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1 Introduction

Associated to a partition n — k > a; > --- > a; > 0 is a symmetric function
On = det ()8 ) / det ((t4)F,2,) |

an irreducible representation p, : U(k) — Aut(V,) whose highest weight
is determined by a, and a Schubert cycle ¥, in the Grassmannian G(k,n)
of complex k-planes in C". The Weyl character formula asserts that 6,
is the character of p,, Chern-Weil theory associates a characteristic class
[0(Fa/2mi)] € H*(G(k,n)) of the tautological bundle bundle £ — G(k,n)
to every symmetric polynomial 6, and Agnihotri observed that the class
wq = [0.(Fa/2mi)] is Poincaré dual to the Schubert cycle ¥,. The corre-
spondence p — [0,(F4/2mi)] was introduced by Witten. This gives rise to a
triangle of ring isomorphisms

S(k,n—k)
Weyl /‘ \ Chern—Weil
R(k,n — k) g H*(G(k,n))

Here S(k,n — k) is a finite dimensional quotient of the ring of symmetric
functions in k arguments and R(k, n—k) is a corresponding finite dimensional
quotient of the representation ring of U(k). These isomorphisms are uniquely
determined by the correspondence

i
/ N\
where the ¢; are the elementary symmetric functions. Witten’s motivation
for considering the isomorphism R(k,n — k) — H*(G(k,n)) is his conjecture
that it should identify the Verlinde algebra with the quantum cohomology
of the Grassmannian. The purpose of the present survey is to describe this
picture in the classical context.



2 Symmetric polynomials

2.1 Elementary symmetric functions

This section contains some foundational material about the ring of symmetric
polynomials. An excellent reference is MacDonald [6]. Let S = S(k) denote
the ring of symmetric polynomials in the variables tq,..., ¢, with complex
coefficients. Of fundamental importance are the elementary symmetric
functions ¢; for 1 < i < k and the complete symmetric functions v;
for j > 1. They are defined by

(bi: Z tl/1"'t1/i7 1/@‘: Z tul"'tUj-

1<v1 <---<v; <k 1< < <<k

The power series

k [eS)
B =S ON, () =3 e
i=0 Jj=0
can be expressed in the form
k k 1
o) = [Ta+8Y), v =T+ (1)
v=1 v=1 v

The expression for ¢ is obvious and the one for 1) is equivalent to the following
identity.

Lemma 2.1

P(Np(=A) = 1. (2)
Proof: Fix 7 > 1 and denote

v = > tyy -y, i=1,...,7.

v1> >0 <1 <Ly
Then v = v¥;, v; = ¢;, and v; + Y41 = ¢iv0j—; for i =1,..., 5 — 1. Hence
J

S (1) ity =y + (-1 () + (-1 =0. O

=0



In terms of the coefficients the previous lemma shows that each ¢; is a

polynomial in the 1, ..

U1 e Y3
L 9
o = 0 1
0 - 0

., Y, namely

n
it
Vi |,

L4

(on

o1 P2 @3
I ¢ ¢
0 1 &
0 ... 0

1

?;
Pj-1
Pj—2

o

(3)

for all 4,7 > 0. These equations are easily seen to be equivalent to (2). The
first identity continues to hold for ¢ > k£ with ¢; = 0 and hence the 9, satisfy

the relations

V1 1y
L 4
0 1
0

1/}3 ’l/}Z
dr o i
wl ¢i—2
01 4

0,

for all

1> k.

2.2 Schur polynomials and Young diagrams

A partition is a finite sequence of nonnegative integers a; > --- > a; > 0.
Associated to every partition is a Young diagram Y, with a; squares in
the i-th row. The rows are understood to be aligned on the left. The dual
partition b; > --- > b, > 0 is obtained by transposing the Young diagram.

a
a2

a3

Qg

by by b3

be




Thus b; is the number of squares in the j-th column and ¢ > a;. (The
numbers a; and b; are not required to be nonzero.) Explicitly, the numbers

b; are defined by
by =#{ilai=j}, =1 (5)
The next lemma shows how the Schur polynomials in the 9, are related

to Schur polynomials in the ¢; via transposition of Young diagrams. Note
that (3) appears as a special case.

Lemma 2.2 Leta; > --->ap >0 and by > -+ > b, > 0 be related by (5).
Then

¢Gl waﬁ-l e ¢al+kf_1 gbbl ¢b1+1 e ¢b1+€—1
wtm—l ’QZ)@ e ¢a2+k—2 . ¢b2—1 ¢b2 e ¢b2+€—2
wak—k-i-l ¢ak—k+2 T ¢ak ¢b5_z+1 gbbe_“_g s gbbe

Proof: Equation (2) is equivalent to
j .
Y (=1)'iy;_i = 0

=1

for every j > 0 and this can be expressed in the form ¥ = ®~! where

Loy oo Pn L =gy - ()",
3 R : —1
0 -~ 0 1 0 - 0 1

for every n. Thus every minor of ¥ agrees with the complementary minor of
®T (the transpose of ®). Suppose n = k + ¢ and define
a; =1+ Qp_j, Bi=7j+k—"0i

fori=0,...,k—land j=0,...,—1. Then §; = j+#{i|a; <i+j} and
hence

{0,...,TL— 1} = {Oéo,...,()zk_l}u{ﬁo,...,ﬁg_l}.
Now consider the minor of ¥ with rows «ay, ..., as_1 and columns 0, ..., k—1.
This agrees up to a sign with the minor of & with rows k,...,n — 1 and

bt



columns fy, ..., B¢_1. In fact, the signs in the definition of ® cancel with the
sign in this identification and we obtain

det ((%i—j)ﬁ}io) = det ((¢k+i—ﬁj)53i0) :

