topology, 2

compact-open, 154
of a metric space, 2
of a normed vector space, 3
product, 110, 113, 450
strong, 110, 114
strong operator, 52
uniform operator, 17
weak, 114
weak*, 114

total variation
of a signed measure, 333

totally bounded, 5
triangle inequality, 2, 31
trigonometric polynomial, 290
Tychonoff’s Theorem, 450

unbounded operator, 295
densely defined, 295
normal, 321
self-adjoint, 313
spectral projection, 305
spectrum, 299, 324
with compact resolvent, 302

Uniform Boundedness Theorem, 50
unitary operator, 227

spectrum, 229

vector space
complex normed, 198
complexificatioon, 201
normed, 3
ordered, 68
topological, 110

Volterra operator, 291
von Neumann’s

Mean Ergodic Theorem, 146

wave equation, 353, 387
weak

compactness, 134–139
continuity, 404
convergence, 114
measurability, 404
topology, 114, 119–121

weak*
compactness, 126, 127
convergence, 114
sequential closedness, 127
sequential compactness, 124, 127
topology, 114, 122–123, 130–133

weakly compact, 190
winding number, 216

Zorn’s Lemma, 446
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