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Preface

These are notes for the lecture course “Functional Analysis I” held by the
second author at ETH Ziirich in the fall semester 2015. Prerequisites are
the first year courses on Analysis and Linear Algebra, and the second year
courses on Complex Analysis, Topology, and Measure and Integration.

The material of Section [1.4] on elementary Hilbert space theory, Sub-
section [5.4.2] on the Stone—Weierstrafl Theorem, and the appendix on the
Lemma of Zorn and Tychonoff’s Theorem was not covered in the lectures.
These topics were assumed to have been covered in previous lecture courses.
They are included here for completeness of the exposition.

The material of Subsection [2.4.4) on the James space, Section [5.5 on the
functional calculus for bounded normal operators, and Chapter [ on un-
bounded operators was not part of the lecture course (with the exception of
some of the basic definitions in Chapter [] that are relevant for infinitesimal
generators of strongly continuous semigroups). From Chapter m only the
basic material on strongly continuous semigroups in Section on their
infinitesimal generators in Section and on the dual semigroup in Sec-
tion [7.3] were included in the lecture course.

28 February 2018 Theo Biihler

Dietmar A. Salamon
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Introduction

Classically, functional analysis is the study of function spaces and linear
operators between them. The relevant function spaces are often equipped
with the structure of a Banach space and many of the central results re-
main valid in the more general setting of bounded linear operators between
Banach spaces or normed vector spaces, where the specific properties of
the concrete function space in question only play a minor role. Thus, in the
modern guise, functional analysis is the study of Banach spaces and bounded
linear operators between them, and this is the viewpoint taken in the present
book. This area of mathematics has both an intrinsic beauty, which we hope
to convey to the reader, and a vast number of applications in many fields of
mathematics. These include the analysis of PDEs, differential topology and
geometry, symplectic topology, quantum mechanics, probability theory, geo-
metric group theory, dynamical systems, ergodic theory, and approximation
theory, among many others. While we say little about specific applications,
they do motivate the choice of topics covered in this book, and our goal is
to give a self-contained exposition of the necessary background in abstract
functional analysis for many of the relevant applications.

The book is addressed primarily to third year students of mathematics
or physics, and the reader is assumed to be familiar with first year analysis
and linear algebra, as well as complex analysis and the basics of point set
topology and measure and integration. For example, this book does not
include a proof of completeness and duality for LP spaces.

There are naturally many topics that go beyond the scope of the present
book, such as Sobolev spaces and PDEs, which would require a book on
its own and, in fact, very many books have been written about this sub-
ject; here we just refer the interested reader to [19), 28, [30]. We also
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xii Introduction

restrict the discussion to linear operators and say nothing about nonlinear
functional analysis. Other topics not covered include the Fourier transform
(see [2, 48, [79]), maximal regularity for semigroups (see [76]), the space
of Fredholm operators on an infinite-dimensional Hilbert space as a clas-
sifying space for K-theory (see [5, 6, 7, [42]), Quillen’s determinant line
bundle over the space of Fredholm operators (see [71], [77]), and the work
of Gowers [31] and Argyros—Haydon [4] on Banach spaces on which every
bounded linear operator is the sum of a scalar multiple of the identity and a
compact operator. Here is a description of the contents of the book, chapter
by chapter.

Chapter [1] discusses some basic concepts that play a central role in the
subject. It begins with a section on metric spaces and compact sets which
includes a proof of the Arzela—Ascoli theorem. It then moves on to establish
some basic properties of finite-dimensional normed vector spaces and shows,
in particular, that a normed vector space is finite-dimensional if and only if
the unit ball is compact. The first chapter also introduces the dual space of a
normed vector space, explains several important examples, and contains an
introduction to elementary Hilbert space theory. It then introduces Banach
algebras and shows that the group of invertible elements is an open set. It
closes with a proof of the Baire category theorem.

Chapter [2| is devoted to the three fundamental principles of functional
analysis. They are the Uniform Boundedness Principle (a pointwise bounded
family of bounded linear operators on a Banach space is bounded), the Open
Mapping Theorem (a surjective bounded linear operator between Banach
spaces is open), and the Hahn—Banach Theorem (a bounded linear func-
tional on a linear subspace of a normed vector space extends to a bounded
linear functional on the entire normed vector space). An equivalent formu-
lation of the Open Mapping Theorem is the Closed Graph Theorem (a linear
operator between Banach spaces is bounded if and only if it has a closed
graph) and a corollary is the Inverse Operator Theorem (a bijective bounded
linear operator between Banach spaces has a bounded inverse). A slightly
stronger version of the Hahn—Banach theorem, with the norm replaced by
a quasi-seminorm, can be reformulated as the geometric assertion that two
convex subsets of a normed vector space can be separated by a hyperplane
whenever one of them has nonempty interior. The chapter also discusses
reflexive Banach spaces and includes an exposition of the James space.

The subjects of Chapter [3| are the weak topology on a Banach space X
and the weak® topology on its dual space X*. With these topologies X
and X™ are locally convex Hausdorff topological vector spaces and the chap-
ter begins with a discussion of the elementary properties of such spaces. The
central result of the third chapter is the Banach—Alaoglu Theorem which
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asserts that the unit ball in the dual space is compact with respect to the
weak* topology. This theorem has important consequences in many fields of
mathematics. The chapter also contains a proof of the Banach—Dieudonné
Theorem which asserts that a linear subspace of the dual space of a Banach
space is weak™ closed if and only if its intersection with the closed unit ball
is weak* closed. A consequence of the Banach—Alaoglu Theorem is that the
unit ball in a reflexive Banach space is weakly compact, and the Eberlein—
Smulyan Theorem asserts that this property characterizes reflexive Banach
spaces. The Krein—-Milman Theorem asserts that every nonempty compact
convex subset of a locally convex Hausdorff topological vector space is the
closed convex hull of its extremal points. Combining this with the Banach—
Alaoglu Theorem, one can prove that every homeomorphism of a compact
metric space admits an invariant ergodic Borel probability measure. Some
properties of such ergodic measures can be derived from an abstract func-
tional analytic ergodic theorem which is also established in this chapter.

The purpose of Chapter [4 is to give a basic introduction to Fredholm
operators and their indices including the stability theorem. A Fredholm
operator is a bounded linear operator between Banach spaces that has a
finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between two
Banach spaces, with respect to the topology induced by the operator norm.
It also asserts that the sum of a Fredholm operator and a compact operator is
again Fredholm and has the same index as the original operator. The chapter
includes an introduction to the dual of a bounded linear operator, a proof of
the closed image theorem which asserts that an operator has a closed image
if and only if its dual does, an introduction to compact operators which map
the unit ball to pre-compact subsets of the target space, a characterization
of Fredholm operators in terms of invertibility modulo compact operators,
and a proof of the stability theorem for Fredholm operators.

The purpose of Chapter [5]is to study the spectrum of a bounded linear
operator on a real or complex Banach space. A first preparatory section
discusses complex Banach spaces and the complexifications of real Banach
spaces, the integrals of continuous Banach space valued functions on com-
pact intervals, and holomorphic operator valued functions. The chapter then
introduces the spectrum of a bounded linear operator, examines its elemen-
tary properties, discusses the spectra of compact operators, and establishes
the holomorphic functional calculus. The remainder of this chapter deals
exclusively with operators on Hilbert spaces, starting with a discussion of
complex Hilbert spaces and the spectra of normal and self-adjoint operators.
It then moves on to C* algebras and the continuous functional calculus for
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self-adjoint operators, which takes the form of an isomorphism from the
C* algebra of complex valued continuous functions on the spectrum to the
smallest C* algebra containing the given operator. The next topic is the
Gelfand representation and the extension of the continuous functional cal-
culus to normal operators. The chapter also contains a proof that every
normal operator can be represented by a projection valued measure on the
spectrum, and that every self-adjoint operator is isomorphic to a direct sum
of multiplication operators on L? spaces.

Chapter [6] is devoted to unbounded operators and their spectral the-
ory. The domain of an unbounded operator on a Banach space is a linear
subspace. In most of the relevant examples the domain is dense and the op-
erator has a closed graph. The chapter includes a discussion of the dual of
an unbounded operator and an extension of the closed image theorem to this
setting. It then examines the basic properties of the spectra of unbounded
operators. The remainder of the chapter deals with unbounded operators
on Hilbert spaces and their adjoints. In particular, it extends the functional
calculus and the spectral measure to unbounded self-adjoint operators.

Strongly continuous semigroups of operators are the subject of Chap-
ter [l They play an important role in the study of many linear partial
differential equations such as the heat equation, the wave equation, and the
Schrodinger equation, and they can be viewed as infinite-dimensional ana-
logues of the exponential matrix S(t) := e*4. In all the relevant examples
the operator A is unbounded. It is called the infinitesimal generator of the
strongly continuous semigroup in question. A central result in the subject
is the Hille-Yosida—Phillips Theorem which characterizes the infinitesimal
generators of strongly continuous semigroups. The dual semigroup is not
always strongly continuous. It is, however, strongly continuous whenever
the Banach space in question is reflexive. The chapter also includes a basic
treatment of analytic semigroups and their infinitesimal generators. It closes
with a study of Banach space valued measurable functions and of solutions
to the inhomogeneous equation associated to a semigroup.

Each of the seven chapters ends with a problem section, which we hope
will give the interested reader the opportunity to deepen their understanding
of the subject.



Chapter 1

Foundations

This introductory chapter discusses some of the basic concepts that play a
central role in the subject of Functional Analysis. In a nutshell, functional
analysis is the study of normed vector spaces and bounded linear operators.
Thus it merges the subjects of linear algebra (vector spaces and linear maps)
with that of point set topology (topological spaces and continuous maps).
The topologies that appear in functional analysis will in many cases arise
from metric spaces. We begin in Section[I.1] by recalling the basic definitions
and list several examples of Banach spaces that will be used to illustrate the
theory throughout the book. The central topic is the study of compact sets
and the main results are the characterization of sequentially compact sub-
sets of a metric space in terms of open covers and the Arzela—Ascoli theorem
which gives a compactness criterion for subsets of the space of continuous
functions on a compact metric space. Section moves on to the study
of finite-dimensional normed vector spaces. It shows that any two norms
on a finite-dimensional vector space are equivalent, and that a normed vec-
tor space is finite-dimensional if and only if the unit ball is compact. The
section also contains a brief introduction to bounded linear operators and
to product and quotient spaces. Section introduces the dual space of a
normed vector space and explains several important examples. Section
contains a brief introduction to elementary Hilbert space theory, including
a proof of the Cauchy—Schwarz inequality and the Riesz representation the-
orem. Section examines some basic properties of power series in Banach
algebras. It shows, via the geometric series, that the space of invertible
operators on a Banach space is open and that the map that assigns to an
invertible operator its inverse is continuous. The Baire category theorem is
the subject of Section

1



2 1. Foundations

1.1. Metric Spaces and Compact Sets

This section begins by recalling the basic definitions of a metric space and
a Banach space and gives several important examples of Banach spaces. It
then moves on to the study of compact subsets of a metric space and shows
that sequential compactness is equivalent to the condition that every open
cover has a finite subcover (Theorem . The second main result of this
section is the Arzela—Ascoli theorem, which characterizes the precompact
subsets of the space of continuous functions from a compact metric space
to another metric space, equipped with the supremum metric, in terms of
equicontinuity and pointwise precompactness (Theorem .

1.1.1. Banach Spaces.

DEFINITION 1.1.1 (Metric Space). A metric space is a pair (X, d)
consisting of a set X and a function d: X x X — R that satisfies the fol-
lowing axioms.

(M1) d(z,y) >0 for all z,y € X, with equality if and only if z = y.
(M2) d(z,y) = d(y,z) for all z,y € X.
(M3) d(z,2) < d(x,y) + d(y, z) for all z,y,z € X.

A function d : X x X — R that satisfies these axioms is called a distance
function and the inequality in (M3) is called the triangle inequality. A
subset U C X of a metric space (X,d) is called open (or d-open) if, for
every x € U, there exists a constant € > 0 such that the open ball

B.(z) := B.(z,d) :={y € X |d(z,y) < &}

(centered at x with radius ¢) is contained in U. The set of d-open subsets
of X will be denoted by

% (X,d):={U C X |U is d-open} .

It follows directly from the definitions that the collection % (X, d) C 2%
of d-open sets in a metric space (X, d) satisfies the axioms of a topology
(i.e. the empty set and the set X are open, arbitrary unions of open sets are
open, and finite intersections of open sets are open). A subset F' of a metric
space (X,d) is closed (i.e. its complement is open) if and only if the limit
point of every convergent sequence in F' is itself contained in F.

Recall that a sequence (x,)nen in a metric space (X,d) is called a
Cauchy sequence if, for every ¢ > 0, there exists an ng € N such that
any two integers n, m > ng satisfy the inequality d(z,,z,,) < . Recall also
that a metric space (X, d) is called complete if every Cauchy sequence in X
converges.
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The most important metric spaces in the field of functional analysis are
the normed vector spaces.

DEFINITION 1.1.2 (Banach Space). A normed vector space is a
pair (X, ||-]|) consisting of a real vector space X and a function

X >Rz |z
satisfying the following axioms.
(N1) ||z|| > 0 for all z € X, with equality if and only if z = 0.
(N2) [[Az|| = |A]||z]| for all z € X and A € R.
(N3) [l +yl| < [lz]l + [yl for all 2,y € X.
Let (X, ||-||) be a normed vector space. Then the formula
(1.1.1) d(z,y) := [l =yl
for z,y € X defines a distance function on X. The resulting topology is
denoted by Z (X, ||-||) := % (X, d). X is called a Banach space if the metric
space (X, d) is complete, i.e. if every Cauchy sequence in X converges.
Here are six examples of Banach spaces.

ExamMpPLE 1.1.3. (i) Fix a real number 1 <p < co. Then the vector
space X = R" of all n-tuples x = (z1,...,x,) of real numbers is a Banach
space with the norm-function

n 1/p
]|, == (ZI%I”)
i=1

for x = (x1,...,2,) € R™. For p = 2 this is the Euclidean norm. Another
norm on R" is given by |z := max;—1,. n|z;| for x = (z1,...,2,) € R".

(ii) For 1 < p < oo the set of p-summable sequences of real numbers is

denoted by

oo

P= {x = (z)ieny € RY ‘ Z\xﬂp < oo} .

i=1
This is a Banach space with the norm [|z|[, := (252 |zi|P) /P for @ € ¢P.
Likewise, the space £ C RY of bounded sequences is a Banach space with
the supremum norm ||z||  := sup;ey|z;| for @ = (2;)ien € €°.
(iii) Let (M, A, 1) be a measure space, i.e. M is a set, A C 2 is a o-algebra,
and p: A — [0,00] is a measure. Fix a constant 1 < p < oco. A measurable

function f : M — R is called p-integrable if [, |f[P du < oo and the space
of p-integrable functions on M will be denoted by

LP(p) = {f : M — R| f is measurable and / |fIPdu < oo}.
M



4 1. Foundations

The function £P(u) — R: f || f]|, defined by

(1.1.2) 151, = ( [ 17 an) ”

is nonnegative and satisfies the triangle inequality (Minkowski’s inequality).
However, in general it is not a norm, because | f[|, = 0 if and only if f
vanishes almost everywhere (i.e. on the complement of a set of measure
zero). To obtain a normed vector space, one considers the quotient

LP(p) i= LP(p)/~,

where

f~g ety f = g almost everywhere.

The function f +— ||f||, descends to this quotient space and, with this
norm, LP(u) is a Banach space (see [75, Theorem 4.9]). In this example
it is often convenient to abuse notation and use the same letter f to denote
a function in £P(u) and its equivalence class in the quotient space LP(u).

(iv) Let (M, A, ) be a measure space, denote by L£>(u) the space of
bounded measurable functions, and denote by

L% () := L2(p) /[~

the quotient space, where the equivalence relation is again defined by equal-
ity almost everywhere. Then the formula

(1.1.3) 1]l :=esssup|f| = inf {¢ > 0] |f| < ¢ almost everywhere}
defines a norm on L*(u), and L*(u) is a Banach space with this norm.

(v) Let M be a topological space. Then the space Cy(M) of bounded
continuous functions f : M — R is a Banach space with the supremum
norm

[flloo == sup|f(p)|
peEM

for f € Cy(M).

(vi) Let (M, A) be a measurable space, i.e. M is a set and A C 2M is a
o-algebra. A signed measure on (M, A) is a function p : A — R that
satisfies () = 0 and is o-additive, i.e. p(Usoy Ai) = Yoy 1(A;) for every
sequence of pairwise disjoint measurable sets A; € A. The space M(M, A)
of signed measures on (M, A) is a Banach space with the norm given by

(11.4) Il = 1l (M) = sup ((4) = (M \ 4)

for p € M(M, A) (see [T5, Exercise 5.34]).
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1.1.2. Compact Sets. Let (X, d) be a metric space and let K C X. Then
the restriction of the distance function d to K x K is a distance function,
denoted by dx :=d|gxx : K x K = R, so (K,dk) is a metric space in its
own right. The metric space (X,d) is called (sequentially) compact if
every sequence in X has a convergent subsequence. The subset K is called
(sequentially) compact if (K, dg) is compact, i.e. if every sequence in K
has a subsequence that converges to an element of K. It is called precom-
pact if its closure is sequentially compact. Thus K is compact if and only
if it is precompact and closed. The subset K is called complete if (K, df)
is a complete metric space, i.e. if every Cauchy sequence in K converges to
an element of K. It is called totally bounded if it is either empty or, for
every € > 0, there exist finitely many elements &1,...,&,, € K such that

K c | B:(&).
=1

The next theorem characterizes the compact subsets of a metric space (X, d)
in terms of the open subsets of X. It thus shows that compactness depends
only on the topology % (X, d) induced by the distance function d.

THEOREM 1.1.4 (Characterization of Compact Sets). Let (X, d) be
a metric space and let K C X. Then the following are equivalent.

(i) K is sequentially compact.
(ii) K is complete and totally bounded.

(iii) Ewvery open cover of K has a finite subcover.
Proof. See page [7] O

Let (X, %) be a topological space. Then condition (iii) in Theorem[1.1.4]
is used to define compact subsets of X. Thus a subset K C X is called com-
pact if every open cover of K has a finite subcover. Here an open cover
of K is a collection (U;);er of open subsets U; C X, indexed by the elements
of a nonempty set I, such that K C | J;c; U;, and a finite subcover is a finite
collection of indices 41, ..., %y, € I such that K C U;; U---UU; . Thus The-
orem asserts that a subset of a metric space (X, d) is sequentially com-
pact if and only if it is compact as a subset of the topological space (X, %)
with % = % (X,d). A subset of a topological space is called precompact
if its closure is compact. Elementary properties of compact sets include the
fact that every compact subset of a Hausdorff space is closed, that every
closed subset of a compact set is compact, and that the image of a compact
set under a continuous map is compact (see [45], [61]).
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We give two proofs of Theorem The first proof is more straight-
forward and uses the axiom of dependent choice. The second proof is taken
from Herrlich [34], Prop 3.26] and only uses the axiom of countable choice.

The axiom of dependent choice asserts that, if X is a nonempty
set and A : X — 2X is a map that assigns to each element x € X a
nonempty subset A(x) C X, then there exists a sequence (Xi)ren in X such
that x;11 € A(xg) for all k£ € N. In the axiom of dependent choice the first
element of the sequence (x)ren can be prescribed. To see this, let x; € X,
define X as the set of all tuples of the form x = (n,x1,...,%x,) withn € N
and xi € A(x,_1) for k=2,...,n, and for x = (n,x1,...,X,) € X define
the set A(X) := {(n+1,x1,...,%,,%X)|x € A(x,)}. Then X is nonempty
and 11(;() is nonempty for every X € X. Now apply the axiom of dependent
choice to A.

The axiom of countable choice asserts that, if (Ag)xen is a sequence
of nonempty subsets of a set A, then there exists a sequence (ag)ren in A
such that a; € Ay, for all K € N. This follows from the axiom of dependent
choice by taking X := Nx A and A(k,a) := {k+1} x Ay for (k,a) € NxA.

LEMMA 1.1.5. Let (X,d) be a metric space and let K C X. Then the
following are equivalent.

(i) Every sequence in K has a Cauchy subsequence.
(ii) K is totally bounded.

Proof of (ii) = (i) in Lemma([l.1.5 The argument only uses the ax-
iom of countable choice. Assume that K is totally bounded and let (z,)nen

be a sequence in K. We prove that there exists a sequence of infinite sub-
sets N DTy DTy D --- such that, for all k,m,n € N,

(1.1.5) m,n € Ty = d(Tpm, ) < 27F,

Since K is totally bounded, it follows from the axiom of countable choice
that there exists a sequence of ordered finite subsets

Sk ={&1,-- &m} CK

such that
my
K C|JByr-1(,)  forallkeN.
i=1
Since z,, € K for all n € N, there must exist an index ¢ € {1,...,m1} such

that the open ball Bj/4(£1,) contains infinitely many of the elements xy,.
Let 71 be the smallest such index and define the set

T = {n eN | Tn € B1/4(£1,i1)}‘
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This set is infinite and satisfies d(xy, ) < d(@n, &14,) + d(E1iy, Tm) < 1/2
for all m,n € T;. Now fix an integer k > 2 and suppose, by induction,
that Tj_; has been defined. Since Tj_; is an infinite set, there must exist
an index ¢ € {1,...,my} such that the ball By—x-1(&x,;) contains infinitely
many of the elements x, with n € T;_1. Let i, be the smallest such index
and define
T = {n €Trq ’ZE‘TL S 327/@71(5;67%)}.

This set is infinite and satisfies d(2p, Tm) < d(2n, Ekiy) + A€k Tm) < 27F
for all m,n € Ty. This completes the induction argument and the construc-
tion of a decreasing sequence of infinite sets T, C N that satisfy .

We prove that (z,)nen has a Cauchy subsequence. By ((1.1.5) there
exists a sequence of positive integers n; < ng < ng < --- such that ny € T}
for all k € N. Such a sequence can be defined by the recursion formula

ny := min 77, N1 = Min {n € Tt ‘ n > nk}
for k € N. It follows that ng,ns € T}, and hence
d(zp,,2n,) <27%  forl>k>1.

Thus the subsequence (2, )ken is a Cauchy sequence. This shows that (ii)
implies (i) in Lemma m The converse will be proved on page @ O

First proof of Theorem[1.1.4} We prove that (i) implies (iii) using the
axiom of dependent choice. Assume that the set K is nonempty and se-
quentially compact, and let {U;};c; be an open cover of K. Here I is a
nonempty index set and the map I — 2% : 4 — U; assigns to each index i an
open set U; C X such that K C |J;c; U;. We prove in two steps that there
exist indices i1, ..., 4, € I such that K C Ugﬂzl Ui,

Step 1. There exists a constant € > 0 such that, for every x € K, there
exists an index i € I such that B:(x) C U;.

Assume, by contradiction, that there is no such constant € > 0. Then
Ve>0 Jdze K Viel B.(x) ¢ U,.

Take ¢ = 1/n for n € N. Then the set {z € K | By/,(v) ¢ U; for all i € I'}
is nonempty for every n € N. Hence the axiom of countable choice asserts
that there exists a sequence x,, € K such that

(1.1.6) Byn(7n) € Ui forallmne Nandall i € 1.

Since K is sequentially compact, there exists a subsequence (x,, )ren that
converges to an element x € K. Since K C [J;c; Ui, there exists an i € I
such that = € U;. Since U; is open, there is an € > 0 such that B.(x) C Uj;.
Since x = limg_,o0 Tn, , there is a k& € N such that d(x, z,,) < § and ni < 5.
Thus By, (Tn,) C Bej2(2n,) C Be(r) C U; in contradiction to ({T.1.6).
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Step 2. There exist indices i1, ...,i, € I such that K C UT:l Ui,

Assume, by contradiction, that this is wrong. Let € > 0 be the constant in
Step 1. We prove that there are sequences x,, € K and i,, € I such that

(1.1.7) B.(z,) C U, Ty € U;; U---UU;

for all n € N (with n > 2 for the second condition). Choose x; € K. Then,
by Step 1, there exists an index i; € I such that B.(x1) C U;,. Now suppose,
by induction, that x1,...,z; and i1, ..., i; have been found such that
holds for n < k. Then

K§ZU¢1U-'-UUik.

Choose an element zj41 € K\ (U;, U---UU;, ). By Step 1, there exists
an index iry1 € I such that Be(xpy1) C Uy, Thus the existence of se-
quences x,, and i, that satisfy follows from the axiom of dependent
choice. More precisely, let X be the set of all pairs x = (z, J) such that J is
a finite subset of I and x € K \ ;¢ ; U;. For x = (z, J) € X let A(x) be the
set of all pairs x’ = (2/, J') € X, where J' = JU{i'}, i € I, and B.(z) C Uy.
Then A(x) # () for all x € X by assumption and the choice of ¢ in Step 1.
Thus there is a sequence x,, = (2, J,) € X such that x,+1 € A(x,) for all n.
So Jut1 \ Jn = {in} is a singleton such that B.(z,) C U;, for each n € N.
Moreover i1, ...,i,-1 € Jy and so x,, € K\UZ;} U;,, for each integer n > 2.
Thus the sequences (zy,)nen and (iy)pen satisfy as claimed.

By we have d(x,,z) > € for k # n, so (x,)nen does not have a
convergent subsequence, contradicting (i). This shows that (i) implies (iii).

We prove that (iii) implies (ii) without using any version of the axiom
of choice. Thus assume that every open cover of K has a finite subcover.
Assume that K is nonempty and fix a constant € > 0. Then the sets B.(§)
for ¢ € K form a nonempty open cover of K. Hence there exist finitely many
elements &1,...,&, € K such that K C [J;", B-(&). This shows that K is
totally bounded.

We prove that K is complete. Let (z,)nen be a Cauchy sequence in K
and suppose, by contradiction, that (z,),en does not converge to any ele-
ment of K. Then no subsequence of (z,)nen can converge to any element
of K. Thus, for every { € K, there is an € > 0 such that B.(£) contains
only finitely many of the x,,. For £ € K let £(§) > 0 be half the supremum
of the set of all € € (0,1] such that #{n € N|z, € B.(§)} < co. Then the
set {n € N|xn € Be(g)(€)} is finite for every £ € K. Thus {B.()(§)}eck is
an open cover of K that does not have a finite subcover, in contradiction
to (iii). This shows that (iii) implies (ii).

That (ii) implies (i) was shown in Lemma using the axiom of
countable choice, and this completes the first proof of Theorem U
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The above proof of Theorem|[1.1.4|requires the axiom of dependent choice
and only uses the implication (ii) => (i) in Lemma[L.1.5| The second proof
follows [34], Prop 3.26] and only requires the axiom of countable choice.

Proof of (i) = (ii) in Lemma([1.1.5 The proof follows [34, Prop 3.26]
and only uses the axiom of countable choice. We argue indirectly and assume
that K is not totally bounded and hence also nonempty. Then there exists
a constant € > 0 such that K does not admit a finite cover by balls of
radius e, centered at elements of K. We prove in three steps that there
exists a sequence in K that does not have a Cauchy subsequence.

Step 1. Forn € N define the set

K, = {(:El,---a%) €K then d(l’i,l’j) € ‘

There is a sequence (xx)gen i K such that (Tp—1)/241, - - - » Tnnt1)/2) € Kn
for every integer n > 1.

We prove that K,, is nonempty for every n € N. For n = 1 this holds
because K is nonempty. If it is empty for some n € N, then there exists
an integer n > 1 such that K, # () and K,+1 = (. In this case, choose an
element (z1,...,2,) € K,. Since K, 41 = 0, this implies K C [J;; Be(z),
contradicting the choice of €. Since K, # ) for all n € N, the existence of a
sequence (zy)ken as in Step 1 follows from the axiom of countable choice.

Step 2. For every collection of n—1 elements y1,...,yn—1 € K, there is an

integer i such that @ <i< w and d(yj,z;) > § forj=1,...,n—1.
. : -1 +1

Otherwise, there exists a map v : {w +1,..., %} —{1,...,n—1}

such that d(z;,y,(;)) < § for all i. Since the target space of v has smaller car-
dinality than the domain, there is a pair ¢ # j in the domain with v (i) = v(j)
and so d(z;, z;) < d(xi, y,(y) + d(Yu(j), Tj) < €, in contradiction to Step 1.

Step 3. There exists a subsequence (T, )nen such that ki =1 and

-1 1
(1.1.8) (n2)n < kp < n(n;—)’ d(zy,,, g, ) > form < n.

N | ™

Define k1 := 1, fix an integer n > 2, and assume, by induction, that the inte-
gers k1, ks, ..., k,_1 have been found such that holds with n replaced
by any number n’ € {2,...,n — 1}. Then, by Step 2, there exists a unique
smallest integer k, such that @ <k, < % and d(zg,,, Tr,) > §
for m=1,...,n— 1. This proves the existence of a subsequence (z, )nen

that satisfies (1.1.8). The sequence (z,)nen in Step 3 does not have a
Cauchy subsequence. This shows that (i) implies (ii) in Lemma O
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Second proof of Theorem[1.1.4. A sequentially compact metric space is
complete, because a Cauchy sequence converges if and only if it has a con-
vergent subsequence. Hence the equivalence of (i) and (ii) in Theorem [1.1.4]
follows directly from Lemma [I.1.5

We prove that (ii) implies (iii), following the argument in [34, Prop 3.26].
Assume that K is complete and totally bounded. Suppose, by contradiction,

that there is an open cover {U; };er of K that does not have a finite subcover.
Then K # (). For n,m € N define

m
Ap =S (x1,...,2) € K™ ’ K c | Bijn(a))
j=1

Then, for every n € N, there exists an m € N such that A,, ,, # 0, because K
is totally bounded and nonempty. For n € N let m,, € N be the smallest
positive integer such that A, ,,, # 0. Then, by the axiom of countable
choice, there is a sequence a, = (Tn1, ..., Tnm,) € Anm, for n € N.

Next we construct a sequence (Y, )nen in K such that ()_; By, (y,) N K
cannot be covered by finitely many of the sets U; for any n € N. For n =1
define y; := xy , where

k := min {j e{l,...,mi} ‘ the set By(x1;) N K cannot } ‘

be covered by finitely many U;

Assume, by induction, that yi,...,y,—1 have been chosen such that the
set ﬂz;i By, (yy) N K cannot be covered by finitely many of the U; and
define y,, := x, 1, where

the set Bl/n(mn,j) N ﬂ:;% Bl/u(yl/) NK
cannot be covered by finitely many Uj; ’

k::min{je{l,...,mn}

This completes the construction of the sequence (yn)nen. It satisfies

1 1 2

d(Yn, Ym) < — + — < forn>m>1,
m n_m

because Bi/p(Yn) N Bi/m(ym) # 0. Hence (yn)nen is a Cauchy sequence
in K. Since K is complete, the limit y* := lim,_,o y, exists and is an
element of K. Choose an index ¢* € I such that y* € U;» and choose a
constant £* > 0 such that B.«(y*) C U;+. Then

Bi/n(yn) C Be+(y*) C Us»
for n sufficiently large in contradiction to the choice of y,. This proves
that (ii) implies (iii).
That (iii) implies (ii) was shown in the first proof without using the
axiom of choice. This completes the second proof of Theorem ([
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It follows immediately from Theorem that every compact metric
space is separable. Here are the relevant definitions.

DEeFINITION 1.1.6. Let X be a topological space. A subset S C X
is called dense in X if its closure is equal to X or, equivalently, every
nonempty open subset of X contains an element of S. The space X is called
separable if it admits a countable dense subset. (A set is called countable
if it is either finite or countably infinite.)

COROLLARY 1.1.7. Every compact metric space is separable.

Proof. Let n € N. Since X is totally bounded by Theorem there
exists a finite set S, C X such that X = (Jecg, Bi/n(§). Hence S := {J,,cn Sn
is a countable dense subset of X by the axiom of countable choice. O

COROLLARY 1.1.8. Let (X,d) be a metric space and let A C X. Then
the following are equivalent.

(i) A is precompact.
(ii) Every sequence in A has a subsequence that converges in X .

(iii) A s totally bounded and every Cauchy sequence in A converges in X.

Proof. That (i) implies (ii) follows directly from the definitions.

We prove that (ii) implies (iii). By (ii) every sequence in A has a Cauchy
subsequence and so A is totally bounded by Lemma If (zp)nen is a
Cauchy sequence in A, then by (ii) there exists a subsequence (zy,);en that
converges in X, and so the original sequence converges in X because a
Cauchy sequence converges if and only if it has a convergent subsequence.

We prove that (iii) implies (i). Let (z,,)nen be a sequence in the closure A
of A. Then, by the axiom of countable choice, there exists a sequence (ay)nen
in A such that d(z,,a,) < 1/n for all n € N. Since A is totally bounded, it
follows from Lemma that the sequence (a,)nen has a Cauchy subse-
quence (ap,)ien. This subsequence converges in X by (iii). Denote its limit
by a. Then a € A and a = lim;_,, ap,; = lim;_,oc Tpn,. Thus A is sequentially
compact. This proves Corollary [I.1.8| O

COROLLARY 1.1.9. Let (X, d) be a complete metric space and let A C X.
Then the following are equivalent.

(1) A is precompact.
(ii) Every sequence in A has a Cauchy subsequence.

(iii) A is totally bounded.

Proof. This follows directly from the definitions and Corollary ([
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1.1.3. The Arzela—Ascoli Theorem. It is a recurring theme in func-
tional analysis to understand which subsets of a Banach space or topological
vector space are compact. For the standard Euclidean space (R", ||-||,) the
Heine-Borel Theorem asserts that a subset of R™ is compact if and only if it
is closed and bounded. This continues to hold for every finite-dimensional
normed vector space and, conversely, every normed vector space in which
the closed unit ball is compact is necessarily finite-dimensional (see The-
orem below). For infinite-dimensional Banach spaces this leads to
the problem of characterizing the compact subsets. Necessary conditions
are that the subset is closed and bounded, however, these conditions can
no longer be sufficient. For the Banach space of continuous functions on a
compact metric space a characterization of the compact subsets is given by
a theorem of Arzela and Ascoli which we explain next.

Let (X, dx) and (Y, dy) be metric spaces and assume that X is compact.
Then the space

C(X,Y):={f:X = Y| is continuous}
of continuous maps from X to Y is a metric space with the distance function

(1.1.9) d(f,g) := Slel)g dy (f(x),g(x)) for f,g € C(X,Y).

This is well defined because the function X — R : z — dy (f(z),g(z)) is
continuous and hence is bounded because X is compact. That sat-
isfies the axioms of a distance function follows directly from the definitions.
When X is nonempty, the metric space C'(X,Y) with the distance func-
tion is complete if and only if Y is complete, because the limit of a
uniformly convergent sequence of continuous functions is again continuous.

DEFINITION 1.1.10. A subset
F COX,Y)

is called equi-continuous if, for every € > 0, there exists a constant § > 0
such that, for all z,2’ € X and all f € .Z,

dx(z,2') <6 = dy (f(z), f(z")) <e.
It is called pointwise compact if, for every element x € X, the set

is a compact subset of Y. It is called pointwise precompact if, for every
element x € X, the set .# (x) has a compact closure in Y.

Since every continuous map defined on a compact metric space is uni-
formly continuous, every finite subset of C'(X,Y") is equi-continuous.
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THEOREM 1.1.11 (Arzela—Ascoli). Let (X,dx) and (Y,dy) be metric
spaces such that X is compact and let F C C(X,Y). Then the following
are equivalent.

(i) .F is precompact.

(ii) .7 is pointwise precompact and equi-continuous.

Proof. We prove that (i) implies (ii). Thus assume .% is precompact.
That % is pointwise precompact follows from the fact that the evalua-
tion map C(X,Y) - Y : f > ev,(f) := f(x) is continuous for every x € X.
Since the image of a precompact set under a continuous map is again precom-
pact (Exercise[1.7.1)), it follows that the set .7 (z) = ev,(F) is a precompact
subset of Y for every x € X.

It remains to prove that .# is equi-continuous. Assume % is nonempty
and fix a constant € > 0. Since the set .% is totally bounded by Lemmall.1.5
there exist finitely many maps f1,..., fin € % such that

m
(1.1.10) F | JBs(fi).

i=1
Since X is compact, each function f; is uniformly continuous. Hence there
exists a constant 0 > 0 such that, for all i € {1,...,m} and all z,2’ € X,

(1.1.11) dy(z,2') <6 =  dy(fi(z), fi(2) < %
Now let f € . and let x,2’ € X such that
(1.1.12) dx(z,z") < 4.

By there exists an index ¢ € {1,...,m} such that d(f, f;) < §. Thus
dy(F(@) Ji@) < 5. dy(J(@). fila) < 3.
Moreover, it follows from and that
dy (fi(@), fi()) < 5.

Putting these last three inequalities together and using the triangle inequal-
ity, we find

dy (f(x), f(2)) < dy (f(x), fi(x)) + dy (fi(z), fi(z")) + dy (fi(2), f(2"))

This shows that # is equi-continuous, and thus we have proved that (i)
implies (ii).
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We prove that (ii) implies (i). Let (fn)nen be a sequence in % and
let (zx)ren be a dense sequence in X (Corollary [1.1.7). We prove in three
steps that (f,)nen has a convergent subsequence.

Step 1. There exists a subsequence (gi)ien Of (fn)nen such that the se-
quence (gi(zk))ien converges in'Y for every k € N.

Since . () is precompact for each k, it follows from the axiom of depen-
dent choice (page @ that there is a sequence of subsequences ( fnk,i)ieN such
that, for each k € N, the sequence (fn,, ,)ien is a subsequence of (fy, ;)ien
and the sequence (fp, ;(zx))ien converges in Y. Thus the diagonal subse-
quence g; := fp, ; satisfies the requirements of Step 1.

Step 2. The subsequence (g;)ien in Step 1 is a Cauchy sequence in C(X,Y).

Fix a constant € > 0. Then, by equi-continuity, there exists a constant § > 0
such that, for all f € .% and all 2,2’ € X,

(1.1.13) dy(z,2/) <6 = dy(f(x),f(x’))<§.

Since the balls Bgs(xy) form an open cover of X, there exists an m € N such
that X = (J;-, Bs(z). Since (g;(zx))ien is a Cauchy sequence for each k,
there exists an NV € N such that, for all 7, j, k € N, we have

(1.1.14) 1<k<m, 4,j>N = dy (9i(zk), gj(xr)) < €/3.

We prove that d(g;, gj) < € foralli,j > N. To see this, fix an element z € X.
Then there exists an index k € {1,...,m} such that dx(z,z;) <. This

implies dy (gi(z), gi(zx)) < €/3 for all i € N, by (1.1.13)), and so
dy (9i(), gj(x)) < dy(9i(2), 9i(wk)) + dy (9i(wk), gj (k) + dy (95 (xk), g;(x))

cEL 8¢
3 3 3
=&

for all ¢,j7 > N by (1.1.14). Hence d(gi, g;) = maxzex dy(gi(z),gj(z)) < €
for all 7,7 > N and this proves Step 2.

Step 3. The subsequence (g;)ien in Step 1 converges in C(X,Y).

Let z € X. By Step 2, (gi(x))ien is a Cauchy sequence in .7 (z). Since .7 (x)
is a precompact subset of Y, the sequence (g;(x));en has a convergent subse-
quence and hence converges in Y. Denote the limit by g(x) := lim;_,~ gi(z).
Then the sequence g; converges uniformly to g by Step 2 and so g € C(X,Y).

Step 3 shows that every sequence in % has a subsequence that converges
to an element of C'(X,Y). Hence .% is precompact by Corollary This
proves Theorem [1.1.11 O
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COROLLARY 1.1.12 (Arzela—Ascoli). Let (X,dx) be a compact met-
ric space, let (Y,dy) be a metric space, and let % C C(X,Y). Then the
following are equivalent.

(i) Z is compact.
(i) .7 is closed, pointwise compact, and equi-continuous.

(iii) Z is closed, pointwise precompact, and equi-continuous.

Proof. That (i) implies (ii) follows from Theorem because every
compact subset of a metric space is closed, and the image of a compact set
under a continuous map is compact. Here the continuous map in question is
the evaluation map C(X,Y) — Y : f — f(z) associated to z € X. That (ii)
implies (iii) is obvious. That (iii) implies (i) follows from Theorem
because a subset of a metric space is compact if and only if it is precompact
and closed. This proves Corollary O

When the target space Y is the Euclidean space (R", ||-||5) in part (i) of
Example the Arzela—Ascoli Theorem takes the following form.

COROLLARY 1.1.13 (Arzela—Ascoli). Let (X,d) be a compact metric
space and let F C C(X,R™). Then the following holds.

(1) Z is precompact if and only if it is bounded and equi-continuous.

(ii) .Z is compact if and only if it is closed, bounded, and equi-continuous.

Proof. Assume .# is precompact. Then % is equi-continuous by Theo-
rem|l.1.11] and is bounded, because a sequence whose norm tends to infinity
cannot have a convergent subsequence. Conversely, assume .% is bounded
and equi-continuous. Then, for each x € X, the set .# (z) C R" is bounded
and therefore is precompact by the Heine-Borel Theorem. Hence .% is pre-
compact by Theorem This proves (i). Part (ii) follows from (i)
and the fact that a subset of a metric space is compact if and only if it is
precompact and closed. This proves Corollary O

EXERCISE 1.1.14. This exercise shows that the hypothesis that X is
compact cannot be removed in Corollary Consider the Banach
space Cp(R) of bounded continuous real-valued functions on R with the
supremum norm. Find a closed bounded equi-continuous subset of Cj(R)
that is not compact.

There are many versions of the Arzela—Ascoli Theorem. For example,

Theorem|1.1.11] Corollary[1.1.12] and Corollary|l.1.13|continue to hold, with

the appropriate notion of equi-continuity, when X is any compact topological
space. This is the content of the following exercise.
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EXERCISE 1.1.15. Let X be a compact topological space and let Y be a
metric space. Then the space C'(X,Y") of continuous functions f : X — Y is
a metric space with the distance function (L.1.9). A subset .# C C(X,Y) is
called equi-continuous if, for every x € X and every € > 0, there exists an
open neighborhood U C X of z such that dy (f(z), f(2')) <eforallz’ € U
and all f € 7.

(a) Prove that the above definition of equi-continuity agrees with the one
in Definition [1.1.10| whenever X is a compact metric space.

(b) Prove the following variant of the Arzela—Ascoli Theorem for compact
topological spaces X.

Arzela—Ascoli Theorem. Let X be a compact topological space and let Y
be a metric space. A set F C C(X,Y) is precompact if and only if it is
pointwise precompact and equi-continuous.

Hint 1: If % is precompact, use the argument in the proof of Theo-
rem [1.1.11] to show that .% is pointwise precompact and equi-continuous.

Hint 2: Assume % is equi-continuous and pointwise precompact.

Step 1. The set F:={f(z)|z € X, f € F} CY is totally bounded.
Show that F' is precompact (Exercise |1.7.1]) and use Corollary

Step 2. The set .F is totally bounded.

Let € > 0. Cover F by finitely many open balls Vi, ..., V,, of radius £/3 and
cover X by finitely many open sets Uy, ..., U,, such that

sup sup dy (f(z), f(z')) <e/3 fori=1,...,m.
za'eU; feF

For any function a: {1,...,m} — {1,...,n} define
Fo ={f€F|fU)NVau #Dfori=1,....m}.

Prove that d(f, g) = sup,ex dy (f(z),g(z)) < e for all f,g € #,. Let A be
the set of all « such that %, # (. Prove that .7 = Uaeca Fa and choose a
collection of functions f, € %, one for each o € A.

Step 3. The set F is precompact.

Use Lemma and Step 3 in the proof of Theorem [1.1.11| to show that
every sequence in .% has a subsequence that converges in C(X,Y).

In contrast to what one might expect from Exercise there is also
a version of the Arzela—Ascoli theorem for the space of continuous functions
from an arbitrary topological space X to a metric space Y. This version uses
the compact-open topology on C(X,Y’) and is explained in Exercise
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1.2. Finite-Dimensional Banach Spaces

The purpose of the present section is to examine finite-dimensional normed
vector spaces with an emphasis on those properties that distinguish them
from infinite-dimensional normed vector spaces, which are the main sub-
ject of functional analysis. Finite-dimensional normed vector spaces are
complete, their linear subspaces are closed, linear functionals on them are
continuous, and their closed unit balls are compact. Theorem below
shows that this last property characterizes finite-dimensionality. Before en-
tering into the main topic of this section, it is convenient to first introduce
the concept of a bounded linear operator.

1.2.1. Bounded Linear Operators. The second fundamental concept in
functional analysis, after that of a Banach space, is the notion of a bounded
linear operator. In functional analysis it is common practice to use the
term linear operator instead of linear map, although both terms have the
exact same meaning, namely that of a map between vector spaces that
preserves addition and scalar multiplication. The reason lies in the fact
that the relevant normed vector spaces in applications are often function
spaces and then the elements of the space on which the operator acts are
themselves functions. If domain and target of a linear operator are normed
vector spaces, it is natural to impose continuity with respect to the norm
topologies. This underlies the following definition.

DEFINITION 1.2.1 (Bounded Linear Operator).
Let (X, ||| x) and (Y, [|-||y-) be real normed vector spaces. A linear operator
A: X =Y
is called bounded if there exists a constant ¢ > 0 such that
(1.2.1) |Az|ly < cllz] 5 for all z € X.

The smallest constant ¢ > 0 that satisfies (|1.2.1) is called the operator
norm of A and is denoted by

Az
(1.2.2) 14| = HAHz:(Xy) —  sup I HY_
zex\foy zllx

A bounded linear operator with values in Y = R is called a bounded linear

functional on X. The space of bounded linear operators from X to Y is
denoted byE|

LX,)Y)={A: X oY ’ A is linear and bounded} .

Then (L(X,Y), [z x,y)) is a normed vector space. The resulting topology
on L(X,Y) is called the uniform operator topology.

1Many authors use the notation B(X,Y’) for the space of bounded linear operators.
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THEOREM 1.2.2. Let (X, ||-||x) and (Y, ||-|ly) be real normed vector spaces
and let A: X =Y be a linear operator. The following are equivalent.

(1) A is bounded.
(ii) A is continuous.

(iii) A is continuous at v = 0.

Proof. We prove that (i) implies (ii). If A is bounded, then
e - Ar'], = A~ a9,
< Al |z = 2"
for all z,2’ € X and so A is Lipschitz-continuous. Since every Lipschitz-

continuous function is continuous, this shows that (i) implies (ii). That (ii)
implies (iii) follows directly from the definition of continuity.

We prove that (iii) implies (i). Thus assume A is continuous at x = 0.
Then it follows from the -0 definition of continuity with € = 1 that there
exists a constant § > 0 such that, for all z € X,

[zllx <4 = [Az]ly <1.

This implies ||Az||y < 1 forevery x € X with ||z||x = d. Now let z € X\ {0}.
Then ||6]|z]|x 2| x = ¢ and so |A(§||z||x'2)|ly < 1. Multiply both sides of
this last inequality by 6~!||z[|x to obtain the inequality

1Az[ly <67 Jlallx

for all x € X. This proves Theorem [1.2.2 O

Recall that the kernel and image of a linear operator A : X — Y
between real vector spaces are the linear subspaces defined by

ker(A) :={r € X | Az =0} C X,
im(A) :={Az|z € X} CY.
If X and Y are normed vector spaces and A : X — Y is a bounded linear

operator, then the kernel of A is a closed subspace of X by Theorem [1.2.2
However, its image need not be a closed subspace of Y.

DEFINITION 1.2.3 (Equivalent Norms). Let X be a real vector space.
Two norms [|-|| and ||-|| on X are called equivalent if there is a constant

c>1
such that
1 /
ol < ol < el

for all z € X.
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EXERCISE 1.2.4. (i) This defines an equivalence relation on the set of
all norm functions on X.

(ii) Two norms ||-|| and [|-]|" on X are equivalent if and only if the identity
maps id : (X, [l-]) = (X, ") and id : (X, [[') = (X, ][]} are bounded

linear operators.

(iii) Two norms ||-|| and ||-]|" on X are equivalent if and only if they induce
the same topologies on X, i.e. Z (X, ||-]|) = Z (X, |]-]").

(iv) Let [|-]| and [|-]|" be equivalent norms on X. Show that (X, |-||) is
complete if and only if (X, ]|-]|") is complete.

1.2.2. Finite-Dimensional Normed Vector Spaces.

THEOREM 1.2.5. Let X be a finite-dimensional real vector space. Then
any two norms on X are equivalent.

Proof. Choose an ordered basis e1,...,e, on X and define

n

n
E |z ]2 for z = g Tie;, z; € R.
i=1

i=1

[y ==

This is a norm on X. We prove in two steps that every norm on X is
equivalent to ||-||5. Fix any norm function X — R : z — ||z]|.

Step 1. There is a constant ¢ > 0 such that ||z|| < c||z||, for all x € X.

Define ¢ := /327", |les]|* and let z = 37| x;e; with x; € R. Then, by the
triangle inequality for ||-|| and the Cauchy—Schwarz inequality on R", we
have

n n n
2
)l <Y Jwil lleall < | D laal?y | D lleal® = cllzly -
i=1 i=1 i=1
This proves Step 1.

Step 2. There is a constant 6 > 0 such that 0 ||z||, < ||z|| for all z € X.

The set S :={z € X! |z|l, =1} is compact with respect to |||, by the
Heine-Borel Theorem, and the function S — R : z — ||z|| is continuous
by Step 1. Hence there exists an element xg € S such that ||zo| < ||z|| for
all z € S. Define

= ||$0H > 0.
Then every nonzero vector z € X satisfies ||:L‘||2_1 x € S, hence ||||z|j5 x| > 6,
and hence ||z|| > 0 ||z||,. This proves Step 2 and Theorem O
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Theorem has several important consequences that are special to
finite-dimensional normed vector spaces and do not carry over to infinite
dimensions.

COROLLARY 1.2.6. Every finite-dimensional normed vector space is com-
plete.

Proof. This holds for the Euclidean norm on R™ by a theorem in first
year analysis, which follows rather directly from the completeness of the real
numbers. Hence, by Theorem and part (iv) of Exercise it holds
for every norm on R™. Thus it holds for every finite-dimensional normed
vector space. O

COROLLARY 1.2.7. Let (X, ||||) be a normed vector space. Then every
finite-dimensional linear subspace of X is a closed subset of X.

Proof. Let Y C X be a finite-dimensional linear subspace and denote
by [|-|ly- the restriction of the norm on X to the subspace Y. Then (Y, ||-[|y)
is complete by Corollary [[.2.6] and hence Y is a closed subset of X. O

COROLLARY 1.2.8. Let (X, ||]]) be a finite-dimensional normed vector

space and let K C X. Then K is compact if and only if K is closed and
bounded.

Proof. This holds for the Euclidean norm on R” by the Heine—Borel
Theorem. Hence it holds for every norm on R" by Theorem Hence it
holds for every finite-dimensional normed vector space. O

COROLLARY 1.2.9. Let (X, ||-||x) and (Y, ||-|ly) be normed vector spaces
and suppose dim X < co. Then every linear operator A : X — Y is bounded.

Proof. Define the function X — R : z — ||z|| 4 by
2|l 4 = ||zl x + | Az]y for x € X.

This is a norm on X. Hence, by Theorem there exists a constant ¢ > 1
such that ||z]| 4 < c||z| y for all z € X. Hence A is bounded. O

The above four corollaries spell out some of the standard facts in finite-
dimensional linear algebra. The following four examples show that in none of
these four corollaries the hypothesis of finite-dimensionality can be dropped.
Thus in functional analysis one must dispense with some of the familiar
features of linear algebra. In particular, linear subspaces need no longer be
closed subsets and linear maps need no longer be continuous.
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EXAMPLE 1.2.10. (i) Consider the space X := C([0,1]) of continuous
real valued functions on the closed unit interval [0,1]. Then the formulas

1/2
Wl = sup FOL Il —( / 0 \2)
0<t<1

for f € C(]0,1]) define norms on X. The space C([0,1]) is complete
with ||-|| ., but not with [-||,. Thus the two norms are not equivalent. Exer-
cise: Find a sequence of continuous functions f, : [0, 1] — R that is Cauchy
with respect to the L2-norm and has no convergent subsequence.

(ii) The space Y := C1([0,1]) of continuously differentiable real valued
functions on the closed unit interval is a dense linear subspace of C(]0, 1])
with the supremum norm and so is not a closed subset of (C([0, 1]), ||| )-

(iii) Consider the closed unit ball
B:={feC(0, 1)) [fllo <1}

in the Banach space C(]0,1]) with the supremum norm. This set is closed
and bounded, but not equi-continuous. Hence it is not compact by the
Arzela—Ascoli Theorem (Corollary . More explicitly, for n € N define
the function f,, € B by f,(t) :=sin(2"nt) for 0 < ¢ < 1. Then || f,, — fm] > 1
for n # m and hence the sequence (f,)nen does not have any convergent
subsequence. Theorem below shows that the compactness of the unit
ball characterizes the finite-dimensional normed vector spaces.

(iv) Let (X, ||||) be an infinite-dimensional normed vector space and choose
an unordered basis £ C X such that |e]| = 1 for all e € E. Thus every
nonzero vector x € X can be uniquely expressed as a finite linear combina-
tion z = Zle zie; with eg,..., ey € E pairwise distinct and z; € R\ {0}.
By assumption E is an infinite set. (The existence of an unordered basis
requires the Lemma of Zorn or, equivalently, the axiom of choice by Theo-
rem[A.1.3]) Choose any unbounded function A : E — R and define the linear
map P, : X — R by (I))\(Zz 1 Ti€;) = Zle A(ei)x; for all £ € N, all pair-
wise distinct ¢-tuples of basis vectors eq,...,e; € E, and all z1,...,zy € R.
Then &) : X — R is an unbounded linear functional.

THEOREM 1.2.11. Let (X, ||-]|) be a normed vector space and denote the
closed unit ball and the closed unit sphere in X by

B:={zeX||z|| <1}, S:={zreX]||z|=1}.
Then the following are equivalent.
(i) dim X < oo.

(ii) B is compact.

(iii) S is compact.
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Proof. That (i) implies (ii) follows from Corollary and that (ii)
implies (iii) follows from the fact that a closed subset of a compact set in a
topological space is compact.

We prove that (iii) implies (i). We argue indirectly and show that if X
is infinite-dimensional, then S is not compact. Thus assume X is infinite-
dimensional. We claim that there exists a sequence x; € X such that

(1.2.3) ||| =1, |z — | > 3 for all 4,5 € N with ¢ # j.

This is then a sequence in S that does not have any convergent subsequence
and so it follows that S is not compact.

To prove the existence of a sequence in X satisfying we argue
by induction and use the axiom of dependent choice. For i = 1 choose any
element z1 € S. If zy,..., 2 € S satisfy ||z; — z;|| > 5 for i # j, consider
the subspace Y C X spanned by the vectors xi,...,xr. This is a closed
subspace of X by Corollary[1.2.7 and is not equal to X because dim X = co.
Hence Lemma [1.2.12] below asserts that there exists a vector = z511 € S
such that ||z — y|| > % for all y € Y and hence, in particular, ||zg+1 — @i > 3
fort=1,..., k. This completes the induction step and shows, by the axiom
of dependent choice (see page @, that there exists a sequence x; € X that
satisfies for i # j.

More precisely, take X := | |,y Sk and, for every x = (21,...,21) € S¥,
define A(x) as the set of all k + I-tuples y = (x1,...,2x,7) € S+ such
that |z — a;|| > 3 fori = 1,..., k. The above argument shows that this set is
nonempty for all x € X and so the existence of the required sequence (z;);en
follows from the axiom of dependent choice. This proves Theorem[T.2.11} O

LEMMA 1.2.12 (Riesz Lemma). Let (X, ||-||) be a normed vector space
and let' Y C X be a closed linear subspace that is not equal to X. Fix a
constant 0 < § < 1. Then there exists a vector x € X such that

=1 inf ||z —y| >1—6.
lzlf =1, inf Jlo —y| >

Proof. Let zg € X \'Y. Then d :=inf,cy ||zog — y|| > 0 because Y is
closed. Choose yg € Y such that

d
lzo — woll < ——

1-9¢
and define = := ||z — yo|| ™" (20 — yo). Then ||z|| = 1 and
— Yo — - d
||l’ _ 3/|| _ H.%'(] Yo ||$0 yOH y” > >1-§
1o = ol o — ol

for all y € Y. This proves Lemma [1.2.12 ([
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Theorem leads to the question of how one can characterize the
compact subsets of an infinite-dimensional Banach space. For the Banach
space of continuous functions on a compact metric space with the supre-
mum norm this question is answered by the Arzela—Ascoli Theorem (Corol-
lary . The Arzela—Ascoli Theorem is the source of many other com-
pactness results in functional analysis.

1.2.3. Quotient and Product Spaces.

Quotient Spaces. Let (X, ||-||) be a real normed vector space and let Y C X
be a closed subspace. Define an equivalence relation ~ on X by

x~ <— 2 —zey.

Denote the equivalence class of an element x € X under this equivalence
relation by [z] =2+ Y = {z+y ‘ y € Y} and denote the quotient space
by

X)Y :={zs+Y|zeX}.
For x € X define

(1.2.4) Illllx/y = mnfflo +vlx

Then X/Y is a real vector space and the formula defines a norm
function on X/Y. (Exercise: Prove this.) The next lemma is the key step
in the proof that if X is a Banach space so is the quotient space X/Y for
every closed linear subspace Y C X.

LEMMA 1.2.13. Let X be a normed vector space and let Y C X be a
closed linear subspace. let (z;);en be a sequence in X such that ([x;))ien is a
Cauchy sequence in X/Y with respect to the norm m Then there exists
a subsequence (x;, )ken and a sequence (Yr)ken in Y such that (zi, + Yk)ken
is a Cauchy sequence in X.

Proof. Choose i1 € N such that infyecy ||lz;, — z; + y|| < 27! for every in-
teger j > 41. Once 41, ...,1; have been constructed, choose i1 > i to be
the smallest integer bigger than i; such that inf,cy Hxik“ —x; + yH < 27kl
for every integer j > ¢x4+1. This completes the inductive construction of the
subsequence (z;, )ken. Now use the Axiom of Countable Choice to find a
sequence (Mx)gen in Y such that szk — T, + 77kHX < 27% for all k € N.
Define

y1 =0, Yp 1= —N1 — - — Ng—1 for k > 2.
Then

7 + v = iy = vinll e = o = iees +mll <27

for all £ € N and hence (z;, + yx)ren is a Cauchy sequence. This proves

Lemma [1.2.13] O
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THEOREM 1.2.14 (Quotient Space). Let X be a normed vector space
and let Y C X be a closed linear subspace. Then the following holds.

(i) The map 7 : X — X/Y defined by w(z) :=[z] =x+Y forxz € X is a
surjective bounded linear operator.
(ii) Let A : X — Z be a bounded linear operator with values in a normed

vector space Z such that Y C ker(A). Then there exists a unique bounded
linear operator Ay : XY — Z such that Agom = A.

(iii) If X is a Banach space, then X/Y is a Banach space.

Proof. Part (i) follows directly from the definitions.
To prove part (ii) observe that the operator Ap : X/Y — Z, given by

Aplz] == Ax for z € X,
is well defined whenever Y C ker(A). It is obviously linear and it satisfies
[Ao[z]ll z = [A(z + y)llz < [|Al ][z + vllx

for all x € X and all y € Y. Take the infimum over all y € Y to obtain the
inequality [[Aola]ll; < infyey 1] o + ylly = I A] [2]llxy for all 2 € X.
This proves part (ii).

To prove part (iii), assume X is complete and let (z;);en be a sequence
in X such that ([x;])ien is a Cauchy sequence in X/Y with respect to the
norm . By Lemma there exists a subsequence (z;, )ren and a
sequence (yi)ken in Y such that (x;, + yx)ren is a Cauchy sequence in X.
Since X is a Banach space, there exists an element x € X such that

klggo |z — i, — ykllx = 0.

Hence limy_,o ||[z — xik]HX/Y = limy o0 infyey ||z — 2, + 9yl =0. Thus
the subsequence ([z;,]|)xen converges to [z] in X/Y. Since a Cauchy se-
quence converges whenever it has a convergent subsequence, this proves

Theorem [[.2.14] O

Product Spaces. Let X and Y be normed vector spaces. Then the product
space X X Y admits the structure of a normed vector space. However,
there is no canonical norm on this product space although it has a canonical
product topology (page . Examples of norms that induce the product
topology are

1
(1.2.5) Il == (L2l + 9l2)7, 1<p <o,
and
(12.6) 1@, 1)l == max {||zllx , [ully }

forxe X andy €Y.
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EXERCISE 1.2.15. (i) Show that the norms in (1.2.5) and (1.2.6]) are all
equivalent and induce the product topology on X x Y.

(ii) Show that the product space X x Y, with any of the norms in (|1.2.5|)
or (1.2.6)), is a Banach space if and only if X and Y are Banach spaces.

1.3. The Dual Space

1.3.1. The Banach Space of Bounded Linear Operators. This sec-
tion returns to the normed vector space £(X,Y') of bounded linear operators
from X to Y introduced in Definition [L2.3l The next theorem shows that
the normed vector space £(X,Y) is complete whenever the target space Y
is complete, even if X is not complete.

THEOREM 1.3.1. Let X be a normed vector space and let’Y be a Banach
space. Then L(X,Y) is a Banach space with respect to the operator norm.

Proof. Let (Ap)nen be a Cauchy sequence in £(X,Y’). Then
[Anz — Amzlly = [[(An — Am)zlly < [[An — Am| 2] x

for all x € X and all m,n € N. Hence (A,2),en is a Cauchy sequence in Y
for every x € X. Since Y is complete, this implies that the limit

(1.3.1) Az := lim A,z

n—oo
exists for all x € X. This defines a map A : X — Y. That it is linear follows
from the definition, the fact that the limit of a sum of two sequences is the
sum of the limits, and the fact that the limit of a product of a sequence with
a scalar is the product of the limit with the scalar.

It remains to prove that A is bounded and that lim, _, [|[A — A,|| = 0.
To see this, fix a constant € > 0. Since (Ay)nen is a Cauchy sequence with
respect to the operator norm, there exists an integer ng € N such that

m,n €N, m,n > ng = A — Anll < e.
This implies
Az — Apzlly = W}gnoo [Amz — Anzlly
(1.3.2) < limsup [[Ap, — Apl| [|2] x
m—0o0
<ellzlx
for every x € X and every integer n > ng. Hence
[Az[ly < [[Az — Angzlly + [[Angzlly < (€ + [|Ang ) 1]l x
for all z € X and so A is bounded. It follows also from (1.3.2]) that,

for each € > 0, there is an ng € N such that ||[A — A,| < e for every inte-
ger n > ng. Thus lim,_,« ||A — Ay || = 0 and this proves Theorem [1.3.1] O
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1.3.2. Examples of Dual Spaces. An important special case is where
the target space Y is the real axis. Then Theorem [1.3.1] asserts that the
space

(1.3.3) X* = L(X,R)

of bounded linear functionals A : X — R is a Banach space for every normed
vector space X (whether or not X is itself complete). The space of bounded
linear functionals on X is called the dual space of X. The dual space of
a Banach space plays a central role in functional analysis. Here are several
examples of dual spaces.

EXAMPLE 1.3.2 (Dual Space of a Hilbert Space). Let H be a Hilbert
space, i.e. H is a Banach space and the norm on H arises from an inner
product H x H — R : (z,y) — (x,y) via ||z|| = \/(x,z). Then every ele-
ment y € H determines a linear functional A, : H — R defined by

(1.3.4) Ay(z) = (z,y) for x € H.
It is bounded by the Cauchy-Schwarz inequality (Lemma and the
Riesz Representation Theorem asserts that the map
H—H :y— Ay
is an isometric isomorphism (Theorem .

ExaMPLE 1.3.3 (Dual Space of LP(u)). Let (M, A, 1) be a measure

space and fix a constant 1 < p < 0o. Define the number 1 < ¢ < oo by
1 1

(1.3.5) -+ -=1
p q

The Hoélder inequality asserts that the product of two functions f € £P(u)
and g € L9(u) is p-integrable and satisfies

/M fgdp

(See [75 Theorem 4.1].) This implies that every g € L9(u) determines a
bounded linear functional A, : LP(p) — R defined by

(1.3.7) Ag(f) = /M fgdu for f e LP(u).

It turns out that

(13.6) < I1£1, ligl, -

||Ag||£(Lp(M)7R) = ||9||q
for all g € L(u) (see [75, Theorem 4.33]) and that the map

L) — LP(0)" = g > A,

is an isometric isomorphism (see [75, Thm 4.35]). The proof relies on the
Radon-Nikodym Theorem (see [75, Thm 5.4]).
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EXAMPLE 1.3.4 (Dual Space of L!(11)). The assertion of Example
extends to the case p = 1 and shows that the natural map

L) — LY(p)* : g Ay

is an isometric isomorphism if and only if the measure space (M, A, u) is
localizable. In particular, the dual space of L!(u) is isomorphic to L% (u)
whenever (M, A, ) is a o-finite measure space. (See [75, Def 4.29] for the
relevant definitions.) However, the dual space of L*°(u) is in general much
larger than L'(p), i.e. the map

LY(u) = L=(u)* 1 g = Ay
in (1.3.7) is an isometric embedding but is typically far from surjective.

ExAMPLE 1.3.5 (Dual Space of /P). Fix a number 1 < p < oo and
consider the Banach space P of p-summable sequences of real numbers,
equipped with the norm

o7} l/p
Iz, :== <Z|xz]p> for © = (z)ien € P.
i=1

(See part (ii) of Example [1.1.3]) This is the special case of the counting
measure on M = Nin Example and so the dual space of /P is isomorphic
to ¢4, where 1/p+ 1/qg = 1. Here is a proof in this special case.

Associated to every sequence y = (y;)ien € 7 is a bounded linear func-
tional Ay : /£ — R, defined by

(1.3.8) Ay(x) = miyi
=1

for = (x;);eny € P. Tt is well defined by the Holder inequality ([1.3.6)).
Namely, in this case the Holder inequality takes the form

o0

> lzigil < ll=l, Ny,

=1

for © = (z)ieny € /P and y = (y;)ien € 7 and hence the limit
o n
i=1 i=1

in (|1.3.8)) exists. Thus, for each y € ¢9, the map A, : ¢’ — R in (L.3.8)) is

well defined and linear and satisfies the inequality

1Ay (@)] < lll, lyll, — for all z c £
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Thus A, is a bounded linear functional on ¢? for every y € £¢ with norm

A, (x
Il = sup B@l oy
B T

Hence the formula ((1.3.8]) defines a bounded linear operator
(1.3.9) 01— (P) ry— Ay

In fact, it turns out that [|Ay[| = |ly[|, for all y € £7. To see this, fix a
nonzero element y = (y;)ieny € ¢ and consider the sequence z = (z;);en,
defined by x; := |y;|9 'sign(y;) for i € N, where sign(y;) := 1 when y; > 0
and sign(y;) ;== —1 when y; < 0. Then |z]? = |y;|~ PP = |y;|9 and thus

00 1-1/q [eS) )
—1
Iz, = (Z!yz’!q> =lylli™",  Ay(@) =D mii = |l =yll?.
i=1 =1 =1

This shows that
Ay(2)]  lyllg
Il Dl
and so [|[Ay| = |lyl,- Thus the map is an isometric embedding.
We prove that it is surjective. For ¢ € N define

(1.3.10) e; := (0ij)jeN,

where ¢;; denotes the Kronecker symbol, i.e. §;; := 1 for i = j and ¢;; := 0
for i # j. Then e; € (P for every i € N and the subspace span{e; |i € N}
of all (finite) linear combinations of the e; is dense in /. Let A : /# — R
be a nonzero bounded linear functional and define y; := A(e;) for ¢ € N.
Since A # 0 there is an ¢ € N such that y; # 0. Consider the sequences

1Ay[l =

= llyll,

n n
&n = Z]yi]q_lsign(yi)ei e P, M 1= Zyiei e for n € N.
i=1 i=1

Since (¢ — 1)p = q, they satisfy

n 1-1/q
1€nll, = (Z!yi!q> = |lmall3 "
i=1
and A(§n) = 2070 |yil? = H77n||37 and so
n 1/q
A(n)
<Z|yi|q> = llnmll, = T [[A]l
i=1 "lip
for n € N sufficiently large. Thus y = (y;)ien € £9. Since Ay(e;) = A(e;) for

all i € N and the linear subspace span{e; |i € N} is dense in P, it follows
that A, = A. This proves that the map (1.3.8) is an isometric isomorphism.
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ExAMPLE 1.3.6 (Dual Space of ¢!). The discussion of Example m
extends to the case p = 1 and shows that the natural map

00— (Y ry = Ay

defined by is a Banach space isometry. Here ¢ C RY is the space
of bounded sequences of real numbers equipped with the supremum norm.
(Exercise: Prove this by adapting Example to the case p =1.)
There is an analogous map ¢! — (¢>°)* : y — A,. This map is again an
isometric embedding of Banach spaces, however, it is far from surjective.
The existence of a linear functional on £*° that cannot be represented by a
summable sequence can be established via the Hahn-Banach Theorem.

EXAMPLE 1.3.7 (Dual Space of c¢j). Consider the closed linear sub-
space of £*° which consists of all sequences of real numbers that converge to
zero. Denote it by

(1.3.11) co = {x = (2)ieny € RY

lim z; = 0} C .

11— 00

This is a Banach space with the supremum norm

2] o = sup|a|.
€N

Every sequence y = (y;)ien € ¢* determines a linear functional Ay, : ¢g — R
via (1.3.8). It is bounded and ||A,|| < ||y||; because

[e.e] o0
Ay(@)] <Y eyl < oo D lyil = 2o vl
=1 =1

for all x € ¢y. Thus the map
(1.3.12) iy Ay

is a bounded linear operator. In fact, it is an isometric isomorphism of
Banach spaces. To see this, let y = (y;)ien € ¢! and define ¢; := sign(y;)
for i € N. Thus ¢; =1 when y; >0 and ¢;, = —1 when y; < 0. For n € N
define &, := > 1" | €ie; € cp, where ¢; € ¢p is defined by . Then

n
Ay(&n) =) il llall = 1.
i=1
Thus ||[Ay|| > > |yi| for all n € N, hence
oo
1Ay 1 =D Iyl = llylly = 1Ayl
i=1

and so ||Ay|| = ||y||;. This shows that the linear map (1.3.12)) is an isometric
embedding and, in particular, is injective.
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We prove that the map is surjective. Let A : ¢g — R be a
nonzero bounded linear functional and define the sequence y = (y;)ieny € RY
by y; := A(e;) for i € N where e; € ¢ is the sequence in . As before,
define &, := )" | sign(y;)e; € ¢o for n € N. Then ||&,|| = 1 for n sufficiently
large and therefore

Z|y1| = A(&) < Al for all n € N.
i=1

This implies [|y||; = Yoo,y < |A]| and soy € £, Since Ay (e;) = y; = A(e;)
for all i € N and the linear subspace span{e; |7 € N} is dense in ¢ (prove
this!), it follows that A, = A. Hence the map is a Banach space
isometry and so ¢ = ¢1.

EXAMPLE 1.3.8 (Dual Space of C(M)). Let M be a second count-
able compact Hausdorff space, so M is metrizable [61]. Denote by B c 2
its Borel o-algebra, i.e. the smallest o-algebra containing the open sets.
Consider the Banach space C (M) of continuous real valued functions on M
with the supremum norm and denote by M(M) the Banach space of signed
Borel measures p : B — R with the norm in equation (|1.1.4) (see Exam-
ple . Every signed Borel measure p : B — R determines a bounded
linear functional A, : C(M) — R defined by

(1.3.13) Au(f) = /Mfdu for f € C(M).

The Hahn Decomposition Theorem asserts that for every signed Borel mea-
sure p : B — R there exists a Borel set P C M such that u(BNP) > 0
and pu(B\ P) < 0 for every Borel set B C M (see [75, Thm 5.19]). Since
every Borel measure on M is regular (see [75, Def 3.1 and Thm 3.18]) this
can be used to show that HA“||£(C(M)7R) = ||p|| . Now every bounded linear
functional A : C(M) — R can be expressed as the difference of two positive
linear functionals A* : C(M) — R (see [75, Ex 5.35]). Hence it follows from
the Riesz Representation Theorem (see [75], Cor 3.19]) that the linear map

M(M) = C(M)* : p—= A,
is an isometric isomorphism.

EXERCISE 1.3.9. Let X be an infinite-dimensional normed vector space
and let A : X — R be a nonzero linear functional. The following are
equivalent.

(i) A is bounded.
(ii) The kernel of A is a closed linear subspace of X.
(iii) The kernel of A is not dense in X.
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1.4. Hilbert Spaces

This section introduces some elementary Hilbert space theory. It shows that
every Hilbert space is isomorphic to its own dual space.

DEFINITION 1.4.1 (Inner Product). Let H be a real vector space. A
bilinear map

(1.4.1) HxH—=R:(z,y) — (z,y)

is called an inner product if it is symmetric, ie. (z,y) = (y,x) for
all z,y € H, and positive definite, ie. (z,z) > 0 for all x € H \ {0}.
The norm associated to an inner product ((1.4.1)) is the function

(1.4.2) H—-R:ze |z = (z,z).

LEMMA 1.4.2 (Cauchy—Schwarz Inequality). Let H be a real vector

space equipped with an inner product (1.4.1) and the norm (1.4.2). The
inner product and norm satisfy the Cauchy—Schwarz inequality

(1.4.3) (@, 9) < =l [yl

and the triangle inequality
(1.4.4) [+ yll < llzf| + |y
forall z,y € H. Thus (1.4.2)) is a norm on H.

Proof. The Cauchy—Schwarz inequality is obvious when z = 0 or y = 0.

Hence assume x # 0 and y # 0 and define
T Y
e -yl

Then ||| = ||n|| = 1. Hence

0< lIln—(EmEN* = (mn—(EmE =1—(&n)?

This implies |[(£,n)| < 1 and hence [(z,y)| < ||z|| ||ly||. In turn it follows from
the Cauchy—Schwarz inequality that

2 2 2

lz +ylI” = [l=]” + 2(z, y) + |y
2 2
< ™+ 21l lyll + [yl

2
= (=l +1lyl)”-
This proves the triangle inequality (1.4.4) and Lemma m O

DEFINITION 1.4.3 (Hilbert Space). An inner product space (H, (-,-))
is called a Hilbert space if the norm (1.4.2)) is complete.
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THEOREM 1.4.4 (Riesz). Let H be a Hilbert space and let A : H — R
be a bounded linear functional. Then there exists a unique element y € H
such that

(1.4.5) A(x) = (y,x) forall z € H.
This element y € H satisfies
(y, )|
(1.4.6) lyll = sup = [IAll-
0#x€eH || ||

Thus the map H — H* : y — (y,-) is an isometry of normed vector spaces.

Proof. See page [33] O

THEOREM 1.4.5. Let H be a Hilbert space and let K C H be a nonempty
closed conver subset of H. Then there exists a unique element xy € K such
that ||xo|| < ||z|| for all x € K.

Proof. Define
§ := inf {||z| ’xEK} > 0.

We prove existence. Choose a sequence z; € K with lim;_, ||z;]| = 0. We
prove that z; is a Cauchy sequence. Fix a constant € > 0. Then there exists
an integer 79 € N such that
&2
1
Let 7,5 € N such that ¢« > ig and j > ¢g. Then %(m, +z;) € K because K is
convex and hence ||z; + x;|| > 26. This implies

ieN, i>ig = | a]|? < 6% +

2 2 2 2
|z — 2|7 = 2|lz||” + 2|z ]|” — [|z: + 24|
82
< 4<52+4>—452:g2.

Thus x; is a Cauchy sequence. Since H is complete the limit zg := lim; o0 ;
exists. Moreover xy € K because K is closed and ||| = d because the Norm

function (1.4.2]) is continuous.

We prove uniqueness. Fix two elements zg,z1 € K with
[[zoll = [l1[| = 6.
Then 3(zo + 21) € K because K is convex and so |lzg + 21 > 2. Thus
lzo — 211> = 2|20l + 2|21 ]1* — [|lz0 + 21[|* = 46% — ||z + 21[|* < 0

and therefore zg = x1. This proves Theorem [1.4.5 ([
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Proof of Theorem[1.].7) We prove existence. If A = 0, then the vec-
tor y = 0 satisfies ((1.4.5). Hence assume A # 0 and define

K:={zeH|A@)=1}.

Then K # () because there exists an element & € H such that A(¢) # 0
and hence r := A(§)7!'¢ € K. The set K is closed because A : H — R
is continuous, and it is convex because A is linear. Hence Theorem [1.4.5
asserts that there exists an element ¢y € K such that

lzoll < ||z for all =z € K.
We prove that
(1.4.7) reH, Alx)=0 = (xo,x) = 0.
To see this, fix an element # € H such that A(x) = 0. Then z¢ +tz € K for
all ¢ € R. This implies
zol|* < [lzo + tz||* = [lwol|® + 2t(zo,z) + [|z|*  forall teR.

Thus the differentiable function ¢ — ||zg +tz||? attains its minimum at ¢ = 0
and so its derivative vanishes at ¢t = 0. Hence

d
0==% - lzo + t]|* = 2(wo, z)

and this proves (1.4.7)).

Now define y := ||zo||~2x¢. Fix an element € H and define \ := A(x).
Then A(x — Azg) = A(z) — A = 0. Hence it follows from ((1.4.7]) that

0 = (z0, 2 — Azo) = (0, ) — |0l

This implies (y, ) = ||zo]|~?(x0,z) = A = A(z). Thus y satisfies (1.4.5)).
We prove ([1.4.6). Assume y € H satisfies (1.4.5). If y = 0, then A =0
and so ||ly|| =0 = ||A||. Hence assume y # 0. Then

2

y Ay Az

2 ol A IA)
lyll Nyl ™ ozaen [l

= [IAll-
Conversely, it follows from the Cauchy—Schwarz inequality that

[A(2)] = [y, 2)| < llyllll=]
for all z € H and hence ||A|| < ||y||. This proves (1.4.6)).

We prove uniqueness. Assume y, z € H satisfy (y,xz) = (z,z) = A(x) for
all z € H. Then (y — z,x2) =0 for all x € H. Take x := y — z to obtain

ly—zlI* = (y =2,y —2) =0
and so y — z = 0. This proves Theorem O
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We will see, as we proceed, that Hilbert spaces have several features that
are not shared by general Banach spaces. One of these is that every closed
subspace of a Hilbert space has a complement, i.e. another closed subspace
whose direct sum with the original subspace is the entire Hilbert space. To
explain this, we define the orthogonal complement of a subset S C H by

(1.4.8) St = {yeH|(x,y)=0forallzeS}.
It follows directly from the definitions that S is a closed subspace of H.

COROLLARY 1.4.6. Let H be a Hilbert space and let E C H be a closed
subspace. Then H = E & E+.

Proof. If x € ENEL, then ||z||* = (z,2) = 0 and hence z = 0. If z € H,
then the set K:=xz+ E ={z+¢{|{ € E} is a closed convex subset of H.
Hence Theorem [1.4.5| asserts that there exists an element £ € FE such
that || — &|| < |[z — n|| for all n € E. Hence, for all n € E, we have

d| |lz—&+|”
0 = — _— = — &,
i, 5 (x—&m)
Thus z — & € E+ and so € E @ E*. This proves Corollary U

In Chapter [2] we will encounter closed subspaces of Banach spaces that
are not complemented (see Subsection [2.3.5)).

EXAMPLE 1.4.7. Let (M, A, 11) be a measure space. Then H := L?(p) is
a Hilbert space. The inner product is induced by the bilinear map

(1.4.9) L2(u) x L2(p) = R: (f,9) = (f,9) = /M fgdu.

It is well defined because the product of two L2-functions f,g: M — R
is integrable by the Cauchy—Schwarz inequality. That it is bilinear and
symmetric follows directly from the properties of the Lebesgue integral. In
general, it is not positive definite. However, it descends to a positive definite
symmetric bilinear form on the quotient space

L2 () = L%(p) /~,

where the equivalence relation is defined by equality almost everywhere as in

part (iii) of Example m The inner product on L?(u) induced by ((1.4.9)
is called the L? inner product. The norm associated to this inner product

is the L? norm in with p = 2. By [75, Theorem 4.9] the space L?(u)
is complete with this norm and hence is a Hilbert space.

Special cases are the Euclidean space (R, ||-||2) in part (i) of Exam-
ple associated to the counting measure on the set M = {1,...,n},
and the space £? in part (ii) of Example associated to the counting
measure on the set M = N.
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1.5. Banach Algebras

We begin the discussion with a result about convergent series in a Banach
space. It extends the basic assertion in first year analysis that every abso-
lutely convergent series of real numbers converges. We will use Lemma [1.5.1
to study power series in a Banach algebra.

LEMMA 1.5.1 (Convergent Series). Let (X, |-||) be a Banach space
and let (z;)ien be a sequence in X such that

(o ¢]
> il < oo
=1

Then the sequence &, =Y i | x; in X converges. Its limit is denoted by
o0 n
(1.5.1) D wi=lim Y @
n—oo
i=1 i=1

Proof. Define s, := Y I ||a;|| for n € N. This sequence is nonde-
creasing and converges by assumption. Moreover, for every pair of inte-
gers n > m > 1, we have
n

> w

i=m-+1

n

< Z lzill = s — sm-

i=m-+1

an - gmH -

Hence (&,,)nen is a Cauchy sequence in X. Since X is complete, this sequence
converges, and this proves Lemma |l.5.1 O

DEFINITION 1.5.2 (Banach Algebra). A real (respectively complex)

Banach algebra is a pair consisting of a real (respectively complex) Banach
space (A, |]|) and a bilinear map A x A — A : (a,b) — ab (called the
product) that is associative, i.e.

(1.5.2) (ab)e = a(bc) for all a,b,c € A,
and satisfies the inequality
(1.5.3) llab|| < ||all ||0] for all a,b € A.

A Banach algebra A is called commutative if ab = ba for all a,b € A. Tt
is called unital if there exists an element 1 € A\ {0} such that

(1.5.4) la=al=a for all a € A.

The unit 1, if it exists, is uniquely determined by the product. An el-
ement a € A of a unital Banach algebra A is called invertible if there
exists an element b € A such that ab = ba = 1. The element b, if it exists,
is uniquely determined by a, is called the inverse of a, and is denoted
by a~! :=b. The invertible elements form a group G C A.
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ExXAMPLE 1.5.3. (i) The archetypal example of a Banach algebra is the
space L(X) := L(X, X) of bounded linear operators from a Banach space X
to itself with the operator norm (Definition and Theorem . This
Banach algebra is unital whenever X # {0} and the unit is the identity.
It turns out that the invertible elements of £(X) are the bijective bounded
linear operators from X to itself. That the inverse of a bijective bounded
linear operator is again a bounded linear operator is a nontrivial result,

which follows from the Open Mapping Theorem (see Theorem below).

(ii) An example of a commutative unital Banach algebra is the space of
real valued bounded continuous functions on a nonempty topological space
equipped with the supremum norm and pointwise multiplication.

(iii) A third example of a unital Banach algebra is the space ¢!(Z) of bi-
infinite summable sequences (z;);cz of real numbers with the convolution
product defined by (z xy); 1= >,y w;yi—; for z,y € (Z).

(iv) A fourth example of a Banach algebra is the space L'(R") of Lebesgue
integrable functions on R™ (modulo equality almost everywhere), where mul-
tiplication is given by convolution (see [75, Section 7.5]). This Banach alge-
bra does not admit a unit. A candidate for a unit would be the Dirac delta
function at the origin which is not actually a function but a measure. The
convolution product extends to the space of signed Borel measures on R"
and they form a commutative unital Banach algebra.

Let A be a complex Banach algebra and let
oo
(1.5.5) flz)= chz"
n=0

be a power series with complex coeflicients ¢, € C and convergence radius
1

P lim sup,,_, oo |cn|2/™

(1.5.6) >0

Choose an element a € A with |la]] < p. Then the sequence (¢,a")nen
satisfies the inequality >~ 7 o [[cpa™|| < |col |1l +D 207 |enl [la]™ < oo, so the
sequence &, ==y 1" c;a’ converges by Lemma Denote the limit by

(1.5.7) f(a) = Z cpa
n=0

for a € A with |ja| < p.

EXERCISE 1.5.4. The map f : {a € A| ||a| < p} — A defined by
is continuous. Hint: For n € N define f, : X — X by f,(a) :== > 1, cia’.
Prove that f, is continuous. Prove that the sequence f,, converges uniformly
to f on the set {a € A ||a|| < r} for every r < p.



1.5. Banach Algebras 37

THEOREM 1.5.5 (Inverse). Let A be a real unital Banach algebra.
(i) For every a € A the limit

T n 1/n — n 1/n <
(1.5.8) ro = lim [la"| inf [la™ """ < la]

exists. It is called the spectral radius of a.

(ii) If a € A satisfies rq < 1, then the element 1 — a is invertible and
(1.5.9) A-a)=> a"
n=0

(iii) The group G C A of invertible elements is an open subset of A and the
map G — G : a— a~ ! is continuous. More precisely, if a € G and b € A
satisfy la —bl||la™|| < 1, then b€ G and b1 =320 ((1—a'b)"a™" and
la —bf[fla”"| la"]

= lla = ollfla=t| la = bfla=!

(15.10) b~ a7 < < I < 1=

Proof. We prove part (i). Let a € A, define
r = inf ||a”||*/™ > 0,
neN
and fix a real number € > 0. Choose m € N such that
la™||Y™ <7 +e

and define ,
M = max LQH

T =01,.m—1\r+¢e/)

Fix two integers £k > 0 and 0 < ¢ <m — 1 and let n := km + £. Then
a7 = latmat |
¢ k
< [laf™ fam

< lal " (r + &)™/

- (L) 1

< MY +e).

Since lim,,_yoo MY = 1, there is an integer ng € N such that
la™|V™ < 7+ 2

for every integer n > ng. Hence the limit r, in (1.5.8)) exists and is equal
to r. This proves part (i).
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We prove part (ii). Let a € A and assume 7, < 1. Choose a real
number « such that

re < a < 1.
Then there exists an ng € N such that

' < @
for every integer n > ng. Hence
la"] < a® for every integer n > nyg.

This implies >, [la™]| < o0, so the sequence

by, = i at
=0
converges by Lemma [I.5.1] Denote the limit by b. Since
bp(1—a) = (1—a)b, =1—a""!
for all n € N and lim,, s Ha"HH < limy,_00 @™ = 0, it follows that
b(1—a)=(1-a)b=1.

Hence 1 — a is invertible and (1 — a)~! = b. This proves part (ii).

We prove part (iii). Fix an element a € G and let b € A such that

la = bl [la™" ] < 1.

Then H]l — a_le < 1 and hence
ab=1-(1-a'b)eg, (') '=> (I-a'd)"
n=0
by part (ii). Hence b = a(a~'b) € G and

o0

b =) (1-a'b)a!

n=0

and so
o
I —a < 3 e bt
n=1

lla — bllfla—"]1?
1—lla = bllfla="]]

Thus B||a—1H‘1(a) C G and the map By _, “1(a) = G : b bt is continu-
ous. This proves part (iii) and Theorem O
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DEFINITION 1.5.6 (Invertible Operator). Let X and Y be Banach
spaces. A bounded linear operator A : X — Y is called invertible if there
exists a bounded linear operator B : Y — X such that

BA =1y, AB = 1y.
The operator B is uniquely determined by A and is denoted by
B=:A"'.

It is called the inverse of A. When X =Y, the space of invertible bounded
linear operators in £(X) is denoted by

Aut(X) := {A € L(X) | there is a B € £L(X) such that AB = BA =1} .

The spectral radius of a bounded linear operator A € L£(X) is the real
number 74 > 0 defined by

(1.5.11) ra= lim [[A"|Y" = inf | A" < ||A].
n—r00 neN
COROLLARY 1.5.7 (Spectral Radius). Let X andY be Banach spaces.
Then the following holds.
(i) If A € L(X) has spectral radius 74 < 1, then

Iy —AeAut(X),  (Ix—A)~ ZA”

(ii) Aut(X) is an open subset of L(X) with respect to the norm topology
and the map Aut(X) — Aut(X) : A+ A™L is continuous.

(iii) Let A, P € L(X,Y) be bounded linear operators. Assume A is invertible
and ||P|||A~Y|| < 1. Then A — P is invertible,

(1.5.12) (A-P)' =) (A'P)r A,
n=0
and
oyl g1 P[]l A
(1.5.13) (A - P) <= 1PITAT

Proof. Assertions (i) and (ii) follow from Theorem [1.5.5]with A = £(X).
To prove part (iii), observe that |[A~'P|| < ||A~|||P|| < 1. Hence it follows
from part (i) that the operator Ix — A_ P is invertible and that its inverse
is given by (1x — A_lP) Zk o(A™ Lp)E, Multiply this identity by A~
on the right to obtain The inequality ((1.5.13 m follows directly
from (1.5.12)) and the limit formula for a geometric series. This proves

Corollary O
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1.6. The Baire Category Theorem

The Baire category theorem is a powerful tool in functional analysis. It pro-
vides conditions under which a subset of a complete metric space is dense.
In fact, it describes a class of dense subsets such that every countable in-
tersection of sets in this class belongs again to this class and hence is still a
dense subset. Here are the relevant definitions.

DEFINITION 1.6.1 (Baire Category). Let (X, d) be a metric space.

(i) A subset A C X is called nowhere dense if its closure A has an empty
interior.

(ii) A subset A C X is said to be meagre if it is a countable union of
nowhere dense subsets of X.

(iii) A subset A C X is said to be nonmeagre if it is not meagre.

(iv) A subset A C X is called residual if its complement is meagre.

This definition does not exclude the possibility that X might be the
empty set, in which case every subset of X is both meagre and residual.
In the literature meagre sets are often called of the first category (in
the sense of Baire), nonmeagre sets are called of the second category,

and residual sets are called comeagre. The next lemma summarizes some
elementary consequences of these definitions.

LEMMA 1.6.2. Let (X, d) be a metric space. Then the following holds.

(i) A subset A C X is nowhere dense if and only if its complement X \ A
contains a dense open subset of X.

(ii) If B C X is meagre and A C B, then A is meagre.

(iii) If A C X is nonmeagre and A C B C X, then B is nonmeagre.
(iv) Every countable union of meagre sets is again meagre.

(v) Every countable intersection of residual sets is again residual.

(vi) A subset of X is residual if and only if it contains a countable inter-
section of dense open subsets of X.

Proof. The complement of the closure of a subset of X is the interior of
the complement and vice versa. Thus every subset A C X satisfies
X \int(4) = X \ A =int(X \ A4).

This shows that a subset A C X is nowhere dense if and only if the interior
of X \ A is dense in X, i.e. X \ A contains a dense open subset of X. This
proves (i). Parts (ii), (iii), (iv), and (v) follow directly from the definitions.
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We prove (vi). Let R C X be a residual set and define A := X\ R. Then
there is a sequence of nowhere dense subsets A; C X such that A = |J;2, 4;.
Define U; := X \ A; = int(X \ 4;). Then U; is a dense open set by (i) and

ﬁUi:X\GECX\GAi:X\A:R.
=1 =1 =1

Conversely, suppose that there is a sequence of dense open subsets U; C X
such that (;2, U; C R. Define A4; := X \ U; and A := J;2; A;. Then A4; is
nowhere dense by (i) and hence A is meagre by definition. Moreover,

X\RCX\ﬁU,- UX\U UA A.

i=1
Hence X \ R is meagre by part (ii) and this proves Lemma [1.6.2] O
LEMMA 1.6.3. Let (X, d) be a metric space. The following are equivalent.
(1) Every residual subset of X is dense.
(ii) If U C X is a nonempty open set, then U is nonmeagre.

(iii) If A; C X is a sequence of closed sets with empty interior, then their
union has empty interior.

(iv) If U; C X is a sequence of dense open sets, then their intersection is
dense in X.

Proof. We prove that (i) implies (ii). Assume (i) and let U C X be a
nonempty open set. Then its complement X \ U is not dense and so is not
residual by (i). Hence U is not meagre.

We prove that (ii) implies (iii). Assume (ii) and let A; be a sequence
of closed subsets of X with empty interior. Then their union A is meagre.
Hence the interior of A is also meagre by part (ii) of Lemma m Hence
the interior of A is empty by (ii).

We prove that (iii) implies (iv). Assume (iii) and let U; be a sequence
of dense open subsets of X. For i € N define A; := X \ U;. Then A; is a
sequence of closed subsets of X with empty interior. Hence A :=J;2, 4;
has empty interior by (iii) and so the set

R:= ﬂU ﬂX\Ai):X\A
i=1

is dense in X.

We prove that (iv) implies (i). Assume (iv) and let R C X be residual.
Then, by part (vi) of Lemma there exists a sequence of dense open
subsets U; C X such that [);cyUs C R. By (iv) the set [,y U; is dense
in X and hence so is R. This proves Lemma [1.6.3 [l
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THEOREM 1.6.4 (Baire Category Theorem). Let (X,d) be a non-
empty complete metric space. Then the following holds.

(1) Fvery residual subset of X is dense.
(ii) If U C X is a nonempty open set, then U is nonmeagre.

(iii) If A; C X is a sequence of closed sets with empty interior, then their
union has empty interior.

(iv) If U; C X is a sequence of open dense sets, then their intersection is
dense i X.

(v) Every residual subset of X is nonmeagre.

Proof. The first four assertions are equivalent by Lemma [1.6.3]
We prove that (ii) implies (v). Let R C X be a residual set. Then X \ R
is meagre by definition. If the set R were meagre as well, then
X=(X\R)UR
would also be meagre by part (iv) of Lemma and this would contradict
part (ii) because X is nonempty. Thus R is nonmeagre.

We prove part (iv). Thus assume that U; C X is a sequence of dense
open sets. Fix an element x¢p € X and a constant eg > 0. We must prove
that Be,(20) N(oeq Ui # 0. We claim that there exist sequences

(1.6.1) €U, O<ep<27F  k=1,2,3,...,
such that
(1.6.2) B, (zx) C UpyN Be,_, (T—1)

for every integer k > 1. For k = 1 observe that Uy N B, (xo) is a nonempty
open set because U; is dense in X. Choose any element 21 € U; N B, (x0)
and choose £; > 0 such that €1 < 1/2 and Be, (z1) C Uy N By (xo). If 21
and er_1 have been found for some integer k > 2, use the fact that Uy is
dense in X to find x and ¢ such that (1.6.1)) and (1.6.2]) hold.

More precisely, this argument requires the axiom of dependent choice
(see page |§[) Define the set

X = {(k,m,s) \ keN,zeX,0<e<27F B.(x) C Uy ﬂBEO(xO)}
and define the map A : X — 2X by
A(k,z,e) == {(k:’,a:’,s’) eX|K =k+1,Bu() C Bs(x)}

for (k,z,e) € X. Then X # () and A(k,z,e) # 0 for all (k,z,e) € X,
because Uy is open and dense in X for all k. Hence the existence of the
sequences xj and ey follows from the axiom of dependent choice.
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Now let x, € Uy and €5 > 0 be sequences that satisfy (1.6.1)) and (1.6.2]).
Then

d(zg, 2po1) < epg < 27F
for all £ € N. Hence
-1 -1
d(zg, z¢) < d(zi, xiy1) < Z 271 < o1k
i=k i=k

for all k,¢ € N with ¢ > k. Thus (z1)ren is a Cauchy sequence in X. Since X
is complete the sequence (x)ren converges. Denote its limit by

z* = lim .
k—o00

Since zy € Be, (zy,) for every £ > k it follows that
x* € B, (vr) C Ug for all £k € N.

Moreover,

x* € Be,(x1) C Bey(xo).

This shows that the intersection
o0
Bey(z0) N (Ui
i=1

is nonempty for all xp € X and all g > 0. Hence the set ﬂf; U; is dense
in X as claimed. This proves part (iv) and Theorem [1.6.4] O

The desired class of dense subsets of our nonempty complete metric
space is the collection of residual sets. Every residual set is dense by part (i)
of Theorem and every countable intersection of residual sets is again
residual by part (v) of Lemma It is often convenient to use the char-
acterization of a residual set as one that contains a countable intersection
of dense open sets in part (vi) of Lemma A very useful consequence
of the Baire Category Theorem is the assertion that a nonempty complete
metric space cannot be expressed as a countable union of nowhere dense
subsets (part (ii) of Theorem with U = X).

We emphasize that, while the assumption of the Baire Category Theo-
rem (completeness) depends on the distance function in a crucial way, the
conclusion (every countable intersection of dense open subsets is dense) is
purely topological. Thus the Baire Category Theorem extends to many met-
ric spaces that are not complete. All that is required is the existence of a
complete distance function that induces the same topology as the original
distance function.
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EXAMPLE 1.6.5. Let (M, d) be a complete metric space and let X € M
be a nonempty open set. Then the conclusions of the Baire Category Theo-
rem hold for the metric space (X, dx) with dx :=d|xxx : X x X — [0,00),
even though (X,dx) may not be complete. To see this, let U; C X be
a sequence of dense open subsets of X, choose xg € X and ey > 0 such
that B, (z9) C X, and repeat the argument in the proof of Theorem m
to show that Be,(x0) N(ooq Ui # 0. All that is needed is the fact that the
closure B, (x1) that contains the sequence zj, is complete with respect to
the induced metric.

ExaMPLE 1.6.6. The conclusions of the Baire Category Theorem hold
for the topological vector space C*°([0, 1]) of smooth functions f : [0, 1] — R,
equipped with the C*° topology. By definition, a sequence f, € C*([0,1])
converges to f € C°([0,1]) with respect to the C* topology if and only
if, for each integer ¢ > 0, the sequence of fth derivatives fff) :[0,1] = R
converges uniformly to the /th derivative £ : [0,1] — R as n tends to
infinity. This topology is induced by the distance function

d(f )._iQ—Z Hf(g)_g(e)Hoo
g o0,

£=0

where [Jul|, := supg<;<; [u(t)| denotes the supremum norm of a continuous
function u : [0,1] — R, and (C*°([0,1]),d) is a complete metric space.

EXAMPLE 1.6.7. A residual subset of R™ may have Lebesgue measure
zero. Namely, choose a bijection N — Q" : k — x; and, for € > 0, define

U := U By—k (k).
k=1

This is a dense open subset of R™ and its Lebesgue measure is less than (2¢)™.
Hence R := (2, Uy si is a residual set of Lebesgue measure zero and its
complement

A=R"\R=|J(R"\U)
i=1

is a meagre set of full Lebesgue measure.

ExaMPLE 1.6.8. The conclusions of the Baire category theorem do not
hold for the metric space X = Q of rational numbers with the standard
distance function given by d(z,y) := |z —y| for z,y € Q. Every one element
subset of X is nowhere dense and every subset of X is both meagre and
residual.
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1.7. Problems

EXERCISE 1.7.1 (Precompact Sets). Let X and Y be topological
spaces such that Y is Hausdorff. Let f : X — Y be a continuous map and
let A C X be a precompact subset of X (i.e. its closure A is compact). Prove
that B := f(A) is a precompact subset of Y. Hint: Show that f(A) C B.
If A is compact and Y is Hausdorff, show that f(A) = B.

EXERCISE 1.7.2 (Totally Bounded Sets). Let A be a subset of a metric
space. Show that A is totally bounded if and only if A is totally bounded.

EXERCISE 1.7.3 (Complete and Closed Subspaces). Let (X,dx) be
a metric space, let Y C X be a subset, and denote by dy := dx|yxy the
induced distance function on Y. Prove the following.

(a) If (Y,dy) is complete, then Y is a closed subset of X.
(a) If (X,dx) is complete and Y C X is closed, then (Y, dy) is complete.

EXERCISE 1.7.4 (Completion of a Metric Space). Let (X,d) be a
metric space. A completion of (X,d) is a triple (X,d,t), consisting of a
complete metric space (X, d) and an isometric embedding ¢ : X — X with
a dense image.

(a) Every completion (X,d,t) of (X,d) has the following universality
property: If (Y,dy) is a complete metric space and ¢ : X — Y is a 1-
Lipschitz map (i.e. a Lipschitz continuous map with Lipschitz constant
one), then there exists a unique 1-Lipschitz map ¢ : X — Y such that

b="5ou

(b) If (X 1,d1,t1) and (X3, da, 12) are completions of (X, d), then there exists
a unique isometry v : X; — X such that ¢ ot = t9.
(c) (X,d) admits a completion. Hint: The space Cy(X) of bounded con-

tinuous functions f : X — R is a Banach space with the supremum norm.
Let 29 € X and, for x € X define f, € Cp(X) by

fe(y) = d(y,r) — d(y, zo) for y € X.

Prove that the map X — Cy(X) :  — f, is an isometric embedding and
that the closure of its image is a completion of (X, d).

(d) Let (X, d) be a complete metric space and let + : X — X be a 1-Lipschitz
map that satisfies the universality property in (a). Prove that (X,d,¢) is a
completion of (X, d).

EXERCISE 1.7.5 (Completion of a Normed Vector Space). The
completion of a normed vector space is a Banach space.
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EXERCISE 1.7.6 (Operator Norm). This exercise shows that the supre-
mum in the definition of the operator norm need not be a maximum (see
Definition [L.2.1]). Consider the Banach space X := C([—1,1]) of continuous
functions f : [-1,1] — R equipped with the supremum norm and define the
bounded linear functional

A:C(-1,1) - R
by

:/f@ﬁ—/f@ﬁ for f € C([=1,1)).
0 —1

Prove that there does not exist a function f € C([—1, 1]) such that || ||, =
and |A(F)| = [1A]| =2

EXERCISE 1.7.7 (Continuously Differentiable Functions).

Let I := [0,1] be the unit interval and denote by C'(I) the space of continu-
ously differentiable functions f : I — R (with one-sided derivatives at t =0
and t = 1). Define

(1.7.1) | fllgr == sup |f(¢)| + Sup | (t)] for f € CY(I).
0<t<1 0<t<

(a) Prove that C*(I) is a Banach space with the norm (1.7.1)).

(b) Show that the inclusion ¢ : C'(I) — C(I) is a bounded linear operator.
(c) Let B C C*(I) be the unit ball. Show that ¢(B) has compact closure.
(d) Is «(B) a closed subset of C(I)?

(e) Does the linear operator ¢ : C(I) — C(I) have a dense image?

EXERCISE 1.7.8 (Integration Against a Kernel).

Let I :=[0,1], let K : I x I — R be a continuous function, and define the
linear operator Tk : C(I) — C(I) by

(T f)(t /Kts ds for feC(I)and 0 <t < 1.
Prove that Tk is continuous. Let B C C(I) be the unit ball and prove that
its image Tk (B) has a compact closure in C([).

EXERCISE 1.7.9 (Fekete’s Lemma). Let (a;,)nen be a sequence of real
numbers and suppose that there exists a constant ¢ > 0 such that

Qnim < Qp + Qm + ¢ for all n,m € N.

Prove that lim, o /1 = inf,en oy /n. Here both sides of the equation
may be minus infinity. Compare this with part (i) of Theorem 5| by
taking o, := log||a™]|.
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EXERCISE 1.7.10 (The Inverse in a Unital Banach Algebra).

Let A be a unital Banach algebra and let a,b € A such that 1 — ab is in-
vertible. Prove that 1 — ba is invertible. Hint: An explicit formula for the
inverse of 1 — ba in terms of the inverse of 1 — ab can be guessed by expand-

ing (1 —ab)~! and (1 — ba)~! formally as geometric series (Theorem [1.5.5)).

EXERCISE 1.7.11 (Cantor’s Intersection Theorem). The diameter
of a nonempty subset A of a metric space (X,d) is defined by

(1.7.2) diam(A) := sup d(z,y).
z,y€A

(a) Prove that a metric space (X, d) is complete if and only if every nested
sequence A1 D Ay D Az D --- of nonempty closed subsets A, C X sat-
isfying lim,,_,~ diam(A,) = 0 has a nonempty intersection (consisting of a
single point).

(b) Find an example of a complete metric space and a nested sequence of
nonempty closed bounded sets whose intersection is empty. Hint: Consider
the unit sphere in an infinite-dimensional Hilbert space.

EXERCISE 1.7.12 (Convergence Along Arithmetic Sequences).

Let f:[0,00) — R be a continuous functions such that
lim f(nt) =0 for all t > 0.
n—oo

Prove that
whﬁng(} f(z)=0.
Hint: Fix a constant € > 0 and show that the set
Ay = {t > 0]|f(mt)| < € for every integer m > n}

has a nonempty interior for some n € N (using the Baire Category Theo-
rem [1.6.4). Assume without loss of generality that [a,b] C A, for 0 <a <b
with n(b — a) > a. Deduce that |f(z)| < e for all > na.

EXERCISE 1.7.13 (Nowhere Differentiable Continuous Functions).
Prove that the set

R:={f:[0,1] = R| f is continuous and nowhere differentiable }

is residual in the Banach space C(]0,1]) and hence is dense. (This result is
due to Stefan Banach and was proved in 1931.) Hint: Prove that the set

fs) = (1)

un = fEC([O, 1]) s — 1t

sup
0<s<1

s#t
is open and dense in C([0, 1]) for every n € N and that (2, U, C R.

‘>nforallt€[0,l]
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The proof of the Baire Category Theorem uses the axiom of dependent
choice. A theorem of Blair asserts that the Baire Category Theorem is
equivalent to the axiom of dependent choice. That the axiom of dependent
choice follows from the Baire Category Theorem is the content of the next
exercise.

EXERCISE 1.7.14 (Baire Category and Dependent Choice). Let X
be a nonempty set and let A : X — 2% be a map which assigns to each x € X
a nonempty subset A(x) C X. Use Theorem to prove that there is a
sequence (X, )nen in X such that x,11 € A(x,) for all n € N.
Hint: Denote by X := X" the set of all sequences £ = (%, )nen in X and
define the function d : X x X — [0,00) by d(&,€) := 0 and

d(§,m)=2"",  n:=min{k € N|x; # yi},
for every pair of distinct sequences & = (Xp)nen, 7 = (Yn)nen € X. Prove
that (X, d) is a complete metric space. For k € N define

Uy = {g = (Xn)neN S XN

Prove that Uy, is a dense open subset of X for every £ € N and deduce that
the set R := () ey Uk is nonempty. Construct the desired sequence as a
suitable subsequence of an element £ = (X, )nen € R.

there is an integer £ > k
such that x;, € A(xy) '

EXERCISE 1.7.15 (Borel Measurable Linear Operators).

(a) Sets with the Baire property. A subset B of a topological space is
said to have the Baire property if there exists an open set U such that
the symmetric difference BAU := (B\U)U (U \ B) is meagre, i.e. B and U
differ by a meagre set (see Definition [1.6.1)). Prove that the collection of all
sets with the Baire property is the smallest o-algebra containing the Borel
sets and the meagre sets.

(b) Pettis’ Lemma. Let X be a Banach space and let B C X be a non-
meagre subset that has the Baire property. Prove that the set B — B is a
neighborhood of the origin. In particular, if B is a linear subspace of X,
then B=X. Hint: Let U be an open subset of X such that BAU is
meagre. Show that U # (), fix an element 2 € U, and find an open neigh-
borhood V of the origin such that x +V —V C U. For every v € V show
that U N (v + U) # 0 and deduce that BN (v + B) # 0.

(c) Borel measurable linear operators. Let f : X — Y be a Borel mea-
surable linear operator from a Banach space X to a separable normed vector
space Y. Prove that f is continuous. Hint: B :={z € X | ||f(z)|y < 1/2}
is a nonmeagre Borel set.



Chapter 2

Principles of
Functional Analysis

This chapter is devoted to the three fundamental principles of functional
analysis. The first is the Uniform Boundedness Principle in Section It
asserts that every pointwise bounded family of bounded linear operators on
a Banach space is bounded. The second is the Open Mapping Theorem in
Section[2.2] Tt asserts that every surjective bounded linear operator between
two Banach spaces is open. An important corollary is the Inverse Operator
Theorem which asserts that every bijective bounded linear operator between
two Banach spaces has a bounded inverse. An equivalent result is the Closed
Graph Theorem which asserts that a linear operator between two Banach
spaces is bounded if and only if its graph is a closed linear subspace of the
product space. The third fundamental principle in functional analysis is
the Hahn—Banach Theorem in Section It asserts that every bounded
linear functional on a linear subspace of a normed vector space extends to
a bounded linear functional on the entire normed vector space. A slightly
stronger version of the Hahn—Banach theorem, in which the norm is replaced
by a sublinear functional can be reformulated as the geometric assertion
that two convex subsets of a normed vector space can be separated by a
closed hyperplane whenever one of them has nonempty interior. There are in
fact many variants of the Hahn—Banach theorem, including one for positive
linear functionals on ordered vector spaces, which is used to establish the
separation of convex sets. Another application of the Hahn—-Banach theorem
is a criterion for a linear subspace to be dense. The final section of this
chapter discusses reflexive Banach spaces and includes an exposition of the
James space.
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2.1. Uniform Boundedness

Let X be a set. A family {f;};cs of functions f; : X — Y, indexed by the
elements of a set I and each taking values in a normed vector space Y;, is
called pointwise bounded if

(2.1.1) sup || fi(z)|ly, < o0 for all z € X.
el
THEOREM 2.1.1 (Uniform Boundedness). Let X be a Banach space,
let I be any set, and, for each i € I, let Y; be a normed vector space and

let A; : X —Y; be a bounded linear operator. Assume that the operator
family {A;}icr is pointwise bounded. Then sup;cy ||A;ill < oo.

Proof. See page O

LEMMA 2.1.2. Let (X,d) be a nonempty complete metric space, let I
be any set, and, for each i € I, let f; : X — R be a continuous function.
Assume that the family {f;}ier is pointwise bounded. Then there exists a
point xg € X and a number € > 0 such that

sup sup |fi(z)| < oo.
1€l z€B:(x0)

Proof. For n € N and i € I define the set
Fo; = {m e X ‘ \fi(x)] < n}

This set is closed because f; is continuous. Hence the set

suplfi(x)] < n}

Fn::ﬂFm:{xeX u
1€

i€l

is closed for every n € N. Moreover,

x=JF,

neN

because the family { f; };cs is pointwise bounded. Since (X, d) is a nonempty
complete metric space, it follows from the Baire Category Theorem
that the sets F;, cannot all be nowhere dense. Since these sets are all closed,
there exists an integer n € N such that F,, has nonempty interior. Hence
there exists an integer n € N, a point g € X, and a number € > 0 such
that B:(zo) C F,. Hence

sup sup |fi(z)|<n
1€l x€B:(x0)

and this proves Lemma [2.1.2 O



2.1. Uniform Boundedness 51

Proof of Theorem |[2.1.1]. Define the function f; : X — R by

fi(x) = || Aiz|ly,
forz € X and i € I. Then f; is continuous for each i and the family { f; }ier is

pointwise bounded by assumption. Since X is a Banach space, Lemma [2.1.2
asserts that there exists a vector xg € X and a constant ¢ > 0 such that

c:=sup sup [A4z]y < oo.
i€l z€B.(z0) ‘

Hence, for all z € X and all ¢ € I, we have
(2.1.2) |l —zolx < e = [Aiz]ly, < e
Let i € I and z € X such that ||lz[|y = 1. Then ||A;(zo = ez)|ly; < ¢ and so

1
lAizlly; = o [|4i(zo + e2) — Ai(zo — ex)lly;

1 1 c
< o= iCao + )y, + o 1Aiwo — 2)lly, < =
Hence
[ Aiz|y, c
(2.1.3) |Ai]| = sup Uniandl) sup [|[Aizlly, < -
zex\{oy 17llx vex €
Il x =1
for all ¢ € I and this proves Theorem [2.1.1 O

Remark 2.1.3. The above argument in the proof of Theorem which
asserts that (2.1.2]) implies (2.1.3), can be rewritten as the inequality
(2.1.4) sup |Az|ly > e ||A]

TE
llz—zgll x <e

for all A € L(X,Y), all zyp € X, and all € > 0. With this understood, one
can prove the Uniform Boundedness Theorem as follows (see Sokal [80]).
Let {A;}icr be a sequence of bounded linear operators A; : X — Y; such
that sup;c; || Ai]| = oco. Then the axiom of countable choice asserts that there
is a sequence i, € I such that ||4; || > 4™ for all n € N. Now use the axiom
of dependent choice, and the estimate (2.1.4) with A = A4;, and ¢ =1/3",
to find a sequence xz,, € X such that, for all n € N,

R Ve P

Then (zy,)nen is a Cauchy sequence and so converges to an element z* € X

such that [|z* — zp| y < 35+. Thus

. 2 1\ 1 1 /4\"
4027l > (5 - 5) 3 140 2 5 (3)

for all n € N and so the operator family {A;};cs is not pointwise bounded.
This argument circumvents the Baire Category Theorem.

|zn — mn—1||X <
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The Uniform Boundedness Theorem is also known as the Banach—
Steinhaus Theorem. A useful consequence is that the limit of a pointwise
convergent sequence of bounded linear operators is again a bounded linear
operator. This is the content of Theorem below.

DEFINITION 2.1.4. Let X and Y be normed vector spaces. A sequence of
bounded linear operators A; : X — Y, i € N, is said to converge strongly
to a bounded linear operator A : X — Y if Ax = lim;_,o, A;x for all x € X.

THEOREM 2.1.5 (Banach—Steinhaus). Let X and Y be Banach spaces
and let A; : X — Y, i €N, be a sequence of bounded linear operators. Then
the following are equivalent.

(1) The sequence (A;x);en converges in'Y for every x € X.

(ii) sup;en || Ai]] < oo and there is a dense subset D C X such that (Aiz)ien
is a Cauchy sequence in'Y for every x € D.

(iii) sup;en || A4i]] < oo and there is a bounded linear operator A : X —'Y
such that A; converges strongly to A and || A|| < liminf; . ||A;].

The equivalence of (i) and (iii) continues to hold whenY is not complete.
The equivalence of (ii) and (iii) continues to hold when X is not complete.