In terms of the coefficients a; and b; this becomes

det (v, 1i-3)8520) = det (11535520 -

This is the required identity. O

Corollary 2.3 Ifa; > --- > a,, > 0 with m > k then

wal wal+1 e waler*l
@Z)a?—l @Z)fzg . @Z)aﬁjm—Q —0 (6)
¢am_m+1 ¢dm—m+2 T ,l7Z)0m

Proof: Suppose ¢ > a; and let by > --- > b, > 0 be defined by (5). Then
the identity of Lemma 2.2 holds with k& replaced by m. But by = m > k and
hence the first row on the right hand side is zero. O

Remark 2.4 Let R be any commutative ring with unit and
(A =Y YN € R(N)
=0

be a power series with coefficients in R. Suppose that the v; satisfy (4) for
1 > k with ¢y = 1. Then there exists a polynomial

P(A) = Z¢i>‘i € R[]

which satisfies (2). In fact the coefficients ¢g = 1, ¢y, . .., ¢y are given by (1).
Hence Lemma 2.2 and Corollary 2.3 continue to hold in this case. In partic-
ular, the v; satisfy the relation (6). O



2.3 Jacobi-Trudi identity

Consider the symmetric polynomials

tlal-‘rk—l t2a1+k—1 .. tkal—i—k—l
t1a2+k—2 t2a2+k—2 .. tkag—i—k—Z
9 B tlak t2ak e tkak (7)
A1yl _ _ _
1 k tlk 1 t2k 1 ... tkk; 1
t1k72 t2k72 . tk‘k:fQ

for ag > ay > -+ > a; > 0. The Jacobi-Trudi identity expresses these
functions explicitly as Schur polynomials in the ;. The proof is taken from
MacDonald [6],page 25,1 (3.4) (see also Fulton [3],Lemma A.9.3).

Lemma 2.5 (Jacobi-Trudi) For any integers a; > as > -+ > ap > 0 we

have
wa1 wa1+1 Tt ¢a1+k—1
QﬁaQ—l ,lvz)(m e ¢a2+k—2
eal,...,ak = . . . . (8)
wak—k-i-l wak—k-i-Q e ,lvz)ak

Proof: We follow the argument in [6]. Write o; = a; + k — i and denote

by qbz(j) the i-th symmetric function of the variables ti,...,¢;_1,tj41,..., %
(with ¢; omitted). Then the matrices

0L ™ e ™ woq—k-i-l Qﬁoq—k-i—Q e w(n
T — t1a2 t2a2 e tka2 N Qﬁ(m—k-i-l waQ—k-i-Q e ¢a2
AR PR Yop—k+1 Vap—kt2 - Yo,
1.0 1.2 1.k
(~1)* ¢§§ (—1)* cbiz N G ¢>§§
(=DF 20,2, (12972, - oo (1),
¢ = : : :
1 2 k
_g) —¢§) _g)
1 1 e e 1



satisfy
T,=v,®. (9)

To see this consider the polynomial

k—1

AP =3 PN = T(1 + t,0).
=0 v#£j
By (3), we have
TR U - YR
POV(A) = gy = SN

Comparing coefficients one finds

" =1, — wHaﬁﬁj) + wu—2¢gj) FooF (_1)k71¢u7k+1¢](g21
and this equivalent to (9). Taking determinants we obtain
det(7,) = det(¥,) det(P).
The result now follows from the identity det(®) = det(7s) which is obtained

by specializing to a = d = (k — 1,k — 2,...,1,0) with det(V¥;) = 1. O

Exercise 2.6 Use Lemma 2.5 to prove (6) for the complete symmetric func-
tions. O

Exercise 2.7 Let 6, be given by (7). Then

01,.1,0,..0 = Gi, j0,..0 = ;.

Give a direct proof of the first identity. Hint: Consider the coefficient of
to" =% in the polynomial det(tij)f’jzo = H0§i<j§k:(tj — ;). O
Exercise 2.8 Prove that the polynomials 8, are linearly independent. Hint:
Denote by ‘

O = det ((t;")E )

ij=1



the numerator in (7). Use the identity

k
z 1, a;+k—i
ah 0, § : L™ @al+17~~~>ai71+1yai+17---7ak <t27 s 7tk‘>
=1

and prove, by induction over k, that the ©, with |a| = d are linearly inde-
pendent for each d. O

Proposition 2.9 The polynomials 6, for ay > --- > ap > 0 form a basis
of the vector space S(k) of symmetric polynomials with complex coefficients.
Hence every symmetric polynomial can be expressed as a polynomaial in the
@i or, alternatively, (nonuniquely) as a polynomial in the ;.

Proof: A basis of the space Sy(k) of symmetric polynomials of degree d is
given by the polynomials

= D to)™ o™

ocESy

where a; > -+ > a > 0 with |a| = X ; a; = d. Thus the dimension of Sy(k)
is equal to the number of 6,’s of degree d and the result follows from the
linear independence of the 6, (Exercise 2.8). O

2.4 Littlewood-Richardson rule
Structure constants

The product in S(k) can be expressed in terms of the structure constants
¢ defined by

0,0y = _ NGO (10)

It turns out that these constants are uniquely determined by the relations (4)
and the formula (8).

Lemma 2.10 Let R be a commutative ring with unit. Suppose that the
sequence o = 1,11, 19, ... in R satisfies the relations (4). Then the elements

90,1 ey Q det (z/}az“’]*l)fi]:l

satisfy (10) for any two partitions a,b of length k where the constants N&,
are the same as those in the Ring S(k) of symmetric polynomials.

9



Proof: The structure constants can be obtained in three steps. Firstly,
use (8) to write 6, and 6, as sums of products of the form 1);, ---1;, with
J1>Jo >+ > jr > 0 (at most k factors). Then the product 6,6, is a sum of
products of the 1); with at most 2k factors in each summand. The second and
crucial step is to express a product v;, - - -1;, with m > k factors as a sum of
such products with at most k factors. This can be done by induction over m
and j,, using the relations (6). (It follows from Corollary 2.3 and Remark 2.4
that the v; satisfy (6).) The third step is to express any product ¢, - - - ¢},
as a linear combination of the polynomials 6. for certain partitions c of length
k. This third step follows by induction from (8). (See Exercise 2.11 below.)
Combining these three steps one obtains an expression for 6,6, as a linear
combination of the 6.. The resulting coefficients are the structure constants

& In all three steps the constants depend only on the formula (8) for the
6, and on the relations (6) between the t; but not on the particular ring in
question. This proves the lemma. O

Exercise 2.11 Use (8) to prove that

Vi = 05500+ 0i11i-10..0++ 0. 0 1< J.

Find an expression for ¥;,1;,7;, as a linear combination of the 6,. O

Littlewood-Richardson

Although the structure constants N can, in principle, be determined from
the proof of Lemma 2.10 this is, in practice, a highly nontrivial task. A
beautiful algorithm for determining these constants was found by Littlewood
and Richardson. To state the result we need some notation. The set of
partitions a € Z* carries a natural partial order

a<c <= a; < ¢ V.

Thus, if Y, denotes denotes the Young diagram determined by a, then a < ¢
iff Y, C Y,. The set theoretic difference Y, — Y, is called a skew diagram. A
tableau T of shape ¢ — a is a labelling of the squares in the skew diagram
Y. — Y, by positive integers such that the labels are nondecreasing from left
to right and strictly increasing from top to bottom. The weight of T is

10



the vector b = (by,...,by) where b; is the number of occurences of i in the
tableau. Obviously the weight satisfies

[b] = [e] = |al.

Associated to every tableau T is a word w(T) = AjAy--- Ay where the
integers \; > 0 are obtained by reading the labels in the squares from right
to left and in successive rows from top to bottom. The word w(7") is called
monotone if the number of occurences of the symbol i in each substring
Ao -+ A, is greater than or equal to the number of occurences of ¢ + 1.
Note that if the word w(T") is monotone then the number ¢ of labels is
bounded above by the number k£ of rows. Moreover, in this case the weight
b is a partition and it satisfies b < c¢. The following formula for the structure
constants NS, is the Littlewood-Richardson rule. A proof can be found
in MacDonald [6], Section 1.9. The result shows, in particular, that Ng is
always nonnegative and can only be nonzero if a < ¢, b < ¢, and |a|+b| = |¢]|.

Theorem 2.12 (Littlewood-Richardson) The constant NS, is the num-
ber of Young tableaus T of shape ¢ — a and weight b such that the word w(T')
18 monotone.

2.5 Quotient rings

Consider the subspace
Ty =span{f,|a, > (}.

Since N = 0 whenever a 4 c this subspace is an ideal and the quotient will
be denoted by
S(k,0) = S(k)/Z,.

This quotient can be identified with the subspace spanned by the 6, with
> a > -+ > ap > 0. With this interpretation the product is given by
multiplication in S(k) followed by projection onto S(k,¢). The dimension of
S(k,?) as a complex vector space is

dim S(k, 0) = <k Z E).

11



As a ring S(k,l) is generated by the polynomials ¢q,...,¢,. But while
S(k) = C[é1,...,Px] is freely generated by the ¢; there are now relations
_____ a, = 0 whenever a; > -+ > a; > 0 with a; > £. One checks easily that
these relations are equivalent to

(bl (b? ¢3 (bj
L ¢1 ¢ - dja
;=0 1 ¢ - dja|=0 for j=0+1,...0+k (11

0 - 0 1 ¢
Namely, if (11) holds then, by developing the determinant expression for 1;
with respect to the first row, we see that ¢; = 0 for all j > ¢. If this holds
then the formula (8) shows that 6, = 0 whenever a; > (. (Compare with

Remark 2.4.) It follows that the ring S(k,¢) can be naturally identitified
with the quotient

Clo1, ..., bkl
(Vop1=0,..., % =0)

From an algebraic point of view there is now a natural symmetry between

the variables ¢, ..., ¢, and 91, ..., Y,.