Proof. That (iii) implies both (i) and (ii) is obvious.

We prove that (i) implies (iii). Since convergent sequences are bounded,
the sequence (A;);cn is pointwise bounded. Since X is complete it follows
from Theorem that sup;cy ||Ai]] < oo. Define the map A : X — YV
by Az :=lim; ,,, A;x for x € X. This map is linear and

(215)  |Aally = lim || Azl = liminf | Az, < lminf A [2]
71— 00 1—>00 71— 00

for all x € X. Hence A is bounded and || A|| < liminf; o ||4;]] < 0.

We prove that (ii) implies (iii). Define ¢ := sup;¢y || Ai]| < oo. Let z € X
and € > 0. Choose £ € D such that c|lz —§&|| <§. Since (4;if)ien is a
Cauchy sequence, there exists an integer ng € N such that || 4;§ — A&y < §
for all 7,5 € N with ¢, 5 > ng. This implies

[Asw — Ajally, < [[Aiw — Ally + |4 — Ajélly + 14,6 — Ajzlly
< [l llz = €llx + 1A:€ — A€lly + 1A;1HIE — 2l x
< 2cllzr— €y + A€ - Ayl <F +5=¢
for all 4,j € N with 7,5 > ng. Hence (A;z);en is a Cauchy sequence and so

it converges because Y is complete. The limit operator A satisfies (2.1.5))
and this proves Theorem [2.1.5 O
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EXAMPLE 2.1.6. This example shows that the hypothesis that X is com-
plete cannot be removed in Theorems and Consider the space

X;:{x:(xi)ieNeRNHneNWEN:iZn — :@:0}

with the supremum norm ||z|| := sup;cy|zi|. This is a normed vector space.
It is not complete, but is a linear subspace of > whose closure X = c¢g is
the subspace of sequences of real numbers that converge to zero. Define the
linear operators A, : X - X and A: X — X by

Apx = (11,222,...,n2,,0,0,...), Az := (iz)ien

for n € N and = = (;)jeny € X. Then Az = lim,_,o Apx for every z € X
and || A, || = n for every n € N. Thus the sequence {A,,z},en is bounded for
every x € X, the linear operator A is not bounded, and the sequence A,
converges strongly to A.

COROLLARY 2.1.7 (Bilinear Map). Let X be a Banach space and let Y
and Z be normed vector spaces (over R or C). Let B: X XY — Z be a
bilinear map. Then the following are equivalent.

(i) B is bounded, i.e. there is a constant ¢ > 0 such that

1Bz, y)llz < ellzlx llylly
forallx € X and ally €Y.
(ii) B is continuous.
(iii) For every x € X the linear map Y — Z : y — B(x,y) is continuous

and, for everyy € Y, the linear map X — Z : x — B(x,y) is continuous.

Proof. If (i) holds, then B is locally Lipschitz continuous and hence is
continuous. Thus (i) implies (ii). That (ii) implies (iii) is obvious. We prove
that (iii) implies (i). Thus assume (iii), define

S={yeY|lylly =1},

and, for y € S, define the linear operator A, : X — Z by A,(z) := B(z,y).
This operator is continuous by (iii) and hence is bounded by Theorem m
Now let z € X. Then the linear map ¥ — Z : y — Ayxz = B(x,y)
is continuous by (iii) and hence sup,cg||[Ayz||, < oo by Theorem
Hence c := sup,¢g || 4y]| < 0o by Theorem Thus

|B(z, )|, < cllz] x forall z € X and all y € S.

This implies (i) and completes the proof of Corollary O
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2.2. Open Mappings and Closed Graphs

2.2.1. The Open Mapping Theorem. A map f : X — Y between
topological spaces is called open if the image of every open subset of X
under f is an open subset of Y.

THEOREM 2.2.1 (Open Mapping Theorem). Let X,Y be Banach
spaces and let A : X — 'Y be a surjective bounded linear operator. Then A
18 open.

Proof. See page O

The key step in the proof of Theorem [2.2.1] is the next lemma, which
asserts that the closure A(B) of the image of the open unit ball B C X under
a surjective bounded linear operator A : X — Y contains an open ball in Y
centered at the origin. Its proof relies on the Baire Category Theorem [1.6.4]
Lemma [2:2.3] below asserts that if an open ball in Y centered at the origin
is contained in A(B), then it is contained in A(B).

LEMMA 2.2.2. Let X, Y, and A be as in Theorem [2.2.1. Then there
exists a constant § > 0 such that

(2.2.1) {yeY|lylly <6} c{Az|z € X, =]y < 1}.

Proof. For C C Y and A > 0 define \C' := {A\y|y € C'}. Consider the
sets

B:={xe X| x|y <1}, C:=AB)={Az|z e X, ||z[]xy <1}.

Then X = J,cynB and so Y = |, ey A(nB) = |,y nC because A is sur-
jective. Since Y is complete, at least one of the sets nC is not nowhere dense,
by the Baire Category Theorem Hence the set nC has a nonempty
interior for some n € N and this implies that the set 2-1C has a nonempty
interior. Choose yp € Y and § > 0 such that

Bs(yo) C 2-1C.

We claim that (2.2.1)) holds with this constant §. To see this, fix an ele-
ment y € Y such that ||y||y < d. Then yo+y € 271C and yp € 271C. Hence
there exist sequences x;, x} € 27! B such that

Yo +y = lim ACB;, yo = lim Ax;.
1—00 1—00
Hence z, — z; € B, so A(z} — x;) € C and
Y= ilij& Azl —x;) € C.

Thus (2.2.1)) holds as claimed. This proves Lemma [2.2.2 O
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LEMMA 2.2.3. Let X and Y be Banach spaces and let A: X — Y be a
bounded linear operator. If § > 0 satisfies (2.2.1)), then

(2.2.2) {yeY|llylly <6} c{Az|ze X, |z|y <1}.
Proof. The proof is based on the following observation.

Claim. Let y € Y with ||y|ly, < . Then there is a sequence (zk)ken, in X
such that

y 0|y
ool < P o < 22y g g0 g
(2.2.3) 0 5 5ﬁ [
—ly
||y—AZL’o——AJIkHY<2]€7+1Y fOTk:0,1,27....

We prove the claim by an induction argument. By ([2.2.1)) the closed ball of
radius ¢ in Y is contained in the closure of the image under A of the open
ball of radius one in X. Hence every nonzero vector y € Y satisfies

(2.2.4) ye{Az|ze X, ]y <oyl }.

Fix an element y € Y such that ||y|l,, <  and define
cim 5 lylly > 0.

Then, by (2.2.4), there exists a vector zg € X such that ||zo| y <07 |ylly
and ||y — Azolly < €271, Use with y replaced by y — Axg to find a
vector z1 € X such that ||z1]|y <ed 1271 and ||y — Azg — Az|ly < €272
Once the vectors xg,...,x; have been found such that holds, we
have ||y — Zf:o Azglly < e27*and so, by (2:2.4), there exists an 241 € X
such that ||zg11]|y < e67127% 1 and |jy — Zf:o Az; — Azpyq|ly < e27F2
Hence the existence of a sequence (xj)ken, in X that satisfies follows
from the axiom of dependent choice (see page @ This proves the claim.

Now fix an element y € Y such that |ly|l;, < d. By the claim, there is
a sequence (zg)ken, in X that satisfies (2.2.3) and hence Y 32 |2kl x < 1.
Since X is complete, it then follows from Lemma that the limit

00 k
T = g rr = lim E T;
k—o00 4
k=0 =0

exists. This limit satisfies
) k
Izl <) llawlly <1, Az klgrolOZAmz y
k=0 i=0
Here the last equation follows from ([2.2.3)). This proves the inclusion ({2.2.2])
and Lemma 2.2.3 O
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Proof of Theorem [2.2.1. Let § > 0 be the constant of Lemma and
let B C X be the open unit ball. Then Bs;(0;Y) C A(B) by Lemma
and hence Bs(0;Y) C A(B) by Lemma [2.2.3

Now fix an open set U C X. Let yp € A(U) and choose zg € U such
that Azg = yo. Since U is open there is an € > 0 such that B.(xg) C U.
We prove that Bs.(yo) C A(U). Choose y € Y such that ||y —yolly < de.
Then ||e(y — y0)||y < ¢ and hence there exists a £ € X such that

IEllxy <1, A& =&y —wo).
This implies zg + €€ € B:(z9) C U and hence
y =yo +eA{ = A(wo +€§) € A(U).

Thus we have proved that, for every yo € A(U), there exists a number & > 0
such that Bs.(yo) C A(U). Hence A(U) is an open subset of Y and this
proves Theorem [2.2.1 O

If A: X — Y is a surjective bounded linear operator between Banach
spaces, then it descends to a bijective bounded linear operator from the
quotient space X/ker(A) to Y (see Theorem [1.2.14). The next corollary
asserts that the induced operator A : X/ker(A) — Y has a bounded inverse
whose norm is bounded above by 6!, where the constant § > 0 is as in
Lemma 2.2.2

COROLLARY 2.2.4. Let X, Y, and A be as in Theorem|[2.2.1) and let 6 > 0
be the constant of Lemma[2.2.3. Then

(2.2.5) inf [lollx <67 ylly  forallyeY.

Az=y

Proof. Let y € Y and choose ¢ > 67! ||y||y. Then Hc‘lyHY < ¢ and so,
by Lemma [2.2.2] and Lemma [2.2.3] there exists an element £ € X such
that A = c7ly and ||€]|x < 1. Hence z := c£ satisfies ||z]|y = c||¢]|x < ¢

and Ar = cA¢ = y. This proves (2.2.5) and Corollary O

An important consequence of the open mapping theorem is the special
case of Corollary where A is bijective.

THEOREM 2.2.5 (Inverse Operator Theorem). Let X and Y be Ba-
nach spaces and let A: X — Y be a bijective bounded linear operator. Then
the inverse operator A™' .Y — X is bounded.

Proof. By Theorem the linear operator A : X — Y is open. Hence
its inverse is continuous and is therefore bounded by Theorem Alter-
natively, use Corollary to deduce that ||A~!|| < 6!, where 6 > 0 is
the constant of Lemma 2.2.2] O
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EXAMPLE 2.2.6. This example shows that the hypothesis that X and Y
are complete cannot be removed in Theorems [2.2.1] and [2.2.5] As in Ex-
ample let X C £*° be the subspace of sequences = = (zy)ren of real
numbers that vanish for sufficiently large k, equipped with the supremum
norm. Thus X is a normed vector space but is not a Banach space. Define
the operator A : X — X by Az := (k™ '2p)pen for £ = (2)reny € X. Then A
is a bijective bounded linear operator but its inverse is unbounded.

ExXAMPLE 2.2.7. Here is an example where X is complete and Y is not.
Let X =Y = C([0,1]) be the space of continuous functions f:[0,1] - R
equipped with the norms

1
C Ml = /Of(t)|2dt.

Ifllx == sup [f(t)
0<t<1

Then X is a Banach space, Y is a normed vector space, and the identity
A=id: X =>Y
is a bijective bounded linear operator with an unbounded inverse.

ExaMPLE 2.2.8. Here is an example where Y is complete and X is not.
This example requires the axiom of choice. Let Y be an infinite-dimensional
Banach space and choose an unbounded linear functional ® : Y — R. The
existence of such a linear functional is shown in part (iv) of Example
and its kernel is a dense linear subspace of Y by Exercise Define the
normed vector space (X, ||-||y) by

Xi=A{(z,t) e Y xR[®(z) =0}, (2, 8)l[x = ll=lly + [¢]
for (z,t) € X. Then X is not complete. Choose a vector yy € Y such that
P(yo) =1
and define the linear map A: X — Y by
Az, t) ==z + tyo for (z,t) € X.
Then A is a bijective bounded linear operator. Its inverse is given by
Ay = (y — 2(y)yo, ©(y))

for y € H and hence is unbounded.

Example relies on a decomposition of a Banach space as a direct
sum of two linear subspaces where one of them is closed and the other is
dense. The next corollary establishes an important estimate for a pair of
closed subspaces of a Banach space X whose direct sum is equal to X.
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COROLLARY 2.2.9. Let X be a Banach space and let X1, Xo C X be two
closed linear subspaces such that

X = X1 ® Xo,
i.e. X1 N Xy = {0} and every vector x € X can be written as x = x1 + x2
with x1 € X1 and x9 € Xo. Then there exists a constant ¢ > 0 such that
(2.2.6) [zl + llz2]l < cllzy + 22|
for all 1 € X1 and all o € Xs.

Proof. The vector space X1 x X5 is a Banach space with the norm func-
tion
X1 % Xy = [0,00) = (w1, 22) = [[(21, 22) | == 1] + [J2]]
(see Exercise and the linear operator A : X7 x X9 — X, defined by

A(z1,22) =21 + 22

for (z1,22) € X1 x Xo, is bijective by assumption and bounded by the
triangle inequality. Hence its inverse is bounded by the Inverse Operator
Theorem [2.2.5] This proves Corollary O

2.2.2. The Closed Graph Theorem. It is often interesting to consider
linear operators on a Banach space X whose domains are not the entire Ba-
nach space but instead are linear subspaces of X. In most of the interesting
cases the domains are dense linear subspaces. Here is a first elementary
example.

EXAMPLE 2.2.10. Let X := C(]0, 1]) be the Banach space of continuous
real valued functions f : [0,1] — R equipped with the supremum norm. Let

dom(A) := C'([0,1]) = {f : [0,1] — R f is continuously differentiable}
and define the linear operator A : dom(A) — X by
Af:=f  for f € CY([0,1]).

The linear subspace dom(A4) = C([0,1]) is dense in X = C([0,1]) by the
Weierstrafy approximation theorem. Moreover, the graph of A, defined by

graph(4) :={(f,9) € X x X'| f € dom(4), g = Af},

is a closed linear subspace of X x X. Namely, if f, € C'([0,1]) is a se-
quence of continuously differentiable functions such that the pair (f,, Afy)
converges to (f,g) in X x X, then f,, converges uniformly to f and f] con-
verges uniformly to g, and hence f is continuously differentiable with f' = g
by the fundamental theorem of calculus.

Here is a general definition of operators with closed graphs.
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DEFINITION 2.2.11 (Closed Operator). Let X,Y be Banach spaces,
let dom(A) C X be a linear subspace, and let A : dom(A) — Y be a linear
operator. The operator A is called closed if its graph

(2.2.7) graph(A) == {(z,y) € X x YV |z € dom(4), y = Az}

is a closed linear subspace of X x Y. Explicitly, this means that, if (z,)nen
is a sequence in the domain of A such that x, converges to a vector x € X
and Az, converges to a vector y € Y, then = € dom(A) and y = Az. The
graph norm of A on the linear subspace dom(A4) C X is the norm func-
tion dom(A) — [0,00) : & — ||z|| 4, defined by

(2.2.8) 2]l 4 = ]l +[[Az]ly
for x € dom(A).

Note that a linear operator A : X D dom(A) — Y is always a bounded
linear operator with respect to the graph norm. In Example|2.2.10|the graph
norm of A on dom(A) = C'([0,1]) agrees with the usual C'! norm

(2.2.9) Ifllcr = sup [f(®)]+ sup |f'(6)]  for fe C([0,1)),
0<t<1 0<t<1

and C*(]0,1]) is a Banach space with this norm.

EXERCISE 2.2.12. Let X,Y be Banach spaces and let A : dom(A) — Y
be a linear operator, defined on a linear subspace dom(A) C X. Prove that
the graph of A is a closed subspace of X x Y if and only if dom(A) is a
Banach space with respect to the graph norm.

The notion of an unbounded linear operator with a dense domain will
only become relevant much later in this book when we deal with the spectral
theory of linear operators (see Chapter[6). For now it is sufficient to consider
linear operators from a Banach space X to a Banach space Y that are defined
on the entire space X, rather than just a subspace of X. In this situation
it turns out that the closed graph condition is equivalent to boundedness.
This is the content of the Closed Graph Theorem, which can be derived as
a consequence of the Open Mapping Theorem and vice versa.

THEOREM 2.2.13 (Closed Graph Theorem). Let X andY be Banach
spaces and let A: X —'Y be a linear operator. Then A is bounded if and
only if its graph is a closed linear subspace of X x Y.

Proof. Assume first that A is bounded. Then A is continuous by The-
orem m Hence, if (z)nen is a sequence in X such that x, converges
to x € X and Ax,, converges to y € Y, we must have y = lim,,_,o, Ax, = Az
and hence (z,y) € graph(A).
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Conversely, suppose that I' := graph(4) = {(z,y) € X x Y |y = Az} is
a closed linear subspace of X x Y. Then I' is a Banach space with the norm

Iz 9)llp = llzllx +llylly  for (z,y) €T

and the projection
m: ' = X, m(x,y) ==z for (x,y) €T,
is a bijective bounded linear operator. Its inverse is the linear map
1 X =T, 7N z) = (z, Az) for x € X,

and is bounded by the Inverse Operator Theorem Hence there exists
a constant ¢ > 0 such that ||z|y + ||Az]y = HTr_l(az)HF < cllz|ly for
all z € X. Thus A is bounded and this proves Theorem [2.2.13 U

EXERCISE 2.2.14. (i) Derive the Inverse Operator Theorem from
the Closed Graph Theorem [2.2.13

(ii) Derive the Open Mapping Theorem from the Inverse Operator
Theorem Hint: Consider the induced operator A : X/ker(A) — Y
and use Theorem [[.2.74

EXAMPLE 2.2.15. (i) The hypothesis that X is complete cannot be re-
moved in Theorem [2.2.13] Let X := C!([0,1]) and Y := C([0,1]), both
equipped with the supremum norm, and define A: X —Y by Af = f'.
Then A is unbounded and has a closed graph (see Example .

(ii) The hypothesis that Y is complete cannot be removed in Theorem
Let X be an infinite-dimensional Banach space, let ® : X — R be an un-
bounded linear functional, let Y := ker(®) x R with ||(z,t)|y = =] x + |¢]
for (z,t) € Y, choose an element xy € X such that ®(zp) = 1, and define the
linear operator A : X — Y by Ax := (z — ®(z)xo, ®(z)) for x € X. Then A
is unbounded and has a closed graph (see Example .

T
T

Let X and Y be Banach spaces and let A : X — Y be a linear operator.
The Closed Graph Theorem asserts that the following are equivalent.

(i) The operator A is continuous, i.e. for every sequence (x,)nen in X and
all z € X we have

lim z, ==z = Az = lim Ax,.

n—oo n—oo
(ii) The operator A has a closed graph, i.e. for every sequence (z,)nen in X
and all z,y € X we have

lim z, =«
n—oo = Ar = lim Aux,.

lim Ax, =y n—co
n—oo
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Thus the closed graph condition is much easier to verify for linear operators
than boundedness. Examples are the next two corollaries.

COROLLARY 2.2.16 (Hellinger—Toeplitz Theorem). Let H be a real
Hilbert space and let A : H — H be a symmetric linear operator i.e.

(2.2.10) (x, Ay) = (Ax,y) for all x,y € H.
Then A is bounded.

Proof. By Theorem [2.2.13]it suffices to prove that A has a closed graph.
Thus assume that (x,)nen is a sequence in H and x,y € H are vectors such
that

lim z, =z, lim Ax, =y.
n—oo n—o0
Then
(y,z) = lim (Axy, z) = lim (x,, Az) = (z, Az) = (Az, 2)
n—oo n—oo
for all z € H and hence Ax = y. This proves Corollary [2.2.16 O

COROLLARY 2.2.17 (Douglas Factorization [23]). Let X, Y, Z be
Banach spaces and let A : X — Y and B : Z — Y be bounded linear
operators. Assume A is injective. Then the following are equivalent.

(i) im(B) C im(A).

(ii) There exists a bounded linear operator T : Z — X such that AT = B.
Proof. 1If (ii) holds, then im(B) = im(AT') C im(A). Conversely, suppose
that im(B) C im(A) and define
T:=A'cB:Z—-X.

Then T is a linear operator and AT = B. We prove that T has a closed
graph. To see this, let (2, )nen be a sequence in Z such that the limits

z:= lim z,, z:= lim Tz,
n—o0 n—o0

exist. Then
Azxz = lim ATz, = lim Bz, = Bz

n—o0 n—oo
and hence x = T2. Thus T has a closed graph and hence is bounded by
Theorem This proves Corollary 2.2.17] O

The hypothesis that A is injective cannot be removed in Corollary 2.2.17]
For example, take X = (>, Y = Z = (*/cy, and B = id. Then the
projection A : £ — (*°/c¢y does not have a bounded right inverse (see
Exercise |2.5.1]).
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2.2.3. Closeable Operators. For a linear operator that is defined on a
proper linear subspace it is an interesting question whether it can be ex-
tended to a linear operator with a closed graph. Such linear operators are
called closeable.

DEFINITION 2.2.18 (Closeable Operator). Let X and Y be Banach
spaces, let dom(A) C X be a linear subspace, and let A : dom(A) — Y be a
linear operator. The operator A is called closeable if there exists a closed
linear operator A" : dom(A’) — Y on a subspace dom(A’) C X such that

(2.2.11) dom(A) C dom(4"), A'x = Az for all z € dom(A).

LEMMA 2.2.19 (Characterization of Closeable Operators).

Let X andY be Banach spaces, let dom(A) C X be a linear subspace, and
let A:dom(A) — Y be a linear operator. Then the following are equivalent.

(i) A is closeable.
(ii) The projection wx : graph(A) — X onto the first factor is injective.
(iii) If (xn)nen is a sequence in dom(A) and y € Y is a vector such

that lim,, oo ©, = 0 and limy,_, Az, =y, then y = 0.

Proof. That (i) implies (iii) follows from the fact that y = A’0 = 0 for
every closed extension A’ : dom(A’) — Y of A.

We prove that (iii) implies (ii). The closure of any linear subspace of a
normed vector space is again a linear subspace. Hence graph(A) is a linear
subspace of X x Y and the projection mx : graph(A4) — X onto the first
factor is a linear map by definition. By (iii) the kernel of this linear map is
the zero subspace and hence it is injective.

We prove that (ii) implies (i). Define

dom(A4’) == 7y (m> Cc X.
This is a linear subspace and the map 7y : graph(A4) — dom(A’) is bijective
by (ii). Denote its inverse by 7y : dom(A’) — graph(A) and denote by

my : graph(4) =Y
the projection onto the second factor. Then
A=y ory! idom(A) = Y

is a linear operator, its graph is the linear subspace

graph(A’) = graph(A4) C X x Y,

and (2.2.11)) holds because graph(A) C graph(A’). Thus we have proved
Lemma 2.2.79 U
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EXAMPLE 2.2.20. Let H = L*(R) and define A : dom(A) — R by

dom(A) = {f c LQ(R) there exists a constant ¢ > 0 such that }

f(t) =0 for almost all t € R\ [—¢, (]
and

A(f) := /_00 f@t)dt for f € dom(A).

This linear functional is not closeable because the sequence f, € dom(A),
given by fn(t) := % for |t| <n and f,(t) := 0 for |t| > n satisfies

Wl = 20 Afn) =2

n

for all n € N. (See Lemma [2.2.19])
EXAMPLE 2.2.21. Let H = L?(R) and define A : dom(A) — R by

dom(A) := Ce(R),  A(f) := f(0)

for f € C.(R) (the space of compactly supported continuous real valued
functions f : R — R). This linear functional is not closeable because there
exists a sequence of continuous functions f, : R — R with compact support

such that f,(0) =1 and || fn|/;2 < L for all n € N. (See Lemma [2.2.19})

EXERCISE 2.2.22 (Linear Functionals). Let X be a real Banach space,
let Y C X be a linear subspace, and let A :Y — R be a linear functional.
Show that A is closeable if and only if A is bounded. Hint: Use the Hahn—
Banach Theorem (Corollary in Section below.

EXAMPLE 2.2.23 (Symmetric Operators). Let H be a Hilbert space
and let A:dom(A) — H be a linear operator, defined on a dense linear
subspace dom(A) C H. Suppose A is symmetric, i.e.

(2.2.12) (x, Ay) = (Ax,y) for all =,y € dom(A).

Then A is closeable. To see this, choose a sequence x, € dom(A) such
that lim, o ||| = 0 and the sequence Ax,, converges to an element y € H
as n tends to infinity. Then

(y,z) = lim (Ax,, z) = lim (z,,Az) =0

n—oo n—oo

for all z € dom(A). Since dom(A) is a dense subspace of H, there exists a
sequence z; € dom(A) that converges to y as ¢ tends to infinity. Hence

lyll* = {y,y) = lim (y, z) =0

and so y = 0. Thus A is closeable by Lemma [2.2.19
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ExAMPLE 2.2.24 (Differential Operators). This example shows that
every differential operator is closeable. Let Q@ C R™ be a nonempty open
set, fix a constant 1 < p < oo, and consider the Banach space X := LP()
(with respect to the Lebesgue measure on €2). Then the space

dom(A) := C5°(2)

of smooth functions u : 2 — R with compact support is a dense linear
subspace of LP(Q) (see [75, Thm 4.15]). Let m € N and, for every multi-
index o = (a1,...,0,) € Nj with |a| =a1 + -+ ap, <m, let aq : @ > R
be a smooth function. Define the operator A : C§°(2) — LP(Q2) by

(2.2.13) Au = Z an0%u.

laf<m
Here the sum runs over all multi-indices o = (a1, ..., ap) € Nj with |a] <m
and 9% = —2°L _ We prove that A is closeable.

8z‘f1~-ax2n
To see this, define the constant 1 < ¢ < oo by 1/p+1/g =1 and define
the formal adjoint of A as the operator B : C§°(2) — L9(2), given by

Bu:= > (=1)0%(aqv)

|| <m

for v € C§°(€2). Then integration by parts shows that

(2.2.14) /Q o(Au) = /Q (Bu)u

for all u,v € C§°(Q2). Now let uy, € C§°(Q2) be a sequence of smooth functions
with compact support and let v € LP(2) such that

tim gl =0, lim o Augll, =0,

Then, for every test function ¢ € C§°(12), we have
/ ¢v = lim / ¢(Aug) = lim /(B¢)uk = 0.

QO k—oo J k—oco Jo

Since C3°(€2) is dense in L7(€2), this implies that
/ pv =0 for all ¢ € LI1(Q2).
Q

Now take ¢ :=sign(v)[v[P~! € LI(Q) to obtain [,|v|P = 0 and hence v van-

ishes almost everywhere. Hence it follows from Lemma/[2.2.19|that the linear
operator A : C3°(Q2) — LP(2) is closeable as claimed.
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2.3. Hahn—Banach and Convexity

2.3.1. The Hahn—Banach Theorem. The Hahn-Banach theorem deals
with bounded linear functionals on a subspace of a Banach space X and
asserts that every such functional extends to a bounded linear functional
on all of X. This theorem continues to hold in the more general setting
where X is any real vector space and boundedness is replaced by a bound
relative to a given sublinear functional on X.

DEFINITION 2.3.1 (Sublinear Functional). Let X be a real vector
space. A function p : X — R is called a sublinear functional if it satisfies

(2.3.1) p(z+y) <p(x)+ply), pAz) = Ap(z)

for all z,y € X and all A > 0. It is called a seminorm if it is a sublinear
functional and p(Ax) = [A|p(z) for all z € X and all A € R. A seminorm has
nonnegative values, because 2p(z) = p(x) + p(—x) > p(0) = 0 for all x € X.
Thus a seminorm satisfies all the axioms of a norm except nondegeneracy
(i.e. there may be nonzero elements x € X such that p(x) = 0).

THEOREM 2.3.2 (Hahn—Banach). Let X be a real vector space and
let p: X — R be a sublinear functional. Let Y C X be a linear subspace and
let :Y — R be a linear functional such that ¢(z) < p(z) for all x €Y.
Then there exists a linear functional ® : X — R such that

Dly = ¢, O(x) <p(x) forallzeX.

Proof. See page O

LEMMA 2.3.3. Let X, p, Y, and ¢ be as in Theorem. Letzp € X\Y
and define Y' :=Y ®Ruxg. Then there exists a linear functional ¢’ : Y — R
such that ¢'|ly = ¢ and ¢'(z) < p(x) for all z € Y.

Proof. An extension ¢’ : Y/ — R of the linear functional ¢ : ¥ — R
is uniquely determined by its value a := ¢'(x0) € R on zg. This extension
satisfies the required condition ¢'(z) < p(z) for all z € Y’ if and only if

(2.3.2) o(y) + Aa < p(y + Axo) for all y € Y and all A € R.
If this holds, then
(2.3.3) d(y) £ a < p(y £ x0) forall y € Y.
Conversely, if holds and A\ > 0, then
d(y) + Aa =X (6(Ay) +a) < Ap(A 'y + z0) = p(y + Azo),
$(y) — da =X ($(A"'y) — a) < Ap(A"y — 20) = p(y — Azo).
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This shows that (2.3.2)) is equivalent to (2.3.3)). Thus it remains to find a
real number a € R that satisfies (2.3.3)). Equivalently, a must satisfy

(2.3.4) o(y) —ply —x0) <a <ply+z0) —dy) forallyeV.

To see that such a number exists, fix two vectors y,y’ € Y. Then
¢(y) + oY) = oy +y)
<py+y)
=ply+zo+y — )
< p(y +z0) + p(y — 20).
Thus
¢(y') — ply' — w0) < ply + x0) — B(y)
for all y,y/ € Y and this implies

smﬂ¢@5—p@“—xw)S;gXMy+xw-—MyD~

y'eYy
Hence there exists a real number a € R that satisfies (2.3.4)) and this proves
Lemma 2.3.3 ([

Proof of Theorem [2.3.2 Define the set

Z is a linear subspace of X and
P = (Z,)| ¢¥:Z — Ris alinear functional such that
Y C Z, Yly = ¢, and ¢(z) < p(z) for all x € Z

This set is partially ordered by the relation
(Z,9) < (Z,¢)

for (Z,4),(Z',¢') € Z. A chain in & is a totally ordered subset ¢ C Z.
Every nonempty chain ¢ C & has a supremum (Z, 19) given by

gt Zc 7 and |y = v

Zy = U Z, Yo(x) :=(z) for all (Z,7) € € and all x € Z.
(Z3h)e?

Hence it follows from the Lemma of Zorn that &2 has a maximal ele-
ment (Z,1). By Lemma every such maximal element satisfies Z = X
and this proves Theorem [2.3.2 O

A special case of the Hahn—Banach theorem is where the sublinear func-
tional is a norm. In this situation the Hahn—Banach theorem is an existence
result for bounded linear functionals on real and complex normed vector
spaces. It takes the following form.
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COROLLARY 2.3.4 (Real Case). Let X be a normed vector space over R,
let Y C X be a linear subspace, let ¢ : Y — R be a linear functional, and
let ¢ > 0 such that |¢(x)| < c||z|| for allx € Y. Then there exists a bounded
linear functional ® : X — R such that

Dly =¢,  |®(x)| <clz|| foralxecX.

Proof. By Theorem with p(z) := c||z||, there exists a linear func-
tional ® : X — R such that ®|y = ¢ and ®(z) < c||z| for all z € X.
Since ®(—z) = —®(x) it follows that |®(x)| < ¢||z| for all x € X and this

proves Corollary O

COROLLARY 2.3.5 (Complex Case). Let X be a normed vector space
over C, let Y C X be a linear subspace, let ¥ :' Y — C be a complex linear
functional, and let ¢ > 0 such that |¢(z)| < c||z|| for all z € Y. Then there
exists a bounded complex linear functional ¥ : X — C such that

Vly =1, |U(x)| <c|z|| forallze X.

Proof. By Corollary [2.3.4] there exists a real linear functional ® : X — R
such that

|y = Re)
and |®(z)| < c|jz|| for all x € X. Define ¥ : X — C by
U(z) = ®(z) — iP(ix) for z € X.
Then ¥ : X — C is complex linear and, for all z € Y, we have
U(x) = &(x)—id(ix)
— Re(i(x)) — iRe(u(iz))
e(y(x)) — iRe(iyy(x))

— Re(e(x)) + im(p(z))

().

To prove the estimate, fix a vector x € X such that ¥(z) # 0 and choose a
real number 6 € R such that

=

=

<

e = |U(z) "t U(x).
Then
U (2)] = e W(2) = U(ez) = B(ex) < clle™ x| = cf|].

Here the third equality follows from the fact that ¥(e~z) is real. This
proves Corollary O
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2.3.2. Positive Linear Functionals. The Hahn—Banach Theorem has
several important applications. The first is an extension theorem for posi-
tive linear functionals on ordered vector spaces. Recall that a partial order
is a transitive, anti-symmetric, reflexive relation.

DEFINITION 2.3.6 (Ordered Vector Space).

An ordered vector space is a pair (X, <), where X is a real vector space
and < is a partial order on X that satisfies the following two axioms for
all z,y,z € X and all A € R.

(01) If 0 < z and 0 < A, then 0 < Az.
(02) Ifr gy, thenx +2 < y+ 2.

In this situation the set P := {z € X |0 < z} is called the positive cone.
A linear functional ® : X — R is called positive if ®(z) > 0 for all x € P.

THEOREM 2.3.7 (Hahn—Banach for Positive Linear Functionals).

Let (X, <) be an ordered vector space and let P C X be the positive cone.
Let Y C X be a linear subspace satisfying the following condition.

(03) For each x € X there exists a y € Y such that x < y.
Let ¢ : Y — R be a positive linear functional, i.e. ¢(y) > 0 for ally € YNP.
Then there is a positive linear functional ® : X — R such that ®|y = ¢.

Proof. The proof has three steps.

Step 1. For every x € X the set {y € Y|z < y} is nonempty and the
restriction of ¢ to this set is bounded below.

Fix an element x € X. Then the set {y € Y |z < y} is nonempty by (O3).
It follows also from (O3) that there exists a yo € Y such that —z < —yp.
Thus we have yg < = by (02). If y € Y satisfies x < y, then yp < y and this
implies ¢(yo) < ¢(y), because ¢ is positive. This proves Step 1.

Step 2. By Step 1 the formula
(2.3.5) p(z) =inf{op(y) |y €Y, z g y} forze X

defines a function p: X — R. This function is a sublinear functional and
satisfies p(y) = ¢(y) for ally €Y.

Let z1,29 € X and € > 0. For i = 1,2 choose y; € Y such that z; < y;
and ¢(y;) < p(x;) +€/2. Then x1 + z2 < 1 + y2 < y1 + y2 by (02), and so

p(r1 +22) < d(y1 +y2) = ¢(y1) + d(y2) < p(w1) + p(z2) + €.
This implies p(z1 + z2) < p(x1) + p(x2) for all z1, 29 € X.
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Now let z € X and A > 0. Then {y e Y| ey} ={\y|lye Y, z gy}
by (O1) and hence

p(Az) = inf ¢(y) = inf 4(hy) = inf Ap(y) = Ap(z).

Ar<y Y Y

Moreover, p(0) = 0 by definition, and so p is a sublinear functional. The for-
mula p(y) = ¢(y) for y € Y follows directly from the definition of p in ({2.3.5))
and this proves Step 2.

Step 3. We prove Theorem [2.57

By Step 2 and the Hahn—Banach Theorem there exists a linear func-
tional ® : X — R such that ®|y = ¢ and ®(x) < p(z) forallz € X. Ifz € P,
then —z < 0 € Y, hence ®(—z) < p(—z) < ¢(0) = 0, and so ®(x) > 0. This
proves Theorem [2.3. O

EXERCISE 2.3.8. Give a direct proof of Theorem [2.3.7] based on the
Lemma of Zorn. Hint: If (X, <) is an ordered vector space, Y C X is a
linear subspace satisfying (03), ¢ : Y — R is a positive linear functional,
and xg € X \'Y, then there is a positive linear functional ¥ : Y ® Rzg — R
such that ¥y = ¢. To see this, find a real number a € R that satisfies the
conditions

To <Y = a < ¢(y)
and
Y < 2o = ¢(y) <a
forally e Y.
EXERCISE 2.3.9. This exercise shows that the assumption (O3) cannot

be removed in Theorem The space X := BC(R) of bounded continu-
ous real valued functions on R is an ordered vector space with

def
<~

f<yg f(t) <g(t) forallteR.

The subspace Y := C.(R) of compactly supported continuous functions does
not satisfy (O3) and the positive linear functional

o
CC(R)—>R:f|—>/ () dt
—0o0
does not extend to a positive linear functional on BC(R). Hint: Every

positive linear functional on BC(R) is bounded with respect to the sup-
norm.
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2.3.3. Separation of Convex Sets. The second application of the Hahn—
Banach theorem concerns a pair of disjoint convex sets in a normed vector
space. They can be separated by a hyperplane whenever one of them has
nonempty interior (see Figure [2.3.1]). The result and its proof carry over to
general topological vector spaces (see Theorem below).

A=0
w2

Figure 2.3.1. Two convex sets, separated by a hyperplane.

THEOREM 2.3.10 (Separation of Convex Sets). Let X be a real
normed vector space and let A, B C X be nonempty disjoint convex sets
such that int(A) # 0. Then there exists a nonzero bounded linear func-
tional A : X — R and a constant ¢ € R such that A(x) > ¢ for all z € A
and A(x) < ¢ for all x € B. Moreover, every such bounded linear functional
satisfies A(z) > ¢ for all x € int(A).

Proof. See page [71] O

EXERCISE 2.3.11. This exercise shows that the hypothesis that one of
the convex sets has nonempty interior cannot be removed in Theorem [2.3.10
Consider the Hilbert space H = ¢% and define

neNVieN
A::{xeﬂ2 i<n = x;>0 },B:={$€£2

1>n — x;=0
Show that A, B are nonempty disjoint convex subsets of ¢ with empty
interior whose closures agree. If A : > = R is a bounded linear functional
and ¢ is a real number such that A(x) > ¢ for all x € A and A(z) < ¢ for
all z € B, show that A =0 and ¢ = 0.

t<n = x; =0

dne NV:e N }
1>n — x; >0

EXERCISE 2.3.12. Define A := {z € (*|z; =0 for i > 1} and
B := {x = ()2, € RV | Jiz; —i'/3| < 2y for all i > 1} C 12

Show that A, B are nonempty disjoint closed convex subsets of £2 and A— B
is dense in £2. Deduce that A, B cannot be separated by an affine hyperplane.
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LEMMA 2.3.13. Let X be a normed vector space and let A C X be a
convex set. Then int(A) and A are convex sets. Moreover, if int(A) # 0,
then A C int(A).

Proof. The proof of convexity of int(A) and A is left as an exercise (see
also Lemma[3.1.10)). Let ¢ € int(A) and choose § > 0 such that Bs(zo) C A.
If z € A, then the set U, := {tz + (1 —t)y|y € Bs(xp), 0 <t <1} C Ais
open and hence x € U, C int(A). O

LEMMA 2.3.14. Let X be a normed vector space, let A C X be a convex
set with nonempty interior, let A : X — R be a nonzero bounded linear func-
tional, and let ¢ € R such that A(x) > ¢ for all x € int(A). Then A(x) > ¢
for allx € A and A(x) > ¢ for all z € int(A).

Proof. Since A is convex and has nonempty interior, we have A C int(A)

by Lemma [2.3.13| and so A(x) > ¢ for all x € A because A is continuous.
Now let x € int(A), choose xy € X such that A(xg) =1, and choose ¢t > 0
such that z — tzg € A. Then A(x) =t + Al(x — txg) > t+c > c. O

Proof of Theorem |[2.3.10) The proof has three steps.

Step 1. Let X be a real normed vector space, let U C X be a nonempty
open convex set such that 0 ¢ U, and define P := {tx|x € U, t € R, t > 0}.
Then P is a convex subset of X and satisfies the following.

(P1) Ifx € P and A > 0, then Az € P.

(P2) If x,y € P, thenx +y € P.

(P3) If v € P and —z € P, then x = 0.

If 2,y € P\ {0}, choose zp,x1 € U and ty,t; > 0 such that x = tpz¢ and
y = tyxq; then 2z := totTOtle + tOtTltlxl € U and hence x+y = (to+1t1)z € P.

This proves (P2). That P satisfies (P1) is obvious and that it satisfies (P3)
follows from the fact that 0 ¢ U. By (P1) and (P2) the set P is convex.

Step 2. Let X and U be as in Step 1. Then there exists a bounded linear
functional A : X — R such that A(xz) > 0 for all x € U.

Let P be as in Step 1. Then it follows from (P1), (P2), (P3) that the relation

<Xy g} y—xeP
defines a partial order < on X that satisfies (O1) and (02).
Let 29 € U. Then the linear subspace Y := Rz satisfies (03). Namely,
if z € X, then 29 — tz € U C P for t > 0 sufficiently small and so z < ¢t~ 1.

Moreover, the linear functional Y — R : tzo — t is positive by (P3). Hence,
by Theorem there is a linear functional A : X — R such that A(tzg) = ¢
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for all t € R and A(xz) > 0 for all x € P. We prove that this functional is
bounded. Choose ¢ > 0 such that Bs(xg) C P, and let x € X with ||z|| < 1.
Then xp — éx € P, hence A(zg — dz) >0, and so A(z) < 5 A(m) =01
Thus |A(z)] <671z for all z € X. Since U C P, we have A(x) >0 for
all z € U, and so A(z) > 0 for all z € U by Lemma[2.3.14]

Step 3. We prove Theorem [2.3.10)

Let X, A, B be as in Theorem Then U := int(A) — B is a nonempty
open convex set and 0 ¢ U. Hence, by Step 2, there exists a bounded linear
functional A : X — R such that A(x) > 0 for all x € U. Thus A(z) > A(y)
for all z € int(A) and all y € B. This implies A(z) > ¢ := sup,ep A(y) for
all z € int(A). Hence A(x) > cfor all x € A and A(x) > ¢ for all x € int(A)
by Lemma This proves Theorem O

DErFINITION 2.3.15 (Hyperplane). Let X be a real normed vector
space. A hyperplane in X is a closed linear subspace of codimension one.
An affine hyperplane is a translate of a hyperplane. An open half-
space is a set of the form {x € X | A(z) > ¢} where A : X — R is a nonzero
bounded linear functional and ¢ € R.

EXERCISE 2.3.16. Show that H C X is an affine hyperplane if and only
if there exists a nonzero bounded linear functional A : X — R and a real
number ¢ € R such that H = A~1(c).

Let X, A, B, A, ¢ be as in Theorem Then H := A~!(c) is an affine
hyperplane that separates the convex sets A and B. It divides X into two
connected components such that the interior of A is contained in one of
them and B is contained in the closure of the other.

COROLLARY 2.3.17. Let X be a real Banach space and let A C X be
an open conver set such that 0 ¢ A. Let Y C X be a linear subspace such
that Y N A= 0. Then there is a hyperplane H C X such that

YCcH  HNA=J.

Proof. Assume without loss of generality that Y is closed, consider the
quotient X’ := X/Y, and denote by m : X — X’ the obvious projection.
Then 7 is open by Theorem so A" := m(A) C X' is an open convex
set that does not contain the origin. Hence Theorem asserts that
there is a bounded linear functional A’ : X’ — R such that A’(z") > 0 for
all z/ € A’. Hence A := A’ om: X — R is a bounded linear functional such
that Y C ker(A) and A(x) > 0 for all z € A. So H := ker(A) is the required
hyperplane. U
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COROLLARY 2.3.18. Let X be a real normed vector space and let A C X
be a nonempty open convex set. Then A is the intersection of all open half-
spaces containing A.

Proof. Let y € X \ A. Then, by Theorem [2.3.10| with B = {y}, there is
a A € X* and a ¢ € R such that A(z) > ¢ for all x € A and A(y) < c¢. Hence
there is an open half-space containing A but not y. O

COROLLARY 2.3.19. Let X be a real normed vector space and A, B C X
be nonempty disjoint convex sets such that A is closed and B is compact.
Then there exists a bounded linear functional A : X — R such that

inf A(z) > sup A(y).
inf A(w) > sup A()

Proof. We prove first that

§:= inf |z—y| >0.
r€A,yeB

Choose sequences =, € A and y, € B such that
lim ||z, — ynl| = 0.
n—o0

Since B is compact, we may assume, by passing to a subsequence if neces-
sary, that the sequence (y,)nen converges to an element y € B. If 6 = 0,
it would follow that the sequence (x,, — yn)nen converges to zero, so the
sequence T, = yn + (z, — yn) converges to y, and so y € A, because A is
closed, contradicting the fact that AN B = (). Thus § > 0 as claimed. Hence

U= | Bs(z)
€A
is an open convex set that contains A and is disjoint from B. Thus, by

Theorem [2.3.10] there is a bounded linear functional A : X — R such that

A(x) > ¢ :=sup A(y) for all x € U.
yeB

Choose ¢ € X such that ||£]| < § and € := A(§) > 0. Then every z € A
satisfies x — £ € U and hence

Az)—e=Ax—-¢&) >c
This proves Corollary 2.3.19 O

EXERCISE 2.3.20. Let X be a real normed vector space and let A C X
be a nonempty convex set. Prove that A is the intersection of all closed
half-spaces of X containing A.
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2.3.4. The Closure of a Linear Subspace. The third application of
the Hahn—-Banach Theorem is a characterization of the closure of a linear
subspace of a real normed vector space X. Recall that the dual space of X
is the space

X*:=L(X,R)

of real valued bounded linear functionals on X. At this point it is convenient
to introduce an alternative notation for the elements of the dual space.
Denote a bounded linear functional on X by z* : X — R and denote the
value of this linear functional on an element x € X by

(x*,x) = z*(x).

This notation is reminiscent of the inner product on a Hilbert space and
there are in fact many parallels between the pairing

(2.3.6) X*"x X >R:(z%z)— (25 )

and inner products on Hilbert spaces. Recall that X* is a Banach space
with respect to the norm

. ¥
(2.3.7) |z*|| == sup la”, @)
zex\foy 1zl

(see Theorem [1.3.1)). It follows directly from (2.3.7) that
(2.3.8) {27, )| < [l"|| [

for z* € X*

for all z* € X* and all z € X, in analogy to the Cauchy—Schwarz inequality.
Hence the pairing ([2.3.6]) is continuous by Corollary

DEFINITION 2.3.21 (Annihilator). Let X be a real normed vector
space. For any subset S C X define the annihilator of S as the space
of bounded linear functionals on X that vanish on S and denote it by

(2.3.9) St = {* € X*|(a*,z) =0 forallz € S}.

Since the pairing (2.3.6) is continuous, the annihilator S+ is a closed lin-
ear subspace of X* for every subset S C X. As before, the closure of a
subset Y C X is denoted by Y.

THEOREM 2.3.22. Let X be a real normed vector space, let Y C X be a
linear subspace, and let zg € X \'Y. Then

(2.3.10) 8 :=d(x0,Y) := inf ||z —y| >0
yey

and there exists a bounded linear functional z* € Y+ such that

][ =1, (&% @) = 0.
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Proof. We prove first that the number § in is positive. Suppose
by contradiction that 6 = 0. Then, by the axiom of countable choice, there
exists a sequence (Yn)nen in Y such that ||zg —yn| < 1/n for all n € N.
This implies that y,, converges to zg and hence zo € Y, in contradiction to
our assumption. This shows that § > 0 as claimed.

Now define the subspace Z C X by
Z =Y & Rgy = {y+tw0|y€Y, tER}
and define the linear functional ¥ : Z — R by
Y(y + tzg) = Ot fory €Y and t € R.

This functional is well defined because z¢ ¢ Y. It satisfies ¥(y) =0 for
all y € Y and ¢(x¢) = 0. Moreover, if y € Y and t € R\ {0}, then

[y +two)] _ [0 0

= = <1.
ly + taol| ly +txoll [t~y + 2o

Here the last inequality follows from the definition of 4. With this under-
stood, it follows from Corollary that there exists a bounded linear
functional z* € X* such that

¥ < 1
and
(x*,x) = Y(x) for all z € Z.
The norm of x* is actually equal to one because

0
vey lzo+yll  yey llzo +yl

by definition of §. Moreover,
(%, o) = P(x0) =0

and
(*,y) =¢(y) =0 forallyeY.
This proves Theorem [2.3.22] O
COROLLARY 2.3.23. Let X be a real normed vector space and let o € X

be a nonzero vector. Then there exists a bounded linear functional x* € X*
such that

[l =1, (&%, w0) = [lol| -
Proof. This follows directly from Theorem [2.3.22| with Y := {0}. O

The next corollary characterizes the closure of a linear subspace and
gives rise to a criterion for a linear subspace to be dense.
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COROLLARY 2.3.24 (Closure of a Subspace). Let X be a real normed
vector space, let’ Y C X be a linear subspace, and let x € X. Then

reY = (x*,2) =0 for all 2* € Y.

Proof. If z € Y and 2* € Y+, then there is a sequence (Yn)nen in Y that
converges to x and so (z*,z) = limy, oo (z*,y,) = 0. If z ¢ Y, then there is

an element z* € Y+ such that (z*,z) > 0 by Theorem [2.3.22 O

COROLLARY 2.3.25 (Dense Subspaces). Let X be a real normed vector
space and let Y C X be a linear subspace. Then'Y is dense in X if and only

if Y- = {0}.

Proof. By Corollary [2.3.24| we have Y = X if and only if (x*,z) = 0 for
all z* € Y+ and all x € X, and this is equivalent to Y+ = {0}. O

The next corollary asserts that the dual space of a quotient is a subspace
of the dual space and vice versa.

COROLLARY 2.3.26 (Dual Spaces of Subspaces and Quotients).
Let X be a real normed vector space and let Y C X be a linear subspace.
Then the following holds.

(i) The linear map
(2.3.11) XYt 5 Y [z - 2ty
s an isometric isomorphism.

(ii) Assume Y s closed and let m : X — X/Y be the canonical projection,
given by w(x) :=x +Y for x € X. Then the linear map

(2.3.12) (X/)Y) =Yt :A—Aonr

s an isometric isomorphism.

Proof. We prove part (i). The linear map
X" =Y 2" =o'y
vanishes on Y and hence descends to the quotient X*/Y L. The resulting
map (2.3.11)) is injective by definition. Now fix any bounded linear func-
tional y* € Y*. Then Corollary asserts that there is a bounded linear
functional z* € X™* such that

oy =y 2Tl =1yl
Moreover, if £* € X* satisfies £*|y = y*, then ||£*|| > ||y*|| = ||z*||. Hence x*

minimizes the norm among all bounded linear functionals on X that restrict
to y* on V. Thus [|z* + Y| x./y1 = [lz*|| = [|[y*||, and this shows that the

map (2.3.11]) is an isometric isomorphism.
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We prove part (ii). Fix a bounded linear functional
A:X/Y - R
and define
¥ :=ANom: X > R.
Then z* is a bounded linear functional on X and z*|y = 0. Thus
e Yt

Conversely, fix an element z* € Y. Then z* vanishes on Y and hence
descends to a unique linear map A : X/Y — R such that

ANom=z".

To prove that A is bounded, observe that
Az +Y) = (2% x) = (@", 2 +y) < |lz"[ |2 + ]
for all x € X and all y € Y, hence
Az + V)| < ll2”] inf flz + yll = [l2"[[ [l + Yy

for all x € X, and hence

IA[ < [l
Conversely

(", 2y =A(x+Y)
< Al + Yy

< [JA] |
for all z € X and so

lz*[| < [|A]l-
Hence the linear map is an isometric isomorphism. This proves
Corollary [2.3.26] O

COROLLARY 2.3.27. Let X be a real normed vector space and let Y C X
be a closed linear subspace. Then

(2.3.13) inf |z +&*||= sup (2", y) for all z* € X*
greyt yev\{or |Vl

and

(2.3.14) |=*|| = sup {2, 2) for all z* € Y.

zex\y infyey [z + ||

Proof. This follows directly from Corollary [2.3.26 O
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2.3.5. Complemented Subspaces. A familiar observation in linear alge-
bra is that, for every subspace Y C X of a finite-dimensional vector space X,
there exists another subspace Z C X such that X =Y @& Z. This continues
to hold for infinite-dimensional vector spaces. However, it does not hold, in
general, for closed subspaces of normed vector spaces. Here is the relevant
definition.

DEFINITION 2.3.28 (Complemented Subspace). Let X be a normed
vector space. A closed subspace Y C X is called complemented if there
exists a closed subspace Z C X such that YNZ = {0} and X =Y @ Z.
A bounded linear operator P : X — X is called a projection if P? = P.

EXERCISE 2.3.29. Let X be a Banach space, let Y C X be a closed linear
subspace, and let 7 : X — X/Y be the canonical projection. (Warning:
The term projection is used here with two different meanings.) Prove that
the following are equivalent.

(1) Y is complemented.
(ii) There is a projection P : X — X such that im(P) =Y.

(iii) There is a bounded linear operator 7' : X/Y — X such that 7 o T = id.
(The operator T, if it exists, is called a right inverse of 7.)

Hint: For (i) = (ii) use Corollary|2.2.9, For (ii) = (i) define Z := ker(P).
For (ii) = (iii) let T[z] := x — Pz. For (iii) = (ii) let P:==1—-T o .

LEMMA 2.3.30. Let X be a normed vector space and let Y C X be a
closed linear subspace such that dim(Y') < oo or dim(X/Y) < co. Then Y
is complemented.

Proof. Assume n := dim(X/Y’) < oo and choose vectors x1,...,z, € X
whose equivalence classes [z;] := x; + Y form a basis of X/Y. Then the
linear subspace Z := span{xy,...,2,} is closed by Corollary and sat-
isfiles X =Y & Z.

Now assume n := dimY < oo and choose a basis x1,...,z, of Y. By the
Hahn-Banach Theorem (Corollary [2.3.4)) there exist bounded linear func-
tionals «7,...,z;, € X* that satisfy (z},x;) = d;;. Then the subspace

Z={reX|(xj,z)=0fori=1,...,n}

is closed by Theorem Moreover, z — > (xf,x)x; € Z for all x € X
and hence X =Y & Z. This proves Lemma [2.3.30 ([

There are examples of closed subspaces of infinite-dimensional Banach
spaces that are not complemented. The simplest such example is the sub-
space ¢y C £°°. Phillips’ Lemma asserts that it is not complemented. The
proof is outlined in Exercise below.
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2.3.6. Orthonormal Bases.

DEFINITION 2.3.31. Let H be an infinite-dimensional real Hilbert space.
A sequence (e;)ien in H is called a (countable) orthonormal basis if

o )L ifi=y, .
(2.3.15) (€i,€5) = 0i5 == { 0, ifij for all 4,7 € N,
(2.3.16) x€ H, (e,r)=0forallieN = z=0.

If (e;)ien is an orthonormal basis, then (2.3.15)) implies that the e; are lin-
early independent and (2.3.16|) asserts that the set E := span({e;|i € N})
is a dense linear subspace of H (Corollary [2.3.25)).

EXERCISE 2.3.32. Show that an infinite-dimensional Hilbert space H
admits a countable orthonormal basis if and only if it is separable. Hint:
Assume H is separable. Choose a dense sequence, construct a linearly inde-
pendent subsequence spanning a dense subspace, and use Gram—Schmidt.

EXERCISE 2.3.33. Let H be a separable Hilbert space and let {e;};cn be
an orthonormal basis. Show that the map 2 — H : x = (2;)ien — Y o0y Ti€i
is well defined (i.e. &, := Y., z;e; is a Cauchy sequence in H for all € £?)
and defines a Hilbert space isometry. Deduce that

o0 o
(2.3.17) x = Z(ei,;@ei, lz|? = Z(ei,:@? for all x € H.
i=1 i=1

ExXAMPLE 2.3.34. The sequences e; := (0;;)jen for ¢ € N form an or-
thonormal basis of £2.

ExXAMPLE 2.3.35 (Fourier Series). The functions ey (t) := e>™*t k € Z,
form an orthonormal basis of the complex Hilbert space L?(R/Z,C). It is
equipped with the complex valued Hermitian inner product

1
(2.3.18) (f,9) ::/0 ftgt)dt  for f,g € L*(R/Z,C),

that is complex anti-linear in the first variable and complex linear in the
second variable. To verify completeness, one can fix a continuous func-
tion f:R/Z — C, define f, :=> __, (ex, f)ey for n € Ny, and prove that
the sequence n=!(fo + f1 +---+ fu_1) converges uniformly to f (Fejér’s
Theorem).

EXAMPLE 2.3.36. The functions s, (t) := v/2sin(mnt) for n € N form
an orthonormal basis of the Hilbert space L?([0,1]) and so do the func-
tions co(t) := 1 and ¢, (t) := v/2cos(nnt) for n € N. Exercise: Use com-

pleteness in Example [2.3.35| to verify the completeness axiom ([2.3.16)) for
these two orthonormal bases.
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2.4. Reflexive Banach Spaces

2.4.1. The Bidual Space. Let X be a real normed vector space. The
bidual space of X is the dual space of the dual space and is denoted by

X* = (X*)* = L(X*,R).

There is a natural map ¢ = tx : X — X™** which assigns to every element
x € X the linear functional ¢(z) : X* — R whose value at z* is obtained by
evaluating the bounded linear functional z* : X — R at the point z € X.
Thus the map ¢ : X — X** is defined by

(2.4.1) v(z)(z*) == (a¥, )

for z € X and x* € X*. It is a consequence of the Hahn—-Banach Theorem
that the linear map ¢ : X — X** is an isometric embedding.

LEMMA 2.4.1. Let X be a real normed vector space. Then the linear
map ¢ : X — X** is an isometric embedding. In particular,

¥,z
(2.4.2) lz|l = sup I ” )
erexnfoy 17|

forallx € X.

Proof. That the map ¢ : X — X*™ is linear follows directly from the
definition. To prove that it preserves the norm, fix a nonzero vector zg € X.
Then, by Corollary there exists a bounded linear functional zf € X*
such that ||z§|| = 1 and (z{, zo) = ||zo]|. Hence

1’*71’0
o 20l oy = sup 700
5l z+eX*\{0} |zl

Here the last inequality follows from (2.3.8]). This proves Lemma 2.4.1, O

[0l =

COROLLARY 2.4.2. Let X be a real normed vector space and let Y C X
be a closed linear subspace. Then, for every x € X,

(2.4.3) inf |24yl = sup N2 ’f”.
yey arey oy 17|

Proof. The left hand side of equation (2.4.3)) is the norm of the equiva-
lence class [z] = z + Y in the quotient space X/Y. The right hand side is
the norm of the bounded linear functional

Lxyy(z+Y): (X/Y)* ~yLt SR

(see Corollary m Hence equation ) follows from Lemma [2.4.1] -
with X replaced by X/Y. This proves Corollary -
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2.4.2. Reflexive Banach Spaces.

DEFINITION 2.4.3 (Reflexive Banach Space). A real normed vector
space X is called reflexive if the isometric embedding ¢ : X — X** in (2.4.1))
is bijective. A reflexive normed vector space is necessarily complete by

Theorem [1.3.1]
THEOREM 2.4.4. Let X be a Banach space. Then the following holds.
(1) X is reflexive if and only if X* is reflexive.

(ii) If X is reflezive and Y C X is a closed linear subspace, then the sub-
space Y and the quotient space XY are reflexive.

Proof. We prove part (i). Assume X is reflexive and let A : X** — R
be a bounded linear functional. Define

¥ =Aov: X - R,

where ¢ = 1x : X — X™ is the isometric embedding in (2.4.1)). Since X is
reflexive, this map ¢ is bijective. Fix an element z** € X** and define

x =1 2™) € X.
Then
A(x™) =Aou(z) = (2%, x) = (1(x),z¥) = (™, z7).
Here the first and last equation follow from the fact that z** = ((x), the
second equation follows from the definition of z* = A o, and the third
equation follows from the definition of the map ¢ in (2.4.1). This shows that
A = x+(z"),

where tx+ 1 X* — X** is the isometric embedding in (2.4.1) with X re-
placed by X*. This shows that the dual space X* is reflexive.

Conversely, assume X* is reflexive. The subspace ¢(X) of X** is com-
plete by Lemma and is therefore closed. We prove that ¢(X) is a dense
subspace of X**. To see this, let A : X™ — R be any bounded linear func-
tional on X** that vanishes on the image of ¢, so that A ot = 0. Since X™ is
reflexive, there exists an element z* € X* such that

A@™) = (@, 2%)
for every x** € X**. Since A o = 0, this implies
(2%, 2) = (uz), %) = A(z)) = 0

for all z € X, hence z* = 0, and hence A = 0. Thus the annihilator of
the linear subspace ((X) C X** is zero, and so ¢(X) is dense in X** by
Corollary [2.3.25] Hence ¢(X) = X** and this proves part (i).
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We prove part (ii). Assume X is reflexive and let
YCcX

be a closed linear subspace. We prove first that Y is a reflexive Banach
space. Define the linear operator
T: X" =>Y"
by
m(x*) = 2|y
for z* € X*. Fix an element y** € Y** and define ™ € X** by
=y or: X* >R,

Since X is reflexive, there exists a unique element y € X such that

*

tx (y) = x**.

Every element z* € Y+ satisfies 7(z*) = 0 and hence

@y = (x(y)a”)
<1'**,.%' >
< Hk
(™,

Yy o7, 1’*>
yrm(at))
= 0.
In other words, (z*,y) = 0 for all z* € Y+ and so
yey =Y
by Corollary Now fix any element y* € Y*. Then Corollary
asserts that there exists an element z* € X* such that
y'=x'ly = n(z7)
and so

<y**’y*> —

This shows that
wy(y) =y™".

Since y** € Y** was chosen arbitrarily, this proves that the subspace Y is a
reflexive Banach space.
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Next we prove that the quotient
Z:=X/Y
is reflexive. Let
m: X = X/Y
be the canonical projection given by
m(x) :=[z]=24+Y forz e X
and define the linear operator 7' : Z* — Y by
Tz :=z"omr: X - R for z* € Z*.

Note that T2* € Y+ because (Tz*)(y) = z*(7(y)) = 0 for all y € Y.
Moreover, T is an isometric isomorphism by Corollary [2.3.26

Now fix an element z** € Z**. Then the map
ol Yyt 5 R

is a bounded linear functional on a linear subspace of X*. Hence, by Corol-
lary there exists a bounded linear functional z** : X* — R such that

(x**, %) = (", T 'a*) for all 2* € Y+,
This condition on x** can be expressed in the form
(™, 2% om) = (2", 2%) for all z* € Z*.
Since X is reflexive, there exists an element x € X such that
vx(z) = ™.

Define

Then, for all z* € Z*, we have

<Z**,Z*> —

This shows that
tz(z) = 2"".

Since z** € Z** was chosen arbitrarily, it follows that Z is reflexive. This

proves Theorem O



84 2. Principles of Functional Analysis

EXAMPLE 2.4.5. (i) Every finite-dimensional normed vector space X is
reflexive, because dim X = dim X* = dim X** (see Corollary [1.2.9)).

(ii) Every Hilbert space H is reflexive by Theorem Exercise: The
composition of the isomorphisms H = H* =2 H** is the map in ([2.4.1)).

(iii) Let (M, A, p) be a measure space and let 1 < p, g < 0o such that

1 1

S4o =1

p q
Then LP(u)* = L9(n) (Example [1.3.3) and this implies that the Banach
space LP(u) is reflexive. Exercise: Prove that the composition of the iso-
morphisms LP(u) = L9(pu)* = LP(p)*™ is the map in (2.4.1)).

(iv) Let ¢p C £*° be the subspace of sequences = = (x;);en of real num-
bers that converge to zero, equipped with the supremum norm. Then
the map ¢! — ¢} : y — A,, which assigns to every sequence y = (y;);en € ¢*
the bounded linear functional A, : ¢ — R defined by Ay(z) :=> 2, ziyi
for x = (z;)ien € co, is a Banach space isometry (see Example . This
implies cf* & (£1)* = (°° (see Example , and so ¢g is not reflexive. Ex-
ercise: The composition of the isometric embedding ¢ : ¢y — ¢§* in
with the Banach space isometry cj* = £°° is the canonical inclusion.

(v) The Banach space ¢! is not reflexive. To see this, denote by ¢ C ¢*°
the space of Cauchy sequences of real numbers and consider the bounded
linear functional that assigns to each Cauchy sequence x = (z;);en € c its
limit lim; o ;. By the Hahn—Banach Theorem this functional extends to
a bounded linear functional A : £* — R (see Corollary [2.3.4), which does
not belong to the image of the inclusion ¢ : £} — (£1)** = (4°°)*

(vi) Let (M, d) be a compact metric space and let X = C'(M) be the Banach
space of continuous real valued functions on M with the supremum norm
(see part (v) of Example [I.1.3). Suppose M is an infinite set. Then C(M)
is not reflexive. To see this, let A = {a1,a2,...} C M be a countably infi-
nite subset such that (a;);en is a Cauchy sequence and a; # a; for i # j.
Then Cy (M) :={f € C(M)| fla =0} is a closed linear subspace of C(M)
and the quotient C'(M)/C4(M) is isometrically isomorphic to the space ¢ of
Cauchy sequences of real numbers via C(M)/Ca(M) — ¢ : [f] — (f(ai))52;.
By Theorem the Banach space c¢ is not reflexive, because the closed
subspace ¢y C ¢ is not reflexive by (iv) above. Hence C(M)/C (M) is not
reflexive, and so C (M) is not reflexive by Theorem

(vii) The dual space of the Banach space C(M) in (vi) is isomorphic to the
Banach space M(M) of signed Borel measures on M (see Example |1.3.8]).
Since C'(M) is not reflexive, neither is the space M (M) by Theorem [2.4.4
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2.4.3. Separable Banach Spaces. Recall that a normed vector space
is called separable if it contains a countable dense subset (see Defini-
tion . Thus a Banach space X is separable if and only if there exists
a sequence eg,eg,es,... in X such that the linear subspace of all (finite)
linear combinations of the e; is dense in X. If such a sequence exists, the
required countable dense subset can be constructed as the set of all rational
linear combinations of the e;.

THEOREM 2.4.6. Let X be a normed vector space. The following holds.
(1) If X* is separable, then X is separable.

(i) If X is reflexive and separable, then X* is separable.

Proof. We prove part (i). Thus assume X* is separable and choose a
dense sequence (z});en in X*. Choose a sequence z; € X such that

1
|z =1, (x], ;) > 3 [Exl for all i € N.

Let Y C X be the linear subspace of all finite linear combinations of the z;.
We prove that Y is dense in X. To see this, fix any element z* € Y-, Then

there is a sequence i, € N such that lim o0 ||2* — 27, || = 0. This implies
g |l < 20, zig)| = 2/(, — 2%, wiy)]
< 2|z, — @i || = 2, — 27

The last term on the right converges to zero as k tends to infinity, and
hence z* = limy_,00 @7, = 0. This shows that Y+ = {0}. Hence Y is dense
in X by Corollary and this proves part (i). If X is reflexive and
separable, then X** is separable, and so X* is separable by (i). This proves
part (ii) and Theorem O

EXAMPLE 2.4.7. (i) Finite-dimensional Banach spaces are separable.

(ii) The space (7 is separable for 1 < p < oo, and (£!)* = ¢*° is not separable.
The subspace ¢y C £°° of all sequences that converge to zero is separable.

(iii) Let M be a second countable locally compact Hausdorff space, denote
by B C 2M its Borel o-algebra, and let p: B — [0,00] be a locally finite
Borel measure. Then the space LP(u) is separable for 1 < p < oo. (See for
example [75, Thm 4.13].)

(iv) Let (M,d) be a compact metric space. Then the Banach space C(M)
of continuous functions with the supremum norm is separable. Its dual
space M(M) of signed Borel measures is in general not separable.
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2.4.4. The James Space. In 1950 Robert C. James [37, [38] discovered
a remarkable example of a nonreflexive Banach space J that is isometri-
cally isomorphic to its bidual space J**. In this example the image of the
canonical isometric embedding

vid = J
in (2.4.1) is a closed subspace of codimension one. Our exposition follows
Megginson [59].
Recall that ¢y C ¢* is the Banach space of all sequences (z;);ey € RY

that converge to zero, equipped with the supremum norm

2[00 1= sup | for x = (z;)ien € co.
ieN

By Example the dual space of ¢y is isomorphic to the space ¢! of
absolutely summable sequences of real numbers with the norm

o0
lzlli:= Jwil  for & = (z:)ien € £".
i=1

Recall also that ¢2 is the Hilbert space of all square summable sequences of
real numbers with the norm

00 1/2
fel= (Z\xf) for = = (2:)ien € .
=1

DEFINITION 2.4.8 (The James Space).

Let P C 2% be the collection of all nonempty finite subsets of N and write the
elements of P in the form p = (p1,p2,...,pr) with 1 <p; <ps < -+ < p.
For each p = (p1,p2,...,pr) € P and each sequence x = (z;);en of real
numbers define the number ||z||p, € [0,00) by ||z||p := 0 when k = 1 and by

k—1

1 2 2

(2.4.4) Hpr =13 Z ‘xpj - xpj+1‘ + |2py, — zp, |
j=1

when k& > 2. The James space is the normed vector space defined by

(2.4.5) J:=<x €co|suplz|, <oo
pPEP

and

(2.4.6) ]l ; := sup ||,
PEP

for x € J.
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Before moving on to the main result of this section (Theorem [2.4.14)) we
explore some of the basic properties of the James space. This is the content
of the next five lemmas.

LEMMA 2.4.9. The set J in ([2.4.5)) is a linear subspace of co and ||| ; is

a norm on J. With this norm J is a Banach space. Moreover,
(2.4.7) Izl < llzlly < V2llly  for alla € co,
and thus (> C J C cy.

Proof. By definition, ||z +y||; < ||lz|l;7 + |lyll; and || Az||; = |A]||=; for
all z,y € ¢g and all A € R. Hence J is a linear subspace of c¢y.

To prove the first inequality in , fix an element p = (i,7) € P.
Then |z; — ;| = |z||p < ||z|ls for all z € ¢p and all 4,j € N with ¢ < j.
Hence |z;| = limjo0|z; — 25| < [Jz||s for all z € ¢y and all i € N. Now fix
any element p = (p1,p2,...,pr) € P. Then

k—1
2 1 2, 1 2
Hpr - 5 Z |xpj - ij+1‘ + 5 ‘xpk - xm’
j=1

k—1 ) k—1 )
< Z “rpj| + Z ‘ijﬂ‘ + ‘@%’2 =+ ‘”%1‘2
Jj= j=1

|2y, |° < 2|12

k
2
Jj=1

for all 2 € cp. Take the supremum over all p € P to obtain ||z||; < v/2||z]|2.
This proves . By there are natural inclusions ¢? C J C co.
Moreover, it follows from that ||z||s # 0 for every x € J\ {0} and
so (J,]|-l7) is a normed vector space.

We prove that J is complete. Let (z,),en be a Cauchy sequence in J.
Then (||n||7)nen is a Cauchy sequence in R, so the limit C' := limy, o0 || ]| ;
exists. Moreover, (zp)nen is a Cauchy sequence in ¢y by and hence
converges in the supremum norm to an element x € c¢g. Thus

lellp = T flanll, < T ], = C

for all p € P. Take the supremum over all p € P to obtain z € J. We must
prove that lim,, ||z, — || 7 = 0. To see this, fix a number € > 0 and choose
an integer ng € N such that ||z, — zn||; < /2 for all integers m,n > ny.
Then ||z, — z|lp = limpyoo|Tn — Zmllp < SUPy>pl1Tn — Zmlls < /2 for
allp € Pand alln > ng. Thus ||z, — z[|; = suppep |20 — 2|, < /2 < e for
every integer n > ng. This shows that lim,,_,c||Z, — z||; = 0 and completes
the proof of Lemma [2.4.9 [l
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The next goal is to prove that ¢2 is dense in J. For this it is conve-
nient to introduce another norm on J. For every sequence x = (z;);en of
real numbers and every p = (p1,p2,...,px) € P define ||z||, := |zp, | in the
case k =1 and

k-1

1 2 2 2

(2.4.8) lellp = | 5 | lenal® + D o, = 2py]” + |l
j=1

in the case k > 2. Denote the supremum of these numbers over all p € P
by

(2.4.9) Izl ; == sup [|2|l,-
peP

This is a norm on J that is equivalent to ||-|| ;. Care must be taken. The
second estimate in (2.4.10]) below holds for & € ¢y but not for all x € £*°.

LEMMA 2.4.10. Every x € cq satisfies the inequalities

(2.4.10) < llefly < flll -

7=l
— ||z
\/i J
Moreover, the function J — [0,00) : & — ||z||; is a norm.
Proof. Let x € ¢cp and p = (p1,...,pr) € P. Then

k
2 1 2 2
||1'Hp D) Z |xpj - xpjﬂ‘ + |2py, — Tp, |
i=1

2 2 2
|xpj - xpj+1‘ + [@p, |7 + [J2p, |

M=

1
2 2
20zl < 2l

<.
Il

Take the supremum over all p € P to obtain the inequality ||z ; < V2| z|| ;-
Now define q,, := (p1, ..., pk,n) for every integer n > p. Then

k

1

2 2 2 2

e = 5 { D lens = Tpal” + lapel* + |
j=1

k

.1 2 2 2

= lim 9 Z‘xpj _:Epj+1| + |zp, — 2al” + 20 — 2,
7=1

Y 2 2
= Tim [«)3, < 2]

Take the supremum over all p € P to obtain the inequality ||z, < ||z|| ;.
This proves Lemma [2.4.10) ([
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LEMMA 2.4.11. The subspace % is dense in J.

Proof. Fix a nonzero element x € J and a real number € > 0, and choose
a constant 0 < 0 < |[||z||; such that

(2.4.11) 26|z ; < 2.
We claim that there are elements n € N and p = (p1,...,pr) € P such that
(2.4.12) sup|zi| <6, |lzlll, > [ll<ll; =6, pr=n.
i>n
Namely, choose n € N such that sup;,, |7;| < 0 and po = (p1,...,Pk—1) € P

such that ||z[l,, > [[=[l; —¢. Next choose py > px—1 so large that py > n
and the tuple p := (p1,...,px) satisfies

2
HWM5=%Wﬂm—%um49+%@m4—$mP+%MmP>mdb—5
Then increase n, if necessary, to obtain p, = n.
Define £ := (z1,...,2p,0,...). We prove that
(2.4.13) lle €l <e.

To see this, let g = (q1,...,q) € P. If g¢ <n, then ||z —¢[|, = 0. Thus
assume gp > n, let j € {1,...,/} be the smallest element such that ¢; > n,
and define q’ := (¢j, ¢j+1,-..,9¢) € P. Then

(2.4.14) = €llq = Ml ly-

Now consider the tuple p’ := (p1,...,Pk ¢, @j+1,---,q¢) € P. By (2.4.12)),
it satisfies the inequality

llzll? > llell?,

= Nl + Nl + 3 |2, — 2, = &l = & |2,
> (2l - 8) - 8% + /|,
= NIl — 26zl ; + ]l

This implies |||m|||(21, < 26||x|||; and hence

ll = €lllq = Mlzlllq < /20lllll; <e

by (2.4.11f) and (2.4.14)). Take the supremum over all elements q € P to

obtain the inequality (2.4.13]). By (2.4.13) the set cop of all finite sequences
is dense in J and so is the subspace 2. This proves Lemma [2.4.11 ([

The following lemma shows that the standard basis vectors e; := (d;5) jen
form a Schauder basis of J (see Exercise [2.5.12)).
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LEMMA 2.4.12. For each n € N define the projection IL,, : J — J by

(2.4.15) Mo(z) =Y mie;  forz = (;)ien € J.
i=1
Then
(2.4.16) @)y <zl lle=Tu@)],; < |2l

for alln € N and all x € J, and
(2.4.17) lim ||z —1II,(z)||; =0

n—oo

forallx € J.

Proof. We prove (2.4.16)). Fix an element x € J, a positive integer n,
and an element p = (p1,...,px) € P. If pp < n, then [[IL,(z)|, = [|z[|, and,
if p1 > n, then [|II,(z)||, = 0. Thus assume

p1 < n < pg,

let £ € {1,...,k— 1} be the largest element such that py < n, and define

q:=(p1,---,pe)
Then

2 2 2 2 2
T (@)l = Nzllq = 5 lop, — 2. ” + 5 [2p,[* + 5 2

by Lemma Im Thus [[II,(z)|, < [z, for all p € P and this proves
the first inequality in (2.4.16)). To prove the second inequality in ,
observe that ||z — IL,,(2)[|,, = [|z||, whenever p; >n and ||z — IL,,(2)[|, = 0
whenever pr < n. Thus assume p; <n < pg, let £ € {2,...,k} be the small-
est element such that py > n, and define q := (py, ..., pr). Then

2 2 2 2 2
lz = Tn(@)llp = l2llq = 5 [op, = 2p]” + 5 l2p, " + 5 2,
2
q

2
< [l

= [l

by Lemma Thus ||z — Hp(z)|, < [|z||; for all p € P and this proves
the second inequality in (2.4.16)).

We prove . When z € ¢2 this follows from @ Since ¢2
is dense in J by Lemma it follows from the estimate @D and
the Banach—Steinhaus Theorem [2.1.5| that (2.4.17)) holds for all = € J. This
proves Lemma [2.4.12 [l
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With this preparation we are in a position to examine the dual space of
the James space J. Fix a bounded linear functional A : J — R. By ([2.4.7)),
the inclusion ¢2 < J is a bounded linear operator and, by Lemma
it has a dense image. Thus the composition of A with this inclusion is a
bounded linear functional A|,2 : £2 — R. Hence, by the Riesz Representation
Theorem there exists a unique sequence y = (1;)ien € £2 such that

(2.4.18) A(z) = Zyixi = (y,x) for all 2 € £ C J,
i=1

and, conversely, A is uniquely determined by this sequence y € ¢2. Thus the
dual space of J can be identified with the space of all y € £2 such that

Y, T
(2.4.19) lyll j« == sup [y, 2)]
0A£xcl? ||»77HJ

By (2.4.7) and (2.4.19), every y € J* satisfies the inequalities

< 00

1
2.4.20 — wlly < ol - < llyll, -
(2.4.20) 75 Illa < Nyl < Nl

Thus there are canonical inclusions
T c?cdcC .

At this point it is convenient to make use of two concepts that will only be
introduced in Chapters [3land 4] These are the dual operator A* : Y* — X*
of a bounded linear operator A : X — Y (Definition and the weak™*
topology on the dual space of a Banach space (Example . A useful
fact is that the dual operator has the same operator norm as the original
operator (Lemma . Under our identification of J* with a subspace
of £2, the dual operator of the projection II, : J — J in is the
operator

(2421) T, :J = J%  Ia(y) =Y wie; for y = (yi)ien € J*.
i=1

Thus it follows from the estimates in (2.4.16|) that

(2.4.22) I (y)]

7 < llyll 5=, ly — ()l 7= < [yl 5«

for all y € J* and all n € N. Moreover, the dual space of ¢y can be identified
with ¢! (Example and the dual operator of the inclusion J — ¢q is
then the inclusion ¢! < J*. Hence it follows from general considerations
that ¢! is dense in J* with respect to the weak* topology (Theorem .
The next lemma shows that ¢! is dense in J* with respect to the norm
topology.
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LEMMA 2.4.13. Every y € J* satisfies

(2.4.23) Jim |ly = T(y)]l ;- = 0.

Proof. Fix an element y € J*. We prove that

|(y, 2)|
(2.4.24) en =y —In()ll;» = sup > ent1
Hoi(zgo =z,

for all n € N. To see this, fix an integer n € N and recall from Lemma [2.4.12
that || — I, (z)||; < ||z||; for all z € J. Hence

y— 1, (y),x
|y — n(y)ll j« = sup i n(y), 2)
0#xcJ ||5'3||J
o et
I (]
lﬁiifio [E41¥;
< sup [(y — M (y), )|
0#x€J H‘T”J
= |ly = (W)l ;- -

This proves the second equality in (2.4.24)). This equality also shows that
the sequence (&,,)pen is nonincreasing. Thus we have proved ([2.4.24)).

Now suppose, by contradiction, that lim,, oo £, = inf,,enx €, > 0. Choose
a constant 0 < € < inf,eney. Then, by (2.4.24)) and the axiom of countable
choice, there exists a sequence of sequences z, = (zp)icn € J such that

(2.4.25) T, (x,) = 0, |lznll; =1, (Y, xn) > €

for all n € N. Since ¢y is dense in J by Lemma [2.4.12] the sequence can be
chosen such that x,, € ¢y for all n € N. By Lemma [2.4.9] each element z,
satisfies ||zp ||, < ||zn]l; = 1. Define the map x: N — N by

(2.4.26) k(n) = max{i € N|z,; # 0} for n € N.

Then k(n) > n for all n € N. Next define the sequence n; € N by n; :=1
and njy1 = Kk(nj) > n; for j € N, and define the sequence § = (&;)ien € o
by & :=0 and

$nj ,i

(2.4.27) & = for j e Nand nj +1 <i <nji = k(ny).
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This sequence converges to zero because |z, ;| <1 for all i and j. Moreover,
it follows from ([2.4.25)), (2.4.26)), and (2.4.27) that

ng k—1 k—1
(24.28) (T, (€)= v& =Y @j” > Z? for all k € N.
i=1 j=1 j=1

Now let p = (p1,..-,pe) € P. Tt py = 1, then [I€ll, = IEllp,..pn) in the
case £ > 2 and [[¢[|, = 0 in the case £ = 1. Thus assume p; > 2 and define

J = {j € N| there exists an i € {1,...,¢} such that n; < p; <njy1}.
Then J # 0. Let m := max J and define
kj:=min{i e {1,....0}|n; <p; <nju},
l;=max{i € {l,...,0}|n; <pi <nju},
Pj = (Pkj»- -+ De;)
for each j € J. Then {1,.... 0} = ;e 7{kj, ..., {;} because p1 > 2, and

ey, = 37 Mwnslll,, < 57 Mang ;< 577 lawmg 1 = 571

for all j € J by (2.4.10) and (2.4.25)). Hence

£ Ly —1
20€ll2 = & | + S 6 — i ?+ > & - Epn | + 60|
m#jeT i=k; i=km
£;—1
2 2 2
< 2 Z |£pkj‘ + Z }gpz - €Pi+l} + ’é-p[j ’
JjET i=k;
=43 [lel,
JjeT
1
<4 —
JjeT ]2
< ;wQ

Take the supremum over all p € P and use Lemma [2.4.10| to obtain
2
el < VElEll, = sup Vel < |/ 27 <
pEP
and so £ € J. It then follows from Lemma that

2
M), < Iel < 2m

for all £ € N, in contradiction to the fact that the sequence (y,II,, (£)) is

unbounded by (2.4.28)). This proves Lemma [2.4.13 O
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We are now in a position to prove the main result of this subsection.

THEOREM 2.4.14 (James). The James space J is isometrically isomor-
phic to its bidual space J** and the image of the canonical inclusion

v J = J

has codimension one in J**.

Proof. The proof has seven steps.

Step 1. Let A : J* — R be a bounded linear functional and define
zi = A(e;) fori e N.

Then z := (Zi)ieN S foo,

(2.4.29) A (y)) = (y, n(2))
for alln € N and all y € J*, and
(2.4.30) Aly) = lim (y,T0,(2))

for ally € J*.
For every i € N we have

[(ei ei)] = 1= el ;

and thus

1< |leill,. = sup [z, ei)| _ |24 - Izl -
ozees 12y orees 17l ~ ozees lzll;

by Lemma [2.4.9] Hence
leill j» =1 for all i € N.

This implies
|25 = [Alea)| < A el 5« = [[A]l
for all i € N and so z € £°°. Now let y = (y;)ien € J*. Then

A1l (y)) = Zyi/\(ei) = Zyizi = (y,I,(z)) foralln €N
=1 =1

and this proves (2.4.29)). It follows from (2.4.23) and (2.4.29)) that
Jim [A(y) = (y, I1n(2))] = lim |A(y =TT (y))]

Jim A fly = T (y)l]

0.

IN

This proves (2.4.30) and Step 1.
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Step 2. Let A: J* — R and z € £°° be as in Step 1. Then

(2.4.31) sup max{| z[|,, I/l } < [[A]l-
peEP

Fix an element p = (p1,...,pr) € P and choose an integer n > pi. Then
max{||z; , |zllp} = max{|[TL,(2)[l , ITTn (2) [, }
< (2]l

1I
wp )
ozyes Nl
A(IT
o ML)
0#£yeJ* [yl =
AT ()] -
0#£yeJ* [yl
< [IA]-
Here the second step follows from Lemma [2.4.10| the third step follows from
Lemma the fourth step follows from ([2.4.29)), and the last step follows

from ([2.4.22)). This proves (2.4.31)) and Step 2.

Step 3. Let z = (z;)ien € L™ be a bounded sequence such that

<

J*

(2.4.32) sup max{||z([ , [zl } < oo
peP

Then z is a Cauchy sequence and the sequence x := (x;);eN, defined by

2.4.33 A= lim zj, ri:=2z — X forieN,
. J
J—00

is an element of J.

Suppose, by contradiction, that z is not a Cauchy sequence. Then there exist
two subsequences (zp, )icn and (2, )ien converging to different limits. Passing
to further subsequences we may assume that p; < ¢; < p;41 for all i € N and
that there exists a constant € > 0 such that |z, — z,,| > ¢ for all 4,5 € N.
For n € N consider the tuple

Pn = (plv q1,P2,92, - - -5 Pn, Qn)

[NS)
=
o
)

=
o
(%)

. This shows
converges to

Then ||z, > +/ne for all n € N, in contradiction to
that z is a Cauchy sequence. Now the sequence x in ([2.
zero, by definition, and satisfies

|z ; = sup |||, = sup [[z]|, < oo
pEP pPEP

by (2.4.32]). Hence x € J and this proves Step 3.
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Step 4. Let z = (zi)ien € £ be a bounded sequence that satisfies (2.4.32)
and let A € R and x € J be given by (2.4.33). Then the limit

A(y) := lim (y, T, (=))
(2.4.34) = lim (y, I, (2)) + Anlirgoiyi

n—00
=1

exists for every y € J* and defines a linear functional A : J* — R.

That the sequence (37" | yi)nen converges for y € ¢! is obvious. Moreover,
the subspace ¢! is dense in J* by Lemma [2.4.13] and

n

> ui] = (1)

i=1
< Nl lyll g
= [yl 5«

for all n € N. Here
1,:=(1,...,1,0,...)

denotes the sequence whose first n entries are equal to one, followed by zeros.
Hence the sequence of functionals

J*=R:iy—=yi+-+un

is uniformly bounded and converges for all y belonging to the dense sub-
space ¢! C J*. Thus it follows from the Banach-Steinhaus Theorem m
that the sequence (3.7, yi)nen converges for all y € J*. Hence it follows

from Step 3 and Lemma [2.4.12{ that the limit in (2.4.34) exists for all y € J*
and this proves Step 4.

Step 5. Let z € £%° be a sequence that satisfies (2.4.32) and let A : J* - R
be the linear map defined by (2.4.34)) in Step 4. Then A is a bounded linear
functional on J* and its norm is

(2.4.35) [All = sup max{|[z[|,, [ 2[ll,}-
peP

We prove that

[Ay)] ]
(2.4.36) Wl < ilelgmax{Hsz Mzl for all y € J*\ {0}.

To see this, note first that

(2.4.37) |z ; = sup |||, = sup max{||z||, , |zl }
peEP peEP

for all x € J by Lemma [2.4.10
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Next we prove the inequality

(2.4.38) sup max{||IL,(2) ||, , [[n ()], } < supmax{||zl,, [l=[l,}
pEP pEP

for all n € N. To see this, fix two elements

p:(p17"'7pk)epa neN
Then [[IL,(2)[|p = [[TTn(2)[ll, = 0 whenever py > n, and [, (2)l, = [l=lll,
and ||II,(z)||p = ||z|lp whenever p; < n. Thus assume
p1 = n < p

and denote by ¢ € {1,...,k — 1} the largest number such that p, < n. Con-
sider the element
q:=(p1,...,p0) €P.
It satisfies
2T (2) |12 = 2[ITn(2)|13

-1

2 2 2

= ‘Zpl‘ + Z |zpj - ij+1‘ + ‘sz|
j=1

2
= 2zl

This proves (2.4.38)).
Now take x = II,,(z). Then, by (2.4.37) and (2.4.38)),
Y, 11n(2))]|
- DD i, ey,
]
= sup max{ ||, (2)||, , [T (2) |l }
peP

< sup max{|[z|, , [l|12[ll, }
peEP

for all y € J*\ {0} and all n € N. Take the limit n — co. Then it follows
from the definition of A in Step 4 via equation (2.4.34]) that

AW 1 T

J*

Iyl - n=oe lyll-
< supmax{||z||,, llzll,}
peEP P’ i

for all y € J*\ {0}. This proves (2.4.36). Thus A : J* — R is a bounded
linear functional. Now take the supremum over all y € J*\ {0} to obtain
Aly

Al = sup B

ozyes* ll s

< sup max{||z
peEP

pollZllp}-

The converse inequality was established in Step 2 and this proves Step 5.
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Step 6. The canonical inclusion v : J — J** has a codimension-one image.

By Step 1, Step 2, Step 4, and Step 5, the bidual space of J is naturally
isomorphic to the space

J = {z e ‘ sup max{| z([, , lzll,} < oo} )
pPEP

The correspondence assigns to a sequence z € J** the bounded linear func-
tional A : J* — R given by . That it is well defined for every z € J**
was proved in Step 4, that it is bounded was proved in Step 5, and that
every bounded linear functional on J* is of this form was proved in Steps 1
and 2. It was also proved in Step 5 that the identification of J** with the
dual space of J* is an isometry with respect to the norm on J**, defined by

| 2]] jos == sug max{||z[l,, Izl } for x € J**.

pe

Under this identification, the canonical inclusion ¢: J — J** is the obvi-
ous inclusion of J into J** as a subset. It is an isometric embedding by
the general observation in Lemma (see also Lemma and equa-
tion (2.4.37)). Moreover, the constant sequence 1:= (1,1,1,...) is a unit
vector in J** and

J*=JeR1
by Step 3. This proves Step 6.
Step 7. The map
J = T2 = (®i)ien = (Tip1 — T1)ien

18 an isometric isomorphism.

The map is bijective by Step 3. If x = (2;)ieny € J and z = (2;)ieny € J**
are related by the conditions

r1 = — lim zj, Ti+l — X1 = %4 for i € N,
.]*)OO
then
120y, o) = 12l i1, sy s M2llrp) = 12l prr, )

for all (p1,...,pr) € P, and hence

2]l ; = sup ||z||, = sup max{|[z[|,, [2[l,} = 2]l y« -
peP peEP

This proves Step 7 and Theorem (Il
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Remark 2.4.15. (i) Let X be a real Banach space. A Schauder basis
of X is a sequence (e;);ey in X such that, for every x € X, there exists a
unique sequence (z;);eN € RN such that

=0.

n
(2.4.39) nl;ngo"w — Z Ti€;

i=1
Associated to every Schauder basis (e;);eny of X is a unique sequence of
bounded linear functionals e € X* such that (e}, e;) =d;; for all 4,5 € N
(see Exercise [2.5.12)). Thus the sequence z; = (e}, x) is characterized by the
condition (2.4.39). A Schauder basis (e;);en is called normalized if ||e;|| = 1
for all i € N. Associated to every Schauder basis (e;);en and every n € N is
a projection II,, : X — X via

n
(2.4.40) I, (z) := Z(e;‘,@ei for z € X.

i=1
The operator sequence II, € L£(X) is bounded by Exercise A
Schauder basis (e;);en is called monotone if ||II,, || < 1 for all n € N. It is
called shrinking if lim,, o [|II} (2*) — 2*|| .« = 0 for every 2* € X* and so
the sequence (€});en is a Schauder basis of X*. It is called boundedly com-
plete if, for every sequence (7;);en € RY such that sup,,cy || Y0, @ie;|| < oo,
the sequence Y | x;e; converges in X.

(ii) By Lemma the standard basis (e;);en of the James space J is
a normalized monotone Schauder basis and, by Lemma [2.4.13] it is shrink-
ing. It is not boundedly complete, because the constant sequence x; =1
satisfies [|>°1; e;]| ; = 1, however, the sequence ) ", e; does not converge
in J.

(iii) The standard basis (e;);en of the dual space J* is again normalized and
monotone. One can deduce from Lemma that this basis is boundedly
complete. However, it is not shrinking, because the closure of the span of
the dual sequence in J** is the proper subspace J C J** by Theorem [2.4.14

(iv) A theorem of Robert C. James asserts that a Banach space X with a
Schauder basis (e;);cn is reflexive if and only if the basis is both shrinking
and boundedly complete.

(v) A Schauder basis (e;);en of a Banach space X is called unconditional
if the sequence (e,(;))ien is a Schauder basis for every bijection o : N — N.
The James space J does not admit an unconditional Schauder basis.

(vi) There are many examples of Schauder bases, such as any orthonormal
basis of a separable Hilbert space, which is always normalized, monotone,
unconditional, shrinking, and boundedly complete.
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(vii) The reader may verify that the standard basis of 7 for 1 < p < oo is
normalized, monotone, unconditional, boundedly complete, and shrinking.
For p = 1 it is still normalized, monotone, unconditional, and boundedly
complete, but no longer shrinking. The Banach space £°° does not admit a
Schauder basis, because it is not separable.

(viii) There exist separable Banach spaces that do not admit Schauder
bases. Examples are Banach spaces that do not have the approximation
property (see Exercises [4.2.11| and [4.2.12]).

Remark 2.4.16. (i) A complex structure on a real Banach space X is
a bounded linear operator I : X — X such that

I’ =—1.

Such a complex structure induces a complex structure I** : X** — X** on
the bidual space such that the canonical inclusion ¢ : X — X™** satisfies

tol =T"oy.

Thus the complex structure descends to the quotient space X**/i1(X). In
the case of the James space X = J, this quotient has one real dimension.
Hence it does not admit a complex structure, and neither does the James
space J.

(ii) Consider the product
X:=JxJ"
of the James space J with its dual, equipped with the norm

1@ w)llx = \/ll2ll5 + w5 for (z.y) € T x J*.

By Theorem [2.4.14] the space X is isometrically isomorphic to its dual space.
However, it is not reflexive.

(iii) The James space J is an example of a nonreflexive Banach space whose
bidual space is separable.

(iv) Another question answered in the negative by the James space is of
whether a separable Banach space that is isometrically isomorphic to its
bidual space must be reflexive. The James space satisfies both conditions,
but is not reflexive.

(v) The James space J is an example of an infinite-dimensional Banach
space that is not isomorphic to the product space

X =JxJ

(equipped with any product norm as in Subsection [1.2.3). This is because
the canonical inclusion ¢ : X — X™** has codimension two by Theorem 2.4.14]
Moreover, X admits a complex structure and J does not.
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2.5. Problems

EXERCISE 2.5.1 (Phillips’ Lemma). Prove that the subspace
co C £

of all sequences of real numbers that converge to zero is not complemented.
This result is due to Phillips [65]. The hints are based on [3], p45].

Hint 1: There exists an uncountable collection {A;}icr of infinite sub-
sets A; C N such that A; N Ay is a finite set for all 1,7 € I such that i # i'.

For example, take
I:=R\Q,

choose a bijection N = Q : n — ay,, choose sequences (n; i) ren in N, one for
each ¢ € I, such that limy o apn,, =i forallie I =R \ Q, and define

A ={njx|keN} CN forie 1.
Hint 2: Let Q : {*° — (*° be a bounded linear operator with cy C ker(Q).

Then there ezists an infinite subset A C N such that Q(z) = 0 for every
sequence x = (;)jen € £>° that satisfies x; = 0 for all j € N\ A.

The set A can be taken as one of the sets A; in Hint 1. Argue by contradiction
and suppose that, for each 7 € I, there exists a sequence

T = (w45)jen € £
such that
Q(x;) #0, 7|l oo = 1, zj; =0 for all j € N\ A;.

Define the maps Q,, : £*° — R by Q(z) =: (Qn(z))nen for z € £°. For each
pair of integers n, k € N define the set

Inge = {i € I'|Qn(xi)| = 1/k}.

Fix a finite set I’ C I, and consider the value of the operator @ on the
element

T = Zeixi, g; = sign(Qn(z;)).
iel’
Use the fact that the set

B:={j € N|3i,i € I such that i # ¢ and z;; # 0 # zy;}
is finite to deduce that |Q,(z)| < ||Q(x)|| < ||Q| and so
#1, < k|Q| for all n,k € N.

This contradicts the fact that the set I =, zen In,k 18 uncountable.

Hint 3: There is no bounded linear operator @Q : £>° — £>° with ker(Q) = co.
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EXERCISE 2.5.2 (Uniform Boundedness and Open Mappings).
The uniform boundedness principle, the open mapping theorem, and the
closed graph theorem do not extend to normed vector spaces that are not
complete. Let X = R> be the vector space of sequences x = (z;);en of real
numbers with only finitely many nonzero terms. For x € X define

[e.9]

i=1 €N

Prove the following.

(a) For n € N define the linear functional A,, : X — R by A, (z) := nz,.
Then A, is bounded for all n € N and sup,,cy [An(z)| < oo for all z € X,
however, sup, ey || An|| x+ = oo (for either norm on X).

(b) The identity operator id : (X, [|-||;) = (X, []||) is bounded but does
not have a bounded inverse.

(c) The identity operator id : (X, ||-||..) = (X, [||l;) has a closed graph but
is not bounded.

EXERCISE 2.5.3 (Zabreiko’s Lemma).

(a) Prove Zabreiko’s Lemma. Let X be a Banach space and letp: X — R
be a seminorm. Then the following are equivalent.

(1) p is continuous.
(ii) There exists a constant ¢ > 0 such that p(z) < c||z|| for all x € X.

(iii) The seminorm p is countably subadditive, i.e.

oo o0
(o) < Xt
i=1 i=1
for every absolutely convergent series x = .o x; in X.

Hint: See Definition [2.3.1] for seminorms and Lemma for absolutely
convergent series. To prove that (iii) implies (ii), define the sets

Ay, i={x € X|p(x) <n}, F,:={z € X|p(x) <n}

for n € N. Show that F;, is convex and symmetric for each n. Use the Baire
Category Theorem to prove that there exists an n € N such that F),
contains the open unit ball B := {z € X | ||z| < 1}. Prove that B C A,, by
mimicking the proof of the open mapping theorem (Lemma [2.2.3)).

(b) Deduce the uniform boundedness principle, the open mapping theorem,
and the closed graph theorem from Zabreiko’s Lemma.
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EXERCISE 2.5.4 (Complex Hahn—-Banach). The dual space of a com-

plex normed vector space X is the space of bounded complex linear func-
tionals z* : X — C. Adapt the Corollaries|2.3.23}{2.3.26|of the Hahn—Banach
Theorem and their proofs to complex normed vector spaces.

EXERCISE 2.5.5 (Fourier Series of Continuous Functions).

This exercise shows that there exist continuous functions whose Fourier se-
ries do not converge uniformly. Denote by C(R/27Z,C) be the space of
continuous 27-periodic complex valued functions f : R — C equipped with
the supremum norm.

(a) For n € N the Dirichlet kernel D,, € C(R/27Z,C) is defined by

~ e Sin((n+ 5)1)
2.5.1 D, (t) == we_ S +2)0) R
(2:5.1) ®) kz_:ne sin(Lt) o

Prove that ||Dy| . > 237, 1.
(b) The nth Fourier expansion of a function f € C(R/27Z,C) is defined by

n 27
(2:5.2) (Falf))(@) = (Do s @) = 3 /0 P gy

k=—n
for x € R. Prove that the operator F, : C(R/27Z,C) — C(R/27Z,C) has
the operator norm || F,|| = || Dn| 1.

(c) Deduce from the Uniform Boundedness Principle that there exists
a function f € C(R/27Z,C) such that the sequence F,(f) does not converge
uniformly.

EXERCISE 2.5.6 (Fourier Series of Integrable Functions).
The Fourier coefficients of a function f € L([0,27],C) are given by

~

2m
(2.5.3) f(k) ::/ e Uft)dt  forkeZ

0
and the Fourier series of f is .7 (f) := (f(k))kez.
(a) Prove the Riemann—Lebesgue Lemma, which asserts that

Tim )f(k)‘ ~0

|k]— o0
for all f € L(]0,27],C).
(b) Denote by co(Z,C) C ¢>°(Z,C) the closed subspace of all bi-infinite
sequences of complex numbers that converge to zero as |k| tends to infinity.
Prove that the bounded linear operator .% : L([0, 27], C) — co(Z,C) has a

dense image but is not surjective. Hint: Investigate the Fourier coefficients
of the Dirichlet kernels in Exercise 2.5.5
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EXERCISE 2.5.7 (Banach Limits). Let ¢> be the Banach space of
bounded sequences of real numbers with the supremum norm as in part (ii)
of Example and define the shift operator T : £°° — (*° by

Tz := (Tpt1)neN for © = (zp)nen € £°°.
Consider the subspace
Vi=im(id-T) ={x —Tx|x € (*}.
Prove the following.

(a) The subspace ¢y C €*° of all sequences that converge to zero is contained
in the closure of Y.

(b) Let 1 = (1,1,1,...) € £ be the constant sequence with entries 1.
Prove that sup,cy |1 + Zpt1 — 25| > 1 for all x € £°° and deduce that

d(1,Y) = inf |1 —y|, = 1.
yey

(c) By the Hahn-Banach Theorem [2.3.22] there exists a bounded linear
functional A : £*° — R such that

(2.5.4) A(1) =1, Al =1, Az —Tz)=0 forall x € £=.
Prove that any such functional has the following properties.
(i) A(Tz) = A(zx) for all z € £°°.
(ii) If z € £°° satisfies z, > 0 for all n € N, then A(z) > 0.
(ili) liminf, oo x5 < A(x) < limsup,,_,. z, for all z € £,
(iv) If x € £>° converges, then A(x) = limy, o0 Tp.

(d) Let A be as in (¢). Find x,y € £*° such that A(zy) # A(z)A(y). Hint:
Consider the sequence z,, := (—1)" and show that A(z) = 0.

(e) Let A be as in (c). Prove that there does not exist a sequence y € ¢! such
that A(z) = > 07 xpyy, for all x € ¢*°. Hint: Any such sequence would
have nonnegative entries v, > 0 by part (ii) in (c) and satisfy Y oo, y, = 1.
Hence 22[:1 yn > 0 for some N € N in contradiction to part (iv) in (c).

EXERCISE 2.5.8 (Minkowski Functionals). Let X be a normed vector
space and let C' C X be a convex subset such that 0 € C. The Minkowski
functional of C' is the function

p:X — [0,00]

defined by
(2.5.5) p(z) =inf {A>0|\"'z e C} for z € X.

The convex set C is called absorbing if, for every x € X, there is a A > 0
such that A~z € C. Let p be the Minkowski functional of C.
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(a) Prove that p(z +y) < p(z) + p(y) and p(Az) = Ap(x) for all z,y € X
and all A > 0.

(b) Prove that C is absorbing if and only if p takes values in [0,00) and
hence is a sublinear functional (see Definition [2.3.1]).

(c) Suppose C is absorbing. Find conditions on C' which ensure that p is a
seminorm or a norm. Do this both for real scalars and complex scalars.

(d) Prove that p is continuous if and only if zero is an interior point of C.
In this case, show that int(C) = p~1([0,1)) and C = p~1([0,1]).

EXERCISE 2.5.9 (Reflexive Banach Spaces). Let X be a normed vec-
tor space and let Y C X be a closed subspace. Assume Y and X/Y are
reflexive. Prove that X is reflexive.

EXERCISE 2.5.10 (Schatten’s Projective Tensor Product).
Let X and Y be real normed vector spaces.
(a) For every normed vector space Z, the space B(X,Y;Z) of bounded

bilinear maps B : X XY — Z is a normed vector space with the norm

|B|| :== sup 1Bz, 9)llz for Be B(X,Y; Z).
268 T ol
(b) The map
B(X,Y;Z)— L(X,L(Y,Z)): B~ (x+ B(z,-))
is an isometric isomorphism.
(c) Associated to every pair (z,y) € X x Y is a linear functional
r®yeB(X,Y;R)"
defined by (z ® y, B) := B(x,y) for B € B(X,Y;R). It satisfies

Iz @yl = llzllx [lylly

Hint: Use the Hahn—Banach Theorem to prove the inequality ||z ® y| >
|lz|| x [lylly- Namely, consider the bilinear functional B : X xY — R, defined
by B(z,y) := (x*,x)(y*,y) for suitable elements x* € X* and y* € Y* of
the dual spaces.

(d) Let X ® Y C B(X,Y;R)* be the smallest closed subspace containing
the image of the bilinear map X xY — B(X,Y;R)*: (z,y) = 2 ®y in (c).
Then, for every normed vector space Z, the map

LIX®Y,Z)—B(X,Y;Z): A— By

defined by By(z,y) == A(z ®y) for z,y € X and A € L(X ®Y,Z) is an
isometric isomorphism.
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EXERCISE 2.5.11 (Strict Convexity and Hahn-Banach).

(a) Prove Ruston’s Theorem: The following properties of a normed vector
space X are equivalent.

(i) If x,y € X satisfy x #y and ||z|| = ||y|| = 1, then ||z + y|| < 2.
(ii) If 2,y € X satisfy v # 0 # y and ||z +y|| = [[z]|+|lyll, then z = Xy
for some A > 0.

(i) If * € X* is a nonzero bounded linear functional, then there exists
at most one element v € X such that ||x|| =1 and (z*,x) = ||z*|.

The normed vector space X 1is called strictly convex if it satisfies these
equivalent conditions. Condition (i) says that the unit sphere contains no
nontrivial line segment. Condition (ii) says that equality in the triangle
inequality occurs only in the trivial situation. Condition (iii) says that the
support hyperplane H,« := {z € X | (z*,z) = ||z*||} meets the unit sphere
in at most one point. (Note that inf,cpq . ||z| = 1.)

(b) For which p is LP([0, 1]) strictly convex? Is C([0, 1]) strictly convex?

(c) If X is a normed vector space such that X* is strictly convex, ¥ C X
is a linear subspace, and y* : Y — R is a bounded linear functional, then
there is a unique z* € X* such that z*|y = y* and ||z*| = ||y*|.

EXERCISE 2.5.12 (Schauder Bases). Let X be a separable real Banach
space and let (e;);en be a Schauder basis of X. This means that, for each
element x € X, there exists a unique sequence (x;);en of real numbers such
that

(2.5.6) lim Ha: I )
=1

n—oo

Let n € N and define the map II,, : X — X by
(2.5.7) II,(z) := Z:ciei
i=1

for x € X, where (z;);en is the unique sequence that satisfies .
(a) Prove that the operators II,, : X — X are linear and satisfy
(2.5.8) I, o I1,,, = I1,,, o IT,, = 11,
for all integers n > m > 1. In particular, they are projections.
(b) Define a map X — [0,00) : z +— ||z|| by the formula
(2.5.9) ||| :== sup ||, (x)]| for z € X.

neN

Prove that this is a norm and that [|z| < ||z|| for all z € X.
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(c) Prove that (X, ||-|) is a Banach space. Hint: Let (xj)ren be a Cauchy
sequence in (X, [||-]). Then (zx)ken is a Cauchy sequence in (X, ||-||) by (b).
Hence there is an # € X such that limg_, ||z — 2| = 0. Also, (IL,(2k))ken
is a Cauchy sequence in (X, ||-]|) for all n. Thus there is a sequence (&, )nen
in X such that limg_, ||€, — I, (z)|| = O for all n € N. Prove that

(2.5.10) I, (&) = &m for all integers n > m > 1.

(The restriction of II,, to every finite-dimensional subspace is continuous.)
Let € > 0. Choose ko € N such that ||z, — z||| < &/3 for all k,¢ > kg. Then
choose ng € N such that ||z, — II,(zk,)|| < e/3 for all n > ng. Then

[z = &nll = lim [lz, — I (2) |
k—00

< lim (2l — x| + 25, — T2, 1)
k—o0
<e€
for n > ng. Deduce that &, = II,,(z) for all n and limy_, ||z — x| = 0.
(d) Prove that there exists a constant ¢ > 0 such that
(2.5.11) sup [T, (z)]] < c|z|| for all z € X.
neN

Hint: Use parts (b) and (c) and the Open Mapping Theorem [2.2.1]

EXERCISE 2.5.13 (The Canonical Inclusion). Let X be a normed
vector space and let tx : X — X™* be the canonical inclusion defined

by 1),

(a) Show that (tx)*tx+ = idx~ and determine the kernel of the projection
Poi= iy (ix)" 1 XM 5 X

(b) Assume X is complete. Show that X is reflexive if and only if
LX* (LX)* = idX***‘
(c) Linton’s Pullback. Let Y C X be a closed subspace and let j : Y — X

be the obvious inclusion. Then tx oj = 7™ ovy :' Y — X**. This map is an
isometric embedding of Y into X** whose image is

txoj(Y)=j5"ouw(Y)=1x(X)Nj™(Y™) c X
(d) Deduce from Linton’s Pullback that Y is reflexive whenever X is reflex-
ive.
(e) Show that X is reflexive if and only if ¢x+ = (1x)**.

Note. This exercise requires the notion of the dual operator, introduced in
Definition £.1.1] below.






Chapter 8

The Weak and Weak*
Topologies

This chapter is devoted to the study of the weak topology on a Banach
space X and the weak* topology on its dual space X*. With these topolo-
gies X and X* are locally convex Hausdorff topological vector spaces and
the elementary properties of such spaces are discussed in Section [3.1] In par-
ticular, it is shown that the closed unit ball in X* is the weak™ closure of the
unit sphere, and that a linear functional on X* is continuous with respect
to the weak* topology if and only if it belongs to the image of the canonical
embedding ¢ : X — X**. The central result of this chapter is the Banach—
Alaoglu Theorem in Section which asserts that the unit ball in the dual
space X* is compact with respect to the weak* topology. This theorem has
important consequences in many fields of mathematics. Further properties
of the weak* topology on the dual space are established in Section It
is shown that a linear subspace of X* is weak* closed if and only if its in-
tersection with the closed unit ball is weak® closed. A consequence of the
Banach—Alaoglu Theorem is that the unit ball in a reflexive Banach space
is weakly compact. A theorem of Eberlein-Smulyan asserts that this prop-
erty characterizes reflexive Banach spaces (Section [3.4). The Krein-Milman
Theorem in Section |3.5| asserts that every nonempty compact convex subset
of a locally convex Hausdorff topological vector space is the convex hull of its
extremal points. Combining the Krein-Milman Theorem with the Banach—
Alaoglu Theorem, one can prove that every homeomorphism of a compact
metric space admits an invariant ergodic Borel probability measure. Some
properties of such ergodic measures are explored in Section

109
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3.1. Topological Vector Spaces

3.1.1. Definition and Examples. Recall that the product topology on
a product X XY of two topological spaces X and Y is defined as the weakest
topology on X x Y that contains all subsets of the form U x V where U C X
and V C Y are open. Equivalently, it is the weakest topology on X x Y such
that the projections 7x : X XY — X and ny : X XY — Y are continuous.

DEFINITION 3.1.1 (Topological Vector Space). A topological vec-
tor space is a pair (X,%) where X is a real vector space and % C 2% is
a topology such that the structure maps

XxX—X:(z,y)—»x+y, RxX—=X:(\z)— A\

are continuous with respect to the product topologies on X x X and R x X.
A topological vector space (X, % ) is called locally convex if, for every open
set U C X and every « € U, there is an open set V C X such that

rxeV cCU, V is convex.

EXAMPLE 3.1.2 (Strong Topology). A normed vector space (X, ||]|) is
a topological vector space with the topology Z* := % (X, ||-||) induced by the
norm as in Definition This is sometimes called the strong topology
or norm topology to distinguish it from other weaker topologies discussed
below.

EXAMPLE 3.1.3 (Smooth Functions). The space X := C*>°(Q) of
smooth functions on an open subset 2 C R"” is a locally convex Hausdorff
topological vector space. The topology is given by uniform convergence with
all derivatives on compact sets and is induced by the complete metric

oo 1f = 9glleecr,
d(f,g) = 2~ e
(f.9) ; L+ [If = glleecry

Here K, C Q) is an exhausting sequence of compact sets.

EXAMPLE 3.1.4. Let X be a real vector space. Then (X, %) is a topo-
logical vector space with % := {0, X}, but not with the discrete topology.

EXAMPLE 3.1.5 (Convergence in Measure). Let (M, A, i) be a mea-
sure space such that (M) < oo, denote by L£%(u) the vector space of all
real valued measurable functions on M, and define

L) = L2(u) [~
where the equivalence relation is given by equality almost everywhere. De-
fine a metric on L°(u) by

_ |f — gl
d(f,g) = /M mdﬂ for f,g € L%().
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Then L°(u) is a topological vector space with the topology induced by d.
A sequence f,, € L°(u) converges to f € L°(u) in this topology if and only
if it converges in measure, i.e.

nh_}rr;o p({x € M||fu(x) — f(x)| >e})=0 for all € > 0.

The topological vector space L° () with the topology of convergence in mea-
sure is not locally convex, in general. Exercise: Prove that every nonempty
open convex subset of LY([0,1]) is the whole space. Deduce that every con-
tinuous linear functional A : LY([0,1]) — R vanishes.

An important class of topological vector spaces is determined by sets of
linear functionals as follows. Fix a real vector space X and let

Fc{f:X —R|fis linear}

be any nonempty set of linear functionals on X. Define %z C 2% to be
the weakest topology on X such that every linear functional f € F is con-
tinuous. Then the pre-image of an open interval under any of the linear
functionals f € F is an open subset of X. Hence so is the set

Vi={zeX|a < fi(lz)<bfori=1,...,m}

for all integers m € N, all f1,..., fi,, € F, and all 2m-tuples of real num-
bers ai,...,am,b1,...,by such that a; <b; for i =1,...,m. Denote the
collection of all subsets of X of this form by

m meN, fi,..., fm €F,
(3.1.1) V= ()£ (@i b)) | a1s.. s am,bi, ... by €R,
i=1 a; <bjfori=1,....,m

LEMMA 3.1.6. Let X be a real vector space, let F C RX be a set of real
valued linear functionals on X, and let Ur C 2% be the weakest topology
on X such that all elements of F are continuous. Then the following holds.