S(k, 0) =

Remark 2.13 There is a natural isomorphism
S(k,t) = S({, k)

which interchanges the roles of ¢; and ;. In other words the isomorphism
maps the elementary symmetric functions in tq, ..., ¢, to the complete sym-
metric functions in the variables uq,...,u, and vice versa. By Lemma 2.2,
this isomorphism maps

..... ag (tla s 7tk;) — ebl,...,be(u17 cee ,U/g)

where the b; = # {i|a; > j} are given by the transpose Young diagram. O

12



3 Grassmannian

3.1 Symplectic quotient

Let G(k,n) denote the Grassmannian of k-planes in C". This manifold can be
described as a symplectic quotient as follows. Consider the space M = Cc™*¥
of complex n x k-matrices as a symplectic manifold with its standard complex
and symplectic structures. The unitary group U(k) acts on C™** on the right
by ® +— ®U ! for U € U(k). This action is Hamiltonian and a moment map
p: CV* — (k) is given by

p(®) = £ (@0~ 1)

Here we identify the Lie algebra g = u(k) with its dual via the inner product
(&,m) = trace(*n) for €, € u(k). The moment map has been normalized
(by adding a central element) so that the zero set u~'(0) consists of unitary
k-frames, i.e.

poH0) = F(k,n) = {® € ¥ [0 = 1}.
Thus the quotient is diffeomorphic the Grassmannian
G(k,n) = F(k,n)/U(k) = c™* JU(k).

The diffeomorphism F(k,n)/U(k) — G(k,n) is given by ® — A = im ®.

3.2 Schubert cycles

Fix a complete flag
{0}=VocViC---CV,. CV,=C"

with dim V,, = v. For any k-dimensional subspace A C C" consider the
subspaces ANV,,. Their dimensions form a nondecreasing sequence of integers
A, =dim(ANV,) with A\, < A1 <A, +1and A\g =0, \, = k. Thus the
jumps in the A\, form a strictly increasing sequence 0 < v; < -+ < v < n
such that

dim (ANV,) =1, v; < v <V,

13



for ¢ = 0,...,k where vy = 0 and v;;; = n. Thus v; > ¢ is the smallest
integer with dim(A N'V,,) = . It is convenient to characterize the jumps by
the decreasing sequence a; = n — k + i — v;. These numbers form a partition

n—k>a >a>--->a,>0
and they are characterized by the condition
dlm(/\ N Vn,kJri,ai) - ’i, dlm(A N Vn,kJrl',ai,l) = Z - 1 (12)

The Schubert cycle associated to the integer vector a = (ay, ..., ax) and the
flag V= (Vh, ..., V,) is the set of all k-planes A € G(k,n) which satisfy (12).
This set is a smooth submanifold of G(k,n) denoted by

Y, =X, (V) =xkn o (Vor - Vo)

.....

For generic flags V' and W the Schubert cycles ¥,(V') and 3,(W) are trans-
verse. Moreover, the Schubert cycles represent homology classes and these
generate the integral homology of G(k,n) additively. More precisely, they

have the following fundamental properties. Proofs can be found in Griffiths-
Harris [4] and Milnor-Stasheff [7].

Theorem 3.1 (i) Fach X, is a smooth submanifold of G(k,n) with
codim®¥, = ay + -+ ax = |a.
(ii) The closure of X, is given by
.= S

a<a’

where a < ' iff a; < a) for all i. Thus the 3, represent homology classes
00 = [Ya] € Hak(n—k)-20a (G (K, n); Z).
(iii) The classes o, generate H.(G(k,n);Z) additively and, in particular,

dim H,(G(k,n);2) = (Z)

(iv) The intersection number of 2-Schubert cycles o, and o, is given by

oo — 1, ifagy1i+b;=n—Fk foralli,
@ P00 0, otherwise.

14



3.3 Duality

It is useful to examine the duality between G(k,n) and G(n — k,n) via the
obvious diffeomorphism

f:G(k,n) — G(n —k,n), f(A) = A+

The action on Schubert cycles corresponds to transposition of Young dia-
grams as follows.

Proposition 3.2 Let the partitions a € Z¥ and b € 2" be related by b; =

#{i|la; > j} as in (5) and define the flag W by W, = VX . Then the

diffeomorphism f : G(k,n) — G(n — k,n) maps the Schubert cycle ¥,(V) to
fEaVo, - Vo) = Su(V,, ., Vh).

Proof: Let o; =i+n—k—a; and 3; = j+b,_g+1—j. Then §; = j+#{i| o <

i+ 7 — 1} and hence

{1,...,n} ={aq, ..., } U{P1,. .., Bui}
Now let A € ¥,(V) and denote
AN =dim(ANV,), N =dmA*NVE)=v—k+\_,.
forv=1,...,n. Then
AN FE AN = ved{a)
Hence

N £ N — N -1=X_,

v—1
An—vt1 = An—y
n—v+1é¢{a;}
n—v+1e{f}
ve{n+1-0;}
ve{n+1—=j—bppp1-5}
ve{j+k—0b}

rreee

This means that A is an element of the Schubert cycle in G(n — k,n) asso-
ciated to b and W. O

15



3.4 Tautological bundles

Consider the canonical vector bundles
E — G(k,n), F — G(k,n)

with fibres Ey = A and Fy = A+ over A € G(k,n). Thus E can be identified
with the quotient
F(k,n) x ck

U(k)
where U(k) acts on (®,2) € F(k,n) x C* via [®,2] = [®U,U"'2]. The
correspondence is given by [®,z] — (im®, $z). Let us denote the Chern
classes of the dual bundles by

E

12

C; = CZ'(E*>, dj = Cj(F*)

fori = 1,....,kand j = 1,...,n — k. These classes are related to the
homology classes o, as follows. For a proof see Milnor-Stasheff [7].

Proposition 3.3 The Chern classes of E* and F* are given by
a(E') =PD(&),  ¢(F") = (=1)’PD(n)
where & and n; denote the homology classes of the special Schubert cycles
& = 01,..1,0,...05 N5 = 054,0,..,0

(with 1 occurring i times in the first case).

3.5 Giambelli’s formula

Each homology class o, can be expressed as a polynomial in the &; or re-
spectively in the ;. An explicit formula for this polynomial was found by
Giambelli and this is the contents of the following theorem. A proof of the
first identity can be found in Griffiths-Harris [4], page 205, and the second
identity follows from the first and Lemma 2.2.

16



Theorem 3.4 (Giambelli) Fiz integersn —k >a; > -+ > ap > 0 and let
k>b >--->by,_ >0 be defined by (5). Then

Tay Nay+1 Tay+2 o Nay4+k—1
Naz—1 Nag Nag+1 o Nag+k—2
Oar,oap = Naz—2 Taz—1 Tas “o Tag+k—3
Nap—k+1  Nap—k+2 Nap—k+3 Nay,
Sbl §b1+1 §b1+2 T €b1+n—k‘—1
Eby—1 &by byt v Chyn—k—2
= Ebs—2 Ebs—1 Ebs o Ehyrn—k—3
é‘bn,kfﬂr‘rk%‘rl ébn,kfnJrkJrQ ébn,kfn+k+3 Tt é‘bnfk

Here multiplication is to be understood as the intersection product (i.e. the
Poincaré dual of the cup-product of the Poincaré duals).

Giambelli’s theorem shows that the ¢; generate the cohomology of G(k,n)
multiplicatively. Relations arise from the identities

J
Z Cidjfi =0
=1

for j =1,...,n. For j = 1,...,n — k these identities determine the d; as
functions of the ¢; and for j =n—k+1,...,n they become relations for the
¢; which can be expressed in the form

C1 Co C3 - Cj
1 C1 Co s Cj—l

dj=10 1 4 - ¢o|=0, forall j>mn-—k. (13)
o --- 0 1 c1

(Compare with equation (4).) That these are the only relations follows from
dimensional considerations. Thus the cohomology ring of the Grassmannian
can be naturally identified with




Giambelli’s formula can also be used to prove that the products
A" =™ N NG

with my + -+ +my < n — k form an additive basis of the cohomology of
G(k,n). Moreover, Mielke and Whitehouse conjectured that the quantum
product of up to n — k of the classes ¢; agrees with the ordinary cup-product
(c.f. [9]). Combining this with the computation by Witten [12] and Siebert-
Tian [10] of the quantum cohomology of G(k,n) as an abstract ring would
then determine the quantum product structure in the basis PD(coy,).

Exercise 3.5 Check that Giambelli’s formula for a = (4,0,...,0) is equiva-
lent to Y27 ¢;(E*)c;—i(F*) = 0.

Exercise 3.6 Prove that g, cr(E*)" " = 1.

4 Representations

4.1 Root systems

Let G be a compact Lie group and T C G be a maximal torus. Denote
the corresponding Lie algebras by g = Lie(G) and t = Lie(7) and let A C t
denote the integral lattice (i.e. 7 € A iff exp(7) = 1). Consider the root

space decomposition
gc — tc D @ ga

aEA

of the complexified Lie algebra where the o are linear functionals « : t — iR
with a(A) C 2miZ and

[1,&] = a(T)¢ for TEL £E g

The basic facts are that « € A iff —a € A with g7 = g* and if [{,n] # 0
for £ € g and 1 € ¢° then a + 3 € A with ¢*™P = [¢%, ¢°]. Thus there is a
decomposition A = AT U A~ such that

a e AT = —a €A™

and
a,fEAT, a+BEAN = a+ B e AT,

18



Call A" the set of positive roots. Choosing a set of positive roots is
equivalent to choosing a Borel subgroup B C G¢ with Lie algebra

b =Lie(B) =t @ g%

acAt

Note that this subgroup is invariant under conjugation by elements of the
torus. Denote the opposite Borel subgroup by B C G¢. Its Lie algebra is

b=LieB) =t o P ¢

aEA~

Note that both G¢/B and G¢/B can be identified with G/7T" and this deter-
mines two opposite complex structures on this quotient. We shall denote by
Jp the complex structure obtained by the identification

G/T = G°/B.

This corresponds to the identification of the tangent space of G/T" at 1 with
the complex vector space @ ca+g®.

Weyl group

Different choices of Borel subgroups containing 7" are related by the conjugate
action of the Weyl group. Denote by

N({T)={g9€Glgtg”' =t}

the normalizer of the torus. Any g € N(T') gives rise to an automorphism
sg . T'— T defined by

sg(t) = gtg™
for t € T. The Weyl group W is the finite group of these automorphisms.

Thus
W = N(T)/T = {s,|g € N(T)}

where T acts on the right. For s € W the induced automorphism of the
Lie algebra will still be denoted by s : t — t and det(s) € {41} denotes its
determinant. The proof of the following proposition is an easy exercise.

19



Proposition 4.1 (i) If g € N(T) and a € A then aos, € A with
gaosg — g—lgag.

(ii) If g € N(T) and B C G€ is a Borel subgroup for T then so is g 'Bg.
The corresponding system of positive roots is given by

Al g, = {aosg|a€A§}.