(1) The collection ¥F in (3.1.1)) is a basis for the topology Ur, i.e.
(3.1.2) Ur ={UCX|VxeU3IV e¥r suchthatx €V C U}.

(ii) (X, %F) is a locally convex topological vector space.

(iii) A sequence x, € X converges to an element xo € X with respect to the
topology «r if and only if f(xo) = limp—eo f(zy) for all f € F.

(iv) The topological space (X,%r) is Hausdorff if and only if F sepa-
rates points, i.e. for every nonzero vector x € X there exists a linear func-
tional f € F such that f(zx) # 0.
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Proof. Part (i) is an exercise with hints. Define the set %7 C 2% by the
right hand side of equation . Then it follows directly from the def-
initions that %7z C 2% is a topology, that every linear function f: X — R
in F is continuous with respect to this topology, and that every other topol-
ogy % C 2% with respect to which each element of F is continuous must
contain ¥ and hence also %r. This proves part (i).

We prove part (ii). We prove first that scalar multiplication is continuous
with respect to Zr. Fix a set V € ¥r and let A\g € R and zg € X such
that Agxg € V. Then it follows from the definition of ¥F in that
there exists a constant > 0 such that

d # |Nol, (Ao —9d)zp €V, (Mo +9)zo V.

Define

1 1
S veur L AL vy 14

Then U € ¥ and xg € U. Moreover, if z € U and A € R satisfies
‘)\ — )\0‘ < 4,
then (A\g — )z € V and (Ao + )z € V and hence Az € V, because V is

convex. This shows that scalar multiplication is continuous.

We prove that addition is continuous. Fix an element W € ¥r and
let xg,yo € X such that xg + yg € W. Define the sets

1 1 1 1
U:= i(wo—yo)+§W, V= 5(3/0—530)‘1‘5”/-

Then U,V € ¥F by . Moreover, zg € U, yg € V, and for all x € U and
ally € V we have z+y € W because W is convex. This shows that addition
is continuous. Hence (X, %) is a topological vector space. That (X, %r) is
locally convex follows from the fact that the elements of ¥~ are all convex
sets. This proves part (ii).

We prove part (iii). Fix a sequence (z,)pen in X and an element zy € X.
Assume x,, converges to xg with respect to the topology Zr. Let f € F and
fix a constant € > 0. Then the set

U:={ze X|[|f(z) - flxo)| <&}

is an element of 7= and hence of . Since xy € U, there exists a positive
integer ng such that x, € U for every integer n > ng. Thus we have proved

VfEFVe>0IneNVneN: (n>ny = |f(zn) — f(zo)] <&).

This means that
lim f(zn) = f(z0)

n—o0

for all f € F.
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Conversely suppose that

lim f(2,) = f(x0)

n—oo

for all f € F and fix a set U € %r such that

xo € U.

Then there exists a set

m

V=[)f"(ah)) € ¥F

i=1
such that g € V' C U. This means that a; < fi(zg) < b; for i = 1,...,m.
Since limy, o0 fi(2n) = fi(xo) for i = 1,...,m, there is a positive integer ng
such that a; < f;(x,) < b; for every integer n > ng and every i € {1,...,m}.

Thus z, € V C U for every integer n > ng and this proves part (iii).

We prove part (iv). Assume first that X is Hausdorff and let z € X \ {0}.
Then there exists an open set U C X such that

0eU, x ¢ U
Choose a set V =", f; *((ai, b)) € ¥F such that
oeVcCcu

Since 0 € V' it follows that a; < 0 < b; for all i € {1,...,m}. Since x ¢ V,
there exists index i € {1,...,m} such that f;(x) ¢ (a;,b;) and so f;(x) # 0.
Conversely suppose that, for every z € X, there exists an element f € F
such that f(x) # 0. Let 29,21 € X such that xg # x1 and choose f € F such
that f(z1 — xo) # 0. Choose € > 0 such that 2¢ < |f(z1 — x0)| and consider
the sets
Up={zeX||f(x—x;)| <&}

for ¢ = 0,1. Then Uy, Uy € ¥F C Ur, 29 € Uy, 1 € Uy, and Uy N U7 = 0.
This proves part (iv) and Lemma O

ExAMPLE 3.1.7 (Product Topology). Let I be any set and consider
the space X := R’ of all functions x : I — R. This is a real vector space.
For i € I denote the evaluation map at i by m; : R — R, i.e. m;(x) := x(4)
for € R, Then 7; : X — R is a linear functional for every i € I. Let

mi={m|iel}

be the collection of all these evaluation maps and denote by %, the weakest
topology on X such that the projection m; is continuous for every ¢ € I. By
Lemma this topology is given by and . It is called the
product topology on R!. Thus R is a locally convex Hausdorff topological
vector space with the product topology.
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ExAMPLE 3.1.8 (Weak Topology). Let X be a real normed vector
space.

(i) The weak topology on X is the weakest topology %™ C 2% with respect
to which every bounded linear functional A : X — R is continuous. It is the
special case of the topology % C 2% in Lemma where F := X* is
the dual space. By Corollary the dual space separates points, i.e.
for every x € X \ {0} there is an z* € X* such that (z*,z) # 0. Hence
Lemma asserts that (X, ") is a locally convex Hausdorff topological
vector space.

(ii) By Theorem every bounded linear functional is continuous with
respect to the strong topology % := % (X, |-||) in Definition[L.1.2] Hence
wUY CU®.

The weak and strong topologies agree when X is finite-dimensional.

(iii) Let (zp)nen be a sequence in X and let x € X. Then Lemma
asserts that x,, converges weakly to z (i.e. in the weak topology) if and
only if

(x*,x) = lim (2", z,) for all * € X*.
n—oo

. . W .
In this case we write x,, — z or £ = w—1lim,,_ o0 Tn-

EXAMPLE 3.1.9 (Weak* Topology). Let X be a real normed vector
space and let X* = L(X,R) be its dual space.

(i) The weak* topology on X* is the weakest topology %™ C 2% with
respect to which the linear functional v(x) : X* — R in s contin-
uous for all € X. Tt is the special case of the topology %r C 2% in
Lemma where F := (X ) C X**. This collection of linear functionals
separates points, i.e. for every z* € X*\ {0} there is an element x € X such
that (z*,z) # 0. Hence Lemma asserts that (X*, %) is a locally
convex Hausdorff topological vector space.

(ii) Denote by %* C 2% the strong topology induced by the norm, and
denote by % C 2X" the weak topology in Example Then

U CUY C U
These weak and weak™ topologies agree when X is a reflexive Banach space.

(iii) Let (x)nen be a sequence in X* and let z* € X*. Then Lemma
asserts that =7 converges to z* in the weak* topology if and only if

(x*,x) = le (x),x) for all z € X.

. . w* .
In this case we write x;, — z* or ¥ = w*—lim,,_, .
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3.1.2. Convex Sets. This subsection picks up the topic of separating a
pair of nonempty disjoint convex sets by a hyperplane. For normed vector
spaces this problem was examined in Subsection [2.3.3] The main result
(Theorem and its proof carry over almost verbatim to topological
vector spaces (see Theorem [3.1.11)). The next lemma shows that the closure
and interior of a convex subset of a topological vector space are again convex.

LEMMA 3.1.10. Let X be a topological vector space and let K C X be
a convex subset. Then the closure K and the interior int(K) are convex
subsets of X. Moreover, if int(K) # 0, then K C int(K).

Proof. We prove that int(K) is convex. Let xg, 21 € int(K), choose a
real number 0 < A < 1, and define

)= (1 =Nz + \xq.

Choose open sets Uy, Uy C X such that xg C Uy C K and 1 C U; C K and
define

U .= (Uo—on)ﬂ(Ul—$1) :{$€X|J/‘0+$€Uo, $1+£L'€U1}.
Then U C X is an open set containing the origin such that
ro+U C K, x1+U C K.

Since K is convex, this implies that x) + U is an open subset of K contain-
ing x). Hence x) € int(K).

We prove that the closure K is convex. Let xg, 21 € K, choose a real
number 0 < A < 1, and define ) := (1 — A\)zp + Az;. Let U be an open
neighborhood of ). Then the set

W = {(yo,yl) cX ><X|(1—)\)y0—|—)\y1 S U}

is an open neighborhood of the pair (xg, 1), by continuity of addition and
scalar multiplication. Hence there exist open sets Uy, U; C X such that

xo € Up, x1 € Uy, Uy x Uy CW.
Since xg, x1 € K, the sets UyN K and U;NK are nonempty. Choose elements
Yo € Up N K, y1 € U1 N K.

Then (yo,y1) € Up x Uy € W and hence yy := (1 — N)yo + A1 ceUNK.
Thus U N K # () for every open neighborhood U of z) and so z) € K.

We prove the last assertion. Assume int(K) # () and let € K. Then the
set Uy :={tex+ (1 —t)y|y € int(K), 0 < ¢t < 1} is open and contained in K.
Hence U, C int(K) and so z € U, C int(K). This proves Lemma|3.1.10, [
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THEOREM 3.1.11 (Separation of Convex Sets). Let X be a topological
vector space and let A, B C X be nonempty disjoint convex sets such that A
is open. Then there is a continuous linear functional A : X — R such that

A(z) > sup A(y) for all x € A.
yeB

Proof. Assume first that B = {0}. Then the set
P:={tx|z e A t>0}

satisfies the conditions (P1), (P2), (P3) on page Hence (X,<) is an
ordered vector space with the partial order defined by z x y iff y —xz € P.
Let g € A. Then the linear subspace

Y = RQS‘O

satisfies (O3) on page |68l Hence Theorem asserts that there exists a
positive linear functional A : X — R such that

A(l’o) =1.
If x € A, then x —tzg € A for t > 0 sufficiently small because A is open and
hence A(z) >t > 0.
We prove that A is continuous. To see this, define
U:={ze X|Az)>0}
and fix an element x € U. Then
V= {y € X|xo —I—A(x)_l(y—ac) = A}

is an open set such that x € V C U. This shows that U is an open set and
hence so is the set

A ((a,b)) = (azo + U) N (bxy — U)

for every pair of real numbers a < b. Hence A is continuous and this proves
the result for B = {0}.

To prove the result in general, observe that
U=A-BcCcX

is a nonempty open convex set such that 0 ¢ U. Hence, by the special
case, there is a continuous linear functional A : X — R such that A(z) > 0
for all # € U. Thus A(x) > A(y) for all z € A and all y € B. De-
fine ¢ := sup,cp A(y) and choose § € X such that A(§) =1. If x € A then,
since A is open, there exists a number ¢ > 0 such that x — d¢ € A, and
so A(z) = A(x —68) + 6 > ¢+ 0. Hence A(x) > c for all z € A. This proves
Theorem [B.1.11] O
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THEOREM 3.1.12 (The Topology %r). Let X be a real vector space
and let F C {A: X — R|A is linear} be a linear subspace of the space of all
linear functionals on X. Let %r C 2% be the weakest topology on X such
that each A € F is continuous. This topology has the following properties.

(i) A linear functional A : X — R is continuous if and only if it has a closed
kernel if and only if A € F.

(ii) The closure of a linear subspace E C X is E = (e, Bcker(n) Ker(A).
(iii) A linear subspace E C X is closed if and only if, for all x € X,
reE = A(z) =0 for all A € F such that E C ker(A).

(iv) A linear subspace E C X is dense if and only if, for all A € F,
E C ker(A) = A=0.

Proof. See page [118 O

LEMMA 3.1.13. Let X be a real vector space and let n € N. Then the
following holds for every n-tuple Ay,..., A, : X — R of linear independent
linear functionals on X.

(i) There exist vectors x1,...,x, € X such that
() == 4 b HE=1, i
(3.1.3) Ai(zj) = 65 := { 0. ifiti fori,j=1,... n.

(ii) If A : X — R is a linear functional such that (;_, ker(A;) C ker(A),
then A € span{Ay,...,A,}.

Proof. The proof is by induction on n. Part (i) holds for n = 1 by defi-
nition. We prove that (i), implies (ii),, and (ii),, implies (i),+1 for all n € N.

Fix an integer n € N and assume (i),. Let A : X — R be a linear
functional such that (), ker(A;) C ker(A). Since (i) holds for n, there
exists vectors z1,...,x, € N such that A;(x;) = d6;; for 4,5 = 1,...,n. Fix
an element x € X. Then z — >71"; Ai(2)z; € ;- ker(A;) C ker(A) and
this implies A(z) = Y 1 Ai(x)A(z;). Thus A = Y7 A(xi)A, so (ii) holds
for n.

Now assume (ii),. Let Aj,...,Ap4+1 : X — R be linearly indepen-
dent linear functionals and define Z; := (1, ,; ker(A;) for i = 1,...,n + 1.
Then A; ¢ span{A; ’j #1} fori=1,...,n+ 1. Since (ii) holds for n, this
implies that, for each ¢ € {1,...,n + 1}, there exists a vector x; € Z; such
that A;(z;) = 1. Thus (i) holds with n replaced by n + 1. This completes
the induction argument and the proof of Lemma [3.1.13 [l
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LEMMA 3.1.14. Let X be a real vector space and let A1,..., A, : X - R
and A : X — R be linear functionals. Then the following are equivalent.

(i) My ker(A;) C ker(A).
(ii) A € span{Ay,...,An}.
(iii) There exists a constant ¢ > 0 such that

(3.1.4) |A(z)] < ¢ max |A;(x)] forallz € X.

Proof. We prove that (i) implies (ii). Thus assume (i) and choose a
maximal subset J C {1,...,n} such that the A; with j € J are linearly
independent. Then (.., ker(A;) = (i, ker(A;) C ker(A) by (i) and so it
follows from Lemma that A € span{A;|j € J}. Thus (ii) holds.

We prove that (ii) implies (iii). Thus assume (ii) and choose real num-
bers c1,. .., ¢, such that A = > | ¢;A;. Define ¢ :=>"" ,|¢;|. Then

n
E ci\ z
i=1

for all x € X and so (iii) holds. That (iii) implies (i) is obvious and this
proves Lemma [3.1.14] O

Proof of Theorem[3.1.13. We prove (i). If A € F, then A is continuous
by definition of the topology %r. If A is continuous, then A has a closed
kernel by definition of continuity. Thus it remains to prove that, if A has
a closed kernel, then A € F. Thus assume A has a closed kernel and,
without loss of generality, that A # 0. Choose z € X such that A(z) =
Then = € X \ ker(A) and the set X \ ker(A) is open. Hence there is an
integer n > 0, a constant ¢ > 0, and elements Aj,...,A, € F \ {0} such
that

x)| = <Z]cZHA ]<c max ]A( )|

V= {y e X | [Aily) — Ai()] < e} © X\ ker(A).
i=1
We prove that

(3.1.5) ﬂ ker(A;) C ker(A).

Namely, choose y € X such that A;(y) =0fori=1,...,n. Thenzx +ty eV
and hence x + ty ¢ ker(A) for all ¢t € R. Thus 1+ tA(y) = A(z +ty) #0
for all t € R and this implies A(y) =0. This proves (3.1.5). It follows

from (3.1.5) and Lemma [3.1.14] that
A € span{Ay,...,A,} CF

and this proves part (i).
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We prove (ii). Let E C X be a linear subspace. If A € F vanishes
on E, then E C ker(A) because ker(A) is a closed subset of X that con-
tains E. Conversely, let z € X \ E. Since (X, %) is locally convex
by part (ii) of Lemma and X \ E is open, there exists a convex
open set U € %r such that x € U and UNE = (). Since U and E
are convex, Theorem [3.1.11] asserts that there exists a continuous linear
functional A : X — R such that A(z) > sup,cp A(y). Since E is a linear
subspace, this implies £ C ker(A). Since A € F by part (i), it follows
that @ € (rcr, peker(a) Ker(A). This proves part (ii). Parts (iii) and (iv)
follow directly from (ii) and this proves Theorem O

Theorem [3.1.12] has several important consequences for the weak and
weak* topologies. These are summarized in the next two subsections.

3.1.3. Elementary Properties of the Weak Topology. There are more
strongly closed sets in an infinite-dimensional Banach space than there are
weakly closed sets. However, for convex sets both notions agree. Thus a
linear subspace of a Banach space is closed if and only if it is weakly closed.

LEMMA 3.1.15 (Closed Convex Sets Are Weakly Closed). Let X
be a real normed vector space and let K C X be a conver subset. Then K
is closed if and only if it is weakly closed.

Proof. Let K C X be a closed convex set. We prove it is weakly closed.
To see this, fix an element zp € X \ K. Then there is a constant 6 > 0 such
that Bs(xzg) N K = (. By Theorem with A := Bs(zp) and B := K,
there exists an z* € X* and a ¢ € R such that (z*,z) > ¢ for all x € Bjs(xo)
and (z*,z) < c for all x € K. Thus

U:={zeX|{z"z)>c}

is a weakly open set that contains xg and is disjoint from K. This shows
that X \ K is weakly open and hence K is weakly closed. Conversely, every
weakly closed subset of X is closed and this proves Lemma [3.1.15 ([

LEMMA 3.1.16 (Bounded Linear Functionals Are Weakly Contin-
uous). Let X be a real normed vector space and let A : X — R be a linear
functional. Then A is continuous with respect to the norm topology on X if
and only if it is continuous with respect to the weak topology.

Proof. This follows from part (i) of Theorem [3.1.12 O

At this point it is useful to introduce the concept of the pre-annihilator.
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DEFINITION 3.1.17 (Pre-Annihilator). Let X be a real normed vector
space and T' C X* be a subset of the dual space X* = £(X,R). The set

(3.1.6) LT .= {z e X|(z*,2) =0 for all z* € T}

is called the pre-annihilator or left annihilator or joint kernel of T'. It
is a closed linear subspace of X.

COROLLARY 3.1.18 (Weak Closure of a Subspace). Let X be a real
normed vector space and let E C X be a linear subspace. Then the following

holds.
(i) The closure of E is the subspace E = “(EL) and agrees with the weak

closure of E.
(ii) E is closed if and only if E is weakly closed if and only if E = ~(EL).
(iii) E is dense if and only if E is weakly dense if and only if E+ = {0}.

Proof. The formula E = *(EL) for the closure of E is a restatement
of Corollary [2.3.24] That this subspace is also the weak closure of E fol-

lows from part (ii) of Theorem [3.1.12| and also from Lemma [3.1.15] This

proves (i). Parts (ii) and (iii) follow directly from (i) and this proves Corol-

lary [3.1.18 (]

The next lemma shows that the limit of a weakly convergent sequence
in a Banach space is contained in the closed convex hull of the sequence.

DEFINITION 3.1.19. Let X be a real vector space and let S C X. The
set

(3.1.7) conv(S) := {i i

i=1

n
neN, x; €8, )\Z‘ZO,Z)\Z'Zl}
i=1
is convex and is called the convex hull of S. If X is a topological vector

space, then the closure of the convex hull of a set S C X is called the closed
convex hull of S and is denoted by conv(.S).

LEMMA 3.1.20 (Mazur). Let X be a real normed vector space and let
x; € X be a sequence that converges weakly to x. Then

x € conv({z; |i € N}),
i.e. for every € > 0 there exists an n € N and real numbers A1, ..., Ay such

that A\; >0 for all i, Yy Ai =1, and ||z — > Nz <e.

Proof. The set K := conv({z;|i € N}) is convex and so is its strong
closure K by Lemma [3.1.10, Hence K is weakly closed by Lemma |3.1.15
Since x; € K converges weakly to z it follows that = € K. O
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It follows from Lemma that the weak limit of every weakly conver-
gent sequence in the unit sphere S C X in a Banach space X is contained in
the closed unit ball B = conv(S) = conv(S). In fact, it turns out that B is
the weak closure of S whenever X is infinite-dimensional, and so % C #*.

LEMMA 3.1.21 (Weak Closure of the Unit Sphere). Let X be an
infinite-dimensional real normed vector space and define

(3.1.8) S:={zxeX]| x| =1}, B:={xe X||z|| <1}.
Then B is the weak closure of S.

Proof. The set B is weakly closed by Lemma |3.1.15| and hence contains
the weak closure of S. We prove that B is contained in the weak closure of S.
To see this, let 9 € B and let U C X be a weakly open set containing xg.
Then there exist elements z7,...,z; € X* and a constant ¢ > 0 such that

Vi={zeX||{z],x —a0)| <efori=1,...,n} CU.
Since X is infinite-dimensional, there is a nonzero vector £ € X such that
(x7,€) =0 fori=1,...,n.

Since ||zg|| < 1 there exists a real number ¢ such that

o + t&]| = 1.
Hence zo +t€ € VNS and so U NS # (. Thus g belongs to the weak
closure of S and this completes the proof of Lemma [3.1.21 O

In view of Lemma [3.1.21] one might ask whether every element of B is
the limit of a weakly convergent sequence in S. The answer is negative in
general. For example, the next exercise shows that a sequence in ¢! converges
weakly if and only if it converges strongly. Thus the limit of every weakly
convergent sequence of norm one in ¢! has again norm one. The upshot is
that the weak closure of a subset of a Banach space is in general much bigger
than the set of all limits of weakly convergent sequences in that subset.

EXERCISE 3.1.22 (Schur’s Theorem). Let z,, = (2y,)ien for n € N be

a sequence in ¢! that converges weakly to an element x = (z;);cy € £*. Prove
that limp o0 |2, — 2] 1 = 0. (See also Exercise [3.7.3])

EXERCISE 3.1.23. Let X be a Banach space and suppose X* is separable.
Let S C X be a bounded set and let x € X be an element in the weak closure
of S. Prove that there is a sequence (z,,)nen in S that converges weakly to x.

EXERCISE 3.1.24. Let X be a normed vector space. Prove that the
canonical inclusion ¢: X — X** is continuous with respect to the weak
topology on X and the weak* topology on X**.
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3.1.4. Elementary Properties of the Weak* Topology. When X is
a Banach space and Y is a dense subspace, the dual spaces X* and Y™
are canonically isomorphic because every bounded linear functional on Y
extends uniquely to a bounded linear functional on X. The extension has
the same norm as the original linear functional on Y and hence the canonical
isomorphism X* — Y™ : 2* — x*|y is an isometry. However, the weak™
topologies of X* and Y* may differ dramatically. Namely, by part (i) of
Theorem the space of weak™ continuous linear functionals on Y* can
be identified with the original normed vector space Y and so may be much
smaller than the space of weak* continuous linear functionals on X*. In
other words, the completion of a normed vector space is a Banach space
and both spaces have the same dual space, however, their weak* topologies
differ. Thus great care must be taken when dealing with the weak* topology
of the dual space of a normed vector space versus that of the dual space of
a Banach space.

COROLLARY 3.1.25 (Weak* Continuous Linear Functionals). Let
X be a real normed vector space and let

A:X*"—>R
be a linear functional on its dual space. Then the following are equivalent.
(1) A is continuous with respect to the weak™ topology on X*.
(ii) The kernel of A is a weak* closed linear subspace of X*.
(iii) A belongs to the image of the inclusion ¢ : X — X** in , i.e.
there exists an element x € X such that A(z*) = (x*,z) for all z* € X*.

Proof. This follows directly from part (i) of Theorem [3.1.12| and the
definition of the weak™ topology in Example O

COROLLARY 3.1.26 (Weak* Closure of a Subspace). Let X be a real

normed vector space and let E C X™* be a linear subspace of its dual space.
Then the following holds.

(i) The linear subspace (*E)* is the weak* closure of E.
(ii) E is weak* closed if and only if E = (*E)*.
(iii) E is weak* dense in X* if and only if L E = {0}.
Proof. By Corollary [3.1.25(the pre-annihilator of E is the space of weak*
continuous linear functionals on X* that vanish on E. Hence part (i) follows

from part (ii) of Theorem|3.1.12] Part (ii) follow directly from (i). Part (iii)
follows from (i) and the fact that any subset S C X satisfies S+ = X* if

and only if S C {0} by Corollary This proves Corollary [3.1.26 O
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COROLLARY 3.1.27 (Separation of Convex Sets). Let X be a real
normed vector space and let A, B C X* be nonempty disjoint convex sets
such that A is weak™ open. Then there exists an element v € X such that

(x*,x) > sup (y*, x) for all z* € A.
y*eB

Proof. Theorem [3.1.11] and Corollary |3.1.25 O

COROLLARY 3.1.28 (Weak™* Closure of the Unit Sphere). Let X be
an infinite-dimensional real normed vector space and define

S*i={z" € X*| ||=¥|| = 1}, B*:={z" e X*| ||z"| < 1}.
Then B* is the weak™ closure of S*.

Proof. Let F,, := {z* € X* | (2*,z) <1} for x € S (the unit sphere in X).
Then F, is weak* closed for all x € S, and hence so is B* = ﬂxes F.
Now let K C X* be the weak* closure of S*. Then K C B* because B* is a
weak* closed set containing S*, and B* C K because K is a weakly closed
set containing S* and B* is the weak closure of S* by Lemma [3.1.21 O

COROLLARY 3.1.29 (Goldstine’s Theorem). Let X be a real normed
vector space and v : X — X** be the inclusion (2.4.1)). The following holds.

(1) «(X) is weak™ dense in X**.

(ii) Assume X is infinite-dimensional and denote by S C X the closed unit
sphere. Then the weak* closure of 1(S) is the closed unit ball B** C X**.

Proof. By definition ~.(X) = {0}, so (i) holds by Corollary [3.1.26, To
prove (ii), let K C X** be the weak™ closure of +(S). Then K C B** be-
cause B** is weak* closed by Corollary[3.1.28] Moreover, the set ;™1 (K) € X
is weakly closed by Exercise|3.1.24{and S C +~}(K). Hence B C ¢~ }(K) by
Lemma hence «(B) C K, and so K is the weak™ closure of «(B).
Thus K is convex by Lemma Now let z{* € X**\ K and choose
a convex weak* open neighborhood U C X** of x§* such that U N K = 0.
Then, by Corollary there exists an element z§ € X* such that

(9", 20) > sup (z™,15) > sup(u(x), zp) = sup(xg, ©) = [|zo] -

T**eK TES zE€S
Hence ||z§*]| > 1 and so z§* ¢ B**. Thus B** C K C B* and so B** = K.
This proves Corollary [3.1.29 ]

Corollary shows that, in contrast to the weak topology, a closed
linear subspace of X* is not necessarily weak* closed. For example, the
space ¢y (Example is a closed linear subspace of £ =2 (¢1)* but is
dense with respect to the weak® topology and so is not weak* closed. The
study of the weak™ closed subspaces will be taken up again in Section
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3.2. The Banach—Alaoglu Theorem

3.2.1. The Separable Case. We prove two versions of the Banach—Ala-
oglu Theorem. The first version holds for separable normed vector spaces
and asserts that every bounded sequence in the dual space has a weak™®
convergent subsequence.

THEOREM 3.2.1 (Banach—Alaoglu: The Separable Case).

Let X be a separable real normed vector space. Then every bounded sequence
in the dual space X* has a weak™® convergent subsequence.

Proof. Let D = {x1,z2,23,...} C X be a countable dense subset and
let (x)nen be a bounded sequence in X*. Then the standard diagonal se-
quence argument shows that there is a subsequence (7}, )ien such that the
sequence of real numbers ((z}, ,7x))ien converges for every k € N. More
precisely, the sequence ((z}, z1))nen is bounded and hence has a convergent
subsequence ({(z;, ,,%1))ien. Since the sequence ((x}, ,72))ien is bounded
it has a convergent subsequence (2., > 2))ieN- Continue by induction and
use the axiom of dependent choice (sée page @ to construct a sequence of
subsequences (7, , )ien such that, for every k € N, (27, . )ien is a subse-
quence of (z}, )ien and the sequence ((xy, ,,%k))ien converges. Now con-
sider the diagonal subsequence Tr, 1= Tp - Then the sequence ({z),> Tk) Jien

converges for every k € N as claimed.

With this understood, it follows from the equivalence of (ii) and (iii)
in Theorem [2.1.5] with ¥ = R and A; replaced by the bounded linear
functional 7, : X — R, that there exists an element z* € X* such that

(x*,x) = lim (z), , x)

R

1— 00
for all z € X. Hence the sequence (x}, )ien converges to z* in the weak™®
topology as claimed. This proves Theorem [3.2.1 O

ExaMPLE 3.2.2. This example shows that the hypothesis that X is sep-
arable cannot be removed in Theorem [3.2.1] The Banach space X = (>
with the supremum norm is not separable. For n € N define the bounded
linear functional A, : £*° — R by A, (z) := z,, for x = (x;);en € £°°. Then
the sequence (Ay,)nen in X™* does not have a weak™ convergent subsequence.

To see this, let n; < ne < ng < --- be any sequence of positive integers and
define the sequence z = (z;)ien € ¢*° by x; := 1 for i = ng; with £k € N
and by z; := —1 otherwise. Then A,, () = z,, = (—=1)¥ and hence the

sequence of real numbers (A, (z))ren does not converge. Thus the subse-
quence (Ap, )ren in X* does not converge in the weak™ topology.
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3.2.2. Invariant Measures. Let (M, d) be a compact metric space and
let ¢: M — M be a homeomorphism. Denote by B C 2™ the Borel o-
algebra. The space C(M) of all continuous functions f : M — R with the
supremum norm is a separable Banach space (Example and its dual
space is isomorphic to the space M(M) of signed Borel measures p: B — R
(Example , equipped with the norm function

]| :== sup (u(B) — u(M \ B))
BeB

for p € M(M). A Borel measure p : B — [0,00) is called a probability
measure if ||| = p(M) = 1. A probability measure p: B — [0, 1] is called
¢-invariant if

(3.2.1) /M(fo¢) d,u:/Mfdu for all f € C(M).
The set

(3.2.2)  M(¢):= {u e M(M) ‘ w(B) > 0 for all B € B, }

w(M) =1, and pu satisfies (3.2.1)

of ¢-invariant Borel probability measures is a weak™ closed convex subset of
the unit sphere in M(M). The next lemma shows that it is nonempty.

LEMMA 3.2.3. Every homeomorphism of a compact metric space admits
an invariant Borel probability measure.

Proof. Let ¢ : M — M be a homeomorphism of a compact metric
space. Fix an element xy € X and, for every integer n > 1, define the Borel
probability measure pu, : B — [0, 1] by

[ Faim = 23 pken))  tor e ctan),
M =0

Here ¢° :=id : M — M and ¢F := ¢ o--- o ¢ denotes the kth iterate of ¢
for k € N. By Theorem the sequence u, has a weak™ convergent
subsequence (fin,)ien. Its weak™ limit is a Borel measure p: B — [0, 00)

such that
Il = [ vd=lim [ vd, =1
M 71— 00 M

and

n;—1

F(@F (o)) = | fd

for all f € C(M). Hence u € M(9). O

1 & 1
J o e =t S5 oo = i
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3.2.3. The General Case. The second version of the Banach—Alaoglu
Theorem applies to all real normed vector spaces and asserts that the closed
unit ball in the dual space is weak* compact.

THEOREM 3.2.4 (Banach—Alaoglu: The General Case).
Let X be a real normed vector space. Then the closed unit ball

(3.2.3) B* = {2" € X*| ||z"|| < 1}

in the dual space X* is weak* compact.

Proof. This is an application of Tychonoff’s Theorem The pa-
rameter space is I = X. Associated to each z € X is the compact interval

Ky = [= =], =[] € R.
The product of these compact intervals is the space

K = H K. ={f: X = R||f(z)] <|z| forall z € X} c R¥X.
z€X
Define
L:={f:X —R]|fis linear} c RX.
The intersection of K and L is the closed unit ball
B :={z"e X"|||z¥| <1} =LNK.

By definition, the weak* topology on B* = LN K is induced by the product
topology on R¥ (see Example . Moreover L is a closed subset of RX
with respect to the product topology. To see this, fix elements x,y € X
and A € R and define the maps ¢, : R¥X — R and (TN RX — R by

Guy(f) = fle+y) = f2) = fy),  Yerlf) = fAz) = Af(2).

By definition of the product topology, these maps are continuous and this
implies that the set

L= () ¢mpO@n ) %,

z,yeX ze X, eR

is closed with respect to the product topology. Since K is a compact subset
of R¥ by Tychonoff’s Theorem and RX is a Hausdorff space by Ex-
ample [3.1.7], it follows that B* = L N K is a closed subset of a compact set
and hence is compact. This proves Theorem [3.2.4] O

The next theorem characterizes the weak* compact subsets of the dual
space of a separable Banach space.
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THEOREM 3.2.5 (Weak* Compact Subsets). Let X be a separable
Banach space and let K C X*. Then the following are equivalent.

(1) K is weak* compact.
(ii) K is bounded and weak* closed.

(iii) K is sequentially weak* compact, i.e. every sequence in K has a
weak™* convergent subsequence with limit in K.

(iv) K is bounded and sequentially weak* closed, i.e. if x* € X* is the
weak™® limit of a sequence in K, then x* € K.

The implications (i) <= (ii) and (1i) => (iv) and (iit) = (iv) continue to
hold when X is not separable.

Proof. We prove that (i) implies (ii). Assume K is weak™ compact.
Then K is weak™® closed, because the weak® topology on X* is Hausdorfl.
To prove that K is bounded, fix an element x € X. Then the function

K—>R:z2"— (2% x)
is continuous with respect to the weak* topology and hence is bounded.

Thus
sup |(z*, z)| < 00 for all x € X.
r*eK
Hence it follows from the Uniform Boundedness Theorem P.1.1] that
sup [l2°]| < o0
rz*eK
and so K is bounded.

We prove that (ii) implies (i). Assume K is bounded and weak* closed.
Choose ¢ > 0 such that

lz*|| < ¢ for all z* € K.

Since the set

eB* ={z" € X*| ||l2*]| < ¢}
is weak™ compact by Theorem and K C ¢B* is weak* closed, it follows
that K is weak™® compact.

We prove that (ii) implies (iii). Assume K is bounded and weak* closed.
Let (x})nen be a sequence in K. This sequence is bounded by assump-
tion and hence, by Theorem has a weak* convergent subsequence be-
cause X is separable. Let * € X* be the weak™ limit of that subsequence.
Since K is weak* closed it follows that z* € K. Thus K is sequentially
weak™® compact.

We prove that (iii) implies (iv). Assume K is sequentially weak* com-
pact. Then K is bounded because every weak* convergent sequence is
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bounded by the Uniform Boundedness Theorem Moreover K is se-
quentially weak* closed by uniqueness of the weak™ limit. (If =} € K con-
verges to * € X* in the weak* topology, then it has a subsequence that
weak* converges to an element y* € K and so 2* = y* € K.)

We prove that (iv) implies (ii). Assume K is bounded and sequen-
tially weak™ closed. We must prove that K is weak™ closed. Let z§ € X*

be an element of the weak* closure of K. Choose a countable dense sub-
set {zy |k € N} of X. Then the set

U, = {x* cX*

1
(2" — x5, x5)| < — forkzl,...,n}
n

is a weak™ open neighborhood of z{ for every n € N. Hence U,, N K # () for
all n € N and so it follows from the axiom of countable choice that there ex-
ists a sequence (z})nen in X* such that, for all n € N, we have z, € U, N K.
This sequence satisfies |[(z} — x5, x;)| < 1/n for all k,n € N such that n > k.
Thus

lim (z), x) = (x5, Tx) for all k£ € N.

n—oo

Since the sequence (x})nen in X* is bounded, and the sequence (zx)ken is
dense in X, it follows from Theorem that

lim (x;,z) = (zp, x) for all z € X.

n—oo
Hence (2}, )nen is a sequence in K that weak™* converges to z; and so zj € K.
This proves Theorem |3.2.5 U

COROLLARY 3.2.6. Let (M, d) be a compact metric space and ¢ : M — M
be a homeomorphism. Then the set M(¢) of ¢-invariant Borel probability
measures on M is a weak™® compact convex subset of M(M) = C(M)*.

Proof. The set M(¢) is convex, bounded, and weak™ closed by definition
(see Subsection [3.2.2). Hence it is weak™® compact by Theorem O

ExaMpPLE 3.2.7. The hypothesis that X is complete cannot be removed
in Theorem Let cop be the set of all sequences x = (z;);en € £°° with
only finitely many nonzero entries, equipped with the supremum norm. Its
closure is the space ¢y C £*° in Example[I.3.7]and so its dual space is isomor-
phic to ¢'. A sequence of bounded linear functionals A,, : coo — R converges
to the bounded linear functional A : cog — R in the weak™ topology if and
only if limy, oo Apn(e;) = A(e;) for all i € N, where e; := (0;5)jen. For n € N
define A, : X - R by A, (z):==x, for z = (2;);ey € X. Then nA, con-
verges to zero in the weak* topology, and hence K := {nA, |n € N} U {0}
is an unbounded weak* compact subset of cfy, = (1.
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ExAMPLE 3.2.8. The Banach space X = £*° is not separable. We prove

that (i) does not imply (iii) and (iv) does not imply any of the other asser-

tions in Theorem for X = ¢>°. The closed unit ball in (¢*°)* is weak*
compact by Theorem but is not sequentially weak* compact. Namely,
for each n € N the bounded linear functional A, : £*° — R, defined by

Ap(z) =z,

for © = (z;)ieny € £°°, has the norm ||A,|| =1 and the sequence (Ap)nen
in (£°°)* does not have a weak™ convergent subsequence by Example [3.2.2]
Moreover, the bounded set

K :={A,|n e N} C (£)"

is sequentially weak* closed, but is neither sequentially weak* compact
nor weak* compact. (Exercise: Find a sequence of weak™ open sub-
sets U, C (£>°)* such that A,, € Uy, \ Up, for all m,n € N with m # n.)

ExaMpPLE 3.2.9. Let M be a locally compact Hausdorff space which
is sequentially compact but not compact. (An example is an uncountable
well-ordered set M such that every element of M has only countably many
predecessors, equipped with the order topology, as in [75, Example 3.6].)
Let § : M — Co(M)* be the embedding defined in Exercise below.
Then K := §(M) is a sequentially weak™ compact set in Co(M)* and is not
weak* compact. So (iii) does not imply (i) in Theorem [3.2.5|for X = Co(M).

EXERCISE 3.2.10. Let M be a locally compact Hausdorff space. A
continuous function f : M — R is said to vanish at infinity if, for ev-
ery € >0, there is a compact set K C M such that sup,epn g |f ()] <e.
Denote by Cy(M) the space of all continuous functions f: M — R that
vanish at infinity.

(i) Prove that Cp(M) is a Banach space with the supremum norm.

(ii) Prove that the map 6 : M — Co(M)*, which assigns to each x € M the
bounded linear functional

(55,; : C()(M) —R

given by
02(f) == f(z)  for f e Co(M),

is a homeomorphism onto its image
§(M) C Co(M)*,

equipped with the weak™ topology.
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3.3. The Banach—Dieudonné Theorem

This section is devoted to a theorem of Banach—Dieudonné which implies
that a linear subspace of the dual space of a Banach space X is weak™ closed
if and only if its intersection with the closed unit ball in X* is weak™ closed.
This result will play a central role in the proof of the Eberlein-Smulyan
Theorem [3.4.1] which characterizes reflexive Banach spaces in terms of weak
compactness of the closed unit ball.

THEOREM 3.3.1 (Banach—Dieudonné). Let X be a real Banach space
and let E C X* be a linear subspace of the dual space X* = L(X,R), and
let B* .= {z* € X*|||z*|| < 1}. Assume that the intersection

EnB*={z" e E||z"|| <1}
is weak™ closed and let x§ € X* \ E. Then

3.1 inf |lz* —

(33.1) inf o — x>0

and, if 0 < 6 < infy«cp ||z* — x§||, then there is a vector xg € X such that

(3.3.2) (x5, w0) =1, ol < 071, (x*,x9) =0 for all z* € E.
Proof. See page [I31} O

The last condition in (3.3.2) asserts that xg is an element of the pre-
annihilator - F (see Definition [3.1.17)).

COROLLARY 3.3.2 (Weak* Closed Linear Subspaces). Let X be a
real Banach space and let E C X™* be a linear subspace of its dual space.
Then the following are equivalent.

(i) E is weak* closed.
(ii) E N B* is weak™ closed.
(iii) (tE)r = E.

Proof. That (i) implies (ii) follows from the fact that the closed unit ball
B* C X* is weak* closed by Corollary |3.1.28

We prove that (ii) implies (iii). The inclusion E C (+E)* follows directly
from the definitions. To prove the converse, fix an element z§ € X* \ E.
Then Theorem asserts that there exists a vector xg € L+ E such that
(3, 20) # 0, and this implies z} ¢ (L E)*.

That (iii) implies (i) follows from the fact that, for every x € X, the
linear functional ¢(xz) : X* — R in (2.4.1) is continuous with respect to

the weak* topology by definition, and so the set S+ = (), cqker(s(z)) is
a weak™® closed linear subspace of X* for every subset S C X (see also

Corollary [3.1.26]). This proves Corollary O
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Proof of Theorem|3.3.1. The proof has five steps.
Step 1. inf,«cp ||z* — xf]| > 0.

By assumption, the intersection F N B* is weak™ closed and hence is a
closed subset of X*. Let (z});en be a sequence in E that converges to
an element z* € X*. Then the sequence (z});ey is bounded. Choose a
constant ¢ > 0 such that ||}]| < c for all i € N. Then ¢~'z} € EN B* for
all i and so ¢ lz* = lim;_yoo (flav;k € EN B*. Hence z* € . This shows
that E' is a closed linear subspace of X*. Since zjj ¢ FE, this proves Step 1.

Step 2. Choose a real number
(3.3.3) 0<d< xl*IgE |lx* — zp]| -

Then there exists a sequence of finite subsets Sy, 52,53, ... of the closed unit
ball B C X such that, for alln € N and all z* € X™, we have

|lz* — x|l < on and
(3.3.4) maxges, |(z* — xf, z)| < kd = 2" ¢FE.
forallk e Nwith1 <k<n

For n = 1 condition holds by . Now fix an integer n > 1 and

suppose, by induction, that the finite sets Sy C B have been constructed

for k € N with k£ < n such that holds. For every finite set S C B
define

Jo* — a5l < d(n+1),

E(S) := (2" € E| maxgcg,|(z* :L‘O, x)|

maXzGSK'T - 330a >|

< k:for1<k:<n
<6

Define
R i= [l + 6(n +1).
Since E' N B* is weak* closed so is the set
K:=R(ENB")={z" € E||z*|| <R=|zp|| +(n+1)}.
Hence K is weak™ compact by Theorem Moreover, for every finite set
S cCB,

the set E(S) is the intersection of K with the weak™ closed sets

{x e X*

Jo* = a3l < 3(n+ 1)},

¥ e X*

—

r;leaédw — 5, >§5n},

{x cX*

max(z* — xg, x) < (51{:}, keN, k<n.
€Sk

Hence E(S) C K is a weak™ closed set for every finite set S C B.
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Now assume, by contradiction, that F(S) # () for every finite set S C B.
Then every finite collection .7 C 28 of finite subsets of B satisfies

ﬂE(S)_E<U s)#@,

Ses Ses

and hence the collection
{E(S)| S is a finite subset of B}

of weak* closed subsets of K has the finite intersection property. Since K
is weak* compact, this implies that there exists an element x* € X* such
that «* € E(S) for every finite set S C B. This element z* belongs to the
subspace E and satisfies

ax{z* — x} < ok
max (2" — xp, 7) <

for all £ € N with £ < n as well as

|#* = xg]| = sup [(z" — g, x)| < on
zeB

in contradiction to (3.3.4). This contradiction shows that there exists a
finite set S C B such that E(S) = (). With this understood, Step 2 follows
from the axiom of dependent choice (see page @

Step 3. Let the constant § > 0 and the sequence of finite subsets S, C B
forn € N be as in Step 2. Choose a sequence (x;)ien in B such that

1
U ES —{xl,xg,xg,...}.

neN
Then
sup |(z* — a3, 23)| > 6
€N
for all x* € E.
Let z* € E and choose an integer
n >0tz — .

Then |z* — z{|| < on and therefore n > 2 by (3.3.3). Hence, by Step 2,
there exists an integer k € {1,...,n — 1} and an element = € Sy such that

[(x* — zp, x)| > Ok.
Choose i € N such that k~'z = ;. Then
[(z* — xg,x)| >0

and this proves Step 3.
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Step 4. Let (z;)ien be as in Step 3. Then lim; o ||2;|| = 0. Moreover,
there exists a summable sequence o = (@;)ieN € ' such that

o0 o [ee]
Zai<x8,xi> =1, Zai@*,azi) =0 forallz* € E, Z!ai\ <o b
i=1 i=1 i=1

It follows from the definition that lim; , ||z;|] = 0. Define the bounded
linear operator T : X* — ¢y (with values in the Banach space ¢y C £*° of
sequences of real numbers that converge to zero) by

Tax* = ((x", 2:))en for 2" € X*.
Then, by Step 3,
|Tz* —Txpl|,, >0  forallz” € E.

Hence it follows from the Hahn-Banach Theorem [2.3.22|with Y = T'(F) and
Example that there exists an element 8 = (5;)ien € ¢! 2 ¢} such that

(B, Txy) > 6, (B8, Tx*) =0 for all z* € E, 18], = 1.

Hence the sequence o = (q;)ieny € ¢! with the entries o, := (3, Tx}) 15
for i € N satisfies the requirements of Step 4.

Step 5. Let (z;);en be the sequence in Step 3 and let (o;);en be the summable
sequence of real numbers in Step 4. Then the limit

(o] n
(3.3.5) A= Z; ;T = nh_}ngo z; 04T
1= 1=

exists in X and satisfies the requirements of Theorem [3.5.1).

Since ||z;]] < 1 for all i € N, we have

o0 (o]
D ezl < fog| <67
=1 =1

Since X is a Banach space, this implies that the limit ( exists and
satisfies ||zq|| < 071 (see Lemma_ Moreover, by Step 4

(x5, o) E ai(zg, xi) =1, (x*, x0) g a;{z* z;) =

for all * € E. This proves Theorem [3.3.1 O
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3.4. The Eberlein—Smulyan Theorem

If X is a reflexive Banach space, then the weak and weak™ topologies agree
on its dual space X* = L(X,R), hence the closed unit ball in X* is weakly
compact by the Banach—Alaoglu Theorem and so the closed unit ball
in X is also weakly compact. The Eberlein-Smulyan Theorem asserts that
this property characterizes reflexivity. It also asserts that weak compactness
of the closed unit ball is equivalent to sequential weak compactness.

THEOREM 3.4.1 (Eberlein—-Smulyan). Let X be a real Banach space
and let B :={x € X | ||z|]| < 1} be the closed unit ball. Then the following
are equivalent.

(1) X is reflexive.
(ii) B is weakly compact.
(iii) B is sequentially weakly compact.

(iv) Every bounded sequence in X has a weakly convergent subsequence.

Proof. See page [136 ([

Remark 3.4.2 (James’ Theorem). A theorem of Robert C. James [39]
asserts the following.

Let C C X be a nonempty bounded weakly closed subset of a Banach space
over the reals. Then C is weakly compact if and only if every bounded linear
functional on X attains its mazimum over C'.

That the condition is necessary for weak compactness follows from the fact
that every bounded linear functional on X is continuous with respect to
the weak topology (Lemma . The converse is highly nontrivial and
requires the construction of a bounded linear functional on X that fails
to attain its maximum over C whenever C' is not weakly compact. This
goes beyond the scope of this book and we refer to the original paper by
James [39] as well as the work of Holmes [36] and Pryce [70].

Combining James’ Theorem with Theorem [3.4.1] one obtains the fol-
lowing result [40]. A Banach space X is reflexive if and only if, for every
bounded linear functional x* € X*, there exists an element x € X such that

e =1, (2% 2) = [l27] .

If X is reflexive, the existence of such an element x can be deduced from
the Hahn—Banach Theorem (Corollary [2.3.23)).
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The proof of Theorem relies on Helly’s Theorem, a precursor to the
Hahn—Banach Theorem proved in 1921, which shows when a finite system
of linear equations has a solution.

LEMMA 3.4.3 (Helly’s Theorem). Let X be a real normed vector space
and let z7,...,z;, € X" and c1,...,c, € R. Fiz a real number M > 0. Then
the following are equivalent.

(i) For every e > 0 there exists an x € X such that
(3.4.1) |z < M +e, (xf,x)y =¢; fori=1,...,n.

(i) Every vector A = (A1,...,\,) € R™ satisfies the inequality
n n
S| < a3
i=1 i=1

Proof. We prove that (i) implies (ii). Fix a constant € > 0. By (i) there
exists a vector z € X such that (3.4.1]) holds. Hence

Zn:)\icz‘ <Zn: )\la:;‘,x>
i=1 =1

(3.4.2) <M

n
< lafl | > A}
=1
n
< (M +e) || dia |-
=1

Since £ > 0 was chosen arbitrarily, this proves (ii).

We prove that (ii) implies (i). Thus assume (ii) holds and suppose first
that z7, ..., z}, are linearly independent. Then, by Lemma(3.1.13} there exist
vectors x1,...,2, € X such that (z},x;) = d;; for i, = 1,...,n. Define

Z ={xt, .. 2k}

We prove that Z+ = span{z},...,25}. Let * € Z+. Then, for all x € X,

n

x — Z(xf,az)ml €z

i=1
and hence

n n

0= <:Ux - Z(xf,x)xi> = <a: - Z(x*,xi>xf,x>.

i=1 i=1

This shows that z* = Y | (z*, 2;)a} € span{xz?,...,z}} for all 2* € Z1.
The converse inclusion is obvious.



136 3. The Weak and Weak* Topologies

Now define
n
xr = E cjxj.
=1

Then (x},z) =¢; for i =1,...,n and every other solution of this equation
has the form x + z with z € Z. Hence it follows from Corollary [2.4.2] that

*
inf ||z 42| = sup M
€7 ezt ¥
L bt
aern (1225 Ay
o 1Tk
rern [122; Ay |
< M.

This proves (i) for linearly independent n-tuples z7, ..., x} € X*.

To prove the result in general, choose a subset J C {1,...,n} such
that the x; for j € J are linearly independent and span the same subspace
as zj,...,2,. Fix a constant € > 0. Then, by what we have just proved,
there exists an € X such that ||lz]| < M + ¢ and (z],z) = ¢; for j € J.
Let i € {1,...,n}\ J. Then there exist real numbers \; for j € J such
that >, Az = ;. Hence ) .. ;Ajcj = ¢; by (3.4.2) and so (z},z) = ¢;.
Thus z satisfies (3.4.1]) and this proves Lemma O

Proof of Theorem[3.4.1 Assume X is reflexive. Then ¢ : X — X** is
a Banach space isometry and hence is a homeomorphism with respect to
the weak topology on both spaces. Since X* is reflexive by Theorem [2.4.4]

the weak topology on X** agrees with the weak* topology. Hence it follows

from Theorem that the closed unit ball B** € X** is weakly compact,
and hence so is the closed unit ball B C X. This shows that (i) implies (ii).

We prove that (ii) implies (i). Thus assume that the closed unit ball
in X is weakly compact and fix a nonzero element x** € X**.

Claim. For every finite set S C X™* there is an element x € X such that

lz|l < 2=, (x*,z) = (™, 2*) for all x* € S.

To see this, write S = {z7,...,z};} and define ¢; := (™, 2}) fori =1,...,n.
Then every vector A = (A, ..., A,) € R" satisfies the inequality

n n n
kk * *
E )\ici xr E )\ia:i E )\Z'.Z‘i
=1 =1 =1

Thus the claim follows from Lemma with € := M = ||=**|| > 0.

= < [l=*
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We prove that z** belongs to the image of the inclusion ¢ : X — X**.
Denote by .7 C 2% the set of all finite subsets S C X*. For S € .7 define

K(S):={ze X ||z| <2|2*| and (z*,z) = (™, 2*) for all z* € S} .

Then, for every finite set S C X*, the set K(.S) is nonempty by the claim, is
weakly closed by Lemma[3.1.15] and is contained in c¢B, where ¢ := 2 ||z**.
The set ¢B is weakly compact by (ii) and the collection {K(S)|S € .} has
the finite intersection property because

(K(S) =K <Usi> £0  forall Si,...,S5m €.7.
=1 j

=1
Hence
() K(S)#0
Ses
and so there exists an z € X such that € K(5) for all S C .. This shows
that (z*,z) = («**,2*) for all z* € X*, and thus 2™ = ((x). Thus we have
proved that (ii) implies (i).

We prove that (i) implies (iii). Assume first that X is separable as well
as reflexive. Then X* is separable by Theorem and is reflexive by
Theorem Let (2, )nen be a sequence in the closed unit ball B C X.
Then (¢(zy))nen is a bounded sequence in X** and hence has a weak* con-
vergent subsequence (t(xy,))ien by Theorem Since ¢ : X — X™ is a
homeomorphism with respect to the weak topology of X and the weak*
topology of X**, it follows that the sequence (zp,)ien converges weakly
to an element x € X. Since z,, € B for all ¢ € N, it then follows from
Lemma, that x € B. This shows that the closed unit ball B C X
is sequentially weakly compact whenever X is reflexive and separable.

Now assume X is reflexive and let (x,),en be a sequence in the closed
unit ball B C X. Let Y := span{x, | n € N} be the smallest closed subspace
of X that contains the sequence (z,)pen. Then Y is reflexive by Theo-
rem and Y is separable by definition. Hence the sequence (zj)nen
has a subsequence that converges weakly to an element of B. Thus B is
sequentially weakly compact. This shows that (i) implies (iii).

We prove that (iii) implies (iv). If (zy,)nen is @ bounded sequence, then
there exists a constant ¢ > 0 such that ||z,| < ¢ for all n € N, hence the
sequence (¢ 'z,)nen in B has a weakly convergent subsequence by (iii),
and hence so does the original sequence (x,)nen. This shows that (iii)
implies (iv).

We prove that (iv) implies (i). Thus assume (iv) and choose an el-
ement zj* € X** such that [|z§*|] < 1. We prove in three steps that x*
belongs to the image of the inclusion ¢ : X — X™** in (2.4.1]).
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Step 1. Letn € N and z7,...,x,, € X*. Then there is an x € X such that
(3.4.3) llz|| <1, (xf,x) = (x5", z]) fori=1,...,n.

Denote by S C X the unit sphere and recall from Corollary [3.1.29| that the
weak™® closure of ¢(.5) is the closed unit ball B** C X**. For m € N the set

1
U = {7 € X" | o7 —aai)] < - for i =1,
m

is a weak™ open neighborhood of z{;* € B** and so U, N¢(S) # (). Hence, by
the axiom of countable choice, there exists a sequence (Z,)men in X such
that

|lzm| =1, (xm) € Up, for all m € N.
This sequence satisfies

*

1
\(azf,xm>—<a}8*,xi>|<% forallmeNandi=1,...,n.

By (iv), there exists a weakly convergent subsequence (z,, )xen. Denote the
weak limit by z. It satisfies ||z|| < 1 by Lemma [3.1.20| and

(xf,x>:kli_>nolo<a:;‘,a:mk>:<x8*,xf> fori=1,...,n.
This proves Step 1.

Step 2. Define
E:={s" € X*|(a}*,2*) = 0}
and let B* C X* be the closed unit ball. Then E N B* is weak™ closed.
Fix an element zj; in the weak™ closure of £ N B*. Then z € B* by Corol-

lary [3.1.28, We must prove that xj € E. Fix a constant € > 0. We claim
that there are sequences x, € B and z;, € E N B* such that, for all n € N,

X s e (xfE ), ifi=0, .
(3.4.4) <xi,mn>—<m0,mi>—{ 0. ifi>1, fori=0,...,n—1,
and
(3.4.5) [(z), —xp,2;)| <e  fori=1,...,n.

By Step 1 there exists an element x; € B such that (zf,z1) = (x§*, zj).
Thus x; satisfies (3.4.4) for n = 1. Moreover, since z{; belongs to the weak*
closure of E'N B*, there exists an element 7 € £'N B* such that

[{(x] — (5, 21)| < e.

Thus =7 satisfies (3.4.5) for n = 1.
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Now let n € N and suppose that x; € B and «; € ENB* have been found
for i = 1,...,n such that (3.4.4]) and (3.4.5)) are satisfied. Then, by Step 1,
there is an element x,11 € B such that

(], Tpt1) = (x5", 27) fori=0,...,n.
Furthermore, since x{ belongs to the weak™ closure of E'N B*, there exists
an element x; , ; € EN B* such that
(@)1 — ab,zi)| <e fori=1,...,n+1.
By the axiom of dependent choice (page @, this shows that there exist
sequences x, € B and z}, € E N B* that satisfy (3.4.4) and (3.4.5).
Since ||z, || < 1 for all n € N, it follows from (iv) that there exists a

weakly convergent subsequence (z,, )ken. Denote the limit by x¢. Then

(3.4.6) (xy,, x0) = lim (), xn,) = (5", 2;,) =0 for all m € N.
k—o0

Here the second equation follows from (3.4.4) and the last equation follows

from the fact that x), € £N B* for m > 1. Moreover, Lemma |3.1.20| asserts
that zo € B and that there exists an m € N and \q,...,\,, € R such that

m m
(3.4.7) A >0, Z}\z =1, H:Uo — Z)\Zl‘z < e€.
=1 =1

Hence

< |G at) = Do Audai, mi)

[

+ ‘<5L’:n, i )\ixi — $0>‘
i=1
[
i=1

IN
>

=1
m m

= Z/\i (xy — x| + HZ ANiT; — on
i=1 i=1

< 2e.

Here the first step uses equation (3.4.6)), the second step uses (3.4.7)), the
third step uses the equation (x§*, z§) = (2§, zi) in (3.4.4)), and the last step

follows from (3.4.5)), (3.4.6)), and (3.4.7). Thus |(z§*, 2§)| < 2¢ for all € > 0,

therefore (z§*, z3) = 0, and so «f € E'N B*. This proves Step 2.
Step 3. There exists an element xo € X such that 1(zo) = z§*.

By Corollary the linear subspace E C X* in Step 2 is weak™ closed.
(This is the only place in the proof where we use the fact that X is complete.)
Hence it follows from Corollary that there exists an element xg € X
such that (z*,z9) = (z§*,2*) for all * € X*. This proves Step 3 and
Theorem [3.4.1] O
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3.5. The Krein—Milman Theorem

The Krein—Milman Theorem [47, [60] is a general result about compact
convex subsets of a locally convex Hausdorff topological vector space. It
asserts that every such convex subset is the closed convex hull of its set
of extremal points. In particular, the result applies to the dual space of
a Banach space, equipped with the weak® topology. Here are the relevant
definitions.

DEFINITION 3.5.1 (Extremal Point and Face). Let X be a real vector
space and let K C X be a nonempty convex subset. A subset

FCcK
is called a face of K if I is a nonempty convex subset of K and

ro, 01 € K, 0 <A< 1,

(I1=XNzxog+Ax; € F — T, 21 €

(3.5.1)

An element z € K is called an extremal point of K if

xg, 1 € K, 0 <A <1,

(3.5.2) (1—=Nzo+ Az ==

rog —x1 = .

This means that the singleton F':= {z} is a face of K or, equivalently, that
there is no open line segment in K that contains z (see Figure[3.5.1)). Denote
the set of extremal points of K by

E(K) :={zx € K| satisfies (3.5.2))} .

extremal point

i

face
K "

Figure 3.5.1. Extremal points and faces.

Recall that the convex hull of a set E C X is denoted by conv(E)
and that its closure, the closed convex hull of E, is denoted by conv(E)
whenever X is a topological vector space (see Definition [3.1.19)).
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THEOREM 3.5.2 (Krein—Milman). Let X be a locally convexr Hausdorff
topological vector space and let K C X be a nonempty compact conver set.
Then K is the closed convez hull of its extremal points, i.e. K = conv(E(K)).
In particular, K admits an extremal point, i.e. E(K) # (.

Proof. The proof has five steps.

Step 1. Let
H o= {K cX ‘ K is a nonempty compact convex set}

and define the relation < on & by

(3.5.3) FxKk & Fis a face of K

for F,K € # . Then (% ,<) is a partially ordered set and every nonempty
chain € C X has an infimum.

That the relation (3.5.3)) is a partial order follows directly from the definition.
Moreover, every element K € % is a closed set because X is Hausdorff. This
implies that every nonempty chain ¢ C ¥ has an infimum

Co = ﬂ C.

This proves Step 1.

Step 2. If K € 2 and A : X — R is a continuous linear functional, then
F:=KnA'(supA) € &
K

and FF <X K.

Abbreviate ¢ :=supx A. Since K is compact and A is continuous, the
set F'= K NA~!(c) is nonempty. Since K is closed and A is continuous,
the set F is a closed subset of K and hence is compact. Since K is convex
and A is linear, F' is convex. Thus F € .

To prove that F' is a face of K, fix two elements xg,x1 € K and a real
number 0 < A < 1 such that

z:=(1—=Nzo+ Az € F.
Then (1 — X\)A(zo) + A (z1) = A(x) = ¢ and hence
(1= A)(c = A(=o)) + Alc — Az1)) = 0.
Since ¢ — A(zg) > 0 and ¢ — A(x1) > 0, this implies
Azg) =A(z1) =
and hence zg,z1 € F. Thus F is a face of K. This proves Step 2.
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Step 3. Every minimal element of & is a singleton.

Fix an element K € £ which is not a singleton and choose two ele-
ments xg,x1 € K such that xg # z1. Since X is a locally convex Hausdorff
space, there exists a convex open set U; C X such that z; € Uy and xg ¢ Uj.
Hence it follows from Theorem B.1.11] that there exists a continuous linear
functional A : X — R such that A(zo) < A(z) for all x € U; and so

A(zo) < A(z1).
By Step 2, the set F:= K NA~!(supy A) is a face of K and xp € K \ F.
Thus K is not a minimal element of 7 .
Step 4. Let K € . Then E(K) # 0.
By Step 1 and the Lemma of Zorn, there exists a minimal element E € JZ°
such that F < K. By Step 3,

E = {«}

is a singleton. Hence = € £(K).

Step 5. Let K € #. Then K = conv(E(K)).

It follows directly from the definitions that
conv(E(K)) C K.
To prove the converse inclusion, assume, by contradiction, that there exists
an element
z € K\ conv(E(K)).
Since X is a locally convex Hausdorff space, there exists an open convex
set U C X such that
xeU, Uneconv(E(K)) = 0.

Since £(K) is nonempty by Step 4, it follows from Theorem[3.1.11|that there
exists a continuous linear functional A : X — R such that

(3.5.4) A(z) > sup A
conv(€(K))
By Step 2, the set
F:=KnA(supA)
K

is a face of K and

FNEK)=0.
by (3.5.4). By Step 3, the set F' has an extremal point zg. Then x( is also
an extremal point of K in contradiction to the fact that FNE(K) = (. This
proves Theorem [3.5.2 O
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ExaMpPLE 3.5.3. This example shows that the extremal set of a compact
convex set need not be compact. Let X be an infinite-dimensional reflexive
Banach space. Assume X is strictly convex, i.e. for all x,y € X,

(3.5.5) lz +yll = 2|zl = 2yl = T =y.

Then the closed unit ball B C X is weakly compact by Theorem and its
extremal set is the unit sphere £(B) = S (see Exercises [2.5.11| and [3.7.14)).
Thus the extremal set is not weakly compact and B is the weak closure of
its extremal set by Lemma Exercise: Prove that B = conv(95).

EXAMPLE 3.5.4 (Infinite-Dimensional Simplex). The infinite pro-
duct RN is a locally convex Hausdorff space with the product topology,
induced by the metric

oo

—i |z —yil
d(z,y) =) 27—~
; 1+ |zi — yil
for = (2;)ien and y = (y;)ien in RY. The infinite-dimensional simplex

xizO,ixigl}

A = {x = (zi)ien € RN
=1

is a compact convex subset of RY by Tychonoff’s Theorem Its set of
extremal points is the compact set

E(A) ={ei|i e N}U{O}, i == (655)jen.

The convex hull of £(A) is strictly contained in A and hence is not compact.
Exercise: The product topology on the infinite-dimensional simplex agrees
with the weak* topology it inherits as a subset of /! = ¢ (see Example(1.3.7)).

ExAMPLE 3.5.5 (Hilbert Cube). The Hilbert cube is the set
0= {x = (@i)ien €RV [0 < 2 < 1/2‘}.

This is a compact convex subset of RN with respect to the product topology.
Its set of extremal points is the compact set

£Q) = {l“ = (zi)ien € R | z; € {0, 1/1’}}.
The convex hull of any finite subset of £(@Q) is nowhere dense in ). Hence

conv(£(Q)) € Q

by the Baire Category Theorem Exercise: The product topology on
the Hilbert cube agrees with the topology induced by the ¢2 norm.
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3.6. Ergodic Theory

This section establishes the existence of an ergodic measure for any homeo-
morphism of a compact metric space. The proof is a fairly straightforward
consequence of the Banach—Alaoglu Theorem [3.2.1] and the Krein—Milman
Theorem We also show that the ergodic measures are precisely the
extremal points of the convex set of all invariant measures (Theorem .
The proof that every ergodic measure is extremal requires von Neumann’s
Mean Ergodic Theorem the proof of which will in turn be based on an
abstract ergodic theorem for operators on Banach spaces (Theorem .

3.6.1. Ergodic Measures. Let (M, d) be a compact metric space and let
¢ : M — M be a homeomorphism. Denote by B C 2™ the Borel o-algebra.
Recall that the set M(¢) of all ¢-invariant Borel probability measures on M
is a nonempty weak™ compact convex subset of the space M(M) = C(M)*
of all signed Borel measures on M (see Subsection [3.2.2]and Corollary [3.2.6).

DEFINITION 3.6.1 (Ergodic Measure). A ¢-invariant Borel probability
measure 4 : B — [0, 1] is called ¢-ergodic if, for every Borel set B C M,

(3.6.1) ¢»(B) =B = w(B) € {0,1}.
The homeomorphism ¢ is called p-ergodic if p is an ergodic measure for ¢.
ExamMpPLE 3.6.2. If x € M is a fixed point of ¢, then the Dirac mea-
sure p = d, is ergodic for ¢. If ¢ = id, then the Dirac measure at each point
of M is ergodic for ¢ and there are no other ergodic measures.
THEOREM 3.6.3 (Ergodic Measures are Extremal).
Let pp: B — [0,1] be a ¢-invariant Borel probability measure. Then the fol-
lowing are equivalent.

(1) p is an ergodic measure for ¢.

(ii) p is an extremal point of M(¢).

Proof. We prove that (ii) implies (i) by an indirect argument. Assume
that u is not ergodic for ¢. Then there exists a Borel set A C M such that

d(A) = A, 0<u(A) <1
Define o, 1 : B — [0,1] by
u(B\ A) n(BNA)
wo(B) i= ———=, wi(B) i = ————=
o Ty
for B € B. These are ¢-invariant Borel probability measures and they are
not equal because po(A) = 0 and p1(A) = 1. Moreover, p = (1 — X))o + A

where X\ := p(A). Hence p is not an extremal point of M(¢). This shows
that (ii) implies (i). The converse is proved on page [146] O
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COROLLARY 3.6.4 (Existence of Ergodic Measures). Every homeo-
morphism of a compact metric space admits an ergodic measure.

Proof. The set M(¢) of ¢-invariant Borel probability measures on M is
nonempty by Lemma and is a weak™® compact convex subset of M (M)
by Corollary Hence M (¢) has an extremal point x by Theorem m
Thus p is an ergodic measure by (i4) = (i) in Theorem [3.6.3] O

3.6.2. Space and Time Averages. Given a homeomorphism
oM — M

of a compact metric space M, a ¢-ergodic measure
w:B—[0,1]

on the Borel o-algebra B C 2™ a continuous function f: M — R, and an
element x € M, one can ask the question of whether the sequence of aver-
ages %Zz;é (¢*(x)) converges. A theorem of Birkhoff [13] answers this
question in the affirmative for almost every x € M. This is Birkhoff’s Er-
godic Theorem. It asserts that, if u is a ¢-ergodic measure, then for every
continuous function f: M — R, there exists a Borel set A C M such that

(3.6.2) p(A) =4,  pA)=1,
and
n—1
(3.6.3) ; fdp= lim % kZ()f((j)k(a:)) for all z € A.

In other words, the time average of f agrees with the space average for almost
every orbit of the dynamical system. If ¢ is uniquely ergodic, i.e. ¢ admits
only one ergodic measure or, equivalently, only one ¢-invariant Borel proba-
bility measure, then equation actually holds for all x € M. Birkhoff’s
Ergodic Theorem extends to p-integrable functions and asserts that the se-
quence of measurable functions % Zz;é o ¥ converges pointwise almost
everywhere to the mean value of f. A particularly interesting case is where f
is the characteristic function of a Borel set B C M. Then the integral of f
is the measure of B and it follows from Birkhoff’s Ergodic Theorem that
k
(3.6.4) W(B) = lim #{ke{0,...,n—1}|¢"(z) € B}

n—00 n

for p-almost all x € M. A weaker result is von Neumann’s Mean Ergodic
Theorem [62]. It asserts that the sequence 1 ZZ;& f o ¢* converges to the

n
mean value of f in LP(u) for 1 < p < oco. This implies pointwise almost

everywhere convergence for a suitable subsequence (see [75], Cor 4.10]).
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THEOREM 3.6.5 (Von Neumann’s Mean Ergodic Theorem).

Let (M,d) be a compact metric space, let ¢ : M — M be a homeomorphism,
let e M(¢p) be a ¢p-ergodic measure, let 1 < p < oo, and let f € LP(u).
Then

1 n—1
(3.6.5) lim || =Y fog¢F— / fdu| =o.
n—oo || n M
k=0 Lp
Proof. See page 149 U

Theorem |3.6.5 implies Theorem |3.6.5. The proof has two steps.

Step 1. Let pg, 1 € M(p) be ergodic measures such that po(A) = p1(A)
for every ¢-invariant Borel set A C M. Then po = p1.

Fix a continuous function f : M — R. Then it follows from Theorem [3.6.5
and [75, Cor 4.10] that there exist Borel sets By, B; C M and a sequence
of integers 1 < nj; < ng < ng < --- such that p;(B;) =1 and

nj—1
(3.6.6) / fdpi = lim — )" f(¢*(x))  forz € B;andi=0,1.
M J—0o0 Ny =0
For i = 0,1 define A; := (), ez ¢"(B;). So A; is a ¢-invariant Borel set
such that ;LZ(Al) = 1. Thus ,ul(Ao) = ;UJO(AO) =1 and ,LL(](Al) = /LI(Al) =1
by assumption. This implies that the ¢-invariant Borel set A := Ag N Ay is
nonempty. Since A C By N By, it follows from ([3.6.6)) that
1 nj—l
Jdpg = lim — Z f(o"(x)) :/ fduy for all x € A.
M J—00 nj =0 M

Thus the integrals of f with respect to pug and w1 agree for every contin-
uous function f : M — R. Hence pg = p1 by uniqueness in the Riesz
Representation Theorem (see [75], Cor 3.19]). This proves Step 1.

Step 2. Let u € M(¢) be ergodic. Then u is an extremal point of M(¢).

Let po, 1 € M(¢) and 0 < XA < 1 such that p= (1 —Npo+ . f BC M
is a Borel set such that u(B) =0, then (1 — \)uo(B) + Au1(B) =0, and
hence pg(B) = p1(B) = 0 because 0 < A < 1. If B C M is a Borel set such
that u(B) = 1, then u(M \ B) = 0, hence uo(M \ B) = p1(M \ B) =0, and
therefore po(B) = u1(B) =1. Now let A C M be a ¢-invariant Borel set.
Then u(A) € {0,1} because p is ¢-ergodic, and hence pg(A) = p1(A) = p(A).
Thus pp and w1 are ¢-ergodic measures that agree on all ¢-invariant Borel
sets. Hence pg = p1 = p by Step 1 and this proves Step 2.

Step 2 shows that (i) implies (ii) in Theorem The converse was
proved on page O
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3.6.3. An Abstract Ergodic Theorem. Theorem translates into
a theorem about the iterates of a bounded linear operator from a Banach
space to itself provided that these iterates are uniformly bounded. For an
endomorphism

T:X—->X
of a vector space X and a positive integer n denote the nth iterate of 7" by
TV :=To---0oT.

For n = 0 define
7% :=id.

The ergodic theorem in functional analysis asserts that, if T: X — X is a
bounded linear operator on a reflexive Banach space whose iterates T form
a bounded sequence of bounded linear operators, then its averages

1 n—1
Sn = nklek

form a sequence of bounded linear operators that converge strongly to a pro-
jection onto the kernel of the operator 1 — T'. Here is the relevant definition.

DEFINITION 3.6.6 (Projection). Let X be a real normed vector space.
A bounded linear operator P : X — X is called a projection if

P?=rP.

LEMMA 3.6.7. Let X be a real normed vector space and let P : X — X
be a bounded linear operator. Then the following are equivalent.

(i) P is a projection.
(ii) There exist closed linear subspaces Xo, X1 C X such that
XoN X; = {0}, Xo® X1 = X,
and
P(zog+x1) = 21
for all xg € Xg and all z1 € X;.

Proof. If P is a projection, then P2 = P and hence the linear subspaces
Xo := ker(P), X1 :=1im(P) = ker(1— P)

satisfy the requirements of part (ii). If P is as in (ii), then P2 = P by
definition and P : X — X is a bounded linear operator by Corollary
This proves Lemma |3.6.7] ([
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ExXAMPLE 3.6.8. The direct sum of two closed linear subspaces of a
Banach space need not be closed. For example, let X := C([0,1],R) be
the Banach space of continuous functions f : [0,1] — R, equipped with the
supremum norm. Then the linear subspaces

Vi={(f,9) e X x X[ [ =0},
Z:={(f.9) e X x X[ feCH[0,1]), f' =g}

of X x X are closed, their intersection Y N Z is trivial, and their direct
sum Y @ Z = {(f,g9) € X x X | f € C*(]0,1])} is not closed.

THEOREM 3.6.9 (Ergodic Theorem). Let T: X — X be a bounded
linear operator on a Banach space X. Assume that there is a constant ¢ > 1
such that

(3.6.7) IT"| <c¢  foralln e N.
For n € N define the bounded linear operator S, : X — X by

n—1

1
3.6.8 S, == Tk
(3.6.8) "kZ_o

Then the following holds.

(i) Let x € X. Then the sequence (Spx)nen converges if and only if it has
a weakly convergent subsequence.

(ii) The set
(3.6.9) Z = {z € X | the sequence (Sn)nen converges}
is a closed T-invariant linear subspace of X and
(3.6.10) Z =ker(1—T) @ im(1 - T).
Moreover, if X is reflexive, then Z = X.
(iii) Define the bounded linear operator
S:Z—-Z
by
(3.6.11) Sz+y) ==z for z € ker(1 —T) and y € im(1 — T).
Then
(3.6.12) nlggo Spz =Sz
forall z € Z and
(3.6.13) ST=TS=5%=S8, IS < e.

Proof. See page [150 ([
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Theorem [3.6.9 implies Theorem[3.6.5 Let ¢ : M — M be a homeo-
morphism of a compact metric space M and let u € M(¢) be an ergodic
¢-invariant Borel probability measure on M. Define the bounded linear
operator T : LP(u) — LP(u) by

Tf:=foo for f € LP(u).
Then [|Tf]|, = [|fll, for all f € LP(u), by the ¢-invariance of p, and so
17| = 1.

Thus T satisfies the requirement of Theorem Let f € LP(u). Since
LP(u) is reflexive (Example [1.3.3]), Theorem asserts that the sequence

n—1 n—1
1 1
Snf::ﬁngf:ﬁE fo¢k
k=0 k=0

converges in LP(1) to a function Sf € ker(1—T"). It remains to prove that S f
is equal to the constant ¢ := [ a J dp almost everywhere. The key to the
proof is the fact that every function in the kernel of the operator 1 — T is
constant (almost everywhere). Once this is understood, it follows that there
exists a constant ¢ € R such that S f = ¢ almost everywhere, and hence

n—1
c—/ Sfdu= lim/ Spfdp = lim 12/ (fo¢k)du—/ fdu.

Thus it remains to prove that every function in the kernel of 1 — T is con-
stant. Let g € LP(u) and suppose that T'g = g. Choose a representative of
the equivalence class of g, still denoted by g € LP(u). Then g(x) = g(é(z))
for almost all x € M. Define

Eo:={z e M|g(x) # g(¢(x))},  E:=[]¢"(Eo).
kEZ
Then E C M is a Borel set with ¢(E) = E, u(E) =0, and g(¢(x)) = g(x)
for every x € M \ E. Let ¢ := [,, gdp and define B_, By, By C M by
By:={rxe M\ E|g(x)=c}, By :={zeM\FE| +g(x)>c}.

Each of these three Borel sets is invariant under ¢ and hence has measure
either zero or one. Moreover, B_ U By U By = M \ E and this implies

u(B-) + p(Bo) + u(By) = 1.

Hence one of the three sets has measure one and the other two have measure
zero. This implies that u(By) =1, because otherwise either [, gdu <c
or [ v 9dp > c. Thus g is equal to its mean value almost everywhere. This
proves Theorem [3.6.5 ([
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Proof of Theorem[3.6.9. The proof has eight steps.
Step 1. Let n € N. Then ||Sy|| < ¢ and ||S,(1—T)| < %

By assumption, we have [|S,[| < 1 S lITE| < e for all n € N. Moreover,

n—1 n
1 k 1 k 1 n
Sn(]l—T):ﬁZT —EZT =—(1-17)
k=0 k=1

and so
1+c¢

1 mn
1Sn (=T < — (U] + I 77]) <
for all n € N. This proves Step 1.

Step 2. Let x € X such that Tx = x. Then Sy, = x for alln € N and
lz|| < cllx+ & —TE|| forall £ € X.

Since Tz = x it follows by induction that 7%z = x for all k € N and hence
1 n—1
x:nkz_oTkm:Snm for all n € N.

Moreover, lim,_so [|Sn(§ — TE€)|| = 0 by Step 1 and hence
o]l = lim |z 4+ S, (§ = TE)|| = lim |[Sp(z +& - TE)| < clle+&-TE|.
n—00 n—00
Here the inequality holds because ||S,|| < ¢ by Step 1. This proves Step 2.
Step 3. Ifz € ker(1—T) and y € im(1 —T), then ||z|| < c|lz +y].

Choose a sequence &, € X such that y = lim, (&, — T€,). Then, by
Step 2, we have ||z|| < ¢||x + &, — TE,|| for all n € N. Take the limit n — oo
to obtain ||z|| < ¢||x + y||. This proves Step 3.

Step 4. ker(1—T)Nim(1 — K) = {0} and the direct sum
(3.6.14) Z:=ker(1-T)®im(1-1T)
is a closed linear subspace of X.

Let x € ker(1-7)Nim(1 — T') and define y := —x. Then ||z|| < ¢|lz +y|| =0
by Step 3 and hence x = 0. This shows that ker(1 —7) Nim(1 —T) = {0}.
We prove that the subspace Z in is closed. Let z, € ker(1—-1T)
and y, € im(1 —T') be sequences whose sum z, := x,, + y, converges to
some element z € X. Then (z,)nen is a Cauchy sequence and hence (z,)nen
is a Cauchy sequence by Step 3. This implies that y, = 2z, — z, is a
Cauchy sequence and hence z = z + y, where x := lim,, o x,, € ker(1—1T)
and y := lim,, o0 yp, € im(1l — 7). This proves Step 4.
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Step 5. If z€ Z, thenTz € Z.

Let z € Z. Then
z=x+y, x € ker(1-1T), y € im(1—T).

Choose a sequence §; € X such that y = lim;_,o0 (& — T;). Then

Ty = lim T(& = T¢) = lim (1 - T)T¢ € im(1 - T).
Hence

Tz=Tex+Ty=x+Tyec 2
and this proves Step 5.
Step 6. Let 2 € ker(1 —T) and y € im(1 — T). Then
x = lim S,(z+v).

n—oo
By Step 1, the sequence

1+c¢
n

[15n (1= T)E|| < €]l

converges to zero as n tends to infinity for every £ € X. Hence it follows from
the estimate ||S,| < ¢ in Step 1 and the Banach-Steinhaus Theorem [2.1.5]
that

lim S,y =0 for all y € im(1—T).

n—oo

Moreover,
Spr = for alln € N

by Step 2. Hence
x = lim Spz = lim S,(z+y).
n—oo n—oo

This proves Step 6.

Step 7. Let x,z € X. Then the following are equivalent.
(a) Te =z and z —x € im(1 - T).

(b) limy o0 || Sz — z|| = 0.

(c) There is a sequence of integers 1 < mnj < ng < ng < --- such that
lim (z*, Sy, 2) = (2", x) for all z* € X*.
71— 00

That (a) implies (b) follows immediately from Step 6 and that (b) implies (c)
is obvious. We prove that (c¢) implies (a). Thus assume (c) and fix a bounded
linear functional z* € X*. Then

T2 =20 T: X - R
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is a bounded linear functional and
(x*,x —Tx) = (% = T"z", x)
= lim («* — T"z", S),2)
1— 00
= lim (", (1 — T)Sy,2)
1— 00
=0.
Here the last equation follows from Step 1. Hence
Ter==x
by the Hahn-Banach Theorem (Corollary [2.3.23]). Next we prove that
z—xeim(1-1T).

Assume, by contradiction, that z —x € X \ im(1 — 7T'). Then, by the Hahn—
Banach Theorem [2.3.22] there exists an element z* € X™* such that

(3.6.15) (2%, 2z —z) =1, (¥, 6 —T& =0 forall € € X.

This implies (z*, TF¢ — TF1¢) =0 for all k € N and all £ € X. Hence, by
induction, (z*, &) = (x*, T*¢) for every € € X and every integer k > 0. Thus

|
—

(x*, Spz) = (x*,TF2) = (¢, 2)

0

S|
i}

for all n € N. Hence it follows from (c) that

(%, z — ) = lim (x*, Sp,z — x) = 0.
11— 00

This contradicts (3.6.15). Thus z — 2 € im(1 — T') and this proves Step 7.

Step 8. We prove Theorem [3.6.9

The subspace Z in (3.6.14)) is closed by Step 4 and is T-invariant by Step 5.
Moreover, Step 7 asserts that an element z € X belongs to Z if and only if the
sequence (Sp,2)nen converges in the norm topology if and only if (Sy,2)nen

has a weakly convergent subsequence. If X is reflexive, this holds for
all z € X by Step 1 and Theorem This proves (i) and (ii).

Define the operator S : Z — Z by . Then ||S|| < ¢ by Step 3,
the equation lim,_o Spz = Sz for z € Z follows from Step 6, and S? = S
by definition. The equation ST = TS = S follows from the fact that S
commutes with 7’|z and vanishes on the image of the operator 1 — 7. This
proves Theorem [3.6.9 ([
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3.7. Problems

EXERCISE 3.7.1 (Weak and Strong Convergence). Let H be a real
Hilbert space and let (z;);en be a sequence in H that converges weakly
to x € H. Assume also that

]l = lim [Ja] .
1—00

Prove that (z;);en converges strongly to z, i.e.

lim ||z; — x| = 0.

71— 00

EXERCISE 3.7.2 (Weak Convergence and Weak Closure).

Let H be an infinite-dimensional separable real Hilbert space and let (e;,)pen
be an orthonormal basis of H. Prove the following.

(a) The sequence (e,)nen converges weakly to zero.

(b) The set
A:={/ne, |n € N}

is sequentially weakly closed, but the weak closure of A contains zero. Hint:
Let U C H be a weakly open neighborhood of the origin. Show that there
are vectors y1,...,yn € H and a number € > 0 such that

V:.={rxeH| _ax |(z,yi)| <e} CU.

Show that the sequence

Zp = max |(en, ;)]
=1,..m

gees

is square summable and deduce that V' N A # 0.
EXERCISE 3.7.3 (The Weak Topology of ¢'). Prove the following.

(a) The standard basis e, of £! does not converge weakly to zero.

(b) View ¢! as the dual space of ¢y (see Example|1.3.7). Then the standard
basis converges to zero in the weak™® topology.

(c) Schur’s Theorem. A sequence in (' converges (to zero) in the weak
topology if and only if it converges (to zero) in the norm topology.

EXERCISE 3.7.4 (Weak* Topology and Distance Function).

Let X be a separable normed vector space and let (x,),en be a dense se-
quence in the unit ball of X. Prove that the map

(3.7.1) d(z*,y*) = Z 27" (2" — y*, x| for z*,y* € B*
n=1

defines a distance function on the closed unit ball B* C X*. Prove that the
topology induced by this distance function is the weak™ topology on B*.
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EXERCISE 3.7.5 (Compact-Open Topology). Let X be a topological
space, let Y be a metric space, and let C(X,Y’) be the space of continuous
functions f: X — Y. The compact-open topology on C(X,Y) is the
smallest topology such that the set

LK, V) ={feCX,)Y)|f(K)CV}

is open for every compact set K C X and every open set V C Y. Thus a
set U C C(X,Y) is open with respect to the compact-open topology if and
only if, for each f € U, there are finitely many compact sets K1,..., K, C X
and open sets Vi,..., Vs, C Y such that f € ", S (K;,V;) CU.

(a) If X is compact, prove that the compact-open topology on C(X,Y)
agrees with the topology induced by the metric

(3.7.2) d(f,g) :=sup dy(f(x),g(x)) for f,g € C(X,Y).

zeX

Hint 1: Let f € C(X,Y) and suppose that Ki,..., K,, C X are compact
sets and Vi,...,V,, C Y are open sets such that f(K;) C V;fori=1,...,m.
Prove that there is a constant & > 0 such that B.(f;(x)) C V; for all x € K;
and all i € {1,...,m}. Deduce that every g € C(X,Y) with d(f,g) < ¢
satisfies g(K;) C V; for i =1,...,m.

Hint 2: Let f € C(X,Y) and € > 0. Find elements z1,...,z, € X such
that X = J", K;, where K; := {z € X |dy(f(z;), f(x)) < e/4}. Define

U:={geC(X,Y)|g(K;)CVfori=1,...,m}, Vi := Bejo(f(21)).
Show that f € U and d(f,g) < e for all g € U.

(b) For each compact subset K C X define the seminorm pg : C(X,R) - R
by

pr(f) = S;p\fl for f € C(X,R).

Prove that these seminorms generate the compact-open topology, i.e. the
compact-open topology on C(X,R) is the smallest topology such that pg is
continuous for every compact set K C X.

(c) Prove that C'(X,R) is a locally convex topological vector space with the
compact-open topology.

(d) Prove that a subset .# C C(X,Y) is precompact with respect to the
compact-open topology if and only if, for every compact set K C X, the set

(3.7.3) T = {flx|f e F}cCK,Y)

is precompact. Hint: Let .# C 2% be the collection of compact subsets.
Prove that the map C(X,Y) — [[xc, C(K,Y) : f = (flk)ker is a
homeomorphism onto its image and use Tychonoff’s Theorem
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(e) Prove the following variant of the Arzela—Ascoli Theorem.

Arzela—Ascoli. Let X be a topological space and let Y be a metric space. A
subset F C C(X,Y) is precompact with respect to the compact-open topology
if and only if it is pointwise precompact and the set Fx C C(K,Y) in
is equi-continuous for every compact set K C X.

Hint: Use part (d) and Exercise [1.1.15

EXERCISE 3.7.6 (Banach—Alaoglu). Let X be a normed vector space.
Deduce the Banach—Alaoglu Theorem [3.2.4] from the Arzela—Ascoli Theorem
in part (e) of Exercise m Hint: The closed unit ball in X* is equi-
continuous as a subset of C'(X,R). Prove that the compact-open topology
on X* is finer than the weak™ topology, i.e. every weak* open subset of X*
is also open with respect to the compact-open topology.

EXERCISE 3.7.7 (Functions Vanishing at Infinity). Let M be a lo-
cally compact Hausdorff space. A continuous real valued function f : M — R
is said to vanish at infinity if, for every ¢ > 0, there exists a compact
set K C M such that

sup |f(z)] < e.
reM\K

Denote by Cy(M) the space of all continuous functions f: M — R that
vanish at infinity (see Exercise |3.2.10)).

(a) Prove that Cp(M) is a Banach space with the supremum norm.

(b) The dual space Cy(M)* can be identified with the space M (M) of signed
Radon measures on M with the norm , by the Riesz Representation
Theorem (see [75, Thm 3.15 & Ex 3.35]). Here a signed Radon measure
on M is a signed Borel measure p with the property that, for each Borel
set B C M and each € > 0, there exists a compact set K C B such that
|(A) — p(AN K)| < e for every Borel set A C B.

(c) Prove that the map § : M — Cy(M)*, which assigns to each = € M the
bounded linear functional d, : Co(M) — R given by

02(f) == f(z)  for f e Co(M),
is a homeomorphism onto its image 0(M) C Cy(M)*, equipped with the
weak™ topology. Under the identification in (b) this image is contained in

the set
P(M) :={pe€ M(M)[p =0, [|ul| = n(M) =1}
of Radon probability measures. Determine the weak™ closure of the set

(M) ={0z|z e M} C P(M).
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EXERCISE 3.7.8 (Alaoglu-Bourbaki Theorem). Let X and Y be real
vector spaces and let

(3.7.4) YxX =>R:(y,z) = (y,x)

be a nondegenerate pairing. For two subsets A C X and B C Y define the
polar sets A° C Y and B, C X by

A% :={yeY|(y,a) <1lforallaec A},
B, :={ze€ X|(bx) <1lforallbe B}.

Thus A° and B, are intersections of half-spaces.

(3.7.5)

(a) Suppose X is a real normed vector space, Y = X* is its dual space,
and (3.7.4) is the standard pairing. Let S C X and S* C X* denote the
unit spheres and B C X and B* C X* the closed unit balls. Verify that

S=B* = (S =B.

(b) Bipolar Theorem. Equip X with the topology induced by the linear
maps X — R:x— (y,z) foryeY. Then

(A%)o = conv(A U {0}).

(c) Goldstine’s Theorem. If X is a normed vector space and B is the
closed unit ball, then the weak* closure of 1(B) is the closed unit ball in X**.

(See also Corollary 3.1.29])

(d) Alaoglu—Bourbaki Theorem. Suppose (X, %) is a locally convex
topological vector space over the reals, Y is the space of % -continuous linear
functionals A : X — R, and 1s the standard pairing. Equip Y with the
topology v C 2V induced by the linear maps Y — R :y — (y,z) forz € X.
If A C X is a % -neighborhood of the origin, then A° CY s ¥ -compact.

EXERCISE 3.7.9 (Milman—Pettis Theorem).

A normed vector space X over the reals is called uniformly convex if, for
every € > 0, there exists a constant 0 > 0 such that, for all x,y € X,

el =Nyl =1, [e+tyl>2-6 = lz—yll <e.

The Milman—Pettis Theorem asserts that every uniformly convex Banach
space is reflexive. This can be proved as follows.

The proof requires the concept of a net, which generalizes the concept of
a sequence. A directed set is a nonempty set A, equipped with a reflexive
and transitive relation =, such that, for all a, 5 € A, there exists a v € A
with @ < v and 8 < 7. Anti-symmetry is not required, so a directed set
need not be partially ordered. An example of a directed set is the collection
of open neighborhoods of a point x( in a topological space X, equipped with
the relation U xV «<— V C U.
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A net in a space X is a map
A= X a— x,,

defined on a directed set A. A net (z4)aca in a topological space X is said
to converge to x € X if, for every open neighborhood U C X of x, there
exists an element o € A, such that z, € U for all « € A with ag < a.

If X and Y are topological spaces, then a map f : X — Y is continuous
if and only if, for every net (z4)aca in X that converges to z € X, the
net (f(xq))aca in Y converges to f(x).

Let (z4)aca be a net in X. A subnet of (z,)aca is a net of the
form (7,3))gep where h: B — A is a monotone final map between directed
sets. Here the map h : B — A is called monotone if

B1 <X B2 = h(B1) < h(B2)

for all 81,82 € B, and it is called final if, for every o € A, there exists an
element 5 € B such that

h(a) < B.

With this understood, a topological space X is compact if and only if every
net in X has a convergent subnet.

A net (z4)aeca in a normed vector space X is called a Cauchy net if
the net (||zq — x5||)(a B)eAx A (product order on A x A) converges to zero.
If X is a Banach space then every Cauchy net in X converges.

(a) Let X be a uniformly convex normed vector space. Let (z4)aca be a net
in the unit sphere of X such that the net (|lzq + xﬂH)(a B)eAxa converges
to 2. Prove that (z4)aca is a Cauchy net.

(b) Let X be a normed vector space and let z** € X** with |[z**| = 1.
Prove that there exists a net (z4)aeca in the unit sphere of X such that the
net (1(xq))aca in X** converges to z** with respect to the weak* topology.

(c) Let X be a normed vector space and let (z4)aca be a net in the unit
sphere of X such that the net (:(zq))aca in X** converges to x** with
respect to the weak™® topology, where ||z**|| = 1. Prove that the net

(U(Ta +28)) (0,5)cax 4

converges to 2z** in the weak™ topology. If X is uniformly convex, use (a)
to prove that (z4)aca is a Cauchy net.

(d) Assume X is a uniformly convex Banach space, let ** € X** such
that ||«**|| = 1, and choose a net (z4)aca as in (b). Use (c) to prove that
the net (x4)aca converges to some element z € X. Deduce that ¢(z) = x**.
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EXERCISE 3.7.10 (Banach—Mazur Theorem). Let X be a Banach
space and let B* C X* be the closed unit ball in the dual space, equipped
with the weak* topology.

(a) Prove that the map X — C(B*) : x — f;, defined by f(z*) := (z*, z)
for x € X and z* € B* is a linear isometric embedding.

(b) If K is a compact metric space, then there is a continuous surjective
map 7 : F' — K, defined on a closed subset F' C {0, 1} of the Cantor set.
Deduce that there exists a linear isometric embedding 7* : C(K) — C(F).
Hint: The Cantor function is a continuous surjection {0,1} — [0,1].
Use it to construct a continuous surjection {0, 1} — [0, 1] and then find
an embedding K < [0, 1]

(c) For every closed subset F' C [0,1] of the unit interval find a linear
isometric embedding tp : C(F') — C([0,1]). Hint: The complement of F' is
a countable union of intervals.

(d) Banach—Mazur Theorem. Every separable Banach space is isomet-
rically isomorphic to a closed subspace of C([0,1]).

EXERCISE 3.7.11 (Helly’s Theorem). (Another proof of Lemma )

(a) Let X be a normed vector space, let z7,...,z5 € X* and let ¢,..., ¢,
be scalars. Prove that there exists an element x € X such that
(3.7.6) (x7,x) = ¢ fori=1,...,n

if and only if there is a constant M > 0 such that, for all scalars Ay, ..., Ay,

n n
i=1 i=1

Hint: Assume z7,...,z}, are linearly independent and span the same space
as z7,..., 5. Define the map T': X — R"™ by Tz := ((z],2),...,(z},,x))
for x € X. Then T is surjective by Lemma Use the inequality
to show that every element x € T~ !(cy, ..., ¢n) satisfies (3.7.6)).

(b) Assume and let € > 0. Prove that there exists an element z € X
that satisfies and ||z|| < M + e. Hint: By (a) there exists some ele-
ment y € X such that (z},y) = ¢;fori =1,...,n. Define Z := (), ker(z]).
If y ¢ Z, then, by Theorem there is an element z* € X™* such that

(3.7.7) <M

l*]| =1, x|z =0, (x*,y) =d(y,Z) = inf ||y — z]| .
z€Z

By Lemma the element 2* is a linear combination of the x}. Use this
to deduce from that d(y, Z) < M. Find z € Z with ||y + z|| < M +e.
(If dim X = oo, then Z # {0}, so the norm of y + z can be chosen equal to
any number bigger than M.)
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EXERCISE 3.7.12 (Smulyan—-James Theorem).
Let X be a normed vector space. Then the following are equivalent.
(i) X is reflexive.
(ii) Ewvery bounded sequence in X has a weakly convergent subsequence.
(iii) If C1 D Cy D C3 D -+ is a nested sequence of nonempty bounded

closed convex subsets of X, then their intersection is nonempty.
The implication (#3i) == (i) of the Smulyan-James Theorem strengthens
the Eberlein-Smulyan Theorem m
(a) Prove that (i) implies (ii) and (ii) implies (iii).
(b) Prove that (iii) implies that X is complete.
(c) Let X be a nonreflexive Banach space. Prove that there exists a con-
stant 0 < a < 1 and an element x** € X** such that
(3.7.8) a<d@™ X)) <|z*] < 1.
Hint: Use the Riesz Lemma [1.2.12

(d) Let 0 < a < 1 and z** € X** be as in (c). Find sequences of unit
vectors () )nen in X* and (zx)gen in X such that

i} 0, ifk<n,
(379) <mn7xk> - { o, ifk>n,

Hint: Argue by induction. First find unit vectors 2] € X* and 21 € X such
that (z**,27) = v and (27, 1) = a. Now let N > 1 and assume by induction
that unit vectors x1,...,zny—1 € X and z7,...,2%_; € X* have been found
that satisfy fork,n=1,...,N—1. With M = ad(z™, (X)) < 1 we
have |Aoa| < M|[Noz™* + ZkN:_ll Ait(zg)| for all Ao, ..., Anv—1 € R. Hence,
by Helly’s Theorem, there exists a unit vector z3, € X* such that

(", xy) =« forall k,n eN.

rrn

(™, xy) = a, (xn,xk) = (L(xg),zy) =0 fork=1,...,N —1.
Moreover,
N N N
ald | = ‘<x > )\na:;;> < ™ D Az,
n=1 n=1 n=1
forall A1,...,Ax € R. Since ||z**|| < 1 it follows again from Helly’s Theorem
that there is a unit vector xx € X such that (z¥,zny) =aforn=1,...,N.

This completes the induction step for the proof of (3.7.9).

(e) Let zy, 2} be as in (d) and define Cy :=conv({zy |k > N}) for N € N.
Prove that (z};, ) = o and lim, oo (2}, ) = 0 for all z € Cy. Deduce that
the Cn have an empty intersection.
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EXERCISE 3.7.13 (Birkhoff-von Neumann Theorem).

An n x n-matrix M = (m;;) with nonnegative coefficients m;; > 0 is called
doubly stochastic if its row sums and column sums are all equal to one.
The Birkhoff-von Neumann Theorem asserts the following.

Every doubly stochastic matrix
is a convex combination of permutation matrices.

Thus the doubly stochastic matrices form a convex set whose extremal points
are the permutation matrices. This can be proved as follows.

Let M be a doubly stochastic matrix and denote by v(M) the num-
ber of positive entries. If v(M) > n, find a permutation matrix P and a
constant 0 < A < 1 such that the matrix N := M — AP; has nonnegative
entries and strictly fewer positive entries than M. In the case N # 0 the
matrix M := (1 — A\)7!N is again doubly stochastic with v(M;) < v(M),
and M = AP; + (1 — A\)M;. Continue by induction until v(My) =n and
so Mj, is a permutation matrix. Here is a method to find P; and .

Hall’s Marriage Theorem. Let X andY be finite sets and letI’ C X xY.
Then the following are equivalent.

(1) There is an injective map f : X — Y whose graph is contained in T'.
(ii) For every A C X the set

I'(A) :={y € Y | there is an x € A such that (z,y) € T'}
satisfies #I'(A) > #A.

Take X =Y = {1,...,n} and I" := {(4, j) | ms; > 0}. Use the fact that M
is doubly stochastic to verify that I" satisfies (ii). Use the injective map f
in (i) to determine the permutation matrix P; and take A := min;_ ;¢ m;;.

EXERCISE 3.7.14 (Strict Convexity and Extremal Points).

A normed vector space is strictly convex (see Example and Exer-
cise |2.5.11)) if and only if the unit sphere is equal to the set of extremal
points of the closed unit ball.

EXERCISE 3.7.15 (A Noncompact Set of Extremal Points).
Let C' C R? be the closed convex hull of the set

S := {(1+ cos(9),sin(6),0) |§ € R} U {(0,0,1),(0,0,—1)}.
Determine the extremal points of C.

EXERCISE 3.7.16 (Extremal Points of Unit Balls). Determine the
extremal points of the closed unit balls in the Banach spaces

co, ¢, C([0,1]), £, 2, ¢, L'([0,1]), LP([0,1]), L>°([0,1])
for 1 < p < 0.
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EXERCISE 3.7.17 (Hilbert Cube). (See Example [3.5.5])

(a) Show that the Hilbert cube Q := {z = (2;)ien € *|0 < z; < 1/i} is a
compact subset of ¢? with respect to the norm topology.

(b) Is the set R := {& = (2;);en € 2|0 < z; < 1/V/i} compact in ¢* with
respect to either the norm topology or the weak topology?

EXERCISE 3.7.18. Let X be a real normed vector space, let B* C X*
be the closed unit ball in the dual space, and let A : X* — R be a linear
functional such that the restriction A|p« : B* — R is weak® continuous.
Then there exists an element z € X such that A = ¢(z).

EXERCISE 3.7.19 (Markov—Kakutani Fixed Point Theorem).

Let X be a locally conver Hausdorff topological vector space and let A be
a collection of pairwise commuting continuous linear operators A : X — X.
Let C' C X be a nonempty A-invariant compact convex subset of X, so that

AC)cC for all A € A.
Then there exists an element x € C' such that Ax = x for all A € A.
(a) For A € A and k € N define

1
Ay = E(]I+A+A2+---+Ak‘1).

Then Ay (C) is a nonempty compact convex subset of C.
(b) If A,B € Aand k,¢ € N, then

Ag(Be(C)) C Ax(C) N By (C).
Use this to prove that the set

F .= m ﬂ A(C)
keN AcA

is nonempty.
(c) Prove that every element x € F is a fixed point of A. Hint: Fix an
element A € A. If Ax # z, find a continuous linear functional A : X — R

such that A(z — Ax) = 1. Prove that, for every k € N, there exists an
element y € C such that

Ay = x.
Now observe that
y — Afy = k(z — Ax)

and deduce that the functional A is unbounded on the compact set C — C,
contradicting continuity.
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EXERCISE 3.7.20 (Bell-Fremlin Theorem).

The axiom of choice is equivalent to the assertion that the closed unit ball
in the dual space of every nonzero Banach space has an extremal point.

(a) Let X be any nonzero Banach space. Use the Banach—Alaoglu Theo-
rem the Hahn—Banach Theorem and the Krein—-Milman Theo-
rem to prove that the closed unit ball in X* has an extremal point.

(b) Let I be any index set and, for each i € I, let X; be a nonzero Banach
space. Define the Banach spaces

(3.7.10) @X = {x = (xi)ier

z; € Xj and ||z, == Z il x, < OO}
i€l

i€l

and

(3.7.11) [[xi= {a: = (z:)ier

z; € Xj and ||z, = sup ||lzil , < oo} :
iel el

Prove that [[,.; X/ is isomorphic to the dual space of @), ; X;.

(c) Let S be a nonempty set. Define ¢o(S) to be the space of all functions
f S — R that satisfy # {s € S||f(s)| > e} < oo for all ¢ > 0, equipped
with the supremum norm | ||, := sup,cg|f(s)|- Define £}(S) to be the
space of all functions g : S — R such that ||g||; := > cq]9(s)| < co. Prove
that £1(S) is isomorphic to the dual space of ¢o(.5).

(d) Let (S;)icr be a family of pairwise disjoint nonempty sets. Then the
Banach space [[;c; ¢*(S;) is isomorphic to the dual space of @,c; co(S:)
by (b) and (c). Suppose the closed unit ball in [],; £*(S;) has an extremal
point g = (g;)icr. Prove that g; # 0 for all ¢ € I. Show that, for each i € I,
there is a unique element s; € S; such that g;(s;) # 0.



Chapter 4

Fredholm Theory

The purpose of the present chapter is to give a basic introduction to Fred-
holm operators and their indices including the stability theorem. A Fred-
holm operator is a bounded linear operator between Banach spaces that has
a finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between
two Banach spaces, with respect to the topology induced by the operator
norm. It also asserts that the sum of a Fredholm operator and a compact
operator is again Fredholm and has the same index as the original operator.
Fredholm operators play an important role in many fields of mathematics,
including topology and geometry. There are many important topics that go
beyond the scope of the present book. For example, the space of Fredholm
operators on an infinite-dimensional Hilbert space is a classifying space for
K-theory in that each continuous map from a topological space into the
space of Fredholm operators gives rise to a pair of vector bundles (roughly
speaking, the kernel and cokernel bundles) whose K-theory class is a homo-
topy invariant [5, 6, [7, [42]. Another topic not covered here is Quillen’s
determinant line bundle over the space of Fredholm operators |71}, [77].

The chapter starts with an introduction to the dual of a bounded linear
operator. It includes a proof of the closed image theorem which asserts that
an operator has a closed image if and only if its dual does. It then moves
on to compact operators which map the unit ball to pre-compact subsets of
the target space, characterizes Fredholm operators in terms of invertibility
modulo compact operators, and establishes the stability theorem.

163
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4.1. The Dual Operator

4.1.1. Definition and Examples. The dual operator of a bounded lin-
ear operator between Banach spaces is the induced operator between the
dual spaces. Such a dual operator has been implicitly used in the proof of
Theorem [3.6.91 Here is the formal definition.

DEFINITION 4.1.1 (Dual Operator). Let X and Y be real normed
vector spaces, denote their dual spaces by X* := L(X,R) and Y* := L(Y,R),
and let A: X — Y be a bounded linear operator. The dual operator of A
is the linear operator

A YT = X
defined by
(4.1.1) Ay  =y*0A: X - R for y* € Y™.

Thus, for every bounded linear functional y* : Y — R, the bounded linear
functional A*y* : X — R is the composition of the bounded linear opera-
tor A: X — Y with y*, i.e.

(4.1.2) (A%y", z) = (y*, Az)
for all x € X.
LEMMA 4.1.2. Let X and Y be real normed vector spaces and let
A: X =Y
be a bounded linear operator. Then the dual operator
A YT - X~
s bounded and
[A*[] = [IA]l.-

Proof. The operator norm of A* is given by
A"y

A% = -
yrev\for 1yl
_w [(A*y*, x)|
= p  sup
yrev-\{oyzex\{oy 1¥*I =]l
~ Ly, Az)|
= p  sup -
zex\{0} yrev=\{o} NIl
_ | Az ||
sex\{o} Iz
= |IA]l.

Here the last but one equality follows from the Hahn—Banach Theorem in
Corollary [2.3.23| In particular, ||A*|| < co and this proves Lemma O
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LEMMA 4.1.3. Let X,Y, Z be real normed vector spaces and A: X —'Y
and B :Y — Z be bounded linear operators. Then the following holds.

(i) (BA)* = A*B* and (1x)* = lx-.

(ii) The bidual operator A** : X** — Y™ satisfies 1y o A = A™ o.1x,
where 1x : X — X** and 1y : Y — Y™ are the embeddings of Lemmal[2.].1]

Proof. This follows directly from the definitions. O

EXAMPLE 4.1.4. Let (M,d) be a compact metric space and ¢ : M — M
be a homeomorphism. Let T : C(M) — C(M) be the operator in the proof
of Theorem defined by T'f := fo ¢ for f € C(M) (the pullback of f
under ¢). Then, under the identification C(M)* = M (M) of the dual space
of C(M) with the space of signed Borel measures on M, the dual operator
of T is the operator T : M(M) — M(M), which assigns to every signed
Borel measure p : B — R its pushforward T*u = ¢, under ¢. This push-
forward is given by (¢.u)(B) := u(¢~1(B)) for every Borel set B C M.

EXAMPLE 4.1.5 (Transposed Matrix). A matrix A € R™*"™ induces a
linear map L4 : R™ — R™. Its dual operator corresponds to the transposed

matrix under the canonical isomorphisms ¢z : R¥ — (RF)*. This means
that (La)* oty = tn 0 Lyr : R™ — (R™)*.

EXAMPLE 4.1.6 (Adjoint Operator). Let H be a real Hilbert space
and let A : H — H be a bounded linear operator and let A5, . : H* — H*
be the dual operator of A. In this situation one can identify the Hilbert
space H with its own dual space H* via the isomorphism I : H — H* in

Theorem The operator
A;Iilbert = Iil o Aganach ol:H—H
is called the adjoint operator of A. It is characterized by the formula

(413) <Aik{ilbertya $> = <y7 A.’L‘>

forall z,y € H, where (-, -) denotes the inner product on the Hilbert space H,
rather than the pairing between H* and H as in equation . When
working entirely in the Hilbert space setting, it is often convenient to use the
notation A* := Af. for the adjoint operator instead of the dual operator.

EXAMPLE 4.1.7 (Self-Adjoint Operator). Let H = ¢2 be the Hilbert
space in Example and let (a;);en be a bounded sequence of real num-
bers. Define the bounded linear operator A : £2 — (2 by Az := (a;x;)sen for
z = (z;)ien € £2. This operator is equal to its own adjoint Afj..- Such an
operator is called self-adjoint or symmetric.
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4.1.2. Duality.

THEOREM 4.1.8 (Duality). Let X and Y be real normed vector spaces
and let A: X — Y be a bounded linear operator. Then the following holds.
(i) im(A) = ker(A*) and “im(A*) = ker(A).

(ii) A has a dense image if and only if A* is injective.

(iii) A s injective if and only if A* has a weak™ dense image.

Proof. We prove (i). First let y* € Y*. Then
y* cim(A)r = (y,Az)=0forallze X
— (A'y",x)=0forallz e X <— A'y* =0
and this shows that im(A)* = ker(A*). Now let z € X. Then
retim(A*) < (A'y*z)=0forall y* €Y*
<— (y",Az)=0forall y* € Y* < Az =0.
The last step uses Corollary [2.3.23] This shows that “im(A*) = ker(A).
We prove (ii). The operator A* is injective if and only if ker(A*) = {0}.
This is equivalent to im(A)* = {0} by part (i) and hence to the condition
that im(A) is dense in Y by Corollary [2.3.25
We prove (iii). The operator A is injective if and only if ker(A) = {0}.
This is equivalent to “im(A*) = {0} by part (i) and hence to the condi-

tion that im(A*) is weak™ dense in X* by Corollary [3.1.26l This proves
Theorem [4.1.8 O

EXAMPLE 4.1.9. Define the operator A : ¢2 — (2 by Az := (i~ ';)ien
for x = (z;);en € £2. This operator is self-adjoint, injective, and has a dense
image, but is not surjective. Thus im(A) C ¢2 = L ker(A*).

EXAMPLE 4.1.10. The term “weak* dense” in part (iii) of Theorem [4.1.§
cannot be replaced by “dense”. Let X := ¢! and Y := ¢y. Then the
inclusion A : £! — ¢g is injective and has a dense image. Moreover, X* = (>
(Example and Y* = /! (Example, and A* : /1 — (> is again the
obvious inclusion. Its image is weak™ dense (Corollary but not dense.
Exercise: The operator A** : (£°°)* — (> is not injective.

ExXAMPLE 4.1.11. Let X be a real normed vector space, let Y C X be
a closed linear subspace, and let 7 : X — X/Y be the canonical projection.
Then the dual operator 7* : (X/Y)* — X* is the isometric embedding of
Corollary whose image is the annihilator of Y. The dual operator
of the inclusion ¢ : Y — X is a surjective operator ¢* : X* — Y™ with
kernel Y+. Tt descends to the isometric isomorphism X*/Y+ — Y* in

Corollary [2.3.26
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The next two theorems establish a correspondence between an inclusion
for the images of two operators with the same target space and an estimate
for the dual operators, and vice versa. The main tools for establishing such
a correspondence are the Douglas Factorization Theorem (Corollary
and the Hahn—Banach Theorem (Corollary and Corollary .

THEOREM 4.1.12. Let X, Y, and Z be real normed vector spaces and
let A: X =Y and B : X — Z be bounded linear operators. Then the fol-
lowing are equivalent.

(1) im(B*) C im(A*).
(ii) There exists a constant ¢ > 0 such that

(4.1.4) |Bz||, < c||Az|y forallx € X.

Proof. See page [168 O

THEOREM 4.1.13. Let X,Y, Z be real Banach spaces and let A: X —Y
and B : Z —'Y be bounded linear operators. Then the following holds.

(i) If im(B) C im(A), then there exists a constant ¢ > 0 such that
(4.1.5) | B*y"|| 4« < c||A%y™|| x~ for ally* € Y.

(i) If X is reflexive and (4.1.5) holds for some ¢ > 0, then im(B) C im(A).

Proof. See page [168] O

EXAMPLE 4.1.14. The hypothesis that X is reflexive cannot be removed
in part (ii) of Theorem However, this hypothesis is not needed
when B is bijective (Corollary below). Let X :=cp, Y := (2, Z :=R,
and define A : cog — £2, B: R — %2 by Az := (i x;)ien for © = (2;)ien € co
and Bz := (i712);ey for 2 € R. Then holds and im(B) ¢ im(A).

LEMMA 4.1.15. Let X,Y be real normed vector spaces and A: X —Y
be a bounded linear operator. Let x* € X*. The following are equivalent.

(i) =* € im(A*).
(ii) There is a constant ¢ > 0 such that |(z*, )| < c||Az|y for allz € X.