Moreover, g-'Bg = B if and only if g € T.
(iii) For any two Borel subgroups B, B’ C G¢ containing the same torus T
there exists a g € N(T) such that B’ = g~'Bg. In particular, there exists a
g € N(T) such that

B = ¢ !By, ¢* = 1.

Simple roots

A positive root a € AT is called simple if it cannot be written as a sum
a = o/+a” with o/, o” € A*. Let us fix a collection of simple roots a1, . . ., ay.
These roots together with the centre span the dual torus t*. Let us now fix
an invariant inner product on g and for each root a € A choose a vector
Na € t¢ such that

(1) = (1, 7)

for 7 € t¢ and define
204,

~ InaP?
Then the vectors h,, together with the center span the complexified torus t°.

ha €t (14)

4.2 Irreducible representations

Let us fix a maximal torus 7" C G and a Borel subgroup B C G¢ with
corresponding system AT of positive roots. Let V be a Hermitian vector
space and

p:G— Aut(V)
be a unitary representation. Denote by p : g — End (V') the corresponding
Lie algebra homomorphism. There is a natural decomposition

V=P

AED
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into the eigenspaces under the action of the torus 7. The subspaces V* are
labelled by the linear maps A : t — R which satisfy

p(m)v = A(T)v for Tet veVh

The \’s are called the weights of the representation. It is easy to check that
if A € ¥ is a weight and @ € A is a root such that p(g®)V* # {0} then A+«
is again a weight and

PV C VA
The following proposition summarizes the fundamental properties of the
weight systems of irreducible representations.

Theorem 4.2 Let p : G — Aut(V) be an irreducible representation with
weight system ¥ C Hom(t,iR) and fix a Borel subgroup B C G€ for the
maximal torus T' C G. Then the following holds.

(1) There exists a unique weight A € ¥ (called the highest weight with
respect to B) such that \+a & X for all « € Af. The corresponding weight
space V* is one-dimensional.

(ii) Two irreducible representations with the same highest weights are iso-
morphic.

(iii) If hy € ¢ is defined by (14) for a € A then A(hy) € Z for all X € ¥ and
all o € A. Moreover, if X is the highest weight then

Mho) >0 for  a€eAf.

(iv) If G has a discrete centre and vy, . . .,y € Ay are the simple roots, then
for any nonnegative integers my, ..., my > 0 there exists a unique irreducible
representation (up to isomorphism) with highest weight A satisfying

)\(hai):mi
fori=1,... L.

The previous theorem shows that every highest weight is a nonnegative
linear combination of the minimal highest weights pu; : t — /—1R defined by

pi(ha,) = ij-

21



With m; as above the highest weight A is given by

¢
A= Z TG -
i=1

Sometimes it is convenient to denote a representation p : G — Aut(V)
simply by the vector space V. In many cases the action is obvious (e.g. the
unitary group U(k) acts in an obvious way on A‘C* and SC*). The highest
weight of a representation V' with respect to B will sometimes be denoted
by Avg. Also, if the Borel subgroup B C G€ is clear from the context (such
as the group of upper triangular matrices in the unitary case) then we shall
denote by V) the representation with highest weight \. The next proposition
concerns the action of the Weyl group on the the weight spaces. The proof
is an easy exercise.

Proposition 4.3 (i) If A is a weight of V and g € N(T) then Ao s, is a
weight of V' with weight space

V)\osg — p(gfl)v)\.
(ii) For every g € N(T') and every Borel subgroup B C G¢ with T'C B

)\V,g*IBQ = )‘V,B o Sg.

Duality

Associated to a representation p : G — Aut(V) is the dual or contragredient
representation p : G — Aut(V) where one can think of V either as the real
vector space V' with the reversed complex structure or as the dual space and
then
V =Hom(V,C),  plg) =plg)" "

Thus, if ¢ : V — C is a complex linear map then p(g)¢ = ¢ o p(g)~t. It is
interesting to determine the highest weight of V' with respect to the original
Borel subgroup B. Firstly, note that the weights of V' are given by

EV:{—)\‘AGZV}.

This implies that Ay g = —Ay, 5. Hence, by Proposition 4.3 the highest weight
of V' with respect to B is given by

Avs = —Avpoad(g), (15)
where g € N(T) is chosen such that ¢~'Bg = B.
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4.3 Borel-Weil theory

Fix a maximal torus T" C G. A linear functional A : t — iR is called a weight
if exp(7) = 1 implies A(7) € 2mizZ. For each weight \ there exists a unique
homomorphism

xa: T — S?

such that x, = A. Thus every character A gives rise to a complex line bundle
L:L)\:GXX/\C—>G/T

where T acts on C by x»~!. A point in L is an equivalence class of pairs [g, 2]
where g € G¢ and z € C under the equivalence relation [g, z] = [gt, xA(t) ']
fort € T. Now fix a system A™ of positive roots and denote the corresponding
Borel subgroup by B. Recall that B determines a complex structure Jp on
G/T = G¢/B. The Borel-Weil theorem asserts that a representation V' with
highest weight \ is isomorphic to the space H°(G¢/B, Ly) of holomorphic
sections of L, with a suitable holomorphic structure.