Proof. If z* = A*y*, then |(z*,2)| = [(v*, Az)| < ||y*|ly~ ||Az|y for
all z € X and so (ii) holds with ¢ := ||y*||. Conversely, suppose z* sat-
isfies (ii) and define the map v : im(A) — R as follows. Given y € im(A)
choose z € X such that y = Az and define ¢(y) := (z*, ). By (ii) this num-
ber depends only on y, and not on z, and ¢ : im(A) — R is a bounded linear
functional. By definition, it satisfies ¢ o A = 2*. By Corollary[2.3.4]there ex-
ists a y* € Y™ such that y*[;,(4) = . It satisfies z* =)o A = y* o A = A*y*
and this proves Lemma O
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Proof of Theorems[4.1.13 and[4.1.13. We prove that (ii) implies (i) in
Theorem [4.1.12 Thus assume A: X — Y and B: X — Z satisfy (4.1.4]
and fix an element 2* € im(B*). By Lemma [4.1.15|there is a constant b > 0
such that

(2%, 2)| < b|Bzll; < be|Azlly

for all z € X. Hence z* € im(A*) by Lemma This shows that (ii)
implies (i) in Theorem

We prove part (ii) of Theorem Thus assume that X is reflexive
and the bounded linear operators A: X — Y and B : Z — Y satisfy .
Since (ii) implies (i) in Theorem we have im(B**) C im(A**). Now
let z € Z and choose z** € X** such that A™ 2™ = B*1z(z) = 1y (B2)
(Lemma . Since X is reflexive there exists an element x € X such
that tx () = 2**. Hence vy (Az) = A*ux(z) = A™ 2™ = 1y (Bz) and there-
fore Ax = Bz. This proves part (ii) of Theorem

We prove part (i) of Theorem Assume that X,Y, Z are Banach
spaces and that the bounded linear operators A: X - Y and B: Z —Y
satisfy im(B) C im(A). Define Xy := X/ ker(A4) and let 7 : X — X be the
canonical projection. Then 7* : Xj — X* is an isometric embedding with
image ker(A)* (see Corollary . Moreover, the operator A: X —Y
descends to a bounded linear operator Ag: Xy — Y such that Agonw = A.
It satisfies A* = 7* o Ajj and hence

(4.1.6) 1A Y[ x = |1 A0y" I x; for all y* € Y.

Since im(B) C im(A) = im(Ay) and Ay is injective, Corollary [2.2.17| asserts
that there is a bounded linear operator T : Z — Xy with AT = B. Hence

. B*y*, 2
1By = sup $BY2
z€Z\{0} 121l 7
(Agy™, Tz)

= sup
ey Izl

1Ay [ xg 1721 x,
2eZ\{0} 121l 7
=TI 1A% x-
for all y* € Y*, by . This proves part (i) of Theorem
We prove that (i) implies (ii) in Theorem Thus assume that the

operators A: X — Y and B : X — Z satisfy im(B*) C im(A*). By part (i)
of Theorem there is a ¢ > 0 such that ||[B*™*z**|| .. < c|A* ™|
for all z** € X**. Hence, by Lemma [2.4.1] and Lemma we have

1Bz, = lltz(Bx)| ger = [|B™tx (@)[| gor < c[|A™1x(2)|ly-e = c[|Azly
for all x € X. This proves Theorem O

<

Y
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4.1.3. The Closed Image Theorem. The main theorem of this subsec-
tion asserts that a bounded linear operator between two Banach spaces has
a closed image if and only if its dual operator has a closed image. A key
tool in the proof will be Lemma [2.2.3] which can be viewed as a criterion
for surjectivity of a bounded linear operator A : X — Y between Banach
spaces. The criterion is that the closure of the image of the open unit ball
in X under A contains a neighborhood of the origin in Y.

THEOREM 4.1.16 (Closed Image Theorem). Let X and Y be Banach
spaces, let A: X —'Y be a bounded linear operator, and let A* : Y* — X*
be its dual operator. Then the following are equivalent.

(i) im(A) = L ker(A4*).
(ii) The image of A is a closed subspace of Y.
(iii) There exists a constant ¢ > 0 such that every x € X satisfies

4.1. inf <c|Azlly .
(4.1.7) Anf o+ Ellx < ellAzlly

Here the infimum runs over all £ € X that satisfy A = 0.

(iv) im(A*) = ker(A)* .

(v) The image of A* is a weak™ closed subspace of X*.

(vi) The image of A* is a closed subspace of X*.

(vii) There exists a constant ¢ > 0 such that every y* € Y* satisfies

(4.1.8) A*i#FfZO ™ + 0y < c||A*Y* | x- -

Here the infimum runs over all n* € Y™ that satisfy A*n* = 0.

Proof. That (i) implies (ii) follows from the fact that the pre-annihilator
of any subset of Y* is a closed subspace of Y.

We prove that (ii) implies (iii). Define
X := X/ ker(A), Yy := im(A),
and let mp : X — X be the projection which assigns to each element x € X
the equivalence class mo(z) := [z] := = + ker(A) of z in Xy = X/ker(A).

Since the kernel of A is closed and X is a Banach space, it follows from
Theorem [1.2.14] that the quotient X is a Banach space with

x = inf |z+ for x € X.
i, = inf | llz+€lLx
Since the image of A is closed by (ii), the subspace Yy C Y is a Banach
space. Since the value Az € Yy C Y of an element x € X under A depends
only on the equivalence class of = in the quotient space Xy, there exists a
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unique linear map Ay : Xo — Yp such that Ag[z] = Az for all z € X. The
map Ag is bijective by definition. Moreover,

[Az[ly = [[A(z + Olly < Al ]z +€llx
for all x € X and all € € ker(A), and hence

4oy, = 1Azl < I _inf 1z + €l = 4] Nl

for all x € X. This shows that Ag : Xg — Yp is a bijective bounded linear
operator. Hence Ag is open by the Open Mapping Theorem so Ay !
is continuous, and therefore A; !'is bounded by Theorem Thus there
exists a constant ¢ > 0 such that ||Ay y|lx, < cllylly, for all y € Yo C Y.
This implies

(8l €l = Nl < elldolellly, = e Azl

for all z € X. Thus we have proved that (ii) implies (iii).

We prove that (iii) implies (iv). The inclusion im(A*) C ker(A)* fol-
lows directly from the definitions. To prove the converse inclusion, fix an
element x* € ker(A)* so that (x*,¢) = 0 for all £ € ker(A). Then

(2% 2)| = [z 2 + | < [l27[|x- = + €l x

for all z € X and all £ € ker(A). Take the infimum over all £ € ker(A) and
use the inequality (4.1.7)) in (iii) to obtain the estimate

(4.1.9) ()] < ol inf [l +€llx < el

AxHY

for all x € X. It follows from (4.1.9) and Lemma [4.1.15| that z* € im(A*).
This shows that (iii) implies (iv).

That (iv) implies (v) follows from the definition of the weak*® topology.
Namely, the annihilator of any subset of X is a weak™* closed subset of X*.

(See the proof of Corollary )

That (v) implies (vi) follows directly from the fact that every weak™*
closed subset of X™* is closed with respect to the strong topology induced by
the operator norm on the dual space.

That (vi) implies (vii) follows from the fact that (ii) implies (iii) (already
proved) with the operator A replaced by its dual operator A*.

We prove that (vii) implies (i). Assume first that A satisfies (vii) and
has a dense image. Then A* is injective by Theorem and so the in-

equality (4.1.8)) in part (vii) takes the form
(4.1.10) ly* Iy« < cl|A"Y™|| - for all y* € Y.
Define § := ¢~!. We prove that

(4.1.11) {yeY| |yl <6} c{Az|ze X, ||lz||y <1}.
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To see this, observe that the set
K :={Az|z e X, |z||xy <1}

is a closed convex subset of Y. We must show that every y € Y \ K has
norm |ly[ly- > d. To see this fix an element yo € Y\ K. By Theorem [2.3.10
there exists a bounded linear functional y; : ¥ — R such that

(Y5, Yo) > sup(yg,y)-
yeK

This implies
A%l x- = sup (A%yp,z)

reX
llzll <1

= sup (yp, Ax)
reX
[lell<1

= sup(yy,y)
yeK

<y5ay0>
< lwolly llvolly~

A

and hence, by (4.1.10)),
A"yl - 1

lyoll > 7= =2 - =4
HyOHY*

This proves (4.1.11). Hence {y € Y| |ly|| < 0} C {Az |z € X, ||z||yx <1} by
Lemma Thus A is surjective and so im(A) = Y = L ker(A*) be-

cause A* is injective. This shows that (vii) implies (i) whenever the opera-
tor A has a dense image.

o

Now suppose A satisfies (vii) and does not have a dense image. Define
Yy :=im(A4), Ay =A: X =Y,

Thus Ag is the same operator as A, but viewed as an operator with values
in the smaller target space Yy. The dual operator A : Yy — X™ satisfies

(4.1.12) Ay (Y™ ly,) = A y* for all y* € Y™
by definition. Moreover, for all y* € Y*, we have

Iy hallyy = nf "+l < ellA e = 450 o)l x- -

Here we have used the inequality (4.1.8)) in (vii) and equation (4.1.12)). Hence

it follows from the first part of the proof (the dense image case) that the
operator Ag : X — Yj is surjective. Thus

im(A) = im(4p) = Yp = im(A) = T (im(A)*) = * ker(4%)

by Corollary|3.1.18 and Theorem This shows that (vii) implies (i) and
completes the proof of Theorem O
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COROLLARY 4.1.17. Let X and Y be Banach spaces and let A: X —Y
be a bounded linear operator. Then the following holds.

(1) The operator A is surjective if and only if A* is injective and has a closed
image. Equivalently, there exists a constant ¢ > 0 such that

(4.1.13) ly* Iy« < cl|A™y™|| - for ally* € Y*.

(ii) The operator A* is surjective if and only if A is injective and has a
closed image. Equivalently, there exists a constant ¢ > 0 such that

(4.1.14) x| < c|lAz|ly forall z € X.

Proof. The operator A has a dense image if and only if A* is injec-
tive by Theorem Hence A is surjective if and only if it has a closed
image and A* is injective. Hence part (i) follows from (4.1.8) in Theo-

rem (4.1.16] Part (ii) is the special case of Theorem [4.1.13| where Z = X

and B =id : X — X. Alternatively, one can argue as in the proof of part (i).
The operator A* has a weak* dense image if and only if A is injective by The-
orem Hence A* is surjective if and only if it has a weak* closed image
and A is injective. Hence part (ii) follows from in Theorem
This proves Corollary O

COROLLARY 4.1.18. Let X and Y be Banach spaces and let A: X —Y
be a bounded linear operator. Then the following holds.

(1) A is bigective if and only if A* is bijective.
(ii) If A is bijective, then (A*)~! = (A~1)*.

(iii) A is an isometry if and only if A* is an isometry.

Proof. We prove (i). If A is bijective, then A* is injective by Theo-
rem and A satisfies the inequality by Theorem so A*
is surjective by Corollary Conversely, if A* is bijective, then A is
injective by Theorem and A* satisfies the inequality by The-
orem so A is surjective by Corollary

We prove (ii). Assume A is bijective and define B := A™! : Y — X.
Then B is a bounded linear operator by Theorem and

AB =idy,  BA=idx.
Hence B*A* = (AB)* = (idy)* = idy+ and A*B* = (BA)* = (idx)* = idx-
by Lemma m This shows that B* = (A*)~1.
We prove (iii). Assume A and A* are bijective. Then (A*)~1 = (A=1)*
by part (ii) and hence ||A*|| = || A|| and ||(A*)~!|| = [|A~Y|| by Lemma [4.1.2]
With this understood, part (iii) follows from the fact that A is an isometry
if and only if ||A|| = [|[A~!|| = 1. This proves Corollary 4.1.18 O
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An example of a Banach space isometry is the pullback under a home-
omorphism ¢ : M — M of a compact metric space, acting on the space of
continuous functions on M, equipped with the supremum norm. Its dual
operator is the pushforward under ¢, acting on the space of signed Borel

measures on M (see Examples and 4.1.4)).

In finite dimensions orthogonal transformations of real vector spaces
with inner products and unitary transformations of complex vector spaces
with Hermitian inner products are examples of isometries. These exam-
ples carry over to infinite-dimensional real and complex Hilbert spaces. In
infinite dimensions orthogonal and unitary transformations have many im-
portant applications. They arise naturally in the study of certain partial
differential equations such as the wave equation and the Schrodinger equa-
tion. The functional analytic background for the study of such equations
is the theory of strongly continuous semigroups of operators. This is the
subject of Chapter [7] below.

4.2. Compact Operators

One of the most important concepts in the study of bounded linear operators
is that of a compact operator. The notion of a compact operator can be
defined in several equivalent ways. The equivalence of these conditions is
the content of the following lemma.

LEMMA 4.2.1. Let X and Y be Banach spaces and let K : X — Y be a
bounded linear operator. Then the following are equivalent.

(1) If (zn)nen is a bounded sequence in X, then the sequence (Kxy)nen has
a Cauchy subsequence.

(i) If S € X is a bounded set, then the set K(S) := {Kx|x € S} has a
compact closure.

(iii) The set {Kz|x € X, ||z||x < 1} is a compact subset of Y.

Proof. We prove that (i) implies (ii). Thus assume K satisfies (i) and
let S C X be a bounded set. Then every sequence in K (S) has a Cauchy

subsequence by (i). Hence Corollary asserts that K (.S) is a compact
subset of Y, because Y is complete.

That (ii) implies (iii) is obvious.

We prove that (iii) implies (i). Let (z5,)nen be a bounded sequence and
choose ¢ > 0 such that ||z, x <c for all n € N. Then (¢ 'Kxp),en has
a convergent subsequence (¢ 'Ky, )ien by (iii). Hence (Kz,,)ien is the
required Cauchy subsequence. This proves Lemma [£.2.1] O
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DEFINITION 4.2.2 (Compact Operator). Let X and Y be Banach
spaces. A bounded linear operator K : X — Y is said to be

e compact if it satisfies the equivalent conditions of Lemma [£.2.1]
e of finite rank if its image is a finite-dimensional subspace of Y,

e completely continuous if the image of every weakly convergent sequence
in X under K converges in the norm topology on Y.

LEMMA 4.2.3. Let X andY be Banach spaces. Then the following holds.
(1) Every compact operator K : X — 'Y is completely continuous.

(ii) Assume X is reflexive. Then a bounded linear operator K : X —Y is
compact if and only if it is completely continuous.

Proof. We prove part (i). Assume K is compact and let (x,),en be a
sequence in X that converges weakly to x € X. Suppose, by contradiction,
that the sequence (K, )nen does not converge to Kx in the norm topology.
Then there exists an ¢ > 0 and a subsequence (z, );en such that

(4.2.1) Kz — Kay,|ly > ¢ for all 4 € N.

Since the sequence (z,)ien converges weakly, it is bounded by the Uniform
Boundedness Theorem Since K is compact, there exists a further
subsequence (zy,, )ken such that the sequence (Kzn, )yen converges strongly
to some element y € Y. This implies

(" y) = lim (y*, Kap, ) = lim (K"y", 2y, ) = (K'y", z) = (y*, Ka)
k—o0 k—ro0

for all y* € Y*. Hence y = Kx by Corollary [2.3.23] and so

lim | Kz,, — Kz|y =0,
k—o0 k

in contradiction to (4.2.1]). This proves (i).

We prove part (ii). Assume X is reflexive and K is completely continu-
ous. Let (zy)nen be a bounded sequence in X. Since X is reflexive, there ex-
ists a weakly convergent subsequence (x,,);cn by Theorem Let z € X
be the limit of that subsequence. Since K is completely continuous, the se-
quence (K, )ien converges strongly to Kz. Thus K satisfies condition (i)
in Lemma 4.2.1] and hence is compact. This proves Lemma 4.2.3 ([

EXAMPLE 4.2.4. The hypothesis that X is reflexive cannot be removed
in part (ii) of Lemma m For example a sequence in ¢ converges weakly
if and only if it converges strongly by Exercise [3.1.22] Hence the identity
operator id : ¢! — ¢! is completely continuous. However, it is not a compact
operator by Theorem [1.2.11

ExXAMPLE 4.2.5. Every finite rank operator is compact.



4.2. Compact Operators 175

EXAMPLE 4.2.6. Let X := C1([0,1]), Y := C([0,1]) and let K : X — Y
be the obvious inclusion. Then the image of the closed unit ball is a bounded
equi-continuous subset of C'([0,1]) and hence has a compact closure by the
Arzela—Ascoli Theorem (Corollary . In this example the image of the
closed unit ball in X under K is not a closed subset of Y. Exercise: If X is
reflexive and K : X — Y is a compact operator, then the image of the closed
unit ball B C X under K is a closed subset of Y. Hint: Every sequence
in B has a weakly convergent subsequence by Theorem [3.4.1]

ExamMpLE 4.2.7. If K : X — Y is a bounded linear operator between
Banach spaces whose image is a closed infinite-dimensional subspace of Y,
then K is not compact. Namely, the image of the closed unit ball in X
under K contains an open ball in im(K) by Theorem and hence does
not have a compact closure by Theorem

ExXAMPLE 4.2.8. Fix a number 1 < p < oo and a bounded sequence of
real numbers A = (A;)ien. For i € N let ¢; := (d;5)jen € P. Define the
bounded linear operator Ky : /F — (P by

Kyz := (\i%i)ien for © = (z;)ien € P.

Then
K is compact = lim A; = 0.
71— 00
The condition lim;_,, A\; = 0 is necessary for compactness because, if there
exists a constant § > 0 and a sequence 1 < ny < ny < ng < --- such

that |\, | > 6 for all k € N, then the sequence Ke,, = Ay, €n,, k € N, in P
has no convergent subsequence. The condition lim; ,,, A; = 0 implies com-
pactness because then K can be approximated by a sequence of finite rank

operators in the norm topology (Example and Theorem [4.2.10)).

EXERCISE 4.2.9. Find a strongly convergent sequence of compact oper-
ators whose limit operator is not compact.

The following theorem shows that the set of compact operators between
two Banach spaces is closed with respect to the norm topology.

THEOREM 4.2.10 (Compact Operators). Let X, Y, and Z be Banach
spaces. Then the following holds.

(i) Let A: X - Y and B:Y — Z be bounded linear operators and assume
that A is compact or B is compact. Then BA : X — Z is compact.

(ii) Let K; : X — Y be a sequence of compact operators that converges to
a bounded linear operator K : X — Y in the norm topology. Then K is
compact.

(iii) Let K : X — 'Y be a bounded linear operator and let K* : Y* — X* be
its dual operator. Then K is compact if and only if K* is compact.
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Proof. We prove part (i). Let (z,)neny be a bounded sequence in X.
If A is compact then there exists a subsequence (xp, )ren such that the
sequence (Axy, )gen converges, and so does the subsequence (BAzy,, )ken-
If B is compact, then, since the sequence (Ax,)nen is bounded, there exists
a subsequence (Azy, )ren such that the sequence (BAz,, )ren converges.
This proves (i).

We prove part (ii). Let (z,)nen be a bounded sequence in X. Then a
standard diagonal subsequence argument shows that the sequence (K xy,)pen
has a convergent subsequence. More precisely, since K is compact, there ex-
ists a subsequence (2, , )ken such that the sequence (K12p, , )ren converges
in Y. Since K2 is compact there exists a further subsequence (7p,, )ken
such that the sequence (Kgmn%)keN converges in Y. Continue by induc-
tion and use the axiom of dependent choice to find a sequence of subse-
quences (fﬂni,k)keN such that, for each i € N, the sequence (zy, ., )keN is
a subsequence of (z,,, )ren and the sequence (K;xp,, )ren converges in Y.
Now consider the diagonal subsequence

Ty, 1= Ty, for k € N.

Then the sequence (K;xy, )ren converges in Y for every ¢ € N. We prove
that the sequence (K, )ren converges as well. To see this, choose a con-
stant ¢ > 0 such that

|zl xy < c for all n € N.

Fix a constant € > 0. Then there exists a positive integer ¢ such that
€
K- K| < —.
1K - Kl < o

Since the sequence (Kjxy, )ren converges, there exists a positive integer ko
such that all k£, ¢ € N satisfy

5
k,ﬁ > ko — ”sznk — KixWHY < §

This implies
||K‘Tnk - K$WHY
< ||Kxnk - Kixnk”Y + Hsznk - Kﬁ%g”y + ”K’L'/Eng - KJUWHY
SNE = Kil| |z, |y 4 [ Kz, — Kiznlly + |5 = K| [|2zn, ]|
< 2c ||K — K,L” =+ ||Kza:nk — KixWHY
<e€
for all pairs of integers k,¢ > ky. Thus (Kxp, )ren is a Cauchy sequence

in Y and hence converges, because Y is complete. This shows that K is
compact and hence completes the proof of part (ii).
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We prove part (iii). Assume first that K : X — Y is a compact operator.
Then the set

M :={Kz| |z|y <1} CY

is a compact metric space with the distance function determined by the
norm on Y. For y* € Y* consider the continuous real valued function

fr- =y m: M — R,

Define the set .# C C(M) by
F = {fy
For each y* € Y* with ||y*|
Il fy

Yy eY*, ytlly- <1}

y+ < 1 the supremum norm of fy« is given by

= sup |[(y*, )|
yeM
= sup [(y", Kux)|
(4.2.2) zeX, ||z x <1
= sup [(K'y", )
zeX, ||lz| <1
= | K"y x- -

Thus ||f|| < ||K*|| = || K| for all f € .7, so % is a bounded subset of C'(M).
Moreover, the set % is equi-continuous because

(W) = fo () = [,y = )
<y lly-ly = ¥'lly
/

<lly =¥l
for all y* € Y* with [|y*||y+ < 1 and all y,y/ € M. Since M is a compact
metric space, it follows from the Arzela—Ascoli Theorem (Corollary [1.1.13])
that % has a compact closure. This implies that the operator K* is compact.
To see this, let (y;;)nen be a sequence in Y* such that [jy;|y. < 1 for
all n € N. Then the sequence (fy:)nen in # has a uniformly convergent
subsequence (fys )ien. Hence it follows from (4.2.2)) that (K*y,; )ien is a

Cauchy sequence in X* and hence converges. This shows that K* is a
compact operator as claimed.

Conversely, suppose that K* is compact. Then, by what we have just
proved, the bidual operator K** : X** — Y™** is compact. This implies
that K is compact. To see this, let (z,,),en be a bounded sequence in X.
Then (vx (zn))nen is a bounded sequence in X** by Lemma[2.4.1] Since K**
is a compact operator, there exists a subsequence (tx (Zy,))ien such that the
sequence K™ ux(zp,) = ty(Kxzy,) converges in Y** as i tends to infinity.
Hence (K, )ien is a Cauchy sequence in Y by Lemma m Hence K is
compact and this proves Theorem O



178 4. Fredholm Theory

It follows from part (ii) of Theorem that the limit of a sequence
of finite rank operators in the norm topology is a compact operator. It is a
natural question to ask whether, conversely, every compact operator can be
approximated in the norm topology by a sequence of finite rank operators.
The answer to this question was an open problem in functional analysis
for many years. It was eventually shown that the answer depends on the

Banach space in question. Here is a reformulation of the problem due to
Grothendieck [33].

EXERCISE 4.2.11. Let Y be a Banach space. Prove that the following
are equivalent.

(a) For every Banach space X, every compact operator K : X — Y, and
every € > 0 there is a finite rank operator 7' : X — Y such that ||K — T'|| < e.

(b) For every compact subset C' C Y and every € > 0 there is a finite rank
operator T': Y — Y such that ||y — Ty| < e for all y € C.

A Banach space Y that satisfies these two equivalent conditions is said to
have the approximation property.

EXERCISE 4.2.12. Let Y be a Banach space that has a Schauder ba-
sis (ej)ien, i.e. for every y € Y there exists a unique sequence A = (\;)ien
of real numbers such that the sequence Y " ; A;e; converges and

o n
Yy = Z )\iei = nh_)I?(()lo Z )\iei.
i=1 i=1
Prove that Y has the approximation property. Hint: Let II, : Y — Y be
the unique projection such that

im(IL,) = span{ey,...,en}, IM,e; =0 foralli>n.
By Exercise the operators II,, are uniformly bounded. Prove that
Jim [T, K — K[| =0
for every compact operator K : X — Y.

The first example of a Banach space without the approximation prop-
erty was found by Enflo [27] in 1973. His example is separable and reflexive.
It was later shown by Szankowski in [82] that there exist closed linear sub-
spaces of 7 (with 1 < p < oo and p # 2) and of ¢y that do not have
the approximation property. Another result of Szankovski [83] asserts that
the Banach space L(H) of all bounded linear operators from an infinite-
dimensional Hilbert space H to itself, equipped with the operator norm,
does not have the approximation property.
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4.3. Fredholm Operators

Let X and Y be real Banach spaces and let A : X — Y be a bounded linear
operator. Recall that the kernel, image, and cokernel of A are defined by
ker(A) := {z € X | Az =0},
(4.3.1) im(A) := {Az ‘ ze X},
coker(A) :=Y/im(A).
If the image of A is a closed subspace of Y, then the cokernel is a Banach
space with the norm ([1.2.4)).

DEFINITION 4.3.1 (Fredholm Operator). Let X and Y be real Banach
spaces and let A : X — Y be a bounded linear operator. A is called a
Fredholm operator if it has a closed image and its kernel and cokernel
are finite-dimensional. If A is a Fredholm operator the difference of the
dimensions of its kernel and cokernel is called the Fredholm index of A
and is denoted by

(4.3.2) index(A) := dimker(A) — dim coker(A).

The condition that the image of A is closed is actually redundant in
Definition It holds necessarily when the cokernel is finite-dimensional.
In other words, while any infinite-dimensional Banach space Y admits lin-
ear subspaces Z C Y that are not closed and have finite-dimensional quo-
tients Y/Z, such a subspace can never be the image of a bounded linear
operator on a Banach space with values in Y.

LEMMA 4.3.2. Let X and Y be Banach spaces and let A: X — Y be a
bounded linear operator with a finite-dimensional cokernel. Then the image
of A is a closed subspace of Y.

Proof. Let m := dim coker(A) and choose vectors y1,...,ym € Y such
that the equivalence classes
[yi] :=y; +im(A) € Y/im(A), i=1,...,m,
form a basis of the cokernel of A. Define
X:=XxR"  |l(&N]g = lzlx + [Agmn

for x € X and A = (\1,...,A\n) € R™. Then X is a Banach space. Define
the linear operator A: X — Y by

Az, \) := Az + Z \iYi-

i=1
Then A is a surjective bounded linear operator and

ker(A) = {(2,)) € X x R™| Az = 0, A = 0} = ker(4) x {0}.
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Since A is surjective, it follows from Theorem [4.1.16| that there exists a
constant ¢ > 0 such that

=1 Y
for all z € X and all A € R™. Take A = 0 to obtain the inequality

inf ||z + + | Ao < €
nt T €l + [ len <

inf |z +¢|x <c|lA for all # € X.
gei?rm)”w Ellx < cllAz|y or all z

Thus A has a closed image by Theorem[4.1.16] This proves Lemmal4.3.2 [

THEOREM 4.3.3 (Duality for Fredholm Operators). Let X and Y
be Banach spaces and let A € L(X,Y). Then the following holds.

(i) If A and A* have closed images, then
dim ker(A*) = dim coker(A), dim coker(A*) = dim ker(A).

(ii) A is a Fredholm operator if and only if A* is a Fredholm operator.
(iii) If A is a Fredholm operator, then index(A*) = —index(A).

Proof. Assume A and A* have closed images. Then
im(A*) = ker(A)*, ker(A*) = im(A4)*
by Theorem and Theorem[4.1.16] Hence it follows from Corollary[2.3.26
that the dual spaces of the linear subspace ker(A4) C X and of the quotient
space coker(A) = Y/im(A) are isomorphic to
(ker(A))* = X*/ker(A)T = X*/im(A*) = coker(A*),
(coker(A))* = (Y/im(A))* = im(A)* = ker(A4*).

This proves part (i). Parts (ii) and (iii) follow directly from (i) and Theo-
rem [4.1.16] This proves Theorem 4.3.3 O

EXAMPLE 4.3.4. If X and Y are finite-dimensional, then every linear
operator A : X — Y is Fredholm and index(A) = dim X —dimY".

ExaMpPLE 4.3.5. Every bijective bounded linear operator between Ba-
nach spaces is a Fredholm operator of index zero.

ExXAMPLE 4.3.6. Consider the Banach space X = /P with 1 < p < o0
and let k € N. Define the linear operators Ay, A_ : 7 — (P by

Apx = (Thg1, T2, Tht 3y - - - ),

— A P
Az = (0,...,0,21, 29,23, ...) for z = (xi)ien € 7,

where x1 is preceded by k zeros in the formula for A_;. These are Fredholm
operators of indices index(Ay) = k and index(A_j) = —k.
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ExaMpPLE 4.3.7. Let X, Y, and Z be Banach spaces and let A: X — Y
and @ : Z — Y be bounded linear operators. Define the bounded linear
operator AP : X Z — Y by

(A® ®)(z,2) := Az + Dz.

If A is a Fredholm operator and dim Z < oo, then A ® ® is a Fredholm
operator and index(A @& ®) = index(A) 4+ dim Z. (Prove this!)

The next theorem characterizes the Fredholm operators as those opera-
tors that are invertible modulo the compact operators.

THEOREM 4.3.8 (Fredholm and Compact Operators). Let X and
Y be Banach spaces and let A: X — Y be a bounded linear operator. Then
the following are equivalent.

(1) A is a Fredholm operator.

(ii) There exists a bounded linear operator F : Y — X such that the opera-
tors lx —FA: X - X and Iy — AF :Y — Y are compact.

Proof. See page [183] O

The proof of Theorem 4.3.8| relies on the following lemma. This lemma
also gives a partial answer to the important question of how one can recog-
nize whether a given operator is Fredholm. It characterizes bounded linear
operators with a closed image and a finite-dimensional kernel and is a key
tool for establishing the Fredholm property for many differential operators.

LEMMA 4.3.9 (Main Fredholm Lemma). Let X and Y be Banach
spaces and let D : X —'Y be a bounded linear operator. Then the following
are equivalent.

(1) D has a finite-dimensional kernel and a closed image.

(ii) There exists a Banach space Z, a compact operator K : X — Z, and a
constant ¢ > 0 such that

(4.3.3) Izl x < c(IDz]ly + || K2] ;)
forallx € X.

Proof. We prove that (i) implies (ii). Thus assume D has a finite-
dimensional kernel and a closed image. Define m := dim ker(D) and choose a
basis x1, ...,z of ker(D). By the Hahn-Banach Theorem (Corollary [2.3.4))
there exist bounded linear functionals z7,...,x) € X such that

. (1, ifi=j o
<:13i,3:])—6”—{07 i£i fori,j=1,...,m.
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Define the bounded linear operator K : X — Z := ker(D) by

m
Kz = Z(xf,x)azz

i=1
Then K is a compact operator (Example . Moreover, the restric-
tion K|er(p) @ ker(D) — Z is the identity and so is bijective. Hence the
operator X — Y x Z :x — (Dz, Kx) is injective and its image im(D) x Z
is a closed subspace of Y x Z. Hence it follows from Corollary that
there exists a constant ¢ > 0 such that holds.

We prove that (ii) implies (i). Assume D satisfies (ii) and let K : X — Z
and ¢ > 0 be as in part (ii). We prove in three steps that D satisfies (i).

Step 1. Every bounded sequence in ker(D) has a convergent subsequence.

Let (25,)nen be a bounded sequence in ker(D). Since K is a compact opera-
tor, there exists a subsequence (xy,);en such that (Kzy,)ien is a Cauchy
sequence in Z. Since Dz, = 0 for all + € N, it follows from (4.3.3)
that ||z, — zn, |l x < c|[Kwp, — Kzp,l|z for all i,j € N. Hence (zy,)ien is
a Cauchy sequence and therefore converges because X is complete. The
limit x := lim;_,o @, belongs to the kernel of D and this proves Step 1.

Step 2. There exists a constant C > 0 such that

4.3.4 inf <C|D llxeX.
@s4) it fe+gl <CIDaly  foralla
Assume, by contradiction, that there does not exist a constant C' > 0 such
that (4.3.4]) holds. Then it follows from the axiom of countable choice that
there exists a sequence (&, )pen in X such that

4.3.5 inf n+ >n||Dxy, for all n € N.
(135) it fea b€l >0 Daly  foralln

Multiplying each element z,, by a suitable constant and adding to it an
element of the kernel of D, if necessary, we may assume that

4.3.6 inf -1, 1< <92  forallneN.
436)  _intflen+élx Sl <2 foralln

Then || Dz, |y < 1/n by (4.3.5) and (4.3.6]) and so lim,,—,o, Dz, = 0. More-
over, since K is compact, there is a subsequence (x,, );cn such that (Kzy, )ien
is a Cauchy sequence in Z. Since (Dzy,)ieny and (K, )ien are Cauchy se-
quences, it follows from (4.3.3) that (x,,)ien is a Cauchy sequence in X.
This sequence converges because X is complete. Define z :=lim; o zp,.
Then Dz = lim;_,o zp, = 0 and hence, by (4.3.6)),

1= inf : < - for all ¢ € N.
int €Ly <l ol forall

Since lim; o0 ||Tn, — z||x = 0, this is a contradiction. This proves Step 2.
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Step 3. D satisfies (i).

It follows from Step 1 and Theorem [1.2.11| that dimker(D) < co. It follows
from Step 2 and Theorem that the operator D : X — Y has a closed
image. This proves Step 3 and Lemma O

Proof of Theorem[[.3.8, We prove that (i) implies (ii). Thus assume
that A: X — Y is a Fredholm operator and define

Xo := ker(A), Y1 :=im(A).
Then, by Lemma there exist closed linear subspaces
X; CX, YoCY
such that
X =Xo® X, Y =Yy ® Y.
This implies that the bounded linear operator
A =Alx, : X1 =1

is bijective. Hence Al_l : Y7 — X; is bounded by the Inverse Operator
Theorem Define the bounded linear operator F': Y — X by

F(yo+y1) == A{'n for yo € Yp and y1 € Y3.
Then AF(yo+y1) = y1 and FA(xzo + x1) = x1 and hence
(ly — AF)(yo + y1) = yo, (Ix — FA)(xo +x1) = o

for all g € Xy, z1 € X1, yo € Yo, and y; € Y7. Since Xy and Yy are finite-
dimensional, the operators 1y — AF and llxy — F'A have finite rank and are
therefore compact (see Example [4.2.5]).

We prove that (ii) implies (i). Thus assume that there exists a bounded
linear operator F' : Y — X such that the operators K := Iy —FA: X — X
and L :=1y — AF : Y — Y are compact. Then

lzllx = [IF Az + Kz||x < c(|Azlly + | Kzl x)

for all z € X, where ¢ := max{1, |F'||}. Hence A has a finite-dimensional
kernel and a closed image by Lemma Moreover, L* : Y* — Y* is a

compact operator by Theorem and
[y"lye = 1 F* A%y + L*y*[ly« < c(||A™y"]

ye 1LY )

for all y* € Y*. Hence A* has a finite-dimensional kernel by Lemma [4.3.9
and so A has a finite-dimensional cokernel by Theorem This proves
Theorem [4.3.8 O
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4.4. Composition and Stability

THEOREM 4.4.1 (Composition of Fredholm Operators). Let X, Y, Z
be Banach spaces and let A: X —Y and B :Y — Z be Fredholm operators.
Then BA : X — Z is a Fredholm operator and

index(BA) = index(A) + index(B).

Proof. By Theorem there exist bounded linear operators F': Y —
X and G : Z — Y such that the operators 1x — FA, Iy — AF, 1y — GB,
and 1z — BG are compact. Define H := F'G : Z — X. Then the operators

]lx—HBA:F(]ly—GB)A—I—]lx—FA,
1z — BAH = B(ly — AF)G+ 1z — BG

are compact by part (i) of Theorem[4.2.10, Hence BA is a Fredholm operator
by Theorem {4.3.8

To prove the index formula, consider the operators

Ay : klil;l(rif)l) — ker(B), Aplx] := Ax,

m(4)  im(BA)’

These are well defined linear operators between finite-dimensional real vector
spaces. The operator Ag is injective and By is surjective by definition.
Second, im(Ap) = im(A) Nker(B) and hence

B ker(B)
coker(Ao) = N A ker(B)”
Third,
ker(Byg) = {[y] € Y/im(A)|By € im(BA)}
{[y] € Y/im(A) { Jx € X such that B(y — Ax) = O}
= {[y] € Y/im(A) |y € im(A) + ker(B) }
_ im(A) + ker(B)
B im(A)
ker(B)

im(A) N ker(B)
= coker(Ap).
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Hence, by Example we have
0 = index(Ap) + index(By)
= dim <li;E(BiAjé)l)) — dim ker(B) + dim coker(A) — dim (;?éii))
= dimker(BA) — dimker(A) — dim ker(B)
+ dim coker(A) + dim coker(B) — dim coker(BA)
= index(BA) — index(A) — index(DB).
This proves Theorem O

THEOREM 4.4.2 (Stability of the Fredholm Index). Let X and Y
be Banach spaces and let D : X —'Y be a Fredholm operator.

(i) If K : X =Y is a compact operator, then D+ K is a Fredholm operator
and index(D + K) = index(D).

(ii) There is a constant € > 0 such that the following holds. If P: X —Y
is a bounded linear operator such that ||P| < e, then D + P is a Fredholm
operator and index(D + P) = index(D).

Proof. We prove the Fredholm property in part (i). Thuslet D : X — Y
be a Fredholm operator and let K : X — Y be a compact operator. By The-
orem [£.3.8] there exists a bounded linear operator 7' : Y — X such that the
operators Ix —TD and 1y — DT are compact. Hence so are the opera-
tors Ix —T(D + K) and 1y — (D + K)T by Theorem [4.2.10, so D + K is
a Fredholm operator by Theorem [£.3.8]

We prove the Fredholm property in part (ii). Let D : X — Y be a Fred-
holm operator. By Lemma there exists a compact operator K : X — 7
and a constant ¢ > 0 such that ||z||x < ¢(||Dz|y + || Kz| z) for all z € X.
Now let P : X — Y be a bounded linear operator with the operator norm

1
1Pl < -
c
Then, for all x € X, we have
lzllx < c(IDzlly + 1K2l,)
(| D + Pally + [[Pelly + [ Kel ;)

<
< c(l(D+ Pzlly + 1 Kzlz) +clPllI=ll x

and hence

(I =cPDlzlx < c((D+ P)zlly + || Kz| 2).
So D+ P has a closed image and a finite-dimensional kernel by Lemma [.3.9
The same argument for the dual operators shows that D* + P* has a finite-

dimensional kernel whenever || P*|| = || P|| is sufficiently small, and so D + P
has a finite-dimensional cokernel by Theorem
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We prove the index formula in part (ii). As in the proof of Theoremm
define X := ker(A) and Y] := im(A) and use Lemma [2.3.30] to find closed
linear subspaces X7 C X and Yy C Y such that

X = Xo® X, Y=Yyo N .

For i,j € {0,1} define Pj; : X; — Yj as the composition of P|x, : X; =Y
with the projection Y =Yy ®Y; — Yj : yo +y1 = y;. Let D11 : Xy — Y7 be
the restriction of D to X; with values in Y7 = im(D). Then Dy is bijective.
We prove the following.

Claim. Assume the operator D11 + P11 : X1 — Y7 is bijective and define
Ag := Poo — Po1 (D11 + P11)71P10 : Xo — Y.
Then index(D + P) = index(Ap).
The claim shows that
index(D + P) = index(Ap) = dim Xy — dim Yy = index(D)

whenever the operator D11 + Py is bijective. By Corollary this holds
whenever ||Pi1]|||(D11) 7t < 1, and hence when | P|| is sufficiently small.

To prove the claim, observe that the equation
(4.4.1) (D + P)(xo +21) = yo + 11

can be written as
yo = Poozo + Porx1,

y1 = Pioxo + (D11 + Pi1)x

for g € Xo, 1 € X1 and yg € Yy, y1 € Y7. Since D1y + Pi; is bijective, the
equations in (4.4.2)) can be written in the form

Apzg = yo — Por(D11 + P11)_1y17
z1 = (D11 + P11)_1(y1 — Piozo).

(4.4.2)

(4.4.3)

This shows that

xg € ker(Ap),

z1=—(Di + P11)_1P10900

for z; € X; and so ker(D + P) = ker(Ap). Equation also shows that

xo+x1 Eker(D+ P) < {

. -1 .
yo+y1 €im(D+P) <= yo— Pou(Dii+Pui) w1 €im(Ay)

for y; € Y;. Thus the map Y — Yy : yo+y1 — yo — Po1 (DH + Pll)ilyl
descends to an isomorphism from Y/im(D + P) to Yp/im(Ap). Hence

coker(D + P) = coker(Ap).

This proves the claim and the index formula in part (ii).
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It remains to prove the index formula in part (i). Let K : X — Y be a
compact operator and define I := {t € R |index(D + tK) = index(D)}. By
part (ii) the set F(X,Y) C L(X,Y) of Fredholm operators of index k is
open for every k € Z, and so is their union F(X,Y) := ez Fr(X,Y).
Moreover, the map R — F(X,Y) : t — D +tK is continuous and hence the
pre-image of F(X,Y) under this map is open for every k € Z. Thus the
set I}, := {t € R|index(D + tK) = k} is open for all k € Z and R = (.5, Ix.-
Since I, = I for k = index(D) it follows that I and R\ I = [J,, Ir are open.
Since 0 € I and R is connected, it follows that I =R, thus 1€ I, and
so index(D + K) = index(D). This proves Theorem [4.4.2] O

Remark 4.4.3 (Fredholm Alternative). It is interesting to consider the
special case where X =Y is a Banach space and K : X — X is a compact
operator. Then Theorem asserts that 1 — K is a Fredholm operator
of index zero. This gives rise to the so-called Fredholm alternative. It
asserts that either the inhomogeneous linear equation

r—Kr=y

has a solution z € X for every y € X, or the corresponding homogeneous
equation x — Kz = 0 has a nontrivial solution. This is simply a consequence
of the fact that the kernel and cokernel of the operator 1— K have the same
dimension, and hence are either both trivial or both nontrivial.

Remark 4.4.4 (Calkin Algebra). Let X be a Banach space, denote
by L£(X) the Banach space of bounded linear operators from X to itself,
denote by F(X) C L(X) the subset of all Fredholm operators, and denote
by K(X) C L(X) the subset of all compact operators. By part (ii) of
Theorem [4.2.10] the linear subspace K(X) C £(X) is closed and, by part (i)
of Theorem the quotient space

L(X)/E(X)

is a Banach algebra, called the Calkin algebra. By part (ii) of Theo-
rem the set F(X) of Fredholm operators is an open subset of £(X)
and, by part (i) of Theorem this open set is invariant under the equiv-
alence relation. By Theorem the corresponding open subset

F(X)/E(X) € LIX)/K(X)

of the quotient space is the group of invertible elements in the Calkin slgebra.
By part (i) of Theorem the Fredholm index gives rise to a well defined
map

(4.4.4) F(X)/K(X) — Z: [D] — index(D).
By Theorem this map is a group homomorphism.
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Remark 4.4.5 (Fredholm Operators and K-theory). Let H be an
infinite-dimensional separable Hilbert space. A theorem of Kuiper [53] as-
serts that the group

Aut(H) :={A: H — H | Ais a bijective bounded linear operator }

is contractible. This can be used to prove that the space F(H) of Fredholm
operators from H to itself is a classifying space for K-theory. The
starting point is the observation that, if M is a compact Hausdorff space
and A: M — F(H) is a continuous map such that the operator A(p) is
surjective for all p € M, then the kernels of these operators determine a
vector bundle E over M, defined by

(4.4.5) E:={(p.z) € M x H|A@p)z = 0}.

More generally, any continuous map A: M — F(H), defined on a com-
pact Hausdorff space M, determines a so-called K-theory class on M
(an equivalence class of pairs of vector bundles under the equivalence rela-
tion (E,F) ~ (E',F') iff E® F' = E'® F), the K-theory classes associated
to two such maps agree if and only if the maps are homotopic, and every K-
theory class on a compact Hausdorff space can be obtained this way. This
is the Atiyah—Janich Theorem [5, 6, [7, [42]. In particular, when M
is a single point, the theorem asserts that the space Fi(H) of Fredholm
operators of index k is nonempty and connected for all k£ € Z.

Remark 4.4.6 (Banach Hyperplane Problem). In 1932 Banach [§]
asked the question of whether every infinite-dimensional real Banach space X
is isomorphic to X x R or, equivalently, whether every closed codimension
one subspace of X is isomorphic to X (see Exercise . This ques-
tion was answered by Gowers [31] in 1994. He constructed an infinite-
dimensional real Banach space X that is not isomorphic to any of its proper
subspaces and so every Fredholm operator on X has Fredholm index zero.
This example was later refined by Argyros and Haydon [4]. The Argyros—
Haydon space is an infinite-dimensional real Banach space X such that ev-
ery bounded linear operator A : X — X has the form A = A1+ K, where A
is areal number and K : X — X is a compact operator. Thus every bounded
linear operator on X is either a compact operator or a Fredholm operator
of index zero, the open set F(X) = Fo(X) = L(X) \ £(X) of Fredholm op-
erators on X has two connected components, and the Calkin algebra is
isomorphic to the real numbers, i.e.

L(X)/K(X) ~R.

This shows that the Hilbert space H in the Atiyah—J&nich Theorem cannot
be replaced by an arbitrary Banach space (see Remark . The details of
the constructions of Gowers and Argyros—Haydon go far beyond the scope
of the present book.



4.5. Problems 189

4.5. Problems
EXERCISE 4.5.1 (Injections and Surjections).
Let X and Y be Banach spaces. Prove the following.

(a) The set of all surjective bounded linear operators A : X — Y is an open
subset of L(X,Y") with respect to the norm topology.

(b) The set of all injective bounded linear operators A : X — Y is not
necessarily an open subset of £(X,Y’) with respect to the norm topology.

(c) The set of all injective bounded linear operators A : X — Y with closed
image is an open subset of £(X,Y’) with respect to the norm topology.

EXERCISE 4.5.2 (The Image of a Compact Operator).

Let X and Y be Banach spaces and let K : X — Y be a compact operator.
Prove the following.

(a) If K has a closed image, then dimim(K) < co.
(b) The image of K is a separable subspace of Y.

(c) If Y is separable, then there exists a Banach space X and a compact
operator K : X — Y with a dense image.

EXERCISE 4.5.3 (Compact Subsets of Banach Spaces).

Let X be a Banach space and let C C X be a closed subset. Then the
following are equivalent.

(i) C is compact.
(ii) There exists a sequence x,, € C' such that

(4.5.1) lim ||z,|| =0, C c conv({z, |n € N}).
n—oo
Hint 1: To prove that (ii) implies (i) observe that

(4.5.2) conv({zy |n € N}) = {Z Ay | Ap > 0, Z/\” = 1}
n=1 n=1

whenever lim,,_, ||z, || = 0.

Hint 2: To prove that (i) implies (ii), choose a sequence of compact sets
C; C X and a sequence of finite subsets Ay C C} such that C; = C and

2C C U §4—k (37), Cri1 = U ((2Cﬂ§4_k (1’)) — l‘)
€A TEA

for £ € N. Prove that, for every ¢ € C, there is a sequence xy € Aj such
that = > 72, 27F2;. Note that [|z|| <47F for all € Agy1 and all k € N.
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EXERCISE 4.5.4 (Continuity). Let X and Y be normed vector spaces.

(a) A linear operator A : X — Y is bounded if and only if it is continuous
with respect to the weak topologies on X and Y.

(b) A linear operator B : Y* — X™* is continuous with respect to the
weak™ topologies on Y* and X* if and only if there exists a bounded linear
operator A : X — Y such that B = A*.

(c) A linear operator A : X — Y is continuous with respect to the weak
topology on X and the norm topology on Y if and only if it is bounded and
has finite rank.

(d) Suppose X and Y are Banach spaces and denote by B* C Y™ the closed
unit ball. Then a bounded linear operator A : X — Y is compact if and
only if A*|g~ : B* — X* is continuous with respect to the weak* topology
on B* and the norm topology on X*.

(e) Suppose X and Y are reflexive Banach spaces and denote by B C X
the closed unit ball. Then a bounded linear operator A : X — Y is compact
if and only if A|p : B — X is continuous with respect to the weak topology
on B and the norm topology on Y.

EXERCISE 4.5.5 (Gantmacher’s Theorem). Let X and Y be Banach
spaces and let A: X — 'Y be a bounded linear operator. Then the following
are equivalent.

(i) A is weakly compact, i.e. if B C X is a bounded set, then the weak
closure of A(B) is a weakly compact subset of Y.

(ii) If (zn)nen is a bounded sequence in X, then the sequence (Axy)nen inY
has a weakly convergent subsequence.

(iii) A™(X*) C iy (Y).

(iv) A* : Y* — X* is continuous with respect to the weak™® topology on Y*
and the weak topology on X*.

(v) The dual operator A* : Y* — X* is weakly compact.
Hint: To prove that (i) implies (iii) denote by
B C X, B™ c X**

the closed unit balls and denote by C' C Y the weak closure of A(B). If (i)
holds, then ¢y (C) is a weak* compact subset of Y**. Use Goldstine’s The-

orem (Corollary [3.1.29)) to prove that
A™(B*™) C vy (O).

(See Exercise 3.7.8])
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EXERCISE 4.5.6 (Pitt’s Theorem). Let 1 < p < g < co. Then every
bounded linear operator A : £ — (P is compact.

(a) Fix a bounded linear operator A : {4 — (P such that ||A|| = 1 and a
sequence (Tp)nen in €4 that converges weakly to zero. It suffices to prove

nh_}n;o Az, ||, = 0.

Hint: Use Theorem and part (e) of Exercise [£.5.4]
(b) If (yn)nen is a sequence in P that converges weakly to zero, then
(4.5.3) lim sup [y + yall;; = [lyll; + lim sup [|yn||}

n—oo n—oo
for every y € /P. Hint: Assume first that y has finite support.
(c) Let x,, be as in (a), fix a constant € > 0, and choose x € 7 such that
(4.5.4) zll, =1, l—e<|Ax|, <1

Then
1/q

1/p
(4.5.5) (HA:cHg + AP lim sup HAa;an) < (Hx\g + A?lim sup ]anZ>
n—oo n—oo
for all A > 0. Hint: Use the equation (4.5.3)) in part (b) with
Yn = AAxy,

and the inequality [|Az + AAwz,[|, < ||z + Az,
(d) There exists a constant C' > 0 such that
(14 XICP/T — (1 — )P

AP
for all A > 0 and all ¢ > 0. Hint: Take C' > sup,cy [|7nl|, and use the
inequalities (4.5.4) and (4.5.5)) in part (c).
(e) Choose \ := C~'¢!/4 in ([&.5.6) to obtain

p/q _ (1 — )P
(4.5.7) limsup || Az, |} < CPel=r/a <(1+€) 1 + 1-(1-¢) )

n— o0 9 1>

(4.5.6) lim sup [| Az ||} <
n—oo

for all € > 0. Take the limit £ — 0 in (4.5.7) to obtain lim,_,c [|Azy |, = 0.

EXERCISE 4.5.7 (Existence of Fredholm Operators).

Let X and Y be Banach spaces and suppose that there exists a Fredholm
operator from X to Y. Prove the following.

(a) X is reflexive if and only if YV is reflexive.

(b) X is separable if and only if Y is separable.
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EXERCISE 4.5.8 (Codimension One Subspaces). Let X be a real Ba-
nach space. Prove that any two closed codimension one subspaces of X are
isomorphic to one another. Hint: If Y and Z are distinct closed codimen-
sion one subspaces of X, then each of them is isomorphic to (Y N Z) x R.

EXERCISE 4.5.9 (Existence of Index One Fredholm Operators).
Let X be an infinite-dimensional real Banach space. Prove that the following
are equivalent.

(i) X is isomorphic to X x R.

(ii) There exists a codimension one subspace of X that is isomorphic to X.
(iii) Every closed codimension one subspace of X is isomorphic to X.

(iv) There exists a Fredholm operator A : X — X of index one.

(v) The homomorphism (4.4.4) is surjective.

EXERCISE 4.5.10 (Existence of Index Zero Fredholm Operators).
(a) Let X and Y be Banach spaces and suppose that there exists an index
zero Fredholm operator from X to Y. Prove that X and Y are isomorphic.

(b) Let X be a Banach space and let Y C X be a closed codimension one
subspace. Prove that there is an index one Fredholm operator A: X — Y.
If X is not isomorphic to any proper closed subspace of X, prove that every
Fredholm operator from X to Y has index one.

EXERCISE 4.5.11 (Fredholm Operators Between ¥ Spaces).

(a) Let 1 < p < co. For every integer n € Z construct a Fredholm opera-
tor A : /P — (P of index n.

(b) Construct a family of examples in (a) that are neither injective nor
surjective.

(c) Let 1 < p,g < oo and p # q. Does there exist a Fredholm operator
from fP to £97

EXERCISE 4.5.12 (Fredholm Operators and Vector Bundles).

Let H be a separable infinite-dimensional Hilbert space and, for k& € Z,
denote by Fi(H) the space of Fredholm operators A : H — H of index k.
Find a continuous map
A:S' = Fi(H)
such that the Fredholm operator A(z): H — H is surjective for all z € S!,
and the vector bundle
E:={(z,¢ €S x H|A(z)¢é =0}

over S1 is a Mobius band.
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EXERCISE 4.5.13 (Fredholm Alternative).
Fix an interval I := [a,b] with a < b, let f;,g; € £2(I) for i = 1,...,n, and
define

n

K(z,y) ==Y filx)gily)  fora<wzy<b.
=1

For h € L?(I) consider the equation
b
(4.5.8) u(x) +/ K(z,y)u(y)dy = h(x) fora < x <b.

Prove that equation (4.5.8)) either has a unique solution u € L?(I) for ev-
ery h, or the homogeneous equation with h = 0 has a nonzero solution w.

EXERCISE 4.5.14 (Hilbert Spheres).

(a) The unit sphere
S:={ze 2 |z, = 1}

is contractible, i.e. there exists a continuous map f :[0,1] x S — S and an
element e € S such that

f(O,CL'):e, f(l,a:):x
forallx € S.

Hint: Let eq, es,e3,... be the standard orthonormal basis of 2 and define
the shift operator T': ¢ — (2 by

T(x1,2z2,23,...) = (0,21,22,23,...) for £ = (;)sen € £2.

Then Te, = e, for all n € N. Consider the maps g : [0,1] x £2 — ¢2 and
h:[0,1] x £2 — ¢% defined by
g(t,z):= (1 —t)eg + tTz, h(t,x) := (1 —t)Tx + tx

for 0 <t < 1and z € £2. Use these maps to show that £2\ {0} is contractible
and then normalize to deduce that S is contractible.

(b) Refine the construction in (a) to obtain a map f : [0,1] x S — S that
satisfies
f0,z)=e,  f(Lz)==z,  flt,e)=e

for all x € S and all ¢ € [0,1]. This means that the singleton {e} is a
deformation retract of S.

(c) Prove that the unit sphere in any infinite-dimensional Hilbert space is
contractible.
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EXERCISE 4.5.15 (Fredholm Intersection Theory).

Let X be a Banach space and let X;, X9 C X be closed subspaces. The
triple (X, X1, X>2) is called a Fredholm triple if the subspace X; + Xs
is closed, and the spaces X; N X3 and X/(X; + X2) are finite-dimensional.
The Fredholm index of a Fredholm triple (X, X7, X2) is defined by

(459) index(X, X1, XQ) = d1m(X1 N XQ) — d1m(X/(X1 + XQ))

(a) Prove that (X, X, X») is a Fredholm triple if and only if the operator
Xl X X2 — X : (.’El,:Eg) = 1+ T2
is Fredholm. Show that the Fredholm indices agree. Hint: Corollary [2.2.9]

(b) Assume X; + X» has finite codimension in X. Prove that X; + X is a
closed subspace of X. Hint: Lemma

(c) Assume (X, X3, X5) is a Fredholm triple. Prove that the subspaces X
and X5 are complemented.

(d) Define the notion of a small deformation of a complemented subspace.

(e) Prove that the Fredholm property and the Fredholm index of a Fredholm
triple (X, X1, X2) are stable under small deformations of the subspaces X
and Xo. Hint: Theorem |4.4.2

EXERCISE 4.5.16 (Rellich’s Theorem). Let I := [0,1] C R be the unit
interval and fix a real number p > 1. Denote by

(4.5.10) Whe([) = {f I R‘ f is absolutely continuous }

and [ [f/(t)[" dt < oo

the Sobolev space of WP-functions on I with the norm

sy U= ([ (ror s ror)a)

for f € WHP(I,R). In particular, W'1(I) is the Banach space of absolutely
continuous functions.

(a) Prove that W1P(I) is a Banach space with the norm (4.5.11)). Hint:
Use [75, Thm 6.19] or Theorem [7.5.18 with X = R.

(b) Prove that the inclusion of W1#(I) into the Banach space C(I) of contin-
uous functions f : I — R, equipped with the supremum norm, is a bounded
linear operator.

(c) Prove that the inclusion W'P(I) < C(I) is a compact operator for p > 1
but not for p=1. Hint: Show that the unit ball in WYP(I) is equi-

continuous for p > 1 and use the Arzela—Ascoli Theorem (Corollary [1.1.13]).
For p = 1 consider the functions f,(t) := t".
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EXERCISE 4.5.17 (Fredholm Theory and Homological Algebra).

(a) Exact Sequences. A finite sequence

d d d dn—1
0— Vo2V SV — Vo =V, —0

of vector spaces and linear maps is called exact if dy is injective, d,_1 is
surjective, and ker(dy) = im(dg_1) for £k = 1,...,n — 1. If the sequence
is exact and the vector spaces Vj are all finite-dimensional, then its Euler
characteristic vanishes, i.e. > 7_,(—1)*dim V}, = 0.

(b) Two linear operators A : X — Y and B : Y — Z between vector spaces
determine a natural long exact sequence

0 — ker(A) — ker(BA) — ker(B) N
LN coker(A) — coker(BA) — coker(B) — 0,

where the map ¢ : ker(B) — coker(A) assigns to an element y € ker(B) the
equivalence class of y in the quotient space Y/im(A) = coker(A).

(c) If the vector spaces X, Y, Z in (b) are Banach spaces and two out of
the three operators A, B, BA are Fredholm operators, then so is the third
and index(BA) = index(A) + index(B). (See also Theorem [1.4.1])

(d) The Snake Lemma. Consider a commutative diagram

0 U |4 w 0
R N
0 X Y Z 0

of vector spaces and linear operators such that the horizontal rows are short
exact sequences. Then there is a natural long exact sequence

0 — ker(A) — ker(B) — ker(C) LN
SN coker(A) — coker(B) — coker(C') — 0,
where the boundary map
J : ker(C') — coker(A)

is defined as follows. Let w € ker(C') and choose an elementv € V' that maps
to w under the surjection V. — W ; then Bv € Y belongs to the kernel of the
map Y — Z; so there is a unique element x € X that maps to Bv under
the injection X —Y and ow := [z] € X/im(A) = coker(A) is independent
of the choice of v.

(e) Deduce from the Snake Lemma that, if U, V,W, X Y, Z are Banach
spaces and two out of the three operators A, B, C' are Fredholm operators,
then so is the third and index(B) = index(A) + index(C').






Chapter 5

Spectral Theory

The purpose of the present chapter is to study the spectrum of a bounded
linear operator on a real or complex Banach space. In linear algebra a
real matrix may have complex eigenvalues and the situation is analogous
in infinite dimensions. To define the eigenvalues and, more generally, the
spectral values of a bounded real linear operator on a real Banach space
it will be necessary to complexify real Banach spaces. Complex Banach
spaces and the complexifications of real Banach spaces are discussed in a
first preparatory Section[5.1] Other topics in the first section are the integral
of a continuous Banach space valued function on a compact interval and
holomorphic operator valued functions. These are elementary but important
tools in spectral theory. Section introduces the spectrum of a bounded
linear operator, examines its elementary properties, shows that the spectral
radius is the supremum of the moduli of the spectral values, examines the
spectrum of a compact operator, and establishes the holomorphic functional
calculus. The remainder of this chapter deals exclusively with operators on
Hilbert spaces. Section discusses complex Hilbert spaces and examines
the elementary properties of the spectra of normal and self-adjoint operators.
Section [5.4]introduces C* algebras and establishes the continuous functional
calculus for self-adjoint operators. It takes the form of an isomorphism from
the C* algebra of complex valued continuous functions on the spectrum to
the smallest C* algebra containing the given operator. Section[5.5|introduces
the Gelfand spectrum of a commutative unital Banach algebra and uses it to
extend the continuous functional calculus to normal operators. Section
shows that every normal operator can be represented by a projection valued
measure on the spectrum. Section shows that every self-adjoint operator
is isomorphic to a direct sum of multiplication operators on L? spaces.

197
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5.1. Complex Banach Spaces
5.1.1. Definition and Examples.

DEFINITION 5.1.1. (i) A complex normed vector space is a complex
vector space X, equipped with a norm function X — R:z — ||z|| as in
Definition [LT.2] that satisfies in addition

IAz|| = |A| ||z]] for all x € X and all A € C.

A complex normed vector space (X, ||-||) is called a complex Banach space
if it is complete with respect to the metric (1.1.1)).

(ii) Let X and Y be complex Banach spaces and denote by
LX)Y)={A: X oY } A is complex linear and bounded }

the space of bounded complex linear operators from X to Y (see Defini-
tion [1.2.1)). Then £°(X,Y) is a complex Banach space with the operator
norm (1.2.2). In the case X =Y we abbreviate £(X) := L X, X).

(iii) The (complex) dual space of a complex Banach space X is the space
X*:=LX,C)

of bounded complex linear functionals A: X — C. If X and Y are com-
plex Banach spaces and A : X — Y is a bounded complex linear operator,
then the (complex) dual operator of A is the bounded complex linear
operator A* : Y* — X* defined by A*y* :=y* 0 A: X — C for y* € Y.

Remark 5.1.2. A complex normed vector space X can be viewed as a
real normed vector space, equipped with a linear map J : X — X such that

(5.1.1) J? =1
and
(5.1.2) ||cos(0)x + sin(8) Jz|| = ||| for all # € R and all z € X.

If J: X — X is a linear map that satisfies and , then X has
a unique structure of a complex normed vector space such that multipli-
cation by the complex number i is given by the linear operator J. Scalar
multiplication is then given by the formula

(5.1.3) (s +it)x := sz +tJx for s,t € R and z € X.

In this notation a complex linear operator from X to itself is a real linear
operator that commutes with .J.



5.1. Complex Banach Spaces 199

Remark 5.1.3. Let X be a complex Banach space and let A : X — C be
a bounded complex linear functional. Then ReA : X — R is a bounded real
linear functional of the same norm as A, i.e.

Az ReA(x
A= sup BEN_ gy [ROADT_ oy,
zeX\{0} [Eal zeX\{0} |zl
To see this, let € X and choose 6 € R such that el A(z) € R. Then

[A(2)] = [”A(2)] = [ReA(e2)] < [ReAll|e”z]| = |[ReAl[lz]|.

Hence [|[A]] < |[[ReA|l and the converse inequality is obvious. Thus the map
L(X,C) = L(X,R) : A — ReA

is a Banach space isometry. Its inverse sends a bounded real linear func-
tional Ag : X — R to the bounded complex linear functional A : X — C de-
fined by A(z) := Ag(x) — iAg(iz) for x € X. This shows that all the results
about dual spaces and dual operators proved in Chapters and {4 carry
over verbatim to the complex setting. In particular, the complex dual oper-
ator A* has the same operator norm as A by Lemma |4.1.2

The reader is cautioned that for the complex dual space X™* and the
complex dual operator A* the same notation is used as in the setting of real
Banach spaces although the meanings are different. It should always be clear
from the context which dual space or dual operator is used in the text. We
emphasize that the examples in Subsection all have natural complex
analogues. Here is a list.

EXAMPLE 5.1.4. (i) The vector space C" of all n-tuples z = (21, ..., %)
of complex numbers is a complex Banach space with each of the norms

n 1/p
lal, = (Z:c\) ol = max o
=

for1 <p<ooandz=(x1,...,2,) € C".

(ii) For 1 < p < oo the set £P(N, C) of p-summable sequences x = (z;);cn of
complex numbers is a complex Banach space with the norm

0 1/p
], == (ZI%I”)
i=1

for x = (x;)ien € P(N,C). Likewise, the space ¢*°(N,C) of bounded se-
quences of complex numbers is a complex Banach space with the norm

%] == sup]|
€N

for © = (z;)ieny € (N, C).
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(iii) Let (M, A, ) be a measure space, fix a constant 1 < p < oo, and denote
the space of p-integrable complex valued functions on M by £P(u,C). The
function

1/p
£ ) R o 1= ([ 1)
descends to the quotient space
LP(u, C) := LP(pu, C) /~,

where f ~ g iff the function f — g vanishes almost everywhere. This quotient
is a complex Banach space.

(iv) Let (M, A, u) be a measure space and denote by £>°(u, C) the space of
complex valued bounded measurable functions f: M — C. As in part (iii)
denote by ~ the equivalence relation on £>(u,C) given by equality almost
everywhere. Then the quotient space

L%(1,C) i= £ (1, )/~
is a complex Banach space with the norm defined by (1.1.3]).

(v) Let M be a compact topological space. Then the space C(M,C) of
bounded continuous functions f : M — C is a complex Banach space with
the supremum norm

[fllo == sup|f(p)|
peEM
for f € C(M,C).

(vi) Let (M, A) be a measurable space, i.e. M is a set and A C 27 is a
o-algebra. A complex measure on (M, A) is a function

pw:A—C

that satisfies () = 0 and is o-additive, i.e.

o0 o n
' <U A") = > _l40) = Jim 32 (40
i=1 i=1 i=1
for every sequence of pairwise disjoint measurable sets A; € A. The space
M(M,A,C):={p: A—=C ‘ {1 is a complex measure }
of complex measures on (M, A) is a Banach space with the norm given by

neN, Ay,..., A, € A,
A;NAj; =0 fori# j,

(5.1.4) liall = sup > [p(Ay))|
i=1 U?:l AZ =M

for p € M(M,A,C).
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The next goal is to show that every real Banach space can be complex-
ified. Recall first that the complexification of a real vector space is the
complex vector space

X=XxX=2XrC,
equipped with the scalar multiplication (s + it) - (z,y) := (sz — ty, tx + sy)
for A\=s+1it € C and z = (z,y) € X°. With slight abuse of notation, we
write x + iy := (x,y), x := 2 + 10 = (x,0), iy := 0+ iy = (0,y) for z,y € X.
Thus we do not distinguish in notation between an element x € X and the
corresponding element (x,0) € X¢. In other words, the vector spaces X
and iX are viewed as real linear subspaces of the complex vector space X¢
via the embeddings X — X¢: 2 — (2,0) and iX — X¢:iy — (0,y). Then
X =XopiX

and scalar multiplication is given by the familiar formula

(s +it)(x + iy) := (sz — ty) + i(tx + sy)

for s+ite Cand z +iy € X If z =x + iy € X¢ with z,y € X, then the
vector © =: Re(z) € X is called the real part of z and y =: Im(2) € X is
called the imaginary part of z.

EXERCISE 5.1.5. Let X be a real normed vector space and define

. 2 . 2
6:15)  lelxe = sup/IRe(es) [ + [Im(e)  for = € X°.
€
Prove the following.
(i) (X< |-l xe) is a complex normed vector space.

(ii) The natural inclusions X — X¢and iX — X¢ are isometric embeddings.

(iii) If X is a Banach space, then so is X¢. Hint: For all z € X¢

VIReG)[% + 1m()[1% < 2] e < /2 Re(=)]% +2 [m(=)]3-

(iv) If Y is another real normed vector space, A : X — Y is a bounded real
linear operator, and the complexified operator A¢: X¢ — Y¢ is defined
by A¢(xy + ixg) := Az + iAzy for z1 + izg € X€ then A€ is a bounded
complex linear operator and [|A°|| = ||A]|.

(v) If A: X — X is a bounded linear operator, then A and A° have the
same spectral radius (see Definition [1.5.6)).

The norm (5.1.5)) on the complexified Banach space X¢ is a very general
construction that applies to any real Banach space, but it is not necessarily
the most useful norm in each explicit example, as the next exercise shows.
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EXERCISE 5.1.6. Let (M, d) be a nonempty compact metric space. The
complexification of the space C (M) of continuous real valued functions on M
is the space C(M,C) of continuous complex valued functions on M. Show
that the supremum norm on C'(M, C) does not agree with the norm in
unless M is a singleton. Show that both norms are equivalent.

EXERCISE 5.1.7. Let X be a real Banach space. Prove that the com-
plezification of the dual space, L(X,R)¢, is isomorphic to the dual space of
the complexification, L9(X¢, C). Hint: The isomorphism assigns to each
element A + iAy € L£(X,R)¢ a complex linear functional A¢: X¢ — C via

A(z +1iy) := A1 () — Ao(y) +i(A2(z) + A1 (y))  for z,y € X.

Prove that the isomorphism L£(X,R)¢ — £¢(X¢ C) is an isometry when-
ever X is a Hilbert space, but not in general.

5.1.2. Integration. It is often useful to integrate continuous functions on
a compact interval with values in a Banach space. Assuming the Riemann
integral for real or complex valued functions, the integral is defined as fol-
lows.

LEMMA 5.1.8 (Integral of a Continuous Function). Let X be a real
or complex Banach space, fix two real numbers a < b, and let = : [a,b] — X
be a continuous function. Then there exists a unique vector £ € X such that

(5.1.6) (x*, &) = /b<x*,x(t)> dt for all x* € X™.

Proof. For n € N define &, € X and J, > 0 by

2m—1

b= 3 e (a0 s s el a0

k=0 ls—t|<277(b—a)

Here the supremum runs over all s,t € [a,b] such that |s —¢| < 27"(b — a).
Then lim;,,_,~ 6, = 0 because z is uniformly continuous. Moreover,

1€ntm — &nll < (b—a)dy, for all m,n € N.

Hence (&,)nen is a Cauchy sequence in X. Since X is complete, this sequence
converges. Denote its limit by & := lim;,, 00 €. Then

2ly_g b—a b
k=0 a

for all x* € X*, by the convergence theorem for Riemann sums. This proves
existence. Uniqueness follows from the Hahn-Banach Theorem (Corol-

lary and Corollary [2.3.5). This proves Lemma O
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DEFINITION 5.1.9 (Integral). Let X be a real or complex Banach space
and suppose that z : [a,b] — X is a continuous function on a compact in-

terval [a,b] C R. The vector £ € X in Lemma is called the integral
of = over [a, b] and will be denoted by f; x(t) dt := &. Thus the integral of

over [a,b] is the unique element ffa:(t) dt € X that satisfies the equation

(5.1.7) <x*,/abx(t) dt> = /:<x*,x(t)>dt for all z* € X*.

With this definition in place all the main results about the one-dimen-
sional Riemann integral in first year analysis carry over to vector valued
integrals.

LEMMA 5.1.10 (Properties of the Integral). Let X be a real or com-
plex Banach space, fiz two real numbers a < b, and let x,y : [a,b] — X be
continuous functions. Then the following holds.

(1) The integral is a linear operator C(la,b], X) — X. In particular,

b b b
/(:c(t)+y(t)) dt:/ 1:(t)dt+/ y(t) dt.

(i) Ifa <c <D, then

/abx(t)dt:/acm(t)dt+/cbx(t)dt.

(iii) If Y is another (real or complex) Banach space and A : X — Y is a
bounded (real or complex) linear operator, then

/ab Ax(t) dt = A/abx(t) dt.

(iv) Assume x : [a,b] — X is continuously differentiable, i.e. the limit

#(t) == }{%W

exists for all t € [a,b] and the derivative & : [a,b] — X is continuous. Then
b
/ z(t) dt = x(b) — x(a).
(V) Ifa < 8 and ¢ : [, B] — [a,b] is a diffeomorphism, then

/ "ty dt = / o (6()(s) ds.
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(vi) The integral satisfies the mean value inequality

/:m(t) dtH < /ab |(t)]| dt.

(vii) Let zo € X and assume

t
a:(t):xo—i—/ y(s)ds fora<t<b.
Then x is continuously differentiable and x(t) = y(t) for all t € [a,b].

Proof. Parts (i), (ii), (iii) follow directly from the definitions, the additi-
vity of the Riemann integral, and the Hahn-Banach Theorem. Part (iv)
follows from the Fundamental Theorem of Calculus and the Hahn-Banach
Theorem, and part (v) follows from Change of Variables for the Riemann
integral and the Hahn-Banach Theorem. To prove part (vi), observe that

<x*, /abm(t)dt>‘ -

b
S/wawﬂﬁ

/ab@*, x(t)>dt‘

b
<Mﬂ/Hﬂmwt

for all z* € X* and hence, by Lemma [2.4.1

‘/abx(t) dt” - ‘<x*7f:a:(t) dt>) . /ab”g;(t)n »

Z*eX*\{0} [zl
This proves (vi). Now let =,y be as in (vii) and let a <t <t + h <b. Then

oy =& [ wtoas

by (vi). Since y : [a,b] — X is continuous, this implies

t+h
<t I -v@lds< sy -yl

t<s<t+h

1 [th z(t 4+ h) — x(t)
t)y= i - ds= 1l _—"
y(t) hﬁ(l)r,%>0 h/t y(s)ds ha&%w h
for a <t < b. Here the second equation follows from (ii). Likewise,
) x(t) — z(t — h)
)= lim T
y(t) hﬁ%)r,%>0 h

for a <t <b. This proves part (vii) and Lemma [5.1.10 O
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5.1.3. Holomorphic Functions. This is another preparatory subsection.
It discusses holomorphic functions on an open subset of the complex plane
with values in a complex Banach space. The most important examples in
spectral theory are operator valued holomorphic functions.

DEFINITION 5.1.11 (Holomorphic Function). Let 2 C C be an open
set, let X be a complex Banach space, and let f: ) — X be a continuous
function.

(i) The function f is called holomorphic if the limit
B) —
f/(Z) = hm f(Z + ) f(Z)

h—0 h
exists for all z € Q and the function f’: Q — X is continuous.

(ii) Let v : [a,b] — Q be a continuously differentiable function on a compact
interval [a,b] C R. The vector

b
(5.1.8) [ fiz= [ oo
¥ a
in X is called the integral of f over ~.

The next lemma characterizes operator valued holomorphic functions. It
shows, in particular, that every weakly holomorphic operator valued function
is continuous in the norm topology.

LEMMA 5.1.12 (Characterization of Holomorphic Functions).

Let X andY be complex Banach spaces and let A : Q — L(X,Y) be a weakly
continuous function, defined on an open set Q C C. Then the following are
equivalent.

(i) The function A is holomorphic.

(ii) The function
Q—=C:z— (Y A(2)x)
is holomorphic for every x € X and every y* € Y*.
(iii) Let zp € Q and r > 0 such that
B.(20) ={z€C| |z — 20| <r} C Q.
Define the loop v : [0,1] — Q by
v(t) := zg + re*™it for0<t<1.

Then, for all x € X, ally* € Y*, and all w € C, we have

27 Z—w

(519 |w—zol<r = ( A@w)) = 1/W(2)“’>dz.
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Proof. That (i) implies (ii) follows directly from the definitions and
that (i) implies (iii) is Cauchy’s integral formula for complex valued holo-

morphic functions (see [I, page 119]).

We prove that (iii) implies (i) by extending the standard argument
for holomorphic functions to operator valued functions. For each w € C
with |w — 29| < r, define B(w) € L°(X,Y) and ¢ > 0 by

1 A
(5.1.10)  Blw)z:= AR L rn s AR

B 2mi v (Z - ’LU)2 |z—z0|=r

Then c is finite by Theorem[2.1.1} For h € C with 0 < |h| < r — |w| we prove
A(w + h) — A(w) cr|h|

h (r = [wh)*(r — |w] = [A])”
To see this, let z € X and y* € Y*. Then, by (5.1.9) and (5.1.10)),

<y*’ Aw + h)z — A(w)r B<w)x>

1 1 1 1 1
" 2mi 7(h(z—w—h_z—w>_(Z—w)2><y*’A(Z)x>alZ
[y AGE
2mi J, (z —w)2(z —w—h)
The absolute value of the integral of a function over a curve is bounded
above by the supremum norm of the function times the length of the curve.

In the case at hand the length is 27r. Hence

(i Al dwe_ g,

(5.1.11) — B(w)|| <

L[ s,
C 27 | ), (z—w) (z—w—h)
rlh| [(y*, A(z)z)|
< sup
|z—z0|=r |Z - ’UJP’Z —w-= h’

cr|hl[ly*[[ll=|
~ (= [w])*(r = |w| — |R])
for all x € X and all y* € Y*. Thus the estimate follows from the
Hahn-Banach Theorem 2.3.5

By the function A : Q@ — L£°(X,Y) is differentiable at each point
w € By(2p) and its derivative at w is equal to B(w). Thus A is continuous in
the norm topology and so is the function B : B,(z9) — £¢(X,Y) by (5.1.10).
Hence A is holomorphic and this proves Lemma [5.1.12 O

The next three exercises show that many of the familiar results in com-
plex analysis carry over to the present setting.
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EXERCISE 5.1.13 (Holomorphic Functions are Smooth). Let X be
a complex Banach space, let Q2 C C be an open subset, and let f: Q — X
be a holomorphic function.

(i) Prove that its derivative f’:  — X is again holomorphic. Hint: Use
the equivalence of (i) and (ii) in Lemma 5.1.12|and use [1, Lemma 3, p 121].

(ii) Prove that f is smooth. Hint: Induction.

(iii) Let 2o € Q and r > 0 such that B,(zy) C Q and define y(t) := zo+7re?™i
for 0 <t < 1. Prove that the nth complex derivative of f at w € B,(zg) is
given by the Cauchy integral formula

! f(z)
5.1.12 ™) (w) = ”/d .
( ) F(w) 2ri J, (2 —w)ntl *
Hint: Use the Hahn—Banach Theorem [2.3.5 and the Cauchy Integral For-
mula for derivatives (see [I, p 120] or [74, p 60]).
EXERCISE 5.1.14 (Power Series). Let X be a complex Banach space
and let (an)nen, be a sequence in X such that
_ 1
lim SUPp— 00 HanH

Prove that the power series

o7 >0

f(z):= Z anz"
n=0

converges for every complex number z € C with |z| < p and defines a holo-
morphic function f: B,(0) — X. Choose a number 0 < r < p and define
the loop 7 : R/Z — C by ~(t) := re?™i for t € R. For n € Ny prove that the
coefficient a,, € X is given by

f™MO) 1 f(2)
n! 27 J, zntl
Hint: Use the Hahn—Banach Theorem [2.3.5] and the familiar results about
power series in complex analysis (see [1, page 38]).

(5.1.13) an

EXERCISE 5.1.15 (Unique Continuation). Let  C C be a connected
open set, fix an element zg € (2, and let f, g : 2 — X be holomorphic func-
tions with values in a complex Banach space X. Prove that f =g if and
only if f(™(zy) = g™ (29) for all n € N.

The archetypal example of an operator valued holomorphic function is
given by z — (21 — A)~!, where A : X — X is a bounded complex linear
operator on a complex Banach space X. It takes values in the space L£¢(X)
of bounded complex linear endomorphisms of X and is defined on the open
set, of all complex numbers z € C such that the operator z1 — A is invertible.
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5.2. Spectrum

5.2.1. The Spectrum of a Bounded Linear Operator.

DEFINITION 5.2.1 (Spectrum). Let X be a complex Banach space and
let A € L(X). The spectrum of A is the set
(5.2.1) o(A) := {X € C|the operator A1 — A is not bijective}
o =Po(A)URo(A)UCo(A).

Here Po(A) is the point spectrum, Ro(A) is the residual spectrum,
and Co(A) is the continuous spectrum. These are defined by

Po(A):={xeC { the operator A1 — A is not injective}

the operator A1 — A is injective }

Ro(A) := {/\ eC ‘ and its image is not dense

Co(A) := ¢ A e C| and its image is dense,

' the operator A1 — A is injective
but it is not surjective

The resolvent set of A is the complement of the spectrum. It is denoted
by

(5.2.3)  p(A) :==C\ o(A) = {X € C|the operator A1 — A is bijective} .

A complex number A\ belongs to the point spectrum Po(A) if and only if
there exists a nonzero vector x € X such that

Axr = \z.

The elements A € Po(A) are called eigenvalues of A and the nonzero vec-
tors x € ker(Al — A) are called eigenvectors. When X is a real Banach
space and A € L(X) we denote by o(A) := og(A°) the spectrum of the com-
plexified operator A¢ and similarly for the point, continuous, and residual
spectra.

EXAMPLE 5.2.2. If dim X = n < oo, then 0(A) = Po(A) is the set of
eigenvalues and #0(A) < n. If X = {0}, then o(A) = 0.

EXAMPLE 5.2.3. Let X = ¢? and define the operators A, B : £ — (? by
Az = (z2,x3,24,...), Bz :=(0,21,x2,3,...)
for x = (7;);en € £2. Then
o(A)=0(B)=D
is the closed unit disc in C and

Po(A) = int(D),  Ro(A) =0, Co(A) = St
Po(B) =1, Ro(B) = int(D), Co(B) =
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EXAMPLE 5.2.4. Let X = ¢2 and let ()\;);en be a bounded sequence of
complex numbers. Define the bounded linear operator A : £2 — ¢? by

Ax = (Aixi)ieN for x = (-ri)ieN S EQ.
Then
o(A)=N[iEN}, Po(A)={\|ieN}, Ro(A) =0

Thus every nonempty compact subset of C is the spectrum of a bounded
linear operator on an infinite-dimensional Hilbert space.

LEMMA 5.2.5 (Spectrum). Let A: X — X be a bounded complex linear
operator on a complex Banach space X and denote by A* : X* — X* the
complex dual operator. Then the following holds.

(i) The spectrum o(A) is a compact subset of C.
(i) o(A*) =o(A).

(iii) The point, residual, and continuous spectra of A and A* are related by

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A¥),

Ro(A*) C Po(A)UCo(A), Ro(A) C Po(A¥),

Co(A*) C Co(A), Co(A) C Ro(A*)UCa(A").
(iv) If X is reflexive, then Co(A*) = Co(A) and

Po(A*) Cc Po(A)URo(A), Po(A) C Po(A*) URo(A¥),

Ro(A*) C Po(A), Ro(A) C Po(AY).

Proof. The spectrum is a bounded subset of C and its complement is an
open subset of C by Theorem [1.5.5] This proves (i). Part (ii) follows from
Corollary [4.1.18| and the identity (Alx — A)* = Al x- — A*.

To prove part (iii), assume first that A € Po(A*). Then A1 — A* is not
injective, hence A1 — A does not have a dense image by Theorem and
hence A € Po(A)URo(A). Next assume A € Ro(A*). Then A\1— A* is injec-
tive, hence A1 — A has a dense image, and hence A\ € Po(A4)UCo(A). Third,
assume A € Co(A*). Then A1 — A* is injective and has a dense image and
therefore also has a weak* dense image. Thus it follows from Theorem [4.1.§|
that A1 — A is injective and has a dense image, so A € Co(A). It follows
from these three inclusions that Po(A) is disjoint from Co(A*), that Co(A)
is disjoint from Po(A*), and that Ro(A) is disjoint from Ro(A*) U Co(A*).
This proves part (iii).

To prove part (iv) observe that in the reflexive case a linear subspace
of X* is weak™ dense if and only if it is dense. Hence it follows from Theo-
rem that Co(A) = Co(A*) whenever X is reflexive. With this under-
stood, the remaining assertions of part (iv) follow directly from part (iii).
This proves Lemma [5.2.5 U
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LEMMA 5.2.6 (Resolvent Identity). Let X be a complex Banach space
and let A € L°(X). Then the resolvent set p(A) C C is open. For X\ € p(A)
define the resolvent operator Ry(A) € L°(X) b

(5.2.4) RA(A) := (A1 — A)!
Then the map p(A) — LE(X) : A = Rx\(A) is holomorphic and satisfies
(5.2.5) RA(4) = Ry(4) = (5 — N Br(A)Ru(A)

for all A\, € p(A). Equation (5.2.5) is called the resolvent identity.

Proof. We prove the resolvent identity. Let A, u € p(A). Then
(ML= A)(Ry(A) — Ry(A4)) (ul — A4) = (ull — 4) — (M — 4) = (= M1,

Multiply by Rx(A) on the left and by R,(A) on the right to obtain the
resolvent identity (5.2.5]).

We prove that p(A) is open and the map p(A4) — LX) : A — Rx(A) is
continuous. Fix an element A € p(A) and choose i € C such that

[ = AlIRA(A)]| < 1.
Then Corollary asserts that the operator
(W1 — A)Ry(4) = T — (A — p)Ry(4)

is bijective and
((u1 = A)RA(A)) " =D (A= ) "Rr(A)".
k=0

Hence p € p(A) and

=> (A= W RA(AFT = Ry(A) + (A — )" Ra(A)F,
k=0 =1

and hence
R, (A) \<Z!>\ pl® | Ra(A)|FH

AR _
L= [ = Al[RA(A)]]
This proves that p(A) is open and the map p(A) — LY(X) : A — Ry(A) is
continuous. That it is holomorphic follows from the equation
. RM(A) — R)\(A) . . _ 2
Lim, P = — lim, Ry(A)Ru(A) = —Rx(A)

for A € p(A) and the fact that the map A + Ry)(A4)? is continuous. This
proves Lemma [5.2.6 U
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5.2.2. The Spectral Radius. Recall from Definition that the spec-
tral radius of a bounded linear operator A : X — X on a real or complex
Banach space is the real number

ra = inf [|A"|Y" = lim |47 < A
neN n—o00

If A is a bounded linear operator on a real Banach space, then its complexi-
fication A€ has the same spectral radius as A by Exercise The reason
for the terminology spectral radius is the next theorem.

THEOREM 5.2.7 (Spectral Radius). Let X be a nonzero complex Ba-
nach space and let A € L°(X). Then o(A) # 0 and
(5.2.6) = lim [|A"|Y" = sup |\

n—0o AEa(A)

Proof. Let A € C such that [A| > 4. Then ry-14 = |\ "'r4 <1 and
hence the operator 1 — A~!'A4 is invertible by Corollary Thus the
operator A1 — A = A(1 — A~1A) is bijective and so A ¢ o(A). Hence
(5.2.7) sup |A| <ra.

A€o (A)
To prove the converse inequality, define the set 2 C C by
Q:={z€C|z=00rz"" € p(4)}
and define the map R : Q — £°(X) by R(0) := 0 and by
R(z):= (z7'1 - A)~! for z € O\ {0}.

Then 2 is an open subset of C and the restriction of R to '\ {0} is holo-
morphic by Lemma Moreover, ) contains the open disc of radius 7“21
centered at the origin and it follows from Corollary [I.5.7] that

(5.2.8) R(z) = z(1 — zA)~ Z PARRY

for all z € C such that r4|z| < 1. Hence R is holomorphlc by Lemma 5.1.12
By Exercise|5.1.13| the nth derivative R™ : Q — £¢(X) of R is holomorphic
for every n € N.

Now let 7 > supycq(ay|Al; so the closed disc of radius r~1 centered at
the origin is contained in 2. Let z € X and z* € X* and apply the Cauchy

Integral Formula in (5.1.12)) or [I page 120] to the power series

(x*, R(z)z) = Z(:c*, ARy RF
k=1
and the loop
27it
V) =S—, 0<t<1
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Then, for each n € N, we have

<;1:A”1> 1 (z*,R(2)z) = 1/(95*,R(z)x>dz.
=0

n! dz"|, 2mi ), 2ntl
By the Hahn-Banach Theorem (Corollary [2.3.5)), this implies
oo L [RE) 1 VARG, [PRGE) ,
o : n+2 T o $)n+2 o t)n+1
27t )y 2 m Jo (1) o ()
Hence, by part (vi) of Lemma|5.1.10} we have

I < H1R<(>\(n)+)1|’ “

. / IR0 dt

<" sup [[R(y(1))]
0<t<1

=" sup H()\]l — A)*1H
(A|=r

for all n € N. Abbreviate
c:= sup|[(A — A)7!.

[Al=r
Then [|A"||Y™ < r(re)Y/™ for all n € N and hence
ra= lim [|[A"|Y" <r lim (re)V/™ =1
This holds for all 7 > supycq(ay|Al, s0

ra < sup |A|
A€o (A)

as claimed. By (b.2.7)) this proves equation (|5.2.6]).

We prove that o(A) # (0. Suppose, by contradiction, that o(A) =0
and so, in particular, A is invertible. Choose any nonzero element r € X.
Then A~ 'z # 0 and so, by Corollary there exists an element z* € X*
such that (z*, A~1z) = —1. Define the function f : C — C by

FO) = (z*, (M — A) " Lx) for A € C = p(A4).
Then f is holomorphic by Lemma f(0) =1 by definition, and

JEaINIE
[A[ = [1All

for all A € C such that |[A\| > ||A||. Thus f is a nonconstant bounded
holomorphic function on C, in contradiction to Liouville’s Theorem. Hence
the spectrum of A is nonempty and this proves Theorem ([

FO < a2l (A2 = A) 7 <
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5.2.3. The Spectrum of a Compact Operator. The spectral theory
of compact operators is considerably simpler than that of general bounded
linear operators. In particular, every nonzero spectral value is an eigenvalue,
the generalized eigenspaces are all finite-dimensional, and zero is the only
possible accumulation point of the spectrum (i.e. each nonzero spectral value
is an isolated point of the spectrum). All these observations are fairly direct
consequences of the results in Chapter [

Let X be a complex Banach space and let A € £L(X) be a bounded
complex linear operator. Then ker(Al — A)* C ker(A1 — A)**! for all A € C
and all k € N. Moreover, if ker(Al — A)™ = ker(All — A)™*! for some inte-
ger m > 1, then ker(All — A)™ = ker(A\l — A)™** for all k € N. The union
of these subspaces is called the generalized eigenspace of A associated to
the eigenvalue A € Po(A) and will be denoted by

(529) E)\ = E)\(A) = [j ker()\]l — A)m

m=1

THEOREM 5.2.8 (Spectrum of a Compact Operator). Let X be a
nonzero complex Banach space and let A € L°(X) be a compact operator.
Then the following holds.

(1) If X € o(A) and X\ # 0, then X is an eigenvalue of A, dim E)(A) < oo,
and there exists an integer m € N such that
E\(A) =ker(A1—A)™, X =ker(Al—A)" @im(A1— A)™.

(ii) Nonzero eigenvalues of A are isolated, i.e. for every A € o(A)\{0} there
exists a constant € > 0 such that every pu € C satisfies

O<|A—pul<e == w e p(A).

Proof. We prove part (i). Fix a nonzero complex number A. Then A1—A
is a Fredholm operator of index zero by part (i) of Theorem Hence

dimker(All — A) = dim coker(Al — A)
and so A\l — A is either bijective, in which case A ¢ o(A), or not injective,
in which case A € Po(A).
Now fix an element
A e Po(A)\ {0}
and define
K:=)14, E,:=ker(l1-K)"=ker(A\l — A)®  forn €N,

Since K is a compact operator, it follows from Theorem and The-
orem that (1 — K)™ is a Fredholm operator and hence has a finite-
dimensional kernel for all n € N. Thus dim(E,) < oo for all n € N.
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Next we prove that there exists an integer m € N such that E,, = Ep,41.
Suppose, by contradiction, that this is not the case. Then E,_; C F, for
all n € N. Hence it follows from Lemma [1.2.12] and the axiom of countable
choice that there exists a sequence (x,)nen in X such that, for all n € N,

1
(5.2.10) Tn € Ep, 2ol =1, inf |z -zl > 3.
x€E, 1 2

Fix two integers n > m > 0. Then Kz, € E,,_1 and x, — Kx,, € E,,_1, so
1
| Kzy, — Kz = ||xn — (Kzp 4+ 2 — Kaxy)|| > 5

Hence the sequence (Kxy,)n,en does not have a convergent subsequence, in
contradiction to the fact that the operator K is compact.

Thus we have proved that there exists an integer m € N such that
ker(Al — A)™ = ker(\1 — A)™*%  for all k € N.

Define
Xo :=ker(Al— A)™, Xp :==im(A\1—A)™
Since (Al — A)™ is a Fredholm operator these subspaces are both closed

and X is finite-dimensional. Moreover, these subspaces are both invariant
under A. We prove that

(5.2.11) X = X0 X1

If € XoN Xy, then (Al — A)™x = 0 and there exists an element £ € X
such that z = (A1 — A)™¢. Hence € € ker(Al — A)?™ = ker(Al — A)™ and
so x = (Al — A)"™¢ = 0. The annihilator of Xo & X; in X* = £¢(X,C) is
(Xo ® X1)* = (ker(A\1 — A)™) N (im(A1 — A)™)*+

=im(Al — A")" Nker(A\1 — A*)™

= {0}
Here the second equation follows from Theorem and Theorem
The last equation follows from the fact that the kernels of the linear oper-
ators (A — A)* and (A — A*)* have the same dimension for all k£ € N and
so ker(All — A*)?™ = ker(A1 — A*)™. Now it follows from Corollary
that Xo ® X7 is dense in X and therefore is equal to X. This proves
and part (i).

Now the operator A1 — A : X; — X is bijective. Hence Theorem [2.2.5]
asserts that there exists a constant € > 0 such that e x| < || Az1 — Az1||
for all 71 € X;. Hence, by Corollary the operator pull — A : X7 — X3
is invertible for all p € C with |u — A| < e. Moreover, if p # A, then the
operator ull — A : Xg — Xg is bijective, because \ is the only eigenvalue
of Alx,. Hence pll — A is bijective for all 1 € C such that 0 < | — \| <e.
This proves part (ii) and Theorem O
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ExaMPLE 5.2.9. Let X be the complexification of the Argyros—Haydon
space (Remark [4.4.6)). Then every bounded linear operator A : X — X has
the form

A=)\+K,

where A € C and K : X — X is a compact operator (exercise). By Theo-
rem the spectrum of K is either a finite set or a sequence that con-
verges to zero. Hence the spectrum of every bounded linear operator on X
is either a finite set or a convergent sequence. This is in sharp contrast to
infinite-dimensional Hilbert spaces where every nonempty compact subset
of the complex plane is the spectrum of some bounded linear operator (see
Example [5.2.4)).

Remark 5.2.10 (Spectral Projection). Let X be a complex Banach
space, let A € L°(X) be a compact operator, let A € o(A) be a nonzero
eigenvalue of A, and choose m € N such that

By :=ker(A\l — A)™ = ker(A\1 — A)™ L,

By Theorem [5.2.8 such an integer m exists, F is a finite-dimensional linear
subspace of X, the operator (Al — A)™ has a closed image, and

X =ker(Al—A)" @im(A1— A)™.
Hence the formula
P)\(w() + xl) = Z

for g € ker(A1 — A)™ and x; € im(A1l — A)™ defines a bounded linear
operator Py : X — X which is an A-invariant projection onto E), i.e.

5.2.12 P =P, P\A = AP, im(Py) = E).
A

The operator P, is uniquely determined by (5.2.12)) and is called the spec-
tral projection associated to A. It can also be written in the form

1
5.2.13 P=— [ (21— A) " 'dz.
(5.2.13) s / (21— A)

- 2ri
Here r > 0 is chosen such that
BV No(4) = {A)
(see part (ii) of Theorem and the loop 7 : [0,1] — p(A) is defined by
Y(t) := X + re?™i for 0 <t <1

Equation (5.2.13)) is a special case of part (vi) of Theorem [5.2.12| below.
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5.2.4. Holomorphic Functional Calculus. Let X be a nonzero com-
plex Banach space and let A € £¢(X) be a bounded complex linear operator.
Then the spectrum of A is a nonempty compact subset of the complex plane
by Lemma and Theorem The Holomorphic Functional Calculus
assigns a bounded linear operator f(A) € L(X) to every holomorphic func-
tion f: U — C on an open set U C C containing o(A). The operator f(A)
is defined as the Dunford integral of the resolvent operators along a cycle
in U \ 0(A) encircling the spectrum.

Figure 5.2.1. A cycle encircling the spectrum.

DEFINITION 5.2.11 (Dunford Integral). Let X be a nonzero complex
Banach space and let A € L(X). Let U C C be an open set such that

o(A)cU

and let v = (71, ...,7vm) be a collection of smooth loops ; : R/Z — U \ 0(A)
with winding numbers

m

1 dz [ 1, for X € o(A),
(5.2.14) w(y,A) = 2] 4 1/ZZ_)\_{O, for X € C\ U.

(See Figure[5.2.1]) The collection v is called a cycle in U \ o(A) and the
image of the cycle 7 is the set im(y) := U, 7(R/Z). For the existence
of v see [1l pp 139] or [74, pp 90]. The operator f(A) € L¢(X) is defined by

f(A) = 2m/f )(z1— A)~'dz
(5.2.15)
:27”2 )(21— A) ! da.

=1 77,
The integral in ([5.2.15)) is called the Dunford Integral.

The next theorem establishes the basic properties of the operators f(A)
and examines their spectra.
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THEOREM 5.2.12 (Holomorphic Functional Calculus). Let X be a
nonzero complex Banach space and A € L°(X). Then the following holds.

(i) The operator f(A) is independent of the choice of the cycle v in U\ c(A)
satisfying (5.2.14)) that is used to define it.

(ii) Let U C C be an open set such that c(A) C U and let f,g: U — C be
holomorphic. Then

(5.2.16) (f +9)(A) = f(A) +9(A),  (f9)(A) = f(A)g(A).

(iii) If p(z) = S_1_o arz® is a polynomial, then p(A) = >"}_, arA*.

(iv) Let U C C be an open set such that o(A) C U and let f: U — C be
holomorphic. Then

(5.2.17) o(f(A)) = f(o(A)).
This assertion is the Spectral Mapping Theorem.

(v) Let U,V C C be open sets such that o(A) C U and let f:U =V
and g : V. — C be holomorphic functions. Then

(5.2.18) 9(f(A)) = (g0 f)(A).

(vi) Let 9,31 C 0(A) be disjoint compact sets such that 3o U 31 = o(A)
and let Uy, Uy C C be disjoint open sets such that X; C U; for i =0,1.
Define the function f: U = UyUU; — C by fly, := 0 and f|y, =1, and
define P := f(A) € L°(X). Then P is a projection and commutes with A,
i.e. P2 =P and PA = AP. Thus X := ker(P) and X1 := im(P) are closed
A-invariant subspaces of X such that X = Xo @ X1. The spectrum of the
operator A; := Alx, : X; = X; is given by 0(A;) =%; fori=0,1.

Proof. We prove part (i). Let 8 and 7 be two collections of loops
in U\ 0(A) that satisfy (5.2.14)). Then their difference v — 3, understood as
a cycle in U \ 0(A), is homologous to zero, in that its winding number
about every point in the complement of U \ 0(A) is zero. Hence the Cauchy
Integral Formula [1, Thm 14, p 141] asserts that the integral of every holo-
morphic function on U \ 0(A) over v — § must vanish. This implies

/ f(2) (@, (21— A)"la) dz = /f(z)(x*, (z1— A)'z) dz
B ¥

for every holomorphic function f: U — C and all z € X and all " € X*.
Hence it follows from the Hahn—Banach Theorem that the integrals
of the operator valued function U \ o(A4) — LX) : z — f(2)(z1 — A)7!
over B and v agree for every holomorphic function f : U — C. This proves

part (i).
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73 @@

Figure 5.2.2. Two cycles encircling the spectrum.

We prove part (ii). The assertion about the sum follows directly from
the definition. To prove the assertion about the product, choose two cy-
cles pand v in U \ 0(A) that both satisfy , have disjoint images so
that im(8) Nim(y) = (), and such that the image of (3 is encircled by 7, i.e.

w(y,w) =1 for all w € im(f3),
w(B,2) =0 for all z € im(v).

(See Figure ) Then, by the resolvent identity in Lemma we have

1

FA)g(a) = o st (A)dw;m JRCLXNTE

= 2ri2ni / / i)__fz(A) dz dw
N 27r1 ﬁf(w)(%l/gz(z_)iz> Ru(A) duw
+23ri/ <2m/ ! w) >Rz( ) dz

= d
2ri / flw (4) dw
= (fyg
Here the penultimate step uses (5.2.19). This proves part (ii).

We prove part (iii). In view of part (ii) it suffices to prove the equations

(5.2.20) 1(A) =1y, id(A) = 4,

(5.2.19)

associated to the holomorphic functions f(z) =1 and f(z) = z. In these
cases we can choose U = C and 7,.(t) := re?™ with r > ||A||. Then

1

2

f(A) = f(2)(z1—A)"tdz = / fre® i (1 — rle=2m A) 1 gz,

Yr



5.2. Spectrum 219

For f =1 it follows from Corollary that the integrand converges uni-
formly to 1 as r tends to oo and so 1(A) = 1. In the case f(z) = z we
obtain

id(4) = % (o1 — A) L dz
Tr
1

= — [ A(z1-A4)"'d
27i J,, (2 ) ‘
= Aol(A)
= A.
Here the difference of the second and third terms vanishes because it is the
integral of the constant operator valued function z — 1 over a cycle in U
that is homologous to zero by ([5.2.14)). This proves part (iii).

We prove part (iv). Fix a spectral value A € 0(A). Then there exists a
holomorphic function g : U — C such that

f(z) = fA) =(z—XNg(2) for all z € U.
By part (ii) this implies
ST = f(A) = (A1 — A)g(A) = g(A) (ML - A).
Hence f(A)1 — f(A) cannot be bijective and so
fN) € a(f(A)).
This shows that
f(a(A)) Co(f(A)).
To prove the converse inclusion, fix an element A € C\ f(o(A)). Then
Vi=U\f(N)
is an open neighborhood of o(A). Define gy : V' — C by
1 _ -1
g,\(z).—A_f(Z) forze V=U\f"(A).
Then g, is holomorphic, and it follows from parts (ii) and (iii) that
gA(A) AL = f(A)) = (A1 — f(A))gr(A) = 1(4) = 1.
Hence A1 — f(A) is invertible and so
AeC\o(f(A)).
This shows that
a(f(A)) C f(o(A4))

and proves part (iv).
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To prove part (v), note first that the operator g(f(A)) is well defined,
because o(f(A)) = f(c(A)) C V by part (iv). Choose a cycle §in U \ 0(A)
such that w(8,\) =1 for A € 0(A4) and w(5,A) =0 for A € C\ U. Then

K :=1im(B) U{w € U\ im(B) | w(3, w) # 0}

is a compact neighborhood of o(A). Then, for every z € C\ f(K), the
functions w + (z — f(w))~! and w + z — f(w) are holomorphic in an open
neighborhood of K and their product is the constant function 1. Hence it
follows from parts (ii), (iii), and (iv) that

wll — A)-1
(5.2.21) (21— f(A) ™ = % , m dw for z € C\ f(K).

Choose a cycle v in V' \ f(K) such that
1, forpe f(K),
(5.2.22) w(y, 1) = { 0, forpeC\V.

Then
g(f(4)) = ! /g(Z)(z]l—f(A))‘ldz
Y

2mri

= % Vg(z) <21m/3%dw> dz

_ 2% B<21ﬁ/72_9<;()w)dz> (wl — A) duw

= o [ o)t~ 4) dw
= (g0 N)(A).

Here the second step uses ((5.2.21)) and the fourth step uses (5.2.22)) and the
Cauchy Integral Formula. This proves part (v).

We prove part (vi). Since f2 = f it follows from (ii) that P? = P.
Moreover P commutes with A by definition. Define g : U — C by g(z) = z
for z € U and let ¢ € C. Then, by parts (ii) and (iii), we have

clx, ® Ay = c(Ix — P)+ AP = (c(1 = f) + gf)(A)

and hence o(clx, ® A1) = {c} UX; by part (iv). If A € C\ ¥y, it follows
that the operator (A —¢)lx, ® (Alx, — A1) is bijective for ¢ # A and so
the operator Ay, — A; is bijective. Conversely, suppose that A € ¥;. Then
the operator (A — ¢)1x, ® (Alx, — A1) is not bijective and, for ¢ # A, this
implies that the operator Alx, — A; is not bijective. Thus o(A;) = X;.
The equation o(Ap) = Xy follows by interchanging ¥y and ;. This proves

Theorem [(5.2.12 O



5.2. Spectrum 221

EXERCISE 5.2.13 (Exponential Map). Let X be a nonzero complex
Banach space and let A € £(X) be a bounded complex linear operator.
Choose a real number r > ||A|| and define 7,.(f) := re?™ for 0 < 6 < 1.
Prove that

o0

AR 1
A S z _ —1
e’ = T (z1—A) " d=.

k=0 T

Prove that
o(e?) = {e’\ |\ € U(A)}

and, for all s,t € R,

sHHA _ GSAetA, 0A _ 1

6( &

and
iem = Aet = A
dt
EXERCISE 5.2.14 (Logarithm). Let X be a nonzero complex Banach

space and let T € L¢(X) be a bounded complex linear operator such that
Re(A\) >0  forall A € o(T).

Choose a smooth curve v : R/Z — C\ o(T) such that Re(y(t)) > 0 for all ¢
and w(y,\) = 1 for all A € o(T"). Denote by log: {z € C|Re(z) >0} - C
the branch of the logarithm with log(1) = 0. Define

1
log(T) := e log(2)(z1 — T) ™! dz.
g

Prove that
sl =, log(e?) = A

for all A € £°(X). Let n € N and deduce that the operator S := elos(T)/n
satisfies S" =T

EXERCISE 5.2.15 (Inverse). Let X be a nonzero complex Banach space
and let A € £°(X) be a bijective bounded complex linear operator. Choose
real numbers € and r such that

O<e<|A7Y <4 <

Show that ¢ < |[A\| < r for all A € o(A). With 7,,7. as in Exercise [5.2.13
show that

1 (21— A)~! ds — 1 (21— A)!

z 271

ATl =

©2mi

dz.

Yr z

EXERCISE 5.2.16 (Spectral Projection). Verify the formula (5.2.13]).

Ve
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5.3. Operators on Hilbert Spaces

The remainder of this chapter discusses the spectral theory of operators
on Hilbert spaces. The present section begins with an introduction to
complex Hilbert spaces (Subsection and the adjoint operator (Sub-
section . It then moves on to examine the properties of the spec-
tra of normal operators (Subsection and self-adjoint operators (Sub-
section . The next two sections establish the continuous functional
calculus for self-adjoint operators (Section and normal operators (Sec-
tion . Section introduces the spectral measure of a normal operator
and Section examines cyclic vectors of self-adjoint operators.

5.3.1. Complex Hilbert Spaces.

DEFINITION 5.3.1 (Hermitian Inner Product). Let H be a complex
vector space. A Hermitian inner product on H is a real bilinear map

(5.3.1) HxH—=C:(z,y) =~ (x,y)
that satisfies the following three axioms.

(a) The map (5.3.1)) is complex anti-linear in the first variable and is complex
linear in the second variable, i.e.

(Az,y) = Mz,y),  (z,2y) = Mz, y)
for all z,y € H and all A € C.
(b) (z,y) = (y,z) for all z,y € H.
(c) The map is positive definite, i.e. (x,z) > 0 for all z € H \ {0}.

It is sometimes convenient to denote the Hermitian inner product by (-, -)c,
to distinguish it from the real inner product in Definition

Assume H is a complex vector space equipped with a Hermitian inner
product (5.3.1). Then the real part of the Hermitian inner product is a real
inner product as in Definition [1.4.3] and so the formula

(5.3.2) H—-R:z—|z|:=+(z,2)

defines a norm on H. The next lemma shows that Hermitian inner products
satisfy a stronger form of the Cauchy—Schwarz inequality. It is proved by
the same argument as in Lemma

LEMMA 5.3.2 (Complex Cauchy—Schwarz Inequality). Let H be
a complex vector space equipped with Hermitian inner product and
the associated morm . Then the Hermitian inner product and norm
satisfy the complex Cauchy—Schwarz inequality

(5.3.3) [z, )| <=l llyll  for allz,y € H.
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Proof. The Cauchy—Schwarz inequality is obvious when x = 0 or y = 0.
Hence assume x # 0 and y # 0 and define

&= ||z| ' a, n= |yl "y
Then [|£] = [n]| = L and (n,€ — (n,E)n) = (,€) — (0,€) |n]|*> = 0, and hence
0 < €= &)

= <£7£ - <777§>77>
= <§7£> - <n’€><§vn>
= 1-[{&m*.

Thus |(£,7)| <1 and so |(z,y)| < ||z| ||y||. This proves Lemma [5.3.2} O

DEFINITION 5.3.3 (Complex Hilbert Space). A complex Hilbert
space is a complex vector space H equipped with a Hermitian inner prod-

uct ([5.3.1) such that the norm ([5.3.2)) is complete.

Remark 5.3.4. (i) Let (H,(-,-)c) be a complex Hilbert space. Then H
is also a real Hilbert space with the inner product

(5.3.4) (x,y)r := Re(z,y)c.

Hence all results about real Hilbert spaces, such as Theorem and The-
orem continue to hold for complex Hilbert spaces.

(ii) If H is a complex Hilbert space, then the Hermitian inner product and
the real inner product (5.3.4)) are related by the formula

(5.3.5) (x,y)c = (z,y)r + i(iz, )R for all x,y € H.
(iii) Conversely, suppose that (H,(-,-)r) is a real Hilbert space and that
J : H — H is a linear map such that

JP=-1, |Jz| =z forallzec H.

Then H carries a unique structure of a complex Hilbert space such that mul-
tiplication by i is the operator J, and (-, -)gr is the real part of the Hermitian
inner product. The scalar multiplication is defined by (s + it)x := sz + tJz
for s+it € Cand « € H, and the Hermitian inner product is given by .

(iv) Let (H,(-,-)) be a real Hilbert space. Then its complexification
H¢.=H®iH

is a complex Hilbert space with the Hermitian inner product

(5.3.6) (@ +iy, &+ i) = (2,6) + (y,n) +i((2,n) — (y,))

for x,y,&,n € H.
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EXERCISE 5.3.5. (i) Verify parts (iii) and (iv) of Remark

(ii) Let (M, A, 1) be a measure space. Prove that L?(u,C) is a complex
Hilbert space with the Hermitian inner product

(5.3.7) (f.9) = /Mfgdu for f,g € L2(1,C).

(iii) Prove that /2(N, C) is a complex Hilbert space with
(5.3.8) (x,y) == Zfzyl for z = (z;)ien, ¥ = (i)ien € (N, C).
i=1

(iv) Prove that L?(u,C) is the complexification of L?(i,R) and ¢?(N, C) is
the complexification of £2(N,R).

The next theorem shows that a complex Hilbert space is isomorphic to
its complex dual space. An important caveat is that the isomorphism is
necessarily complex anti-linear. The result is a direct consequence of the
Riesz Representation Theorem [1.4.4]

THEOREM 5.3.6 (Riesz). Let H be a complex Hilbert space and denote
by H* := L°(H,C) its complex dual space. Define the map v : H — H* by

(5.3.9) (@), ) a1 = (2,7y) for x,y € H.

Then v is a complex anti-linear isometric isomorphism.

Proof. It follows directly from the definitions that the map ¢ : H — H*
is complex anti-linear, i.e. t(Ax) = \i(z) for all z € H and all A € C. That
it is an isometry follows from the complex Cauchy—Schwarz inequality in
Lemma [5.3.2, namely

T,T LY
Jot = K220 <y = gup K00
] yer\(or 1Yl
for all z € H \ {0} and so |[¢(z)] = ||z|| for all z € H. In particular, ¢ is

injective. To prove that it is surjective, fix a bounded complex linear func-
tional A : H — C. Then ReA : H — R is a bounded real linear functional.
Hence Theorem asserts that there exists a unique element x € H such
that ReA(y) = Re(x,y) for all y € H. This implies

A(y) = ReA(y) + ilmA(y) = ReA(y) — iReA(iy)
= Re(z,y) — iRe(z, iy) = Re(z,y) + ilm(x, y)
= (z,9)

for all y € H. Here the last equation follows from ([5.3.5)). Thus ¢ is surjective
and this proves Theorem [5.3.6 ([
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5.3.2. The Adjoint Operator. Let A : X — Y be a bounded complex
linear operator between complex Hilbert spaces. Then the dual operator
of Ais the bounded linear operator Ay, . : Y™ — X* between the complex
dual spaces, introduced in part (iii) of Definition In the Hilbert space
setting one can use the isomorphisms of Theorem to replace the dual

operator A¥ by the operator

Banach
* -1 * .
AHilbert =iy o ABanaCh o Y = X

between the original Hilbert spaces which is called the adjoint operator
of A. Thus the dual operator and the adjoint operator are related by the
commutative diagram

Y A;Iilbert X

Vo ABanach X
From now on we drop the subscripts “Banach” and “Hilbert” and work
exclusively with the adjoint operator. Thus, throughout the remainder of
this chapter, the notation A* acquires a new meaning and will denote the
adjoint operator of a bounded complex linear operator between complex

Hilbert spaces. The dual operator of the Banach space setting will no longer
be used.

DEFINITION 5.3.7 (Adjoint Operator). Let X and Y be complex Hil-
bert spaces and let A € £°(X,Y) be a bounded complex linear operator.
The adjoint operator of A is the unique operator A* : Y — X that
satisfies the equation

<A*y7 x)X = <y’ Ax)Y
forallz € X and all y € Y. It is well-defined by Theorem and it agrees
with the adjoint operator in Example associated to the real parts of
the Hermitian inner products on X and Y.

If H is a complex Hilbert space, then the complex orthogonal com-
plement of a subset S C H is denoted by

St ={exec H|(zx,y)=0forall yc S}.

The complex orthogonal complement of any subset S C H is a closed com-
plex linear subspace. It is isomorphic to the complex annihilator of S under
the isomorphism ¢ : H — H* in Theorem and, in general, it differs
from the orthogonal complement of S with respect to the real inner product.
The real and complex orthogonal complements agree whenever the subset S
is invariant under multiplication by i. The next two lemmas summarize the
properties of the orthogonal complement and the adjoint operator.
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LEMMA 5.3.8. Let H be a complex Hilbert space and let E C H be a
complex linear subspace. Then E = E++ and so E is closed if and only
if E = B+-.

Proof. By definition the orthogonal complement of the orthogonal com-
plement of FE agrees with the pre-annihilator of the annihilator of E. Hence
the assertion follows from the complex analogue of Corollary [2.3.24] (See

also Corollary [3.1.18]) O

LEMMA 5.3.9. Let X,Y,Z be complex Hilbert spaces and A € L°(X,Y)
and B € LYY, Z). Then the following holds.

(1) A* is a bounded complex linear operator and | A*|| = ||A]|.
(i) (AB)* = B*A* and (\1)* = X for all A € C.
(iii) A™ = A.

(iv) ker(A*) = im(A)* and im(A*) = ker(A)=*.
(v) If A has a closed image, then A* has a closed image.
(vi) If A is bijective, then so is A* and (A*)™1 = (A~1)*.
(vii) If A is an isometry, then so is A*.
(viii) If A is compact, then so is A*.
(ix) If A is Fredholm, then so is A* and index(A*) = —index(A).
(x) Assume X =Y = H. Then
o(A*) ={X|Xeo(4)}
and
Po(A*) C {X| A€ Po(A)U RU(A)} )
Ro(A*) c {A|X € Pa(A)},
Co(A*)={X|AeCo(A)}.
Proof. Part (i) follows from the same argument as in Lemma and

parts (ii) and (iii) follow directly from the definitions (see also Lemmal4.1.3]).
Part (iv) follows from Theorem and Lemmal5.3.8] Part (v) follows from

Theorem [4.1.16} parts (vi) and (vii) follow from Corollary [4.1.18} part (viii)
follows from Theorem [4.2.10, and part (ix) follows from Theorem

Part (x) follows from parts (iv) and (vi) and the fact that
(M — A)* =21 — A*
by part (ii) (see also Lemma [5.2.5)). This proves Lemma[5.3.9 O
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5.3.3. The Spectrum of a Normal Operator.

DEFINITION 5.3.10 (Normal Operator). Let H be a complex Hilbert
space. A bounded complex linear operator A : H — H is called

e normal if A*A = AA*,
e unitary if A*A = AA* =1,
e self-adjoint if A* = A.
Thus every self-adjoint operator and every unitary operator is normal.
EXERCISE 5.3.11. Let H be a complex Hilbert space and let
A=A"'H—H
be a self-adjoint operator. Prove that
A=0 = (x,Az) =0 forall z € H.

EXAMPLE 5.3.12. Consider the complex Hilbert space H := *(N,C),
choose a bounded sequence ()\;);en of complex numbers. Then the operator

Ay 2(N,C) — (*(N,C),
defined by
Az := (Nizi)ien for £ = (z;)ien € £2(N, C),
is normal and its adjoint operator is given by
Az = (Nii)ien for z = (z;)ien € £2(N,C).

Thus A, is self-adjoint if and only if A; € R for all ¢, and A, is unitary if
and only if |\;| = 1 for all 4.

ExaMPLE 5.3.13. Define the bounded complex linear operator

A:2(N,C) = *(N,C)

by

Az = (0,x1,z2,23,...) for = (x;)sen € £2(N,C).
Then

A*x = (x9, 23,24, ...) for 2 = (x;)sen € £2(N,C)
and hence

A*A =14 AA™.

Thus A is not normal. It is an isometric embedding but is not unitary.
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LEMMA 5.3.14 (Characterization of Normal Operators). Let H be
a complex Hilbert space and let A : H — H be a bounded complex linear
operator. Then the following holds.

(1) A is normal if and only if ||A*x| = ||Ax|| for all x € H.
(ii) A is unitary if and only if ||A*x| = ||Az|| = ||z|| for all x € H.
(iii) A is self-adjoint if and only if (x, Ax) € R for all x € H.

Proof. We prove part (i). If A is normal, then
|Az|? = (Az, Az) = (z, A*Az) = (z, AA*z) = || A%z

for all x € X. Conversely, assume ||A*x|| = ||Az|| for all x € X. Then, for
all x,y € H, we have

Re(Az, Ay) = (|| Az + Ay|)” — | Az — Ay||”)
= 1(I 4% + A%y |* — [ A%z — A"y||”) = Re(A"z, A%y)
and so Im(Az, Ay) = Re(Aiz, Ay) = Re(A*ix, A*y) = Im(A*x, A*y). Thus
(A*Az,y) = (Azx, Ay) = (A*z, A%y) = (AA%x,y)
for all z,y € H and hence A*A = AA*. This proves (i).
We prove part (ii). If A is unitary, then
1Az |)* = (Az, Az) = (2, A* Az) = (2, 2) = ||z|*

and, by an analogous argument, ||A*z|| = ||z|| for all x € X. Conversely,
assume ||Az| = [|[A*z|| = ||z| for all x € X. Then, for all z,y € H, we have

Re(Az, Ay) = 1 (|| Az + Ay|* — || Az — Ay|?)
= 1(lz +ylI” =l — ylI*) = Re(z, y)
and so Im(Az, Ay) = Re(Aix, Ay) = Re(iz,y) = Im(z,y). Thus
(A" Az, y) = (Az, Ay) = (z,y)

for all z,y € H and hence A*A = 1. The same argument with A and A*
interchanged shows that AA* = 1. Thus A is unitary and this proves (ii).

We prove (iii). If A is self-adjoint, then (x, Az) = (Az,z) = (x, Az) and
so (x, Az) € R for all x € X. Conversely, assume (z, Az) € R for all z € X.
Then, for all z,y € H, we have

= %Im((m +y, Az + Ay) — (z — y, Az — Ay)) =0
and so Re(z, Ay) — Re(Az,y) = Im(z, Aiy) — Im(Az,iy) = 0. Thus
for all x,y € H and hence A* = A. This proves Lemma [l
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THEOREM 5.3.15 (Spectrum of a Normal Operator). Let H be a
nonzero complex Hilbert space and let A € L°(H) be a normal operator.
Then the following holds.

(i) [JA™| = [JA||™ for all n € N.

(ii) [|All = supres(a)|Al-

(iii) Ro(A*) = Ro(A) =0 and Po(A*) = {X| X € Po(4)}.
(iv) If A is unitary, then o(A) C S*.

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I C N, either equal to N or
finite, an orthonormal sequence (e;);cr in H, and a map I — C\{0} : i — \;
such that lim;_,oc \; = 0 when I = N and

Ax = Z Ailei, z)e; for all x € H.
el
Proof. If x € H is a unit vector, then, by Lemma
1Az||* = (Az, Az) = (2, A*Az) < || A" Az|| = || A,

Hence
1A%] < AI* = sup [[Az|* < sup [|A%] = || A%|
llefl=1 llefl=1
and so ||A?|| = ||A||%2. Hence it follows by induction that || 42" || = ||A|*"

for all m € N. Given any integer n > 1, choose m € N such that n < 2™,
and deduce that

LA™~ LA™ = 1A% )] < A" ]LA*"
Hence [|A||" < ||A™]| < ||A|]" and so ||A™]| = ||A||". This proves part (i).
Part (ii) follows from part (i) and Theorem [5.2.7]
To prove part (iii), fix an element A € C. Then (A1 — A)* = A1 — A* by
part (ii) of Lemmal[5.3.9] Hence Al — A is normal and it follows from part (i)

of Lemma [5.3.14] that ker(A\1 — A*) = ker(All — A). Hence, by part (iv) of
Lemma [5.3.9] we have

im(A\1 — A) = ker(Al — A*)F = ker(A1 — A)*.

By Lemma [5.3.8| this shows that the operator Al — A is injective if and only
if it has a dense image. Thus Ro(A) = §) and so Po(A4*) = {A| A € Po(4)}
by part (x) of Lemmam This proves part (iii).

To prove part (iv), assume A is unitary and let A € 0(A). Then |A| <1
by Theorem Moreover, A # 0 because A is invertible, and the oper-
ator A™11 — A=! = (AA)~Y(A — A1) is not invertible. Hence A~! € o(A7!)
and so [A|7! < [|[A7Y|| = ||A*|| = ||A|| = 1. This proves part (iv).
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We prove part (v) in three steps. The first step shows that the eigen-
spaces are pairwise orthogonal, the second step shows that each generalized
eigenvector is an eigenvector, and the third step shows that the orthogonal
complement of the direct sum of all the eigenspaces associated to the nonzero
eigenvalues is the kernel of A.

Step 1. If \,u € 0(A) such that X\ # p and x,y € H such that Ax = \x
and Ay = py, then (x,y) = 0.

By Lemma ker(Al — A) = ker(A\1 — A)* = ker(\ — A*). Hence
(A = @)z, y) = Qa,y) — (2, py) = (A", y) — (2, Ay) =0
and this proves Step 1.

Step 2. Let A € 0(A) and n € N. Then ker(Al — A)" = ker(Al — A).

Let x € ker(A\l — A)2. Then (A1 — A*)(Az — Az) = 0 by Lemma [5.3.14
hence

Az — Az||* = Oz — Az, Az — Az) = (z, A — A*)(\z — Az)) =0,
and hence z € ker(Al — A). Thus
ker(All — A)? = ker(A1 — A)
and this implies ker(Al — A)" = ker(A\1l — A) for all n € N.
Step 3. Define Ey :=ker(Al — A) for A € 0(A) \ {0}. Then
x L E\ foralXeo(A)\{0} = Az =0
for allx € H.

If z € ker(A), then x L E) for all A € 0(A) \ {0} by Step 1. To prove the
converse, define

Hy:={rx € H|x L E),forall \e€o(A)\{0}}.
Then Hj is a closed A-invariant subspace of H and
A() = A’HO : H() — H()

is a compact normal operator. Suppose, by contradiction, that Ag # 0.
Then it follows from Theorem and part (ii) that Ay has a nonzero
eigenvalue. This contradicts the definition of Hy and proves Step 3.

By Theorem the set o(A) \ {0} is either finite or is a sequence
converging to zero and dim E) < oo for all A € o(A) \ {0}. Hence part (v)
follows from Step 1, Step 2, and Step 3 by choosing orthonormal bases of
the eigenspaces E) for all A € o(A) \ {0}. This proves Theorem O
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5.3.4. The Spectrum of a Self-Adjoint Operator. Let X and Y be
real Hilbert spaces and let T': X — Y be a bounded linear operator. Then

2 2 * * * 2
170 = SuP [Ty = P (2, T"Tx)x < |T°T| < |T*| | T| = [T
Z||= xll=

and hence

(5.3.10) IT|? = sup (z, T*Tx)y = |T*T] .

[lz]|=1
This formula is the special case A = T*T of Theorem [5.3.16| below. It can

sometimes be used to compute the norm of an operator (Exercise [5.8.9)).

THEOREM 5.3.16 (Spectrum of a Self-Adjoint Operator). Let H
be a nonzero complex Hilbert space and let A € L°(H) be a self-adjoint
operator. Then the following holds.

(i) o(A) C R.

(ii) supo(A) = sup =1 (=, Az).

(iii) inf o(A) = inf |y (7, Az).

(iv) [[A]l = supyz)=1 [(z, Az)].

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I C N, either equal to N or

finite, an orthonormal sequence (€;);er in H, and a map I — R\{0} : i +— \;
such that lim; _yoo A\; = 0 when I = N and

Az = Z)\i<ei,x>ei
el
forallxz € H.

Proof. We prove part (i). Let A € C\ R. Then, for all z € H,
Iz — Az|> = (& — Az, Az — Az)
= P ll2l* = MAz, @) — M, Az) + || Az|?
= [ImAP J2]* + [ReA [2]* — 2(ReA)(Az, z) + || Az|*
= [mAP® lz]* + ||(ReN)z — Az]®
[tmAf* [|]*.

This shows that A1 — A is injective and has a closed image (Theorem [4.1.16]).
Replace A by A to deduce that the adjoint operator

(Al—A)* = 1— A* = 1- A

v

is also injective and so A— A has a dense image by part (iv) of Lemma
Hence A1 — A is bijective and this proves (i).
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We prove part (ii). It suffices to assume
(5.3.11) (x,Az) >0 for all z € H.

(Otherwise replace A by A + all for a suitable constant a > 0.) Under this
assumption we prove that
(5.3.12) o(A) C [0, 00), |Al| = sup (z, Az).
llz]l=1
To see this, let € > 0. Then
ellz||? = (z,ex) < (x,ex + Az) < ||z|| |lex + Az||

and so ¢ ||z|| < |lex + Azx|| for all z € X. Hence e+ A is injective and has a
closed image by Theorem 4.1.161 Thus im(e1 + A) = (ker(s1+A))* = H by
part (iv) of Lemma so el+ A is bijective. Hence —¢ ¢ o(A). Since the
spectrum of A is real by part (i), this proves the first assertion in .
Next define

a:= sup (z, Az).
llzll=1

If x € H satisfies ||z| = 1, then
2
(x, Az) < |[zf| [[Az] < [|A]l [lz]|” = [l A]-
Thus a < ||A]|. To prove the converse inequality observe that, for all
2,y € H, we have Re(z, Ay) = (z +y, A(z +y)) — 1z — , Alz — ))

and hence

_i@ —y, Az — y)) < Re(z, Ay) < i<m +y, A(z +y))-

If ||z|| = |ly|| = 1, it follows that
a 1
a <~ 2a—ylP <~ 3lr —y Al - )

1
< Relr, Ay) < 3z + 3, A +9)) < T o+l <a.
Thus |Re(z, Ay)| < a for all z,y € H with ||z| = ||y|| = 1 and hence

[All = = sup |Re(z, Ay)| < a.

lell=llyll=1
This proves ([5.3.12). It follows from and part (ii) of Theorem [5.3.15]
that

supo(4) = sup A = [|A] = sup (z, Az)

Aea(A) llzl|=1
for every self-adjoint operator A = A* € L°(H) that satisfies and
this proves (ii).

Part (iii) follows from (ii) by replacing A with —A, part (iv) follows

from (ii), (iii), and Theorem and part (v) follows from (i) and The-
orem [5.3.15] This proves Theorem [5.3.16 U
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DEFINITION 5.3.17 (Singular value). Let X and Y be complex Hilbert
spaces and let T" € L¢(X,Y). A real number A > 0 is called a singular value
of T if A2 € o(T*T).

Thus the singular values of T' are the square roots of the (nonnegative)
spectral values of the self-adjoint operator 7*T : X — X. Equation ([5.3.10)
shows that the supremum of the singular values is the norm of T'.

COROLLARY 5.3.18 (Compact Operators). Let X and Y be complex
Hilbert spaces and let 0 # K € L9(X,Y). Then the following are equivalent.
(i) K is compact.

(ii) There exists a set I C N, either equal to N or equal to {1,...,n} for
some n € N, and orthonormal sequences (x;)ier in X and (y;)icr in'Y, and
a sequence (N\;)ier of positive real numbers, such that lim; oo A\; = 0 in the
case I = N and
(5.3.13) Kz = Z)\i(xi, x)y; forallx € X.
i€l

Proof. That (ii) implies (i) follows from Theorem 4.2.10f To prove the

converse, consider the operator
A=K'K: X — X.

This operator is self-adjoint by Lemma and is compact by Theo-
rem Hence o(K*K)\ {0} is a discrete subset of the positive real axis
(0,00) by Theorems [5.2.8 and [5.3.16, Write o(K*K) \ {0} = {\}|ie I},
where I = N when the spectrum is infinite and I = {1,...,n} otherwise,
the )\; are chosen positive, and #{i € I | \; = A} = dimker(\?1 — K*K) for
all A > 0. Choose an orthonormal sequence (z;);c; in X such that

K*Kz; = Nx;  foralliel
and define y; = A;lei. Then (y;,yj)y = ()\Z-)\j)_l(xi,K*Kxj> = ¢;; for
all 4,5 € I. Moreover, K*Kz =Y, _; A?(2;, z)x; and hence
|Kz|? = (z, K*Kz) = Z)\Q Xy T
el
for all x € X. Since K*y; = \;jx; for all ¢ € I, this implies

2
HKQ: — Z)\ Ti, X

= | K| + > A7 (s, )
el el

—2ZARe xi,x)(Kx yl>)—0.
i€l

Since K is compact, the sequence (\;);en converges to zero whenever I = N.
This proves Corollary [5.3.18 O
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5.4. Functional Calculus for Self-Adjoint Operators

In Subsection we have introduced the holomorphic functional calcu-
lus for general bounded linear operators on complex Banach spaces. In the
special case of normal operators on Hilbert spaces this functional calcu-
lus extends to arbitrary complex valued continuous functions on the spec-
trum. The complex valued continuous functions on any compact Hausdorff
space ¥ form a C* algebra C'(X) as do the bounded complex linear op-
erators on a complex Hilbert space. The continuous functional calculus
assigns to every normal operator A € L°(H) on a complex Hilbert space H
the unique C* algebra homomorphism ®4 : C(0(A)) — L°(H) that satis-
fies ® 4(id) = A. The Spectral Mapping Theorem asserts that the spectrum
of the image of a function f € C(0(A)) under this homomorphism is the
image of the spectrum under f. We prove this in Subsection for self-
adjoint operators and in Subsection for normal operators.

5.4.1. C* Algebras. Recall the definition of a complex Banach algebra in
Definition

DEFINITION 5.4.1. (i) A (unital) C* algebra is a complex unital Ba-
nach algebra A, equipped with an anti-linear involution A — A :a+ a*
that reverses the product and satisfies the C* identity, i.e.

(ab)* = b*a”, 1" =1, a** = a, (Aa)* = Aa*, la*a| = |a|?
for all a,b € A and all A € C, where a** := (a*)*.
(ii) A C* algebra A is called commutative if ab = ba for all a,b € A.

(iii) Let A and B be unital C* algebras. A C* algebra homomorphism
is a bounded complex linear operator ® : A — B such that

O(1y) = 15, ®(ad') = ®(a)®(d), ®(a*) = P(a)”
for all a,a’ € A.

ExXaMPLE 5.4.2. Let M be a nonempty compact Hausdorff space. Then
the space C(M) := C(M, C) of complex valued continuous functions on M
with the supremum norm is a commutative C* algebra. The complex anti-
linear involution C(M) — C(M) : f — f is given by complex conjugation.

ExaMPLE 5.4.3. Let H be a nonzero complex Hilbert space. Then the
space L°(H) of bounded complex linear operators A : H — H with the op-
erator norm is a C* algebra. The complex anti-linear involution is the
map L°(H) — L(H) : A — A* which assigns to each operator A € L°(H)
its adjoint operator A* (see Definition and (5.3.10)). The C* algebra

L(H) is commutative if and only if H has complex dimension one.
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The goal of the present section is to show that, for every self-adjoint oper-
ator A € L°(H) on a nonzero complex Hilbert space H, there exists a unique
C* algebra homomorphism ®4 : C(c(A)) — L(H) such that ®4(id) = A.
This homomorphism is an isometric embedding and its image is the smallest
C* algebra A C L°(H) that contains A. The first step is the next lemma.

LEMMA 5.4.4. Let H be a nonzero complex Hilbert space and A € L°(H)
be a bounded complex linear operator. For a polynomial p(z) =Y j_, ap "
with complex coefficients ag, aq,...,a, € C define

p(A) =) ap A" € L°(H).
k=0

Then the following holds for any two polynomials p,q : C — C.
(1) (p+a)(A) = p(A) + q(A) and (pq)(A) = p(A)q(A).

(i) o(p(A4)) = p(o(A4)).

(iii) If A is normal, then so is p(A) and

(5.4.1) lp(A)] = sup |p(A)].
A€o (A)

Proof. Assertion (i) follows directly from the definitions and assertion (ii)
follows from parts (iii) and (iv) of Theorem [5.2.12| (see also Exercise |5.8.3)).
To prove (iii), consider the polynomial

n
q(z) == Z 2"
k=0

and recall that (A¥)* = (A*)* and (AA)* = AA* for all k € N and all A € C
by Lemma [5.3.9] Hence

n

py = (aa) = Saa) = ga)
k=0 k=0

Now assume A is normal. Then
p(A)q(A") = q(A%)p(A)
and therefore
p(A)"p(A) = q(A%)p(A) = p(A)q(A”) = p(A)p(A)".

Thus p(A) is normal and so (5.4.1)) follows from (ii) and Theorem [5.3.15
This proves Lemma O
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5.4.2. The Stone—Weierstrafl Theorem. The second ingredient in the
construction of the C* algebra homomorphism from C(o(A4)) to L°(H) is
the Stone—Weierstrafl Theorem.

THEOREM 5.4.5 (Stone—Weierstraf3). Let M be a nonempty compact
Hausdorff space and let A C C(M) be a subalgebra of the algebra of complex
valued continuous functions on M that satisfies the following axioms.

(SW1) Each constant function is an element of A.

(SW2) A separates points, i.e. for all z,y € M such that x # y there
exists a function f € A such that f(x) # f(y).

(SW3) If f € A, then f € A.
Then A is dense in C(M).

Proof. The proof is taken from [18]. The real subalgebra
Ar := ANC(M,R)

contains the real and imaginary parts of every function f € A by (SW3).
Hence it contains the constant functions by (SW1) and separates points
by (SW2). We prove in six steps that Ag is dense in C'(M,R). Then A is
dense in C(M) = C(M,C) by (SW1). Denote the closure of Agr with respect
to the supremum norm by Ag C C(M,R).

Step 1. Ag is a subalgebra of C(M,R) that contains the constant functions
and separates points.

This follows directly from the assumptions.

Step 2. There exists a sequence of polynomials
P, :[-1,1] — [0,1]
such that
(5.4.2) lim P,(s) = |s] for all s € [—1,1]

n—oo

and the convergence is uniform on the interval [—1,1].

The existence of such a sequence follows from the Weierstral Approxi-
mation Theorem. More explicitly, one can use the ancient Babylonian
method for constructing square roots. Define a sequence of polynomi-
als pp, : [0,1] — [0, 1] with real coefficients by the recursion formula

_ t+ pn_l(t)2

5 for n € N.

(5.4.3) po(t) =0,  pa(t):
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Then each p,, is monotonically increasing on the interval [0, 1] and

Prs1(t) —pn(t) = Pr(t)? — pa_1(t)?

2
(5.4.4) (Pn(t) = Pre1(D)) (P (t) + pp_1(1))
2

for each integer n > 2 and each t € [0, 1]. This implies, by induction, that

Pr1(t) = pa(t)

for all n € N and all ¢ € [0,1]. Hence the sequence (py(t))nen converges
for all t € [0, 1] and it follows from the recursion formula that the
limit 7(¢) := lim, 00 pr(t) € [0, 1] satisfies the equation 27(t) = ¢ + 7(¢)? and
therefore (1 —r(¢))? =1 —t. Thus

(5.4.5) nlgr;o@ —pa(t)) =v1—t  foralltel0,1].

The formula also shows that the polynomial p,,+1 — py, : [0,1] — [0, 1]
is nondecreasing for all n € N. Hence p,41(t) — pn(t) < ppt1(1) — pn(1) and
thus pp, () — pn(t) < pm(1) — pr(1) for all m > n and all ¢ € [0,1]. Take the
limit m — oo to obtain

0<1—-pp(t)—V1I—-t<1-—py(1) for all n € N and all t € [0, 1].
This shows that the convergence in (5.4.5|) is uniform on [0, 1]. Hence
(5.4.6) lim (1—p,(1—s%)) =Vs2=|s| forallse[1,1]

n—oo
and the convergence is uniform on the interval [—1,1]. This proves Step 2.
Step 3. If f € Ag, then |f| € Ag.

Let f € Ag \ {0} and € > 0. Then the function
f

h:=——

171l

takes values in the interval [—1,1]. Moreover, by Step 2, there exists a
polynomial P : [—1,1] — [0, 1] with real coefficients such that

GZR

€
sup ||s| — P(s)| < —.
ls|<1 i (#) £l

This implies

11 =11 P o b = 171 sup
zeM

h(z)| — P(h(z))| < e.

Since || f|| P o h € Ag, this proves Step 3.
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Step 4. If f,g € Ag, then
max{f, g} € Ag, min{f, g} € Ag.

This follows from Step 3 and the equations

max{f,g} = %<f+g+|f*9’),
min{f,g} = 5 (F+9-1f —gl).

Step 5. If f € C(M,R) and x,y € M, then there exists an element g € Ag
such that

This follows from the fact that Ag E)ntains the constant functions and
separates points. Namely, choose h € Ar with

(@) # hiy)
and define g € Ag by
) b)) hG) b
T R T R T e R

for z € M.
Step 6. Ag = C(M,R).

Let f € C(M,R). By Step 5 and the axiom of choice, there exists a collection
of functions g, , € Ag, one for each pair x,y € M, such that

goy() = f(2),  Gay(y) = f(y)
for all x,y € M. Let € > 0 and, for x,y € M, define
Upy =12 € M| gay(z) > f(2) — ¢},
Vey ={2€ M|gzy(z) < f(2)+¢}.

These sets are open and

(5.4.7)

{z,y} CUsy N Vay

for all =,y € M. Fix an element y € M. Then {U, y}zcnm is an open cover

of M. Since M is compact, there are finitely many elements z1,...,z, € M
such that
m
M = Us,y-

For y,z € M define
gy(2) == max g, (%), Vy =V gy NV NN Vo e

i=1,...,
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Then g, € Ag by Step 4 and V, is an open neighborhood of y by defini-
tion. Moreover, for every z € M, there exists an index i € {1,...,m} such
that z € U, 4 and so

9y(2) = gaiy(2) > f(2) —
by (5.4.7). Also, if z € V,, then z € V,, , and hence g, ,(2) < f(z) + ¢ for
allie{1,...,m} by , and therefore
gy(2) < f(2) +¢
To sum up, we have proved that
gy(2) > f(2) —¢ for all z € M,

(5.4.8) 9y(2) < f(z)+e  forall z€V,

Since {V}}yenr is an open cover of M, there exist elements y1,...,y, € M
such that M = J7_, Vj,. Define the function g : M — R by

9(2) == min gy (2)
j=1,..n
for z € M. Then g € Ag by Step 4 and it follows from (5.4.8) that
f(z) —e<yg(z) < f(2) +e

for all z € M. This shows that for every € > 0 there exists a g € Ag such

that || f — g|| <e. Thus f € Ag for all f € C(M,R). This proves Step 6 and
Theorem [5.4.5 O

EXAMPLE 5.4.6 (Hardy Space). The hypothesis (SW3) cannot be re-
moved in Theorem Let M = S'  C be the unit circle and define

o .ol is continuous and
_{fS %C‘ fo 27r1ktf ZWIt)dt_OforallkEN}

This is the Hardy space. A continuous function f : S — C belongs to H
if and only if its Fourier expansion has the form

27r1t Z a. 627r1kt for t € R,

where )
ap = / 6—27Tiktf(627rit) dt
0

for k € Np. This means that f extends to a continuous function v : D — C
on the closed unit disc D C C that is holomorphic in the interior of D.
The Hardy space H contains the constant functions and separates points
because it contains the identity map on S'. However, it is not invariant
under complex conjugation and the only real valued functions in H are the
constant ones. Thus # is not dense in C(S!).
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5.4.3. Continuous Functional Calculus.

THEOREM 5.4.7 (Continuous Functional Calculus). Let H be a non-
zero complex Hilbert space and A : H — H be a bounded self-adjoint complex
linear operator. Denote its spectrum by ¥ := o(A) C R. Then there ezists a
bounded complex linear operator

(5.4.9) CX)— LYH): fr— f(A)

that satisfies the following axioms.

(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € C(X).
(Conjugation) f(A) = f(A)* for all f € C(X).
(Normalization) If f(\) = A for all A € X, then f(A) = A.

(Isometry) [|f(A)[ = supres|f(MN)| =: [If]| for all f € C(%).

(Commutative) If B € L°(H) satisfies AB = BA, then f(A)B = Bf(A)
for all f € C(X).

(Image) The image A := {f(A)|f € C(X)} of the linear operator (j5.4.9)
is the smallest C* subalgebra of L°(H) that contains the operator A.

(Eigenvector) If A € ¥ and x € H satisfy Ax = Az, then f(A)x = f(\)z
for all f € C(X).

(Spectrum) f(A) is normal and o(f(A)) = f(o(A)) for all f € C(X).
(Composition) If f € C(E,R)and g € C(f(X)),then (go f)(A) = g(f(A)).

The bounded complex linear operator (5.4.9)) is uniquely determined by the
(Product) and (Normalization) azioms. The (Product) and (Conjugation)
azioms assert that (5.4.9) is a C* algebra homomorphism.

Proof. See page [241 O

The (Eigenvector) and (Spectrum) axioms in Theorem are called
the Spectral Mapping Theorem. Theorem [5.4.7| carries over verba-
tim to normal operators, with the caveat that ¥ = o(A) is then an ar-
bitrary nonempty compact subset of the complex plane (see Theorem
below). Ome approach is to replace polynomials in one real variable by
polynomials p in z and z and show that o(p(A4)) = p(c(A)) for every
such polynomial. In the simple case p(z) = z + Z this is the identity
o(A+ A*) = {A+A|A€o(A)} and to verify this already requires some
effort (see Exercise [5.8.2). Once the formula o(p(A)) = p(c(A)) has been
established for all polynomials in z and Z the proof proceeds essentially as
in the self-adjoint case. Amnother approach via Gelfand representations is
explained in Section [5.5
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Proof of Theorem[5.4.7, Denote the space of polynomials in one real
variable with complex coefficients by

there exists an n € N and complex
C[t] := ¢ p: R — C| numbers ag,ay,...,ay, such that
p(t) =3 p_paxtt forallt € R

Thus a polynomial p € C[t] is thought of as a continuous function from R
to C for the purpose of this proof. Since A is self-adjoint, its spectrum
Y =0(A)

is a nonempty compact subset of the real axis by Theorem [5.3.16] Define
the subalgebra P(X) C C(X) by

P(X) :={pls|p € C[t]} C C(%).

This subalgebra contains the constant functions, is invariant under conju-
gation, and separates points because it contains the identity map on X.
Hence P(X) is dense in C(X) by the Stone-Weierstra Theorem [5.4.5] With
this understood, the proof has five steps.

Step 1. There exists a unique bounded complex linear operator
Dy:C(2) — LYH)

such that
Pa(pls) = p(4)
for all p € C[t].

The map C[t] — P(X) : p — p|s need not be injective. Its kernel
Z(%) == {p e Clt] |pls = 0}

is an ideal in CJt], which is nontrivial if and only if ¥ is a finite set. The
algebra homomorphism C[t] — P(X) : p — p|s descends to an algebra
isomorphism C[t]/Z(X) — P(X). Given a polynomial

n
p=2_ ait'
k=0
with complex coefficients consider the bounded complex linear operator
n
p(A) = apAF € £°(H).
k=0

This operator is normal and o(p(A)) = p(c(A)) by Lemma [5.4.4] Hence

(5.4.10) [p(A)[[ = sup |u|= sup [p(A)]=[pls]
p€o(p(A)) Aeo(A)

by Theorem [5.3.15



242 5. Spectral Theory

Equation shows that the kernel of the complex linear operator
Clt] = L(H) : p+— p(A)
agrees with the kernel Z(X) of the surjective complex linear operator
Clt] = P(X) : p = pls.
Hence there is a unique map
Dy P(X) — LYH)
such that
(5.4.11) D 4(pls) = p(4) for all p € C[t].

In other words, if p,q € C[t] are two polynomials such that p(A) = ¢(}\)
for all A € X, then ||p(A) —q(A)|] = |lpls —¢l=ll = 0 by (5.4.10) and
so p(A) = q(A). Thus the operator p(A) € L°(H) depends only on the re-
striction of p to X, and this shows that there is a unique map ®4 : P(X) —

LE(H) that satisfies (5.4.11). Equation (5.4.11)) asserts that the following

diagram commutes

C[{] Lo(H
\ /
P(X)

The operator ®4 : P(X) — L°(H) is complex linear by definition and is
an isometric embedding by . Since P(X) is a dense subspace of
C(Y), it extends uniquely to an isometric embedding of C(X) into L£°(H),
still denoted by ® 4. More precisely, fix a continuous function f : ¥ — C.
By the Stone-Weierstrafl Theorem there exists a sequence of poly-
nomials p, € C[t] such that the sequence p,|y, converges uniformly to f.
Then p,(A) € L°(H) is a Cauchy sequence by (5.4.10). Since L°(H) is com-
plete by Theorem the sequence p,(A) converges. Denote the limit
by

).

a(f) = lim pa(A).
n—oo
It is independent of the choice of the sequence of polynomials p,, € C[t] used
to define it. Namely, let ¢, € C[t] be another sequence of polynomials such
that g,|s converges uniformly to f. Then p,|s — ¢n|x converges uniformly
to zero, hence
lim |pn(A) = gu(A)[ = lim [|pp]s — guls]| =0
n—oo

n—o0

by ((5.4.10f), and so
lim p,(A) = lim ¢,(A).

n—oo n—oo

This proves Step 1.
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Step 2. The map ®4 : C(X) — L(H) in Step 1 satisfies the (Product),
(Congugation), (Normalization), (Isometry), (Commutative), (Image), and
(Eigenvector) axioms.

The map satisfies the (Normalization) and (Isometry) axioms by its defini-
tion in Step 1. To prove the (Product) axiom, let f, g € C'(X) and choose two
sequences of polynomials p,,, g, € C[t] such that p,|s converges uniformly
to f and ¢,|x converges uniformly to g as n tends to infinity. Then p,q,|s
converges uniformly to fg as n tends to infinity and hence

®a(fg) = lim ®a(pngn) = lim ©a(pn)Palgn) = Pa(f)Pal9)-

Likewise p,, converges uniformly to f and hence

@4(F) = Jim ®a(p,) = lim @a(p)" = Pa(f)"

This proves the (Conjugation) axiom. The (Commutative) and (Eigenvec-
tor) axioms hold for all functions in P(X) by definition and hence the same
approximation argument as above shows that they hold for all f € C(X).

To prove the (Image) axiom, denote by A C L°(H) the smallest C*
subalgebra containing A. Then ® 4(P(X)) C A because A is a C* subalgebra
containing A. Moreover, C(X) is the closure of P(X) and so ®4(C (X)) C A
because A is closed. Conversely, A C ®4(C(X)) because ®4(C (X)) is a C*
subalgebra of L£°(H) that contains A. This proves Step 2.

Step 3. The map ®4 in Step 1 satisfies the (Spectrum) aziom.

Fix a continuous function f:3 — C. Then

FIA)F(A) = F(A)F(A) = fP(A) = F(AF(A) = f(A) F(A)*
by the (Product) and (Conjugation) axioms and hence f(A) is normal. To
prove the assertion about the spectrum we first show that

o(f(A)) C f(2).

To see this, let p € C\ f(X) and define the function g : ¥ — C by
1
A= ———

g() = f\)

for A € ¥. This function is continuous and satisfies
gu—f)=w—-rflg=1
Hence
g(A)(pl — f(A)) = (pl - f(A))g(A) =1

by the (Product) axiom. Thus the operator ul — f(A) is bijective and this
shows that u ¢ o(f(A)).
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To prove the converse inclusion f(X) C o(f(A)), fix a spectral value
A € 3 = o0(A) and define p := f(A). We must prove that u € o(f(4)).
Suppose, by contradiction, that u ¢ o(f(A)). Then the operator pll— f(A) is
bijective. Choose a sequence p,, € C[t] such that the sequence p,|s; converges
uniformly to f. Then the sequence of operators p,(A)1 — p,(A) converges
to ull — f(A) in the norm topology. Hence the operator p,(A)1 — p,(A) is
bijective for n sufficiently large by the Open Mapping Theorem [2.2.1] and
Corollary Hence p,(\) ¢ o(pn(A)) for large n, contradicting part (ii)
of Lemma This proves Step 3.

Step 4. The map ®4 in Step 1 satisfies the (Composition) aziom.
Let f € C(X,R) and let g € C(f(X)). Assume first that

g=q ()
for a polynomial ¢ : R — C. Choose a sequence of polynomials p, : R = R
with real coefficients such that p,|s converges uniformly to f. Then gopy,|x
converges uniformly to ¢ o f and

(q Opn‘E)(A) = Q(pn(A))
for all n € N. Hence

(g0 £)(A) = Tim (gopa)(A) = lim g(pa(4)) = a(F(A)).

Here the last step follows from the definition of ¢(B) for B € L°(H) and
the fact that p,(A) converges to f(A) in the norm topology as n tends to
infinity.

Now let g : f(3) — C be any continuous function and choose a sequence
of polynomials ¢, : R — C such that the sequence g,| F(x) converges uni-
formly to g as n tends to infinity. Then ¢, o f converges uniformly to g o f
as n tends to infinity and

(Qn © f)(A) = Qn(f(A))

for all n € N by what we have proved above. Hence
(9 £)(A) = lim (gu o f)(A) = lim_gu(f(A)) = g(/(4).
This proves Step 4.

Step 5. The map ® 4 in Step 1 is uniquely determined by the (Product) and
(Normalization) axioms.

Let ¥ : C(¥) — L°(H) be any bounded complex linear operator that sat-
isfies the (Product) and (Normalization) axioms. Then W(f) = ®4(f) for
all f € P(X). Since P(X) is dense in C(X) it follows from the continuity
of ¥ and ®4 that U(f) = ®4(f) for all f € C(X). This proves Step 5 and
Theorem O
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DEFINITION 5.4.8 (Positive Semidefinite Operator). Let H be a
complex Hilbert space. A self-adjoint operator A = A* € L°(H) is called
positive semidefinite if (z, Ax) > 0 for all z € H. The notation A > 0 or
A = A* > 0 signifies that A is a positive semidefinite self-adjoint operator.

COROLLARY 5.4.9 (Square Root). Let H be a complex Hilbert space,
let A= A* € L°(H) be a self-adjoint operator, and let f € C(o(A)). Then
the following holds.

(i) f(A) = f(A)" if and only if f(o(A)) CR.
(ii) Assume f(o(A)) CR. Then f(A) >0 if and only if f > 0.

(iii) Assume A > 0. Then there exists a unique positive semidefinite self-
adjoint operator B = B* € L°(H) such that B? = A.

Proof. Assume without loss of generality that H # {0}.

We prove part (i). Since f(A) — f(A)* = (f — f)(A) = 2i(Imf)(A) by
the (Conjugation) axiom, we have || f(A) — f(A)*| = 2supyeq(a)/Imf(A)| by
the (Isometry) axiom. This proves (i).

We prove part (ii). Thus assume f(c(A)) C R. Then it follows from

Theorem [5.3.16|and Theorem that inf),—1 (z, f(A)z) = infreo(a) F(N).
This proves (ii).

We prove existence in (iii). Since A is positive semidefinite we have
o(A) C [0,00) by Theorem [5.3.16, Define f : o(A) — [0,00) by f(\) := VA
for A\ € 0(A). Then B := f(A) € L(H) is self-adjoint by part (i), is
positive semidefinite by part (i), and B? = f(A4)? = f2(A) =id(A) = A by
the (Product) and (Normalization) axioms. This proves existence.

We prove uniqueness in (iii). Assume that C' € L°(H) is any positive
semidefinite self-adjoint operator such that C2 = A. Then CA = C® = AC
and hence it follows from the (Commutative) axiom that CB = BC. This
implies (B + C)(B — C) = B?> — C? = 0 and hence

0= (Bx — Cz,(B+C)(Bx — Cx))
= (Bz — Cz,B(Bx — Cx)) + (Bx — Cx,C(Bz — Cx))
for all x € H. Since both summands on the right are nonnegative, we have
(Bx — Cx,B(Bx — Cz)) = (Bx — Cx,C(Bx — Cz)) =0

for all z € H. Hence (x,(B — C)3z) = 0 for all x € H. Since (B — C)3 is
self-adjoint, it follows from Theorem [5.3.16| that

0=[(B-CP|=|B-CI

Here the last equation follows from part (i) of Theorem [5.3.15, Thus C' = B
and this proves Corollary O
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5.5. Gelfand Spectrum and Normal Operators

This section extends the continuous functional calculus for self-adjoint op-
erators, developed in Section to normal operators, following the elegant
approach of Schwartz [78, p 155-161] and Yosida [88], p 294-309].

5.5.1. The Gelfand Representation. Recall the definition of a complex
commutative unital Banach algebra as a complex Banach space A, equipped
with an associative and commutative bilinear map A x A — A : (a,b) — ab
that satisfies the inequality

[ab]| < [[all|[0]
for all a,b € A and a nonzero element 1 € A that satisfies
la=al=a

for all a € A (Definition |1.5.2)).

DEFINITION 5.5.1 (Ideal). Let A be a complex commutative unital Ba-
nach algebra such that

]} = 1.
An ideal in A is a complex linear subspace J C A such that
ac A, beJ == abe J.

An ideal J C A is called nontrivial if J # A. It is called maximal if it is
nontrivial and if it is not contained in any other nontrivial ideal. The set

Spec(A) :=={J C A|J is a maximal ideal}

is called the Gelfand spectrum of A. The Jacobson radical of A is the
ideal
RA) = () J.
JESpec(A)
The Banach algebra A is called semisimple if R = {0}. The spectrum of
an element a € A is the set

o(a) :={\ € C| A1 — a is not invertible} .

If M is a nonempty compact Hausdorff space, then the space A := C(M)
of continuous complex valued functions on M is a complex commutative
unital Banach algebra, the spectrum of an element f € C'(M) is its image
o(f) = f(M), every maximal ideal has the form 7 = {f € C(M) | f(p) = 0}
for some element p € M, and so the set Spec(.A) can be naturally identified
with M. The only maximal ideal in A4 := C is J = {0}. In these examples
the quotient algebra A/J is isomorphic to C for every maximal ideal J C A.
The next theorem shows that this continues to hold in general.
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THEOREM 5.5.2 (Maximal Ideals). Let A be a complex commutative
unital Banach algebra such that ||1|| = 1. Then the following holds.

(i) Every nontrivial ideal in A is contained in a mazimal ideal.

(ii) An element a € A is invertible if and only if it is not contained in any
mazximal ideal.

(iii) Every maximal ideal is a closed linear subspace of A.

(iv) o(a) # 0 for all a € A.

(v) If J C Ais a mazimal ideal, then A/J is isomorphic to C and
5.5.1 inf A1 —af = |\

(5.5.1) inf A~ = X

for all X € C.

Proof. We prove (i). The set
J :={J C A|J is an ideal and J C A}

of nontrivial ideals is nonempty because {0} € # and is partially ordered
by inclusion. If
¢ C g

is a nonempty chain, then the set

J = U ITcCcA
ASS
is an ideal, and J # A because otherwise there would exist an element Z € ¥
containing 1, in contradiction to the fact that 7 C A. Thus J € ¢ and so
every nonempty chain in ¢ has a supremum. Hence part (i) follows from
the Lemma of Zorn.

We prove (ii). Let ap € A and define
Jo :={aag|a € A}.

Then Jp is an ideal and every ideal J C A that contains ag also contains Jp.
If ag is invertible, then Jyp = A and so ag is not contained in any maximal
ideal. If ag is not invertible, then 7 is a nontrivial ideal and hence there
exists a maximal ideal [J containing Jy by part (i). This proves part (ii).

We prove (iii). The group G C A of invertible elements is an open subset
of A by Theorem Let J C A be a maximal ideal and denote by J
the closure of J. Then J NG = () by part (ii) and hence

JNnGg=»0

because G is open. Hence J is a nontrivial ideal and so J = J because J
is maximal. This proves part (iii).
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We prove (iv). Fix an element a € A and assume, by contradiction,
that o(a) = (. In particular, a is invertible and, by Corollary there
exists a bounded complex linear functional A : A — C such that A(a™!) = 1.
Since A1l — a is invertible for all A € C, the same argument as in the proof of
Lemma shows that the map C — A : A+ (A —a)~! is holomorphic.
Moreover, by part (iii) of Theorem [L.5.5]

o
Al = llall
for all A € C with |A| > ||a||. Hence the function

CoC:am fN) =AM —a) Y

([N B

is holomorphic and bounded. Thus it is constant by Liouville’s theorem,
and this is impossible because lim||_,oo|f(A)| = 0 and f(0) = 1. This con-
tradiction proves part (iv).

We prove (v). Let J C A be a maximal ideal and consider the quotient
space B := A/J with the norm

llalgll = inflla+bl  for falg = a+J € A/

By part (iii) and Theorem this is a Banach space and, since J is
an ideal, the product in A descends to the quotient. It satisfies the in-
equalities |[ab] 7| < llal 7 [b7]]l for all a,b € A and [[17] < |11 = 1 by
definition. Moreover ||[1] 7| =1, because otherwise there would exist an
element a € J such that |1 —al <1, so a would be invertible by Theo-
rem in contradiction to part (ii). This shows that B is a complex
commutative unital Banach algebra whose unit [1] 7 has norm one. Thus

Al =||[M]7|] = inf ||A1 —
Al =l[Al]7 ]| = inf |1 —af

for all A € C and this proves (5.5.1]).
Next we observe that every nonzero element [a] 7 € B = .A/J is invert-
ible in B. To see this, let a € A\ J. Then the set

Jo:={ab+clbe A ce T}

is an ideal such that J C J, and so J, = A. Thus there exists a b € A such
that ab — 1 € J. Hence [a] 7 is invertible in B and [a]}l = [b]7.

Now the Gelfand—Mazur Theorem asserts that every complex com-
mutative unital Banach algebra B in which every nonzero element is in-
vertible and whose unit has norm one is isometrically isomorphic to C. To
prove it, fix an element b € B. Then o(b) # 0 by part (iv). Choose an
element A € o(b). Then A1 — b is not invertible and so b = Al. Hence the
map C — B: A — Al is an isometric isomorphism of Banach algebras. This
proves the Gelfand—Mazur Theorem, part (v), and Theorem m O
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DEFINITION 5.5.3 (Gelfand Representation). Let A be a complex
commutative unital Banach algebra such that ||1]] = 1. By Theorem
there exists a unique function

(5.5.2) A x Spec(A) = C: (a, T) — fo(T)
such that
(5.5.3) faI)l—ae J for all a € A and all J € Spec(A).

The map a — f, is called the Gelfand representation or the Gelfand
transform. It assigns to each element a € A a function f, : Spec(A) — C.
The Gelfand topology on Spec(.A) is the weakest topology such that f, is
continuous for every element a € A.

To understand the Gelfand topology on Spec(A) it will be convenient
to change the point of view by fixing a maximal ideal J € Spec(A) and
considering the function A — C : a — fo(J). Lemma below shows
that this construction gives rise to a one-to-one correspondence between
maximal ideals and unital algebra homomorphisms A : A — C.

DEFINITION 5.5.4. Let A be a complex commutative unital Banach al-
gebra such that ||1|| = 1. A map A : A — C is called a unital algebra
homomorphism if it satisfies the conditions

Ala+b) = Aa) + A(b), A(ab) = A(a)A(b), A(zl) ==
for all a,b € A and all z € C. Define

A is a unital
algebra homomorphism

/T::{A:A—HC

The next two lemmas show that every unital algebra homomorphism is a
bounded linear functional of norm one. Hence A is a subset of the unit
sphere in the complex dual space A* = L¢( A, C).

LEMMA 5.5.5. Let A be a compler commutative unital Banach algebra
with ||1|| =1, let J € Spec(A), and define the map Ay : A — C by

(5.5.4) Ag(a) = fo(T)  forae A
Then the following holds.

(i) Ay is a unital algebra homomorphism.

(ii) ker(Ay) = J.

(iii) Az is a bounded linear functional of norm one, i.e.
(5.5.5) [Ag(a)l = [fa(T)] < lla]

for all a € A and equality holds for a = 1.
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Proof. We prove (i). Let a,b € A and define A := f,(7) and p := f,(J).
Then A1 —a € J and pull — b € J and hence

A+l —(a+b)=ANl—a)+ (pl—0b) e T
and
Al —ab=Al—a)b+A(pul—-0) e J.

Thus foup(J) = A+ p and fop(J) = Au. Since f3(J) = 1, this proves (i).

We prove (ii). Let a € A. Then we have A 7(a) = f,(J) = 0 if and only
if a € J, by definition of the map f, in (5.5.4)). Hence ker Ay = J and this
proves (ii).

We prove (iii). Observe that

Az (a)l = 1fa(T)| = Inf || fa(T)L = b]| = inffla —b] < la

for all @ € A and all J € Spec(A). Here the second equality follows
from and the third from the fact that f,(J)1 —a € J. This proves
equation and thus [[A7| < 1. Since Ay (1) =1, we have ||As] = 1.
This proves (iii) and Lemma [5.5.5] O

LEMMA 5.5.6. Let A be a compler commutative unital Banach algebra
with ||1]| = 1. Then Spec(A) is a compact Hausdorff space with the Gelfand
topology, A is a weak™® compact subset of the dual space A*, and the map

(5.5.6) Spec(A) = A: J — Ay
defined by (5.5.4) is a homeomorphism.

Proof. We prove that the map is bijective. Let A € A and de-
fine J :=ker(A). Then J is a linear subspace of A. Moreover, if a € A
and b € J, then we have A(ab) = A(a)A(b) =0 and so ab € J. Thus J is
an ideal of codimension one and hence is a maximal ideal. Now let a € A
and define X\ := f,(J). Then A1 —a € J = ker(A) and hence

Ala) = AQD) = A~ A(L) = A = fu(J)-

Thus A = Ay and so the map (5.5.6) is surjective. To prove that it is
injective, fix two distinct maximal ideals Z, J € Spec(.A) and choose an el-
ement a € Z\ J. Then Az(a) =0 and A7(a) # 0, and so Az # A 7.

Since the map is bijective, it follows from part (iii) of Lemmam
that A is contained in the unit sphere of the complex dual space A*. More-
over, A is a weak* closed subset of A* by definition of a unital algebra ho-
momorphism. Hence Ais a weak* compact subset of A* by Theorem
Now the Gelfand topology on Spec(A) is, by definition, induced by the
weak™® topology on A* under the inclusion Spec(A) = A C A*. Thus the
map is a homeomorphism and this proves Lemma m U
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Denote by C(Spec(.A)) the space of complex valued continuous functions
on the compact Hausdorff space Spec(.A) equipped with the Gelfand topol-
ogy of Definition [5.5.3] Then C(Spec(.A)) is a unital Banach algebra with
the supremum norm and the unit (the constant function one) has norm one.
The next theorem shows that the Gelfand representation

(5.5.7) A — C(Spec(A)) :a— f,
defined by (5.5.3)) is a unital algebra homomorphism.

THEOREM 5.5.7 (Gelfand). Let A be a complex commutative unital
Banach algebra such that ||1|| = 1. Then the following holds.

(1) The Gelfand representation (5.5.7) is a unital algebra homomorphism
and a bounded complex linear operator of norm one.

(ii) Every a € A satisfies

(5.5.8) o(a) = fa(Spec(A))
and

. nyl/n _ n|l/n _
(5.5.9) Tim [|a”| inf fla”| [ fall-

(iii) The kernel of the Gelfand representation (5.5.7) is the Jacobson radical

(5.5.10) RA) = (] T={acAlfa=0}.
JESpec(A)

(iv) The image of the Gelfand representation (5.5.7)) is a subalgebra of the
space C(Spec(A)) that separates points and contains the constant functions.

(v) The Gelfand representation (5.5.7) is an isometric embedding if and
only if
la®|| = lall?

for all a € A.

Proof. We prove part (i). That (5.5.7)) is a unital algebra homomorphism
follows from part (i) of Lemma and that it is a bounded linear operator
of norm one follows from part (iii) of Lemma [5.5.5] This proves (i).

We prove part (ii). Fix an element a € A and a complex number .
If A € o(a), then A1 — a is not invertible, hence part (ii) of Theorem [5.5.2]
asserts that there exists a maximal ideal J such that A\l —a € 7, and
hence f,(J) = A. Conversely, suppose that A = f,(J) for some maximal
ideal J. Then A1 — a € J by definition of f,, hence A1 — a is not invertible
by part (ii) of Theorem [5.5.2] and hence A € o(a). This proves (5.5.8).
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To prove (5.5.9)), recall that

ri= lim [la"]|*/" n|Lm
n—00

= inf ||la
neN

by Theorem Now the proof of Theorem carries over verbatim to
complex unital Banach algebras with ||1|| = 1. Hence, by (5.5.8)),

r= sup \|= sup |fo(T)]=|/all
A€o (a) J€Spec(A)

and this proves (5.5.9) and part (ii).
Part (iii) follows from the fact that an element a € A satisfies f, = 0 if
and only if a € J for all J € Spec(A).

Part (iv) follows from the fact that f1(J) =1 for all J € Spec(A) and
that the map Spec(A) — AT A7 in Lemma is injective. Namely,
if Z,J € Spec(A) are two distinct maximal ideals, then Az # A7, and hence
there exists an element a € A such that

fa(T) = Az(a) # Ag(a) = fa(T).
This proves (iv).
We prove part (v). If the Gelfand representation

A — C(Spec(A)) :a > fq

is an isometric embedding then

= ||fa]l = inf la™||*/™  for all
laf| = lfall = inf fja™] oralla € A
by (5.5.9) and hence
la™|| = ||al|™ for all @ € A and all n € N.

Conversely, suppose that
Ha2H = HaH2 for all a € A.

Then one shows as in the proof of Theorem [5.3.15| that

la”[] = llall"
for all a € A and all n € N. Hence || f,|| = ||a|| for all @ € A and so the
Gelfand representation is an isometric embedding. This proves part (v) and
Theorem [5.5.7 O

In view of Theorem [5.5.7] it is a natural question to ask under which
conditions the Gelfand representation is an isometric isomorphism of
commutative unital Banach algebras. For C* algebras (Definition the
next theorem gives an affirmative answer to this question.
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THEOREM 5.5.8 (Gelfand). Let A be a commutative C* algebra, so that
(5.5.11) la*al| = [ja|*  for all a € A.

Then ||1|| = 1 and the Gelfand representation A — C(Spec(A)) : a — fq
in (5.5.7) is an isometric C* algebra isomorphism. In particular,

for = fa for all a € A.

Proof. See page O

LEMMA 5.5.9. Let A be a commutative C* algebra. Then the following
are equivalent.

(1) Every mazimal ideal is invariant under the involution A — A : a — a*.
(ii) If a € A satisfies a = a*, then fo(J) € R for all J € Spec(A).
(iii) fo« = f, for all a € A.

Proof. We prove that (i) implies (ii). Fix an element a = a* € A and a
maximal ideal J € Spec(.A) and define

= fulJ):
Then A\ — a € J and hence
M—-a=AM-a"=\l-a)cJ
by part (i). This implies A = A € R. Thus (ii) holds.
We prove that (ii) implies (iii). Let a € A and define b,c € A by
1 1

b:= §(a—|—a*), c:i=

Then b =b* and ¢ = ¢* and a = b+ ic and a* = b —ic. Hence f; and f. are
real valued functions on Spec(.A) by part (ii) and therefore

fa* :fb_ifc:fb+ifc:7a'

i(a—a*).

Thus (iii) holds.
We prove that (iii) implies (i). Fix a maximal ideal J C A and define
the function A : A — C by

Aa) := fu(T)
for a € A. By part (iii) it satisfies A(a*) = A(a) for all a € A. Since
ker(A) =7

this shows that 7 is invariant under the involution a + a*. Thus (i) holds.
This proves Lemma [5.5.9 U
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Proof of Theorem[5.5.8, Let A be a commutative C* algebra. Following
Schwartz [78, p 159-161], we prove in four steps that the Gelfand represen-
tation is an isometric C* algebra isomorphism.

Step 1. || fal| = |la|| for all a € A. In particular, |1|| = 1.
By (5.5.11)), every a € A satisfies
2 * * * * *
|®|)” = [|(@®)*a®|| = [[(a*a)*(a"a) || = [la*a|* = [|a]*

and so |a?|| = ||a|?>. Hence Step 1 follows from part (v) of Theoremm

Step 2. f.a(J) = eolI) for all a € A and all J € Spec(A).

This follows directly from the fact that the Gelfand representation is a con-
tinuous homomorphism of complex Banach algebras.

Step 3. If a € A satisfies a = a*, then fo(J) € R for all J € Spec(A).
Let a € A such that a = a*. Then

*

(l)ele — i gia _ cile—a®) _
and hence
le’|* = () e = 1
by and Step 1. Thus
|feia (T < [l =1
and, likewise, |f.—ia(J)| <1 for all J € Spec(.A). Hence
L= /i) = [fea(T) fe-1a(T)] = [feia(T)| | fe-1a(T)] <1
and therefore, by Step 2,
/e = |fa(T) =1 forall J € Spec(A).
Hence f,(J) € R for all J € Spec(.A). This proves Step 3.

Step 4. The Gelfand representation is an isometric C* algebra isomor-
phism.

By Step 1 and part (v) of Theorem the Gelfand representation is
an isometric embedding and, by Step 3 and Lemma [5.5.9] it is a C* alge-
bra homomorphism. We must prove that it is surjective. To see this, de-
fine #4 := {fa|a € A}. This is a closed subspace of C(Spec(.A)) by Step 1,
it is a subalgebra of C(Spec(.A)) that contains the constant functions and
separates points by part (iv) of Theorem m and it is invariant under
complex conjugation by Step 3 and Lemma [5.5.9] Hence the set %4 satis-
fies the requirements of the Stone—Weierstral Theorem and therefore
is dense in C'(Spec(A)). Thus #4 = C(Spec(A)). This proves Step 4 and
Theorem [5.5.8 O
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5.5.2. C* Algebras of Normal Operators. The construction of the con-
tinuous functional calculus for normal operators is based on several lem-
mas. Assume throughout that H is a nonzero complex Hilbert space and
that Ap € L°(H) is a normal operator. Let Ay C L°(H) be the smallest
(unital) C* subalgebra that contains Ay.

LEMMA 5.5.10. Ag is commutative and every operator A € Ay is normal.
Moreover, if B € L°(H) satisfies BAy = AgB and BA§ = A{B, then B
commutes with every element of Ap.

Proof. Define
B:={Be€ L(H)|AyB = BAy and BA; = A;B}.

Then B is a closed subspace of L°(H) that contains the identity and is in-
variant under composition. Moreover, Ay € B because Ay and Af commute,
and B € B implies B* € B. Hence B is a C* subalgebra of L°(H) that
contains Ag. Hence the set

C:={C e L(H)|BC =CB for all B € B}

is also a C* subalgebra of £°(H) that contains Ay. Moreover, since Ag
and A{ are elements of B, we have C C B. Hence C is commutative, and
therefore every element C' € C is normal. Since C is a C* subalgebra of L¢(H)
and Ag € C, we have Ay C C and this proves Lemma [5.5.10 O

LEMMA 5.5.11. Let Spec(Ag) be the set of maximal ideals in Ay. Then,
for each A € Ay, there is a unique function fa : Spec(Ag) — C such that
(5.5.12) fal—-AeJ

for all J € Spec(Ap). Equip Spec(Ag) with the weakest topology such that f4
is continuous for every A € Ag. Then Spec(Apy) is a compact Hausdorff
space, the Gelfand representation

(5.5.13) Ao — C(Spec(Ag)) : A fa
is an isometric C* algebra isomorphism and
(5.5.14) fa(Spec(Ap)) = o(A) for all A € Ay.

Proof. Existence and uniqueness of the f4 follows from Theorem [5.5.2
the topology on Spec(Ap) is compact and Hausdorff by Lemma the
map (5.5.13)) is a unital algebra homomorphism by part (i) of Theorem[5.5.7}
and (5.5.14) holds by part (ii) of Theorem [5.5.7 By Theorem we
have

|A*All = sup (z, A*Az) = sup ||Az|® = || Al
[[zf|=1 [[=]|=1
for all A € Ay. Hence the Gelfand representation is an isometric C*
algebra isomorphism by Theorem This proves Lemma O
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LEMMA 5.5.12. Let A € Ay. Then
(5.5.15) A= A" = fa(J) e R for all J € Spec(Ap)
and

(5.5.16) A=A">0 — fa(T) >0 for all J € Spec(Ayp).

Proof. If A € Ay is self-adjoint, then

fa(T) = fa(J) = fa(T)

by Lemma [5.5.11{ and so fa(J) € R for all J € Spec(Ap). Alternatively, it
follows from (5.5.14)) and Theorem [5.3.16| that fa(Spec(Ap)) = o(A) C R.
Conversely, let A € Aj such that f4(Spec(Ap)) C R. Then

fa-a(T) = falT) = fa(T) = falT) — fa(T) =0
for all J € Spec(Ap) and so
[A— A" =|[fa—a-]| =0

by Lemma [5.5.11} Hence A = A* and this proves (5.5.15]).
To prove (5.5.16)), fix an element A € Aq. If A is self-adjoint and positive
semidefinite, then

fa(Spec(Ap)) =c(A) C [0,00)

by (5.5.14) and Theorem [5.3.16, Conversely, assume f4(Spec(Ag)) C [0, 00).

Then A is self-adjoint by (5.5.15) and o(A) C [0,00) by (5.5.14)). Hence A
is positive semidefinite by Theorem [5.3.16] This proves Lemma [5.5.12] [

LEMMA 5.5.13. The function fa, : Spec(Ao) — o(Ao) is a homeomor-
phism.

Proof. By we have fa,(Spec(Ap)) = o(Ap). We prove that fyu,
is injective. Assume, by contradiction, that there exist two distinct maximal
ideals Z,J € Spec(Ap) such that fa,(Z) = fa,(J) =: A. Then A € o(Ap)
and A\ — Ay € ZNJ. Define A := {z1+ A|z€C, AcZnNJ}. This set
is a proper C* subalgebra of Ay that contains Ag, in contradiction to the
definition of Ag. This contradiction shows that the map

fa, : Spec(Ag) — o(Aop)

is bijective. Since fa, is continuous, its domain is compact, and its target
space is Hausdorff, it is a homeomorphism. This proves Lemma [5.5.13] [J
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5.5.3. Functional Calculus for Normal Operators. With these prepa-
rations in place we are ready to establish the continuous functional calculus
for normal operators on Hilbert spaces.

THEOREM 5.5.14 (Continuous Functional Calculus).

Let H be a nonzero complex Hilbert space, let
Ae L°(H)

be a bounded normal operator, and let

Y:=0(A)CcC
be the spectrum of A. Then there exists a bounded complex linear operator
(5.5.17) C(X)— LYH): f— f(A)
that satisfies the following axioms.
(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € C(X).
(Conjugation) f(A) = f(A)* for all f € C(%).
(Positive) Let f € C(X,R). Then f >0 if and only if f(A) = f(A)* > 0.
(Normalization) If f(A\) = A for all A € &, then f(A) = A.
(Tsometry) || f(A)]| = supscs| f(N)] = [If]| for all f € C(%).
(Commutative) If B € L°(H) satisfies AB = BA and A*B = BA*, then

f(A)B = Bf(A) for all f € C(%).

(Image) The image
A:={fA)|feCE)}
of the linear operator (5.5.17)) is the smallest C* subalgebra of L°(H) that

contains the operator A.

(Eigenvector) If A € ¥ and x € H satisfy Az = Az, then
f(A)zx = f(Nzx for all f € C(%).
(Spectrum) For every f € C(X) the operator f(A) is normal and
o(f(A)) = f(o(A)).

(Composition) If f € C(X) and g € C(f(X2)), then (go f)(A) = g(f(A)).

The bounded complex linear operator (5.5.17)) is uniquely determined by the
(Product), (Conjugation), and (Normalization) azioms. The (Product) and
(Conjugation) axioms assert that (5.5.17)) is a C* algebra homomorphism.
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Proof. Fix a normal operator Ay € L°(H) and denote by
Ao C L(H)
the smallest C* subalgebra that contains Ag, as in Subsection Denote
the spectrum of the operator Ag by
Yo :=0(4p) C C.
Then the Gelfand representation
(5.5.18) Ao — C(Spec(Ag)) : A fa,

introduced in Definition is an isometric C* algebra isomorphism by
Lemma [5.5.11} Moreover, the map

on : Spec(Ao) — 20

is a homeomorphism by Lemma [5.5.13] These two observations give rise to
an isometric C* algebra isomorphism

(5.5.19) C(Xo) = Ao : fr— f(Ao),

defined as the composition of the isometric C* algebra isomorphism
C(Xo) = C(Spec(Ag)) : f = fofa,

with the inverse of the isomorphism . Thus

(5.5.20) A=f(A) < fa=Fofa,

for all A € Ay and all f € C(Xp). The resulting C* algebra isomor-
phism satisfies the (Positive) axiom by Lemma[5.5.12] the (Normal-
ization) and (Image) axioms by definition, the (Isometry) axiom because
the Gelfand representation is an isometry, the (Commutative) ax-
iom by Lemma and the (Spectrum) axiom by equation in
Lemma 5.5.111

We prove that the C* algebra homomorphism is uniquely de-
termined by continuity and the (Normalization) axiom id(Ag) = Ag. To see
this, let U : C(Xg) — L°(H) be any continuous C* algebra homomorphism
such that ¥(id) = Ag and let

P(%0) C C(X0)

be the space of all functions p: ¥y — C that can be expressed as polyno-
mials in z and Z. Then P(Xy) is a subalgebra of C'(¥g) that contains the
constant functions, separates points because it contains the identity map,
and is invariant under complex conjugation. Hence P (%) is a dense sub-
space of C'(Xg) by Theorem [5.4.5] Moreover, ¥(p) = p(A) for all p € P(X)
by linearity and the (Product), (Conjugation), and (Normalization) axioms.
Since the map C(Xg) — L(H) : f— U(f) — f(A) is continuous and P (%)
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is dense in C'(Xp), it follows that U(f) = f(A) for all f € C'(Xp). This proves
uniqueness of the continuous functional calculus for normal operators.

We prove the (Eigenvector) axiom. Fix an eigenvalue

A € Po(Ay)

and choose a nonzero vector x € H such that
Apr = Ax.

Then ||A\x — Ajz| = || Az — Apz| = 0 by Lemma and hence
Abz = Az

This implies

p(Ao)z = p(A)z
for every polynomial p € P(%y) in z and Z. Now let f € C(Xy) and choose
a sequence p, € P(3y) that converges uniformly to f. Then

lim [ f(Ao) = pn(Ao)ll = lim [[f —pal =0
n—00 n—oo
by the (Isometry) axiom, and hence
f(Ap)x = T}Ln;opn(Ao)x = T}Lngopn(A)x = f(N)z.
This proves the (Eigenvector) axiom.

We prove the (Composition) axiom. Fix a continuous function
f : Y — C.
Then f(Ag) € L(H) is a normal operator whose spectrum is

o(f(Ao)) = f(X0)
by the (Spectrum) axiom. Now consider the map
C(f(X0)) = LY(H) : g = (g © f)(Ao).
This map is a continuous C* algebra homomorphism and it sends the identity

map g = id : f(Xp) — C to the operator f(Ap). Hence it follows from the
uniqueness statement, with Ay replaced by f(Ap), that

(90 f)(Ao) = g(f(Ag))  forall g € C(f(X0))-
This proves Theorem ([

In Theorem the continuous functional calculus was established for
self-adjoint operators. Theorem extends this result to normal oper-
ators and at the same time provides an alternative proof. The next goal
is to extend the continuous functional calculus further to the C* algebra of
complex valued bounded measurable functions on the spectrum. Taking the
characteristic functions of Borel sets one then obtains the spectral measure
associated to a normal operator. This is the content of Section below.
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Remark 5.5.15. Let H be an infinite-dimensional complex Hilbert space.
It is useful to examine the special case of Theorem [5.4.7] where the normal
operator A € L°(H) is compact, which we now assume.

(i) By part (v) of Theorem [5.3.16| the Hilbert space H admits an orthonor-
mal basis {e;}iecr of eigenvectors of A. Here I is an infinite index set, un-
countable whenever H is not separable, and

<€i,6j> = 5@']' for all ¢,j € I.

Here (e;,e;) denotes the Hermitian inner product and the e; are linearly
independent over the complex numbers. There exists amap I — C: i — \;
such that Ae; = \;e; for all ¢ € I and hence

(5.5.21) Ar = Z Ailei, z)e; for all x € H.

icl
The numbers \; are the eigenvalues of A and o(A) = {\;|i € I} U{0}. Thus
we have sup;cr|Ai| < oo. Moreover, the set {i € I'||\;| > ¢} is finite for

every € > 0, because A is compact. The eigenvalues \; appear with the
multiplicities

#licI|N\=A =dimker\l— A) forall A € R.
If f:0(A) — Cis any continuous function, then the operator f(A) € L°(H)

is given by

(5.5.22) f(A)x = Z F(Ni)(ei,x)e; for all z € H.

Note that f(A) is compact if and only if f(0) = 0.

(ii) It is also useful to rewrite the formula ([5.5.22)) in terms of the spectral
projections. Let o(A) = {Xo, A1, A2, ...} where \; # A for i # j and \g = 0.
For each i let P; € L°(H) be the orthogonal projection onto the eigenspace
of )\Z', i.e.

(5.5.23) P?=P; =P/, im(P) = E; :=ker(\j1—A), ker(P) = E;".
Then P;P; = 0 for 7 # j and

(5.5.24) =z = ZB-:U, Az = Z)\z‘PM, f(A)z = Z f\) P

for all + € H. Here the sums may be either finite or infinite, depend-
ing on whether or not o(A) is a finite set. If o(A) is an infinite set, we
emphasize that the sequence of projections Y ;" ; P; converges to the iden-
tity in the strong operator topology, but not in the norm topology, be-
cause |[1—37" Pl =1 for all n € N. However, the sequence > " 4\ P;
converges to A in the norm topology because lim; o, A\; = 0.
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5.6. Spectral Measures

Assume that H is a nonzero complex Hilbert space and A € L(H) is a
normal operator. Then the spectrum

Y:=0(A)CC
is a nonempty compact subset of the complex plane by Theorem [5.3.15| Let
C(X) = L(H) : f = f(A)

be the C* algebra homomorphism introduced in Theorem The pur-
pose of the present section is to assign to A a Borel measure on X with values
in the space of orthogonal projections on H, called the spectral measure
of A. When A is a compact operator this measure assigns to each Borel
set () C X the spectral projection

P = Z P,

A€o (A)NQ

associated to all the eigenvalues of A in Q (see Remark [5.5.1F). The gen-
eral construction of the spectral measure is considerably more subtle and is
closely related to an extension of the homomorphism in Theorem to
the C* algebra B(X) of all bounded Borel measurable functions on ¥. The
starting point for the construction of this extension and the spectral mea-
sure is the observation that every element x € H determines a conjugation
equivariant bounded linear functional A, : C(X) — C via the formula

(5.6.1) AL (f) == (z, f(A)z) for f € C(X).

Since Ay (f) = Az(f) for all f € C(X), the functional A, is uniquely deter-
mined by its restriction to the subspace C'(X,R) of real valued continuous
functions. This restriction takes values in R and the restricted functio-

nal A, : C(X,R) — R is positive by Theorem [5.5.14] i.e. for all f € C(X,R),

/>0 = A.(f) > 0.

Hence the Riesz Representation Theorem asserts that A, can be represented
by a Borel measure. Namely, let B C 2* be the Borel o-algebra. Then, for
every x € X, there exists a unique Borel measure p, : B — [0,00) such that

(5.6.2) /Zfd,uz = (z, f(A)x) for all f € C(X,R).

(See [75], Cor 3.19].) These Borel measures can be used to define the desired
extension of the C* algebra homomorphism C(X) — L°(H) to B(X) as well
as the spectral measure of A.
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5.6.1. Projection Valued Measures.

DEFINITION 5.6.1 (Projection Valued Measure). Let H be a com-
plex Hilbert space, let

YccC

be a nonempty closed subset, and denote by B C 2* the Borel o-algebra. A
projection valued Borel measure on ¥ is a map

(5.6.3) B— L(H):Q— Py

which assigns to every Borel set 2 C ¥ a bounded complex linear opera-
tor Po : H — H and satisfies the following axioms.

(Projection) For every Borel set 2 C 3 the operator Py is an orthogonal
projection, i.e.

(5.6.4) P3=Pq=Pg.

(Normalization) The projections associated to Q = () and Q = X are

(5.6.5) Py=0, Py=1.

(Intersection) If Q1,09 C ¥ are two Borel sets, then

(566) Pﬂlﬁflg = P91P92 = PQQPQl‘

(o-Additive) If (€2;);en is a sequence of pairwise disjoint Borel sets in ¥ so
that ;N Q; =0 for ¢ # j and Q := [J;2, €, then

n
(5.6.7) Poxr = nh_)rglo Z Po,x

=1

forall x € H.
For every nonempty compact Hausdorff space 3. define

B(Y¥) :={f:¥ — C| f is bounded and Borel measurable} .

This space is a C* algebra with the supremum norm
11l := sup [ f(A)]
AT

for f € B(X), and with the complex anti-linear isometric involution given
by complex conjugation. The next theorem shows that, if 3 is a closed
subset of C and B C 2% is the Borel o-algebra, then every projection valued
measure B — L°(H) : Q — Pq gives rise to a C* algebra homomorphism
from B(X) to L(H).
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THEOREM 5.6.2. Let H,X,B be as in Definition and fix a pro-
jection valued measure (5.6.3). Denote by B(X) the C* algebra of complex
valued bounded Borel measurable functions on X, equipped with the supre-
mum norm. For x,y € H define the signed Borel measure pp, : B — R

by

(5.6.8) tay(Q) = Re(z, Poy) for Qe B.

Then, for each f € B(X), there exists a unique operator ¥(f) € L°(H) such
that

(5.6.9) Re(z,¥(f)y) = /ZRef dpizy + /EImf dpig iy for all z,y € H.

The resulting map ¥ : B(X) — L(H) is a C* algebra homomorphism and
a bounded linear operator and it satisfies o(V(f)) C f(X) for all f € B(X).

Proof. See page [264] O

Assume the situation of Theorem and suppose, in addition, that
Y is compact. Since the map ¥ : B(X) — L°(H) is a C* algebra homo-
morphism, the operator ¥(f) is normal for every f € B(X). Thus every
projection valued measure on ¥ determines a normal operator A := ¥(id)
associated to the identity map and the spectrum of A is contained in .
Conversely, every normal operator A € L°(H) gives rise to a unique projec-
tion valued measure in H with support on its spectrum ¥ := o(A). Thus
there is a one-to-one correspondence between compactly supported projec-
tion valued measures on C and bounded normal operators on H.

THEOREM 5.6.3 (Spectral Measure). Let H be a nonzero complex
Hilbert space, let A € L°(H) be a normal operator, let ¥ := o(A) C C be
its spectrum, and denote by B C 2% the Borel o-algebra. Then there exists
a unique projection valued Borel measure

(5.6.10) B— L(H):Qw— Pqg

such that

(5.6.11) /Re)\ dptg y(N) —|—/Im)\ dpig iy(X) = Re(z, Ay)
% %

for all x,y € H, where the signed Borel measures i, : B — R are given by
(5.6.12) Ly () := Re(x, Poy)

for x,y € H and Q2 € B. The projection valued measure (5.6.10)) is called
the spectral measure of A.

Proof. See page ([
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ExXAMPLE 5.6.4. Let ¥ C C be a nonempty compact set, equipped with
the Lebesgue measure, and let H := L?*(X) be the Hilbert space of com-
plex valued L? functions on X. For a Borel set Q C ¥ define Py : H — H
by Pav := xqv for ¢ € H, where xq : 3 — R denotes the characteristic
function of €). These operators define a projection valued measure on H
and the operator ¥ : B(X) — L(L?(X)) in Theorem is given by

()b = fi
for all f € B(X) and all ¢ € L?*(X). In the case ¥ = [0,1] C R and

A, for0< A<,
f()\)'_{ 2, for A=1.

we obtain f(X) = [0,1) U {2} and o(¥(f)) = [0,1]. Thus f(¥) is not closed
and f(X) ¢ o(¥(f)) G f(2).

The proof of Theorem is carried out in the present subsection,
while the proof of Theorem is postponed to Subsection As in
part (vi) of Example denote by M(X) the Banach space of signed
Borel measures p : B — R with the norm

o]l = sup () — p(E\ Q)
QeB
for p e M(%).
Proof of Theorem [5.6.3. The proof has five steps.

Step 1. The map H x H — M(X) : (z,y) — pg,y is real bilinear and
symmetric and satisfies the inequality

[ty || < [l [y
forallx,y € H.

That the map is real bilinear and symmetric follows directly from the defini-
tion of pz,. Moreover, for all z,y € H and all Q € B we have PoPr\q =0,
hence the vectors Poy and Px\qy are orthogonal to each other, hence
2
| Pay — Psvau||” = | Payll” + | Peyoyll?
2
= || Pay + Ps\ayl|
2
= || Peyll
2

= llyll

and hence
fa,y(§2) — pay(3\ Q) = Re(z, (Po — Poyo)y) < lzlly

by (5.6.8]). This proves Step 1.
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Step 2. Let B € L°(H) such that PoB = BPq for all Q € B. Then

Mz, By = UB*z,y

forallx,y € H.

Let Q € B and x,y € H. Then, by (5.6.8]) we have
ta,By(2) = Re(z, PoBy) = Re(z, BPay) = Re(B*z, Poy) = B 2,y(2).
This proves Step 2.

Step 3. For every f € B(X) there exists a unique bounded complex linear
operator V(f) : H — H that satisfies (5.6.9). Moreover, U(f) = W(f)* for
all f € B(X) and the map ¥ : B(X) — L(H) is a bounded complex linear
operator.

Let f € B(X,R) and define the real bilinear form By : H x H — R by

Bf(ZL‘,y) = /Efdﬂx,gr
Then, for all x,y € H, we have

By (@, )| < ([l < 1Ay

by Step 1 and [75, Exercise 5.35 (i)]. Hence there exists a unique bounded
real linear operator W(f) € L(H) such that

Re(z,¥(f)y) = By(x,y) for all x,y € H.

This operator is self-adjoint because By is symmetric by Step 1, and

[NIeplivals
Hence the resulting map ¥ : B(X,R) — L(H) is a bounded linear operator.
Moreover, By(x,iy) = —By(iz,y) by Step 2 with B = ill, and hence
Re(z, U(f)iy) = By(z,iy)
= —DBy(iz,y)
= —Re(iz, ¥(f)y)
= Re(z,i¥(f)y)

for all z,y € H. Thus the operator ¥(f): H — H is complex linear.
For f € B(X) define

U(f) = U(Ref) + iU (Imf) € L5(H).

Then W(f) satisfies condition (5.6.9) and is uniquely determined by this
equation. Moreover, the map B(X) — L°(H): f+— V(f) is complex lin-

ear and the formula W(f) = W(f)* follows from the fact that the opera-
tors U(Ref) and W (Imf) are self-adjoint. This proves Step 3.
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Step 4. Let ¥ : B(X) — L¢(H) be as in Step 3. Then

V(fg) =¥ (f)¥(g)
for all f,g € B(X).
Since the operator ¥ : B(X) — L¢(H) is complex linear it suffices to verify

the equation U(fg) = ¥(f)¥(g) for real valued functions f,g € B(X,R).
Assume first that g = yq for some Borel set 2 C X. Then

[Py () = Re(Pox, Poy)
= Re(x, PoPoy)
= Re(z, Ponary)
= Uy y (2N Q)

:/ XQ d#ﬂ:,y
Q/

for all Q' € B. By [75, Thm 1.40] this implies

/ gdpigy = / gxa itz y
Q ¥
= / 9 dppoz.y
>

= Re(Pax, ¥(g)y)
= Re(z, Po¥(9)y)
= Mz,\p(g)y(m
for all g € B(X,R). Apply [75, Thm 1.40] again to obtain

Re(e. ¥(70)s) = [ Foduey = [y, = Rela 9(1)¥(a)y)
for all f,g € B(X,R) and all z,y € H. This proves Step 4.

Step 5. o(U(f)) C f(X) for all f € B(X).
Let fe B(X)and A€ C\ f

F(X) and define the function g : ¥ — C by
9w = (A= f(w)""  forpes.
Then g € B(E) and g(A — f) = (A — f)g = 1. Hence

U(g)(AL — () = (AL — () ¥(g) = ¥(1) = L.

Thus A1 — U(f) is invertible and so A € p(¥(f)). This proves Step 5 and
Theorem [(5.6.2] O
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5.6.2. Measurable Functional Calculus. The next theorem extends the
continuous functional calculus for normal operators, established in Theo-
rem to bounded measurable functions. The new ingredients are the
(Convergence) axiom, the (Contraction) axiom in place of the (Isometry)
axiom, and the modified (Image) and (Spectrum) axioms.

THEOREM 5.6.5 (Measurable Functional Calculus).

Let H be a nonzero complex Hilbert space, let A € LE(H) be a normal
operator, and let ¥ := o(A). Then there exists a complex linear operator

(5.6.13) B(X) = L(H): f— f(A)

that satisfies the following axioms.

(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € B(X).
(Conjugation) f(A) = f(A)* for all f € B(X).

(Positive) If f € B(X,R) and f > 0, then f(A) = f(A)* > 0.
(Normalization) If f(A\) = A for all A € X, then f(A) = A.
(Contraction) [[f(A)l| < supres|f(N)] = f]| for all f € B(%).

(Convergence) Let f; € B(X) be a sequence such that sup;cy || fil| < oo
and let f € B(X) such that lim;_,o fi(\) = f(A\) for all X € . Then

lim f;(A)x = f(A)x forallz € H.

1—00
(Commutative) If B € L°(H) satisfies AB = BA and A*B = BA*,
then f(A)B = Bf(A) for all f € B(X).

(Image) The image of the operator (5.6.13)) is the smallest C* subalgebra
of L°(H) that contains A and is closed under strong convergence.

(Eigenvector) If A € 3 and x € H satisfy Az = Az, then
f(A)z = f(N)z
for all f € B(X).
(Spectrum) If f € B(X), then f(A) is normal and o(f(A)) C f(X). More-
over, o(f(A)) = f(X) for all f € C(X).
(Composition) If f € C(X) and g € B(f(X)), then (go f)(A) = g(f(A)).

The complex linear operator is uniquely determined by the (Pro-
duct), (Conjugation), (Normalization), and (Convergence) axioms. The
(Product) and (Conjugation) azioms assert that it is a C* algebra homo-
morphism.

Proof. See page ([
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The proofs of both Theorems [5.6.3 and [5.6.5] will be based on a se-
ries of lemmas. Assume throughout that H is a nonzero complex Hilbert
space, that A € L¢(H) is a normal operator with spectrum ¥ := o(A) C C,
and that B C 2% is the Borel o-algebra. The starting point is the Riesz
Representation Theorem which asserts that, for every positive linear func-
tional A : C'(X,R) — R, there exists a unique Borel measure p : B — [0, 00)
such that A(f) = [5 fdp for all f € C(X,R) (see [75, Cor 3.19]). By The-
orem this implies that, for each x € H, there exists a unique Borel
measure f, : B — [0, 00) that satisfies (5.6.2)), i.e.

/ fduy = (x, f(A)x) for all f € C(X,R).
b

For xz,y € H define the signed measure p;, : B — R by

1

(5.6.14) Py = Z(uﬁy — Pa—y)-

The next lemma summarizes some basic properties of these signed measures.
LEMMA 5.6.6. (i) The map

(5.6.15) HxH— M) :(2,y) = pay

defined by 1s real bilinear and symmetric.

(ii) The signed measures iz, satisfy

(5.6.16) /Zfdux,y = Re(z, f(A)y)

forall z,y € H and all f € C(X,R).

(iii) Let B € L°(H) such that AB = BA and A*B = BA*. Then
(5.6.17) Mo, By = HB*zy

and, in particular,

Mz iy = —Miz,y

for all x,y € H.
(iv) The signed measures jig, satisfy

(5.6.18) [yl < [l lyl
forall x,y € H.
Proof. Equation (5.6.16) follows from ([5.6.2) and the definition of p, ,

in (5.6.14). It implies that the map (5.6.15)) is real bilinear and symmetric.
This proves parts (i) and (ii).
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To prove part (iii), assume B € L°(H) commutes with A and A* and
let 2,y € H. If f € C(X,R), then f(A)B = Bf(A) by the (Commutative)
axiom in Theorem [5.5.14] Hence it follows from (ii) that

[ Fiemy = el F(A)By) = Re(Ba. f(Aw) = [ Fs
by by

for all f € C(X,R). This implies p1; By = pB*z,y by uniqueness in the Riesz
Representation Theorem. This proves part (iii).

We prove part (iv). The Hahn Decomposition Theorem asserts that,
for every p € M(X), there exists a Borel set P C X such that (2N P) >0
and pu(Q\ P) <0 for every Borel set 2 C ¥ (see [75, Thm 5.19]). The norm
of p is then given by

el = p(P) = u(32\ P)

d
(5.6.19) reczr) S
d
= sup Js/ g
reBRr) ISl
(See [75], Exercise 5.35 (i)].) Hence
fd:UJz,
gl = sup by
reczr)y NS
A
— s Re(z, f(4)y)
FEC(SR) Il
A
< sup [zl LFCA Iyl
FEC(ER) (bl
= [z [y

for all z,y € H. Here the first step follows from (5.6.19)) and the last step fol-
lows from the identity || f(A)|| = || f|| for f € C(X,R) (see Theorem [5.5.14)).
This proves Lemma [5.6.6 U

Lemma allows us to define the map B(X) — L(H) : f — f(A)
in Theorem and the map B — L¢(H) : Q — Py in Theorem [5.6.3|
This is the content of Lemma below. The task at hand will then be
to verify that these maps satisfy all the axioms in Theorems and
and, finally, to prove the uniqueness statements. A key step for verifying the
properties of these maps will be the proof of the (Product) axiom in The-
orem This is the content of Lemma below. The (Convergence)
axiom will be verified in Lemma [5.6.9
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LEMMA 5.6.7 (The Operator VU 4). There exists a unique bounded com-
plex linear operator W4 : B(X) — L°(H) such that

(5.6.20) Re<$,‘1’A(f)y>:/2fd:ux,y

for all x,y € H and all f € B(X,R), where pyy € M(X) is defined
by (5.6.14). The operator W 4 satisfies the (Conjugation), (Positive), (Nor-
malization), (Contraction), and (Commutative) azioms in Theorem [5.6.5

Its restriction to C(X) is the operator (5.5.17)) in Theorem [5.5.14)

Proof. Fix a bounded real valued Borel measurable function f: % — R
and define the map By : H x H — R by

By(x,y) := /2 [ gy for z,y € H.

This map is real bilinear and symmetric by part (i) of Lemma and
(5:621) 1B, < Il el < A1 2l g for all 2,y € H

by (5.6.19) and part (iv) of Lemma Hence, by Theorem there
exists a unique bounded real linear operator W4(f) : H — H such that

Rel, Ua(f)y) = By(x,y) = /E Jdia,

for all z,y € H. Since By is symmetric the operator W 4(f) is self-adjoint.
Moreover, |[®A(f)]] < | f|l by (5.6.21). Since

R€<CC, \IIA(f)ly> = /Efdum,iy / fdﬂlm,y

= —Reliz, U4(f)y) = Re(z, i¥4(f)y)

for all z,y € H by part (iii) of Lemmam7 5.6.6| the operator W 4(f) is complex
linear. The resulting map V4 : B(X,R) — L°(H) extends uniquely to a
bounded complex linear operator ¥4 : B(X) — L¢(H) via

Ua(f) = Ua(Ref) +ila(Imf)  for f € B(X).

By definition, this operator satisfies ((5.6.20) as well as the (Conjugation),
(Positive), (Normalization), and (Contraction) axioms. If B € L°(H) com-

mutes with A and A*, then
Rew Val1)B9) = [ Fduany = [ fdnseey, = Re(Ba ¥a(7)0)

for all x,y € H by part (iii) of Lemma and so WA(f)B = BY4(f).
Thus V4 satisfies the (Commutative) axiom. That ¥4 is uniquely deter-
mined by is obvious and that U4 (f) = f(A) is the operator in The-
orem for every f € C(X) follows from part (ii) of Lemma This
proves Lemma O
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LEMMA 5.6.8 (Product Axiom). The map ¥, : B(X) — L°(H) in
Lemmam satisfies the (Product) axiom in Theorem .

Proof. Assume first that f: % — [0,00) is continuous and let x € H.
Then it follows from the (Product) axiom in Theorem [5.5.14] that

/E 0 dita sare = Re(z, g(4) f(A)z)
— Re(z, (gf)(A)z)

= /ngdux

for all ¢ € C(3,R). The last term on the right is the integral of g with
respect to the Borel measure

B—>[O,oo):(2|—>/gfdum

by [75, Thm 1.40]. Hence it follows from uniqueness in the Riesz Represen-
tation Theorem that

(5.6.22) pesel@) = | i

for every Borel set Q2 C X. Now let g € B(3,R). Then, for all z € H,
Re(x, Wa(g)Va(f)r) = /ngux,f(A)x

(5.6.23) _ / of dus
by

= Re(z, Va(gf)x).

Here the second equality follows from ((5.6.22]) and [75, Thm 1.40]. Moreover,
the operator WA(f) = f(A) commutes with A and A* by Theorem
and hence U 4(f) commutes with ¥ ,4(g) by Lemma Since both oper-
ators are self-adjoint, so is their composition as is W 4(gf). Hence it follows

from that
Va(f)Valg) =Yal(g)Valf) =Palgf)

whenever f: ¥ — [0, 00) is continuous and ¢ : ¥ — R is bounded and Borel
measurable. Now take differences and multiply by i, to obtain the (Product)
axiom for all f € C(X) and all g € B(X).

Now fix any bounded measurable function f : ¥ — [0, 00) and repeat the

above argument to obtain that ([5.6.22)) holds for all 2 € B and hence ([5.6.23])
holds for all g € B(3,R). Then the (Product) axiom holds for all f,g € B(X)

by taking differences and multiplying by i. This proves Lemma [5.6.8 U
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LEMMA 5.6.9 (Convergence Axiom). The map ¥4 : B(X) — L°(H)
in Lemma m satisfies the (Convergence) axiom in Theorem .

Proof. It suffices to establish the convergence axiom for real valued func-
tions. Thus assume that

fi: X =R, 1 €N,
is a sequence of bounded Borel measurable functions that satisfies
Sup 1fill < o0
and converges pointwise to a Borel measurable function
f:X =R,

1.e.

lim fi(A) = f(N) for all A € X.
1—00

Fix an element « € H. Then it follows from equation ({5.6.20]) in Lemmam
and the Lebesgue Dominated Convergence Theorem [75, Thm 1.45] that

Re(y, UA(f)z) = /Z F iy

1—00

= .lim Re(y, ¥ a(fi)x)

= lim fz duy@
D)

for all y € H. Replace f; by ff and use Lemmam to obtain
[ a()al® = (Va(f)z, Wa(f)z)
= (.CC, \IIA(fQ)x>
= lim (z, WA(f7)z)
1— 00
= lm (Uu(fi)z, Valfi)z)
= lim [[Wa(fi)z]?.
1— 00
Thus we have proved that the sequence
(Ta(fi)z)ien

in H converges weakly to W4 (f)z and the norm of the limit is the limit of
the norms. Hence it follows from Exercise [3.7.1] that

lim [ Wa(fi)a — Ca(f)a] = 0.

This proves Lemma [5.6.9 U
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Proof of Theorem |[5.6.5. Denote the characteristic function of 2 C X by
1, for A € €,
Xo xR XQ(A)'_{O, for A e ¥\ Q.

Let W4 : B(X) — L°(H) be the bounded complex linear operator introduced
in Lemma and define the map B — L°(H) : Q — Pq by

(5.6.24) P := Y 4(xa) for Q € B.

Since xq is real valued the operator Py is self-adjoint and, since

XX = XanQY,
it follows from Lemma [5.6.8 that

PoPo = W a(xa)Yalxe) = Yalxaxe) = Yalxane) = Pono
for all Q,Q € B. Thus Py is an orthogonal projection for every Q € B.
Moreover,
Py=Talxp) =¥a(0)=0,  Po=Vu(xs)="¥a(l) =1

Now let (£2;);eny be a sequence of pairwise disjoint Borel subsets of ¥ and

define -
0= U Q.
i=1
Then .
fn::ZXQi:E—)R
i=1

is a sequence of bounded Borel measurable functions that satisfies || f,|| <1
for all n and that converges pointwise to

[ = xa-
Hence, by Lemma we have

n n
Por = Y (xq)r = nh_)nolo U(fn)z = nh_)nolozl U(xq,)r = nh_{glongil‘
- i=1
for all x € H. This shows that the map ([5.6.24)) satisfies all the axioms
in Definition and hence is a projection valued Borel measure on X.
By definition of ¥ 4 in Lemma this projection valued measure satisfies

Re (2, Pay) = Re (2, U A(xa)y) — /E N )

for all z,y € H and all Q € B, where the signed measures p,, € M(X) are
given by . Thus the signed measures p, , are related to the projec-
tion valued Borel measure {Pn}ocp via equation (5.6.12). Hence
follows the (Normalization) axiom W4 (id) = A and (5.6.20) with f(\) = ReA
and f(A) = ImA. This proves existence.
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To prove uniqueness, fix any projection valued measure
B— LS(H): Q— Py,
define the signed Borel measures fi,, : B — R by equation , i.e.
fiay(©) = Relz, Poy)
for x,y € H and 2 € B, and suppose that holds, i.e.

(5.6.25) / Re dfig y(\) + / ImA dfiz 5, (A) = Re(, Ay)
b b

forall z,y € H. Let ¥ : B(X) — L°(H) be the continuous C* algebra homo-
morphism associated to {Pq}oep in Theorem ie.

(5.6.26) Re(z, U(f)y) = /Z Ref djizy + /Z Im f dig iy

forall 2,y € H and all f € B(X). Then the restriction of ¥ to C(X) is a con-
tinuous C* algebra homomorphism from C(X) to L°(H) by Theorem
and it follows from ([5.6.25)) and (5.6.26) that

U(id) = A.
Hence it follows from the uniqueness statement in Theorem that
U(f) = f(A)  forall feC(x),

where C(X) — L(H) : f+— f(A) is the C* algebra homomorphism associ-
ated to A in Theorem m 5.5.14] By (/5.6.26) m this implies

/ f dfiee = (2, 9(f)z) = / Fiae

for all f € C(X,R) and all z € H. Here the Borel measures
« B —[0,00)

are defined by . Hence it follows from uniqueness in the Riesz Repre-
sentation Theorem (see [75, Cor 3.19]) that
fiz,z = [
for all x € H. This implies
(@, Por) = iz o (Q) = 12(Q) = (2, Wa(x0)x)
for every x € H and every Borel set 2 C . Here ¥4 : B(X) — L(H) is the

complex linear operator of Lemmau Since the operators PQ and W4 (xq)
are self-adjoint, we obtain for each Borel set 2 C ¥ that

Po = U 4(xq).

This proves the uniqueness statement in Theorem [5.6.3 U
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The next lemma is useful in preparation for the proof of Theorem [5.6.5]

LEMMA 5.6.10. Let ¥ be a nonempty compact Hausdorff space such that
every open subset of ¥ is o-compact. Let B(X) be the Banach space of
bounded Borel measurable complex valued functions on % equipped with the
supremum norm and let C(X) C B(X) be the subalgebra of continuous func-
tions. Let F C B(X) be a subset that satisfies the following conditions.

(a) F is a complex unital subalgebra of B(X).
(b) The subalgebra F N C(X) separates points.
(c) If f € F, then f € F.

(d) If (fi)ien is a sequence in F and f € B(X) such that sup;ey || fil| < oo
and lim;_,o0 fi(A) = f(A) for all X € ¥, then f € F.

Then F = B(X).

Proof. By (a), (b), (c), and Theorem the set F N C(X) is dense
in C(X) with respect to the supremum norm. By (d) this subset is also
closed and hence C'(X) C F.

Let B C 2* be the Borel o-algebra and define
Br:={QeB|xaecF}.

We prove that Br is a o-algebra. First, (), 2 € Bx by (a) because the char-
acteristic functions yp = 0 and xy = 1 are constant. Second, if Q;, Q9 € Br,
then xo,\0, = X0, (1 — x,) € F by (a) and so 1 \ Q2 € Br. Third, if Q;
is a pairwise disjoint sequence of Borel sets in Br and Q := [J;2, €, then
the sequence 1" ; xq, belongs to F by (a) and converges pointwise to xq.
Hence xq € F by (d) and so €2 € Bx. This shows that Br is a o-algebra.

Let U C X be open. Since U is o-compact, there is a sequence of compact
sets K; C ¥ such that K; C K;1; for all ¢ and U = |J;2, K;. By Urysohn’s
Lemma, there is a sequence of continuous functions f; : ¥ — [0, 1] such that

1, forall z € K,
filh) = { 0, forallze X\ U.

This sequence converges pointwise to the characteristic function xy of U.
Since f; € C(X) C F for all i, it follows that xi7 € F by (d) and so U € By.
This shows that B C B is a o-algebra that contains all open sets, so Br = B.
Thus xq € F for all Q € B.

Now let f : ¥ — C be any bounded Borel measurable function. Then
there exists a sequence of Borel measurable step functions f; : 3 — C (whose
images are finite sets) such that f; converges pointwise to f and || f;|| < ||f]|
for all i (see [75, Thm 1.26]). Hence it follows from (d) that f € F. This
proves Lemma [5.6.10) [l
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Proof of Theorem[5.6.5, Let W, : B(X) — L(H) be the bounded com-
plex linear operator introduced in Lemma W It satisfies the (Conjuga-
tion), (Normalization), (Positive), (Contraction), and (Commutative) ax-
ioms by Lemma the (Product) axiom by Lemma and the (Con-
vergence) axiom by Lemma m

We prove that ¥4 satisfies the (Image) axiom. Denote by A C L(H)
the smallest C* subalgebra that contains A and is closed under strong con-
vergence (i.e. if (A;);en is a sequence in A and A € L°(H) is an operator
satisfying Az = lim;_,o, A;x for all € H, then A € A). Since the image
of the operator ¥4 : B(X) — L(H) is such a C* subalgebra of L°(H), by
the (Product), (Conjugation), (Normalization), and (Convergence) axioms,
it must contain A. To prove the converse inclusion, consider the set

Fi=A{f € B(X)[Va(f) € A}.

This is a complex unital subalgebra of B(X) because A C L¢(H) is a com-
plex unital subalgebra and the map ¥4 : B(X) — L¢(H) is a unital algebra
homomorphism by Lemma It contains the identity map because W4
satisfies the (Normalization) axiom, and it is invariant under complex con-
jugation because W, satisfies the (Conjugation) axiom. Moreover, F is
closed under pointwise convergence of bounded sequences by Lemma [5.6.9]
Hence F satisfies the requirements of Lemmal[5.6.10|and therefore 7 = B(X).
This shows that U 4 satisfies the (Image) axiom.

We prove that W4 satisfies the (Eigenvector) axiom. Fix a real num-
ber A € Po(A) C ¥ and vector € H such that Az = A\x. Define

Fi=A{f € BE)[Va(f)z = f(N)z}.

This set is a complex unital subalgebra of B(X) that contains the iden-
tity and is invariant under complex conjugation, because V¥ 4 satisfies the
(Product), (Normalization), and (Conjugation) axioms. Moreover, if f; € F
is a bounded sequence that converges pointwise to a function f: % — C,
then f € F by Lemma [5.6.9 Hence F = B(X) by Lemma This
shows that W4 satisfies the (Eigenvector) axiom.

We prove that U4 satisfies the (Spectrum) axiom. Let f € B(X) and

let p € C\ f(X). Define the function g : ¥ — C by

g\) = (u— fO) ! for X € 2.
Then g is measurable and bounded and g(u — f) = (u — f)g = 1. Hence

Valg) (ul—=Va(f)) = (pl—Va(f)) Ya(g) =1

by Lemma Thus pll — W 4(f) is bijective and so pu ¢ o(W4(f)). Hence
the spectrum of the operator W4(f) is contained in the closure of the

set f(X). This shows that W, satisfies the (Spectrum) axiom.
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We prove uniqueness. Thus assume that
U: B(X) — LY(H)

is any complex linear operator that satisfies the (Product), (Conjugation),
(Normalization), and (Convergence) axioms. Then

U(f) = walf)

for every polynomial f = p|y, : ¥ — C in z and Z by the (Product), (Conju-
gation), and (Normalization) axioms. Define

Fi={f e BE)[¥(f) =Va(f)}-

This set is a complex subalgebra of B(X) and contains the polynomials in z
and Z by what we have just observed. It is invariant under complex conju-
gation because both ¥ and W 4 satisfy the (Conjugation) axiom. Moreover,
if (fi)ien is a bounded sequence in F that converges pointwise to a func-
tion f: X — C, then f is a bounded Borel measurable function and

U(f)x = lim U(fi)x = lim Va(fi)x =Ta(f)z for all z € H,

by the (Convergence) axiom for ¥ and by Lemma for W4, and so
f € F. Thus the set F satisfies the requirements of Lemma and so

F = B(%).
This proves uniqueness.

We prove the (Composition) axiom. Fix a continuous function f : ¥ — R
and define the set

G:={9eB(f(X))[(gof)(A) =g(f(A)}.
This set is a complex unital subalgebra of B(f(X)) because the maps

B(f(X)) = L(H) : g = (g0 [)(A)
and
B(f(2)) = L(H) : g = g(f(A))
are both unital C* algebra homomorphisms. Second, the set G contains the
identity map by definition and is invariant under complex conjugation by

the (Conjugation) axiom. Third, the subspace G is closed under pointwise
convergence of bounded sequences by the (Convergence) axiom. Hence

G =B(f(%))
by Lemma [5.6.10] This proves Theorem [5.6.5 U
The final theorem of this subsection establishes some useful additional

properties of the spectral measure and the measurable functional calculus
of a normal operator.
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THEOREM 5.6.11 (Spectral Projections for Normal Operators).
Let H be a nonzero complex Hilbert space and let A € L°(H) be a normal
operator. Denote its spectrum by ¥ := o(A) C C.

(i) Let Q C X be a nonempty Borel set and let xq : ¥ — {0,1} be the
characteristic function of 2. Then

Pq := xq(A)
is an orthogonal projection, its image
Eq :=im(Pg)

is an A-invariant subspace of H, and
(5.6.27) Y\ 2\ Q Co(4]g,) C Q.

(ii) Let f € B(X) and let X € X. If f is continuous at X\, then
fA) € a(f(A)).
(iii) Let A € ¥ and define Py := Ppyy € L(H). Then
(5.6.28) P, = P} = P}, im(Py) = ker(All — A).
Proof. We prove (i). When Q = ¥ or 2 = () there is nothing to prove.
(The zero operator on the zero vector space has an empty spectrum.) Thus
assume £ # X and Q # (). Since xq = X?z = Xq, the operator Pn is an or-

thogonal projection. It commutes with A and hence its image Fq := im(Pq)
is invariant under A.

For ¢ € C define f.: 0(A) — C by

A, for A e Q,
fe(A) = { ¢, forAeo(A)\Q.

Then f. = xoid + cX(a)\0, hence
fe(A) = APq + ¢(1 - Pq),
and hence
o(APq +c¢(1— Py)) c QU {c} for all c € C,

by the (Spectrum) axiom in Theorem [5.6.5, If A € C\ Q and ¢ # ), it
follows that the operator

M = fo(A) = (M = )Py + (A — o)(1— Py)

is invertible and hence so is the operator A1 — A|g,, : Eq — Eq. This shows
that o(A|g,) C Q. Now let A € ¥\ ¥\ Q. Then

A ¢ 0(A|E2\52) = U(A|E§iz)
by what we have just proved and hence A € o(A|g,). This proves part (i).
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We prove (ii). Suppose, by contradiction, that the operator
ST = f(A)
is invertible and define
e=(F)L = F(A) T

Then Corollary asserts that the operator pll — f(A) is invertible for
every p € C with |u — f(A)| < e. Hence

(5.6.29) o(f(A) N B(f(A) = 0.
Since f is continuous at A, there exists a § > 0 such that every X € ¥ satisfies
(5.6.30) A=XI<8 = f-FVI< 5
Define
Q:=Bs(A\)NX.
Then Q C Bs(A\) N'E, hence f(Q) C B.o(f(A)) by (5.6.30), and so
(5.6.31) F(@Q) € B.js(f(N) € Bo(f(N) € C\ a(f(A)).

Here the last step follows from (5.6.29). Moreover, ¥\ Q = ¥\ Bs()) is a
closed subset of C and so

(5.6.32) S\S\Q=q.

Now let
Pq := xa(A), Eq :=1im(Py)

as in (i) and define

Aq = Alg, .
Then Q C 0(Aq) C Q by and . This implies
o(Ag) =QC X,
because o(Agq) is closed. Moreover, A € Q C 0(Aq) and so
(5.6.33) Eq # {0}
For g € B(X) define
g0 = glg-

Then the operator Py = xq(A) commutes with g(A) and so the subspace Fq
is invariant under g(A) for all g € B(X). We claim that

(5.6.34) gQ(AQ) = g(A)‘EQ : BEq — Eq for all g c B(E)

This formula clearly holds when ¢ is a polynomial in z and Z, hence it
holds for every continuous function g : ¥ — C by the Stone—Weierstrafl
Theorem and hence it holds for all g € B(X) by Lemma In
particular, equation holds for our fixed function g = f.
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It follows from (5.6.31)), (5.6.34), and the (Spectrum) axiom in Theo-
rem [5.6.5] that

o(f(A)leq) = o(fa(Ag))
C f(o(Aq))
= /(@)
C C\a(f(A)).
Since o(f(A)|r,) C o(f(A)), this implies

o(f(A)le,) =0,

in contradiction to the fact that Fq # {0} by (5.6.33]). This proves part (ii).
We prove (iii). Write

XA 1= X{0}-
If x € H satisfies Az = Az, then
Pz =xa(A)z =xa(N)z =2
by the (Eigenvector) axiom in Theorem [5.6.5 Thus
ker(Al — A) C im(Py).
Conversely, let = € im(Py) and consider the map
g:=id: X=X cC.
Then
r = P, XA = AXr
and hence
Ar = AP \x
= g(A)xa(A)z
= (9x)(A)z
= Axa(A)r

=Pz
= A\zx.

This shows that
im(Py) C ker(A1 — A).
Hence im(Py) = ker(Al— A). This proves part (iii) and Theorem|[5.6.11} I
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5.7. Cyclic Vectors

The spectral measure can be used to identify a self-adjoint operator on a
real or complex Hilbert space with a multiplication operator. This is the
content of the next theorem, as formulated in [72] p 227].

THEOREM 5.7.1 (Spectral Theorem). Let H be a nonzero complex
Hilbert space and let

A=A" € L(H)
be a self-adjoint complex linear operator. Then there exists a collection of
compact sets
> C U(A),

each equipped with a Borel measure j;, indexed by i € I, and an isomorphism

i € L2(S4, ) for alli €1 }
and ) e H@bi”i%&,m) <0

U:H— @ LS, ) = {w = (Yi)ier

el

such that the operator UAU ™! sends a tuple
Y= (Yi)ier € P L*(Zi, )
el
to the tuple
UAU ' = (UAU"Y)i)ier € @ L7 (S, )
icl
given by
(UAUY) (N = Myi(\)  forie I and A € 3.

Moreover, 11;(2) > 0 for every i € I and every nonempty relatively open sub-
set Q C X;. If H is separable, then the index set I can be chosen countable.

Proof. See page [285 U

Theorem [5.7.1] can be viewed as a diagonalization of the operator A,
extending the notion of diagonalization of a symmetric matrix. The proof
is based on the notion of a cyclic vector.

DEFINITION 5.7.2 (Cyclic Vector). Let H be a nonzero complex Hil-
bert space and let A = A* € L°(H) be a self-adjoint complex linear operator.
A vector x € H is called cyclic for A if

H =span{A"z|n=0,1,2,...}.

If such a cyclic vector exists, the Hilbert space H is necessarily separable.
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THEOREM 5.7.3 (Cyclic Vectors and Multiplication Operators).

Let H be a nonzero complex Hilbert space, let A= A* € L(H) be a self-
adjoint complex linear operator, let ¥ := o(A) C R be the spectrum of A,
and let B C 2% be the Borel o-algebra. Let x € H be a cyclic vector for A,
let py : B — [0,00) be the unique Borel measure that satisfies , and
denote by L*(3, ) the complex L? space of pi.. Then the following holds.

(i) There is a unique Hilbert space isometry U : H — L?(X, ug) such that
(5.7.1) U =¢(A)z for all ¢ € C(X).

(ii) Let f: 3 — C be a bounded Borel measurable function. Then

(5.7.2) UFAU Y = fo

for all ¥ € L*(Z, pz).

(iii) The operator U in part (i) satisfies

(5.7.3) (UAU)(N) = Mp(N)

for all ¢ € L*(, pz) and all A € 2.

(iv) If Q C X is a nonempty (relatively) open subset, then pu,(£2) > 0.

Proof. We prove part (i). Define the map T : C(X) — H by

(5.7.4) T = p(A)x for ¢ € C(%).
Here ¢(A) € L°(H) is the operator in Theorem The operator T is
complex linear and it satisfies
TGl = ((A)z, p(A)x)
= (z, ¥(A)" P(A)z)
(w,@(A)w(A) )
(5.15) (@ 0P (A)2)

/Wd%
— (12

for all ¢ € C'(X). Here the penultimate step follows from the definition of
the Borel measure pu, on 3 in (5.6.2)). Equation shows the opera-
tor T: C(¥) — H is an isometric embedding with respect to the L? norm
on C(X). By a standard result in measure theory, C'(X) is a dense subset
of L*(3, iuz) (see for example [75, Thm 4.15]). More precisely, the obvious
map from C(X) to L?(X, ;) has a dense image. Hence the usual approxima-
tion argument shows that 7" extends to an isometric embedding of L?(3, ju.)

)
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into H which will still be denoted by
(5.7.6) T:L*%, pe) — H.

(Given ¢ € L*(%, ptz ), choose a sequence 1, € C(X) that L? converges to f;
then (Ty,)nen is a Cauchy sequence in H by (5.7.5)); so (T'¢n)nen converges;
the limit is independent of the choice of the sequence v, that L? converges
to ¢ and is by definition the image T := lim,,_,o, T'%,, of ¥ under T'.) Since
the extended operator is an isometric embedding it is, in particular,
injective and has a closed image.

We prove that it is surjective. To see this, consider the sequence of
continuous functions ¥, : ¥ — R defined by

Pn(A) == A"

for n € N and A € 3. Then 1, (A) = A" by the (Normalization) and (Prod-
uct) axioms in Theorem By definition of T in this implies that
the vector A"x = ¢, (A)x = T, belongs to the image of T for all n € N.
Since T is complex linear, it follows that span{x, Az, A%z,...} C im(T).
Since = a cyclic vector for A, this implies

H = span{x, Az, A%z,...} Cim(T) = im(7T).

Thus the extended operator T : L?(%, u;) — H is an isometric isomorphism

by (5.7.5). Its inverse U :=T~!: H — L*(3, i, satisfies equation (5.7.1))

by definition and is uniquely determined by this condition in view of the
above extension argument. This proves part (i).

We prove part (ii). Since C(X) is dense in L?(X, ), it suffices to prove
the identity (5.7.2) for ¢» € C'(X). Assume first that f € C(X). If ¢ € C(X),
then it follows from ([5.7.1]) and the (Product) axiom in Theorem that

FAU Y = f(A)p(A)x = (f)(A)z = U (f9)
and hence
Uf(AU = fy.

Thus (5.7.2) holds for all 1 € C(X), and hence for all ¥ € L*(X, ;) by
continuity. Define

Fi={feBE)|UF(AU = fy forall Y € L*(Z, 1) } -

This set is a subalgebra of B(X) by definition and C'(X) C F by what we have
just proved. Moreover, F is closed under pointwise convergence of bounded
functions by the (Convergence) axiom in Theorem m Hence F = B(X)

by Lemma [5.6.10] and this proves part (ii).
Part (iii) follows from part (ii) by taking f =id: ¥ — ¥ C C.
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We prove part (iv). Let  C ¥ be a nonempty relatively open subset
and suppose, by contradiction, that p,(2) = 0. Fix an element A\g € 2 and
define the functions f,g: ¥ — C by

—, for AeX\Q 1, for A e X\ Q
I Ao—A\? ’ . ) )
JA) '_{ 0, forAeQ, ) '_{ 0, for Ac Q.

Then f is a bounded measurable function because 2 is open, and g =" 1
because 11, () = 0. Moreover,

fo—id) = (Ao —id)f =g
and hence it follows from parts (ii) and (iii) that
U)ol = AU) = (U (Mol = A) f(AU)y
= (U™g(A)U)y

=g =y
for all ¢ € L£L2(X, ;). Thus the operator \gll — A is bijective and there-
fore A\g € £\ 0(A), a contradiction. This proves Theorem [5.7.3] O

The essential hypothesis in Theorem [5.7.3] is the existence of a cyclic
vector and not every self-adjoint operator admits a cyclic vector. However,
given a self-adjoint operator A = A* € L°(H) and any nonzero vector z € H
one can restrict A to the smallest closed A-invariant subspace of H that
contains x and apply Theorem to the restriction of A to this subspace.

COROLLARY 5.7.4. Let H be a complex Hilbert space, let x € H \ {0},
and let A= A* € L°(H). Then

(5.7.7) H, := span{z, Az, A%x,...}

is the smallest closed A-invariant linear subspace of H that contains x.
Define Ay := Alp, : Hy — Hy, let ¥, := 0(Ay), let B, C 2% be the Borel
o-algebra, and let p, : By — [0,00) be the unique Borel measure that sat-

isfies (5.6.2) for all f € C(X;). Then there exists a unique Hilbert space
isometry Uy : Hy — L*(34, 1) such that

(5.7.8) Uy =9(A)xz  forally € C(Z,).
This operator satisfies
(5.7.9) Unf (A2)U, ' = fo)

for all f € B(X;) and all ¢ € L*(Sy, uz). Moreover, 1z (2) > 0 for every
nonempty relatively open subset 2 C X,.

Proof. This follows directly from Theorem [5.7.3 O
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Proof of Theorem [5.7.1. Here is a reformulation of the assertion.
Let H be a nonzero complex Hilbert space and let
A=A e L°(H).

Then there exists a monempty collection of nontrivial pairwise orthogonal
closed A-invariant complex linear subspaces H; C H for i € I such that

admits a cyclic vector for each i € I and
H=H.
el

Thus there is a collection of nonempty compact subsets ¥; C o(A), Borel
measures [; on %, and Hilbert space isometries

Ui« Hy — L*(%, i)

fori € I, such that p;(2) > 0 for alli € I and all nonempty relatively open
subsets 2 C X; and

(5.7.10) (U: AU 1) (N) = Mpi(N)
for alli € I, all ; € L*(X;, pi), and all X € 3.