Remark 4.4 (i) There is a conjugation G¢ — G¢: g — g on the complex-
ified Lie group which extends the obvious conjugation on the Lie algebra
g¢. This conjugation maps the Borel subgroup B to B and the extension

p: G — Aut(V) of a unitary representation satisfies

(@)~ = plg)”
for g € G
(ii) For any weight A the homomorphism yy : ' — S! extends uniquely to
B (but not in general to G¢). This extension is determined by the extension
of X to b via A(g®) = 0 for @ € A*. Similarly, there is an extension to B
which will also be denoted by y» : B — C*. Both extensions evidently agree
on BN B = T° and they are related under conjugation by

xa(b)™h = xa(b)
for b € B. O

The above line bundle L = Ly — G/T can be identified with the quotient

L_GX(CEGCX(C
AT T B
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where B and T act on C via y,~!. Thus a point in L is an equivalence

class of pairs [g, 2] where g € G° and z € C under the equivalence relation
lg, 2] = [gb, xa(b)7!2] for b € B. A section of L can be expressed as a function
f : G¢ — C which satisfies

F(gh) = xa(0) "' f(9) (16)

for g € G¢ and b € B. A holomorphic section is simply a holomorphic map
which satisfies (16). The space of holomorphic sections will be denoted by
H°(G¢/B, Ly).

Theorem 4.5 (Borel-Weil) Let py : G — Aut(V)) be an irreducible repre-
sentation with highest weight . Then there exists an isomorphism

Vi = H°(G°/B, Ly).

It is easy to write down a linear map V — H°(G¢/B, L) which is equiv-
ariant with respect to the two actions of G¢. Just fix a highest weight vector
vy € V* with respect to B such that p(7)vg = A\(7)vp for 7 € t. The definition
of highest weight then implies that p(g*)vg = 0 for @ € AT and it follows
that

p(b)vo = xa(b)vo
for b € B. Now consider the map V — H°(G¢/B, L) : v — f, defined by

fo(g) = (p(g)vo, v) (17)

for v € V and g € G°. Then it is easy to check that f, satisfies (16) and
that the map v +— f, intertwines the two actions of G¢. That this map
is bijective is a consequence of the fact that irreducible representations are
uniquely determined by their highest weights and this will not be discussed
here.

Remark 4.6 In terms of Borel-Weil theory the dual representation of V' =
H°(G¢/B, L) (with highest weight A with respect to B) is given by

V =~ H°(G°/B, L).

Here the bundle L — G¢/B can be explicitly represented as the quotient L =
G¢ x €/B under the equivalence relation [g, z] = [gb, xA(b)z] for b € B. Thus
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the dual representation is obtained by both reversing the complex structure
on G/T and replacing L by the dual bundle. An explicit isomorphism

V — H°(G/B,L): ¢ — f,

is given by
fo(9) = (p(g)vo)

with vy € V' as above. O

4.4 Weyl character formula

The character of a unitary representation p : G — Aut(V) is the function
0, : G — C defined by

6,(9) = trace”(p(g)).

This function is invariant under conjugation and, since every g € G is con-
jugate to some element of the maximal torus 7', the character is uniquely
determined by its restriction to 7. This restriction is still invariant under
the action of the Weyl group. The map p +— 0, is a ring homomorphism, i.e.

9p1@p2 = epl + 0/)27 9P1®p2 = 0/)1 9[)2' (18>
Evidently, the dimension of V' is the value of the character at g = 1.

Theorem 4.7 Two representations of a compact Lie group G are isomorphic
if and only if they have the same character.

Fix a system AT of positive roots with Borel subgroup B € G¢. Weyl’s
character formula expresses the character 6,, of an irreducible representation
px : G — Aut(V)) with heighest weight A (with respect to B) as a weighted
average of the characters x, o s over the Weyl group W. More precisely,
define Ay : T — C

A\(t) = Z/:Vdet(s)x)\ o s(t).

Note that this function vanishes at the identity ¢ = 1. Taking A equal to the
sum

5:%Za (19)

acAt
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one finds that

As(t) = 3 det(s)xs 0 s(t) = xs(t) TT (1—xa(®)7).
seW acAt
The next theorem is the required character formula.

Theorem 4.8 (Weyl character formula) If p) : G — Aut(V)) is the ir-
reducible representation with highest weight X then !

B (0) = 23220

Theorem 4.9 (Weyl dimension formula) The dimension of the irredu-
cible representation Vy with highes weight \ is given by

Ha€A+ <)\ + 57 Oé>
HaEA+ <57 Oé> .

dim V)\ = Qp/\(l) =

4.5 Unitary group
Borel subgroup

Consider the unitary group G = U(k) with maximal torus 7" consisting of
the unitary diagonal matrices. Then t is the space of diagonal matrices with
imaginary entries and we denote by ¢; : t — /—1R the evaluation of the i-th
diagonal entry. The roots are the functionals €;; = ¢; — ¢; with 7 # j and
g“~% is the space of matrices whose (i, j)-entry is the only nonzero one. Let
us choose

A+:{€i—€j|i<j}

as the system of positive roots. The simple roots have the form ¢; —e;,1 and

the corresponding matrices h.,_., , € t° are given by

h, = diag(0,...,0,1,—1,0,...,0).

€i—E&i+1

In this case g¢ = C*** G¢ = GL(k,C), and B C G€ is the subgroup of upper
triangular matrices with nonzero diagonal entries. The dual Borel subgroup
B is the group of lower triangular matrices.