Call a subset S ¢ H A-orthonormal if it satisfies the condition

(5.7.11) (x, AFy) = { (1)’ ii ; z F=0 forall 2.y € S and k € Ny,

The collection . := {S C H | S satisfies (5.7.11))} of all A-orthonormal sub-
sets of H is nonempty because {z} € .7 for every unit vector z € H. More-
over, . is partially ordered by inclusion and every nonempty chain in .
has a supremum. Hence it follows from the Lemma of Zorn that . contains
a maximal element S € .. If S € . is a maximal element, then Corol-

lary implies that the collection { H; },cs defined by (5.7.7) satisfies the
requirements of Theorem as formulated above. O

EXERCISE 5.7.5. Let ¥ C R be a nonempty compact set and let i be a
Borel measure on ¥ such that every nonempty relatively open subset of X
has positive measure. Define the operator A : L?(X, u) — L?(X, i) by

(5.7.12) (AP)(N) == p(\)  for¢p € L2(Z, p) and X € X

Prove that A is self-adjoint and o(A) = ¥X. Find a cyclic vector for A.
Theorem shows that every self-adjoint operator on a complex Hilbert
space is a direct sum of operators of the form ([5.7.12)).
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EXERCISE 5.7.6. Let H be a nonzero complex Hilbert space and let A be
a compact self-adjoint operator on H. Prove that A admits a cyclic vector

if and only if A is injective and E) := ker(Al — A) has dimension one for
every A € Po(A).

EXERCISE 5.7.7. Let
A — A* E CnX’n

be a Hermitian matrix and ey, ..., e, be an orthonormal basis of eigenvec-
tors, so Ae; = \je; for i =1,...,n with A\; € R. Thus

Yi=0(A) ={\,..., \}.
Assume \; # \j for i # j.
(i) Prove that f(A)x =", f(N\i)(ei, z)e; for 2 € C" and f: ¥ — C.

(ii) Prove that z := )", e; is a cyclic vector and that p, =) ;" | dy, is the
sum of the Dirac measures, so

[ s =3 100)
z i=1
for f: X — C.

(iii) Let U : C* — L%(3, j1;) be the isometry in Theorem m Prove that
(Uz)(N\;) = {(ej,z) for . € C" and U~ Yp = Y1 b(N;)e; for o € LA(Z, pg).

EXERCISE 5.7.8. Let H be an infinite-dimensional separable complex
Hilbert space and let A = A* € L°(H) be a self-adjoint operator. Assume
that (e;)ien is an orthonormal basis of eigenvectors of A so that Ae; = \je;
for all i € N, where A\; € R. Thus sup;cy |Ai| < 0o and ¥ = {\; |i € N}. As-
sume \; # A; for 7 # j.

(i) Prove that
F(A)z =" f() (e, x)es
i=1

for every « € H and every bounded function f :3 — C.

(ii) Choose a sequence €; > 0 such that > o2, e7 < co. Prove that the vector

z =) 20, ge; is cyclic for A and that p, = > 50, £20),.

=11

(iii) Prove that the map ¢ — (¢(\;))ien defines an isomorphism

o0
> elmil? < oo}.

i=1

Prove that the operator U : H — L?(X,u,) in Theorem is given
by (U™1) = 3%, eitb(A;)ei. Prove that the operator A := UAU ! on the
Hilbert space L%(%, piz) is given by 1 — (X\in;)ien.

L2(S, 1) {n — ()2, e C
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EXERCISE 5.7.9. Here is an example with a rather different flavor. Con-
sider the Hilbert space

H :=(*(Z,C) = {x = (Tn)nez € C*

Z |2 |2 <oo}
n=-—o00

and define the operator A : H — H by
Az := (Tp—1 + Tnt1)nez for z = (xp)nez € H.

Thus A = L+ L*, where L : H — H is given by Lx = (zp+1)nez- The
vectors e; = (0in )nez for ¢ € Z form an orthonormal basis of H.

(i) Define a® := ¢ and a° := e; — e_1. Then

H® :=span{A4ka®v |k =0,1,2,...}
={z=(rn)nez € H|zp —2x_, =0foralln € Z},
H°Y .= span{Akqedd |k =0,1,2,...}
={r=(Tn)nez € H|xp+v_p=0forallneZ},
H = H @ godd,

(ii) Define the operator ® : H — L2([0,1]) by (®z)(t) = 3,z > May,
for x € H and t € [0,1]. Then ® is an isometric isomorphism and

(PADLf)(t) = 2cos(2mt)f(t)  for f € L*([0,1]) and 0 < ¢ < 1.
Find a formula for ®g(A)®~! for every continuous function g : [~2,2] — C.
(iii) Po(A) =0 and ¥ :=o(A4) = [-2,2].

(iv) Let u®, respectively 1%, be the Borel measure on [—2,2] determined
by equation (5.6.2)) with = replaced by a®¥, respectively a®d4. Then
1 V4 — N2
Nev _ 7d)\, ,LLOdd =Y 7 A\
V4 — N2 ™
Hint: Use parts (ii) and (iii) with (®a®)(t) = 1, (®a®3)(t) = 2isin(27t).

(v) There exists a unique isomorphism U®¥ : H® — L?([-2,2], ") such
that UV f(A)a® = f for all f € C([—2,2]). It satisfies

(UVAUS) ") () = Mp(N)
for ¢ € L*([-2,2], u®) and X € [-2,2].

(vi) There exists a unique isomorphism % : Hodd — 12([-2, 2], u°dd)
such that U°d4d f(A)a®dd = f for all f € C([-2 ]) It satisfies

(UMAUPI) 1) (A) = A (N)
for ¢ € L?([~2,2], u°%) and A € [-2,2].
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5.8. Problems

EXERCISE 5.8.1 (Invariant Subspaces). Let H be a complex Hilbert
space and A € L°(H). Let E C H be a closed complex linear subspace of H.
The subspace F is called invariant under A if, for all z € H,

zeF = Az e F.
Prove that F is invariant under A if and only if E* is invariant under A*.

EXERCISE 5.8.2 (The Spectrum of A+ A*). Let A: H— H be a
normal operator on a nonzero complex Hilbert space H.

(a) Prove that
(5.8.1) ReA>0 forall \€o(4A) <= Re(x,Az)>0 forallxz € H.

Hint: If Re(x, Ax) > 0 for all x € H, use the Cauchy—Schwarz inequality
for Re(z, Az — Az) with ReA < 0. If ReA > 0 for all A € o(A), prove
that [le=*4|| < 1 for all ¢ > 0 and differentiate the function t — ||e~*4z|2.

(b) Prove that

sup Re(z, Ax) = sup Rel,

o inf Re(z,Az) = inf ReA.
ll2]|=1 Aca(A)
(c) Prove that
(5.8.3) a(A)NiR =0 = A+ A* s bijective.

Hint 1: If A + A* is bijective, use the Open Mapping Theorem and
Lemma [5.3.14] to deduce that A is bijective. Then replace A with A + i\1.

Hint 2: If 0(A) NiR = (), use Theorem [5.2.12| to find an A-invariant direct
sum decomposition H = H~ & H™" such that Re) > 0 for all A € o(A|z+).
Prove that H* is invariant under A* and use part (b) for A|y«.

(d) Prove that
(5.8.4) c(A+ A ) ={A+A[Xea(A)}.

Hint: Apply part (c) to the operator A — 1l for p € R.
(e) Prove that the hypothesis that A is normal cannot be removed in (a-d).

Hint: Find a matrix A € R?*2 and a vector x € R? such that o(4) = {0}
and (z, Az) > 0.
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EXERCISE 5.8.3 (The Spectrum of p(A)). Let A: X — X be a boun-
ded complex linear operator on a nonzero complex Banach space X and
let p(z) =>4y arz® be a polynomial with complex coefficients. Prove di-
rectly, without using Theorem that the operator

p(A) := Z apAF
k=0

satisfies

(5.8.5) o(p(A)) = p(o(4)).

Hint: To prove that p(c(A)) C o(p(A4)) fix an element A € o(A) and use
the fact that there exists a polynomial ¢ with complex coefficients such that
p(z) — p(A) = (2 — AN)g(2) for all z € C. To prove the converse inclusion,
assume a := a, # 0, fix an element p € o(p(A)), and let Ay,..., A\, be the
zeros of the polynomial p— u so that p(z) —p = a [}, (2 — ;) for all z € C.
Show that A — A\;1 is not bijective for some i.

EXERCISE 5.8.4 (Stone—Weierstrafl Theorem (real)). Here is an-
other proof of the Stone—Weierstral Theorem for real valued functions.

Let M be a compact Hausdorff space and let A C C(M) be a subalgebra
of the algebra of real valued continuous functions on M. Assume that A
contains the constant functions and separates points (i.e. for all x,y € M

there exists an f € A such that f(x) # f(y)). Then A is dense in C(M).

(a) The proof is by contradiction. Assume A is not dense in C'(M) and
choose an element f € C'(M) such that d(f, A) :==infoea|f — gl = 1.

(b) For a closed subset K C M define ||g| ; := sup,cx|g(x)| for g € C(M)
and di (f, A) == infgcq ||f — 9|/ . Prove that there exists a smallest closed
subset K C M such that dx(f, A) = 1. Hint: Zorn’s Lemma.

(c) Prove that K contains more than one point. Deduce that there exists a
function h € A such that ming A = 0 and maxg h = 1.

(d) Define
Ky:={zx € K|h(x) <2/3}, Ky :={xe€ K|h(x) >1/3}.
Find functions go, g1 € A such that |[f — gollg, <1 and [ f — g1llg, <1.
(e) For n € N define h,, := (1 — h")?" € A. Prove that
1f = hngo = (1 = hn)gnl[ <1
for n sufficiently large and this contradicts the definition of K.

Hint: Use Bernoulli’s inequality (1 + ¢)" > 1 + nt for ¢ > —1 and the
inequality (1 —¢) < (14+¢)~! for 0 < t < 1 to show that h, converges
uniformly to one on K \ K7 and converges uniformly to zero on Kj \ K.
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EXERCISE 5.8.5 (Stone—Weierstra3 Theorem (complex)).

Let M be a compact Hausdor(f space and let A C C(M,C) be a complex sub-
algebra of the algebra of complex valued continuous functions on M. Assume
that A contains the constant functions, separates points, and is invariant
under complex conjugation. Then A is dense in C'(M,C).

(a) Deduce the complex Stone-Weierstral Theorem from the real Stone—
Weierstrafl Theorem.

(b) Find an example which shows that the hypothesis that A is invari-
ant under complex conjugation cannot be removed in the complex Stone—

Weierstrafl Theorem. Hint: See Example

EXERCISE 5.8.6 (Trigonometric Polynomials). Trigonometric poly-
nomials are the elements of the smallest algebra A C C(R/27Z) that con-
tains the functions sin and cos.

(a) Every element p € A has the form

n

p(t) =Y (arcos(kt) + by sin(kt))  for t € R,
k=0

where ay, by € R.

(b) The trigonometric polynomials form a dense subalgebra of the space
C(R/27Z) of continuous 27-periodic real valued functions on R.

(c) Why does this not contradict the fact that there exist continuous real
valued 27-periodic functions on the real axis whose Fourier series do not
converge uniformly? (See Exercise|2.5.5])

EXERCISE 5.8.7 (The Spectrum in a Banach Algebra). Let A be a
complex unital Banach algebra. Define the spectrum of an element a € A
by

o(a) := {\ € C| Al — a is not invertible} .
Prove the following.
(a) The spectrum o(a) is a nonempty compact subset of C for every a € A.

(b) The Gelfand—Mazur Theorem. If every nonzero element of A is
invertible, then A is isomorphic to C. Hint: See the proof of Theorem[5.5.2

(c) Every nonzero quaternion is invertible. Why does the Gelfand-Mazur
Theorem not apply?

(d) o(ab) U{0} = o(ba) U {0} for all a,b € A.
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EXERCISE 5.8.8 (Cayley—Hamilton). Let A be a complex n x n-matrix

with spectral radius r4. Prove the Cauchy integral formula
1
(5.8.6) p(A) = — p(z) (21— A)"'dz

2ri |z|=r

for every r > r4 and every polynomial p(z) € C[z]. Deduce that ps(A) =0,
where

pa(z) :=det(z1— A)

is the characteristic polynomial of A.

EXERCISE 5.8.9 (Volterra Operator). Let H := L?([0,1]) and define
the operator T': H — H by

(T)(t) = /0 £(s)ds

for f € L*([0,1]).
(a) Verify the formula

(")) i=

forneN,0<t<1,and f € L?([0,1]).
(b) Determine the spectrum and the spectral radius of 7.
(c) Prove that T is compact and injective. Hint: Arzela—Ascoli.
(d) Compute the adjoint operator T*.
(e) Is T self-adjoint? Is 7" normal?
(f) Prove that the operator
P:=T+T"
is an orthogonal projection, i.e. it satisfies
pP*=p=rp*
What is its image?

(g) Compute the eigenvalues and eigenvectors, the spectral radius, and the
norm of the operator T*1'. Hint: Differentiate T*T f = \f twice.
(h) Prove that
2
1T = —.
T

Hint: Compute the largest eigenvalue of T*T and use equation (5.3.10)).
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EXERCISE 5.8.10 (Exponential Function and Logarithm). Let A
be a unital Banach algebra.

(a) For a € A define

[e.e]

exp(a) := Z %.

n=0
If a,b € A commute, prove that

exp(a + b) = exp(a) exp(b).
Prove that exp(a) is invertible for every a € A.

(b) Let a € A and suppose that the spectrum of a is contained in the open
unit disc in C. Show that the element

log(a) := — Z 7(1 na)"

n=1

is a well-defined element of A and satisfies
exp(log(a)) = a.

(c) Show that exp(.A) contains an open neighborhood of the unit 1.

(d) Let G C A denote the group of invertible elements of A. Recall that G
is an open subset of A and denote by Gy the identity component of G.
Show that Gy is an open and closed normal subgroup of G. Show that Gy is
the smallest subgroup of G that contains the set exp(A). Show that every
element of Gy is a composition of finitely many elements of exp(.A).

(e) Suppose A is commutative. Prove that
Go = exp(A).

Deduce that G/Gy is torsion free. Hint: Let g € G and assume
g" € exp(A).

Choose an element a € A with

g" = exp(a)

a
h := gexp (_E> .
Then A™ = 1. Use this to prove that the set
{AeC|(1=XN1+ M ¢ G}
is finite. Deduce that h € Gy and so g € G.

and define
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EXERCISE 5.8.11 (The Gelfand Spectrum). This exercise expands
the discussion in Subsection [5.5.1] with an emphasis on the complex valued
unital algebra homomorphisms rather than the maximal ideals. Let A be a
complex commutative unital Banach algebra with [|1|| = 1.

(a) Show that every maximal ideal J C A is closed and satisfies A/J = C.
Show that every noninvertible element of A is contained in a maximal ideal.

(b) Let A : A — C be a unital algebra homomorphism, i.e. it is linear and
A(ab) = A(a)A(b), A(l) =1
for all a,b € A. Show that A is surjective and
IA] = 1.

(c) Show that the set of unital algebra homomorphisms A : A — R is a
weak* closed subset A of the unit ball in the complex dual space A* of A.
Show that there is a one-to-one correspondence between the elements A € A
and the maximal ideals J C A. Thus the set .%Al can be identified with the
Gelfand spectrum Spec(A) (the set of maximal ideals in A).

(d) Show that the spectrum of an element a € A is determined by A ie.
o(a) = {A(a) A e .Z} :

(e) Let A := C(]0,1]) be the space of complex valued continuous functions
on the unit interval. Show that there is a homeomorphism

ev:[0,1] — A

that assigns to each element x € [0, 1] the evaluation map at .

(f) The Gelfand transform is the map
I':A— C(A)

that assigns to each a € A the evaluation map I'y, : A->C given by
Ta(A) = Ala)

for A € A. Show that the Gelfand transform is a norm decreasing algebg\a

homomorphism. Show that the functions in T'(A) := {Ty|a € A} C C(A)
separate the points in A.

(g) In the case A = C([0, 1]) show that the Gelfand transform is an isomet-
ric isomorphism. Extend this result to the case where the unit interval is
replaced by any compact metric space. (More generally, by Theorem m
the Gelfand transform is an isometric isomorphism whenever A admits the
structure of a C* algebra such that |Ja*al| = ||a||? for all a € A.)






Chapter 6

Unbounded Operators

This chapter is devoted to the spectral theory of unbounded linear opera-
tors on a Banach space X. The domain of an unbounded operator A is a
linear subspace of X denoted by dom(A). In most of the relevant examples
this subspace is dense and the linear operator A : dom(A) — X has a closed
graph. Section [6.1]examines the basic definition, discusses several examples,
and examines the spectrum of an unbounded operator. Section intro-
duces the dual of an unbounded operator. Section [6.3|deals with unbounded
operators on Hilbert spaces. It introduces the adjoint of an unbounded op-
erator and examines the spectra of unbounded normal and self-adjoint oper-
ators. Section extends the functional calculus and the spectral measure
to unbounded self-adjoint operators.

6.1. Unbounded Operators on Banach Spaces
6.1.1. Definition and Examples.

DEFINITION 6.1.1 (Unbounded Operator). Let X and Y be real or
complex Banach spaces. An unbounded (complex) linear operator
from X to Y is a pair (4,dom(A)), where dom(A4) C X is a (complex)
linear subspace and

A:dom(A) - Y

is a (complex) linear map. An unbounded operator A : dom(A) — Y is
called densely defined if its domain is a dense subspace of X. It is called
closed if its graph, defined by

graph(A) := {(x, Az) |z € dom(A)},

is a closed linear subspace of X x Y with respect to the product topology.

295
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We have already encountered unbounded operators in Definition [2.2.11
Recall that the domain dom(A) C X of an unbounded operator

A:dom(A) »Y
is a normed vector space with the graph norm of A, defined in (2.2.8)) by
2]l 4 = [lzllx + [|Azlly  for z € dom(A).

Thus an unbounded operator can also be viewed as a bounded operator
from its domain, equipped with the graph norm, to its target space. By
Exercise an unbounded operator A : dom(A) — Y has a closed graph
if and only if its domain is a Banach space with respect to the graph norm.
By Lemma an unbounded operator A : dom(A) — Y is closeable, i.e.
it extends to an unbounded operator with a closed graph, if and only if every
sequence (zp)nen in dom(A) such that lim, o ||z, ||y = 0 and (Azy,)nen is
a Cauchy sequence in Y satisfies lim, o || A2y |y = 0. We emphasize that
the case dom(A) = X is not excluded in Definition Thus bounded
operators are examples of unbounded operators. The Closed Graph Theo-
rem asserts in the case dom(A) = X that A has a closed graph if and
only if A is bounded. The emphasis in the present chapter is on unbounded
operators A : dom(A) — Y whose domains are proper linear subspaces of X
and whose graphs are closed.

EXAMPLE 6.1.2. Let X := C([0,1]) be the Banach space of continuous
real valued functions on [0, 1] with the supremum norm. Then the formula

(6.1.1) dom(A) := C*([0,1]), Af == f,

defines an unbounded operator on C(]0, 1]) with a dense domain and a closed
graph. The graph norm of A is the standard C! norm on C'([0,1]). (See

Example [2.2.10] and equation (2.2.9)).)

EXAMPLE 6.1.3. Let H be a separable complex Hilbert space, let (e;);en
be a complex orthonormal basis, and let (\;);eny be a sequence of complex
numbers. Define the operator

A)\ : dOHl(A)\) — H
by

dom(A)) := {x €H

> ilen, )] < oo},
=1

(6.1.2) N
Az = Z)\i(ei,@ei for z € dom(A).
i=1

This is an unbounded operator with a dense domain and a closed graph. It
is bounded if and only if the sequence ()\;);en is bounded.
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EXAMPLE 6.1.4 (Vector Fields). Here is an example for readers who
are familiar with some basic notions of differential topology (smooth man-
ifolds, tangent bundles, and vector fields). Let M be a compact smooth
manifold and let v : M — T M be a smooth vector field. Consider the Ba-
nach space

X :=C(M)

of continuous functions f : M — R equipped with the supremum norm.
Define the operator D, : dom(D,) — C(M) by

the partial derivative of f
in the direction v(p)
exists for every p € M

dom(D,) := ¢ f € C(M) '
and depends continuously on p

(6.1.3)

d

(Duf)(p) = | fO(®), v:R—=>M, ~4(0)=p, 7(0)=u0v(p).

t=0

Here v : R — M is chosen as any smooth curve in M that passes through p
at t = 0 and whose derivative at t = 0 is the tangent vector v(p) € T, M. The
operator D, has a dense domain and a closed graph. With the appropriate
modifications this discussion carries over to manifolds with boundary. Then
Example is the special case M = [0,1] and v = 9/0t.

ExXAMPLE 6.1.5 (Derivative). Fix a constant 1 < p < oo and consider
the Banach space X := LP(R, C). Define the operator A : dom(A) — X by

dom(A) := W'P(R,C)

f is absolutely continuous

— P

(6.1.4) = {f € /(R,C) ‘ and & ¢ I7(R,C) !
Af = Zi; for f € WP(R,C).

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [75, Thm 6.19]). The opera-
tor has a closed graph and, for 1 < p < oo, it has a dense domain.
For p = oo its domain is the space W (R, C) of bounded globally Lipschitz
continuous functions f : R — C. These are the bounded absolutely contin-
uous functions with bounded derivative and do not form a dense subspace
of L*®(R,C). The closure of the subspace W1 (R, C) in L>®(R,C) is the
space of bounded uniformly continuous functions f : R — C.
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ExXAMPLE 6.1.6 (Laplace Operator). Fix an integer n € N and a real
number 1 < p < co. Consider the Laplace operator

5
P Ox;

(6.1.5) A= W2P(R™) — LP(R™).

Its domain is the Sobolev space W2P(R") of equivalence classes, up to equal-
ity almost everywhere, of real valued LP functions on R” whose distributional
derivatives up to order two can be represented by LP functions. This sub-
space contains the compactly supported smooth functions and so is dense
in LP(R™). The proof that this operator has a closed graph requires elliptic
regularity and the Calder6n—Zygmund Inequality (see [75, Thm 7.43]).

EXAMPLE 6.1.7 (Schrédinger Operator). Define the unbounded lin-
ear operator A on the Hilbert space H := L%(R,C) by

1) is absolutely continuous,
dom(A) := {¢ € L*(R,C) ‘ % is absolutely continuous, },

(6.1.6) and £ € L*(R,C)

d2
Avp = ihd—ng for ¢ € dom(A) = W2?(R, C).
Here 7 is a positive real number and x is the variable in R. Another variant

of the Schrédinger operator on L2(R, C) is given by

% is absolutely continuous and

1) is absolutely continuous and }
9 9
ffooo]—hz% + 222 dr < o0

dom(A) := {¢ € L*(R,C)

(6.1.7)

(AY)(z) = 17%2115(3:) + iw(m) for ¢ € dom(A) and = € R.

The operators (6.1.6) and (6.1.7) are both densely defined and closed.

EXAMPLE 6.1.8 (Multiplication Operator). Let (M, A, 1) be a mea-
sure space and let f : M — R be a measurable function. Let 1 < p < oo
and define the operator Ay : dom(Ay) — LP(u) by

dom(Ay) == {¢p € LP(n) | f1b € LP(W)},
App = fo for ¢ € dom(Ay).

This operator has a dense domain and a closed graph.

(6.1.8)

There are many other interesting examples of unbounded operators that
play important roles in differential geometry and topology and other fields of
mathematics. Their study goes beyond the scope of the present book, whose
purpose is merely to provide the necessary functional analytic background.
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6.1.2. The Spectrum of an Unbounded Operator. The following defi-
nition is the natural analogue of the definition of the spectrum of a bounded
complex linear operator in Definition We restrict the discussion to
operators with closed graphs.

DEFINITION 6.1.9 (Spectrum). Let X be a complex Banach space and
let A : dom(A) — X be an unbounded complex linear operator with a closed
graph (whose domain is a complex linear subspace of X). The spectrum
of A is the set

o(A) = {)\ eC
= Po(A)URo(A)UCo(A).

the operator A\l — A : dom(A) - X }

(6.1.9) is not bijective

Here Po(A) is the point spectrum, Ro(A) is the residual spectrum,
and Co(A) is the continuous spectrum. These are defined by

Po(A) := {\ € C|the operator A\l — A is not injective},

the operator \1 — A is injective
and its image is not dense ’

Ro(A) = {)\ € c’

the operator A1 — A is injective
Co(A): =< eC ‘ and its image is dense,
but it is not surjective

The resolvent set of A is the complement of the spectrum, denoted by

the operator
A —A:dom(4) - X
is bijective

(6.1.11) p(A):=C\o(A)=q¢reC

For A € p(A) the linear operator Ry(A) := (A\1— A)~!: X — X is called
the resolvent operator of A associated to A\. A complex number A\ be-
longs to the point spectrum Po(A) if and only if there exists a nonzero
vector € dom(A) such that Az = Azx. The elements A € Po(A) are called
eigenvalues of A and the nonzero vectors x € ker(All — A) are called eigen-
vectors.

The first observation about this definition is that, for every A € p(A),
the resolvent operator Ry(A) := (Al — A)~! has a closed graph because A
does, and hence is bounded by the Closed Graph Theorem (see Ex-
ercise . The resolvent set may actually be empty for unbounded op-
erators with closed graphs or it may be the entire complex plane as we will
see below. The second observation is that the resolvent set is always an
open subset of the complex plane and the map p(A) — L(X) : A — Ry(A)
is holomorphic. This is the content of the next lemma.
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LEMMA 6.1.10 (Resolvent Operator). Let X be a complex Banach
space and let A :dom(A) — X be an unbounded complex linear operator
with a closed graph. Let p € p(A) and let A € C such that

(6.1.12) A pl (- A < 1.
Then X € p(A) and

(6.1.13) A=A = (p—Nr(ul-A)*
k=0

Proof. Define the bounded linear operator Ty € £(X) by
D=z — (p—\)(pl—A) "z
for z € X. By (6.1.12) and Corollary this operator is bijective and

[e.o]

Tt =) (p— N (ul-A)*

k=0
Moreover, for all z € dom(A),
T\(pl—A)x = (pl—A)x — (p—Nx=(AN1— A)z.
Hence the operator A — A : dom(A) — X is bijective and

o0

(M= 4)7L = (ull = AT = 3 (= A (el — 4) 1
k=0
This proves (6.1.13)) and Lemma O

The third observation is that the resolvent identity of Lemma [5.2.6| con-
tinues to hold for unbounded operators.

LEMMA 6.1.11 (Resolvent Identity). Let X be a compler Banach
space, let A :dom(A) — X be an unbounded complex linear operator with
a closed graph, and let A\, € p(A). Then the resolvent operators

RA(A)i= (A= A)™,, Ry(4) = (ull - A4)~!
commute and

(6.1.14) Ra(4) — Ru(A) = (11— N Ra(A)Ry(A).

Proof. Let x € X. Then
(AL = 4) (Ra(A)z — Ru(A)z) = 2 — (31l — A)Ru(A)z + (1 — N Ry(A)a
= (5= VRy(A)e
and hence Ry(A)z — R, (A)z = (u — A)R\(A)R,(A)z. This proves (6.1.14).

Interchange the roles of A and p to obtain that Ry(A) and R,,(A) commute.
This proves Lemma [6.1.11 [l
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The fourth observation is that the spectrum of an unbounded operator
with a nonempty resolvent set is related to the spectrum of its resolvent
operator as follows.

LEMMA 6.1.12 (Spectrum and Resolvent Operator). Let X be a
complex Banach space and let A :dom(A) — X be an unbounded complex
linear operator with a closed graph such that dom(A) € X. Let p € p(A).
Then

Po(R,(A)) = {Mix e Pa(A)} ,

Ro(R,(4)\ 10} = {5 [ A e rota)},

(6.1.15) Co(Ru(A))\ {0} = {H; e CU(A)} ,
o, () = {25 [re st} u on
() = {5 [ne s i |

Moreover, if A € p(A)\ {u}, then
(6.1.16) R n-1(Ru(A)) = (p— A)(ul — A)Rx(A),
and if A € Po(A) and k € N, then

ker((p — A) 7' — R, (A)* = ker(A\1 — A)*.

Proof. First observe that R, (A) is injective and
im(R,(A)) = dom(A) C X.
Hence
0 € Ro(R,(A))UCo(R,(A)).
Second, if A € C\ {u}, then
.
©w—A

1

1.1
(6.1.17) S

1-R,(A)= (M- A)R,(A) € L(X).

The left hand side is injective if and only if Al — A is injective, has a dense
image if and only if Al — A has a dense image, and is surjective if and only
if \1 — A is surjective. This proves (6.1.15)) and (6.1.16|). Now let A € Po(A)

and k € N and consider the linear subspace

By = ker(\1 — A)F = {x € dom(A®) | (M — A)kz = o} .
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This subspace is invariant under the operator R,(A) and so under R, (A)*.
Thus it follows from (6.1.17)) that
By Cker ((u— M) "1 - R,(4))".
To prove the converse inclusion, we proceed by induction on k. Suppose
first that = € ker ((u — A)™'1— R,(A)) . Then
z=(u— AR, (A)x € dom(A)
and hence
Ax = (n — N)AR,(A)x
= (=N (pRu(A)x — )
= p(p = AN Ru(A)z + (A — p)z
= \z.
This implies z € E;. Now let k > 2, assume
Byt = ker(j— )71 = Ry(4)*1,
and fix an element
€ ker ((n—A) "' — R, (A)".
Then
x—(p—ANRy(A)x € By C dom(A™)
by the induction hypothesis. This implies € dom(A) and
R, (A) Az — Az) =2 — (p— MR, (A)x € Exy

by (6.1.17). Hence Ax — Ax € Ej_1, because Ej_1 is invariant under pll— A,
and hence x € Ej. This proves Lemma [6.1.12 O

Lemma allows us to carry over the results about the spectra of
bounded linear operators to unbounded operators. An important special
case concerns operators with compact resolvent.

DEFINITION 6.1.13 (Operator with Compact Resolvent). An un-
bounded operator A :dom(A) - X on a complex Banach space X with
a closed graph and dom(A) C X is said to have a compact resolvent
if p(A) # 0 and the resolvent operator Ry(A) = (A1 — A)~! € £°(X) is com-
pact for all A € p(A).

EXERCISE 6.1.14. Let A : dom(A) — X be an unbounded operator on a
complex Banach space X with a closed graph and dom(A4) C X.

(i) Prove that Ry(A) is compact for some A € p(A) if and only if it is
compact for all A € p(A).

(ii) Let A € Po(A) and define Ej :=ker(Al — A)* for k € N. Assume
that E,, = Ep41. Prove that E,, = Fj for every integer k > m.
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THEOREM 6.1.15 (Spectrum and Compact Resolvent). Let X be
a complex Banach space and let A:dom(A) — X be an unbounded com-
plex linear operator on X with compact resolvent. Then o(A) = Po(A) is
a discrete subset of C and the subspace Ey := 3o, ker(Al — A)¥ is finite-
dimensional for all A € Po(A).

Proof. Let p € p(A). Then zero is not an eigenvalue of R,(A). Since
the operator R, (A) is compact, it follows from Theorem that

o(Ru(A))\ {0} = Po(R,(A))
is a discrete subset of C \ {0} and that the generalized eigenspace of R, (A)

associated to every eigenvalue z = (u — \)~! is finite-dimensional. Hence
Lemma [6.1.12] asserts that

o) = {u-1

{ 1
= /"L _
z

= Po(4)

is a discrete subset of C and that dim F) < oo for all A € ¢(A). This proves

Theorem [6.1.15] O

EXAMPLE 6.1.16. Consider the complex Hilbert space H := ¢*(N, C) (see
part (ii) of Exercise [5.3.5)). Let (\;);eny be a sequence of complex numbers
and define the unbounded operator Ay : dom(Ay) — H by

ZEdRAA»\HH}

z € PU(Ru(A))}

o0 o0
dom(Ay) := {x = (z)ieny € CY Z]:L“ZF < 00, ZMZ-:UZ-\Q < oo}
i=1 i=1
and
Axz = (NiTi)ien for x = (x;)ieny € dom(A)).
This operator has a dense domain and a closed graph by Example and
its spectrum is given by Ro(A4y) = () and

Po(4y) = {Nili €N}, o(dy) = (hi[ie N).

Here the overline denotes the closure (and not complex conjugation). Thus
the resolvent set p(A,) is empty if and only if the sequence (\;);cn is dense
in C. The operator Ay has a compact resolvent if and only if the sequence |\
diverges to infinity as i tends to oo.

Example shows that the spectrum of an unbounded densely de-
fined closed operator on a separable Hilbert space can be any nonempty
closed subset of the complex plane. The next example shows that the spec-
trum can also be empty.
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EXAMPLE 6.1.17. Consider the complex Hilbert space H := L?([0, 1],C)
(Exercise and let W12([0,1],C) be the space of all absolutely contin-
uous functions u : [0,1] — C with square integrable derivatives. Let ¢ be the
variable in the unit interval [0, 1].

(i) Define the operator Ay : dom(A4g) — H by
dom(Ao) = {u € W([0,1],0) |u(0) =0}, Agu =i

Let f € L?([0,1],C) and A € C. A function u € dom(4y) satisfies the equa-
tion Au — Agu = f if and only if v € WH2([0,1],C) and

U= Au—f, u(0) = 0.

This equation has a unique solution given by
t
u(t) = —/ AN f(s)ds  for0<t < 1.
0

Hence A1 — Ay is invertible for all A € C and so o(Ag) = 0.
(ii) Define Ap : dom(Ap) — H (periodic boundary conditions) by
dom(Ap) := {u e WH([0,1],C) | u(0) = u(1)}, Apu = iu.

Let f € L?([0,1],C) and A € C. A function u € dom(Ap) satisfies the equa-
tion A\u — Apu = f if and only if u € W'2([0,1],C) and

U= —ilu+if, u(0) = u(1).

This equation has a unique solution if and only if e7* # 1, and in this case
the solution is given by

. to, 1 s —iX(1—s)
u(t) = e Py +i/ e NE=9) £ () ds, ug = / e f(s) ds.
0

0 1—e 1A
Thus 0(Ap) = Po(Ap) = 27Z.
(iii) Define Ay, : dom(Ay) — H x H (Lagrangian boundary conditions) by
dom(Ap) := {(u,v) € W"*([0,1],C?) | v(0) = v(1) = 0}
and Ar(u,v) := (—0,4). Exercise: Show that 0(Ar) = Po(Ar) = 7Z.

(iv) The operators in (i), (ii), and (iii) have compact resolvent. Removing
the boundary conditions one obtains the operator

A= %  dom(A) = W2([0,1],C) — L2([0,1],C)

with o(A) = Po(A) = C, which has no resolvent at all.
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6.1.3. Spectral Projections. The holomorphic functional calculus in Sec-
tion does not carry over to unbounded operators unless one imposes
rather stringent conditions on the asymptotic behavior of the holomorphic
functions in question. However, the basic construction can be used to define
certain spectral projections.

DEFINITION 6.1.18 (Dunford Integral). Let A :dom(A) — X be an
unbounded complex linear operator with a closed graph on a complex Ba-
nach space X and let ¥ C 0(A) be a compact set. Call ¥ isolated if o(A) \ ¥
is a closed subset of C. Call an open set U C C an isolating neighbor-
hood of ¥ if 0(A)NU = 3. Assume U is an isolating neighborhood of ¥
and let v be a cycle in U \ X such that

(6.1.18) w(y,A) == o= 0, for Ae C\U.

:27ri Z2— X

1 dz _{1, for A € 3,
¥

(See Figure ) The operator ®x; 4(f) € L(X) is defined by
1
(6.1.19) Py a(f) = — / f(2)(z1— A~z
271 J,
THEOREM 6.1.19 (Spectral Projection). Let X, A, 3, U be as in Def-

inition |0.1.18. Then the following holds.

(i) The operator ® 4 x:(f) is independent of the choice of the cycle v in U\X
satisfying (6.1.18)) that is used to define it.

(ii) Let f,g : U — C be holomorphic. Then ®4x(f+g) = Pas(f)+Pax(g)
and 45 (fg9) = Pax(f)Pax(9).
(iii) Let f : U — C be holomorphic. Then o(®ax(f)) = f(2).

(iv) Let V.C C be an open set and let f : U — V and g : V — C be
holomorphic functions. Then g(®ax(f)) = Pax(go f).

(v) Let~y be a cycle in U \ ¥ satisfying (6.1.18)) and define

(6.1.20) Py = ®as(l) = — /(z]l _ Al

' 271 J,
Then Ps, is a projection, its image Xy, := im(Py) C dom(A) is A-invariant,
the operator Ay, := Alx,, : X5y — Xx is bounded, its spectrum is o(Ay) = 3,
and the unbounded operator Aly;ndom(a) : Y= Ndom(A) — Ys := ker(Px)
has the spectrum o(A) \ 2.

Proof. The proof of Theorem [6.1.19] is verbatim the same as that of
Theorem [5.2.172] and will be omitted. O



306 6. Unbounded Operators

6.2. The Dual of an Unbounded Operator

DEFINITION 6.2.1 (Dual Operator). Let X and Y be real or complex
Banach spaces and let

A:dom(A) - Y

be an unbounded operator with a dense domain dom(A) C X. The dual
operator of A is the linear operator

A* : dom(A*) — X*, dom(A4*) C Y™,

defined as follows. Its domain is the linear subspace

dom(A*) := {y* ey”

there exists a constant ¢ > 0 such that
|(y*, Az)| < c||z| for all x € dom(A)

and, for y* € dom(A*), the element A*y* € X* is the unique bounded linear
functional on X that satisfies

(A*y", ) = (y*, Ax) for all z € dom(A).

Thus the graph of the linear operator A* is the linear subspace of Y* x X*
that is characterized by the condition

y* € dom(A*)
and z* = A*y*

(a7, 2) = (y*, Ax)

= for all x € dom(A).

(6.2.1)

The next theorem summarizes some fundamental correspondences be-
tween the domains, kernels, and images of an unbounded linear operator
and its dual. It is the analogue of Theorem for unbounded operators.

THEOREM 6.2.2 (Duality). Let X andY be Banach spaces and suppose
that A : dom(A) — Y is a linear operator with a dense domain dom(A) C X.
Then the following holds.

(i) The dual operator A* : dom(A*) — X™* is closed.
(i) Letx € X andy €Y. Then

(6.2.2) (z,y) € graph(4) = }i’:’f;z ; g d%m:a)

(iii) A is closeable if and only if dom(A*) is weak* dense in Y*.
(iv) im(A)L = ker(A*) and, if A has a closed graph, then “im(A*) = ker(A).
(v) The operator A has a dense image if and only if A* is injective.

(vi) Assume A has a closed graph. Then A is injective if and only if A* has
a weak™ dense image.
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Proof. Part (i) follows directly from (6.2.1)).

We prove part (ii). Let x € X and y € Y. By Corollary [2.3.25 we
have (z,y) € graph(A) if and only if, for all (z*,y*) € X* x Y,

(5,6) + (", AE) = 0 for all € € dom(d) = (z",3) + (4", 5) = 0.
By (6.2.1)) the equation (z*,§) + (y*, A£) = 0 holds for all { € dom(A) if and
only if

y* € dom(A"), A*y* = —x*.
Thus (z,y) € graph(A) if and only if
(y*,y) = (A*y", x) for all y* € dom(A™).
This proves part (ii).

We prove part (iii). Fix an element y € Y. Then it follows from (/6.2.2)) in
part (ii) that (0,y) € graph(A) if and only if (y*,y) = 0 for all y* € dom(A*),
and this means that y € “dom(A*). Thus
(6.2.3) y € Tdom(A*) = (0,y) € graph(A).

Now Lemma [2.2.19] asserts that the operator A is closeable if and only if the
projection graph(A) — X is injective, i.e. for all y € Y,
(0,y) € graph(A) — y=0.
By (6.2.3]) this shows that A is closeable if and only if
*dom(A) = {0},
and, by Corollary [3.1.26] this condition holds if and only if the domain of A*
is a weak™ dense subspace of Y*. This proves part (iii).
We prove part (iv). Note that
y* €ker(A") <= y*0A=0
— y* cim(A)t
and, if A is closed, then
z € tim(A*) < (A*y*,z) =0 for all y* € dom(A*)
<= (z,0) € graph(4)
<= 1z € dom(A) and Az = 0.

Here the second step follows from ((6.2.2)) in part (ii) and the last step holds
because A has a closed graph. This proves part (iv).

Part (v) follows from part (iv) and Corollary [2.3.25(and part (vi) follows
from part (iv) and Corollary [3.1.26/ This proves Theorem O

The next result extends the Closed Image Theorem to unbounded
operators. In this form it was proved by Stefan Banach in 1932.
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THEOREM 6.2.3 (Closed Image Theorem). Let X and Y be Ba-
nach spaces and let A : dom(A) — Y be a linear operator with a dense do-
main dom(A) C X and a closed graph. Then the following are equivalent.

(i) im(A) = L ker(A*).
(ii) The image of A is a closed subspace of Y.
(iii) There exists a constant ¢ > 0 such that

(6.2.4) Ai?—fo [z + &l x < cllAz|y for all x € dom(A).

Here the infimum runs over all £ € dom(A) that satisfy AL = 0.
(iv) im(A*) = ker(A)* .

(v) The image of A* is a weak™ closed subspace of X*.

(vi) The image of A* is a closed subspace of X*.

(vii) There exists a constant ¢ > 0 such

(6.2.5) Ainf o ™ + 0"y <cl|A%y"|| x- for all y* € dom(A™).
*,r]*:
Here the infimum runs over all n* € dom(A*) that satisfy A*n* = 0.

Proof. We prove that (i) is equivalent to (ii). By Corollary [3.1.18| and

part (iv) of Theorem we have
im(A) =+ (im(4)%) = ~ ker(A").
Hence (i) is equivalent to (ii).

We prove that (ii) is equivalent to (iii). By Exercise [2.2.12) the do-
main of A is a Banach space with the graph norm ||z||4 := ||z||x + [|Az|y
for x € dom(A). Thus A is also a bounded linear operator from the Banach
spaces dom(A) to the Banach space Y. Hence it follows from the equivalence

of (ii) and (iii) in Theorem |4.1.16| that A has a closed image if and only if
there exists a constant ¢ > 0 such that

Aign—fo |z +&ll4 < cllAzlly for all z € dom(A).

Since ||z +&||a = ||z + €|l x + [|Az|y for z € dom(A) and & € ker(A), this
is equivalent to part (iii). This shows that (ii) is equivalent to (iii).

We prove that (iii) implies (iv) by the same argument as in the proof
of Theorem The inclusion im(A*) C ker(A)* follows directly from
the definition of the dual operator. To prove the converse inclusion, fix an
element 2* € ker(A)* so that

(x*,6) =0 for all £ € ker(A).
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Then, for all z € dom(A) and all § € ker(A4), we have
(2", )] = (&% & + ] < |27 x- [l + €l -

Take the infimum over all £ to obtain the estimate

2% 2} < ll2%llxe ot lle+ &l < ellallx- [[Azly

for all x € dom(A). Here the second step follows from (6.2.4). This im-
plies that there exists a unique bounded linear functional A on im(A) C Y
such that Ao A =2z* The functional A extends to an element y* € Y*
by the Hahn-Banach Theorem (Corollaries and . The extended
functional satisfies y* o A = z*. Hence y* € dom(A*) and z* = A*y* by def-
inition of the dual operator, and so z* € im(A*). This shows that (iii)
implies (iv).

That (iv) implies (v) and (v) implies (vi) follows directly from the def-
inition of the weak* topology. That (vi) is equivalent to (vii) follows from
the fact that (ii) is equivalent to (iii) (already proved).

We prove that (vi) implies (ii), following [88], p 205/206]. Assume A*
has a closed image. Consider the product space X x Y with the norm

1@ )l xxy = lzllx +llylly  for (z,y) € X x Y.
The dual space of X x Y is the product space X* x Y* with the norm
1@ 5 ey 2= masc{ 2 -y ly- }
for (z*,y*) € X* x Y*. The graph of A is the closed subspace
r:= {(:c,y) EXXY)xedom(A),y:Aa?} CXxY
and the projection B : ' — Y onto the second factor is given by
B(z,y) ==y = Ax for (z,y) e T.

This is a bounded linear operator with im(B) = im(A). We prove in four
steps that A has a closed image.

Step 1. The annihilator of I is given by
rt= {(x*,y*) € X" xY"|y" €dom(A¥), z* = —A*y*}.
Thus T+ C im(A*) x Y*.
Fix a pair (z*,y*) € X* x Y*. Then we have (z*,y*) € 't if and only if
(x*,z) + (y*, Az) = 0 for all x € dom(A),
and this is equivalent to the conditions
y* € dom(A¥), = A"y
by . This proves Step 1.
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Step 2. Define the map X* X Y* — T : (*,y*) = Ag= 4 by
Apr o (0, Ax) := (2%, 2) + (y*, Ax) for x € dom(A).

This map induces an isometric isomorphism from X* x Y*/Fl toI'™* and so

A * x| = inf a. { * —A* * ) * * *}
Ayl = inf | max{ et = Al
for all (z*,y*) € X* x Y™

This follows from Step 1 and Corollary [2.3.26

Step 3. The image of the dual operator B* : Y* — I'* is given by

im(B*) = {Agey+ | 2% € im(A4%),y* € Y*}.

If y* € Y*, then
B*y* =y" o B = Ag .
Conversely, let (z*,y*) € im(A*) x Y* and choose n* € dom(A*) such that
A'n* = x*.
Then A_,«,» = 0 by Step 2 and so
My = Rogospe = B (y" +17°) € im(B").
This proves Step 3.
Step 4. B* has a closed image.

Let A; € im(B*) C I'* be a sequence that converges to A € I'* in the norm
topology. Choose (z*,y*) € X* x Y* such that A = Ay« ,+ and, by Step 3,
choose a sequence (z},y’) € X* x Y* such that

Ai = Agr oy, x; € im(A*) for all 7 € N.

Then, by Step 2, there exists a sequence i € dom(A*) such that
max{ 2~ — Ao " — 97 il } < 1A - Ayl 2

for all ¢ and so

Zliglo |z* —x7 — A™ni[|x- = 0.
Thus

¥ = lim (x] + A™n}) € im(A")

1—00
because A* has a closed image by assumption. Hence A = Ay« € im(B*)
by Step 3 and this proves Step 4.
It follows from Step 4 and Theorem that B has a closed image.

Hence so does A because im(A) = im(B). This shows that (vi) implies (ii)
and completes the proof of Theorem [6.2.3 O



6.2. The Dual of an Unbounded Operator 311

COROLLARY 6.2.4. Let X andY be Banach spaces and A : dom(A) — Y
be a linear operator with a dense domain dom(A) C X and a closed graph.

Then A is bijective if and only if its dual operator A* is bijective. If this
holds, then A= .Y — X is a bounded linear operator and (A*)~1 = (A~1)*.

Proof. Assume A is bijective and recall from Exercise[2.2.12|that dom(A)
is a Banach space with the graph norm because A has a closed graph.
Thus A : dom(A) — Y is a bijective bounded linear operator between Ba-
nach spaces. Hence A~!:Y — dom(A) is bounded by the Open Map-
ping Theorem and so is A~! : Y — X (same notation, different target
space). Now let z* € X* and y* € Y*. We prove that

y* € dom(A*)

e (A_l)*aj* ="

By (6.2.1), y* € dom(A*) and A*y* = z* if and only if (z*, z) = (y*, Az) for
all z € dom(A), and this is equivalent to the condition (z*, A~ 1y) = (y*,y)
for all y € Y, because A is bijective. This is equivalent to (A~1)*z* = y*,

and this proves (6.2.6). By (6.2.6)), we have im(A~1)* = dom(A*) and
AY(ATH* =id: X* — X*, (A~1*A* = id : dom(A*) — dom(A*).
Thus A* is bijective and (A4*)~! = (A~1)*. Conversely, if A* is bijective,
then A is injective by part (vi) of Theorem has a dense image by
part (v) of Theorem and has a closed image by Theorem and
hence is bijective. This proves Corollary [6.2.4] O

EXAMPLE 6.2.5. This example shows that the domain of the dual oper-

ator of a closed densely defined operator need not be dense (see part (iii)
of Theorem [6.2.2)). Consider the real Banach space X = ¢! and define the
unbounded operator A : dom(A4) — ¢! by

dom(A) := {x = (2i)ien € £! ) iz|azz| < oo},
=1

Az := (ix;)eN for © = (z)ien € dom(A).
This operator has a dense domain. Moreover, it is bijective and has a
bounded inverse, given by A~y = (iy;)ien for y = (yi)ien € ¢*. Hence A
has a closed graph. Identify the dual space X* with £*° in the canonical
way. Then the dual operator A* : dom(A*) — ¢°° is given by

dom(4) = {y = ()ien € supily] < o},

A'y = (iyi)ien  for y = (yi)ien € dom(A").
This operator is again bijective. However, its domain is contained in the
proper closed subspace ¢y C £*° of sequences of real numbers that converge
to zero. It is weak™ dense in X* = /*° but not dense.
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The next lemma shows that the relation between the spectrum of a
bounded linear operator and that of the dual operator in Lemma/[5.2.5| carries
over verbatim to densely defined unbounded operators with closed graphs.

LEMMA 6.2.6 (Spectrum of A and A*). Let X be a complex Banach
space, let A : dom(A) — X be an unbounded complez linear operator with a
closed graph and a dense domain dom(A) C X, and denote by

A* i dom(A*) — X~
the dual operator. Then the following holds.
(i) o(A*) =0 (A).

ii) The point, residual, and continuous spectra of A and A* are related b
Y

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A¥),
Ro(A*) Cc Pa(A)UCo(A), Ro(A) C Po(AY),
Co(A*) Cc Co(A), Co(A) C Ro(A*) U Co(AY).

(iii) If X s reflexive, then Co(A*) = Co(A) and

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A¥),
Ro(A*) Cc Po(A), Ro(A) C Po(A*).

Proof. Part (i) follows from the identity
My — A)* = My — A*
and Corollary

Part (ii) follows from the same arguments as part (iii) of Lemma [5.2.5
with Theorem [4.1.8|replaced by Theorem|[6.2.2] If A € Po(A*), then A1— A*
is not injective, hence A1— A does not have a dense image by part (v) of The-
orem [6.2.2] and therefore A € Po(A) URg(A). If X € Ro(A*), then A1 — A*
is injective, hence A1 — A has a dense image, and so A € Pa(A) U Co(A).
Third, if A € Co(A*), then A1 — A* is injective and has a dense image and
therefore also has a weak™ dense image, thus it follows from parts (v) and (vi)
of Theorem that A1l — A is injective and has a dense image, and there-
fore A € Co(A). This proves part (ii).

Part (iii) follows from part (ii) and the fact that
Co(A) = Co(A")

in the reflexive case, again by parts (v) and (vi) of Theorem This
proves Lemma [6.2.6 [l
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6.3. Unbounded Operators on Hilbert Spaces

The dual operator of an unbounded operator between Banach spaces was
introduced in Definition [6.2.1] For Hilbert spaces this leads to the notion
of the adjoint of an unbounded densely defined operator which we explain
next. As in Example[4.1.6)and Definition[5.3.7] the idea is to replace the dual
space of a Hilbert space by the original Hilbert space via the isomorphism
of Theorem respectively Theorem [5.3.6] in the complex case.

6.3.1. The Adjoint of an Unbounded Operator.

DEFINITION 6.3.1 (Adjoint Operator). Let X,Y be complex Hilbert
spaces and let A : dom(A) — Y be an unbounded operator with a dense
domain dom(A) C X. The adjoint operator

A* :dom(A*) — X, dom(A*) C Y,
of A is defined as follows. Its domain is the linear subspace

there exists a constant ¢ > 0 such that }
[y, A&)y | < c||€][x for all £ € dom(A)

and, for y € dom(A*), the element A*y € X is the unique element of X that
satisfies the equation

(A%, 8 x = (y, A)y for all ¢ € dom(A).
Thus the graph of the adjoint operator is characterized by the condition

y € dom(A") — (A"y, &) x = (y, Al)y
and x = A*y for all £ € dom(A).

The operator A is called self-adjoint if X =Y and A = A*.

dom(A*) := {y cy ‘

(6.3.1)

Observe that an element y € Y belongs to the domain of A* if and only
if the complex linear functional dom(A) — C : £ — (y, A) is bounded. In
this case, the linear functional extends uniquely to a bounded complex linear
functional on all of X, because dom(A) is a dense subspace of X, and The-
orem [5.3.6] asserts that this extended complex linear functional is uniquely
represented by an element of X. The reader may verify that dom(A*) is a
complex subspace of Y and that the operator A* : dom(A*) — X is complex
linear. Throughout the remainder of this chapter the symbol A* will always
denote the adjoint of an unbounded operator between Hilbert spaces as in
Definition [6.3.1} The dual operator of Definition [6.2.1]is no longer used.

The next lemma summarizes the basic properties of the adjoint operator.
Recall that in the Hilbert space setting the notation

St ={yec H|(z,y)=0 forall z € S}

refers to the (complex) orthogonal complement of a subset S C H.
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LEMMA 6.3.2 (Properties of the Adjoint Operator). Let X and Y
be complex Hilbert spaces and let A : dom(A) — Y be a linear operator with
a dense domain dom(A) C X. Then the following holds.

(i) If P € LS(X,Y) and X € C, then (A+ P)* = A*+ P* and (\A)* = \A*,
(ii) A is closeable if and only if dom(A*) is a dense subspace of Y.
(iii) If A is closed, then A* = A.
(iv) im(A)* = ker(A*) and, if A is closed, then ker(A) = im(A*)*.
(v) A has a dense image if and only if A* is injective.
(vi) Assume A is closed. Then A has a closed image if and only if A* has
a closed image if and only if im(A*) = ker(A)= .
(vii) If A is bijective, then so is A* and (A~1)* = (A*)~L.
(viii) If X =Y = H and A is closed, then o(A*) = {X\ AE J(A)} and
Po(A*) C {A| A€ Po(A)URo(A)},
Ro(A*) Cc {A|X € Po(A)},
Co(A*) ={X|XxeCa(A4)}.

Proof. These assertions are proved by carrying over Theorem [6.2.2] The-

orem [6.2.3] Corollary [6.2.4] and Lemma [6.2.6] to the Hilbert space setting.
The details are left to the reader. O

6.3.2. Unbounded Self-Adjoint Operators. By definition, every self-
adjoint operator on a Hilbert space H = X =Y is symmetric, i.e. it satisfies

(x, Ay) = (Azx,y) for all z,y € dom(A).

However, the converse does not hold, even for operators with dense do-
mains and closed graphs. (By Example every symmetric operator is
closeable.) Exercise [6.3.3] below illustrates the difference between symmet-
ric and self-adjoint operators and shows how one can construct self-adjoint
extensions of symmetric operators.

A skew-symmetric bilinear form
w:VxV =R

on a real vector space V is called symplectic if it is nondegenerate, i.e. for
every nonzero vector v € V' there exists a vector u € V such that w(u, v) # 0.
Assume w : V x V — R is a symplectic form. A linear subspace A C V is
called a Lagrangian subspace if w(u,v) = 0 for all u,v € A and if, for
every v € V' \ A, there exists a vector u € A such that w(u,v) # 0.
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EXERCISE 6.3.3 (Gelfand—Robbin Quotient). Let H be a real Hilbert
space and let A : dom(A) — H be a densely defined symmetric operator.

(i) Prove that dom(A) C dom(A*) and A*|gom(a) = 4.
(ii) Let V := dom(A*)/dom(A) and define the map w: V x V — R by
(632) W(U,’U) = <A*I,y> - <I, A*y>

for x,y € dom(A*), where u := [z] € V and v := [y] € V. Prove that w is a
well-defined skew-symmetric bilinear form. Prove that w is nondegenerate
if and only if the operator A has a closed graph.

(iii) Assume A has a closed graph. For a subspace A C V define the operator
Ap :dom(Ap) - H

by

(6.3.3)  dom(Ap) := {x € dom(A4A")|[z] € A}, Ap = A" dom(4,)-

Prove that Ay is self-adjoint if and only if A is a Lagrangian subspace of V.

(iv) Prove that A admits a self-adjoint extension. Hint: The Lemma of
Zorn.

(v) Prove that Ag := (ker(A*)+dom(A))/dom(A) is a Lagrangian subspace
of V' whenever A has a closed graph and a closed image.

EXERCISE 6.3.4. This example illustrates how the Gelfand—Robbin quo-
tient gives rise to symplectic forms on the spaces of boundary data for sym-
metric differential operators. Let n € N and consider the matrix

. 0 -1 2nx2n
J'_<]1 0>€R .

Define the operator A on the Hilbert space H := L?([0, 1], R?*") by
dom(A) := {u € WH3([0,1],R*") [ u(0) = u(1) = 0}, Au = J.

Here W12([0,1], R?") denotes the space of all absolutely continuous func-
tions u : [0, 1] — R?" with square integrable derivatives. Prove the following.

(i) A is a symmetric operator with a closed graph.
(ii) dom(A*) = W12([0,1],R?") and A*u = Ju for all u € W12([0, 1], R?").

(iii) The map W12([0, 1], R??) — R2? x R?" : u > (u(0),u(1)) descends to

an isomorphism from the quotient space V = dom(A*)/dom(A) to R?" xR?".

The resulting symplectic form determined by (6.3.2)) on R?" x R?" is
w((uo, ur), (vo, v1)) = (Ju,v1) = (Juo, vo)

for (ug,u1), (vo,v1) € R?™ x R?". Here (-,-) denotes the standard inner
product on R?".
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EXERCISE 6.3.5. Let H be a separable complex Hilbert space, let (e;);en
be a complex orthonormal basis, let ()\;);eny be a sequence of complex num-
bers, and let Ay : dom(Ay) — H be the operator in Example _Prove

that its adjoint is the operator A} = Ay associated to the sequence (\;);en.
Deduce that A is self-adjoint if and only if \; € R for all 3.

EXERCISE 6.3.6. Prove that the operator Ay in Example is self-
adjoint for p = 2 and every measurable function f: M — R.

Another example of an unbounded self-adjoint operator is the Laplace
operator on A : W22(R", C) — L?(R",C) in Example The proof that
this operator is self-adjoint requires elliptic regularity and goes beyond the
scope of this book. However, this example can be recast as a special case
of a general abstract setup, which is useful for many applications and which
we now explain.

DEFINITION 6.3.7 (Gelfand Triple). A Gelfand triple consists of a
real Hilbert space (H, (-,-);) and a dense subspace V' C H, equipped with
an inner product (-, -);, which renders V into a Hilbert space in its own right
and the inclusion V < H into a bounded linear operator. Thus there exists
a constant x > 0 such that

(6.3.4) ]| g < &y forallv e V.

We identify H with its dual space H* via the isomorphism of Theorem |1.4.4]
However, we do not identify V with its own dual space. Thus

(6.3.5) VCHCVY

where the inclusion H = H* — V™ assigns to each u € H the bounded
linear functional V- — R : v — (u,v)y. This is the dual operator of the
inclusion V' < H and so is injective and has a dense image by Theorem [£.1.8]

THEOREM 6.3.8 (Gelfand Triples). Let V.C H C V* be a Gelfand
triple and let B:V xV — R be a symmetric bilinear form. Suppose that
there exist positive constants §, ¢, and C such that

(6.3.6) 5|l = cllvll3 < B(v,v) < Clol;;  forallv e V.

Then the linear subspace

(6.3.7) dom(A) := {u eV

B
wp B0 OO}

verioy vl
is dense in 'V, there is a unique linear operator A : dom(A) — H such that
(6.3.8) (Au, vy = B(u,v) for all u € dom(A) and all v €V,

and this operator A is self-adjoint. If H is a complex Hilbert space and V is
a complex subspace of H such that the complex structure preserves the inner
product on V' and the bilinear form B, then A is complex linear.
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Proof. The existence and uniqueness of an operator A :dom(A4) — H
that satisfies and follows directly from the definitions and
Theorem Namely, if u € dom(A), then, since V is dense in H, there
exists a unique bounded linear functional A, : H — R such that

Ay (v) = B(u,v) forallv eV,
and so, by Theorem there exists a unique element Au € H such that
(Au, f)y = Au(f) for all f e H.

Then A : dom(A) — H is a symmetric linear operator that satisfies (6.3.8]).
We prove in seven steps that A is self-adjoint.

Step 1. Ifu,v € V, then |B(u,v)| < Clully ||v]y -

By Theorem there exists a unique linear operator Z:V — V such
that (u, #v),, = B(u,v) for all u,v € V. Since B is symmetric, so is 4.
Hence £ is bounded by the Hellinger—Toeplitz Theorem (Corollary @ .
Moreover, |(v, Bv),| = |B(v,v)| < C for all v € V with |[v]|;, = 1 by (6.3.6).
Hence || #||;yy < C by part (iv) of Theorem and so

|B(u, v)| = [{u, Bv)y | < ully [|Bv]l, < Cllully vl
for all u,v € V. This proves Step 1.

Step 2. If u € dom(A), then |jully, < 1k |jcu+ Aull .

By (6.3.4) and (6.3.6) and (6.3.8)), every u € dom(A) satisfies
8 lully, < ellullfy + Blu,u)
= (cu+ Au,u) gy
< llew + Aull g [|ull

<k flew + Aull g |lully

and this proves Step 2. (Exercise: Use Step 2 to show that A is closed.)

Step 3. The formula
(6.3.9) (u,v) g == c(u,v) g + B(u,v) foru,veV
defines an inner product on V whose norm V. — R : v — [jv| 5 = /(v,v) 5

is compatible with ||-||,. Thus (V,(:,-)p) is a Hilbert space.

The bilinear form (6.3.9)) is symmetric because B is symmetric and satisfies
the inequality ¢ [[v][}, < B(v,v) < c|jo|y + Cllv|} < (ex? + O) ||v|3 for

all v € V by (6.3.4) and (6.3.6). This proves Step 3.

The next step is the heart of the proof. It can be viewed as an abstract
variant of the Dirichlet principle.
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Step 4. The operator cly + A : dom(A) — H is bijective.

The operator is injective by Step 2. To prove that it is surjective, fix an
element f € H and define the bounded linear functional A : V' — R by

A(v) == (f,v)y forveV.

Then, by Step 3 and Theorem there exists an element u € V' that
satisfies (u,v) 5 = A(v) for all v € V. This implies

C<uav>H + B(“?”) = <fvv>H
for all v € V and hence
[B(u,v)| = [{f —cu,v) | < |If —cully [vllg -
Thus u € dom(A) and, for all v € V', we have
<CU+AU_ f)U>H = C<U7U>H +B(U,U) - <f7v>H =0.
Since V is dense in H, it follows that cu + Au = f and this proves Step 4.
Step 5. The subspace dom(A) C V' defined by (6.3.7)) is dense in V.

Let ¢ : V — H denote the canonical inclusion and let ¢* : H — V be its ad-
joint operator with respect to the inner products (-,-)y on H and (-,-)p

on V (see Step 3). Then ¢* has a dense image by Theorem Let fe H
and define u := (cly + A)~'f € dom(A) by Step 4. Then cu + Au = f and
() o)p = (f,u) g = (cu+ Au,v) g = (u,v) g = ((cl+ A) 7' fv)

for all v € V. This shows that +* = (clly — A)~' : H — V and hence the
subspace dom(A) = im(¢*) is dense in V. This proves Step 5.

Step 6. Let v € H and suppose that there is a constant K > 0 such that
(6.3.10) |(v, Au) | < K ||ully for all u € dom(A).
Then v € V.

By (6.3.4) and (6.3.10) we have [(v,cu + Au) 4| < (ck ||v|| g + K) ||lul],, for
all u € dom(A). Since dom(A) is dense in V by Step 5, this implies that

there exists a unique bounded linear functional A : V' — R such that

(6.3.11) A(u) = (v, cu + Au) for all u € dom(A).
Hence, by Step 3 and Theorem there exists a w € V such that
(6.3.12) Au) = (w,u) g = c(w,u) g + B(w,u) for all u € V.

Take u € dom(A) in to obtain A(u) = (w, cu + Au) . Hence it fol-
lows from that (v — w, cu + Au); = 0 for all u € dom(A). Since the
operator clly + A : dom(A) — H is surjective by Step 4, we have v = w € V.
This proves Step 6.
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Step 7. The operator A : dom(A) — H is self-adjoint.

The operator A is symmetric by definition. Hence dom(A) C dom(A*)
and A*[qom(a) = A. It remains to prove that dom(A*) C dom(A). To see
this, fix an element v € dom(A*). Then

(v, Au) | = [(A™0, ) | < ([ A% g Jull g < 5| A ]| g [lully
for all u € dom(A) by (6.3.4)). Hence v € V' by Step 6. This implies
[B(v,u)| = (v, Au) | = [(A™0, ) | < [[A]| g [Jull 7

for all u € dom(A). Since dom(A) is dense in V' by Step 5, and the func-
tions V — R:uw |Ju||yand V — R : w+— B(v,u) are continuous by
and Step 1, this implies |B(v,u)| < [|[A*v|| ||u|| 4 for all w € V' and there-
fore v € dom(A). This proves Step 7 and Theorem [6.3.8] O

The next corollary explains how every closed densely defined unbounded
operator gives rise to a self-adjoint operator by composition with its ad-
joint. The composition of two unbounded linear operators A : dom(A) — Y
with dom(A4) C X and B :dom(B) — Z with dom(B) C Y is the opera-
tor BA : dom(BA) — Z defined by

dom(BA) := {z € dom(A) | Az € dom(B)},

BAzx := B(Ax) for x € dom(BA).
The domain of BA can be trivial even if A and B are densely defined. In the
next theorem X and Y can either be real Hilbert spaces or complex Hilbert

spaces with Hermitian inner products. In the latter case we assume that D
is an unbounded complex linear operator and so D*D is also complex linear.

COROLLARY 6.3.9 (The Operator D*D). Let X and Y be Hilbert
spaces and let D : dom(D) — Y be a closed unbounded operator with a dense
domain dom(D) C X. Then the operator D*D : dom(D*D) — X is self-
adjoint and its domain is dense in dom(D) with respect to the graph norm.

(6.3.13)

Proof. This is a Gelfand triple with
H:=X, V :=dom(D), (U, v)y = (u,v) x + (Du, Dv)y
for u,v € dom(D), and the bilinear form B : V x V — R is given by
B(u,v) := (Du, Dv), for u,v € dom(D) C X.
These data satisfy the hypotheses of Theorem [6.3.8 with 6 =c=C =1. In
particular, |[v]|;, = ||v]|% + [|Dvlly = ||lv|% + B(v,v) = |[v]|% for all v € V.
The condition sup,ecyn fo} vl [(Du, Dv)y | < oo for u € V = dom(D) in
equation (/6.3.7)) is equivalent to Du € dom(D*), so the operator A in (/6.3.8])

agrees with D*D. Hence the operator D*D is self-adjoint by Theorem [6.3.8
This proves Corollary O
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EXAMPLE 6.3.10 (Dirichlet Problem). The archetypal example of the
situation in Theorem [6.3.8 and Corollary is the operator

V= <ail,...,ai> L WI(Q) - L2(Q,RY).

Here 2 C R" is a bounded open set with smooth boundary (i.e. 09 is a
smooth (n—1)-dimensional submanifold of R” and £ = int(2)) and VVO1 2(Q)
is the completion of the space C5°(£2) of smooth functions u : @ — R with
compact support with respect to the norm

n 2
|12 1= dr = /Vux 2 dx.
e /QZ e

The Poincaré inequality asserts that this norm controls the L? norm of w.
This example corresponds to the Gelfand triple with

H=X=1I2%), V=dom(D)=W,*),

ou
B, (z)

where the bilinear form
B: W2 (Q) x Wy*(Q) - R
is given by

Blu,v) = /Q (Vu(z), Vo(z)) do

for u,v € W01’2(Q). The operator D = V : dom(D) — Y takes values in the
Hilbert space Y = L?(Q2,R"), and A = D*D is the Laplace operator

n 2

(6.3.14) A=) 382 S W2HQ) N WP (Q) = L2(9).
s
=1 4

Here W?22(£2) denotes the space of equivalence classes, up to equality almost
everywhere, of all L? functions v : Q — R whose distributional derivatives
up to order two can be represented by L? functions. The proof that

dom(D*D) = W22(Q) N W, *(Q)

(for all domains 2 C R™ with “sufficiently nice boundary”) requires elliptic
regularity and goes beyond the scope of this book. Once this is established,

Corollary asserts that the Laplace operator (6.3.14) is self-adjoint.
Moreover, this example satisfies condition ([6.3.6) with ¢ = 0. Hence it fol-

lows from Step 4 in the proof of Theorem that the operator (6.3.14)) is
bijective. This translates into the observation that the Dirichlet problem

Au=f in Q,

(6.3.15) w0 ondQ

has a unique solution u € W22(Q) N WOM(Q) for every f € L?(9).
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6.3.3. Unbounded Normal Operators. The next theorem introduces
unbounded normal operators on Hilbert spaces.

THEOREM 6.3.11 (Unbounded Normal Operator). Let H be a com-
plex Hilbert space and A : dom(A) — H be a closed unbounded complex linear
operator with a dense domain dom(A) C H. The following are equivalent.

(i) AA* = A*A.
(ii) dom(A) = dom(A*) and ||Az| = ||[A*z|| for all x € dom(A).
(iii) There exist complex linear self-adjoint operators A; : dom(A;) — H
fori=1,2 such that dom(A) = dom(A*) = dom(A;) Ndom(Asz) and

Az = Az +idpx, Az = Az —idsz, ||Az|® = || A1) + || Agz|?
for all x € dom(A).

DEFINITION 6.3.12 (Unbounded Normal Operator). A closed un-
bounded complex linear operator A :dom(A) — H on a Hilbert space H
with a dense domain dom(A) C H is called normal if it satisfies the equiv-
alent conditions of Theorem [6.3.111

Proof. We prove that (i) implies (ii). Assume AA* = A*A. Then ev-
ery element z € dom(A*A) = dom(AA*) satisfies € dom(A) Ndom(A*) as
well as Az € dom(A*) and A*x € dom(A), and hence

|Az||* = (Az, Az) = (z, A*Az) = (z, AA*z) = (A*z, A*z) = || A" |2,

Next we prove that dom(A) C dom(A*). Let z € dom(A). Then Corol-
lary asserts that there exists a sequence z; € dom(A*A) such that

lim ||z — x| =0, lim ||Az — Axz;|| = 0.

1—00 1—00
Thus (Ax;)en is a Cauchy sequence in H and so is the sequence (A*z;);en
because ||A*x; — A*z;|| = ||Az; — Ax;|| for all 4, j € N by what we already
proved. Hence (A*x;);en converges to some element y := lim;_, o, A*x;. Since

the sequence (x;);en converges to z and (A*z;);en converges to y and A*
has a closed graph, it follows that = € dom(A*) and A*z = y. Hence

4] = |yl = Jim || A% = lim | Az = || Az].
This shows that dom(A) C dom(A*) and ||A*z| = ||Az|| for all z € dom(A).

The converse inclusion dom(A*) C dom(A) follows by interchanging the
roles of A and A*. This shows that (i) implies (ii).

We prove that (ii) implies (i). Assume dom(A) = dom(A*) and
|Az| = || A*x|| for all x € dom(A).
Then the same argument as in the proof of Lemma shows that
(6.3.16) (Azx, Ay) = (A%x, A™y) for all z,y € dom(A).
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Now let z € dom(A*A). Then z € dom(A) and Az € dom(A*) and, by
equation (6.3.16)), we have

[(A%z, A%E)| = [(Az, AS)| = [(A" Az, §)| < || A" Az| [|]]
for all £ € dom(A*). This implies A*z € dom(A) and hence z € dom(AA*).

Thus we have proved that dom(A*A) C dom(AA*). The same argument,
with the roles of A and A* reversed, shows that

dom(A*A) = dom(AA").
Now let z € dom(A*A) = dom(AA*). Then, by equation (6.3.16), we have
(A*Azx, &) = (Ax, AE) = (A*x, A™E) = (AA™z,§)
for all £ € dom(A) = dom(A*). Since dom(A) is dense in H, this im-
plies A* Az = AA*z. Thus we have proved that (ii) implies (i).
We prove that (ii) implies (iii). Assume dom(A) = dom(A*) and
|Az| = ||A*z| for all x € dom(A).
Define the operators Bi, By : dom(A) — H by

Bz = (Ax + A*x), Box = (Aac — A*x)

1 1
2 2i
for z € dom(A). These operators are symmetric and hence closeable by
Example Thus they admit self-adjoint extensions A; : dom(A;) - H
for i = 1,2 by Exercise[6.3.3] Moreover, dom(A) C dom(A4;) N dom(A) and
every element x € dom(A) = dom(A*) satisfies

Ax = Ajx +iAox, Afz = Az — iAoz,
and

1 *
JAz)> = 5 (I4al + | A")?)

_ %(HAQ; + A% | Ax - A2
= || Auz|® + || Aga|| .
Now let z € dom(A;) Ndom(Asz). Then
[(z, A = [{z, 41§ +1428)]
(A1, §) + (Agz,i&)|
(14rzll + [ 4s211) fe]

IN

for every £ € dom(A) and hence
z € dom(A*) = dom(A).
This shows that (ii) implies (iii).
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We prove that (iii) implies (ii). Assume A; : dom(4;) — H for i = 1,2
are self-adjoint operators that satisfy the following four conditions.

(a) dom(A;) Ndom(Az) is a dense subspace of H.
(b) || A1z + idoz|* = ||Arz|? + ||Azz||? for all 2 € dom(A;) N dom(As).

(c) Let y € H and ¢ > 0 such that |(y, Ajx 4+ idsz)| < c||z| for every
element x € dom(A;) Ndom(Az). Then y € dom(A;) N dom(As).

(d) Let z € H and ¢ > 0 such that [(x, Ajy —iday)| < c||ly|| for every
element y € dom(A4;) Ndom(Az). Then = € dom(A;) N dom(As).

Define the operator A : dom(A) — H by
dom(A) := dom(A;) Ndom(As),

6.3.17
( ) Az := Ajx + iAsx for x € dom(A1) Ndom(As).

Its domain is dense by (a). We prove that its adjoint operator is given by
dom(A*) = dom(A;) N dom(As),
A*y = Ay — 1Agy for y € dom(A;) Ndom(As).

Let y € dom(A*). Then (y, Az) = (A*y,z) for all x € dom(A) and this
implies y € dom(A;) Ndom(As) by (c). Hence

<A*ya 1"> = (ya Al[L‘ + iA2x> = <A1y - iAZ?/, $>

for all x € dom(A;) Ndom(Asy), and hence A*y = Ay — iAsy by (a). The
converse inclusion dom(A;) Ndom(As) C dom(A*) follows directly from the
assumptions. This shows that is the adjoint operator of
and vice versa by the same argument, using (d) instead of (c¢). In particular,
A has a closed graph. Moreover, it follows from (b) that || Az|| = ||A*z|| for
all z € dom(A) = dom(A*). This shows that (iii) implies (ii) and completes
the proof of Theorem O

Let H be a separable complex Hilbert space, equipped with an orthonor-
mal basis (e;);en. Then the operator Ay : dom(Ay) — H in Example
is normal for every sequence of complex numbers (\;);en. The operator Ay
is bounded if and only if the sequence (\;);en is bounded, it is self-adjoint
if and only if A\; € R for all i (Exercise , it is compact if and only
if lim;_,o0|Ai| = 0 (Example , and it has a compact resolvent if and
only if lim; ,o0|\;| = co. This example shows that the domains of the self-
adjoint operators A; = Agey and Ay = Apy) in Theorem may differ
dramatically from the domain of A = Ay. It also shows that every nonempty
closed subset of the complex plane can be the spectrum of an unbounded
normal operator (Example . In particular, the resolvent set can be
empty. The next theorem shows that every normal operator has a nonempty
spectrum.

(6.3.18)
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THEOREM 6.3.13 (Spectrum of a Normal Operator).

Let H be a nonzero complex Hilbert space and let A : dom(A) — H be an
unbounded normal operator with dom(A) C H. Then the following holds.

(1) If A € C, then A1 — A is normal and, if A € p(A), then the resolvent
operator Ry(A) = (A1 — A)~! is normal.

(ii) o(A) # 0.

(ifi) Ro(A) = 0 and Po(A*) = {X| A € Po(A)}.

(iv) If A has a compact resolvent, then the spectrum o(A) = Po(A) is

discrete, for each N € Po(A) the eigenspace Ey = ker(Al — A) is finite-
dimensional, and A admits an orthonormal basis of eigenvectors.

(v) If A is self-adjoint, then o(A) C R and
supo(A) = sup {<IL’,A:L’> |:U € dom(A), ||z| = 1} ,

(6.3.19) inf o(A) = inf {(z, Az) | 2 € dom(A), ||lz|| =1} .

Proof. We prove part (i). Let A € C. Then (A1 — A)* = A1 — A* by
part (i) of Lemma|[6.3.2] Hence

Az — Az|* = [AP|[|z]® — 2Re(Ax, Ax) + || Az
= [XP|z|? — 2Re(A*z, Ax) + [|A*z|
= HXl’ — A*a:“2

for all € dom(A) = dom(Al — A) = dom(A1 — A*). Thus Al — A is nor-
mal. If A is invertible, then

by part (vii) of Lemma and hence A~! is normal. This proves part (i).
We prove part (ii). If p(A) = 0, then o(4) = C # 0. If p(A) #0
and p € p(A), then R, (A) is normal by part (i), hence

sup |z = [|Ru(A)] >0
2€o(Ru(A))

by Theorem [5.3.15} and hence
o(A) ={pn—=2""|z € a(Ru(A) \{0}} #0
by Lemma This proves part (ii).
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We prove part (iii). Fix an element A € C\ (Po(A) UCo(A)). Then the
operator A\l — A is normal by part (i) and is injective because A ¢ Po(A).
Hence the adjoint operator (Al — A)* = A1 — A* is injective by definition
of a normal operator in Theorem [6.3.11] Thus Al — A has a dense image
by part (v) of Lemmal6.3.2] and so Al — A is surjective because A ¢ Co(A).
Thus A € p(A) and this proves part (iii).

We prove part (iv). By assumption p(A) # @ and the resolvent oper-
ator R, (A) is compact for all u € p(A). Fix an element 1 € p(A). Then
Theorem asserts that o(R,(A4)) \ {0} = Po(R,(A)), that the spec-
trum of R, (A) can only accumulate at the origin, and that the eigenspaces
of R, (A) are all finite-dimensional. Moreover, Theorem asserts that
the operator R, (A) admits an orthonormal basis of eigenvectors. Hence

part (iv) follows from Lemma [6.1.12
We prove part (v). Assume A is self-adjoint and let A € C\ R. Then
A — Az[|* = (ImA)? (|2 + [|(ReA)z — Az|® > (ImA)? ||z*

for all z € dom(A) as in the proof of Theorem [5.3.16f Hence A1 — A is
injective and has a closed image by Theorem Replace A by X to
deduce that the adjoint operator A\l — A* = A1 — A is also injective, hence
M — A has a dense image by part (iv) of Lemmal6.3.2] so A — A is bijective
and A € p(A).

Now let A € R and assume

A> sup (x, Ax) =: c.
zedom(A), ||z||=1

Then
lz[[| Az — Az|| > (2, Az — Az) > (A — ¢)||z|? for all z € dom(A).

Hence A1 — A is injective and has a closed image by Theorem [6.2.3| and so
is bijective by Lemma This shows that o(A) C (—o0,].
Conversely, assume
c:=supo(4) < oco.

We must prove that (z, Az) < ¢ for all # € dom(A) with ||z|| = 1. Suppose,
by contradiction, that there exists an element x € dom(A) such that ||z| =1
and (x, Az) > c. Choose a real number p such that ¢ < p < (x, Az) and
define £ := pz — Az. Then p € p(A) by assumption and

<‘$7 R“(A)§> = (,ua: - ACL‘,$> =H— <A£L',$> <0.
However, by Lemma we have
a(Ru(A)) = {(u =N A € a(4)} U{0} C [0,00)
in contradiction to Theorem [5.3.16, This proves Theorem [6.3.13 ([l
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6.4. Functional Calculus and Spectral Measures

The purpose of the present section is to extend the measurable functional
calculus and the spectral measure to unbounded self-adjoint operators.

6.4.1. Functional Calculus. For a topological space ¥ let B(X) denote
the C* algebra of bounded Borel measurable functions f : ¥ — C with
the supremum norm ||f|| := supyex|f(A)|. Denote by Cy(X) C B(X) the
C* subalgebra of complex valued bounded continuous functions on . The
next theorem extends the functional calculus of Theorem [5.6.5to unbounded
self-adjoint operators.

THEOREM 6.4.1 (Functional Calculus). Let H be a nonzero complex
Hilbert space, let A : dom(A) — H be an unbounded self-adjoint operator,
and let ¥ := o(A) C R. Then there exists a C* algebra homomorphism

(6.4.1) B(X) — LYH) : f— f(A) = Pa(f)
that satisfies the following axioms.

(Normalization) Let f; € B(X) be a sequence such that sup;cy | fi(A)] < |A]
and lim;_,o0 fi(A) = X for all A\ € . Then

lim f;(A)x = Ax for all z € dom(A).
1— 00

(Convergence) Let f; € B(X) be a sequence such that sup;cy || fil] < oo
and let f € B(X) such that lim;_,o fi(A) = f(N) for all X\ € . Then

gm filA)x = f(A)x for all x € H.

(Positive) If f € B(X,R) and f > 0, then f(A) = f(A)* > 0.
(Contraction) | f(A)|| < [|f|| for all f € B(X) and |[f(A)]| = |[f]| for all
fe Cb(E).

(Commutative) If B € L°(H) satisfies AB = BA, then f(A)B = Bf(A)
for all f € B(X).

(Eigenvector) If A € ¥ and v € dom(A) satisfy Ax = Az, then every
function f € B(X) satisfies f(A)x = f(N)x.

(Spectrum) If f € B(X), then f(A) is normal and o(f(A)) C f(X). More-

over, o(f(A)) = f(X2) for all f € Cp(2).
(Composition) If f € Cy(X) and g € B(f(X)), then (go f)(A) = g(f(A4)).
The C* algebra homomorphism (6.4.1)) is uniquely determined by the (Nor-

malization) and (Convergence) axioms.

Proof. See page |329 ([
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THEOREM 6.4.2 (Cayley Transform). Let H be a complex Hilbert
space.

(i) Let A :dom(A) — H be a self-adjoint operator. Then the operator
(6.4.2) Ui=A-il)(A+il)"':H - H

is unitary, the operator 1 —U : H — H 1is injective, and

(6.4.3) dom(A) =im(1-U), A=il+U)(1-U)""
The operator U is called the Cayley transform of A.

(i) Let U € L¢(H) be a unitary operator such that 1 —U is injective. Then
the operator

A:=il+U)(1-U)"":dom(A) — H, dom(A) := im(1 - U),
is self-adjoint and U is the Cayley transform of A.

(iii) Let A : dom(A) — H be a self-adjoint operator and let U € L(H) be
its Cayley transform. Define the Mébius transformation ¢ : R — S\ {1}

by
A—i
(6.4.4) d(N) = PUEL

for \€ R and p € S*\ {1}. Then

(645) o)\ {1} =d(o(A),  Po(U) = o(Po(A)),
and

(6.4.6) ker(Al — A) = ker(¢(A)1 —U)

for all A € R.

Proof. We prove (i). The operators
A+il:dom(A) - H
are bijective and have bounded inverses by part (v) of Theorem and
they are normal by part (i) of Theorem Hence
|Az — iz| = || Az + iz|| for all z € dom(A)
and so the Cayley transform
U:=(A—-il)(A+il)!
in is a unitary operator on H (Lemma . The operator U

satisfies

1-U =2i(A+il), 14+ U =2A(A+il)~ L,
Thus 1 — U is injective, im(1 — U) = dom(A), and i *A(1 - U) = 1+ U,
and hence A and U satisfy (6.4.3]). This proves part (i).
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We prove (ii). Assume U € L(H) is a unitary operator such that 1 — U
is injective. Then 1 € C\ Po(U) and hence the operator 1 — U has a dense

image by Theorem |5.3.15| Define the operator A : dom(A) — H by (6.4.3)).
We prove that A is self-adjoint. Thus let

x € dom(A"), y:= A'x.
Then
(y,¢) = (2, AQ) = (2,i(1+ U)(1 - U)7'¢)
for all ¢ € dom(A) = im(1 — U) and hence
(4,6 — UE) = (,i(€ + UE))  forall € € H,
This implies U*y — y = i(U*z + x) and hence
(6.4.7) y—Uy=i(z+Ux).
Thus
r=1r-Uz)+ 3(x+Us) =11 - U)(z - iy) € im(1 - U) = dom(A),
hence
(1-U)""w = 3(2 —iy),
and therefore
Az =i+ U)1-U) 'z =31+ U)({iz+y) =y.
Here the last equation follows from (6.4.7). This shows that A is self-adjoint.
Moreover, A + ill = 2i(1 — U)~! and A — il = 2iU(1 — U)~!, and hence
U= (A—il)(A+il)~! is the Cayley transform of A. This proves part (ii).
We prove (iii). Fix a real number \. Then, by (6.4.2)) and (6.4.4),
A+1) (M1 =U)(Az +ix) = (A —1)(Az + iz) — (A +1)(Az — iz)

= 2i(A\x — Ax)
for all z € dom(A). Since the operator A + il : dom(A) — H is surjective,
this implies that A\ — A : dom(A) — H is bijective if and only if p(\)1—U
is bijective. Moreover, if z € dom(A) satisfies Az = Az then

A +1)*(o(N)z — Uz) = (A +i)(¢(MN)1 — U)(Az + ix)

=A+1) (N1 —-U)(Azx +ix)

= 2i(A\z — Ax)

= 0.
Conversely, let x € H such that Uz = ¢(A)z. Then (1 — ¢(N))z =z — Ux
and so x € im(1—U) = dom(A). Moreover, £ := (1-U) "tz = (1-¢()\)) 1z
and so

. _.x+U.T_.1+¢()‘)
Am_1(£+U§)—11_¢()\) _ll—qb()\)

This proves part (iii) and Theorem [6.4.2} O

T = \x.
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With these preparations we are now ready to establish the functional cal-
culus for general unbounded self-adjoint operators. We give a proof of The-
orem [6.4.1] which reduces the result to the functional calculus for bounded
normal operators in Theorem [5.6.5] via the Cayley transform.

Proof of Theorem[6.4.1] Let A : dom(A) — H be a self-adjoint operator
with domain dom(A4) C H (so A is not bounded) and spectrum

Y :=0(A) CR.
Let
U:=(A—-il)(A+il)~! € £(H)
be the Cayley transform of A. Then U is a unitary operator and 1 — U is
injective and not surjective, because im(1l — U) = dom(A) # H, and so

1eo(U).

Hence it follows from part (iii) of Theorem that the spectrum of U is
the (compact) set

(6.4.8) o(U)=¢()u {1} c St
Now denote by
B(o(U)) = L(H) : g = g(U)
the C* algebra homomorphism in Theorem and define the map
B(X) = LH) : f = [(A)
by
(6.4.9) f(A) == (foo ) (U)  for f € B(%).

Here the bounded measurable function fo ¢~ : S\ {1} — C is extended
to all of S! by setting (f o ¢~1)(1) := 0. We prove in seven steps that the

map (6.4.9) satisfies the requirements of Theorem

Step 1. The map (6.4.9) is a C* algebra homomorphism. In particular, it
satisfies 1(A) = 1.

Define go : 0(U) — C by go(1) := 1 and

go(i) =0 for € a(U)\{1}.
Then the operator go(U) is the orthogonal projection onto the kernel of
the operator 1 — U by part (iii) of Theorem [5.6.11] and so go(U) = 0 be-
cause 1 — U is injective. This implies

1(A) = (Lo " )(U) = (1 —go)(U) = 1.

That the map (6.4.9)) is linear and preserves multiplication follows directly
from the definition. This proves Step 1.
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Step 2. The map (6.4.9) satisfies the (Normalization) aziom.

Let f; : ¥ — C be a sequence of bounded measurable functions such that

sup|fi(A)]| < |Al, lim f;(A\) =\ for all A € X.
; 1—00

ieN
For ¢ € N define the function h; : 0(U) — C by

hi(p) = (fio ™) (W) (1 —p)  for p € o(U),
so h; : 0(U) — C is a bounded measurable function and
(6.4.10) hi(U) = fi(A)(1-1U).
Moreover, ¢~ (u) = i(1 + p)(1 — p)~! for u € o(U) \ {1} and hence

ol = |5 (114
<t p
<2
for all € o(U) \ {1}. Since h;(1) = 0 for all 4, this implies
(6.4.11) $g§|hi(ﬂ)‘ <2, lim A(p) = i(1+p—2g0(n)) for all u € o(U),

11— p

where gy : 0(U) — C is as in the proof of Step 1. Now let
x € dom(A) =im(1—U)
and define
E:=1-U)" e
Then it follows from ((6.4.3)), (6.4.10)), (6.4.11)), and the (Convergence) axiom
in Theorem [5.6.5] that
lim fi(A)x = lim fi(A)(§ - U¢)
1—00 1— 00
= 'lim h,(U)f

1—00

=i(§ +U¢)
= Az.

This proves Step 2.
Step 3. The map (6.4.9) satisfies the (Convergence), (Positive), (Commu-

tative), and (FEigenvector) axioms.

The (Convergence) and (Positive) axioms follow directly from the definition
and the corresponding axioms in Theorem The (Commutative) axiom
follows from the (Commutative) axiom in Theorem and the fact that
an operator B € L°(H) commutes with A if and only if it commutes with U
(and hence also with U* = U~!). The (Eigenvector) axiom follows from
equation and the (Eigenvector) axiom in Theorem m
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Step 4. The map (6.4.9) satisfies the (Spectrum) aziom.

Let f € B(X) and p € C\ f(X), and define the function g : ¥ — C by

1
g(A) = PR for A € X.

Then g is bounded and measurable and satisfies g(u — f) = (u — f)g = 1.

Hence g(A)(pll — f(A)) = (pll - f(A))g(A) = T by Step 1, so ull — f(A) is
invertible and thus p € p(f(A)). This shows that o(f(A)) C f(2).

Let f € Cp(X) and define the function g : o(U) — C by

_ [ f(¢7'(2)), forzeo(U)\ {1},
9(2) = { 0, for z = 1.

Then g is continuous at every point z € o(U)\ {1} and f(A) = g(U). Hence

fA) =g(o(N) € a(9(U)) = a(f(4))  forall AeX

by part (ii) of Theorem [5.6.11, Hence f(X) C o(f(A)) because the spectrum
of f(A) is a closed subset of C. This proves Step 4.

Step 5. The map (6.4.9) satisfies the (Contraction) aziom.

This follows from Step 4 and the formula [|f(A)[ = sup,cy(reaylpl in
part (ii) of Theorem [5.3.15

Step 6. The map (6.4.9) satisfies the (Composition) axiom.

Fix a function f € Cy(2) and define Ay := f(A). Then X := (A;) = f(T)
by Step 4. Consider the map B(Xy) — L(H) : g — g(Ay) := (go f)(A).
This map is a C* algebra homomorphism by Step 1, it is continuous by
Step 5, it satisfies the (Normalization) axiom id(Ay) = Ay by definition,
and it satisfies the (Convergence) axiom by Step 3. Hence Step 6 follows
from uniqueness in Theorem [5.6.5

Step 7. The C* algebra homomorphism (6.4.9)) is uniquely determined by
the (Normalization) and (Convergence) axioms.

Let B(X) — L°(H) : f — f(A) be any C* algebra homomorphism that sat-
isfies the (Normalization) and (Convergence) axioms and define U := ¢(A).
Then U(A + il) = A — il by the (Normalization) axiom, so U is the
Cayley transform of A. Define the map B(o(U)) — LY(H) : g — g(U)
by g(U) := (go ¢)(A) for g € B(c(U)). By definition, this map is a C* al-
gebra homomorphism that satisfies the (Convergence) axiom. Moreover, it
satisfies id(U) = ¢(A) = U. Hence the map g — ¢(U) agrees with the func-
tional calculus in Theorem [5.6.5] This proves Step 7 and Theorem[6.4.1} [J



332 6. Unbounded Operators

6.4.2. Spectral Measures. Let B C 28 be the Borel o-algebra. Theo-
rem [6.4.1] allows us to assign to every unbounded self-adjoint operator on a
complex Hilbert space a projection valued measure (see Definition |5.6.1)).

DEFINITION 6.4.3 (Spectral Measure). Let H be a nonzero complex
Hilbert space and let A : dom(A) — H be an unbounded self-adjoint oper-
ator with spectrum ¥ := 0(A) C R, and let

U4 B(X) — L(H)

be the C* algebra homomorphism of Theorem For every €2 € B define
the operator P € L°(H) by

(6.4.12) Po = P a(xals).
By Theorem these operators are orthogonal projections and the map
(6.4.13) B— L(H):Qw— Py

is a projection valued measure. It is called the spectral measure of A.

Conversely, every projection valued measure on the real axis
gives rise to a family of self-adjoint operators Ay : dom(Af) — H, one
for every Borel measurable function f : R — R. If f is bounded, then
this operator is bounded, so dom(Ay) = H, and it is given by the formula
Ay = ¥(f) in Theorem m For unbounded functions f the operator Ay
will in general be unbounded.

THEOREM 6.4.4 (The Operator Ay).

Let H be a nonzero complex Hilbert space and fix any projection valued
measure B — LE(H) : Q — Pq on the real axis. Define the signed Borel
measures fly . : B — R by

(6.4.14) y.2(Q) = Re(y, Pox) forz,y € H and Q € B.
Let f : R — R be a Borel measurable function. Then the formula

dom(Ay) := {ﬂs € H’ / frdpg . < oo},
(6.4.15) R

Re(y, Asz) = / fdpy . for x € dom(Ay) and y € H,
R

defines a self-adjoint operator Ay : dom(Ay) — H. This operator satisfies
the equation

gl = [ £ de.
R
for all x € dom(Ay).
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Proof. For z,y € H the function p, , : B — R is a signed Borel measure.
Its total variation is the Borel measure |, .| : B — [0, 00), defined by

’Ny7x|(Q) = Sup {IU/y,CC(Q/) - ,Ufy,x(Q \ Q/) ‘ Q/ € B, Q/ (- Q}

for every Borel set @ C R (see [75, Thm 5.12]). By definition, the total
variation satisfies |py ()| < [py,2|(2) for all @ € B. The positive and
negative parts of fi, , are the Borel measures pim : B — [0, 00), defined by

Q)+ Q
g:;t,:r(Q) — |1y, |( )2 fhy,z(S2) for Q) € B.
They satisfy
Hyo = e = byer byl = 15 + by .

Let us now fix a Borel measurable function f:R — R. Then two vec-
tors x,y € H satisfy [5|f|d|py.| < oo if and only if [p|f|duf, < oo, and
if this holds, then the integral of f with respect to ji, ;, is defined by

[t = [ fa~ [ Faug
R R R

With this understood, we prove in eight steps that the operator Ay is well de-
fined and self-adjoint and satisfies |]Afx||2 = [g f? dpa g for all z € dom(Ay).

Step 1. The signed Borel measures fiy, in (6.4.14) satisfy the inequality

(6.4.16) 119,0() <\ 11,0 ()1 1.2
forallx,y € H and all Q € B.

Fix two elements x,y € H. If Q1,89 € B are disjoint and 2; U Qg =: ),
then

1Poy|® + [|Poya|® = (x, Pa,) + (2, Po,x)
= (z, Pqx)
=tz ().
By the Cauchy—Schwarz inequality, this implies
fhy,o () = 1y o (Q\ Q) = Re(Pory, Py x) — Re(Poyoy, Povor )
< | Parz| [ Paryll + || Porer | [| Parery]|

< VIPwal? + || Povore |/ 1 Pyl + | Ponry

= 11 () 1y, ()

for every pair of Borel sets ' C 2 C R. Fix a Borel set  C R and take the
supremum over all Borel sets ' C Q to obtain ((6.4.16)). This proves Step 1.

|2
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Step 2. Let g : R — R be a Borel measurable function. Then

(6.4.17) Awﬂwﬂﬁmd(éfwm

forall x,y € H.

For every finite collection of pairwise disjoint Borel sets 21,...,, C R and
every finite collection of positive real numbers aq, ..., a,, we have

n

n /2 /5 1/2
Zai|ﬂy,x’(9i) < (Z a?ﬂx,x(ﬂi)> (Z Ny,y(Qi)>
=1 i=1

i=1
by Step 1 and the Cauchy—Schwarz inequality. Moreover,

ZN%y(Qi) = Hy,y (U Ql) < ”?/H2
=1 =1

This proves for the Borel measurable step function g := Y1 | a;xq,-
Since every nonnegative Borel measurable function can be approximated
pointwise from below by a sequence of Borel measurable step functions (see
for example [75, Thm 1.26]), Step 2 follows from the Lebesgue Monotone
Convergence Theorem.

Step 3. The operator Ay : dom(Ay) — H in is well defined. More
precisely, fix an element v € dom(Ay). Then the function |f|: R — [0, 00)
is integrable with respect to the Borel measure |, .| for every y € H, and
there exists a unique element Ayx € H such that

Re<y,Afx> = /IRfdﬂy,x
for ally € H. Moreover, ||Af:13\|2 < Jp fPdpg s

Fix an element 2 € dom(Ay) and define ¢ := ([ f* cl,ugw)l/2 < oo. Then
Step 2 asserts that [p|f|d|iy.| < ¢ly]| < oo and so the integral [ fdpiy.z is
well defined for all y € H. Now define the map A, : H — R by

A (y) == /Rfduy@ for y € H.

This map is real linear and satisfies the inequality

1/2
rmwnsémﬂwﬂs<éﬂmmg Iyl = ¢yl

for all y € H by Step 2. Hence, by Theorem there exists a unique
element Az € H such that Re(y, Agx) = [, fdpuy, for all y € H. More-
over ||Asz|| = ||Az|| < c and this proves Step 3.
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Step 4. The set dom(Ay) C H is a complex linear subspace and the opera-
tor Ay in (6.4.15)) is complex linear and symmetric.

Let 2,2’ € dom(Ay). Then
Pata ata () = (x4 2, Pox + Pox')
|Poz || + 2Re(Poa’, Pa) + || Pax’||?
2| Poz| + 2 || P’ ||
= 202,2() + 241 00 ()

for all € B and this implies z+2’ € dom(Ay). Moreover, jixz re = \A]Q,ugw,
so Az € dom(Ay) for all A € C. Thus dom(Ay) is a complex subspace of H.
Since phy zyar = Hye + Hye and iy rg = My, for all z,2" € dom(Ay) and
all A € R, the operator Ay is real linear. To prove that it is complex linear,
let x € dom(Ay) and y € H. Then jiy 5, = — iy, and hence

IN

Re(y, Ayiz) = /Rfdﬂy,ix = — /R fdpsy. = —Re(iy, Arx) = Re(y,iAjz).

This shows that Asix = iA;x for all x € dom(Ay), so Ay is complex linear.
Moreover, Ay is symmetric because the bilinear map

dom(Ay) x dom(Ay) = M(R) : (z,y) — ey
is symmetric. This proves Step 4.

Step 5. The operator Ay : dom(Ayf) — H in (6.4.15) has a dense domain.

For n € N define Q,, := {A e R||f(A\)] <n}. Then R = J;2; Q. Hence it
follows from the (o-Additive) and (Normalization) axioms in Definition [5.6.1]
that lim,_ oo P, x = x for all x € H. Now let x € H and define z,, := Py, x.
Then pig,, 2, (Q) = p2.2(2NQy,) for all @ € B by the (Intersection) axiom in
Definition 5.6.1] Hence

| P, = [ £ s < 0al?
R Qn
and so x, € dom(Ay) for all n € N. This proves Step 5.

Step 6. Let x € dom(Ay) and Q € B. Then Pox € dom(Ay) and
ArPor = PoAyx.

The estimate [p f? dipoz,Poe = Jo f? ditae < 0o implies Pox € dom(Ay).
Moreover,

Re(y, AfPox) = / [ dpy, poz = / fdupaye = Re(Poy, Agz)
R R

for all y € H and this proves Step 6.
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Step 7. Let v € dom(Ay). Then f is integrable with respect to the Borel
measure |z A,z| and

(6.4.18) /Rf2 dﬂx,x = /Rfdum,Afm = ”AfoQ :

That f is integrable with respect to |Mz,Afx| = |/iAfx7x| was proved in Step 3.
Next we observe that

/ XQ d,UJz,Afz = ,Uz,Afz(Q) = RG<PQI‘,Afl‘> = / fd/'LPQZI),CE = / XQfd,ux,:v
R R R

for every Borel set Q C R. This shows that [, gdus A, = [g 9fdpe s for
every Borel measurable step function g : R — R. Now approximate f point-
wise by a sequence of Borel measurable step functions g, : R — R such
that |gn(A)| < |f(A)] for all n € N and all A € R (see [75, Thm 1.26]). Then
the Lebesgue Dominated Convergence Theorem asserts that

s Y . 2
/Rfd,uac,Afm —nh_{rolo/Rgn d,uz,Afm = nh—>120/Rgnf d,UJz,:r = /]Rf dﬂz,az-

This proves the first equality in (6.4.18)). The second equality follows from
Step 3 and this proves Step 7.

Step 8. The operator Ay : dom(Ayf) — H in (6.4.15) is self-adjoint.

By Step 4 it suffices to prove that dom(A}) C dom(Ay). Let z € dom(A})
and define y := Ajz. Then, for all { € dom(Ay), we have

(6.4.19) /Rfduw{ = Re(z, Af§) = Re(A}x,§) = Re(y, §)

by Step 3. For n € N let Q, :={A € R| |f()\)| <n} and z,, := Pq,x as in
the proof of Step 5. Then

/fzdugm: lim/ fzdu%x: lim /fzduxmxn
R n—oo Qn n—oo R

by the Lebesgue Monotone Convergence Theorem. Moreover, it follows from
Steps 5 and 6 that Az, = A¢Po,x, = Po, Az, € dom(Ay). Hence

/ £ g, 0, = / J dita, g = Rely, Agan) <yl / P2 ditg, o,
R R R

Here the first equality uses Step 7 and the fact that the signed Borel mea-
Sures g, Asz, and g Az, agree, the second equality follows from (6.4.19)
with £ := Az, € dom(Ay), and the inequality follows from Step 3. Thus

and so z € dom( A #). This proves Step 8 and Theorem O
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Remark 6.4.5. (i) Theorem can be used to extend the functional
calculus for self-adjoint operators to unbounded functions f : R — R, start-
ing from a projection valued measure as in Theorem This functional
calculus can then be used to prove that the operator Ay + il is invertible
and thus gives rise to an alternative proof that A is self-adjoint. This
approach is used in Kato [44, p 355]. Steps 6 and 7 in the above proof of
Theorem [6.4.4] can be understood as a special case of this functional calculus,
using one unbounded function f and the bounded functions yq for 2 € B.

(ii) There is an entirely different approach to the measurable functional cal-
culus for unbounded self-adjoint operators. One can start by assigning to
an unbounded self-adjoint operator A its spectral measure and use Theo-
rem to construct the C* algebra homomorphism V4 : B(X) — L¢(H).
For the construction of the spectral measure one can proceed as follows.
First show that every self-adjoint operator A : dom(A) — H can be writ-
ten as a difference A = AT — A~ of two positive semidefinite self-adjoint
operators AT : dom(A*) — H with dom(A*) Ndom(A~) = dom(A). Then
the operators 1 + A* are invertible by Theorem and one can use the
spectral measures of their inverses in Theorem to find the spectral
measure for A. This approach is taken in Kato [44, pp 353-361]. It does
not require the functional calculus for normal operators in Section [5.5

(iii) Suppose the projection valued measure is supported on a closed sub-
set X C R. Then the functional calculus for unbounded functions can be
used as in Step 5 of the proof of Theorem to show that o(Ayf) C f(2).

(iv) The functional calculus extends to unbounded normal operators. It can
be reduced to the self-adjoint case by writing an unbounded normal operator
as A = Ay + iAs where A; and Ay are self-adjoint (Theorem . For
bounded normal operators this approach is outlined in [72, pp 245-247].

The next theorem shows that (6.4.13), (6.4.14), (6.4.15) give rise to a
one-to-one correspondence between projection valued measures on the real
axis with values in £¢(H) and unbounded self-adjoint operators on H.

THEOREM 6.4.6 (Spectral Measures). Let H be a nonzero complex
Hilbert space and let B C 2% be the Borel o-algebra.

(1) Let A : dom(A) — H be a self-adjoint operator and let {Po}aecp be the
spectral measure of A in Definition [6.4.3. Then A = Aiq is the operator in
Theorem with f =id : R — R.

(ii) Let B — L°(H) : Q +— Pq be a projection valued measure and let Aiq be

the operator in Theorem with f =id : R — R. Then {Pq}qep is the
spectral measure of Aiq in Definition[6.4.3.

Proof. See page |338 ([
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COROLLARY 6.4.7 (Characterization of the Spectral Measure).

Let A : dom(A) — H be a self-adjoint operator on a nonzero complex Hilbert
space H. Then there exists a unique projection valued measure {Pq}aep on
the real axis such that

dom(A) = {x € H’ / M dpg (N < oo},

(6.4.20) R

Re(y, Ax) = / Adpty 2 (N) for z € dom(A) and y € H,
R

where {ty 2}z yecH 1s the collection of signed Borel measures on the real axis
defined by 1y () := Re (y, Pax) for all x,y € H and all Borel sets @ C R.
It agrees with the spectral measure of Definition [6.4.3,

Proof. Uniqueness follows from part (ii) of Theorem and existence
follows from Theorem and part (i) of Theorem [6.4.6] O

Proof of Theorem[6.4.6. We prove part (i). Let A : dom(A) — H be an
unbounded self-adjoint operator with spectrum

Y :=0(A)

and take {Pq}aep to be the projection valued measure in Definition
associated to the C* algebra homomorphism ¥4 : B(X) — L°(H) in Theo-
rem For ¢ € N define the function f; : R — R by

‘ oA it A <,
fi(A) = { 0, if [A > 4.

Then the (Normalization) axiom in Theorem asserts that

(6.4.21) lim Uu(filn)z = Ax for all z € dom(A).
1—00

Moreover, by definition of Py in (6.4.12) and of p, . in (6.4.14), we have
Ny,w(Q) = Re(y, PQx> = Re(% \I]A(XEQQ)$>
for all z,y € H and all 2 € B. Hence the (Convergence) axiom implies

/R f dpty = Rely, Ua(f]s)z)

for all z,y € H and all bounded Borel measurable functions f : R — R. In
particular,

(6.4.22) /Rfi dity = = Re(y, Ta(fils)z), /sz? dptze = [V a(fils)x|®

for all € N and all x,y € H.
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Now let = € dom(A). Then, by equations (6.4.21)) and (6.4.22)) and the

Lebesgue Monotone Convergence Theorem, we have

/ N dpea(N) = lim | fF dppg e = lim [ Wa(filn)e|® = [|Az]*.
R R 1—00

1—>00

This implies z € dom(A;q) and hence, by equations (6.4.21) and (6.4.22)
and the Lebesgue Dominated Convergence Theorem,

Re(y, Aiqz) = / Adpty o
R

1—00
— lim Re(y, a(fix)2)
= Re(y, Az)
for all y € H. Thus dom(A) C dom(Ajq) and Aig|gom(a) = A. This im-
plies Aijq = A by Exercise and proves part (i).
We prove part (ii). Thus let B — L°(H) : Q — Pq be a projection
valued measure on the real axis, let
A= Aid

be the operator in Theorem with f = id, and let ¥ : B(R) — L(H)
be the C* algebra homomorphism in Theorem associated to {Po}oes.
Then VU satisfies the (Convergence) axiom in Theorem by definition.
We prove that

(6423) PR\E = 0, Y= O’(Aid).

= 'lim fz duy@
R

Suppose, by contradiction, that Pg\y, # 0, choose a vector z € X such
that Pr\nz # 0, and consider the Borel measure j, : B — [0,00) defined
by 12(Q) := (z, Pox) for @ € B. Then p;(R\ ) > 0 and so, since every
Borel measure on R is inner regular by [75, Thm 3.18], there exists a compact
set K C R\ X such that p,(K) > 0. Hence Pk # 0 and so

Erx :=1im(Pg)

is a nonzero closed subspace of H. Since the identity function f =id : R - R
is bounded on K, it follows from the definition of the operator A = Ajq
in that Ex C dom(A) and E is invariant under A. Since Fx # {0}
and the operator Ag := A|g, : Ex — Ek is self-adjoint, its spectrum is
nonempty. Since fiy () = 1y (2N K) for x,y € Ex and 2 € B, we have

Re(y, Axx) = / Adpy o(N) = / Adjpiy (M) for all z,y € Ek.
R K

Hence o(Ag) C K by Theorem and so ) # o(Ag) Co(A)NK =10, a
contradiction. This proves ((6.4.23]).
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Since Pr\yz = 0, the C* algebra homomorphism ¥ of Theorem
descends to a unique C* algebra homomorphism

Uy, : B(S) — L°(H)

such that U(f) = ¥x(f|x) for all f € B(R). We prove that ¥y, satisfies the
(Normalization) axiom in Theorem with A = Ajq. To see this, choose
a sequence of bounded Borel measurable functions f; : R — R that satisfy

sup|fi(A)]| < Al lim f;(A\) =\ for all A € R.
ieN 1—00

Fix an element x € dom(A;jg). Then the identity function id : R — R is
square integrable with respect to the Borel measure p, ;, and is integrable
with respect to the Borel measure |y, .| for every y € H. Hence it fol-
lows from the Lebesgue Dominated Convergence Theorem and the Hahn
Decomposition Theorem that

(4, Asger) = /R Ndjiy ()
= lim fidpy o
71— 00 R
= lim (y, ¥s(fi|z)x)
71— 00

for all y € H and
| Asge]® = /R N2 dg o (V)

= lim | f7dpeqe

1—00 R
= lim [[Ux(fils)z]*.
1— 00

Hence the sequence Uy (fi|s)z converges weakly to Ajqz and its norm con-
verges to that of Ajqx. By Exercise this implies

lim [ Aiqz = x(fils)z] = 0.

Thus the reduced C* algebra homomorphism ¥y : B(X) — L(H) satisfies
the (Normalization) axiom in Theorem with A = A;jq. Hence it follows
from uniqueness in Theorem that Uy, = W 4,, is the functional calculus
associated to the self-adjoint operator A;q. Hence

Po =Y(xa) = ¥Ys(xals) = Va,(xals)

for every Borel set {2 C R. Here the first equality holds by definition of
the C* algebra homomorphism ¥ : B(R) — £°(H) in Theorem[5.6.2] Hence
the projection valued measure {Pq}aep is the spectral measure of Ajq as
introduced in Definition This proves part (ii) and Theorem [6.4.6] O
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EXAMPLE 6.4.8. Let A : dom(A) — H be a self-adjoint operator on a
nonzero complex Hilbert space H.

(i) Consider the operator family
R— L(H):t—U(t)

associated to the functions \ — e via the functional calculus of Theo-

rem In terms of the spectral measure the operators U(t) are deter-
mined by the formula
oo
(y, U(t)x) := / e d(y, Pyx) for all z,y € H and all ¢t € R.
—0o0
Here the expression [, f()) d{y, Pxx) denotes the integral of a Borel measur-
able function f : R — C with respect to the complex valued Borel measure

B— C:Qw— (y, Pox)

on the real axis. The operator family R — L°(H) : ¢t — U(t) is strongly
continuous, by the (Convergence) axiom, and satisfies

U(s+1t)=U(s)U(t), U)=1

for all s, € R. This means that U is a strongly continuous group of (unitary)
operators. Such groups play an important role in quantum mechanics. For
example, they appear as solutions of the Schrédinger equation.

(ii) Assume, in addition, that
(x,Az) <0 for all z € dom(A).
Then o(A) C (—00,0] and a similar construction leads to an operator family

[0,00) = L(H) : t — S(t)

associated to the functions A — e on the negative real axis. In terms of

the spectral measure the operators S(t) are determined by the formula

0
(y, S(t)x) := / eMd(y, Pyx) for all z,y € H and all t > 0.

—0o0
The restriction ¢ > 0 is needed to obtain bounded functions on the negative
real axis and bounded linear operators S(t). These operators form a strongly
continuous semigroup of operators on H. For example, the solutions of the
heat equation on R™ can be expressed in this form with A the Laplace
operator. The study of strongly continuous semigroups is the subject of the
next and final chapter of this book.
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6.5. Problems

EXERCISE 6.5.1 (Unbounded Operators and their Inverses).

Let X and Y be Banach spaces and let A : dom(A4) — Y be an unbounded
operator with a dense domain dom(A) C X. Assume A is injective and let

A7l idom(ATY) — X
be its inverse with the domain

dom(A™!) :=im(A) = {Az |z € dom(A)} C Y.

(a) Prove that A has a closed graph if and only if A~! has a closed graph.

(b) Assume A is surjective. Prove that A~! is bounded if and only if A has
a closed graph.

(c) Assume that A is surjective, dom(A) is a dense subspace of X, and A~!
is a compact operator. Prove that X is separable. (See Exercise )

(d) Assume Y = X and A has a closed graph. Prove that
o(ATH\{0} = (A7 X e a(A)\ {0}} .

(e) Assume X =Y and A has a closed graph. Prove that 0 ¢ o(A) Uo(A™1)
if and only if dom(A) = X and A : X — X is bijective and bounded.

(f) Find an example of an injective unbounded operator A : dom(A) — X
with a closed graph such that 0 € o(A) Na(A™).

EXERCISE 6.5.2 (Closed Graphs and Inverses). Let X be a complex
Banach space and let A :dom(A) — X be an unbounded complex linear
operator. Let A\ € C and suppose that the operator A\ — A : dom(A) — X
is bijective. Prove that the following are equivalent.

(i) The operator (A1 — A)~!: X — X is bounded.
(ii) A has a closed graph.

Hint: Show that A1 — A has a closed graph if and only if A has a closed
graph. Use Exercise and the Open Mapping Theorem [2.2.7]

EXERCISE 6.5.3 (Symmetric and Surjective Implies Self-Adjoint).
Let H be a complex Hilbert space and let A : dom(A) — H be an unbounded
symmetric complex linear operator with a dense domain. Prove that the
following are equivalent.

(i) There exists a A € C such that A\ — A : dom(A) — H is surjective.
(ii) A is self-adjoint.



6.5. Problems 343

EXERCISE 6.5.4 (Uniqueness of Self-Adjoint Operators).
Let H be a complex Hilbert space and let A, B be unbounded self-adjoint
operators on H such that
dom(A) - dom(B), B’dom(A) = A.
Then B = A.

EXERCISE 6.5.5 (Bounded Self-Adjoint Operators).

Let H be a complex Hilbert space and let A : dom(A) — H be a self-adjoint
operator on H. Prove that dom(A) = H if and only if 0(A) is a bounded
subset of R. Hint: Theorem [6.4.1| with f = id.

EXERCISE 6.5.6 (The Unbounded Open Mapping Theorem).

(a) Let X and Y be Banach spaces and let A : dom(A) — Y be a closed
unbounded operator with a dense domain dom(A) C X. Let 6 > 0 and
assume

(6.5.1) {yeY ||yl <0} c {Az |z € dom(A), |z| x < 1}.
Prove that
(6.5.2) {yeY ||yl <6} c {Az |z € dom(A), [lz]|y <1}.

Hint: The proof of Lemma carries over almost verbatim to operators
with dense domains and closed graphs.

(b) Prove that (vii) implies (i) in Theorem by carrying over the proof
of the corresponding statement in Theorem [4.1.16] to unbounded operators.
Hint: Use part (a).

EXERCISE 6.5.7 (Spectral Projection).
Let A :dom(A) — X be an operator on a complex Banach space X with a
compact resolvent (see Definition [6.1.13)).

(a) If dom(A) = X, prove that dim X < oo.

(b) Let A € 0(A) and define Py € £°(X) by (6.1.20) with X := {\}, i.e.
1
5. Pyi=— [(z1-A)"'d
(6.5.3) A= o 7(2 )" dz,
where y(t) := A+ re?™ for 0 <t <1 and r > 0 sufficiently small. Prove
that Pj is the unique projection that commutes with A and whose image is
the generalized eigenspace

(6.5.4) im(Py) = E) := [j ker(Al — A)*.
k=1
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EXERCISE 6.5.8 (Square Root). Let H be a complex Hilbert space.

(a) Call an unbounded self-adjoint operator A : dom(A) — H positive
semidefinite if it satisfies

(x,Az) >0 for all € dom(A).

Assume A : dom(A) — H is a positive semidefinite operator. Prove that
there exists a unique self-adjoint operator B : dom(B) — H such that

B% = A, (z,Bx) >0  for all x € dom(B).
The operator B is called the square root of A and is denoted by
B=:VA=:AY2
Hint: Theoremwith f) =V

(b) Let A : dom(A) — H be an unbounded self-adjoint operator. Prove
that the positive semidefinite operator

|A| := V A2
has the same domain as A and satisfies
0 < |{z, Ax)| < (x,|A|x) for all x € dom(A).

Let A% be self-adjoint extensions of the symmetric operators (|A| + A).
Show that A* are positive semidefinite and satisfy

dom(A) = dom(A™) N dom(A™)
and
A=At — A~ |A|=AT+A-
Hint: Theorem with f(A) = ||

EXERCISE 6.5.9 (Densely Defined Operators and their Adjoints).

Let X and Y be real Hilbert spaces and let A : dom(A) — Y be an un-
bounded operator with a dense domain dom(A) C X.

(a) The graph of the adjoint operator A* : dom(A*) — X is the orthog-
onal complement of the subspace {(y,z) € Y x X |z € dom(A4), y = —Az}.
Thus A* has a closed graph.

(b) The operator A is closeable if and only if dom(A*) is a dense subspace
of Y. Hint: Carry over the proof of part (iii) of Theorem to the
Hilbert space setting.

(c) If A is closed, then A** = A. Hint: Use (a).
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EXERCISE 6.5.10 (Symplectic Vector Spaces). Let (V,w) be a sym-
plectic vector space, i.e. V is a real vector space and w:V xV — R is
a nondegenerate skew-symmetric bilinear form, so for every nonzero vec-
tor v € V, there is a vector w € V such that w(v,w) # 0. The symplectic
complement of a linear subspace W C V is the linear subspace

W« :={veV|ww)=0forallwe W}.

A linear subspace W C V is called w-reflexive if W¥* = W. An w-reflexive
subspace W C V is called isotropic if W C WY, coistropic if W« C W,
and Lagrangian if W = W%“. A complex structure on V is a linear op-

erator J : V — V such that J?> = —1. A complex structure is called com-
patible with w if the formula
(6.5.5) (u,v) := w(u, Jv) for u,v € V

defines an inner product on V.

(a) Let J be an w-compatible complex structure on V and let W C V be
a linear subspace. Prove that the orthogonal and symplectic complements
of W are related by

WY = Jwt wew = Wt
Deduce that W is w-reflexive if and only if it is closed with respect to the
inner product (6.5.5)).

(b) Let W C V be an isotropic subspace and define V := W« /W. Prove
that the formula w([ul, [v]) := w(u,v) for u,v € W* defines a symplectic
form on V. This construction is called symplectic reduction.

(c) Let H be a real Hilbert space. Show that the formulas

W(Z,C) = <x777>H - <y7§>H7 J(xvy) = (—y,.T)

for z = (x,y), ¢ = (§,n) € H x H define a symplectic form w and an w-
compatible complex structure J on the Hilbert space H x H that induce
the standard inner product.

(d) Let H be a real Hilbert space, let A : dom(A) — H be a densely defined
unbounded operator on H, and let w be the symplectic form on H x H
in (c). Define graph(A) := {(Az,z) |z € dom(A)}. Show that

graph(A*) = graph(A4)“.

Deduce that A is closed if and only if its graph is an w-reflexive sub-
space of H x H, and that A is self-adjoint if and only if its graph is a
Lagrangian subspace. If A is closed and symmetric, show that the reduced
space graph(A*)/graph(A) in (b) is naturally isomorphic to the Gelfand—
Robbin quotient dom(A4*)/dom(A) in Exercise [6.3.3]
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EXERCISE 6.5.11 (The Gelfand—Robbin Quotient). The purpose of
this exercise is to introduce a natural inner product on the Gelfand—Robbin
quotient and to examine its properties. Assume throughout that H is a real
Hilbert space and that A : dom(A) — H is a densely defined symmetric
operator with a closed graph.

(a) Prove that the domain of A* is a Hilbert space with the inner product
(6.5.6) (x,y)ax == {(x,y)g + (A", A"y)m for z,y € dom(A*)

and that dom(A) is a closed subspace of dom(A*). Let V' C dom(A*) be the
orthogonal complement of dom(A). Prove that

(6.5.7) V ={zr € dom(A4A")| A"z € dom(A*), A*A*z +x =0}.

Thus V is canonically isomorphic to the Gelfand—Robbin quotient in Exer-
cise and the inner product (6.5.6|) renders V into a Hilbert space.

(b) Prove that the linear map A*|y : V — V is a complex structure on V'
and that it is compatible with the symplectic form

(6.5.8) w(z,y) = (A"z,y)g — (x,A"y)g  forz,yecV.

Prove that w(z, A*y) = (x,y)a~ for all x,y € V. Prove that every La-
grangian subspace of V is closed.

(c) Assume A has a closed image. Prove that

(6.5.9) A ={xeV]|A"z cim(A)}

is a Lagrangian subspace of V.

Hint 1: If x,y € Ag and &, n € dom(A) satisfy that A = A*x and An = A*y,

then (A*z,y) = (€, A*y) = (¢, An) = (A&, n) = (A", n) = (z, Ay).

Hint 2: Let x € V such that w(z,y) =0 for all y € Ag. Prove that
(A*z,y) =0 for all y € ker(A*)

and so A*z € im(A) by Lemma [6.3.2] To see this, let y € ker(4*) and
choose ) € dom(A) such that (y —n,&) 4+ = 0 for all £ € dom(A). Deduce
that An € dom(A*) and A*An =y — n. This implies y —n € Ay and hence

0= (A"z,y —n)a = (A"z,y).
(d) Assume A has a closed image. Prove that the orthogonal complement
of Ag with respect to the inner product (6.5.6) is the Lagrangian subspace
(6.5.10) Af = A*Ag = V Nim(A).

Hint: The first equation is a general fact about symplectic vector spaces
with compatible complex structures (see part (a) of Exercise [6.5.10)).
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(e) Assume A has a closed image and let Ag C V be as in (6.5.9). Prove
that

(6.5.11) dom(A) ® Ay = dom(A) + ker(A"), im(A) ® Ag = im(A").

Hint: To prove the inclusion ker(A*) C dom(A) & Ag use the argument in
Hint 2 for part (c). That im(A) N Ao = {0} follows from (6.5.10). To prove
the inclusion im(A*) C im(A) @ Ag use the fact that, by (6.5.10]),

dom(A*) = dom(A) ® Ap ® (V Nim(A))
= (dom(A) + ker(A*)) & (V Nim(A)).

This implies that, for every y € im(A*), there exist elements £ € dom(A)
and z € V Nim(A) such that y = A{ + A*z. Thus we have A*x € V
and A*A*z = —x € im(A), and so A*z € Ag.

(f) Assume A* is surjective and let A C V be a Lagrangian subspace of V.
Denote by

Ap :dom(Ap) =dom(A) A — H
the corresponding self-adjoint extension as in part (iii) of Exercise m
Prove that Ay is a Fredholm operator if and only if (V, Ag, A) is a Fredholm
triple with respect to the inner product (see Exercise 4.5.15)).

Hint: The domain of A, is a closed subspace of the domain of A* with
respect to the graph norm and Ay : dom(Ap) — H is a bounded linear
operator with respect to the graph norm of A* on its domain. Moreover,

(6.5.12) im(Ay) = im(A) + A*A.
Use this to prove that
(6.5.13) H =im(Ap) ® (AgNA).

Let y € im(Ax) N AgN A, € € dom(A), and x € A such that y = A{ + A*z.
Then A € VNim(A) = A*Ag, hence y € A*(Ag+A)NAgNA, and so y = 0.
Next, let y € H and use to find £ € dom(A), yo € AgNA, 1 €A
such that y; := A*z1 € Ag N A*A and y = AL+ yo + y1 = Ar(E + z1) + Yo
If (V, A, A) is a Fredholm triple, then dim coker(A4,) < oo by (6.5.13), and
hence Ap has a closed image by Lemma [4.3.2]






Chapter 7

Semigroups of
Operators

Strongly continuous semigroups play an important role in the study of many
linear partial differential equations such as the heat equation, the wave
equation, and the Schrodinger equation. The finite-dimensional model of
a strongly continuous semigroup is the exponential matrix associated to a
first order linear ordinary differential equation. The concept of the exponen-
tial operator carries over naturally to infinite-dimensional Banach spaces X
and can be used to find a solution of the Cauchy problem

T = Az, x(0) = xo

for every bounded linear operator A € £(X) and every initial value 2o € X.
The unique solution z : R — X of this equation is given by

z(t) = eag = 3 ﬁAk:U forteR
0 E o .
k=0

(See Exercise [5.2.13]) The aforementioned partial differential equations can
be expressed in the same form, however, with the caveat that the operator A
is unbounded with a dense domain and that the solutions may only exist
in forward time. In such situations it is convenient to use the solutions,
rather than the equation, as the starting point. This leads to the notion of
a strongly continuous semigroup, introduced in Section along with sev-
eral examples. That section also derives some of their basic properties and
discusses the infinitesimal generator. The main result is the Hille—Yosida—
Phillips Theorem in Section which characterizes infinitesimal generators
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of strongly continuous semigroups. The dual semigroup is the subject of Sec-
tion [7.3]and analytic semigroups are discussed in Section[7.4] A preparatory
Section is devoted to Banach space valued measurable functions, and in-
homogeneous equations are examined in Section [7.6

7.1. Strongly Continuous Semigroups

7.1.1. Definition and Examples. The existence and uniqueness theorem
for solutions of a time-independent ordinary differential equation implies
that the solutions define a flow. This means that the value of the solution
with initial condition zy at time s+t agrees with the value at time s of
the solution whose initial condition is taken to be the value of the origi-
nal solution at time ¢. For linear differential equations on Banach spaces
this translates into a semigroup condition on the family of linear opera-
tors, parametrized by a nonnegative real variable ¢, that assign to a given
initial condition the solution of the respective linear differential equation
at time t. Continuous dependence on time translates into strong continu-
ity of the semigroup of operators and continuous dependence on the initial
condition translates into boundedness of the operators.

DEFINITION 7.1.1 (Strongly Continuous Semigroup).
Let X be a real Banach space. A one-parameter semigroup (of opera-
tors on X) is a map S : [0,00) — L£(X) that satisfies
(7.1.1) S(0) =1, S(s+1t)=5(s)S(t)

for all s,t > 0. A one-parameter group (of operators on X) is a
map S : R — £(X) that satisfies for all s,t € R. A strongly con-
tinuous semigroup (of operators on X) is a map S : [0,00) — L(X)
that satisfies for all s,¢ > 0 and satisfies

(7.1.2) }g%HS(t)x—mH =0

for all z € X. A strongly continuous group (of operators on X) is a

map S : R — L£(X) that satisfies (7.1.1)) for all s, € R and satisfies ([7.1.2))
for all z € X.

EXAMPLE 7.1.2 (Groups Generated by Bounded Operators).

Let X be a real Banach space and let A: X — X be a bounded linear
operator. Then the operators

Ntk Ak
L JtA E
=0

for t € R form a strongly continuous group of operators on X. In this
example the map R — £(X) : t — S(¢) is continuous with respect to the
norm topology on £(X) (see Exercise |5.2.13)).
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EXAMPLE 7.1.3 (Semigroups and Orthonormal Bases).

Let H be a separable complex Hilbert space, let (e;);en be a complex or-
thonormal basis, and let (\;);en be a sequence of complex numbers such
that

sup Re)\; < oo.

1€EN
Define the map S : [0,00) — L(H) by
(7.1.4) S(t)x == Z eritle;, x)e;
i=1

for x € H and t > 0. Exercise: Show that this is a strongly continuous
semigroup of operators on H. Show that it extends to a strongly continuous
group S : R — L¢(H) if and only if
sup |Re);| < oo.
€N
EXAMPLE 7.1.4 (Shift Semigroups). Fix a constant 1 < p < oo and

let X = LP(]0,00)) be the Banach space of real valued LP-functions on [0, co)
with respect to the Lebesgue measure.

(i) Define the map L : [0,00) — L(X) by

(7.1.5) (L(t)f)(s) == f(s+1)

for f € LP([0,00)) and s,t > 0. Exercise: Show that this is a strongly
continuous semigroup of operators. Show that this example extends to the
space of continuous functions on [0,00) that converge to zero at infinity.
Show that strong continuity fails when LP([0, 00)) is replaced by L*°([0, c0))
or by the space of bounded continuous real valued functions on [0, 00). Show
that the formula defines a group on LP(R) for 1 < p < oo.

(ii) Define the map R : [0,00) — L(X) by
(7.1.6) CONICE S

for f € LP([0,00)) and s,t > 0. Exercise: Show that this is a strongly
continuous semigroup of isometric embeddings. Show that this example
extends to the space of continuous functions f : [0,00) — R that vanish at
the origin and converge to zero at infinity.

(iii) Define the map S : [0,00) — L(LP([0,1])) by

717 swne={ T T

for f € LP([0,1]), s € [0,1], and ¢ > 0. Exercise: Show that this is a
strongly continuous semigroup of operators such that S(t) =0 for ¢t > 1.
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ExAMPLE 7.1.5 (Flows). Let (M,d) be a compact metric space and
suppose that the map

Rx M — M: (t,p) — é(p)

is a continuous flow, i.e. it is continuous and satisfies

¢o = id, s+t = P50 Pt

for all s,t € R. Let X := C(M) be the Banach space of continuous real
valued functions on M equipped with the supremum norm. Define

(7.1.8) St)f:=fod for t € R and f € C(M).
Then S : R — L(C(M)) is a strongly continuous group of operators.

ExAMPLE 7.1.6 (Heat Equation). Fix a positive integer n and a real
number 1 < p < co. Define the heat kernel K; : R” — R by

1
(7-1-9) Kt(x) = WC_WF/M for x € R™" and t > 0.
s

Here |z| := />, 22 denotes the Euclidean norm of x = (1, ...,z,) € R™

These functions are nonnegative and Lebesgue integrable and satisfy

(7110) Kt(é) d§ = 1, Ks+t :Ks*Kt

R
for all s,t > 0, where (fxg)( fRn —£)g(&) d¢ denotes the convolutlon
of two Lebesgue mtegrable functlons f7 ]R" — R. Equation
implies that the operators S(t) : LP(R") — Lp (R™), defined by

| Kyx f, fort>0,
(7.1.11) S f = { f, fort=0,

define a semigroup of operators. Since lim¢—,o sup|y|>s K¢(z) = 0 for all 6 > 0
and fRn K; = 1forall t > 0, the functions S(t)f = Ky f converge uniformly
to f for every continuous function f : R™ — R with compact support. The
convergence is also in LP(R™). Since C.(R") is dense in LP(R™) by [75],
Thm 4.15] and ||S(t)|| < 1 for all ¢ > 0 by Young’s inequality, it follows from
Theorem that limyo ||S(t)f — fll» = 0 for all f € LP(R™). Thus the
semigroup ([7.1.11)) is strongly continuous. Moreover, for each f € LP(R"),
the function u : (0,00) x R™ — R, defined by u(t,z) := (K; % f)(z) for t > 0
and x € R”, is smooth and satisfies the heat equation
o = 0%u

ge_N 2 - _ Py —
(7.1.12) o =~ 2 o2 %gr(l) Rn]u(t,x) f(z)Pdx = 0.

Exercise: Fill in the details.
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EXAMPLE 7.1.7 (Wave Equation). Let L?(R) be the space of square
integrable real valued functions on R with respect to the Lebesgue measure,
modulo equality almost everywhere, and let W12(R) denote the space of
absolutely continuous functions f : R — R such that f and f’ are square
integrable. Then H := W5Y2(R) x L*(R) is a Hilbert space with the norm

(o'} 2
.= [ (If(w)l2+‘j‘i(:v)

+ !9(33)|2> dx

for f € WH2(R) and g € L*(R). Given a pair (f,g) € H, define the func-
tion u : R? = R by

7.1.13 t = -
(7113) u(t. ) ! .
for t,z € R. Then u(t,-) € WH2(R) and su(t,-) € L3(R) for all t € R, and
the linear operators S(¢): H — H given by S(t)(f,g) := (u(t,-), dwult,-))
for (f,g) € H and t € R define a strongly continuous group of operators

on H. If f and g are smooth, then the function ([7.1.13]) is the unique
solution of the one-dimensional wave equation

82 82 15
aTg:aT;a u(0,2) = f(z),  S(0,2) = g(x).

ot
The energy identity asserts that the function
2
dx

1 [ [|0u
E(t) := 2/_00 ( %(tjaz)

is constant for every solution of ([7.1.14). Thus the operators S(t) € L(H)
extend to isometries of the completion H of H with respect to the norm

G0l = [ (]j’;m

The completion can be identified with the quotient of the space of all
pairs (f,g), where g € L?(R) and f: R — R is absolutely continuous with
square integrable derivative, under the equivalence relation (f1, g1) ~ (f2,92)
iff g1 =g2 and f; — fo is constant (Exercise [7.7.5)). If one identifies H
with 7 := L?(R,R?) via the isomorphism H — 5 : (f,g) — (f',g), one
obtains the strongly continuous group . : R — L(J#) of isometries, given
by Z(t)(f,g) == (u(t,-),v(t,-)) for t € R and f,g € L*(R), where

fett)+fle—t) gle+t)—glz—1)

T T — T+t
UCL RS CELEY

—t

(7.1.14)

2 ou

+ |G

2

+ |g(x)\2> dz.

(7.1.15) ulto) = 2 5 ,
o(t, ) = f(x+t);f(x—t) +g(x+t);_g($_t).
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7.1.2. Basic Properties. The next two lemmas examine some of the ele-
mentary properties of strongly continuous semigroups.

LEMMA 7.1.8. Let X be a real Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup. Then the following holds.

(1) supg<i<r S(t)|| < 0o for all T > 0.
(ii) The function [0,00) — X :t — S(t)z is continuous for all v € X.

(iii) The functiont='log||S(t)| converges in RU{—oc} ast tends to infinity
and

. -1 _ -1 .
(7.1.16) tliglot log||S(t)|| = glgt log||S(t)|| =: wo.

(iv) Let wy be as in (iii) and fix a real number w > wgy. Then there exists a
constant M > 1 such that

(7.1.17) IS@H)|| < Me¥t  for all t > 0.

Proof. To prove (i) we show first that there exist constants § > 0
and M > 1 such that, for all t € R,

(7.1.18) 0<t<é = 1S@) < M.
Suppose by contradiction that there do not exist such constants. Then

sup [[S(8)[| = oo
0<t<4

for all & > 0. Hence there exists a sequence of real numbers ¢, > 0 such
that lim,,_,~ t, = 0 and the sequence ||S(,)|| is unbounded. By the Uniform
Boundedness Theorem this implies that there exists an element x € X
such that the sequence [|S(t,)z|| is unbounded. This contradicts the fact

that limy, o ||S(tn)z — z|| = 0. Thus we have proved ((7.1.18)).

Now fix a number 7" > 0 and choose N € N such that N > T. Fix an
element t € [0,7]. Then there exists a unique integer k € {0,1,...,N — 1}
such that k6 <t < (k+ 1) and hence, by ([7.1.18]),

IS@)I = 1S(8)*S(t = k&) | < SO 1St — ko)|| < M*H < MY,
This proves part (i).
Part (ii) follows from part (i) and the inequalities
1S(t + h)x = S| < SO [S(h)z — 2|
and
15(t = h)x = S()x|| < (1St = h)[| {2 — S(h)z]]
for 0 <h <t.
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We prove part (iii). Equation holds obviously with wyg = —o0
whenever S(¢) = 0 for some ¢ > 0. Hence assume S(t) # 0 for all ¢ > 0.
Then for every ¢t > 0 there is a constant ¢ > 1 such that ¢=! < [|S(s)|| < ¢
for 0 < s <t. Define the function g : [0,00) — R by

g(t) :==log || Sl for t > 0.
Then it follows from the semigroup property and part (i) that
9(0)=0,  g(s+t)<g(s)+gt), M) := sup |g(s)| < oo
0<s<t
for all s,t > 0. Fix a real number ¢y > 0 and let ¢t > 0 be any positive real
number. Then there exists an integer k£ > 0 and a real number s such that
t = ktog + s, 0<s <t

Hence
9(t) _ kg(to) +9(s) _ g(to) _ sg(to) | g(s) _ g(to)  2M(to)

t - t to tot t T 1 t
This implies

t t
limsup& < g 0).
t—o0 t to
Since this holds for all tg > 0, we have limsup,_, .t 'g(t) < inf;~ot 1g(t)
and this proves part (iii).
We prove part (iv). Fix a real number w > wp. By part (iii) there exists
a constant T' > 0 such that
log [|S(t)]]
t
Thus log ||S(t)|| < wt and so ||S(¢)]| < et for all t > T'. Define

M := sup ||S(t)|| e “".
0<t<T

<w forallt > T.

Then [|S(t)|| < Me*! for all t > 0 and this proves Lemma [7.1.8 O

LEMMA 7.1.9. Let X be a real Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup. Then the following holds.

(i) The operator S(t) is injective for some t > 0 if and only if it is injective
for allt > 0.

(ii) The operator S(t) is surjective for some t > 0 if and only if it is surjec-
tive for all t > 0.

(iii) The operator S(t) has a dense image for some t > 0 if and only if it
has a dense image for all t > 0.

(iv) Assume S(t) is injective for all t > 0. Then S(t) has a closed image
for some t > 0 if and only if it has a closed image for all t > 0.
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Proof. We prove part (i). Assume that there exists a real number ¢ty > 0
such that S(tp) is injective. Let ¢ > 0 and choose an integer k£ > 0 such
that ktg > t. If v € X satisfies S(t)x = 0 then S(tg)*z = S(kto—1)S(t)x = 0
and hence z = 0. Thus S(t) is injective for all ¢ > 0.

We prove part (ii). Assume that there exists a real number ¢y > 0
such that S(ty) is surjective. Let t > 0 and choose an integer k > 0
such that ktg >t. Then S(kty) = S(to)* is surjective and this implies
that im(S(¢)) D im(S(t)S(kto — t)) = im(S(ktg)) = X. Thus S(t) is surjec-
tive for all ¢ > 0.

We prove part (iii). Assume that there exists a real number 3 > 0
such that S(tp) has a dense image. Let ¢ > 0 and choose an integer k > 0
such that ktg > t. Then the operator S(kty) = S(to)* has a dense image.
Since im(S(t)) D im(S(¢)S(kto — t)) = im(S(kto)) this implies that S(¢) has
a dense image.

We prove part (iv). Thus assume S(t) is injective for all ¢ > 0 and
that there exists a real number ¢y > 0 such that S(to) has a closed image.
Then it follows from part (i) of Corollary that there exists a con-
stant 0 > 0 such that d ||z|| < ||S(to)z| for all x € X. By induction this
implies 6% ||z|| < ||S(kto)x|| for all z € X and all k € N. Let ¢ > 0 and
choose an integer k > 0 such that ktg > ¢t. Then

1S(kto — )| 1Sz = 1S (kto)al| > 6 |||

and so ||S(t)z|| > ||S(kto —t)|| "> 6% ||z| for all z € X. Hence S(t) has a
closed image by Theorem and this proves Lemma [7.1.9 U

ExXAMPLE 7.1.10. This example shows that the hypothesis that S(t)
is injective for all ¢ > 0 cannot be removed in part (iv) of Lemma
Consider the real Banach space

XE:{feE%mJD

f is continuous on [0, 3] and f(0) = 0}/~ .

Here the equivalence relation is defined by f ~ g if and only if f — g vanishes
almost everywhere on the interval [%, 1], and the norm is defined by

1
Hﬂxﬁ=ﬂm|ﬂ@H—tﬁf@V@
0<s<3 2

for f € X. Then the formula

<ﬂﬂﬁ@y:{g§—w,

for f € X,t>0,and 0 < s < 1 defines a strongly continuous semigroup
on X. The operator S(¢) has a nontrivial kernel for all ¢ > 0, does not have
a closed image for 0 < ¢ < 1, and vanishes for all ¢ > 1.

if s >t,
if s < t,
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7.1.3. The Infinitesimal Generator. The starting point of the present
section was to introduce strongly continuous semigroups of operators as
a generalization of the space of solutions of a linear differential equation.
Given such a space of “solutions” it is then a natural question to ask whether
there is actually a linear differential equation that a given strongly contin-
uous semigroup provides the solutions of. The quest for such an equation
leads to the following definition.

DEFINITION 7.1.11 (Infinitesimal Generator). Let X be a real Ba-
nach space and let S : [0,00) — L£(X) be a strongly continuous semigroup.
The infinitesimal generator of S is the linear operator A : dom(A) — X,
whose domain is the linear subspace dom(A) C X defined by

(7.1.19) dom(A) := {x €X ‘ the Timit Tim 2T =2 exists} :
h\O h
and which is given by
(7.1.20) Az := lim Sthle — = for z € dom(A).
AN h

EXAMPLE 7.1.12. Let H be a separable complex Hilbert space, let (¢;);cn
be a complex orthonormal basis, and let (\;);ey be a sequence of complex
numbers such that

sup Re\; < oo.
€N

Let S : [0,00) — L¢(H) be the strongly continuous semigroup in Exam-
ple[7.1.3] i.e.

S(t)x = Z eMte;, x)e;
i=1

for x € H and t > 0. Then the infinitesimal generator of S is the linear
operator

A:dom(A) - H
in Example [6.1.3] given by

(7.1.21) dom(A) = {l’ €EH Z |Ailes, z)|* < oo}
i=1
and
(7.1.22) Az = Z Ailei, z)e; for z € dom(A).
i=1

Exercise: Prove this.
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LEMMA 7.1.13. Let X be a real Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup with infinitesimal generator

A:dom(A) —» X.
Let x € X. Then the following are equivalent.
(i) x € dom(A).
(ii) The function [0,00) — X : t — S(t)z is continuously differentiable,

takes values in the domain of A, and satisfies the differential equation

(7.1.23) %S(t)x = AS(t)x = S(t)Ax for all t > 0.

Proof. That (ii) implies (i) follows directly from the definitions. To prove
the converse, fix an element x € dom(A). Then, for ¢ > 0, we have

S(t)Az = lim S(t)M _ iy SRz = S(t)z
N0 h N0 h
and, for ¢ > 0,
1 S(h)l'—x_ . S(t_h)JU—S(t)x
S(t)Aw = fim Stt - W==p— = Jim =—"7

This shows that the function [0, 00) — X : t — S(¢)x is continuously differ-
entiable and that its derivative at ¢ > 0 is S(t) Az. Moreover,

iy SISO =0 _ g S5 _ g,
Thus S(t)x € dom(A) and
AS(t)x = S(t)Ax
This proves Lemma 0

LEMMA 7.1.14 (Variation of Constants). Let X be a real Banach
space and let S : [0,00) — L(X) be a strongly continuous semigroup with
infinitesimal generator A : dom(A) — X. Let f :]0,00) — X be a continu-
ously differentiable function and define the function x : [0,00) — X by

(7.1.24) x(t) = /t S(t—s)f(s)ds fort>0.
0
Then x is continuously differentiable, x(t) € dom(A) for allt > 0, and
t
(7.1.25) &(t) = Az(t) + f(t) = S(t) f(0) +/ S(t—s)f(s)ds
0

for all t > 0.
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Proof. Fix a constant ¢ > 0 and let h > 0. Then

S(h)m(t)—z(t B —Il/ S()f(t—s)d

h
/Ss+h flit—29) ds—/S flt—s)d

t+h
:h/]j S(s )f(t+h—s)ds—h/ S(s)f(t = s)ds

:1 t+hS( Vf({t+h—s) 3—/ S(s)f(t+h—s)ds

t

flt+h—s)— f(t—s)
/S Y ds.

Take the limit A — 0 to obtain z(¢) € dom(A) and

(7.1.26) Ax(t) = S(t)£(0) — f(t) + /0 t S(t—s)f(s)ds.

This proves the second equation in ([7.1.25)) and shows that Az is continuous.
Next observe that
t+h)—a(t) 1 [ I
alt+h) —a®) _ / S(t+h— s)f(s) ds — / S(t— ) f(s) ds
h h Jo h Jo
S(h)z(t) — (t th
_ 5 )"“’(h) x()+h/ S(t+h—s)f(s) ds
t

for all A > 0. Take the limit h — 0 to obtain that x is right differentiable
and dﬁx( ) = Az(t) + f(t). Third, observe that

x(t)—xt— /St—s ds_l/t_hg(t_h—s)f(s)ds

:/S(t—s ds—/St—s s—h)ds
h Jo

h _ps—
:i/o S(t—s)f(s)ds—k/hS(t—s) i( ") 4s

for 0 < h < t. Take the limit h — 0 to obtain that x is left differentiable
and dti_a:( ) = )+ fo (t —s)f(s)ds = Ax(t) + f(t). Here the last
equation follows from m This proves Lemma |7.1.14 (|

EXAMPLE 7.1.15. Let € X and take f(¢) =« in Lemma|7.1.14] Then

/tS(S)xdsedom(A), A/tS(S)l’dS:S(t):E—I'
0 0

for all ¢ > 0.
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LEMMA 7.1.16. Let X be a real Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup with infinitesimal generator

A:dom(A) —» X.

For n € N define the linear subspaces dom(A™) C X recursively by
dom(A') := dom(A), dom(A"™) := {z € dom(A) | Az € dom(A" 1)}
for n > 2. Then the linear subspace dom(A*>) := (), ey dom(A™) is dense

in X and A has a closed graph.

Proof. The proof has three steps.

Step 1. Let x € X and let ¢ : R — X be a smooth function with compact
support contained in the interval [5,6~] for some constant 0 < § < 1. Then,
for every n € N, we have [~ ¢(t)S(t)zdt € dom(A™) and

A / S(1)S (B dt = (—1)" / 6™ (0)S () dt.
0 0
For n = 1 this follows from Lemma|7.1.14|with ¢t > §~! and f(s) := ¢(t—s)z
for s > 0. For n > 2 the assertion follows by induction.
Step 2. dom(A™>) is dense in X.

Let z € X and choose a smooth function ¢ : R — [0,00), with compact
support in the interval [1/2, 1], such that fol ¢(t) dt = 1. Define

Ty = n/ d(nt)S(t)z dt for n € N.
0

Then z,, € dom(A*) by Step 1 and

1/n
n ; p(nt)(S(t)r —x)dt|| < sup [|S(t)z — x| .

0<t<1/n

[ — ]| =

Hence lim;,_, oo ||z, — z|| = 0 and this proves Step 2.

Step 3. A has a closed graph.

Choose a sequence z,, € dom(A) and x,y € X such that
lim ||z, —z| =0, lim || Az, — y|| = 0.
n—00 n—00

Then, by Lemma

S(t)r —z = lim (S(t)z, — 2,) = lim S(s)Axy, ds = /0 S(s)yds

n—oo n—oo 0

for all t > 0. Hence y = limp\ ot~ *(S(t)z — z) and this implies z € dom(A)
and Ar = y. This proves Step 3 and Lemma O
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Recall from Exercise [2.2.12] that the domain of a closed densely defined
operator A : dom(A) — X is a Banach space with the graph norm

l2ll4 = llzllx + [[Az]x ~ for = € dom(A).

Moreover, the operator A can be viewed as a bounded operator from dom(A)
to X rather than as an unbounded densely defined operator from X to itself.

LEMMA 7.1.17. Let X be a real Banach space and let S : [0,00) —
L(X) be a strongly continuous semigroup. Let A : dom(A) — X be a linear
operator with a dense domain dom(A) C X and a closed graph. Then the
following are equivalent.

(1) The operator A is the infinitesimal generator of the semigroup S.

(ii) If:c € dom(A) and t > 0, then S(t)x € dom(A), AS(t)x = S(t)Ax,
and S(t)r —x = fO s)Ax ds.

(iii) If xo € dom(A), then the function [0,00) = X 1t — x(t) := S(t)xo is
continuously differentiable, takes values in dom(A), and satisfies the differ-
ential equation ©(t) = Ax(t) for allt > 0.

Proof. That (i) implies (ii) follows directly from Lemma - That (
implies (iii) follows directly from part (vii) of Lemma |5 We prove in
three steps that (iii) implies (i). Assume A satisfies (111)

Step 1. Let x € dom(A) and t > 0. Then
t t
(7.1.27) / S(s)xds € dom(A), A/ S(s)xds = S(t)x — x.
0 0

By part (iii) the function & : [0,¢] — X defined by &(s) := S(s)x for 0 < s <t
takes values in dom(A) and the function A = ¢ : [0,¢] — X is continuous.
Hence the function & : [0,¢] — dom(A) is continuous with respect to the
graph norm. Thus it follows from part (iii) of Lemma that

/t &(s)ds € dom(A)
and . to
A [ eds= [ ag(s)ds =€) - £(0) = S(t)e — .
This proves St?ep 1. ’
Step 2. Ifz € X andt > 0, then holds.

Let x € X and t > 0 Choose a sequence x; € dom(A) that converges
to . Then &; = fo s)z;ds € dom(A) and A& = S(t)x; — z; by Step 1.
Since A has a closed graph, & converges to fo s)xds, and A&; converges
to S(t)x — x, it follows that x and t satisfy m This proves Step 2.
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Step 3. Let x,y € X. Then

(7128)  lim ST

lim N =y — x € dom(A), Az =y.

If 2 € dom(A) and y = Az, then lim,_,o h=1(S(h)x — x) = y by part (iii).
Conversely, suppose that limj ,oh~!(S(h)z — ) =y. For each h >0 de-
fine xp, := h™! foh S(s)xds. Then limy_,o xp, = = and by Step 2 x5, € dom(A)
and Az, = h=1(S(h)z — x). Hence limj, .o Az, = y. Since A has a closed
graph this implies € dom(A) and Az = y. This proves Lemma O

LEMMA 7.1.18. Let X be a real Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup with infinitesimal generator A. Then the
following are equivalent.

(i) dom(A) = X.
(i) A is bounded.

(iii) The semigroup S is continuous in the norm topology on L(X).

Proof. The Closed Graph Theorem asserts that (i) and (ii) are
equivalent. That (ii) implies (iii) follows from Exercise and Corol-
lary below. We prove that (iii) implies (i), following [26] p 615]. As-
sume that S : [0,00) — £(X) is continuous with respect to the norm topol-
ogy on L(X). Then lim; (| S(¢t) — 1]| = 0. Hence there exists a § > 0 such
that supg<;<s [|S(t) — || < 1. For 0 <t < § define

X 1yn—1
B(t):=>_ (‘2(5(1&) - 1"

n=1

Then the following holds.

(I) The function B : [0,0] — £(X) is norm-continuous.

(IT) B® = S(t) for 0 <t < 4.

(IIT) If k e Nand 0 <t < ¢§/k, then B(kt) = kB(t).

Part (II) uses the fact that the power series f(2) := > >  (=1)""}(z—1)"/n

n=1
satisfies exp(f(z)) = z for all z € C with |z — 1| < 1. Part (III) follows from
the fact that f(z*) = kf(z) whenever |2/ — 1| <1 for j =1,2,...,k.
By (IIT), B(0) = ¢B(d/¢) and so B(kd/l) = kB(6/¢) = (k/€)B(9) for all
integers 0 < k < ¢. Since B is continuous by (I), this implies

B(t)=t5'B(5) for0<t <.
(Approximate t5~! by a sequence of rational numbers in [0, 1].) Now define

the operator A := §~'B() € L(X). Then by (II) we have S(t) = eB®) = ¢4
for 0 <t <4. So S(t) = e!4 for all t > 0 and this proves Lemma[7.1.18, O
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7.2. The Hille-Yosida—Phillips Theorem

7.2.1. Well-Posed Cauchy Problems. Let us now change the point of
view and suppose that A : dom(A) — X is a linear operator on a Banach
space X whose domain is a linear subspace dom(A4) C X. Consider the
Cauchy problem

(7.2.1) T = Az, z(0) = xo.

DEFINITION 7.2.1. (i) Let I C [0,00) be a closed interval with 0 € I. A
continuously differentiable function x : I — X is called a solution of ([7.2.1])
if it takes values in dom(A) and z(0) = z¢ and #(t) = Az(t) for all t € I.

(ii) The Cauchy problem ([7.2.1)) is called well-posed if it satisfies the fol-

lowing axioms.

(Existence) For each zy € dom(A) there is a solution of ((7.2.1)) on [0, c0).

(Uniqueness) Let zp € dom(A) and 7" > 0. If z,y : [0,7] — X are solu-
tions of ([7.2.1]), then z(t) = y(¢) for all t € [0, T].

(Continuous Dependence) Define the map ¢ : [0,00) x dom(A) — X
by ¢(t,xg) := z(t) for t > 0 and zy € dom(A), where x : [0,00) — X is the
unique solution of . Then, for every T' > 0, there is a constant M > 1
such that ||¢(t, zo)|| < M|zl for all ¢t € [0,T] and all zy € dom(A).

The next theorem characterizes well-posed Cauchy problems and was
proved by Ralph S. Phillips [68] in 1954.

THEOREM 7.2.2 (Phillips). Let A : dom(A) — X be a linear operator
with a dense domain dom(A) C X and a closed graph. The following are
equivalent.

(1) A is the infinitesimal generator of a strongly continuous semigroup.

(ii) The Cauchy problem (7.2.1) is well-posed.

Proof. We prove that (i) implies (ii). Thus assume that A is the infini-
tesimal generator of a strongly continuous semigroup S : [0,00) — £(X) and
fix an element zg € dom(A). Then the function [0,00) — X : ¢ — S(t)xo
is a solution of equation by Lemma @L To prove uniqueness,
assume that z : [0,00) — X is any solution of (7.2.1). Fix a constant ¢ > 0.
We will prove that the function [0,¢] — X : s — S(t — s)x(s) is constant.
To see this, note that x(s) € dom(A) and so

lim S(t—s—h)x(s) — S(t—s)x(s)

h—0 —h
h<t—s

= S(t — s)Ax(s) for 0 < s <t.
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This implies

lim S(t—s—h)x(s+h)—S(t—s)x(s)
h—0 h

— lim S(t — s — h) <‘””(S + h;l —2(s) _ Ax(s))

h—0
_ S(t—s—h)x(s)— S(t—s)x(s)
+ }Ll_% < N +S(t— S)Ax(s)>
+ }LLHB(S“ — s —h)Az(s) — S(t — 5)Az(s))
=0.

Hence the function [0,¢] — X : s — S(t —s)x(s) is everywhere differentiable
and its derivative vanishes. Thus it is constant and hence z(t) = S(t)xo.
Since t > 0 was chosen arbitrarily this proves uniqueness. Continuous de-
pendence follows from the estimate ||S(¢)|| < Me*! in Lemma [7.1.8] This
shows that (i) implies (ii).

We prove that (i) implies (i). Assume the Cauchy problem is
well-posed and let

¢ :]0,00) x dom(A) — dom(A)

be the map that assigns to each element xy € dom(A) the unique solution
[0,00) = X : t+— ¢(t, z0) of (7.2.1). We claim that, for each ¢ > 0, there is
a unique bounded linear operator S(¢) : X — X such that

(7.2.2) S(t)xo = ¢(t, z0) for all g € dom(A).

To see this, note first that the space of solutions z : [0,00) — X of
is a linear subspace of the space of all functions from [0,00) to X. Hence
it follows from uniqueness that the map dom(A4) — X : zg — ¢(t, x0) is lin-
ear. Second, it follows from continuous dependence that the linear opera-
tor dom(A) — X : xg — ¢(t, zo) is bounded. Since dom(A) is a dense linear
subspace of X it follows that this operator extends uniquely to a bounded
linear operator S(t) € £(X). More precisely, fix an element € X. Then
there exists a sequence x,, € dom(A) that converges to x. Hence (xy,)nen is
a Cauchy sequence in X and so is the sequence (¢(t, z,))nen by continuous
dependence. Hence it converges and the limit

S(t)x == nh_)nolo o(t, zp)

is independent of the choice of the sequence x,, € dom(A) used to define
it. This proves the existence of a bounded linear operator S(t) that satis-

fies (72:2).
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We prove that these operators form a one-parameter semigroup. Fix a
real number ¢t > 0 and an element xy € dom(A). Then
S(t)xo = ¢(t, zo) € dom(A)
and the function [0,00) = X : s+ S(s+t)xg = ¢(s+t,x
the Cauchy problem ([7.2.1)) with zy replaced by S(t )a:o =
S(s +1t,x0) = ¢(s, S(t)wo) = 5(s)S(t)zo

Since this holds for all g € dom(A), the set dom(A) is dense in X, and
the operators S(s + t) and S(s)S(t) are both continuous maps, it follows
that S(s+t) = S(s)S(t) for all s > 0. This shows that S : [0,00) — L(X)

is a one-parameter semigroup.

0) is a solution of
o(t, o). Hence

We prove that S is strongly continuous. To see this, fix an element z € X
and a constant ¢ > 0. By continuous dependence there exists an M > 1
such that supy<;<;|l@(t,z0)|| < M ||zo|| for all zp € dom(A). This shows
that SuPogtngg(Z)H < M. Choose an element y € dom(A) such that

€
—yll < —.
le=vl< 5ar1
Next choose a constant 0 < § < 1 such that, for all t € R,

&
0<t<s = ety -yl <=

Fix a real number 0 < ¢ < §. Then

ISz =zl < Sz =Syl + 15Oy =yl + lly — =]

9 9
< (M) fle—yll+ oty) —yll < 5+ 5 =

This shows that S is strongly continuous.

We prove that A is the infinitesimal generator of S. Let xg € dom(A)
and define the function z : [0,00) — X by z(t) := S(t)zo = ¢(t,z0). It is
continuously differentiable, takes values in dom(A), and satisfies the equa-
tion @(t) = Axz(t) for all ¢ > 0. Thus A and S satisfy condition (iii) in
Lemma so A is the infinitesimal generator of S. This proves Theo-
rem O

COROLLARY 7.2.3 (Uniqueness). A linear operator on a Banach space
is the infinitesimal generator of at most one strongly continuous semigroup.

Proof. Let A be the infinitesimal generator of two strongly continuous
semigroups S, T : [0,00) — L(X). Let 9 € dom(A). Then the func-
tions z(t) := S(t)xo and y(t) := T'(t)xo both satisfy and hence agree
by Theorem Since dom(A) is dense in X by Lemma it follows
that S(t)x = T(t)x for all x € X and all t > 0. O
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THEOREM 7.2.4 (Strongly Continuous Groups). Let X be a real
Banach space, let S : [0,00) — L(X) be a strongly continuous semigroup,
and let A : dom(A) — X be the infinitesimal generator of S. Then the
following are equivalent.

(1) The semigroup S extends to a strongly continuous group S : R — L(X).
(ii) —A is the infinitesimal generator of a strongly continuous semigroup.
(iii) The operator S(t) is bijective for all t > 0.
Proof. We prove that (i) implies (ii). Thus assume that S extends to a
strongly continuous group S : R — £(X). Then
S(t)S(—t) =S(-t)S(t) =1

for all ¢ > 0 by definition of a one-parameter group of operators. This
implies that S(t) is bijective and

S(t)™t = S(—t)
for all t > 0. Define the map T : [0, 00) — L(X) by
T(t):=S(—t)=St)"'  fort>0.

Then T is a strongly continuous semigroup by definition. Denote its infini-
tesimal generator by B : dom(B) — X. We must prove that B = —A. To
see this, choose a constant M > 1 such that

IS@))| <M and |T#)| <M  for0<t<1
Now let z € dom(A). Then

HT(hLLHCjLA:cH < HT(h) (x_iWCJrAx)‘JFHAa:—T(h)Ag;H
= M :[:_,Sl(h)gﬂAsc + || Az — T(h) Az

for 0 < h < 1. Since the right hand side converges to zero it follows that
x € dom(B), Bx = —Ax.
Thus we have proved that
dom(A) C dom(B), Blaom(a)y = —A.
Interchange the roles of S and T to obtain
dom(B) = dom(A), B=-A.
This shows that (i) implies (ii).



7.2. The Hille—Yosida—Phillips Theorem 367

We prove that (ii) implies (iii). Let T : [0,00) — L£(X) be the strongly
continuous semigroup generated by —A. We prove that S(¢) is bijective
and T'(t) = S(t)~! for all t > 0. To see this, fix an element z € dom(A) and
a real number ¢ > 0. Define the functions y, z : [0,¢] — X by

y(s) == S(t — s)z, z2(8):=T(t — s)x for 0 <s <t

Then y and z are continuously differentiable, take values in the domain of A,
and satisfy the Cauchy problems

y(s) = —Ay(s) for 0 < s <t, y(0) = S(t)x,

and
Z(s) = Az(s) for 0 < s <t, 2(0) =T(t)x.

By Theorem this implies
y(s) =T(s)S(t)x, z(s) = S(s)T'(t)x for 0 < s <t.

Take s = ¢ to obtain T'(¢)S(t)r = y(t) = = and ST (t)z = 2(t) = =.
Thus we have proved that S(¢)T(t)x = T'(t)S(t)r = x for all ¢ >0 and
all z € dom(A). Since the domain of A is dense in X this implies

SH)T(t)=Tt)S(t)=1  forallt>0.
Hence S(t) is bijective for all ¢ > 0. This shows that (ii) implies (iii).
We prove that (iii) implies (i). Thus assume that S(t) is bijective for

all t > 0. Then S(t)~!: X — X is a bounded linear operator for every ¢t > 0
by the Open Mapping Theorem Define

S(—t):=S(t)* for t > 0.

We prove that the extended function S : R — L(X) is a one-parameter
group. The formula S(t+s) = S(¢)S(s) holds by definition whenever s,¢ > 0
or s,t < 0. Moreover, if 0 < s < t, then S(¢t — 5)S(s) = S(t) and hence

S(t—s)=S(t)S(s)! = S(t)S(—s).
This implies that, for 0 < ¢ < s, we have S(s —t) = S(s)S(—t) and hence
S(t—s)=8(s—t)"' =8(—t)"1S(s)"' = S(t)S(—s).

This shows that S is a one-parameter group. Strong continuity at t = 0
follows from the equation

S(—h)x —x = S(h) " (z — S(h)z)
for h > 0. Strong continuity at —t < 0 follows from the equation
S(—t+h)z — S(—t)z = St) " (S(h)x — )
for h € R. This proves Theorem O
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7.2.2. The Hille—-Yosida—Phillips Theorem. The following theorem is
the main result of this chapter. For the special case M = 1 it was discovered
by Hille [35] and Yosida [87] independently in 1948. It was extended to the
case M > 1 by Phillips [67] in 1952.

THEOREM 7.2.5 (Hille-Yosida—Phillips). Let X be a real Banach
space and let A :dom(A) — X be a linear operator with a dense domain
dom(A) C X. Fiz real numbers w and M > 1. Then the following are
equivalent.

(1) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L(X) that satisfies

(7.2.3) IS < Me*t  for all t > 0.

(ii) For every real number A\ > w the operator \1 — A : dom(A) — X is
invertible and
M

(724) (M= A)7F)| < o)

for all A > w and all k € N.

Proof. See page 371 (|

The necessity of the condition is a straightforward consequence
of Lemma below which expresses the resolvent operator (Al — A)~! in
terms of the semigroup. At this point it is convenient to allow for A to be a
complex number and therefore to extend the discussion to complex Banach
spaces. When X is a real Banach space we will tacitly assume that X has
been complexified so as to make sense of the operator A\l —A : dom(A) — X
for complex numbers A (see Exercise [5.1.5)).

LEMMA 7.2.6 (Resolvent Identity for Semigroups). Let X be a com-
plex Banach space and let
A:dom(A) —» X
be the infinitesimal generator of a strongly continuous semigroup
S :[0,00) = LYX).
Let A € C such that
log|S(1) |

= lim
t—o00

(7.2.5) Rel > wp :

Then X € p(A) and

(7.2.6) A — A) = ! / tF e NS (1) dt

=1 o
for all z € X and all k € N.
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Proof. We first prove the assertion for £k = 1. Fix a complex number A
such that ReA > wy and choose a real number w such that wg < w < ReA.
By Lemma there exists a constant M > 1 such that ||S(¢)|| < Me** for
all t > 0. Hence |le *S(t)z|| < Me@=ReM|z|| for all 2 € X and all t > 0.
This implies that the formula

o) T
Ryz := / e MS(t)xdt = lim e MS(t)xdt forx € X
0

T—oo 0

defines a bounded linear operator Ry € L°(X). We prove the following.
Claim 1. If x € X and T > 0, then &7 := fOT e MS(t)x dt € dom(A) and

T
Atr = e M S(T)x — x + /\/ e MS(t)x dt =
0

Claim 2. If x € dom(A) and T > 0, then fOT e MS(t)Axds = nr.

Claim 1 follows from Lemma [7.1.14] with t = T and f(t) := e Mg,
Claim 2 follows from integration by parts with 4 S(t)x = S(t)Az. Now

Aér = np, lim &r = Ryx, lim ny = ARz —
T—o00 T—00
by Claim 1. Since A has a closed graph this implies
Ryz € dom(A), ARyx = ARyx — x for all z € X.

If z € dom(A), it follows from Claim 2 that

T
Ry Az = hm e MS(t) Az dt = ARyx — .

= Jo

Thus (Al—A)Ryx = z forallz € X and R)y(Al—A)x = z for all z € dom(A).
Hence A— A is bijective and (A\1— A)~! = R,. This proves (7.2.6)) for k = 1.
To prove the equation for £ > 2 observe that the function

p(A) = X : A» (A — A7t

is holomorphic by Lemma [6.1.10] and satisfies

k=1 k-1
Al—A) Pz = ((kl_)w;;k C(AL—A)7!
1)k—1 gk-1 o .
= ((k—)l)'dAk 1/ e MS(t)a dt
1

- = / 1o Mg (1) dt
i/,

for all z € X and all A € C with Re\ > wg. This proves Lemma O
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It follows from Lemma [7.2.6] that

1 t

(7.2.7) sup ReA <wp = lim logllSM)1
Aeo(A) =00

for every strongly continuous semigroup S with infinitesimal generator A.
The following example by Einar Hille shows that the inequality in ([7.2.7))
can be strict.

ExXaMPLE 7.2.7. Fix a real number w > 0 and consider the Banach space

X::{f:[O,oo)—>(C

f is continuous and bounded
and [ e**|f(s)]ds < 00 ’

equipped with the norm
= sl + [ eIl ds o fex.

The formula
(S@E)f)(s) == f(s+1) for f e X and 5,1 >0

defines a strongly continuous semigroup on X and its infinitesimal generator
is the operator A : dom(A) — X given by

dom(A) = {u :[0,00) = C

u is continuously differentiable
and u,u € X ’

Au = 1.
The operator S(t) satisfies ||S(¢)|| = 1 for all ¢ > 0 and so

1 t
w0 = Jim og| SO _

—00 t

0.

Now let A € C with Re\ > —w and let f € X. Then, for u € dom(A),
Au— Au = f — U= Au— f.

This equation has a unique solution v € dom(A) given by
u(s) = / AT f(t) di for s > 0.

Thus the operator A1 — A is bijective for all A € C with ReA > —w. It has
a one-dimensional kernel for all A € C with Re\ < —w. Thus

log||S(t
sup Red = —w < 0= lim M
AEa(A) =00 t
Exercise: For ¢t > 0 the spectrum of S(t) is the closed unit disc and the
point spectrum of S(t) is the open disc of radius e™** centered at the origin.
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Proof of Theorem[7.2.5, We prove that (i) implies (ii). Thus assume
that A : dom(A) — X is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L£(X) that satisfies (7.2.3). Fix a real number

A>w
and a positive integer k. Then
1 [o.¢]
A — A) ke = =] /0 th=Le= NS () dt
for all z € X by Lemma [7.2.6] and hence
_ 1 ko1 -
I01=4) el < gy [T Ee (0] a
< M ||z Ootkqef(kw)t dt
- (k=1 o
_ Ml
(A —w)*

Hence the operator A satisfies (ii).

We prove that (ii) implies (i). Thus assume that A : dom(A4) - X is a
linear operator with a dense domain such that

A — A:dom(A) — X

is bijective and satisfies the estimate ((7.2.4)) for A > w. We prove in five steps
that A is the infinitesimal generator of a strongly continuous semigroup that
satisfies the estimate ([7.2.3]).

Step 1. z = limy_,oo A(AM — A) "Lz for all z € X.
If x € dom(A), then
MM = A) e —z =AM - A)le = (M- A) Az

for all A > w and so it follows from ([7.2.4]) that
M

— W

H/\()\]l—A)flx—xH < y ||Az]| .

Thus
z= lim \A1—A)"'z

A—00

for all x € dom(A). Moreover

H)\()\]l - A)_lH < ﬂ < 2M for all A > 2w.
A—w

Hence Step 1 follows from Theorem [2.1.5
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Step 2. For A > w and t > 0 define
4k Ak

Ay =AML — A)7L Sy(t) := e = o

k=0
Then

Awt

[SA (D) < Mer—w
for all A > w and all t > 0.

The operator Ay can be written as
A= NI =A)7 = AL

Hence
ISx(@)|| = e Het,\mn_A)ﬂ

)\tz tk)\% H M - A) H

> tk)\Qk‘

<yt
Awt

= Me /\teA w = Mer-o

IN

for all A > w and all ¢t > 0. This proves Step 2.
Step 3. Fiz real numbers A > pu > w. Then

ISa(B)z — Su(t)all < M?er=t | Are — Azl
forall z € X and all t > 0.

Since A A, = A, A\, we have A)\S,,(t) = S,(t)A\ and so

Sa(t)x — Su(t)x = /0 %Sﬁ(t—s)s,\(s)xds

t
= / Su(t —5)9\(s)(Are — Ayx) ds
0
for all x € X and all ¢ > 0. Hence

ISx(t)a — Su(t)e] < /0 1St = )Il[Sx(s)]| ds [ Az — Ay

_pws A

2 pwt t ws
< Mfew=w ; e nwer—w ds||Aye — Az

< M2erSSt| A — A
< er || AT uiUH-

Here the last step uses the inequality 2 o < s u - This proves Step 3.



7.2. The Hille—Yosida—Phillips Theorem 373

Step 4. The limit
(7.2.8) S(t)x := lim Sy(t)x

A—00

exists for all x € X and allt > 0. The resulting map S : [0,00) = L(X) is
a strongly continuous semigroup that satisfies ((7.2.3)).

Assume first that € dom(A). Then limy_,o, Axz = Az by Step 1. Hence
the limit exists for all ¢ > 0 by Step 3 and the convergence is uniform
on every compact interval [0,7]. Since the operator family {Sx(¢)}r>2, is
bounded by Step 2 it follows from Theoremthat the limit exists
for all z € X and that S(¢) € £(X) for all ¢ > 0. Apply Theorem [2.1.5]
to the operator family X — C([0,7],X) : © — Sy(-)z to deduce that
the map [0,7] — X : ¢t — S(t)z is continuous for all x € X and all T > 0.
Moreover,

S(s)S(t)x = /\h_}n;o Sa(s)Sa(t)x = )\li_)rrolo Sx(s+t)x=S(s+1t)x

for all s,¢ > 0 and all z € X and S(0)z = limy_o, S\(t)z = x for all z € X.
Thus S is a strongly continuous semigroup. By Step 2 it satisfies the estimate

IS(t)z] = lim [[Sy(D)z]] < lim Mex=S [z = M |
A—00 A—00
and this proves Step 4.
Step 5. The operator A is the infinitesimal generator of S.
Let B be the infinitesimal generator of S and let € dom(A). Then
[Sx(#)Axz — S(t)Az|| < ||Sx(D)]| [[Arz — Az[| + [[Sx(t) Az — S(t) Az|]

for all t > 0. Hence it follows from Step 1 and Step 2 that the func-
tions Sx(-)Axz : [0, h] = X converge uniformly to S(-)Az as A tends to in-
finity. This implies

h h
/ S(t)Az dt = lim Sx(t)Ayx dt = lim Sy(h)z —z = S(h)x — =z
for all h > 0 and so
. Sh)r—2 1 h B
%E)I%)T = }LIE%)E ; S(t)Azx dt = Ax.

This shows that dom(A) C dom(B) and B|gom(4) = A. Now let y € dom(B)
and A > w. Define z := (A1 — A)~!(\y — By). Then € dom(A) C dom(B)
and Az — Bx = A\x — Az = A\y — By. Since A1 — B : dom(B) — X is injec-
tive by Lemmal(7.2.6, this implies y = 2 € dom(A). Thus dom(B) C dom(A)
and so dom(B) = dom(A). This proves Step 5 and Theorem O
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COROLLARY 7.2.8. Let X be a complex Banach space and let
A:dom(A) —» X

be a complex linear operator with a dense domain dom(A) C X. Fix two
real numbers M > 1 and w. Then the following are equivalent.

(1) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — LX) that satisfies the estimate ((7.2.3]).

(ii) For every real number X > w the operator \1 — A : dom(A) — X is
bijective and satisfies the estimate ((7.2.4)).

(iii) For every A € C with ReX > w the operator \1 — A : dom(A) — X is
bijective and satisfies the estimate

M

(7.2.9) IO =7 < oo

for all k € N.

Proof. That (i) implies (iii) follows from Lemma by the same ar-
gument that was used in the proof of Theorem That (iii) implies (ii)
is obvious and that (ii) implies (i) follows from Theorem and the fact
that the operators Sy(¢) in the proof of Theorem are complex linear
whenever A is complex linear. This proves Corollary O

7.2.3. Contraction Semigroups. The archetypal example of a contrac-
tion semigroup is the heat flow in Example [7.1.6] Here is the general defi-
nition.

DEFINITION 7.2.9 (Contraction Semigroup). Let X be a real Banach
space. A contraction semigroup on X is a strongly continuous semi-
group S : [0,00) — L£(X) that satisfies the inequality

(7.2.10) IS <1
for all t > 0.

DEFINITION 7.2.10 (Dissipative Operator). Let X be a complex Ba-
nach space. A complex linear operator A : dom(A) — X with a dense
domain dom(A) C X is called dissipative if, for every € dom(A), there
exists an element z* € X* such that

(7.2.11) lz** = l|l=|* = (z",2),  Re(a”, Az) <0.

When X = H is a complex Hilbert space, a linear operator A : dom(A) — H
with a dense domain dom(A) C H is dissipative if and only if

(7.2.12) Re(z, Az) <0
for all z € dom(A).
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The next theorem characterizes the infinitesimal generators of contrac-
tion semigroups. It was proved by Lumer—Phillips [58] in 1961. They also
introduced the notion of a dissipative operator.

THEOREM 7.2.11 (Lumer—Phillips). Let X be a complex Banach space
and let A:dom(A) — X be a complex linear operator with a dense do-
main dom(A) C X. Then the following are equivalent.

(1) The operator A is the infinitesimal generator of a contraction semigroup.

(ii) For every real number X > 0 the operator A\ — A : dom(A) — X is
bijective and satisfies the estimate

(7.2.13) (A1 —A)71| <

> =

(iii) For every A\ € C with ReX > 0 the operator A1 — A : dom(A) — X is
bijective and satisfies the estimate

1
-1
(7.2.14) (A1 —A)7 < 5%

(iv) The operator A is dissipative and there exists a X > 0 such that the
operator A\1 — A : dom(A) — X has a dense image.

Proof. The equivalence of (i), (ii), and (iii) follows from Corollary
with M =1 and w = 0. We prove the remaining implications in three steps.

Step 1. If A is dissipative, then
(7.2.15) Az — Az| > Re) || z]]

for all x € dom(A) and all X € C with ReA > 0.

Let x € dom(A) and A € C such that ReA > 0. Since A is dissipative, there
exists an element x* € X* such that ([7.2.11]) holds. This implies

] [|Az = Az]] = [lz"]| [|] Az — Az]]
> Re(z", \x — Azx)
= Re)(z",z) — Re(z™, Ax)
> Rel|z|?.

Hence
|Ax — Az|| > Re ||z]]

and this proves Step 1.
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Step 2. We prove that (iv) implies (iii).
Assume A satisfies (iv) and define the set

Q={X e C|ReX >0 and A1 — A has a dense image} .

This set is nonempty by (iv). Moreover, it follows from Step 1 that the
operator A\ — A : dom(A) — X is injective and has a closed image for every
A € C with ReX > 0. Hence Q2 C p(A) and

1
pa— 71 —_—
(7.2.16) [(A1—A)~H| < Ron for all A € Q2 C p(A4).

If A € Qand |u— Al < Re), then Rey > 0 and |u — M||(A1— A)7Y < 1,
hence p € p(A) by Lemma [6.1.10, and hence p € Q. Thus

(7.2.17) A€ Qand |u— A < Re = pe Q.
Fix an element A € Q. Then it follows from that
{p € C|Imp = ImA, 0 < Rep < 2ReA} C Q.
Thus an induction argument shows that
{p € C|Imp = ImA, Reu > 0} C Q.

Hence it follows from that Breu(p) C §2 for every p € C such that
Imp = ImA and Rep > 0. The union of these open discs is the entire positive
half-plane in C. Thus {z € C|Rez > 0} = Q C p(A) and hence it follows
from that A satisfies (iii). This proves Step 2.

Step 3. We prove that (i) implies (iv).

Assume that A : dom(A) — X is the infinitesimal generator of a contraction
semigroup S : [0,00) — L°(X). Let z € dom(A). By the Hahn-Banach
Theorem (Corollary [2.3.23) there exists an element z* € X* such that

lz*|? = [l«|* = («*, 2).
Since S is a contraction semigroup this implies
Re(z*, S(h)x — z) < [|l*|[[|S(h)z|| — [|=[|* < 0
for all A > 0 and hence

Re(z*, Az) — }Zh% Re(z ,S}(Lh)ac — )
—>

This proves Step 3 and Theorem ([

<0.
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7.3. The Dual Semigroup

When S : [0,00) — L£(X) is a strongly continuous semigroup on a real
Banach space X the dual operators define a semigroup

S* 1 [0,00) — L(X*),

called the dual semigroup. One might expect that the dual semigroup
is again strongly continuous, however, an elementary example shows that
this need not always be the case (see Example below). The failure
of strong continuity of the dual semigroup is related to the fact that the
Banach space X in Example [7.3.3] is not reflexive. On a reflexive Banach
space it turns out that the dual semigroup is always strongly continuous
and this is the content of Corollary below, which will be derived as
a consequence of the main theorem about the dual semigroup. The other
subsections deal with self-adjoint semigroups and with unitary groups.

7.3.1. The Dual Semigroup and its Infinitesimal Generator. The
following theorem is the main result of the present section. It was proved
in 1955 by R.S. Phillips [69].

THEOREM 7.3.1 (Phillips). Let S : [0,00) — L(X) be a strongly contin-
uous semigroup on a real Banach space X and let A : dom(A) — X be its
infinitesimal generator. Denote by

[0,00) = L(X™) : t— S*(t) :== S(t)"
the dual semigroup and by

(73.1)  E:= {a: €X*

there ezists a sequence x} € dom(A*)
such that lim; o ||z} —2*|| =0

the strong closure of the domain of the dual operator A* : dom(A*) — X*.
Then the following holds.

(1) Let z* € X*. Then z* € E if and only if limy_,¢ || S*(t)z* — 2*|| = 0.

(ii) The closed subspace E C X* is invariant under the operator S*(t) for
every t > 0 and the map T : [0,00) — L(E), defined by

T(t) == S*"(t)|e fort >0,
is a strongly continuous semigroup.

(iii) The infinitesimal generator of the strongly continuous semigroup T in
part (ii) is the operator B : dom(B) — E with

dom(B) = {z* € dom(A*) | A*z* € E}

and Bx* = A*z* for * € dom(B).
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Proof. 1t follows directly from Lemma that S* is a one-parameter
semigroup. The remaining assertions are proved in eight steps.

Step 1. Let z* € X* and h > 0 and define the element x; € X* by

h
(7.3.2) (@l 2) = % /0 (", S(t)a) dt

for x € X. Then z} € dom(A*) and A*z} = h=1(S*(h)a* — z*).

Let M := supg<;<p, [|S(t)]|. The functional X — R : x> %foh(x*, S(t)z)dt
is linear and satisfies the inequality

1 [h 1 [
/ (2", (b)) dt| < / (2%, S()a)] dt
h Jo h Jo
1 h
< | leis@al d
0
< M [|z"| [J=||

for all € X. Hence (7.3.2)) defines an element z; € X*. For x € dom(A)
this element satisfies the equation

(z%, Az) = <x /0 *S (t})LAxdt>
_ <$ S(h)}ﬂlf - x>

_ <s*(h)g;: - xx> |

Here the second step follows from Lemma|7.1.13| This implies 2} € dom(A*)
and A*z} = h=1(S*(h)z* — z*). This proves Step 1.

Step 2. Let x* € dom(A*) and t > 0. Then S*(t)z* € dom(A*) and
A*S*(t)z™ = S*(t)A%x™.

If x € dom(A),then S(t)x € dom(A)and S(t)Ax = AS(t)x by Lemmal|7.1.13

and hence (S*(t)A*x*, z) = (A*x*,S(t)x) = (x*, AS(t)x) = (S*(t)z*, Ax).

By definition of the dual operator, this implies that S*(¢)z* € dom(A*)

and A*S*(t)x* = S*(t)A*z*. This proves Step 2.

Step 3. Let * € E and t > 0. Then S*(t)z* € E.

Choose a sequence z} € dom(A*) such that lim; ,« ||z} — 2*|| = 0. Then it
follows from Step 2 that S*(¢)z} € dom(A*). Since S*(t) : X* — X* is a
bounded linear operator, we also have lim;_,« ||.S*(t)z} — S*(t)z*|| = 0, and
hence S*(t)z* € E. This proves Step 3.
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Step 4. Let 2* € dom(A*) and x € X. Then

(S*(t)x* — 2™, x) :/0 (S*(s)A%x™, x) ds.

By Example we have
t t
/ S(s)xds € dom(A), A/ S(s)xds = S(t)xr — =,
0 0

and hence

(S*(t)z* —x*,x) = (¥, S(t)x — x)

(x* A/ S(s)x ds)
~ (A /0 S(s)x ds)

_ / (A S (s)a) ds

0
t
= / (S*(s)A*z™, ) ds.
0
Here the fourth equality follows from Lemma This proves Step 4.
Step 5. If x* € E, then limy_o ||S*(t)z* — z*|| = 0.

Define M := supg<;<; ||S(t)[| and let 2* € dom(A*). Then, by Step 4,

t
(S*(t)x" —a*, x) = / (A*z",S(s)x) ds

0
t
< A / 1S(s)z| ds
< tM | A" ||

for 0 < ¢ < 1. This implies

<M A

R . S*(t)z* — ¥, x
I5* (e — a7l = sup 2 )
2eX\{0} [El

for 0 <t <1 and so limy ¢ ||S*(t)x* —2*|| = 0. Since dom(A*) is dense
in E and [|S*(t)|| = ||S(#)|| < M for 0 <t <1, it follows from the Banach-
Steinhaus Theorem 2.1.5] that

lim [|S*(t)z* — 2| =0  forall 2™ € E.
t—0

This proves Step 5.
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Step 6. Let x* € X* such that lim;_o ||S*(t)x* — 2*|| = 0. Then z* € E.

For h > 0 let 2} € X* be as in Step 1. Then z; € dom(A*) and

h
(x], — ™, x) = }11/0 (x*,S(t)x — x) dt.

Now fix a constant € > 0 and choose § > 0 such that
0<t<é — |1S*(t)z* — ™| < e.

Let 0 < h <. Then

for 0 <t < hand x € X\ {0}, and hence

* % h * _
LA N R S P
| h Jo |

Take the supremum over all x € X \ {0} to obtain the inequality
Ioh— ot = sup TR TN
zex\{op 7]l
for 0 < h < §. Thus we have proved that
lim [l — "] = 0
lim [l — "] =0,
and hence z* € E. This proves Step 6.

Step 7. Let x* € dom(A*) such that y* := A*z* € E. Then
S*(t)z* — x*
t

lim =0.

t—0 y

By Step 3 and Step 5, S* restricts to a strongly continuous semigroup on
the subspace E. Thus the function [0,00) — E : ¢t — S*(t)y* = S*(t)A*x*
is continuous and so

t
S*(t)z* — x* :/ S*(s)y* ds
0
for all ¢ > 0 by Step 4. Hence
S ) —a* L e e s
Iaat N ACCISE

" < sup [[S%(s)y* —y7||
and this proves Step 7.

0<s<t
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=0. Then

Step 8. Let x*,y* € X* such that limy,_,¢ Hw

z* € dom(A*), y* = A*s* € E.

It follows from the assumptions of Step 8 that lim; ¢ [|S*(t)z* — 2| = 0
and hence z* € E by Step 6. This implies t~!(S*(t)z* — 2*) € E by Step 3,
and so y* € F because E is a closed subspace of X*. Since the func-
tion [0,h] — E : t — S*(t)z* is continuous by Step 3 and Step 5, the ele-
ment x; € X* in Step 1 is given by

1 h
o= /O S* ()2 di

and converges to x* as h tends to zero. Moreover, by Step 1, we have
that z} € dom(A4*) and A*z} = h~1(S*(h)z* — 2*) converges to y* as h
tends to zero. Since A* is a closed operator, this implies z* € dom(A*)
and A*x* = y* € E. This proves Step 8.

Part (i) follows from Steps 5 and 6, part (ii) from Steps 3 and 5, and
part (iii) from Steps 7 and 8. This proves Theorem O

COROLLARY 7.3.2. Let X be a real reflexive Banach space and let S be
a strongly continuous semigroup on X with the infinitesimal generator A.
Then the dual semigroup S* : [0,00) — L(X™*) is strongly continuous and its
infinitesimal generator is the dual operator A* : dom(A*) — X*.

Proof. The domain of the dual operator A* is weak™ dense in X* by
part (iii) of Theorem and so it is dense because X is reflexive. Hence
the result follows from Theorem [7.3.1] with £ = X*. O

The shift group in the following example shows that Corollary [7.3.2] does
not extend to nonreflexive Banach spaces. In Example the subspace E
is not invariant under A* although it is invariant under S*(¢) for all ¢.

EXAMPLE 7.3.3. Let X := L'(R) and, for ¢t € R, define the linear oper-
ator S(t) : LY(R) — L*(R) for t € R by
(SH)f)(s) == f(s+1) for f € LY(R) and s,t € R.
Then X* = L*°(R) and under this identification the dual group is given by
(S*(t)g)(s) :=g(s —1) for g € L°(R) and s,t € R.

For a general element g € L*(R) the function R — L*(R) : t — S*(t)g
is weak* continuous but not continuous. In this example the domain of A*
is the space of bounded Lipschitz continuous functions on R. This space is
weak™® dense in L>°(R) but not dense. Its closure is the space E C L*(R)
of bounded uniformly continuous functions on R.
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7.3.2. Self-Adjoint Semigroups. The next theorem characterizes the in-
finitesimal generators of self-adjoint semigroups.

THEOREM 7.3.4 (Self-Adjoint Semigroups). Let H be a real Hilbert
space and let A : dom(A) — H be a linear operator with a dense domain
dom(A) C H. Then the following are equivalent.

(1) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L(H) such that S(t) = S(t)* for all t > 0.

(ii) The operator A is self-adjoint and
(z, Az)

sup 2
z€dom(A)\{0} ||"B”

If these equivalent conditions are satisfied, then

log|S®) _ . {r.dx)

t sedom(a) ||z
z#0

(7.3.3)

for allt > 0.

Proof. We prove that (i) implies (ii) and
1
(734)  sup (0AT NsISOI _ p, loglSE)

z€dom(A) ”LL’H2 o t §—00 S
x#0

for all ¢ > 0.

For Hilbert spaces Theorem [7.3.1] asserts that the adjoint A* of the infini-
tesimal generator A of a semigroup S is the infinitesimal generator of the
adjoint semigroup S*. Since S(t)* = S(t) for all ¢ > 0 in the case at hand,
it follows that the infinitesimal generator A is self-adjoint. Moreover,

IS = IS = |1S(at) [V

by part (i) of Theorem [5.3.15 and hence
log|[S(#)[| _ log||S(nt)]]
t nt
Take the limit n — oo and use Lemma [7.1.8 to obtain
log||SOI _ . iy o8l SG
wWo = lm

t 8§—00 S

This implies log||S(t)|| = two and so ||S(t)|| = e™° for all t > 0. Thus

forallt >0 and all n € N.

for all ¢t > 0.

(x,S(t)z) < e™°||z|>  forallz € H and all t > 0.

Differentiate this inequality at t =0 to obtain (x, Az) < wpl|x||? for ev-
ery € dom(A). This shows that (i) implies (ii) and ((7.3.4]).
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We prove that (ii) implies (i). Thus assume A is self-adjoint and
(z, Az)

z€dom(A) HCL'HQ
x#0

w =

We prove in five steps that A generates a self-adjoint semigroup.
Step 1. If A\ > w and z € dom(A), then ||A\x — Az|| > (A — w)||z].

Let 2 € dom(A) and A > w. Then (z, Az) < w|z|? and so
A = Az > (2, Az — Az) > (A = w)]|z]*.
This proves Step 1.

Step 2. If A > w, then A1l — A is injective and has a closed image.

Let A > w. Assume z,, is a sequence in dom(A) such that y, := Az, — Az,
converges to y. Then x, is a Cauchy sequence by Step 1 and so con-
verges to some element © € H. Hence Az, = Az, — y, converges to Ax — y.
Since A has a closed graph by Theorem this implies = € dom(A)
and Az = Ax —y. Thus y = \x — Az € im(A1 — A), and so A\l — A has a
closed image. That it is injective follows directly from the estimate in Step 1.
This proves Step 2.

Step 3. If A > w, then A1l — A is surjective.

Let A > w and suppose y € H is orthogonal to the image of A1 — A.
Then (y, \z) = (y, Ax) for all x € dom(A). Hence y € dom(A*) = dom(A)
and Ay = A*y = Ay. Thus y = 0 by Step 2. This shows that A\ — A has a
dense image. Hence it is surjective by Step 2. This proves Step 3.

Step 4. The operator A is the infinitesimal generator of a strongly contin-
uous semigroup S : [0,00) — L(H) such that ||S(t)| < e for allt > 0.

Let A > w. Then A1 — A : dom(A) — H is bijective by Step 2 and Step 3
and ||(A1 — A)7Y| < (A —w)™! by Step 1. Hence Step 4 follows from the
Hille-Yosida—Phillips Theorem with M = 1.

Step 5. The semigroup S in Step 4 is self-adjoint and satisfies (7.3.3]).

The operator A = A* is the infinitesimal generator of S by Step 4 and of
the adjoint semigroup S* by Theorem Hence Corollary asserts
that S(t) = S*(t) for all ¢ > 0. This implies that A and S satisfy (7.3.4).
By (7.3.4)), we have w < ¢t log ||S(t)|| and by Step 4 we have ||S(t)|| < e**
and hence t~!log||S(t)|| < w for all t > 0. Thus equality holds in (7.3.4).

This proves (7.3.3) and Theorem O
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7.3.3. Unitary Groups. On complex Hilbert spaces it is interesting to
examine the infinitesimal generators of strongly continuous unitary groups.
This is the content of Theorem below which was proved in 1932 by
M.H. Stone [81].

DEFINITION 7.3.5. Let H be a complex Hilbert space. A strongly contin-
uous group S : R — L£¢(H) is called unitary if ||S(t)z| = ||z|| for all t € R
and all z € H or, equivalently,

S*(t) = S(t)"t = S(-1)
for all t € R, where S*(t) = S(t)* denotes the adjoint operator of S(t).
THEOREM 7.3.6 (Stone). Let H be a complex Hilbert space and suppose

that A : dom(A) — H is a linear operator with a dense domain dom(A) C H.
Then the following are equivalent.

(1) A is the infinitesimal generator of a unitary group.

(ii) The operator iA : dom(A) — H is self-adjoint.

Proof. We prove that (i) implies (ii). Thus assume that A is the infini-
tesimal generator of a unitary group S : R — L¢(H). Then
S*(t) = S(t)"t =8(~t)  forallteR.

The operator —A : dom(A) — H is the infinitesimal generator of the
group R — L(H) : t — S(—t) by Theorem and A* : dom(A*) - H
is the infinitesimal generator of the group R — L¢(H) : t — S*(¢) by Theo-
rem [(.3.1] Hence

A*=-A
and so
(1A)* = —id* = iA.
Thus iA4 is self-adjoint.
We prove that (ii) implies (i). Suppose that
A—iB,
where B : dom(B) — H is a complex linear self-adjoint operator. Then A
has a dense domain dom(A) = dom(B) and a closed graph. Moreover,

A* = (iB)* = —-iB* = —-iB = —A.
This implies
(2, A7) + (Az,3) (2, (A+ A%)a)

(7.3.5) Re(x, Az) = 5 = 5 =0

for all z € dom(A).



7.3. The Dual Semigroup 385

We prove that the operator 1 — A : dom(A) — H has a dense image.
Assume that y € H is orthogonal to the image of 1 — A. Then

0= (y,x — Ax) = (y,z) — (y, Ax) for all x € dom(A).
Hence it follows from the definition of the adjoint operator that
y € dom(A*) = dom(A), y= A%y = —Ay.

This implies ||y||? = —(y, Ay) = —(A*y,y) = —||y/|* and so y = 0. Hence the
operator 1 — A has a dense image by the Hahn—Banach Theorem
Since 1 — A has a dense image it follows from and the Lumer—
Phillips Theorem[7.2.11| that A is the infinitesimal generator of a contraction
semigroup S : [0,00) — L¢(H). The adjoint semigroup S* : [0,00) — L(H)
is also a contraction semigroup and is generated by the operator A* by
Theorem Hence —A = A* is the infinitesimal generator of the semi-
group S* and so S extends to a strongly continuous group S : R — L¢(H)
by Theorem Since S* is the group generated by —A = A* it follows
that S(t)~! = S(—t) = S*(¢) for all t € R and this proves Theorem O

EXAMPLE 7.3.7 (Shift Group). Consider the Hilbert space
H:= L*([R,C)
and define the operator A : dom(A) — H by

dom(A) := W(R,C)

o ) f is absolutely continuous
(7.3.6) o {f R=C ‘ and f, 4 € L*(R,C) ’
Af = Z—f for f € WH(R,C).
s

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [75, Thm 6.19]). The operator

iA = idi : W3R, C) — L3R, C)
S

is self-adjoint and hence A generates a unitary group U : R — L¢(L*(R, C)).
This group is in fact the shift group in Example [7.1.4] given by

U)f)(s)=f(s+1) for f € L*(R,C) and s,t € R.

(See also Example and Exercise ) Exercise: Verify the details.
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EXAMPLE 7.3.8 (Schrédinger Equation). (i) Define the unbounded
linear operator A on the Hilbert space H := L?(R,C) by

dom(A) := W*%(R,C)

f is absolutely continuous and
df

= :R — C| = is absolutely continuous and
(7.3.7) ! s y :
o 00 2
SO+ L2+ 42 da < o0
& f 2,2
Af = ih@ fOI' f € W= (R, (C)

(See Example[6.1.7]) Here & is a positive real number (Planck’s constant)
and zx is the variable in R. The operator
d? 2,2 2
iA = —h@ W= (R,C) — L (R,C)
is self-adjoint and hence A generates a unitary group U : R — L¢(L?(R, C)).
If f: R — C is a smooth function with compact support and u : R? — C is
defined by u(t, z) := (U(t) f)(x), then u satisfies the Schrédinger equation
ou 0u

7.3.8 ih— = -"*—

(7:38) Mot 92
with the initial condition «(0,-) = f. Exercise: Prove that the operator i4
is self-adjoint.

(ii) Another variant of the Schrédinger equation is associated to the opera-
tor A : dom(A) — L?(R,C), defined by

(7.3.9)
f is absolutely continuous and
dom(A) =< f:R—C % is absolutely continuous and ,
SIS+ =R+ 22 f1?) do < oo
s d2f z? 2,2
(Af)(z) := 171@(33) + Ef(x) for f € W**(R,C) and z € R.

The operator iA is again self-adjoint and hence the operator A generates
a unitary group U : R — L¢(L?(R,C)). If f : R — C is a smooth function
with compact support and u : R? — C is defined by u(t,z) := (U(t)f)(z),
then u satisfies the Schrodinger equation with quadratic potential

., Ou 0%

with the initial condition u(0,-) = f. Exercise: Prove that the operator iA
is self-adjoint.

(t,x) + z2u(t, x)
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COROLLARY 7.3.9 (Groups of Isometries). Let H be a real Hilbert
space and suppose that A :dom(A) — H is a linear operator with a dense
domain dom(A) C H. Then the following are equivalent.

(1) A is the infinitesimal generator of a group of isometries.
(ii) If X € R\ {0}, then A1 — A is bijective and ||[(A1 — A)~*|| < |A|71
(iii) dom(A*) = dom(A) and A*z + Ax =0 for all x € dom(A).

Proof. By Theorem amap S : R — L(H) is a strongly con-
tinuous group of isometries if and only if both [0,00) — L(H) : t — S(t)
and [0,00) — L(H) : t — S(—t) are contraction semigroups. Hence the equi-
valence of (i) and (ii) follows from the Lumer—Phillips Theorem The
equivalence of (i) and (iii) follows from Theorem for the complexified
operator A°: dom(A°¢) := dom(A)¢ — H°. O

EXAMPLE 7.3.10 (Shift Group). (i) The formula (L(t)f)(s) := f(s+t)
for s,t € Rand f € H := L?(R) defines a shift group L : R — L(H) of isome-
tries. Its infinitesimal generator A :dom(A) = WH2(R) — L%(R) is given
by Af = f' for f € WH2(R) and satisfies A* = —A. (See Example [7.1.4])
(ii) The formulas (R(t)f)(s) := f(s—t) for s >t >0 and (R(t)f)(s) :=0
fort >s>0and f € H := L?([0, 00)) define a semigroup R : [0, 00) — L(H)
of isometric embeddings. The infinitesimal generator B : dom(B) — H has
the domain dom(B) = W,72([0,00)) := {f € W12([0,00)) | £(0) = 0} and is
given by Bf = —f'. Tts adjoint has the domain dom(B*) = W12(]0, c0))
and satisfies Bf + B*f = 0 for f € dom(B) C dom(B*).

ExAMPLE 7.3.11 (Wave Equation). (i) The group . : R — L(J¢)
on the Hilbert space # = L%(R,R?), given by (7.1.15) in Example

consists of isometries and has the infinitesimal generator o = —a/* on 2,
given by dom(&) = W12(R,R?) and <7 (f,g) = (¢, f').

(ii) Fix real numbers a < b and consider the wave equation

0u B 0%u
o2 Ox?’
on the compact interval I := [a, b]. Equation ((7.3.11]) gives rise to a strongly

continuous group of isometries on the Hilbert space H := I/VO1 2(I) x L2(I),
where W, () := {f € WH(I)| f(a) = f(b) = 0} and

109l = \/ / (@ + la@)P) do

for f € I/VO1 2(I) and g € L2(I). Its infinitesimal generator is the operator
dom(A) = (W**(I) N Wy (1)) x Wo (D), A(f.9) = (9, f")-

(7.3.11) u(t,a) = u(t,b) =0,
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7.4. Analytic Semigroups

7.4.1. Properties of Analytic Semigroups. For a strongly continuous
semigroup
S :[0,00) = LX)

on a complex Banach space X an important question is of whether the
function ¢ — S(t)x extends to a holomorphic function on a neighborhood of
the positive real axis for all x € X. A necessary condition for the existence
of such an extension is instant reqularity, i.e. the image of the operator S(t)
must be contained in the domain of the infinitesimal generator for all ¢ > 0.
The formal definition involves the sectors

Us := {z € C\ {0} ] |arg(z)| < 6}

7.4.1 .
( ) :{7’619‘7’>Oand—5<9<5}

for 0 <0 < m/2.

DEFINITION 7.4.1 (Analytic Semigroups). Let X be a complex Ba-
nach space. A strongly continuous semigroup S : [0,00) — £(X) is called
analytic if there exists a number 0 < § < 7/2 and an extension of S to Uy,
still denoted by

S : U(s — EC(X),
such that, for every x € X, the function
Us— X:zm S(2)z

is continuous and its restriction to the interior Us C C is holomorphic.

The next theorem summarizes the basic properties of analytic semi-
groups. In particular, it shows that the map Sy : [0,00) — L¢(X), defined
by

(7.4.2) Sp(t) :== S(tel?)  for t >0,

is a strongly continuous semigroup for —¢ < 6 < 9, and that its infinitesimal
generator is the operator Ag : dom(A) — X defined by

(7.4.3) Agz = €Y Az for x € dom(A).

It also shows that the semigroups Sy satisfy an exponential estimate of the
form ||Sp(t)|| < Me® 5@ where the constants w € R and M > 1 can be
chosen independent of §. Let wg be the infimum of all w € R for which such
an estimate exists. Then the spectrum of A is contained in the sector

(7.4.4) Cs := {wo +re?|r>0,1/246 <10 < TF}

(see Figure [7.4.1]).
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/29
\ 5
6(A) / o, 0 U,

Figure 7.4.1. The spectrum of the generator of an analytic semigroup.

THEOREM 7.4.2 (Analytic Semigroups). Let X be a complex Banach
space, let 0 < 6 < /2, let S : Us — LS(X) be an analytic semigroup, and
let A be its infinitesimal generator. Then the following holds.

(i) S(t+2)=S(t)S(z) for all t,z € Us.
(ii) If z € Us, then im(S(z)) C dom(A), AS(z) € LX), and

(7.4.5) lim S+ h})l —5G) _ AS(z)H = 0.
hEC_{{O}

Moreover, the function Us — LX) : z — AS(2) is holomorphic.
(iii) If # € dom(A) and z € Us, then
S(z)x € dom(A), AS(z)x = S(z)Ax.

(iv) If z € Us, then im(S(z)) C dom(A>).
(v) For each
(7.4.6) w > wp = iI>1f[') r~Lsup{log||S(2)||| z € Us, Re(z) =}

there exists a constant M > 1 such that ||S(z)|| < Me*R®e?) for all z € Us.
(vi) Let x € X and zyp € Us. Choose r > 0 such that B,(z9) C Us. Then

2 (z— 20)"

(7.4.7) S()r =Y -

n=0
The power series in (7.4.7) converges absolutely and uniformly on every
compact subset of By(z).

(vii) For —6 < 6 < § the map Sy in (7.4.2)) is a strongly continuous semi-
group whose infinitesimal generator is the operator Ag in (7.4.3)).

(viii) If wg is as in (v), then o(A) C Cs (see equation (7.4.4)).

A"S(z0)x for all z € By(z0).
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Proof. We prove part (i). Fix a number ¢ > 0 and two elements z € X
and x* € X*. Define functions u,v,w : Us — C by

u(z) = (¥, S(t + 2)z),
v(z) := (2", 5(2)5(t)),
w(z) = (2", S(t)S(2)x) = (S(t)"z*, S(2)x)
for z € Us. By assumption these functions are holomorphic and agree on

the positive real axis. Hence they agree on all of Us by unique continuation.
This shows that

S(t+2z)=25(2)S(t) =S(t)S(»)
for all t > 0 and all z € Us. Repeat the argument with ¢ € Us to obtain
S(t+z)=95(t)S(z)
for all t, 2 € Us. This proves part (i).
We prove part (ii). Let z € X and define f : Us — X by

f(z):=S(2)x
for z € Us. This function is holomorphic by assumption and

f(z+h)—f(z) _ S(h)S(z)z — S(z)x
; = . forall h >0

by part (i). The difference quotient on the left converges to f’'(z) as h tends
to zero because f is holomorphic. Hence it follows from the definition of the
infinitesimal generator that

S(z)z € dom(A), AS(z)x = f'(2)

for all z € Uy. Since f’ is holomorphic by Exercise [5.1.13, and every weakly
holomorphic operator valued function is holomorphic by Lemma[5.1.12] this
proves part (ii).

We prove part (iii). Let € dom(A) and define f,g: Us — X by

f(z) := S(2)Ax, g(z) == AS(2)x for z € Us.

Then f is holomorphic by assumption and ¢ is holomorphic by part (ii).
Moreover, the functions agree on the positive real axis by Lemma [7.1.13]
Hence they agree on all of Us by unique continuation. This proves part (iii)
for z € Us. Now let z € Us and choose a sequence z, € Us that converges
to z. Then it follows from the strong continuity of the map S : Us — L¢(X)
and from what we have just proved that

nh_)n(r)lo S(zn)x = S(2)x, nh_)rrolo AS(zp)x = nh—%lo S(zn) Az = S(2)Ax.

Since A is closed, it follows that S(z)z € dom(A) and AS(z)z = S(z)Ax.
This proves part (iii).
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We prove part (iv). We prove by induction on n that S(z)xz € dom(A™)
for all z € Us and all x € X. For n = 1 this was established in part (ii).
Assume by induction that S(z)z € dom(A"™) for all z € Us and all z € X.
Fix two elements x € X and z € Us. Then it follows from parts (i), (i), (iii)
and the induction hypothesis that

AS(z)x = AS(2/2)S(z/2)x = S(2/2)AS(z/2)x € dom(A")

and hence S(z)z € dom(A"™*1). This completes the induction argument and
the proof of part (iv).

We prove part (v). The function Us — [0,00) : 2 = ||S(2)z] is bounded
on every compact subset of Us and for every x € X by strong continuity.
Hence it follows from the Uniform Boundedness Theorem R.1.1] and the
analyticity of the semigroup that, for every real number r > 0, there exists
a constant ¢ > 1 such that ¢~ < ||S(2)|| < ¢ for all z € Us with Re(z) < 7.
Define

(7.4.8) wo:= 712% w;r)7 w(r) == sup {log|S(z)|| |z € Us, Re(z) =7},

and define the functions g : Us — R and M : [0,00) — [0, 00) by

(7.4.9) 9(2) :=logllS(),  M(r):= _sup  [g(2)]
z€Us,Re(z)<r

for 2 € Us and r > 0. Then it follows from part (i) that

g(t+2) < g(t) +g(2)

for all ¢,z € Us. Fix a real number r > 0 and let z € Us \ {0}. Then there
exists an integer k > 0 and a number 0 < s < r such that Re(z) = kr + s.
Define ¢ := Re(z)~!z. Then g(z) = g(kr¢ + s¢) and hence

9(z) _ kg(rQ) +9(sQ) _ 9(rQ) _ s9(rq) | 9(s¢) _w(r)  2M(r)

Re(z) — Re(z) T rRe(z)  Re(z) = r Re(z)

Now fix a constant w > wp, choose r >0 such that 7~ lw(r) <w, and
then choose R > 0 such that r~lw(r) + 2R7'M(r) < w. Then each z € Us
with |z| > R satisfies |2| 'g(z) < w and hence ||S(2)|| = 9(*) < e~Be(*), This
proves part (v) with M :=sup,_ g, pe(:)<r e “Re(@)||5(2)||.

We prove part (vi). Let x € X and z* € X* and define f : Us — C
by f(z) := (z*, S(2)z). By parts (ii), (iii), and (iv) the derivatives of f are
given by f(M(z) = (2*, A"S(2)x) for n € N and z € Us. Hence part (vi)
follows by carrying over the familiar result in complex analysis about the
convergence of power series (e.g. [1, p 179] or [74, Thm 3.43]) to operator
valued holomorphic functions. (See also Exercises [5.1.13| and [5.1.14]) This
proves part (vi).
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We prove part (vii). Fix a real number —¢ < § < 4. That Sy is strongly
continuous follows directly from the definition and that it is a semigroup
follows from part (i). We must prove that its infinitesimal generator is
the operator Ag = €A : dom(4) — X in (7.4.3). To see this, fix an
element zg € dom(A) and define the function

z:[0,00) > X
by
z(t) := Sp(t)xo = S(tel)xg for t > 0.
This function is continuous by assumption and takes values in the sub-

space dom(Ay) = dom(A) by part (ii). Moreover, it follows from part (ii)
that x is differentiable and

i T i0
ng(t)x ~ lim S(te + he')x — S(te')x
dt h—0

= 945tz
= Sg(t)Agw

for all ¢ > 0. Here the last equality follows from part (iii). Thus x is
continuously differentiable and satisfies the differential equation & = Agzx.
Hence Sy and Ay satisfy condition (iii) in Lemma [7.1.17 and so Ay is the
infinitesimal generator of Sp. This proves part (vii)

We prove part (viii). Recall the definition of the spectrum of a closed un-
bounded operator in (6.1.9). Let A\ € 0(A) and fix a real number —¢ < 6 < 4.
Then €%\ € 0(Ap). Let w > wp. Then part (v) asserts that there is a con-
stant M > 1 such that ||Sg(t)|| < Me* 5O for all t > 0. By Theorem
this implies that Re(e!?\) < wcos(f). Since w > wy was chosen arbitrarily,
this implies Re(el?\) < wp cos(h), i.e.

Re(e? (A —wp)) <0 for —5 <0 <6
Thus A € Cs. This proves part (viii) and Theorem O

ExamMpLE 7.4.3. This elementary example shows that the number wq
in may depend on the domain Us on which the semigroup is (chosen to
be) defined. Let A € C and consider the analytic semigroup S : Us — £L¢(X)
on one-dimensional complex Banach space X = C, given by

S(z)x = Mz

for z € Us and z € X = C. This semigroup extends to a holomorphic func-
tion on the entire complex plane, so the number 0 < § < 7/2 can be chosen
arbitrarily. We have log ||S(2)|| = log|e*?| = Re(\z) for all z € Us and hence

sup {log ||S(z)|| } z € Us, Re(z) = r} = r(Re(\) + tan(8) [Im(N)|).
Thus wy = Re(A) 4 tan(d) [Im(\)| and so o(A4) = {A\} C Cs.
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7.4.2. Generators of Analytic Semigroups. The next theorem is the
main result of this section. It characterizes the infinitesimal generators of
analytic semigroups.

THEOREM 7.4.4 (Generators of Analytic Semigroups). Let X be a
complex Banach space and let A : dom(A) — X be a complez linear operator
with a dense domain and a closed graph. Fix a real number wy. Then the
following are equivalent.

(i) There exists a number 0 < 6 < m/2 such that A generates an analytic
semigroup S : Us — LX) that satisfies

o JEISOI _ gl SO _

(7.4.10)
t—oo t t>0 t

(ii) For each w > wo there exists a constant M > 1 such that

M

(7.4.11) (AT —A)7H < PN

for all A € C with ReA > w.

If these equivalent conditions are satisfied, then im(S(t)) C dom(A) for
all t > 0 and, for each w > wy, there exists a constant M > 1 such that

M
(7.4.12) |AS(t)x| < TethxH for allt >0 and all x € X.

Proof. We prove that (i) implies the last assertion. Thus assume part (i).
Then im(S(t)) € dom(A) for all ¢ > 0 by Theorem Let w > wo
and assume wj := inf,~¢ sup{logHrM |2 € Us, Re(2) = r} < w. (Shrink § if
necessary.) Choose 7 > 0 so small that

w w
B,(1 — —
(1) C Us, W1<1+ W1<1—7“
(Note that w might be negative.) Let ¢ >0 and define v :[0,1] — Us
by Yi(s) :=t + rte*™s for 0 < s < 1. Fix an element x € X. Then AS(t)z
is the derivative at z =t of the holomorphic function Us — X : z — S(z)x

by Theorem Hence the Cauchy integral formula asserts that

1 S(z)z 1t

AS()z = — S
Sty 2mi ), (2 —t)? T

e 2™ G (1 + rte?™ %)z ds.

wRe(z)
Choose M > 1 such that |S(z)|| < Me i and ||S(2)| < Me T5r

for z € Us. Since (1 —r)t < Re(t + rte?™¥) < (1 + r)t this implies
1 ; M
|AS()z|| < = sup HS(t—i—rte2”‘S)xH < 2 et||z.
Tt seR rt

This shows that (i) implies (7.4.12)).
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We prove that (i) implies (ii). Thus assume part (i). Let w > wp and
assume

1 _
wy = iggsup{ogHS’(Z)H'ZGUé', Re(z):r} < w.
r T

(Shrink ¢ if necessary.) Then, by part (v) of Theorem there exists a
constant M > 1 such that
1S(2)|| < Me¥Be) for all z € Us.
Thus the semigroup S_g in (7.4.2) satisfies the inequalit
g y
IS_s(t)l| = [|S(te™)|| < Me o)t

for all ¢ > 0. Since the operator A_s = e 1A in ED is the infinitesi-
mal generator of S_s, it follows from Corollary [7.2.8| that every complex
number X with Re(\) > wcos(d) belongs to the resolvent set of A_s and
satisfies

: M
4.1 M—e 7Y < .
(7.4.13) 1A € )l < Re(N) — wcos(d)
Define
1 1
7.4.14 = .
(7.4.14) ¢ \/ Sn2(3) | co2(0)

Let A € C such that Re(\) > w and Im\ > 0. Define X := e ). Then
Re()\') — wcos(d) = cos(§)(Re(N) — w) + sin(§)Im(\) > 0,

hence
Re()\) — wcos(9) Re()\) — wcos(9)
Re(d) —w < cos(d) ’ Im(}) < sin(d) ’
and so
(7.4.15) A —w| < c(Re(N) — wcos(d)) .

Since Re)' > wcos(d), the operator Al — A = e(N1 — e A) is invertible
and, by (7.4.13)), (7.4.14), and ([7.4.15)), it satisfies the estimate

M < cM
ReN —wcos(d) — [N —wl|
This shows that A satisfies (7.4.11)) whenever Im(A) > 0. When Im(\) < 0
repeat this argument with A_s replaced by As and X := e\ to obtain
that A satisfies (7.4.11)). This shows that (i) implies (ii).
We prove that (ii) implies (i). Thus assume part (ii). We prove in eight
steps that A generates an analytic semigroup satisfying (7.4.10)).

IOL = A)7H = (VT - e ?4) 7 <
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Step 1. Let w > wy and choose M > 1 such that (7.4.11)) holds. Choose the
real number 0 < g9 < 7/2 such that sin(eg) = 1/M and define
M

for 0 <e < eg.

Then
o(A) C{w+ré?|r>0,1/2+e <|0] <7}
and, if 0 < € < g, then

(7.4.17) |(A1— 4) 1H<|>\ 5

for all A\ = w+rel? with r >0 and |0] < 7/2 +¢.

We prove first that, for all A € C,
M
A —w|’
If ReA > w, this holds by assumption. Thus assume A\ = w+it for ¢t € R\ {0}

and define \s := w + s + it for s > 0. Then [[(A\s1 — A)7Y|| < M/|t| for
all s > 0. With 0 < s < |t|/M this implies

(7.4.18) ReA>w, A £w = |[(AM-A4)7<

M
A= Al — A) Y| < ﬁ <1

and so it follows from Lemma [6.1.10] that A € p(A4) and [|(A1 — A)7Y| <
Itl—%' Take the limit s — 0 to obtain the estimate ([7.4.1§]).

Now let 0 < € < gp and let A =w+iret™ with r >0 and 0 < 6 <e.
Consider the number p := w £ ir/ cos(f). It satisfies |\ — p| = rtan(f) and

M _Mcos(6)<%
I —w| r ~or

I(u1 = A)7H| <

by ([7.4.18]). Hence

A=l - 471 < 20

IA — u| = M sin(f) < M sin(e) < 1.

Thus A € p(A) and

o)
A=A =) (=N (ul - A)7*
k=0

by Lemma [6.1.10, Hence

lGa- AN My M
T—P—all(il— A) 1 = T Msin@e) A —a]
Here the last step uses the equation |A — w| = r. This proves Step 1.

11— A) ) <
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T/2—¢€

o(A) / ® 0 Us

Figure 7.4.2. Integration along ~;.

Step 2. Let w > wp and 0 < € < g9 < /2 be as in Step 1. For r > 0 define
the curve v, = v : R — C by

w+ %eirt(g%), for —1/r <t<1/r,

(7.4.19) Y(t) = w+ ite e, fort < —1/r,
w + itel, fort>1/r
(see Figure . Then the formula
1
(7.4.20) S(z) = — / (1 —A)td¢  forzeU.
27i /s,

defines a holomorphic map S : U. — L(X), which is independent of r.

Step 1 asserts that w + itel® € p(A) and w — ite ¢ € p(A) for t > 0 and

M
t

H((wiiteiie)]l—A)’lH < for all £ > 0.

Let 2z = |z|e! € U. with |0 < e. Then
Re(zie'®) = —|z|sin(e 4 0) < 0, Re(—zie ) = —|z|sin(e — 6) < 0.

Hence

- : 0) ,—t|z|sin(e+0
iez(w:titeils)((w :l: ite:tis)]l _ A)—l S Mee‘zk*-)cos( ) e ‘z|s1n(5 )
2w 5 .
for all ¢ > 1/r. This shows that the integrals
eiie > srotie .
Si(z) = 6z(w:l:lte )((w 4 ite:l:lé‘)]l . A)_l di
2
T 1/7,

converge in £¢(X). That the map S : U. — L£(X) is holomorphic follows
from the definition and the convergence of the integrals. That it is indepen-
dent of the choice of r follows from Step 1 and the Cauchy integral formula.
This proves Step 2.



7.4. Analytic Semigroups 397

Step 3. Let € and S be as in Step 2 and let 0 < § < e. Then there exists a
constant Ms. > 1 such that

IS < Mseetel
for all z € Us \ {0}.

Let z € Us\ {0} and choose r := |z| in (7.4.19). Then z = rel? with || < 6.
Hence, by Step 2,

1 p—
S(z) = 27“/ e*(¢1— A)~td¢

1 0 . )

=5 ezw(t)%(t)wr(t)]]_A) 1 gt

i -1
1/r . N

= T+ 2¢ / / ez(w-f—%elrt(@#-s))eirt(%-‘,—g) ((w I 6(25))]1 B A) "

Am —1/r ,

e—ia —1/r N .
+ 5 / e WHETE) (4 4ite™ )1 — A) "L dt
i

618

—00

o ), e*@HIE) (4 4 itel®) 1 — A)~ dt

= 5%(2) + S (2) + ST (2).
By Step 1, ||((w +r~'e"(Z+)) 1 — A)~!|| < M.r and hence

T+ 2¢
—e
2r

Now use the fact that Re(4zie®i€) = —rsin(e + ) < 0 to obtain

HSO(Z)H < wrcos(@)—i—lMEr < Msewrcos(e)—&-l‘

M.e®r cos(f) oo —trsin(e+6)
s < = [
2w 1/r t
M ewrcos(@) (3] e—trsin(e—&)
< == / dt
2w 1/r t
M ewrcos(@) o0 efssin(sfé)
=== / ds
2 1 S
M_e¥" cos(6)

< ——m—.
~ 2msin(e — 6)

Since r cos(f) = Re(z), the last two estimates imply

1 5)) cwRe(2) for all z € U \ {0}.

msin(e —

1Sl < M. ( +

This proves Step 3.
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Step 4. Let 0 < § < e < /2 and let z € Us. Choose a real number r > 0
and let

Yr = VTre: R—C
be given by (7.4.19)) as in Step 2. Then

ot | =
2mi ), (—w

The loop obtained from ~, | (—7,7] by joining the endpoints with a straight line
encircles the number w with winding number one for T > 1/r. Moreover,
the straight line

ﬁT : [—1, 1] —C
joining the endpoints (from top to bottom) is given by
Br(s) :=w — T'sin(e) — isT cos(e)

1 e*¢
dcl =
27i /[.}T (—w C‘

and so

_T COS(E) /1 ez(o.)fTsin(e)fisTcos(s)) s
27 1 —T'sin(e) — isT cos(¢)

cos(e)e~Re(=) o~ Tsin()Re(2)+T cos(&) Im(2)|
sin(e)m '

Since z € Us, the last factor is bounded above by e~ 1#ATsin(e=8) and so
converges exponentially to zero as T tends to infinity. This proves Step 4.

Step 5. For 0 < § < e < g the map
S:Us\ {0} — LYX)
in Step 2 satisfies
}LI\I(I)SUI) {HS(z)x — x| ‘z e Us, |2z| = T‘} =0
forallx € X.

Assume first that = € dom(A). Let z € Us \ {0}, define r := |z|, and let the
curve 7, : R = C be given by equation (|7.4.19)). Then, by Step 2 and Step 4,

S(z)x —ex = 2L7r1 /% e ((¢cn— A)le — (¢~ w)_lx) d¢

£18
_ ! (- A) Az — wa) dC

2ri ), (—w

1 > ;Yr t ez'yr(t) _
T 2mi 7((2)—w(%(t)]1 — A)" Az — wa) dt.
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Since

by Step 1 and

by ([7.4.19)), it follows that
Me [ [ (t)|eRe=r @)

S —ev* < — dt || Az —
I8)o - emall < 5= [ B s —
Me [% . 0| ReG®) 2
< o |3 () |e dt || Az — wxl| re.
Now ! ]
() —w = —e"5+e) for |t| < —
r r
and )
Y(t) — w = tel(z7) for t > —
,
and

o 1
Y (t) —w = —te 15+ fort < —-—.
r

Thus [4,.(t)] < 7 for [t| < 1/r and |3,.(t)| = 1 for [t| > 1/r. Write z = rel?
with |0] < 0 < € and use the inequality

Re (tzei(g+5)> = trcos <g +e+ 9) = —trsin(e + 0) < —trsin(e — 0)

to obtain
- 1/7' z irt(E+e
/ ”)Ir(t)’ e () g — wRe(z) / "Yr(tﬂ oRe(Ze (G +e)) d
- —1/r

4 9¢Re(?) / % JRe(tze 5 19) 4y
1

< ewRe(z) @ + 2/00 e—trsin(a—(S) dt
r 1/r
< Re(2) <27T@ N 2) '
Combine these inequalities to obtain
M o)
IS - ol < 3= [ OO de s - o)
27 J_

o
msin(e — 0)

IN

M. e@Rel2) <e+ ) |Az — wz|| 7

for all z € Us\ {0} with |z| = r. This proves Step 5 in the case x € dom(A).
The general case follows from the special case by Step 3 and Theorem [2.1.5
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Step 6. Let 0 < & < eg and S be as in Step 2 and let 0 < § < €. Extend
the map S : Us \ {0} — LE(X) to all of Us by setting S(0) := 1. Then

S : U(; — KC(X )
is strongly continuous and satisfies

S(z+h)x— S
h

for all x € dom(A) and all z,h € Us.

(7.4.21)

)z _ /1 S(z + th) Az dt
0

Strong continuity follows from Step 5. To prove (7.4.21)), let z € dom(A)
and z,h € Us. Assume first that z # 0. Define the curve v, = v, : R — C

by (7.4.19)) as in Step 2. Then

1 1 1
/ S(z+th)Acdt = — / / eGP (¢ — A) P Ax dC di
0 2mi 0 Yr
1
= i / / eFHRIC (¢l — A) "t Az d¢
27['1 Yr 0
1 e(erh)C _ €Z<
= — [ " (c1—-A)tA
2ri )., he (c ) AwdC
1 e(erh)C _ €Z< T
= — [ ——— ((1-A) 2%
2ri )., h ((C ) g) dc

S(z+h)x —S(2)z
h :

Here the last assertion follows from the fact that, by the same argument as
in Step 4, we have

1 eX(ehd — 1)

2mi ), . h¢
whenever r >0 and 0 < § <& < 7/2 and 2,h € Us. This proves (7.4.21)
in the case z # 0. In the case z = 0 the equation then follows from strong

continuity. This proves Step 6.

¢ =1

Step 7. The map S : Us — L(X) in Step 2 and Step 6 satisfies

(7.4.22) S(w+ z) = S(w)S(z)

for all z,w € Us.

By strong continuity it suffices to prove equation (7.4.22) for z,w € Us.
Fix two elements w,z € Us. Choose two numbers 0 < p < r, define the
curve 7 = ¥ : R = C by equation (7.4.19) as in Step 2, and define the

curve 3:= 8,5 : R — C by the same formula with e replaced by 6 and r
replaced by p (see Figure [7.4.3)).
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T/2—¢€

c(A)

/

Figure 7.4.3. Integration along £ and 7.

With this notation in place, the argument in the proof of Step 4 yields

1 / e*n 1 / ews
SR (B R T B Bt
ot ) = B ™ omi Jye— A ™

for all s,t € R and all z,w € C. The key observation is that the integrals
along the relevant vertical straight lines converge to zero as in Step 4,
and that in the first case the resulting v-loops have winding number zero
about [(s), while in the second case the resulting S-loops have winding
number one about ~y(t) for sufficiently large 7. Hence

1

S)S() = 55 [ €= AT 8 de
- L [ercien—a) (;ﬁ/vezn (1 — 4)~" dn) de
- % (o [ e en—ay om -4 an) e
- 5/ (27” o ((SH—A)l—(nll—A)1>d77> it
;A 27“ , ;iﬂn d&) (= A)~" dn
e /7 @2 (1 — )~ dy
— S(w+2)

This proves Step 7.
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Step 8. The map S : Us — L4(X) is an analytic semigroup. It satis-
fies (7.4.10) and its infinitesimal generator is the operator A.

That S is an analytic semigroup follows from Step 6 and Step 7, and the
estimate ([7.4.10)) follows from Step 3 by taking the limit w — wp. Now
let z € dom(A) and ¢ > 0. Then the integral

1

St = 5~ : e (¢l — A)trd¢

in ([7.4.20) converges in the Banach space dom(A) with the graph norm.
Hence we have S(t)z € dom(A) and
1
AS(t)r = — | (¢l — A"t Az d¢ = S(t)Ax.
27 J,,

Moreover,
t
S(t)yr —x = / S(s)Ax ds
0

by Step 6. Hence A and S satisfy condition (ii) in Lemma and so A is
the infinitesimal generator of S. This proves Step 8 and Theorem [7.4.4] [

7.4.3. Examples of Analytic Semigroups. By Theorem an ana-
lytic semigroup S : [0,00) — L°(X) on a complex Banach space X with
infinitesimal generator A : dom(A) — X satisfies im(S(¢)) C dom(A) for
all ¢ > 0. Hence a group of operators S : R — L£°(X) cannot be analytic
unless its infinitesimal generator is a bounded operator (see Lemma

and Theorem [7.2.4]).

EXAMPLE 7.4.5 (Self-Adjoint Semigroups). Let H be a complex Hil-
bert space and let A : dom(A) — H be a self-adjoint operator such that
(z, Az)
wo = sup 5
zedom(AN{0} 7]

By Theorem the operator A is the infinitesimal generator of a strongly
continuous self-adjoint semigroup S : [0,00) — L°(H). Moreover, if A € C
satisfies ReA > wp, then A\ € p(A) and

A —wol [|z]I* = [All2l* — wollz[*] < [Allz]|* = (z, Az)| < lz[[|Az — Az]|

for all x € X. This implies

1
A — wol

(AT —A)7 < for all A € C with Re\ > wy.

Hence it follows from Theorem [7.4.4]that S is an analytic semigroup. In fact,
the proof of Theorem with M =1 and ¢y = 7/2 shows that S extends
to a holomorphic function S : {z € C|Rez > wp} — L°(H) on an open half-
space and that the spectrum of A is contained in the half-axis (—oo,wy].
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EXAMPLE 7.4.6 (Heat Equation). The solutions of the heat equation

7.4.23 Oru = A A= —
( ) tU u, ; 83}12,
determine a contraction semigroup on LP(R™) for 1 < p < oo, given by
1 2
,: ,: —|z|2/4t

for t > 0 and f € L?(R") (see Example [7.1.6). Its infinitesimal genera-
tor is the Laplace operator A : W*P(R") — LP(R") in Example . In
the case p = 2 the semigroup S is self-adjoint, and so is analytic by Exam-
ple In general, one can verify directly that the formula is
well-defined for every complex number ¢ with positive real part and defines
a holomorphic function on the right half-plane.

ExaMPLE 7.4.7. This example shows that every closed subset of a sector
of the form Cs in is the spectrum of the infinitesimal generator of an
analytic semigroup on a Hilbert space. Let H be a separable complex Hilbert
space, let (e;);en be a complex orthonormal basis of H, and let (\;);en be a
sequence of complex numbers. Define the operator Ay : dom(Ay) — H by

> IAiPes o) < 00}7
=1

Az = Z Ailei, x)e; for € dom(A4,).
i=1

dom(A4,) := {a: eH

(7.4.25)

By Example this operator generates a strongly continuous semigroup
if and only if sup;cy Re); < oo. In this case the semigroup is given by

oo
(7.4.26) Sx(t)z = Ze)‘it(ei,x)ei fort >0 and z € H.
i=1
(See Example [7.1.3]) The semigroup (7.4.26) is analytic if and only if
ImA;
(7.4.27) sup MmAil < 00 for w > wp := sup Rel,.
1EN w — R,e)\z €N

Exercise: Show that this condition holds for some w > wy if and only if it
holds for all w > wgy. Assuming , let w > wp, choose 0 < § < /2 such
that sin(0)|Im\;| < cos(d)(w — Re);) for all ¢, and define M :=1/sin(6).
Show that, for all u € C,

1 M
R > 1—-A -1 = = ’
e(p) >w = H(“ A H fg\? p—X| T |p—wl

Show that o(Ay) = {\;|i € N} C {w+rel? |r >0, 7/2+0 < |0] < 7}.
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7.5. Banach Space Valued Measurable Functions

This is a preparatory section. It studies measurable functions on an inter-
val with values in a Banach space, a subject with many applications and
of interest in its own right. The first subsection introduces the concept
of a strongly measurable function and proves Pettis’ theorem. The next
four subsections deal with the Banach space LP(I, X), the Radon—Nikodym
property of a Banach space, the dual space of LP(I,X), and the Sobolev
space W1P(I, X). All these results will be used in Section on the inho-
mogeneous equation & = Ax + f associated to a semigroup.

7.5.1. Measurable Functions. The following definition summarizes the
different notions of measurability for functions with values in a Banach
space. Although these definitions and many of the results carry over to
functions on general measure spaces, in this book we will only use Banach
space valued functions on an interval and restrict the discussion to that case.

DEFINITION 7.5.1. Let X be a real Banach space and let I C R be an
interval. A function f: 1 — X is called

e weakly continuous if the function
(", f): I >R
is continuous for all z* € X*,
e weakly measurable if the function
(", f): I =R
is Borel measurable for all z* € X*,
e measurable if f~!(B) C I is a Borel set for every Borel set B C X,
e a measurable step function if it is measurable and f([) is a finite set,

e strongly measurable if there exists a sequence of measurable step func-
tions fp, : I — X such that lim,,_,o fn(t) = f(¢) for almost all t € I.

The basic example, which illustrates the subtlety of this story is the
function [0,1] — L*°([0,1]) : t = f;, defined by f; 1= x4, i-e. fi(s) =1
for 0 < s <t and fi(s) =0 for t <s <1. This function is weakly measur-
able, but not strongly measurable and is everywhere discontinuous. The
same function, understood with values in the Banach space L([0,1]), is an
example of a Lipschitz continuous function which is nowhere differentiable.

It follows directly from the definition that the image of a strongly mea-
surable function f : I — X is contained in a separable subspace of X.

Example below shows that weakly measurable functions need not sat-
isfy this condition.
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THEOREM 7.5.2 (Pettis). Let X be a real Banach space. Fiz two num-
bers a < b and a function f : [a,b] — X. Then the following holds.

(i) Assume X is separable and let E C X* be a linear subspace such that

¥, x
(7.5.1) lz|| = sup I " )
zree\fo}  lT*|l

for all x € X.

If (x*, f) is measurable for all x* € E, then f is strongly measurable.

(ii) If X is separable and f is weakly measurable, then f is strongly mea-
surable.

(iii) If f is weakly continuous, then f is strongly measurable.
(iv) If f is strongly measurable, then the function [a,b] — R : ¢t — || f(t)] is

Borel measurable.

Proof. We prove part (i). Thus assume X is separable and F C X* is a

linear subspace that satisfies (7.5.1)). Abbreviate I := [a,b] and let f : [ — X
be a function such that (z*, f) : I — R is measurable for all z* € E. We
prove in three steps that f is strongly measurable.

Step 1. Let £ € X and r > 0. Then f~1(B,(€)) is a Borel subset of I.

Choose a dense sequence z,, € X \ B,({) and define
1
En ::§(||xn—§||—r)>0 for n € N.

Then X \ B, (§) = U~ B:, (xy). For n € N choose z}, € E such that

lapll =1, (2,20 — &) > llzn — &l — n.

Then, for all n € N, all n € B,(€), and all z € B, (x,), we have
(@, m) < (23, ) + 7 = (20, &) + |l2n = £l| = 260 < (2, 20) — en < (2, 7).
This implies B, (§) =, {y € X | (=}, y) < (x},&) +r}. Hence

[e.9]

FBE) = () {t e I] (s f0) < (@5, &) +7)

n=1

is a Borel set. This proves Step 1.
Step 2. f is measurable.

Let U C X be open. Since X is separable, there exists a sequence x,, € X

and a sequence of real numbers &, > 0 such that U = |J,~ | B, (). Hence
it follows from Step 1 that f~1(U) = 22, f~1(Be,(x,)) is a Borel subset

of I. This shows that f is Borel measurable by [75, Thm 1.20].
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Step 3. [ is strongly measurable.

Since X is separable there exists a dense sequence x; € X. For k,n € N
define the set

._ | f(t) — zk|| < 1/n and
(75:2)  in = {t © I’ If(t) —agl| > 1nfori=1,... k-1 }

This is a Borel subset of I by Step 2. Moreover ¥, N ¥, = 0 for k # ¢
and | Jp~; Xk, = I. Hence, for each n € N, there is an N,, € N such that

o0
(7.5.3) pl U Sen | <27
k=Np+1

Here p denotes the restriction of the Lebesgue measure to the Borel o-
algebra of I. Define the functions f,, : I — X by

fult)y = { Zw fort € Bn and k =1, N,
Tl 0, forte UZO:NH-H Sk

These are measurable step functions. Define

(7.5.4)

o] oo Np

o= U U % ne=U N Uz

m=1n=m k=N, -+1 m=1n=m k=1

Then () =0 by ([75.3) and ||f.(t) — f(t)]| < 1/n for all t € UL, Tpn
by (7.5.2) and (7.5.4). If t € I\ Q, then there exists an integer m € N

such that ¢t € ()2 kNgl Y n and hence || f,(t) — f(t)|]| < 1/n for every in-

teger n > m. Thus
lim f,(t) = f(t) forallt e I\ Q.
n—oo

This proves Step 3 and part (i).
Part (ii) follows from (i) with £ = X* and the Hahn-Banach Theorem
(Corollary [2.3.4]).

We prove part (iii). Assume f: I — X is weakly continuous and define
Xo :=span{f(t)|t € INQ}.

If t € I and 2* € Xy, then (z*, f(t)) = 0 by weak continuity. Hence
it follows from Corollary [2.3.24] that f(I) C Xy. Since Xy is separable by
definition, it follows from (ii) that f is strongly measurable.

We prove part (iv). Assume f : I — X is strongly measurable and
choose a sequence of measurable step functions f, : I — X that converges
almost everywhere to f. Then the sequence ||f,||: I — R of measurable
step functions converges almost everywhere to ||f|| : I — R and hence the
function || f]| : I — R is measurable. This proves Theorem O
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The next example shows that the hypothesis that X is separable cannot
be removed in part (ii) of Theorem

EXAMPLE 7.5.3. (i) Let H be a nonseparable real Hilbert space, equip-
ped with an uncountable orthonormal basis

{et}o<i<1.

Thus the vectors e, € H are parametrized by the elements of the unit in-
terval [0,1] C R and satisfy (es,e;) =0 for s # ¢ and | =1 for all ¢.
The function f:[0,1] — H defined by f(¢) :=e; is not strongly measur-
able because every Borel set © C [0, 1] of measure zero has an uncountable
complement, so f([0,1]\ §2) is not contained in a separable subspace of H.
However, the function f is weakly measurable because each x € H has the
form z = Y%, Ajes, for a sequence A; € R such that Y22, A? < oo and a se-
quence of pairwise distinct elements s; € [0, 1]; thus (x, f(¢ )) =\ fort=s;

and (z, f(t)) =0 for t ¢ {s;|i € N}.
(ii) Let X := L*°([0,1]) and define the function f : [0,1] — L>(]0, 1]) by

1, fo<z<t

GO = 0= { ¢ T ETED

This function satisfies || f(s) — f(¢)|| « = 1 for all s # ¢ and the same argu-
ment as in part (i) shows that f is not strongly measurable. However, when
the same function is considered with values in the Banach space LP([0,1])
for 1 < p < o0, it is continuous and hence strongly measurable.

THEOREM 7.5.4. Let X be a Banach space. Fix real numbers 1 < p < 0o
and a < b and a function f: 1 :=[a,b] = X. The following are equivalent.

(i) f is strongly measurable and
b
[ sl dt <.

(ii) For every e > 0 there exists a measurable step function g: 1 — X such
that the function I — R :tw— || f(t) — g(t)|| is Borel measurable and

/ 1£(t) — g(&)| di <e.

(iii) For every e > 0 there exists a continuous function g : I — X such that
the function I — R :t — || f(t) — g(t)|| is Borel measurable and

/ 1£(t) — g(®)| di <e.
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Proof. We prove that (i) implies (ii). Choose a sequence of measurable
step functions g, : I — X that converges almost everywhere to f. Forn € N
define the function f, : I — X by

o), i g ()] < IIF + 1, or
fult) = { 0, if flga®)] = [[F O +1, fortel

Then f, is a measurable step function for every n € N by part (iv) of
Theorem Moreover, lim, o || fn(t) — f(#)||” = 0 for almost all t € T
and
1£() = faOI” < IFON+1)" < 4F@)IP + 27

for all t € I and all n € N. The function on the right is integrable by (i).
Hence lim,, f; |f (&) = fn(t)|[” dt = 0 by the Lebesgue Dominated Con-
vergence Theorem. This shows that (i) implies (ii).

We prove that (ii) implies (i). Choose a sequence of measurable step
functions f, : I — X such that the function ||f — f,|| : I — R is Borel

measurable and lim,, f; £ () — fu(t)||P dt = 0. Then there exists a sub-
sequence f,, such that lim; o || f(t) — fn,(£)]| = O for almost every ¢t € I
by [75], Cor 4.10]. Hence f is strongly measurable. Now choose an integer n
such that

b
[ 5= gatert? ar <.

Then, by Minkowski’s inequality,

(/ab [FOll dt) " < </ab L fa ()P dt> " 1< 0.

Hence (ii) implies (i) and the same argument shows that (iii) implies (i).
We prove that (i) implies (iii). For this it suffices to assume that f is a
measurable step function with precisely one nonzero value. Let B C I be a
Borel set and let x € X \ {0} and assume f = xpz. Fix a constant € > 0.
Since the Lebesgue measure is regular by [75, Thm 2.13], there exists a
compact set K C I and an open set U C I such that
€

KcBcCU, wU\ K) < .
[l][P

By Urysohn’s Lemma there exists a continuous function ¢ : I — [0, 1] such
that ¢(t) =1 for all t € K and ¢(t) =0 for all t € I \ U. Define the func-
tion g : I — X by g := vx. Then [¢) — xp| < xpn\x and hence

b
/ I1f () = g dté/ [P dt = u(U\ K|z <.
a U\K

This proves Theorem O
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The next lemma is a direct consequence of Theorem It will play
a central role in Exercise [Z.7.11]

LEMMA 7.5.5. Let X be a Banach space and fix real numbers 1 < p < oo
and a < b. Let f:[a,b] = X be a strongly measurable function such that

b
/ 107 dt < oo.

Then, for every e > 0, there exists a § > 0 such that, for all h € R,

b—h
0<h<$ = / If(t+h)—f@OF dt <e.

Proof. Exercise. Hint: Prove this first when f is continuous and then
use Theorem [7.5.41 O

7.5.2. The Banach Space LP(I, X). The remainder of this section begins
with a discussion of Banach space valued LP functions on an interval, and
then moves on to the Radon—Nikodym property, the dual space of LP, and
the Sobolev space WP, These are important topics with many applications.
In particular, this material will be used in Section[7.6]on the inhomogeneous
equation associated to a semigroup.

Let X be a real Banach space, fix real numbers 1 < p < co and a < b,
and abbreviate I := [a,b]. Define LP(I, X) := LP(I, X)/~, where

(7.5.5) LP(I1,X) = {f I X

f is strongly measurable
and [P f(0)|P dt < oo

and the equivalence relation is equality almost everywhere. It is often conve-
nient to abuse notation and use f to denote an equivalence class in LP(I, X)
as well as a representative of this class in £LP(I, X). For f € £LP(I, X) define

(7.5.6) 1A lle = </ab 1@ dt> 1/p-

By the Minkowski inequality LP(I, X)) is a normed vector space. For p = 0o
we define L>(1, X) := L>(I, X)/~, where

(7.5.7) L2, X) = {f T X

f is strongly measurable
and bounded

and the equivalence relation is again given by equality almost everywhere.
The norm on L™ (I, X) is the essential supremum

FE C I is a Borel set }

of Lebesgue measure zero

(7.5.8) [l oo == inf{ sup || f(®)]
tel\E

for f € £L°(1,X). We emphasize that these definitions have been chosen
such that the functions in £P(I, X) are all strongly measurable.
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THEOREM 7.5.6. Let X be a Banach space, let I C R be a compact in-
terval, and let 1 < p < oco. Then the following holds.

(1) Let (fu)nen be a Cauchy sequence in LP(1,X). If p = oo, then the
sequence (fn(t))nen converges in X for almost every t € I. If 1 < p < o0,
then there exists a subsequence (fn,)ien such that the sequence (fp,(t))ien
converges in X for almost every t € 1.

(ii) LP(I,X) is a Banach space.

(iii) For 1 < p < oo, the subspace C§°(I, X) of smooth functions f: I — X
that vanish near the boundary is a dense subset of LP(I,X).

(iv) There exists a unique linear operator

b
LP(I,X)— X : f»—>/ f(t)dt,

called the integral, such that

(7.5.9) <:v*,/abf(t) dt> :/ab<:c*,f(t)>dt

forall f € LP(I,X) and all z* € X*.

Proof. We prove the assertions only for p < co. The case p = oo is left
to the reader. Let f,, € LP(I,X) be a Cauchy sequence. Choose a sub-
sequence f,, such that Hfm — fnia HLP <27 for all i € N. Then the same
argument as in [75, p 139] shows that f,, converges almost everywhere to
a function f : I — X. Namely, the sequence of Borel measurable func-
tions ¢y := Zle H fnier — fni|| L — [0, 00) is monotonically increasing and
satisfies ||¢x||;» < 1 for all k. Hence, by the Lebesgue Monotone Conver-
gence Theorem, the sequence gbi : I — [0, 00) converges to a Borel measur-
able function ¢ : I — [0, 00| and

b b
[ etrae= g [Conorae<i,

Thus there is a Borel set E C I of Lebesgue measure zero such that () < oo
for all t € I\ E (see [75, Lemma 1.47]). Hence the sequence (fy,(t))ien
converges in X for all ¢t € I\ E by Lemma Define f : I — X by

| limyeo fr,(t), fortel\E,
f(t) = { 0, fort e E.

By Theorem [7.5.4] and the axiom of countable choice, there exists a sequence
of measurable step functions g; : I — X such that |g; — fn,||;, <27 for

all 2 € N. Use the same argument as above, pass to a further subsequence,
and enlarge the Borel set E of Lebesgue measure zero, if necessary, to obtain
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that the sequence (gi(t) — fn,;(t))ien converges to zero for every t € I\ E.
Then g; converges to f almost everywhere, and so f is strongly measurable.

We must prove that f € £P(1,X) and lim, o || f — full;p = 0. To see

this, fix a constant € > 0 and choose ng € N such that || f, — fm|[;, < € for
all integers n,m > ng. Then, by the Lemma of Fatou [75, Thm 1.41],

b
[ 1520 - 5017 = [ iint [ 4200) ~ SO p 0] a
‘ b
<timinf [ |a0) = fu (Oxns O at

—hmlnf/ | fn(t) = fr ()] dt

for all n > ng. Hence || fl| 1, < || fnoll, +€ < o0, and so f € LP(I, X) and the

sequence (fp)nen converges to f in Lp(I X). Hence LP(I,X) is a Banach
space and this proves (i) and (ii).

We prove (iii). That C(I, X) is dense in LP(I, X) follows directly from
Theorem Hence multiplication with smooth cutoff functions that van-
ish near the boundary shows that the space C.(I, X) of continuous functions
with support in the interior of I is also dense in LP(I, X). Now fix a func-
tion f € C.(I,X) and choose a smooth function p: R — [0,00) with sup-
port in the interval [—1,1] and mean value 1, and define ps(t) := 51 p(6~1¢)
for 6 > 0 and t € R. Then the function f5: 1 — R, defined by

F3(t) o= (ps * ) (1) = /R pa(t — 5)f(s) ds

for t € R, is smooth for every § > 0 and vanishes near the boundary of I
for 0 > 0 sufficiently small. Moreover, f5 converges to f uniformly, because

sup | /5(t) ~ FOl = sup | [ pilt = 5)(7(s) — F(B)ds
<sup{[If(s) = JOIl | s.t € I, |s — 1] < 5}

and f is uniformly continuous. Since ||f5s — fll» < [I|YP || f5 — fll 1o, this
implies lims_q || fs — f||;» = 0 and this proves part (iii).

Next observe that the operator C(I,X) — X : f — f; f(t)dt in
Lemma5.1.8]is bounded with respect to the LP norm on C(I, X) by part (vi)
of Lemma and the Hoélder inequality. Since the subspace C(I, X) is
dense in LP(I,X) by part (i), the integral extends uniquely to a bounded
linear functional on LP(I, X). Since every linear operator satisfying
is necessarily bounded, this proves part (iv) and Theorem ([l
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7.5.3. The Radon—Nikodym Property. The next goal is to examine the
dual space of LP(I, X). This is a surprisingly delicate topic and many math-
ematicians have worked on this problem, starting with Bochner [15], [16]. It
has led to the question of whether an absolutely continuous function on an
interval with values in a Banach space is almost everywhere differentiable.
We begin this discussion by examining the derivative of a continuous func-
tion on the domain where it exists.

LEMMA 7.5.7. Let X be a Banach space, let I = [0, 1] be the unit interval,
and let F': I — X be a continuous function. Then the set

(7.5.10) Z :={t € I|F is not differentiable at t}
is a Borel set, and the function f : 1 — X defined by

] 0, forte Z,
(7.5.11) f(#) = { F'(t), fortel\Z,

is strongly measurable.

Proof. Let € > 0. Then the set

ift+helandt+ A €1 then
F(t+h)—F(t) F(t+h’)fF(t)‘ <e
h R’ =

E(g,h,h) = {t el

is a Borel set for all h,h’ € R\ {0} and hence so is the set

/ !
E.s:= () Elehl)= (] E(hh)
h,h'€Q h,h! €R
0<|hl|,|h|<8 0<|hl|,|h/|<8

for all § > 0. Here the second equality holds because F' is continuous. Thus

Bm (VU= U Fes

e€eQ 6€Q e>06>0
e>0 6>0

is a Borel set. Now the function F' is differentiable at an element ¢ € I if
and only if t € E. Thus Z =1\ E is a Borel set.

For each n € N define the function f, : I — X by

0, ifteZ,
(7.5.12) fo(t):=¢ 2*(F(t+2")—F(t)), ift€ Eand 0<t<1/2,
2"(F(t)—F(t—2"")), iftc Eand 1/2 <t <1.

Let Xg C X be the smallest closed subspace that contains the image of F'.
Then X, is a separable subspace of X. For each n the function f,, takes
values in X and is weakly measurable, and hence is strongly measurable by
part (ii) of Theorem Moreover, f(t) = lim;_oo fn(t) for every ¢ € I.
Hence f takes values in Xy and is weakly measurable, and so is strongly
measurable by part (ii) of Theorem This proves Lemma [7.5.7 O
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Let I C R be a compact interval and let F': I — X be a continuous
function with values in a Banach space. Recall that I is called Lipschitz
continuous if there exists a ¢ > 0 such that ||F(s) — F(t)|| < c|s —t| for
all s,¢ € I. Recall that F is called absolutely continuous if for every € > 0
there exists a § > 0 such that every sequence s; <t; <--- < sy <tyinl
with > .|s; — t;| < d satisfies Y, || F(s;) — F'(t:)| < e.

LEMMA 7.5.8. Let X be a Banach space, let I = [0,1], and let F : I — X
be a Lipschitz continuous function that is almost everywhere differentiable.
Then the function f : I — X defined by (7.5.10) and (7.5.11)) is bounded and
strongly measurable and satisfies

F(t) — F(0) :/Otf(s)ds forallt e I.

Proof. Choose ¢ > 0 such that ||F(s) — F(t)|| < c|s —t| for all s,t € I.
Then the functions f,, : I — X in satisfy || fn(t)|| < cforallt € I and
all n € N. Hence || f(t)|| < c for all t € I. Second, f is strongly measurable
by Lemmal[7.5.7} Third, the set Z C I in Lemmal[7.5.7 has Lebesgue measure
zero by assumption. Hence for each 2* € X* the function (z*, F) : I — R is
absolutely continuous and its derivative agrees almost everywhere with the
function (z*, f) : I — R. By [75, Thm 6.19], this implies

t
@ )= FO) = [ @ f)ds
for all t € I and all * € X*. This proves Lemma [7.5.8 (|

LEMMA 7.5.9. Let X be a Banach space, let I =[0,1], let f: I — X be
a strongly measurable function with f01|]f(t)|| dt < 0o, and define F : I — X

by F(t) :== fg f(s)ds fort € I. Then F is absolutely continuous and almost
everywhere differentiable with F'(t) = f(t) for almost every t € I.

Proof. The absolute continuity of F' follows as in [75, Thm 6.29]. That F’
is almost everywhere differentiable with F’ = f follows from the Lebesgue
Differentiation Theorem [75, Thm 6.14] whose proof carries over verbatim
to Banach space valued functions. This proves Lemma [7.5.9 O

With these preparations in place we are now ready to formulate the main
problem of this subsection, namely whether or not every Lipschitz contin-
uous function with values in a given Banach space X is almost everywhere
differentiable. If it is, then Lemmal[7.5.7] shows that its derivative is strongly
measurable and Lemma shows that it is the integral of its derivative.
Lemma shows that the integrals of bounded measurable functions are
necessarily almost everywhere differentiable. The next lemma relates this
problem to the differentiability of absolutely continuous functions.
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LEMMA 7.5.10. Let X be a Banach space and let I :=[0,1] be the unit
interval. Then the following are equivalent.

(1) Every Lipschitz continuous function F : I — X is almost everywhere dif-
ferentiable.

(ii) Ewvery absolutely continuous function F : I — X is almost everywhere
differentiable.

If these equivalent conditions are satisfied, and F' : I — X is an absolutely
continuous function, then its dem’vatz’ve f =F': I — X is strongly measur-
able, fol |£(s)]l ds < o0, and F(t) fo s)ds for allt € I.

Proof. That (ii) implies (i) is obvious, because every Lipschitz continu-
ous function is absolutely continuous. Hence assume (i) and let F': [ — X
be an absolutely continuous function. Define ® : [0, 1] — [0, 00) by

O(t) := Var(Flpy) = sup Z 1 (t: ~0ll-

O=to<t1<--<ty=t
Then & is absolutely continuous and monotone. Denote
c:=®(1) = Var(F).

Since [[F(t) — F(s)]] < ®(t) — ®(s) for all 0 < s <¢ <1, there is a unique
function G : [0,¢] — X such that G(®(t)) = F(t) for all t € [0,1], and G
is Lipschitz continuous with Lipschitz constant 1. Hence, by part (i), G
is almost everywhere differentiable and so, by Lemma there exists a
strongly measurable g : I — X such that

0
sup lg(r)| <1, G(6) = G(0) + /O o(r) dr

0<7<e
for all 6 € [0, c]. Moreover, by [75, Thm 6.19], there exists a Borel measur-
able function ¢ : I — [0, 00) with f&]qﬁ )| ds < oo such that

/¢

for all ¢t € I. Hence the function f := qﬁ go®): I — X is strongly measur-
able and satisfies fo If(s)|l ds < fO s)ds < oo and

/ £(s) ds _/ 6(5)g((s)) ds = /j(t)g(f) dr = F(t) - F(0)

for all t € I. Here the second step uses the fact that C'(I) is dense in L'(T)
and so there exists a sequence of continuous functions ¢; : [0,1] — [0, 00)
with f @i(t) dt = ¢ and lim;_, fO |pi(t) — &(t)] = 0. Now it follows from
Lemma [7.5.9) - 9 that F' is differentiable almost everywhere and F’ = f. This
proves Lemma O
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DEFINITION 7.5.11. A Banach space X is said to have the Radon—
Nikodym property if every Lipschitz continuous function f:[0,1] - X
is almost everywhere differentiable or, equivalently, every absolutely contin-
uous function f : [0,1] — X is almost everywhere differentiable.

Remark 7.5.12. The reason for this terminology lies in the fact that a
Banach space X has the Radon—Nikodym property if and only if it satis-
fies the following for every measurable space (M, A). Let v: A — X be a
countably additive map, i.e. if A; € A is a sequence of pairwise disjoint
measurable sets, then v (|J;2 A;i) = limp 00 D iy V(Ai) = D oq V(A;). As-
sume v has bounded variation, i.e.

N Al,..., Ay € A,
p(A) s=sup Y w(A)|| | AN A; =0 fori#j, p<oo
i=1 AiU---UAN=A

for all A € A. Then there exists a strongly A-measurable map f: M — X
with [, | fll dp < 0o and v(A) = [, fdu for all A € A.

That this condition is indeed equivalent to the Radon—Nikodym property
in Definition [7.5.11 was proved by Bochner—Taylor [17] in the late 1930s.
For other expositions see [10}, 21}, 22].

THEOREM 7.5.13 (Dunford—Pettis).

(1) If X is a Banach space and its dual space X* is separable, then X* has
the Radon—Nikodym property.

(ii) Every reflexive Banach space has the Radon—Nikodgm property.

Proof. See page U

Remark 7.5.14. (i) Part (i) of Theorem[7.5.13was proved by Gelfand [29]
using the notion in Definition and then by Dunford—Pettis [25] using
the notion in Remark[7.5.12] That Hilbert spaces have the Radon—Nikodym
property was first proved by Birkhoff [14], and this was extended to all re-
flexive spaces by Dunford—Pettis [25].

(ii) By part (i) of Theorem the Banach space X = ¢! has the Radon—
Nikodym property. This was first noted by Clarkson [20] and was ex-
tended by Dunford—Morse [24] to all Banach spaces with boundedly com-
plete Schauder bases. Clarkson [20] also proved that all uniformly convex
Banach spaces have the Radon—-Nikodym property.

(iii) Banach spaces that do not have the Radon—Nikodym property include
the examples X = L°°([0,1]) (Bochner [16]) and X = ¢y and X = L'([0,1])
(Clarkson [20]). Hence co and L'([0,1]) cannot be isomorphic to the dual
space of any Banach space.
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Proof of Theorem[7.5.13. We prove part (i), following the exposition by
Kreuter [50]. Let X be a real Banach space with a separable dual space X*
and let G : I = [0,1] — X* be a Lipschitz continuous function with G(0) = 0
and Lipschitz constant 1. Since X* is separable, so is X by Theorem [2.4.6]
Hence there exists a linearly independent sequence (zj)ren in X such that

N
X =Y, Y = {Z)\kﬂsz

k=1
For each = € X the function (G,z) : I — R is Lipschitz continuous with
Lipschitz constant ||z|. Hence (G,z) is almost everywhere differentiable.
For each k € N let Z; C I be the set of all ¢t € I such that (G, xg) is not
differentiable at t. Then Z; is a Borel set by Lemma and it has
Lebesgue measure zero. Hence the Borel set Z := Jr2; Zi has Lebesgue
measure zero and (G, y) is differentiable on I\ Z for each y € Y. Fory € Y
define the function g, : I — R by

N e N Al,.‘.,ANER}.

[ limpoh HG(t+Rh) - G(t),y), iftel\Z,
(7.5.13) gy(t) := { 0. fte 7
This function is measurable and satisfies
t
(75.14)  (G(t),y) = /0 ay(s)ds,  llg, @Ol <yl foralltel.

Moreover, for each t € I the functional ¥ — R : y — g,(¢) is linear and
bounded by ([7.5.14)), and so extends uniquely to a bounded linear functional
on all of X. Thus there exists a unique function g : I — X* such that

(7.5.15) (9(t),y) =gy(t) fortelandyeY, sup |lg(t)]] < 1.
0<t<1

By we have
(7.5.16) (G(t),x) :/ (g(s),x)ds
0

forallz € Y and all t € I. By continuity in « the function (g, x) is Borel mea-
surable for all x € X and equation continues to hold for all z € X
and all ¢t € I. Since X* is separable, it follows from part (i) of Theorem|[7.5.2]
(with X replaced by X* and F := (X ) C X**) that the function g : I — X*
is strongly measurable. Hence G(t) = fot g(s)ds for all t € I by (7.5.16), and
so it follows from the Lebesgue Differentiation Theorem that G is almost
everywhere differentiable (see Lemma (7.5.9). This proves part (i).

We prove part (ii). Let X be a reflexive Banach space and let G : I — X
be a Lipschitz continuous function. Denote by Y C X the smallest closed
subspace of X that contains the image of G. Then Y is separable and is
reflexive by Theorem Hence it follows from part (i) that G is almost
everywhere differentiable, and this proves Theorem O
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7.5.4. The Dual Space of LP(I,X). It is a natural question to ask how
the dual space of LP(I, X)) can be characterized. The obvious candidate for
the dual space is LI(I, X*) with 1/p+1/q = 1.

LEMMA 7.5.15. Let X be a real Banach space, let I = [a,b] be a compact
interval, let 1 < p,q < oo with 1/p+1/q=1, and let g € LY(I,X*). Then
the map Ay : LP(I,X) — R, defined by

b
(7.5.17) A= [0 fO) e for £ € £2(1,),
is a bounded linear functional with ||Agl| = |9l q-

Proof. The function I — R : ¢+ (g(t), f(t)) is measurable because f
and g are strongly measurable. Moreover, by the Hélder inequality, this func-
tion is integrable and satisfies \fal)(g(t), f(t))dt] < |lg||zallf|lzr. Hence the
map Ay : LP(I,X) — R is a bounded linear functional with ||Ag|| < ||g||;4-
Thus the map L(I, X*) — LP(I, X)* is a bounded linear operator of norm
less than or equal to one. To prove that it is an isometry, it suffices to prove
the equation ||Ay|| = ||g]| ;4 for all elements g of a dense subset of LI(1, X*).
Such a dense subset is the set of measurable step functions by Theorem[7.5.4
provided that ¢ < co. Here we focus on the case 1 < p, ¢ < 0o and leave the
remaining cases to the reader. Consider a function of the form

m
9= _xB.7
i—1

for x7,...,2}, € X*\ {0} and pairwise disjoint Borel sets By, ..., By, C I.
Fix a number € > 0 and choose elements 7, ..., x,, € X such that ||z;|| =1
and (z},x;) > (1 —¢) ||7|| for all i. Define the function f: I — X by

F=) xllaf)" e
7

Then
Jlo: 5= DB il (7o) > (1= ol
and
1/p 1-1/q
-1
11 = (Zu ) 7 “) <Zu )|l Hq) = lgllf"
This implies [|Ay| > HfHL Jilg, f) > (L =¢)|lgll, - Since & > 0 was cho-
sen arbitrarily, we find that |Ag H = || g|| 1, for every measurable step func-

tion g : I — X* and this proves Lemma (I
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The central question is now under which conditions the isometric em-
bedding LY(I, X*) — LP(I, X)* in Lemma is surjective. The answer
depends on the Banach space X and is surprisingly subtle. It was first noted
by Bochner [15), 16] that a positive answer requires that every absolutely
continuous function with values in the dual space X™* is almost everywhere
differentiable.

THEOREM 7.5.16 (Bochner). Let X be a Banach space, let I :=[0,1],
and let p,q > 1 with 1/p+ 1/q = 1. Then the following are equivalent.

(i) The isometric embedding LI(I, X*) — LP(I,X)* is surjective.
(ii) The isometric embedding L>°(I, X*) — LY(I, X)* is surjective.
(iii) The dual space X* has the Radon—Nikodym property.

Proof. We prove that (i) implies (ii). Let A : L' (I, X) — R be a bounded
linear functional and denote

¢ = IA].

Then A restricts to a bounded linear functional on LP(I, X). Hence by
part (i) there is a function g € £9(I, X*) such that

/I (0, 1) = AF) < ||l

for all f e £P(I,X). We claim that ||g|;~ < c. Otherwise, there exists a
constant § > 0 such that the set

A= {tellllg®)>c+d}

has positive measure. By Theorem there is a sequence of measurable
step functions g; : I — X™* \ {0} that converges in L? and almost everywhere
to g. For each 7 let f;: I — X be a measurable step function that satis-
fies (gi(t), fi(t)) = (1 — 1) [|gi(t)|| and || f;(¢)|| = 1 for all i and ¢. Then

(.50 = (1= 1) IOl = o) ~ 0

for all 7 and ¢, and hence
limin / (g xafs) > lim / lgill = / lgll = (¢ + 8)u(A).
11— 00 I 11— 00 A A
Thus
/I (9. xaf) > cn(A) = e xafill

for ¢ sufficiently large. This contradiction shows that ||g|| ;- < ¢ as claimed.
This proves that (i) implies (ii).
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We prove that (ii) implies (iii). Let G : I — X* be a Lipschitz continuous
function with Lipschitz constant ¢ so that

1G(s) = GBI < cls — ]

for all s,t € I. For a step function f : I — X of the form

N
f = Z X[tifl,ti)xi
=0

with 0 =tg <t;1 <--- <ty =1and z; € X define
N

A(f) =) (G(t:) = G(tin), ).

i=1
Then

N
A < e (ti—tioa) il = el £ 1 -
=1

Thus A is a bounded linear functional on a dense subset of L'(I,X), by
Theorem [7.5.6] and hence extends uniquely to a bounded linear functional
on L'(I, X) which will still be denoted by

A:LYI,X) = R.

By part (ii), there exists a bounded strongly measurable function g : I — X*
such that

1
/0 (9(t), 1(1)) dt = A(S)

for all f € £LY(I,X). Take f := X[0,1)* to obtain

</0tg(s) ds,x> = /0t<g(s),a:> ds

= A(xp,n))
= (G(t) — G(0), )

for all t € I and all x € X. This implies

/0 o(s)ds = G(t) — G(0)

for all ¢t € I. Hence it follows from the Lebesgue Differentiation Theorem
(see for example [75, Thm 6.14]) that the function G is almost everywhere
differentiable and

G =g.
This shows that X* has the Radon—Nikodym property.
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We prove that (iii) implies (i). Let A : LP(I, X) — R be a bounded linear
functional and let B C 2 be the Borel o-algebra. Define the map v : B — X*
by

(7.5.18) (v(B),x) := A(xBx) for Be B and z € X.

More precisely, the linear functional X — R : x — A(ypz) is bounded be-
cause [A(xpx)| < ||All Ixp2l < A u(B)"/7 ||z]. We prove that every fi-

nite sequence of pairwise disjoint Borel sets By, ..., By € B satisfies
N N 1/p

(7.5.19) D IwB)l < A p (U Bz’) :
i=1 i=1

To see this, fix a constant € > 0 and, for each 4, choose a vector x; € X
such that ||a;]| = 1 and (v(B;),z;) > (1 —¢€) |[v(B;)]|. Define f := )", xB, ;.
Then

S ml < ¥ B A I, _ AL By

Cl—-e~ 1-¢ 1—¢
This proves ([7.5.19)).
Now define the function G : I — X* by
(7.5.20) G(t) :== v([0,¢]) fort € I.

This function satisfies G(0) = 0 and is absolutely continuous by ([7.5.19)).
Hence, by (iii) there exists a function g € £1(I, X*) such that

t
(7.5.21) G(t) = / g(s)ds forallte 1.
0

For each x € X consider the bounded linear functional A, : LP(I) — R de-
fined by Az(¢) := A(¢z) for ¢ € LP(I). By [75, Thm 4.35] there exists a
function g, € £9(I) such that

(7.5.22) /ng¢ = A, (¢) = A(o2) for all ¢ € LP(I).

Then, for each t € I and each x € X, we have

/gm(s)dSZA(X[O,t]$):(V([Oaﬂ)’x>:<G(t)a$>:/ {9(s), ) ds.
0 0

Here the first equality follows from the definition of g, in ([7.5.22)), the sec-
ond from the definition of v in (7.5.18)), the third from the definition of G

in (7.5.20), and the last from (7.5.21). This shows that
(7.5.23) 9x(t) = (9(t), )

for every x € X and almost every t € I.
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We prove that every f € £P(I, X) satisfies

(75.24) (g, f) € £(D), /<g,f>:A<f>, /|<g,f>\<uAH|rfuLp-
I I

First let f : I — X be a measurable step function of the form f =), xp, i,
where the B; C I are pairwise disjoint Borel sets and z; € X \ {0}. Then

(9, f) = Z xB, (g, i) = Z XB; Gx:»

where the last equation follows from ((7.5.23|). Thus (g, f) is integrable be-
cause x g, is bounded and g,, € L(I) for each i. Moreover, it follows from
the definition of the functions g,, in (7.5.22) that

/I 0 =% /1 g = 3 Axa) = A9

Now define the function ¢; : I — R by ¢;(¢) := 0 fort € I\ B;, by ¢;(t) :==1
for t € B; with g, (t) >0, and by ¢;(t) := —1 for t € B; with g,(t) <O.
Let f =), xB;¢izi. Then

g, )] = ZXBilgxil = ZXB¢¢igx¢ = <g,ZXBi¢>iwi> = <g,f>
and hence

J1ta.01= [ {97y = 8D < INIF 0 = 1411710
I I
This proves ([7.5.24]) for measurable step functions f: I — X.

Now let f € LP(I,X) and choose a sequence of measurable step func-
tions f; : I — X that converges in LP and almost everywhere to f. Then

/ (g, 1) — (9. )] = / g fi— £ < AN = Fill,
I I

and so ({g, fi))ien is a Cauchy sequence in L!(I). Thus it converges to a
function h € L'(I). Passing to a suitable subsequence, we may assume the
sequence converges almost everywhere to h. Hence

h(t) = lim (g(8), fi(t)) = {g(2), f(£))-
Hence (g, f) is integrable and
Jtor)= [h= 1t [t9.£) = 1w A) = A
I I 1— 00 I 1— 00
Moreover,
9. Hllps = I8l = lim (g, fls < limm (AN 1Al = AN 110
and this proves .



422 7. Semigroups of Operators

With the help of (7.5.24]) we are now able to prove that g € £4(1, X™).
For n € N define the function g, : I — X* by

_ Joa®), if llg@®)| <n,
9n (%) ‘—{ 0, if g(t)] >n,  OTEL

These functions are strongly measurable and satisfy lim,,_,~ gn(t) = g(t) for
all t € I. Moreover, it follows from ([7.5.24]) that

/I gus )] < /I g, £) < 1AL 1 o

for every n € N and every f € LP(I, X). Since each function g, is bounded,
and hence an element of the space £4(I, X*), this implies

ol = sup  Mrlom M [l )]
nilre — <
feLr(I,X)\{0} 11l e feLp(1,X)\{0} 1l v

Here the equality follows from Lemma [7.5.15] By the Lebesgue Monotone
Convergence Theorem, this implies

a1 dt =t [ ool dt < a7,
I n—oo Jr

Thus g € LI, X), |lgll e < IAll, and [i{g, f) = A(f) for all f € LP(I, X)
by ([7.5.24). This completes the proof of Theorem O

The following result was proved by R.S. Phillips [66] in 1943.

< [IA]-

COROLLARY 7.5.17 (Phillips). Fiz a constant 1 < p < oo, let X be a re-
flexive Banach space, and let I C R be a compact interval. Then the Banach
space LP(I,X) is reflexive.

Proof. Choose the real number 1 < ¢ < oo such that 1/p+1/¢ = 1. The
dual space X ™ is reflexive by Theorem [2.4.4] and so has the Radon—Nikodym

property by part (i) of Theorem [7.5.13, Hence Theorem [7.5.16| asserts that
the isometric embeddings

(7.5.25) LYI, X*) — LP(I,X)*
and
(7.5.26) LP(I,X™) — LY(I,X™)*

are isomorphisms. Now the canonical inclusion ¢ : LP(I, X') — LP(I, X)** is
the composition

(7.5.27) LP(I,X)— LP(I,X™) — LI, X*)" — LP(I,X)*,
where the first map is induced by the canonical isomorphism ¢ : X — X**,
the second map is the isomorphism (7.5.26f), and the third map is the in-

verse of the dual operator of (7.5.25|) (see Corollary [4.1.18)). This proves
Corollary O
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7.5.5. The Sobolev Space WP(I, X). Let X be a Banach space, fix a
real number 1 < p < 0o, and let I = [a,b] C R be a compact interval. The
Sobolev space W!P(I, X) can be defined as the completion of the space
of continuously differentiable functions f : I — X with respect to the norm

1/p

(7.5.28) |fmmmx=<[f@fawp+ufuﬂf)ﬁ>

Alternatively, WP (I, X) is the space of all functions f : I — R that can be
expressed as the integrals of LP functions, i.e.

there exists a strongly
measurable function g : I — X
(7.5.29) WIP(I,X):={ f:1— X‘ such that ff lg(@®)||P dt < oo

and £(t) — f(a) = [ g(s) ds
forallte I

The Lebesgue Differentiation Theorem asserts that the function g: I — X
in (7.5.29) is uniquely determined by f up to equality almost everywhere
and agrees with the derivative of f (Lemma[7.5.9). The norm is again given
by equation (7.5.28). With this definition the functions in W1P(I, X) are
absolutely continuous, are almost everywhere differentiable, have derivatives
in £P(I,X), and can be expressed as the integrals of their derivatives. If X
has the Radon—Nikodym property, then every absolutely continuous func-
tion f: I — X is almost everywhere differentiable and we have

WhHP(I,X) = {f T X

f is absolutely continuous
and f' € LP(I,X)

If X does not have the Radon—Nikodym property, this last definition does
not even make sense, because absolutely continuous functions need not be
differentiable. Thus we will work with the definition . However, in all
the relevant examples in this book the Banach space in question is reflexive
and therefore does have the Radon—Nikodym property by Theorem [7.5.13]
The next theorem asserts that the Sobolev space W1P(I, X) is a Banach
space and that the space C°°(I, X) of smooth functions f : I — X is dense
in Whr(I, X).

THEOREM 7.5.18. Let X be a Banach space, let I = [a,b] C R be a com-
pact interval, and fir a constant 1 < p < oo. Then the following holds.
(i) There exists a c > 0 such that || f|| e < c||flly1p for all f € WIP(I, X).
(if) The Sobolev space WP(I, X) is complete with the norm (7.5.28).
(iii) The subspace C®(I,X) is dense in WIP(I, X).

(iv) If X is reflezive and 1 < p < oo, then WYP(I, X) is reflexive.
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Proof. We prove part (i). Let f € WP and choose g € LP(I, X) such
that fj g(s)ds = f(t) — f(a) for all t € I. Then, by Holder’s inequality,

1£(&) = f(s)ll = /gr dr < / lg(r)]| dr| < (b—a)"/* g

for all s,t € [a,b]. Here 1 < ¢ < o is chosen such that 1/p+1/¢=1. In
the case ¢ = oo we use the standard convention (b — a)/? = (b — a)? := 1.
Now raise this inequality to the power p and integrate to obtain

/ IF(t) = F(&)I” ds < (b= a) P |glff, < (b= a)” llgllF -

Take the pth root of this estimate to obtain

( / 1) — F(5)IP ds)l/p < (b-a) gl -

Hence (b—a)"? || f)]] < |fllz» + (b —a) ||gll.» for all t € T by Minkowski’s
inequality. This proves part (i).

We prove part (ii). Let f, : I — X be a Cauchy Sequence in Whr(I,X)
and choose a sequence g, € LP(I,X) such that f gn(s)ds = frn(t) — fn(a)
forallt € I and all n € N. Then (f,)nen is a Cauchy sequence in the Banach
space C'(I, X)) of continuous functions with the supremum norm, and (g, )nen
is a Cauchy sequence in the Banach space LP(I, X). Hence the sequence f,
converges uniformly to a continuous function f : I — X and g,, converges to
a function g € LP(I, X) by Theorem The limit functions satisfy

t t
£0) = @) = i (£2(0) ~ (@) = i [ gals)ds= [ g(s)ds
for all t € I. Thus f € W'P(I, X) and
Tim (1 = fallwie = i (I = fallls + lg = gall7) " = 0.

This proves part (ii).

We prove part (iii) by a standard mollifier argument. Let f € W1P(I, X)
and extend f to all of R by f(t) := f(b) for t > b and f(t) := f(a) for t < a.
Choose a smooth function p : R — [0, 00) with compact support and mean
value 1 and define ps(t) := 6 1p(6~t) for 6 >0 and t € R. Then the
function f5 : I — R, defined by f5(t) := (ps* f)(t) := [p ps(t —5)f(s)ds
for t € R, is smooth for every § > 0, and f5 converges to f uniformly, and
hence also in the LP-norm. Moreover, f5 = ps * f' converges to f in the
LP-norm and thus lims_,q || f — fs|lyy1., = 0. This proves part (iii).

We prove part (iv). The map WHP(I, X) — LP(I, X x X) : f = (f, f')
is an isometric embedding. The target space is reflexive by Corollary
so WP(I, X) is reflexive by Theoremm This proves Theorem O
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7.6. Inhomogeneous Equations

Let X be a real Banach space and let A : dom(A) — X be the infinitesimal
generator of a strongly continuous semigroup S : [0,00) — £(X). This sec-
tion is devoted to the study of the solutions of the inhomogeneous equation

(7.6.1) T =Azx+ f, z(0) = xo.

Here we assume that the function f : [0,00) — R is strongly measurable and
locally integrable. In this situation we consider the function x : [0,00) — X,
defined by the variation of constants formula

(7.6.2) x(t) == S(t)zo + /Ot S(t—s)f(s)ds

for t > 0. If zp € dom(A) and f : [0,00) — X is continuously differentiable,
then, by Lemma [7.1.14] the function z : [0,00) — X in is contin-
uously differentiable, takes values in the domain of A, and satisfies equa-
tion . While this is a rather crude general observation, it is the start-
ing point for any more refined study of the solutions of .

7.6.1. Weak Solutions. As a first step we use the concepts developed in
Section [T.5 to introduce the notion of a weak solution. This notion uses
test functions ¢g: 1 — X* on a compact interval I C R that take values
in dom((A*)>) and have the property that the function (A*)Fg: T — X*
is smooth for every k € N. The space of such functions will be denoted
by C*°(I,dom(A*)*>).

DEFINITION 7.6.1 (Weak Solution). Let X be a real Banach space
and let A :dom(A) — X be the infinitesimal generator of a strongly con-
tinuous semigroup S : [0,00) — L£(X). Fix a compact interval I = [0,T], a
strongly measurable function f : I — X with fOT Il f(t)]| dt < oo, and an ele-
ment g € X. A weak solution of equation is a strongly measur-
able function z : I — X with fOT lx(t)]| dt < oo that satisfies the condition

T T
(76.3)  {g(0),z0) + /0 (9(s). F(5)) ds + /0 (§(3) + A"g(s), 2(s)) ds = 0
for every test function g € C*°(I,dom(A*)*°) with ¢g(7T") = 0.

The next theorem shows that equation ((7.6.1) admits a unique (almost
everywhere) weak solution and that it is given by (7.6.2).

THEOREM 7.6.2 (Existence and Uniqueness). Let X, I, S, A, f,xo be
as in Definition and let x € LY(I,X). The following are equivalent.

(1) z is a weak solution of (7.6.1)).
(i) = is given by (7.6.2)) for almost every t € I.
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Proof. We prove that (ii) implies (i). Let g € C°°(I,dom(A*)*®) be a
test function with g(7") = 0. Recall from Theorem that the restriction
of the dual semigroup S*(¢) to the strong closure £ C X* of the domain
of A* is a strongly continuous semigroup, whose infinitesimal generator is the
restriction of the operator A* to the subspace {z* € dom(A*) | A*z* € E}.
This implies that the function I — X* : ¢t — S*(t)g(¢) is continuously differ-
entiable with the derivative

d * * . *
5 (Wg(t) = 57(6)(9(t) + A%g(2))
for t € I. Hence the function xo(t) := S(t)x satisfies

T T
/ (G(t) + A*g(t), wo(t)) dt = / (1) + A"g(t), S(t)zo) di
0 0
T
(S*(£)(@(t) + A*g(t), z0) dt

J
J

T q
= %<5*(t)9(t)7 wo) dt
= (S™(T)g(T),w0) — (9(0), x0)
= —(9(0), xo)

and for x;(t) := f(f S(t — s)f(s)ds we obtain

Ag(t), z1 (1)) dt

(g(t) + A*g(t), S(t — s) f(s)) dsdt

Take the sum of these equations to obtain that z :=xzg+z1:1 — X is a

weak solution of ((7.6.1]).
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We prove that (i) implies (ii). Thus assume that = : I — X is a weak
solution of (7.6.1) and define the function y : I — X by

y(1) = 2(t) — S(t)zo — /Ot S(t—s)f(s)ds  for0<t<T

Then, by what we have just proved, y is a weak solution of equation ([7.6.1])
with 2o =0 and f =0, i.e. y € £1(I, X) and

T
(7.6.4) /0 ((s) + A%g(s), y(s)) ds = 0

for all g € C*°(I,dom(A*)*°) with ¢(T") = 0. We must prove that y(t) =0
for almost every ¢t € I. To see this, fix an element z* € dom((A*)*) and a
smooth function ¢ : I — R, and define the function g : I — X* by

T—s
g(s) == /0 o(r)S* (T — s —r)z"dr for 0 <s<T.

Then ¢(T") = 0. Moreover, it follows from Theorem by induction that,
for k € Ny, the restriction of S*(¢) to Ej, := {&* € dom(A*)*|(4*)* € E} is
a strongly continuous semigroup whose infinitesimal generator is the restric-
tion By := A*|g, ., : Exq1 — Ex. Apply Lemmato this semigroup to
deduce that, for every integer £ > 0, the function g : I — X* takes values
in Ej41, is continuously differentiable as a function with values in Ej, and
satisfies £ g(T — s) = A*g(T — s) + ¢(T — s)a* or equivalently

(7.6.5) g(s) + A%g(s) = ¢(s)x™ for 0 <s<T.

This implies g € C¥(I, Ey,) for all k,¢ € Ny and so g € C*°(I, dom((A*)>)).
Thus it follows from (7.6.4) and ([7.6.5)) that

T
(7.6.6) /D 6(s) (", y(s)) ds = 0

for all z* € dom((A*)*°) and all ¢ € C°°(I). Choose a sequence of smooth
functions ¢; : [0,1] — [0, 1] converging pointwise to the characteristic func-
tion of the subinterval [0,¢] and use Lebesgue dominated convergence and

equation ([7.6.6) to obtain fg(x*, y(s)) ds = 0 and hence

(7.6.7) <a; /O “u(s) ds> ~0

for all * € dom((A*)*>°) and all t € I. Since dom((A*)*°) is dense in E
by Lemma [7.1.16] equation (7.6.7) continues to hold for all z* € E and

all t € I. Since E contains the domain of A*, it is weak* dense in X* by
part (iii) of Theorem This implies fg y(s)ds =0 for 0 <t <T. Now
it follows from Lebesgue differentiation that y(¢) = 0 for almost every ¢t € I

(Lemma [7.5.9). This proves Theorem O
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7.6.2. Regular Solutions. The next theorem examines the properties of
weak solutions of (7.6.1)) that belong to the Sobolev space W11(I, X).

THEOREM 7.6.3 (Regular Solutions). Let X, I, S, A, f,xg be as in Def-
inition and let x : I — X be a strongly measurable function. Then the
following are equivalent.

(i) z € WHY(I, X) and z is a weak solution of equation (7.6.1)).
(ii) There exists a Borel set Z C I of Lebesgue measure zero such that
x(t) € dom(A) for everyt eI\ Z,
e the function x : I — X is differentiable on I\ Z and

z(t) = Az(t) + f(t) forallte I\ Z,
e the function y: I — X, defined by

&), fortel\Z,
y(t) = { 0, forte Z,

is strongly measurable and satisfies fOT lly(s)]| ds < oo and
t
z(t) = g —i—/ y(s)ds forallt el
0

Proof. We prove that (i) implies (ii). Thus assume that z € WH1(I, X)
is a weak solution of equation (|7 . Then z is continuous and

x(t) xo—l—/St—s s)ds for0<t<T

by Theorem [7.6.2] For 0 <¢ <t+ h <T this implies
S(h)x(t) —x(t)  x(t+ h —z(t / S(s

(7.6.8) h B

- /0 S(h—s) f(t+s)—f(t))d5-

Moreover, by definition of W11(I, X) there exists a function & € £1(I, X)

such that x(t) = z¢ + fo s)ds for all t € I. Hence, by Lebesgue differenti-
ation, there exists a Borel set Z C I of Lebesgue measure zero such that

o 1z is differentiable on I \ Z and #(t) = {(¢) forall t € I\ Z,
o limyno b [ f(t+5) = f(t)] ds=0forallt € T\ Z.

For t € I'\ Z this implies that the right hand side of converges
to &£(t)— f(t) as h tends to zero. Thus z(t) € dom(A) and Ax(t) = £(t) — f(¢)
for all t € I'\ Z. This shows that = satisfies (ii) with this Borel set Z
and the function y : I — X defined by y(t) := &(t) = &(t) for t € I \ Z and
by y(t) =0 for t € Z.
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We prove that (ii) implies (i). Thus assume that Z C I is a Borel
set of Lebesgue measure zero that satisfies the requirements of part (ii).
Let £ C X* be the strong closure of the domain of the dual operator A*.
Fix an element z* € dom(A*) with A*z* € E and a real number 0 < ¢t <T.
Then, by Theorem the function [0,¢] — X* : s+ S*(t — s)a™* is con-
tinuously differentiable and has the derivative

diS*(t —§)x* = =S*(t — s)A*z" = —A*S*(t — s)x”
s

Moreover, by assumption, the function x : I — X is absolutely continuous
and differentiable in I\ Z. This implies that the function

(7.6.9) [0,t] = R:s— (S*(t —s)z", x(s))

is absolutely continuous and differentiable in [0,¢] \ Z. Since z(t) € dom(A)
and @(t) = Az(t) + f(t) for t € I\ Z, the function (7.6.9) has the derivative

C%(S*(t —s)z*,x(s)) = (S*(t — s)z*, @(s)) — (A" S*(t — s)x™, x(s))
= (57(t = s)a", i (s) — Az(s))
= (2%, 5(t = 5)f(s))

for s € [0,¢] \ Z. Since Z has measure zero and (7.6.9) is absolutely contin-
uous, this implies (z*, z(t)) — (S*(t)z*,z(0)) = [y (z*, S(t — s)f(s)) ds and
hence

(7.6.10) <x a(t) a:o—/St—s d>:0

for all z* € dom(A*) with A*z* € E. By Theorem|7.3.1]the set of all such z*
is the domain of the infinitesimal generator of the strongly continuous semi-
group [0,00) — L(E) : t — S*(t)|p and so is dense in E by Lemma
Hence equation continues to hold for all z* € E and hence, in par-
ticular, for all z* € dom(A*). Since the domain of A* is weak* dense in X*,

by Theorem it follows that z(t) is given by equation ((7.6.2)) for ev-
ery t € [0, T]. This proves Theorem [7.6.3] O

Theorem [7.6.3] leads to the question under which conditions on xg and f
the weak solution of ([7.6.1)) belongs to the Sobolev space W!(I, X).
This is the fundamental regularity problem for semigroups. It has two
parts, one for the inhomogeneous term f when g = 0 (see Subsection
and one for the initial condition xy when f =0 (see Subsection .
By Lemma the weak solution belongs to Wh(I, X) when-
ever g € dom(A) and f: I — X is continuously differentiable. By Exer-
cise this continues to hold for f € WHI (I, X).
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7.6.3. Maximal Regularity. In applications one is interested in a re-
fined regularity problem associated to a number 1 < ¢ < oo, which asks for
weak solutions in the Sobolev space W14(I, X) when f € LI(I,X). The
sharp answer would be that, for every f € Li(I,X), the formula
with g = 0 defines a weak solution z : I — X of in the Sobolev
space WH4(I, X), i.e. both # and Az, and not just their difference, belong
to the space L1(1, X). This property is called mazimal q-regularity.

DEFINITION 7.6.4 (Maximal Regularity). Let X be a Banach space,
let A :dom(A) — X be the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — £(X), and fix a real number g > 1. The semigroup S
is called maximal ¢-regular if, for every T > 0, there exists a ¢p > 0 such
that every continuously differentiable function f : [0,7] — X satisfies

(7.6.11) (/OT A/[:S(t — $)f(s)ds ' dt) v <er (/OT £ ()] dt)l/q.

This condition is independent of T'. The semigroup S is called uniformly
maximal g-regular if it is maximal g-regular and the constant in (7.6.11))
can be chosen independent of T

LEMMA 7.6.5 (Maximal Regularity). Let X be a Banach space and
let A:dom(A) — X be the infinitesimal generator of a strongly continuous
semigroup S : [0,00) = L(X). Fiz two real numbers ¢ > 1 and T >0 and
abbreviate I := [0,T]. Then the following are equivalent.

(i) For every strongly measurable function f : I — X with [, || f||? < co equa-
tion (7.6.1)) has a weak solution x € WH4(I, X) with x(0) = x¢ = 0.

(ii) For every strongly measurable function f : I — X with [, || f||? < co the
continuous function x : I — X defined by (7.6.2) with xo = 0 belongs to the
Sobolev space WH4(I, X).

(iii) The semigroup S is maximal q-regular.

Proof. That (i) implies (ii) follows directly from Theorem [7.6.2] To
prove that (ii) implies (iii), denote by ¢ : Wh4(I, X) — C(I, X) the obvious
inclusion and define the linear operator .& : LY(I1, X) — C(I, X) by

<ymw:ﬁswwﬁ@w

for f € L9(I,X) and t € I. Then ¢ is a bounded linear operator by part (i)
of Theorem To prove that . is a bounded linear operator, choose a
constant M > 1 such that ||S(t)|| < M for 0 <t < T (Lemma [7.1.8). Then

t T
WfMWSAW%—ﬂWM%SMAHﬂwﬁﬁMﬁlﬁmm
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for all ¢t € I and all f € £(I, X). Moreover, im(.¥) C im(¢) by (ii). Since ¢
is injective, Corollary (Douglas factorization) asserts that the lin-
ear operator 1=t o. : LI(I,X) — Wh4(I, X) is bounded. Thus there ex-
ists a constant C' > 0 such that ||.7f|yy1.q < C| fllq for all f e LI(I, X).
For f € C'(I,X) this is equivalent to the estimate (7.6.11)). Thus S is max-
imal g-regular.

We prove that (iii) implies (i). Assume S is maximal g-regular and
let f:I— X be a strongly measurable function with fOT If ()] dt < .
By part (iii) of Theorem there exists a sequence of smooth func-
tions f; : I — X such that lim; ,o ||fi(t) — f(t)||;« = 0. Define the func-
tionsz: I —- X andz;: I = X,7 €N, by

(1) ::/0 S(t—s)f(s)ds,  zi(t) ::/O S(t— 5) fi(s) ds

for t € I. Then lim; o0 supse; ||zi(t) — z(t)|| = 0. By Lemma we
have z;(t) € dom(A) and #;(t) = Ax;(t) + fi(t) =: yi(t) for all ¢ and i.
Moreover, ||Az; — Azj||,;, < cr || fi — fjll 4 for all 4, j by maximal regularity.
Thus (y;)ien is a Cauchy sequence in L4(I, X)) and so, by Theorem
there exists a function y € £4(1, X) with lim; , ||y — y|| ;o = 0. Hence

t

z(t) = lim z;(t) = lim [ y;(s)ds = /0 y(s)ds

1—00 1—00 J

for all t € I and so x € W19(I, X). Since x is a weak solution of (7.6.1)) by
Theorem this proves Lemma [7.6.5] O

The next lemma shows that there are many semigroups that cannot
be maximal g-regular for any ¢ > 1. Such examples include all strongly
continuous groups generated by unbounded operators.

LEMMA 7.6.6. Let S : [0,00) — L(X) be a strongly continuous semigroup
on a Banach space X that is maximal q-reqular for some ¢ > 1. Then

im(S(t)) C dom(A) for allt > 0.

Proof. Assume that there exists a T > 0 such that im(S(T")) ¢ dom(A),
abbreviate I :=[0,7], and choose £ € X such that S(T)§ € X \ dom(A).
Define the function f:I — X by f(t) :=S(t)¢ for 0 <t <T. Then we
have f € C(I,X) C LY(I,X) and

2(t) = /0 S(t — 5)f(s) ds = tS(H)E € X \ dom(A)

for 0 <t <T. Hence the function x : I — X cannot belong to the Sobolev
space WH1(I, X) by Theorem This shows that the semigroup S vio-
lates condition (i) in Lemma for any ¢ > 1 and hence cannot be max-
imal g-regular. This proves Lemma O
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Remark 7.6.7. Let X be areflexive Banach space. Let S : [0,00) — £(X)
be a strongly continuous semigroup with infinitesimal generator A such that

(7.6.12) im(S(t)) C dom(A?), |A%S(t)z|| < ct™? 2]

for all £ > 0 and all x € X and some ¢ > 0. Under these assumptions it was
proved by Benedek—Calderén—Panzone [9] that S is (uniformly) maximal g-
regular for some ¢ > 1 if and only if it is (uniformly) maximal g-regular for
all ¢ > 1. Another exposition of their theorem can be found in [76]. Note

that analytic contraction semigroups satisfy ([7.6.12) by Theorem
Remark 7.6.8. Let (M, A, 1) be a measure space and let

S [0, 00) = L(L*(u))
be an analytic semigroup that satisfies the estimate

(7.6.13) IS@ e < NNz

for all p > 1, all t > 0, and all f € LP(u) N L?(p). Under this assumption a
theorem of Lamberton [54] asserts that the induced contraction semigroup
on LP(u) is uniformly maximal g-regular for all p,q > 1. For the heat flow
in Example an exposition can be found in [76]. The proof goes far
beyond the scope of the present book. However, for p = ¢ = 2 the result
follows from an elementary abstract observation that is explained below.

For the study of maximal regularity it is convenient to introduce a Ba-
nach space that contains all the regular solutions of equation ([7.6.1). For
each ¢ > 1 and each interval I = [0, 7] this is the space

WU LX) = W, X) N LI(T, dom(A))

( there is a Borel set Z C I
of measure zero such that
z(t) € dom(A) fort € I\ Z,
the function Az : I — X

is strongly measurable,

and [ [|Az(t)]|? dt < oo

(7.6.14)
=z eWhi(I, X)

equipped with the norm

7615 lelyge = ([ (@ + 100 + Lasor) o "

In this definition the function Ax : I — X is understood to be zero for t € Z.
The next lemma summarizes some basic properties of this space. In particu-
lar, it is a Banach space and is reflexive when X is reflexive and 1 < ¢ < oc.
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LEMMA 7.6.9. Let A :dom(A) — X be the infinitesimal generator of a

strongly continuous semigroup on a Banach space X, let 1 < q < 0o, and
let T'>0 and I :=1[0,T]. Then the following holds.

(i) Let x : I — dom(A) be any function. Then x is strongly measurable
in the Banach space dom(A) with the graph norm if and only if both func-
tions x : I — X and Az : I — X are strongly measurable in X.

(ii) Wj’q(I,X) is a Banach space with the norm (7.6.15]).
(iii) The space

C*(I,dom(A)) := {:c : I — dom(A)

the functions x : I — X
and Ax : I — X are smooth

is dense in W U1, X).

(iv) If X is reflexive and 1 < q < oo, then Wj’q(I,X) 1s reflexive.

Proof. We prove part (i). Let us temporarily denote by ¢ : dom(A) — X
the obvious inclusion and think of x : I — dom(A) solely as a function
with values in the Banach space dom(A), equipped with the graph norm.
Then the operator Ae — A : dom(A) — X is invertible for A > 0 sufficiently
large and for such a A we have = (A — A)"Lo(Mox— Aox). Thus,
if : 1 — dom(A) is strongly measurable, so are tox, Aox:I — X, and
conversely if those two are strongly measurable, so is Adtox — Aox and
hence also z.

We prove part (ii). Let (x;);eny be a Cauchy sequence in WAl’q(I,X).
Then (z;)ien is a Cauchy sequence in W14(I, X) and hence converges to
a function x € W14(I, X), both with respect to the W1%norm and with
respect to the supremum norm by Theorem Moreover, the func-
tions y; := Ax; : I — X form a Cauchy sequence in L9(I, X). Hence Theo-
rem [7.5.6] asserts that there exists a strongly measurable function y : [ — X
such that [} [ly[|? < oo and lim;,o0 [|y5 — y|| e = 0, and that a subsequence
of y; converges almost everywhere to y. Since A is closed, this implies that
there exists a Borel set Z C I of measure zero such that x(¢f) € dom(A)
and Ax(t) =y(t) for allt € I\ Z. Hence x € Wj’q(l, X) and

. . 1/
I o =zl 10 = Tim (lz = 2illf, + lly = vill L) = 0.

This proves part (ii). Part (iii) follows from the same mollifier argument
as in the proof of Theorem and part (iv) follows from the fact that
the map Wj’q(I,X) — WH(I, X x X x X): 2z (z,%, Az) is an isometric
embedding, by definition, and the target space is reflexive whenever X is
reflexive and 1 < g < oo, by Corollary This proves Lemmal[7.6.9, O
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It follows from Theorem that the weak Wh¢ solutions of equa-
tion with f € Li(I,X) are elements of the space Wj’q(I,X) and
that the inhomogeneous term in the equation can be recovered from the
element z € WX’Q(I ,X) via the formula f =& — Az. Thus the semigroup
generated by A is maximal g-regular if and only if the map

(7.6.16) {x e W1, X) | 2(0) = 0} S LU, X) a i — Ax
is a Banach space isomorphism. If that holds, then the bounded linear

operator (=1 o. : LY(I,X) — Wh4(I, X) in the proof of Lemma is
the inverse of the operator ((7.6.16)).

7.6.4. Regular Initial Conditions. With these preparations we are ready
to formulate the second regularity problem for equation (7.6.1]). The ques-
tion is, which initial conditions zg € X give rise to solutions of the homoge-
neous equation in the space Wj’q(l’ , X). Define the normed vector space

S(t)z € dom(A) for all ¢ > 0 }

7.6.17 Xpgi= X‘
( ) Aa {"36 and [ [|AS(t)z||% dt < oo

T 1/q
(7.6.18) H95||A,q = |lz|lx + </ ||AS(t)x||§( dt> for x € X44.
0

LEMMA 7.6.10. Let A:dom(A) — X be the infinitesimal generator of
a strongly continuous semigroup S : [0,00) — L(X) on a Banach space X,
let I =[0,T], and let 1 < q < co. Then the following holds.

(i) Xa,4 is a Banach space with the norm (7.6.18) and dom(A) C X4, C X

with continuous dense inclusions.

(ii) The subspace X4 C X is invariant under the operator S(t) for allt > 0
and S(t) restricts to a strongly continuous semigroup on the space X 4 4.

(iii) Let xo € X and define the function x : I — X by x(t) := S(t)xo
for 0 <t <T. Then xg € Xaq if and only if x € Wj’q(I,X).

(iv) Assume S is mazimal q-reqular. Then there exists a ¢ > 0 such that
every continuously differentiable function x : I — dom(A) satisfies

7.6.19 su x(t <cllz|l., 1q -
(7.6.19) 52 @)l < cllzlyy

Thus there is a continuous inclusion “//jq(l, X) = C(I,Xa,).
(v) Assume S is maximal q-regular. Then the map
(7.6.20) WU X) = Xag x LU X) :x e (2(0), & — Az)

is a Banach space isomorphism. If this holds, then the inverse of (7.6.20)) is
the operator X 44 x LY(1,X) — Wj’q(I,X) : (xo, f) = z defined by (7.6.2]).



7.6. Inhomogeneous Equations 435

Proof. Let (z;);en be a Cauchy sequence in X4, and define the func-
tions y; : I — X by 3;(0) := 0 and

yi(t) == AS(t)x;

for 0 <t < T andi € N. Then (z;);en is a Cauchy sequence in X and (y;)ien
is a Cauchy sequence in L4(I, X'). Thus there exists an element € X and,
by Theorem a strongly measurable function y : I — X with

T
AIMW%ﬁ<w

such that

T
limn o~ il =0, lim [ (o) - w(Ol dt=0
71— 00 21— 00 0

Passing to a subsequence, if necessary, we may also assume that the se-
quence (y;)ien converges almost everywhere to y by part (i) of Theorem
Thus there is a Borel set Z C I of measure zero such that

y(t) = lim AS(t)x; forallt e I\ Z.
1—00

Since A is closed and
lim S(t)x; = S(t)z,
1—00
this implies
S(t)x € dom(A), AS(t)x = y(t) forallte I\ Z.

Since Z has measure zero, we obtain S(t)x € dom(A) for all £ > 0 and

T T
| 1as@ait = [ ol < o.

Hence x € X4 4 and

T 1/q
. o BT o . o 114q
Jim o = il = fim o el + i ([ o) — AS@l ar)
=0.
This shows that X4 4 is a Banach space. That the obvious inclusions
dOHl(A) — XA,Q’ XA,Q — X

are continuous follows directly from the definition of the norms. That X4 4
is dense in X follows from Lemma and the fact that dom(A) C X4 4.
To prove that dom(A) is dense in X4 4, one can use part (ii), which is an
easy exercise left to the reader, and observe that the domain of the infinites-
imal generator of the restricted semigroup S(t)|x, , contains dom(A). This
proves parts (i) and (ii). Part (iii) follows directly from the definitions.
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To prove part (iv), assume that S is maximal ¢g-regular, and define the
bounded linear operator

S LI X)) — #0UL X))
by

(L)) = /0 S(t — 5)f(s) ds

for fe LYI,X) and 0 <t <T. Composing . with the bounded linear
operator

WL X) = LX) s x & — Ax
we obtain a bounded linear operator
T Wy ULX) — WL X)
given by

(Tz)(t) = /0 S(t— s)(&(s) — Az(s)) ds

for € #,9(I,X) and 0 <t <T. For z € C*(I,dom(A)) and 0 <t < T
we obtain from Lemma [7.1.14] the equation

(F2)(t) — x(t) = 5(t)x(0).

This implies the inequality
12(0)]L1y < 1SC)2O) 20 < (1+171) lally 1

for all z € C'(I,dom(A)). Since C*(I,dom(A)) is dense in #,%(I, X), this
inequality continues to hold for all z € Wj (1, X). Similar estimates, with
a constant independent of ¢, for all the evaluation maps

WyULX) = Xag: o 2(t)

can be obtained by shortening the interval for 0 < ¢ < 7'/2 and in addition
reversing time for T/2 < ¢ <T. Here one must use the fact that in the
definition of the norm on the space X4 4, the number 7' can be
chosen arbitrarily. Different choices of T' give rise to equivalent norms. This
proves part (iv). Part (v) follows directly from part (iv) and this completes
the proof of Lemma. [7.6.10 O

The preceding discussion sets up a general abstract framework for suit-
able Banach spaces of initial conditions and solutions for linear Cauchy
problems. Under the assumption of maximal g-regularity these spaces can
be used to obtain well-posed Cauchy problems for PDEs with nonlinearities
in the highest order terms (see Remark below).
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7.6.5. Regularity in Hilbert Spaces. For self-adjoint semigroups on
Hilbert spaces maximal g-regularity is easy to verify for ¢ = 2.

THEOREM 7.6.11. Ewvery self-adjoint semigroup on a Hilbert space is
mazimal 2-reqular.

Proof. Let H be a Hilbert space and let S : [0, 00) — L(H) be a strongly
continuous semigroup of self-adjoint operators with infinitesimal genera-

tor A :dom(A) — H. Then, by Theorem we have
A

(7.6.21) W= @7?}1

zedom(A\{0}  [|Z][

Let V' C H be the completion of dom(A) with respect to the norm
(7.6.22) |zl ==V (x, cx — Az), ci=w+ 1.
Now let zy € dom(A), let f:[0,7] — H be a continuously differentiable
function, and define the function z : [0,7] — H by
t
(7.6.23) x(t) == S(t)xo —i—/ S(t—s)f(s)ds for0 <t <T.
0

Then z(t) € dom(A) for all ¢ and the function z :[0,7] — H is continu-

ously differentiable and satisfies @:(t) = Ax(t) + f(t) for all ¢ (Lemmal|7.1.14)).
Thus the function ¢ — 1 |=(t)||3, is continuously differentiable and

92N = (6(0), ca(t) — A (D)
= (f(t) + Ax(t), cx(t) — Ax(t)) g
<Nl llex@l g + 1Az g ezl g
+ @)l 1Az ()7 — Az (0)]
2
< S IFOIE + o o) — 5 Az ()12,
Integrate this inequality over the interval [0, 7] to obtain

T T
o)1+ [ IAa(olfy de < aolly +3 [ (1@ + < hato)y) .

Now take zg = 0 and define cr := (2w) 1 (e?**T — ) whenw # Oand cp :=T
when w = 0. Then fo |z(t)||3; dt < Ter fo | £()|13 dt and so

T
/ | Ae(t), dt < 3(1+ CQTCT)/ IO dt.
0 0
This proves Theorem U
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Remark 7.6.12. Let A and w be as in the proof of Theorem [7.6.11]
Let B :dom(B) — H be the unique self-adjoint operator with (x, Bx) > 0
for all z € dom(B) that satisfies B? = wl — A (see Exercise [6.5.8). Then
the space V' in is the domain of B, equipped with the graph norm
of B. Moreover, V' agrees with the space X4 in and hence there is

a canonical inclusion WJ’Q(I, H) — C(I,V) (see part (iv) of Lemma|7.6.10)).

Remark 7.6.13. For parabolic (second order) equations in an LP-space,
the question of finding the space of initial conditions that give rise to solu-
tions in W14(I, LP) N LI(I, W?P) has been studied by many mathematicians
(see [11), 12} 32, 46, 63, 64, 84, 85]). For the heat equation a theorem
of Grigor’yan—Liu [32], which is based on work of Triebel [84), 85], asserts
that the initial conditions in the Besov space

2
BIP(RY), s=2--,
q

give rise to solutions in the space
W = whi((0,T], LP(R")) N LI((0, T], WP (R™)).

For p = g = 2 the relevant Besov space is the Hilbert space W!?(R™) and the
proof reduces to the simple abstract argument in Theorem For p #£ 2
the Grigor’yan—Liu Theorem is a deep result which goes far beyond the
scope of the present book. Another exposition is given in [76].

Remark 7.6.14. One reason for the importance of such results is that
one can reformulate the existence and uniqueness problem for nonlinear
parabolic equations of the form

(7.6.24) Ou = Au+ f(u), u(0, ) = ug,

as a fixed point problem for the map #14P — Wh4aP .y s F(u) given by

(7.6.25) (F(u)(t) == S(t)uo + /O St — ) f(u(s)) ds.

Here S : [0,00) — L(LP(R™)) is the heat semigroup and f can be a map from
W2P(R™) to LP(R™). Thus one can deal with nonlinearities in the highest
order terms. Moreover, by standard regularity arguments, one can replace
the Laplace operator by a general second order elliptic operator. In this
situation it is sometimes important to choose p > n/2 to obtain the relevant
nonlinear estimates, and so the easy case p = 2 may not suffice. Many
important geometric PDEs, such as the Ricci flow, the mean curvature flow,
the Yang-Mills flow, the harmonic map flow, or the Donaldson geometric flow
for symplectic four-manifolds [51), [52] can be formulated in this manner.
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7.7. Problems

EXERCISE 7.7.1 (Semigroups on Complex Banach Spaces). Let X
be a complex Banach space and let A :dom(A4) — X be the infinitesimal
generator of a strongly continuous semigroup S : [0,00) — L£(X). Suppose
that dom(A) is a complex subspace of X and that A is complex linear. Prove
that S(t) € LX) for all t > 0. Hint: Define the operator T'(t) € L(X) by

T(t)x = —iS(t)ix

for z € X and t > 0. Show that T is a strongly continuous semigroup with
infinitesimal generator A and use Corollary

EXERCISE 7.7.2 (Contraction Semigroups). Let X be a complex Ba-
nach space and let A :dom(A) — X be a complex linear operator with a
dense domain dom(A) C X. Consider the following conditions.

(i) A generates a contraction semigroup.
(ii) A has a closed graph and both A and A* are dissipative.

Prove that (ii) implies (i). If X is reflexive, prove that (i) is equivalent

to (ii). Find an example of an operator on a nonreflexive Banach space that
satisfies (i) but not (ii). Hint: Definition [7.2.10

EXERCISE 7.7.3 (Dual Semigroup). Prove that the domain of the in-
finitesimal generator A of the group on L!(R) in Example is the space
of absolutely continuous real valued functions on R with integrable deriv-
ative. Prove that the domain of the dual operator A* on L*°(R) is the
space of bounded Lipschitz continuous functions from R to itself. Prove
that o(A) = o(A*) = iR. Prove that the operator A* does not satisfy the
requirements of the Hille-Yosida—Phillips Theorem because its domain
is not dense.

EXERCISE 7.7.4 (Infinitesimal Generators of Unitary Groups).
Let H be a complex Hilbert space and let A : dom(A) — H be an unbounded
complex linear operator with a dense domain dom(A) C H. Prove that the
following are equivalent.

(i) If A € R\ {0}, then A1 — A is bijective and ||(AT — A)~!|| < [A|7
(ii) If A € C\ iR, then A1 — A is bijective and H()\Il — A)_IH < |ReA| 7L
(iii) dom(A*) = dom(A) and A*x + Az = 0 for all =z € dom(A).

Hint: Each of these conditions is equivalent to the assertion that A gen-
erates a unitary group, by Theorem and Theorem [7.3.6] The exer-
cise is to establish their equivalence without using semigroup theory. Show
that (i) = (iiil) = (ii) = (i).
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EXERCISE 7.7.5 (The Sobolev Space W!?(R)). Prove that the space
of smooth functions f : R — R with compact support and mean value zero
is dense in L?(R). Deduce that the completion of C§°(IR) with respect to the
norm f + || f’|| ;2 in Example|7.1.7|can be identified with the space of equiv-
alence classes of absolutely continuous functions f : R — R with % € L*(R)
under the equivalence relation f; ~ fo iff fi — fo is constant.

EXERCISE 7.7.6 (Maximal Regularity). Let S :[0,00) — L(X) be a
strongly continuous semigroup on a Banach space X with infinitesimal gen-
erator A and let ¢ > 1. If the estimate holds for some T > 0, prove
that it holds for all T" > 0 with a constant depending on 7.

EXERCISE 7.7.7 (The Banach Space LP(I, X) and its Dual).
(a) Verify the assertions of Theorem for p = oo.

(b) Verify the assertions of Lemma [7.5.15(for p = 1 and p = oc.
(c) Prove that the composition (7.5.27) in the proof of Corollary [7.5.17 is

the canonical inclusion ¢ : LP(I, X)) — LP(I, X)**.
EXERCISE 7.7.8 (The Radon—Nikodym Property). Let I := [0, 1] be
the unit interval and 1 < p < co. Define the function f : [0,1] — LP(I) by

1, if0<s<t,
g ={ b HEIE e

When p = oo, prove that f is everywhere discontinuous. When 1 < p < oo,
prove that f is Holder continuous. When p = 1, prove that f is Lipschitz
continuous and nowhere differentiable. Deduce that L' (I) is not isomorphic
to the dual space of any Banach space. Hint: Theorem

EXERCISE 7.7.9 (Lebesgue Differentiation). Let X be a Banach
space and let f:1:=1[0,1] — X be a strongly measurable function such
that fol || f()]| dt < co. Define the function F : [0,1] — X by

¢
F(t) ::/Of(s)ds for 0 <t <1.

Prove that F' is absolutely continuous and that there is a Borel set Z C I of
Lebesgue measure zero such that F' is differentiable on I\ Z and

Fo) = im F(t + h})L ~F(t)

Hint: The proof of the Lebesgue Differentiation Theorem in [75, Thm 6.14]
carries over verbatim to Banach space valued functions.

= f(t) for every t € I'\ Z.

EXERCISE 7.7.10 (Bounded Lipschitz Continuous Functions).

Prove that the closure of the space of bounded Lipschitz continuous functions
in L*°(R) is the space of bounded uniformly continuous functions on R.
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EXERCISE 7.7.11 (Weak and Strong Continuity). Let X be a real
Banach space and let S:[0,00) — £(X) be a one-parameter semigroup.
Prove that the following are equivalent.

(i) The function [0,00) = X : ¢t — S(¢)x is continuous for all z € X.

(ii) The function [0,00) — R : ¢+ (z*,S(t)z) is continuous for all x € X
and all z* € X™.

Hint: To prove that (ii) implies (i), show first that
(7.7.1) sup [[S®)| < o0 for all T > 0,
0<t<T

using the Uniform Boundedness Theorem Second, use part (iii) of
Theorem and Lemma to prove that

T—h
(7.7.2) %im |S(t+ h)x — S(t)z| dt = 0.
o J0
Third, fix a constant € > 0, define
M := sup [S(s)|,

0<s<e

prove the estimate

(7.7.3) IS(t+ h)z — S(t)z] < g / 1S(s + h)x — S(s)a|| ds

t—e
for z € X and 0 < |h| < e <t/2, and use this estimate to show that the
function [0,00) — X : ¢t +— S(t)z is continuous for ¢ > 0. Fourth, prove that
. .4 1. — e
(7.7.4) lim [|5(t)z — x| =0

for all z € X, by observing that x belongs to the closure of the linear
subspace

Z :=span{S(t)z |0 <t <1}
and using lim;_, ||S(t)z — z|| = 0 for all z € Z.

EXERCISE 7.7.12 (Regularity of Weak Solutions).

Let X be a Banach space and let S : [0,00) — L(X) be a strongly continu-
ous semigroup with infinitesimal generator A : dom(A) — X. Let I := [0, 7]
and f € £LY(I, X) and define x(t) := fg S(t—s)f(s)ds for 0 <t <T.

(a) If f € WhH(I, X), prove that x € Wh(T, X).
(b) If f(t) € dom(A) for all t and Af € £L1(I, X), prove that z € Wh1(I, X).

Hint: For part (a) use Lemma [7.1.14] and approximation. For part (b)
assume first that Af : I — X is continuous and then use approximation.
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EXERCISE 7.7.13 (Semigroups and Compact Operators).

Let I =[0,1] be the unit interval, let U, X, Y be real Banach spaces, and
let [0,00) — L(X) : t — S(t) be a strongly continuous semigroup.

(a) Let I — L(X,Y) : t— K(t) be a strongly continuous family of opera-
tors. Prove that the operator

(7.7.5) X—=ClY): z— K()x

is compact if and only if the operator K(t) € £(X,Y) is compact for ev-
ery t € I and the map K : I — £(X,Y) is continuous with respect to the
operator norm on £(X,Y). Hint: Consider the set .# C C(I,Y) whose
elements are the functions f, := K(-)z for all z € X with ||z|| < 1. Prove
that .# is equi-continuous if and only if the map K : I — £(X,Y) is con-
tinuous with respect to the operator norm. Use Theorem [1.1.11

(b) For t € I let K(t) € L(X,Y) be a compact operator and suppose that
the function K : I — £(X,Y) is continuous with respect to the norm topol-
ogy. Prove that the operator

(7.7.6) LNLX) Y : fo / KW dt
0

is compact. Hint: Show first that the function I — Y : ¢ +— K(t)f(t) is
strongly measurable whenever f: I — X is strongly measurable. Second,
use part (a) to prove that the operator Y* — C(I, X™) : y* — K*(-)y* is
compact. Third, show that the composition of this operator with the canon-
ical isometric inclusion C(I, X*) — L'(I, X)* (Lemma [7.5.15) is the dual

operator of ([7.7.6)). Then use Theorem [4.2.10

(c) Let B € L(U, X) be a compact operator. Prove that the operator
1
(7.7.7) LYI,U) = X : f / S(t)Bf(t)dt
0

is compact. Hint: Show that the map I — L(U, X) : t — S(t)B is continu-
ous in the norm topology and use part (b).

(d) Let C € L(X,Y) be a compact operator. If X is reflexive, prove that
the operator

(7.7.8) X—->CY):x—CS()x

is compact. Find an example of a semigroup on a nonreflexive Banach
space X and a compact operator C': X — Y such that the operator
is not compact. Hint: Consider the shift semigroup on X = L*(]0,1]) and
let C': X — R be the bounded linear functional x fol x(t) dt. Relate this
to the fact that the inclusion of W1!(I) into C(I) is not a compact operator.

(See Exercise [4.5.16])
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EXERCISE 7.7.14 (Semigroups and Functional Calculus).
Let H be a complex Hilbert space, let A : dom(A) — H be an unbounded
self-adjoint operator on H with spectrum
Y :=0(A) C (—00,0],

and let Uy : Cp(X) — LE(H) be the functional calculus in Theorem
Let B C 2% be the Borel o-algebra and, for =, y € H, define the signed Borel
measure [z, : B — R by 1, () :== Re(x, ¥ a(xa)y) for all Q@ € B as in Def-
inition [6.4.3) and Theorem For z € C with Re(z) > 0 define the linear
operator S(z) € L°(H) by

(7.7.9) Re(z, S(2)y) :—/EeZ)‘d,um’y(/\)

for z,y € H (see Theorem [5.6.2]).

(a) Verify that S(z) = W4(f,) for all z € C with Re(z) > 0, where the func-
tion f, : ¥ — C is defined by f.()\) := e for A € .

(b) Verify the formulas S(0) = id and S(z + w) = S(w)S(z) for all w,z € C
with Re(z) > 0 and Re(w) > 0.

(c) Show that the map z+— S(z) is continuous in the norm topology on
the open right half plane and is strongly continuous on the closed right
half-plane.

(d) Show that the map z — S(z) is the analytic semigroup generated by A
(see Example and Theorem [7.4.4]).

(e) Show that the map R — L¢(H) : t — S(it) is the unitary group gener-
ated by 1A (see Theorem [7.3.6)).

(f) By considering the Laplace operator on R"™, deduce from (e) that the heat
equation in Example [7.1.6] and the Schrodinger equation in Example [7.3.8
(adapted to dimension n) fit into a single strongly continuous semigroup on
the right half-plane.






Appendix A

Zorn and Tychonoft

This appendix establishes the equivalence of the Axiom of Choice and the
Lemma of Zorn and gives a self-contained proof of Tychonoff’s Theorem.

A.1. The Lemma of Zorn

Our proof of the equivalence of the Axiom of Choice and the Lemma of Zorn
follows the exposition by Imre Leader [56] and is based on the Bourbaki—Witt
Fized Point Theorem. Here are some basic definitions.

DEFINITION A.1.1. A relation < on a set P is called a partial order if
it is reflexive, anti-symmetric, and transitive, i.e. if it satisfies the conditions

*p=Dp,
e if p < g and ¢ X p, then p =g,
eifp<gandg=<r,thenp=<r

for all p,q,r € P. A partially ordered set is a pair (P, <) consisting of a
set P and a partial order < on P.

DEFINITION A.1.2. Let (P, X) be a partially ordered set.
(i) An element m € P is called maximal if m £ p for all p € P\ {m}.

(ii) A chain in P is a totally ordered subset C' C P, i.e. any two distinct
elements p, g € C satisfy either p < q or ¢ X p.

(iii) Let C' C P be a nonempty chain. An element a € P is called an upper
bound of C if every element p € C satisfies p < a. It is called a supre-
mum of C if it is an upper bound of C' and every upper bound b € P of C
satisfies a < b. The supremum, if it exists, is unique and denoted by sup C.

445
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The Lemma of Zorn. Let (P, <) be a partially ordered set such that every
nonempty chain C C P admits an upper bound. Let p € P. Then there
exists a mazrimal element m € P such that p < m.

The Axiom of Choice. Let I and X be two nonempty sets and, for
each element © € I, let X; C X be a nonempty subset. Then there exists a
map g : I — X such that every i € I satisfies g(i) € X;.

THEOREM A.1.3. The Azxiom of Choice is equivalent to the Lemma of
Zorn.

Proof. See page [448 (]

THEOREM A.1.4 (Bourbaki—-Witt). Let (P, <) be a nonempty partially
ordered set such that every nonempty chain C C P admits a supremum and
let f: P — P be a map such that

p<f(p)  forallpeP.
Then there exists an element p € P such that f(p) = p.

Proof. Fix any element py € P and denote by A C 2¥ be the set of all
subsets A C P that satisfy the following three conditions.

(I) po € A.

(IT) If p € A, then f(p) € A.

(III) If C C A is a nonempty chain, then sup C' € A.
Then A is nonempty because P € A. Now let

E = ﬂAcP
AeA

be the intersection of all subsets A € A. Then the set E also satisfies
the conditions (I), (II), and (IIT) and hence is itself an element of A. In
particular, E is nonempty. We prove in five steps that E is a chain.

Step 1. Every element p € E satisfies pg <X p.

The set Py := {p € P|po < p} satisfies the conditions (I), (II), and (III),
and hence is an element of A. Thus F C Py and this proves Step 1.

Step 2. Let F' C E be the subset

— every element p € E \ {q}
= {q B with p < q also satisfies f(p) < q |~
Then pg € F.

By Step 1 there is no element p € E'\ {pp} with p < pg. Hence py € F.
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Step 3. Letp€ E and g€ F. Then p < q or f(q) < p.

Fix an element ¢ € F' and consider the set

E,={peE|psqtU{pecE|flq) <p}.

We will prove that F, € A. Since ¢ € F' C E we have py < ¢ by Step 1.
Since pg € E, this implies py € E; and so Ej satisfies condition (I).

We prove that E, satisfies (II). Fix an element p € E,. Then f(p) € E
because F satisfies (II). If p < ¢ and p # ¢, then f(p) < ¢, because ¢ is an
element of F, and this implies f(p) € E,. If p = ¢, then f(¢) < f(p) and this
implies f(p) € E,. If p £ ¢, then we must have f(q) < p, because p € E,,
and this implies again f(q) < f(p) and therefore f(p) € E,;. This shows
that E, satisfies condition (II).

We prove that E, satisfies (III). Thus let C' C E; be a nonempty chain
and s :=sup C. Then s € E because FE satisfies (III). If p g ¢ for all p € C,
then s < ¢ und therefore s € E,. Otherwise there exists an element p € C
with p £ ¢. Since p € E,, we must have f(q) < p < s and therefore s € Ej,.
This shows that E; satisfies condition (III).

Thus we have proved that F, € A and thus E' C E,, by definition of the
set F. This proves Step 3.

Step 4. FF'=F.

We will prove that F' € A. By Step 2 we have py € F' and so F' satisfies (I).

We prove that F satisfies (II). Fix an element ¢ € F. We must prove
that f(q) € F. To see this, note first that f(q) € E because FE satisfies (II).
Now let p € E\ {f(¢)} with p < f(¢). Under these assumptions we must
show that f(p) < f(g). Since f(q) # p, we have p < g by Step 3. If p # ¢,
then it follows from the definition of F' that f(p) < ¢ < f(q). If p=gq,
then we also have f(p) < f(g). Thus we have shown that f(p) < f(q) for
every element p € E\ {f(q)} with p < f(¢q). Hence f(q) € F and this shows
that F' satisfies condition (II).

We prove that F satisfies (III). Let C' C F be a nonempty chain and
define s:=supC. We must prove that s € F. To see this, note first
that s € E because E satisfies (III). Now let p € E \ {s} with p < s. Under
these assumptions we must show that f(p) < s. Since s # p, we have s & p.
Thus there exists an element ¢ € C' with ¢ £ p, and hence also f(q) % p.
Since ¢ € C' C F, this implies p < ¢ by Step 3. Since p # q and ¢ € F, this
implies f(p) < ¢. Since ¢ € C' and s = sup C, this implies f(p) < s. Thus
we have proved that s € ' and so F satisfies condition (III).

Thus we have proved that F' € A, hence E C F, and therefore £ = F.
This proves Step 4.
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Step 5. F is a chain.

Let p,q € E. Then q € F by Step 4, and so p < q or f(q) < p by Step 3.
Thus p < q or ¢ < p and this proves Step 5.

By Step 5, the set F has a supremum s:=supF € P. Since E sat-
isfies condition (III) we have s € E. Since E also satisfies (II), this im-
plies f(s) € E and hence f(s) < s. Since s < f(s) by assumption, we
have f(s) = s and this proves Theorem O

We remark that the Lemma of Zorn implies the existence of a maximal
element m € P under the assumptions of Theorem [A1.4] and that any such
maximal element must be a fixed point of f. However, the above proof of
the Bourbaki-Witt Theorem does not use the Lemma of Zorn (nor does it
use the Axiom of Choice) and so the result can be used to show that the
Axiom of Choice implies the Lemma of Zorn.

Proof of Theorem[A.1.3 First assume the Lemma of Zorn. Let I and X
be nonempty sets and, for each ¢ € I, let X; C X be a nonempty subset, as
in the assumptions of the Axiom of Choice. Define

— 0W£JcCcl,g:J—X,
7= {(J’g) g(i) € X; for alli € J

This set is partially ordered by the relation

(J.g) < (K,h) &%

for (J,g), (K, h) € . It is nonempty, because each pair (ig, zg) with ig € I
and zo € X;, determines a pair (Jy, go) € & with Jy := {io}, go(io) := wo.
Moreover, each nonempty chain ¥ C & has a supremum

(K,h) =sup¥ € &

JCK and hlj=g

given by

K = U J, h(i) :=g(i) for (J,g) € € and i € J.
(J,9)e¥
Hence it follows from the Lemma of Zorn that there exists a maximal ele-
ment (J,g) € &. This element must satisfy J = I. Otherwise J C I, hence
there exists an element ig € I \ J and an element zp € Xj;,, and then the
pair (K, h) € & with

K:=JU{io},  h(i) ;:{ g(i), ifie.J, fori € K,

xg, if 1 =1,
satisfies (J,¢) < (K, h) and (J,g) # (K, h), in contradiction to maximality.
This shows that there exists a map g : I — X that satisfies g(i) € X; for
all i € I, and so the Axiom of Choice holds.
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Conversely, assume the Axiom of Choice. Under this assumption we
prove the Lemma of Zorn in two steps.

Step 1. Let (P,<) be a nonempty partially ordered set such that every
nonempty chain C C P has a supremum. Then P has a mazximal element.

Assume, by contradiction, that P does not have a maximal element. Then
the set

S(p):=={qePlpsq,p#qt CP

is nonempty for every element p € P. Hence the Axiom of Choice asserts
that there exists a map f : P — P such that f(p) € S(p) for every p € P.
This map f satisfies the condition

p = f(p) for all pe P

but does not have a fixed point, in contradiction to Theorem This
contradiction shows that our assumption, that P does not have a maximal
element, must have been wrong. This proves Step 1.

Step 2. Let (P,<) be a partially ordered set such that every monempty
chain C C P admits an upper bound. Let p € P. Then there exists a maxi-
mal element m € P with p < m.

Let & C 2P be the set of all chains C' C P that contain the point p. Then &
is a nonempty set, partially ordered by inclusion. Now let 4 C & be a
nonempty chain in &2 and define the set

s=1Jc

ce%

This set contains the point p and we claim that it is a chain in P. To see this,
let po, p1 € S and choose chains Cy, C; € € such that py € Cy and p; € C4.
Since ¥ is a chain we have Cy C C7 or C7 C Cy. Hence C :=CyUCL €%
is a chain in P that contains both pg and p;, and thus py < p1 or p1 < po.
This shows that S is an element of &2 and therefore is the supremum of the
chain of chains ¥ C &. Thus we have proved that every nonempty chain
in & has a supremum. Hence Step 1 asserts that there exists a maximal
chain M C P that contains the point p. Let m € P be an upper bound of M.
Then p < m. Moreover, m is a maximal element of P, because otherwise
there would exist an element ¢ € P with m < ¢ and m # ¢, so ¢ ¢ M, and
then M’ := M U {q} would be a larger chain containing p, in contradiction
to the maximality of M. This proves Step 2 and Theorem O
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A.2. Tychonoff’s Theorem

The purpose of this appendix is to state and prove Tychonoff’s Theorem.
It plays a central role in the proof of the Banach—Alaoglu Theorem for non-
separable Banach spaces (Theorem |3.2.4)).

THEOREM A.2.1 (Tychonoff). Let I be any set and, for each i € I,
let K; be a compact topological space. Then the product

K= HKZ = {x = (l'l)lej‘xz € K; forallie I}
el
is compact with respect to the product topology (i.e. the weakest topology on K
such that the obvious projection m; : K — K; is continuous for every i € I).

Proof. See page O

The proof of Theorem uses the characterization of compactness in
terms of the finite intersection property in part (i) of Remark below.

DEFINITION A.2.2. Let K be a set. A collection A C 2% of subsets of K
is said to have the finite intersection property if

A#0
and
neN, A,...,A, €A = Ain---NA, #0.
A collection A C 2% with the finite intersection property is called maximal

if every collection B C 2% that has the finite intersection property and
contains A is equal to A.

The significance of this definition rests on the following observations.

Remark A.2.3. (i) A topological space K is compact if and only if every
collection A C 2% of closed subsets of K with the finite intersection property
has a nonempty intersection, i.e. there is an element x € K such that z € A
for all A € A.

(ii) Let K be any set and let A C 2X be a collection of subsets of K that
has the finite intersection property. Then, by the Lemma of Zorn, there
exists a maximal collection B C 2% with the finite intersection property
that contains A.

(iii) Let B C 2% be a maximal collection with the finite intersection prop-
erty. Then

neN, By,...,B,eB = Bin---NB,eB
and, for every subset C' C K,
CNB#(forall BeB = CeB.
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Proof of Theorem[A.2.1 Let
K=]]K
el
be a product of compact topological spaces and denote the canonical pro-
jections by m; : K — K; for i € I. Let A C 2% be a collection of closed
subsets of K that has the finite intersection property. Then, by part (ii)
of Remark there exists a maximal collection B C 2% of subsets of K
that has the finite intersection property and contains A. We prove that
there exists an € X such that x € B for all B € B. To see this, define

B; = {m(B) ] Be B} C ok
for i € I. Then B; is a collection of closed subsets of K; that has the

finite intersection property. Since K; is compact, it follows from part (i) of

Remark [A-2.3 that
N =B #0

BeB
for all 7 € I. Hence it follows from the axiom of choice that there exists an
element x = (z;);er € K such that

x; € m(B) forall i € I and all B € B.

We claim that x € B for every B € B. To see this, let U C K be an open
set containing x. Then, by definition of the product topology, there exists a
finite set J C I and a collection of open sets U; C K; for j € J such that

re (= (U CU.
jeJ
Hence

xj =mi(z) € UjNmj(B) for all j € J and all B € B.
Since Uj is open, this implies U; N 7;(B) # 0 and hence
m(Uj))NB#0  forall jeJandal BeB.

By part (iii) of Remark this implies 7T]-_1(Uj) € B for all j € J. Use
part (iii) of Remark again to deduce that ;¢ ; 7rj_1(U ;) € B, and hence
(= ' (U;)NB#0 for all B € B.

jeJ
This shows that U N B # () for every B € B and every open set U C K con-
taining x. Thus x € B for all B € B and therefore x € A for all A € A.

Hence K is compact, by part (i) of Remark and this proves Theo-
rem [A.2.] O
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Notation

2% set of all subsets of a set X,

A, Banach algebra,

A*, dual operator, [164] (real), (complex), [306| (unbounded)
A*, adjoint operator, [L65] (real), (complex), [313| (unbounded)
./Zl\, space of unital algebra homomorphism A : A — C,
B c 2M  Borel o-algebra,

co, space of sequences converging to zero,

C (M), space of continuous functions,

C(X,Y), space of continuous maps,

coker(A), cokernel of an operator, m

conv(.S), convex hull,

conv(.S), closed convex hull,

A, Laplace operator,

dom(A), domain of an unbounded operator,

graph(A), graph of an operator,

G C A, group of invertible elements in a unital Banach algebra,
H, Hilbert space, [31| (real), (complex)

im(A), image of an operator,

index(A), Fredholm index, [L79]

ker(A), kernel of an operator,
L(X,Y), space of bounded linear operators,
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L(X) = L(X, X), space of bounded linear endomorphisms, [36]

L6(X,Y), space of bounded complex linear operators, [198 -

L(X) = LY(X, X), space of bounded complex linear endomorphisms,
fP space of p-summable sequences,

£°°, space of bounded sequences,

LP(u) = LP(u)/~, Banach space of p-integrable functions,

L>(u) = L°(u)/~, Banach space of bounded measurable functions,
LP(I, X), Banach space of Banach space valued p-integrable functions, m
(M, A, i), measure space,

M(M, A), space of signed measures,

M(M), space of signed Borel measures,

M(p), set of ¢-invariant Borel probability measures,

p(A), resolvent set, (bounded), (unbounded)
Ry(A) = (M — A)~L, resolvent operator, (bounded), (unbounded)

o(A), spectrum of an operator, (bounded), (unbounded)
Spec(.A), spectrum of a commutative unital Banach algebra,

S(t), strongly continuous semigroup,

S+, orthogonal complement, [225

S+, annihilator,

LT, pre-annihilator, m

% (X,d), topology of a metric space,

% (X, ]]]]), topology of a normed vector space,

V C H C V*, Gelfand triple,

WHL(I), Banach space of absolutely continuous functions, M
WLP(I,C), Sobolev space on an interval I C R, [194} [297] (304} [315] |353|
Whe(R, C), Banach space of Lipschitz continuous functions, m
W2P(R" C), Sobolev space on R", (p=2,n=1)

W22(Q) N W, (), Sobolev space and Dirichlet problem on ¢ R”, [320
WP(I,X), Sobolev space of Banach space valued functions,

X¢, complexification of a real vector space,

(X, d), metric space,

(X,]]"]l), normed vector space, [3| (real), (complex)

X* = L(X,R), dual space,

X* = LX,C), complex dual space, m
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X* = L(X*,R), bidual space,
(x*, x), pairing of a normed vector space with its dual space,
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absolutely continuous, 13|
adjoint operator, [165

complex, m

unbounded,
affine hyperplane, [72]
Alaoglu-Bourbaki Theorem, [156
almost everywhere,
annihilator, @

left, [T20]
approximation property, @
Argyros—Haydon space, [188
Arzela—Ascoli Theorem, [T3] [15] [16] [T55]
Atiyah—Janich Theorem, [18§
axiom of choice, [46]

Bell-Fremlin Theorem, [162
axiom of countable choice, []
axiom of dependent choice, [6]

Babylonian method
for square roots,

Baire Category Theorem, [2]

Banach algebra, [35] 234
ideal,
semisimple,

Banach Hyperplane Problem, @

Banach limit, [T04]

Banach space,
approximation property, [I78]
complex, [[00} 19§
complexified,
product,

quotient, [24]
Radon-Nikodym property, [{15|

reflexive, [B1] [[34]

separable,

strictly convex,
Banach—Alaoglu Theorem

general case, [126] [T55]

separable case, [124
Banach-Dieudonné Theorem, [130)
Banach—Mazur Theorem,
Banach-Steinhaus Theorem, [52]
basis

orthonormal, @

Schauder, [09} [106] [T73]
Bell-Fremlin Theorem, [162|
bidual

operator, [I65]

space,
bilinear form

continuous, [53]

positive definite,

symmetric, [3]]

symplectic,
Birkhoff’s Ergodic Theorem, [145

Birkhoff-von Neumann Theorem, [I60]

Borel o-algebra,
Borel measurable operator,
bounded

bilinear map, [53]

linear operator,

invertible,

pointwise,

Bourbaki-Witt Theorem, [A46]

C* algebra,
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Calkin algebra,
Cantor function, [158
category

in the sense of Baire, [40]
Cauchy integral formula, 207]
Cauchy problem,

well-posed, [363]
Cauchy sequence,

Cauchy—Schwarz inequality, [31]
complex, 222]
Cayley transform, [327]
Cayley—Hamilton Theorem, 291
chain, [445]
closeable linear operator,
closed convex hull,
Closed Graph Theorem,
Closed Image Theorem, [I69] [30§|
closed linear operator,
cokernel, [T79]
comeagre,
compact
subset of a topological space,
finite intersection property, [450]
operator, [[73HI77]
pointwise, [[2]
subset of a Banach space, [189
subset of a metric space, [f]
compact-open topology,
complemented subspace, [T§]
complete
metric space, [3]
subset of a metric space,

completely continuous operator, [I74]

completion of a metric space,
complexification

of a linear operator, [201

of a norm, 207

of a vector space, [201

of the dual space, 202]
continuous function

vanishing at infinity, [[29] [[55]
weakly, @

contraction semigroup, [374]
convergence

in measure, [[T]]

weak,

weak*,
convex hull,

convex set

absorbing,
closure and interior, [73} [[T5]

extremal point,
face, @
separation, [70] [T16] [T23]

cyclic vector, 287]

deformation retract,
dense

linear subspace, @l

subset,
direct sum,
Dirichlet Problem,
dissipative operator, [374]
doubly stochastic matrix, [160)
dual operator,

complex,
dual space, [26]

complex, [I98|

of 1%,

of ¢7,

of C(M),

of Co, @

of LP (),

of a Hilbert space, [32]

of a quotient, [76]

of a subspace,
Dunford Integral,

Eberlein—Smulyan Theorem, [134
eigenspace
generalized,
eigenvalue, [208] [299]
eigenvector, [208] 299

equi-continuous, [[2] [I6]
equivalent norms, [I§]

ergodic
measure, [[44]
theorem, [T4§|

Birkhoft, [T45]
von Neumann, [T46]
uniquely,
exact sequence, [I95]
Euler characteristic, [195]

extremal point,

Fejér’s Theorem, [79]
finite intersection property, [450]
first category,

flow, 352

formal adjoint
of a differential operator, [64]

Fourier series, [79} [[03]

Fredholm
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alternative, @
index,
operator, [I79
Stability Theorem, [I85]
triple, [194]

functional
bounded linear,
sublinear,

functional calculus
bounded measurable,

continuous, 240] 257]
holomorphic, 217] [305]
normal, 257] 267]
self-adjoint, 240} [326]

unbounded,

Gantmacher’s Theorem, [190
Gelfand representation, [249
Gelfand spectrum,
Gelfand transform, 249] 293
Gelfand triple,
Gelfand—Mazur Theorem, [248] [290]
Gelfand-Robbin quotient, [315] [346]
graph norm,

Hahn—Banach Theorem,

closure of a subspace, @

for bounded linear functionals, [67]

for convex sets, [70]

for positive linear functionals, [6§]
Hardy space, 239]
heat

equation, [352] [403]

kernel,
Hellinger—Toeplitz Theorem,
Helly’s Theorem,
Hermitian inner product, [222

on £*(N, C),

on L?(, C),

on L*(R/Z,C),
Hilbert Cube, [I61]
Hilbert cube, [T43]
Hilbert space,

complex, 223

complexification, [223

dual space,

orthonormal basis, @

separable, @|

unit sphere contractible, [T93]
Hille—Yosida—Phillips, [368/{374]
Hélder inequality, [26]
holomorphic

function,

functional calculus, RI6}221]
hyperplane,

affine,

image, [I§]
infinitesimal generator,
of a contraction semigroup,
of a group, [366]
of a self-adjoint semigroup, [382
of a shift group, [385
of a unitary group, [384]
of an analytic semigroup, [393
of the dual semigroup,
of the heat semigroup, 03]
Schrodinger operator, [386]
uniqueness of the semigroup, [365
well-posed Cauchy problem, [363|
inner product, [31]
Hermitian, [79] 222]
on L*(p),
integral
Banach space valued,
mean value inequality,
over a curve, [209]
invariant measure, [[25]
ergodic,
inverse in a Banach algebra, [35]
inverse operator, [39]
Inverse Operator Theorem,

Jacobson radical, [246]
James’ space, [S6H100]
James’ Theorem, [134]

joint kernel, [T20]

K-Theory, [I8§]

kernel,
Krein—-Milman Theorem, [T4]]
Kronecker symbol,
Kuiper’s Theorem, [188

Lagrangian subspace, [314] [345|
Laplace operator, [298]

linear functional
bounded, [I7]
positive, [68]

linear operator
adjoint, [I65] [225]
bidual,
bounded,
closeable, @

closed, [59]
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cokernel,

compact, [[74] [233)
completely continuous,
complexified,

cyclic vector, 281
dissipative, [374]

dual, [I64]

exponential map, 221
finite rank,
Fredholm,

image, [I79]

inverse, 39

kernel,

logarithm,

normal,

positive semidefinite, 245]
projection, [78] [[47]

right inverse,
self-adjoint,
singular value, 233]
spectrum, 20|

square root, 221} 245
symmetric, [61] [63]
unitary, 227]

weakly compact,

linear subspace

closure,
complemented,

dense, @
dual of, [76]

invariant, 288

orthogonal complement,

weak™® closed,

weak* dense, [122
weakly closed, [[I9]
Lipschitz continuous, [A13]

long exact sequence, [195|
Lumer—Phillips Theorem,

Markov—Kakutani

Fixed Point Theorem,
maximal ideal, [246]

meagre, [40]

Mean Ergodic Theorem, [145)
measurable function

Banach space valued,

strongly,
weakly,

measure

complex,
ergodic, [[44]
invariant, [125]

probability,
projection valued, [262]
pushforward, [I65]
signed,
spectral, 263
metric space, 2]
compact, [
complete, [3]
completion, [45]
Milman-Pettis Theorem, [I56]
Minkowski functional,

nonmeagre, [40]

norm, [3|
equivalent,
operator, [I7]

normal operator, @
spectrum, 229
unbounded, [B21]

normed vector space, [3|
dual space, [26]

weak* topology,

product, 24
quotient, 23]
strictly convex, [106]
uniformly convex, [I56]

weak topology,
nowhere dense,

open
ball, [2]
half-space, [72]
map, 54
set in a metric space, [2]
Open Mapping Theorem, [54]
for unbounded operators, [343]
operator norm, [I7]
ordered vector space, [68|
orthogonal complement,

complex, 225]
orthonormal basis,

partial order,
Pettis’ Lemma, [48]

Pettis’ Theorem, [I05]
Phillips” Lemma,
Pitt’s Theorem, [I9]]
pointwise
bounded, [50]
compact, [12]
precompact, [I2]

polar set, [I56]
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positive cone, [6§]
positive linear functional, [63|
pre-annihilator, [[20]
precompact
pointwise, [[2]
subset of a metric space, [
subset of a topological space, [f]
probability measure, [[25]
product space, [25]

product topology, [[10] [[T3}
projection, [78] [[47]

quotient space, 23]
dual of, [76]

Radon measure, [155
Radon-Nikodym property,
reflexive Banach space,
residual,
resolvent

identity,

for semigroups, |368
operator, [2I0] 299
set, 205} 250

Riemann—Lebesgue Lemma, [103
Riesz Lemma,
Ruston’s Theorem, [106

Schatten’s tensor product, [[05]
Schauder basis,
Schrodinger equation, [386
Schrédinger operator, 298
Schur’s Theorem,
second category, [40]
self-adjoint operator,

spectrum, 23]]

unbounded,

semigroup
strongly continuous, 350
seminorm, [65]
separable
Banach space,
Hilbert space, @
topological space, [LT]
signed measure, [4]
total variation, [333|
simplex
infinite-dimensional, [[43]
singular value, 233
Smulyan-James Theorem, [L59
Snake Lemma, [T95]
Sobolev space, [A23]

spectral

measure, [263] B32]
projection, 215] 305
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Spectral Mapping Theorem
bounded linear operators,
normal operators, [267]
self-adjoint operators,
unbounded operators, [326

Spectral Theorem, 281

spectrum, 208
continuous, 208} [299]

in a unital Banach algebra, [240]
of a commutative algebra,
of a compact operator, [213]

of a normal operator, 229} [324]
of a self-adjoint operator, 231]
of a unitary operator, [229

of an unbounded operator, [299
point, [208] 299

residual, [208] 299]

square root, 245] 344]
Babylonian method,

Stone’s Theorem,
Stone—Weierstrafl
Theorem, [236] [289] [290]
strictly convex,
strong convergence, [52]
strongly continuous semigroup, |350|
analytic, [388{403]
contraction, [374]
dual semigroup,
extension to a group, @
heat kernel,
Hille-Yosida—Phillips, [368|
infinitesimal generator, [357]
on a Hilbert space, |351
regularity problem,
Schrédinger equation, [336]
self-adjoint, [382]
shift operators,

unitary group, [384]
well-posed Cauchy problem,

sublinear functional, [65]
symmetric linear operator, [61] [L65]
symplectic

form,

reduction, [345

vector space, 314} [345]

tensor product, [I05]
topological vector space, [TI0]
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strong, [IT0] [IT4]

strong operator, [52]
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weak™,
total variation

of a signed measure, |[333
totally bounded,
triangle inequality,
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Tychonoft’s Theorem,

unbounded operator, [295|
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normal, 327]

self-adjoint, [3T3]
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spectrum, 299] [324]
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Uniform Boundedness Theorem,
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normed, [3]
ordered, [68]
topological, [[10]
Volterra operator, [29]]
von Neumann’s
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