If the center is discrete then § is a weight despite the factor 1/2. In general, § may
differ from a weight by a central element which cancels in the quotient.
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Irreducible representations

The minimal highest weights are
Mi:81+"'+8¢

fori=1,...,k—1. A general highest weight has the form

k—1 k—1
A= Zmiﬂi = Zaigi
i=1 i=1

where a; = m; + --- + my_1 and thus a; > --- > ar_; > 0. To describe
representations of U(k) we must allow for the action of the center and obtain
highest weights of the form

k k
A= Zmi,ui = Zai&‘
i=1 i=1

where pp, =14+ --+¢ep and a; = m;+---+my_y1. Thus a; > --- > a; where
the integer ap = my need not be positive. The action of the center is given
by the sum of the a;.

Throughout we denote by p, : U(k) — Aut(V,) the irreducible represen-
tation with highest weight A = >~, a;&;. This representation can be explicitly
realized as a subspace

‘/;L C (Al(ck:)®m1 ® (AQCk)®m2 ® . ® (Akck)®mk

where m; = a; — a;11. The tensor product on the right contains a one-
dimensional subspace W?» (namely the tensor product of the subspaces
(Cer A ... Ae)®™) on which U(k) acts with weight A = >, m;u;. The rep-
resentation V' can then be defined as the smallest subspace which contains
W* and is invariant under U(k).

Example 4.10 Of particular interest are the special representations

- -
Vi10..0=AC" Vi o=5C"

777777

with 1 occurring ¢ times in the first case. In particular, Vj o = C is the
trivial representation (the multiplicative unit in the representation ring). O
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Duality

Let G = U(k) and B C GL(k,C) be the group of upper triangular matrices.
Recall from Proposition 4.1 that there exists a g € U(k) such that g"'Bg = B
where B is the subgroup of lower triangular matrices. The required matrix g
is the anti-diagonal

0 01
010
10
g g
- 01
010 .
10 0

If V, = Vi, a4, denotes the representation of U(k) with heighest weight
A =Y, a;g; with respect to B then the dual representation is given by

‘_/a - Va*
where the integers aj > ay > --- > aj, are given by
af = Qg1

fori =1,..., k. Note, in particular, that the sum of the a; changes sign under
a — a* and this corresponds to the fact that in the dual representation the
action of the center is reversed.

Flag manifolds and Borel-Weil theory

The Borel subgroup B C G¢ (of upper triangular matrices) is the stabilizer
of the standard flag €° C ¢' C --- C C* (where C' is identified with the
subspace of all vectors of the form (z1,...,2,0,...,0) € C*). Hence the
quotient G°/B can be naturally identified with the flag manifold

F<k):{E:{Ei}§:o|EOCE1C"'CEk, dimcEi:i}.

The diffeomorphism G¢/B — F(k) is given by g — {gC'};. Consider the
character x, : B — C* given by x,(b) = [1; b;“* and associated to the highest
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weight A\, = >, a;&; with

ay = az 2> -+ 2> Q.
One checks easily that the line bundle L = L, = G° x,, C — G°/B = F(k)
is the bundle whose fibre over a flag & = {E;}; is the line

k k
Ly =Q L% = QN E)*™, Li=Ei/Ei_y, m;=a;— Gi1.
=1 =1

Thus the representation V, is given by
Vo, =2 HY(F(k), L").

Consider, for example, the case a = (1,...,1,0,...,0) with 1 occurring i
times so that L, = A’E}. Then any exterior i-form o € A*(C*)* induces
a holomorphic section of s : F(k) — L* by restriction to E* and this is the
required isomorphism between V, = AY(C*)* and H(F(k), L?).

Weyl character formula

Recall that the character 6, : U(k) — C of a representation p : U(k) —
Aut(V') is uniquely determined by its restiction to the maximal torus and
is invariant under the action of the Weyl group. In the case at hand the
maximal torus is the group of diagonal matrices and the Weyl group is the
symmetric group acting on the diagonal entries ¢y, ...,%; by permutation.
Hence the character of a finite dimensional representation of U(k) can be
thought of a symmetric function in k variables. The Weyl character formula
asserts that the character of the irreducible representation V, with weight
A= >, a;e; where a; > --- > a; > 0 agrees with the symmetric polynomial
6, introduced in (7).

Theorem 4.11 (Weyl) Let ay > --- > ax > 0. Then the character of the
irreducible representation p, : U(k) — Aut(V,) with weight A = Y, a;e; is the
symmetric polynomial (7):

0,. = 0.

a
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Proof: To apply the Weyl character formula to the unitary case note first
that the linear functional § : t — iR in (19) is given by

D ST DI P (20)
=1 j=1
where ¢; : t — 4R is given by ¢;(t) = ¢; Moreover, the Weyl group is the
permutation group W = Sy with s,(t) = (o), ..., tew)) and det(s,) =
sign(o) is the sign of the permutation. In the quotient the last summand
cancels and it is convenient to replace § by
k
50 = Z(l{? — j)é‘j.

Jj=1

Then 6y o o(t) = I, ti(]]) and hence

Agy(t) = det (" )F,2,) -
This shows that Theorem 4.8 specializes to

_ det ((tiam_j)ﬁj:l

det ((tikfj)ﬁjzl)

Of particular interest are the special characters

eAiCk = Z tul e tui = gbia

1<v <---<v; <k

Ogick = > by, -ty = ;.

1<v <<pj<k

) = 0,(1). O

Pa

These are obvious cases of the Weyl character formula. It follows from The-
orem 4.11 and the Jacobi-Trudi identity in Lemma 2.5 that the character of
pa can also be expressed as the relevant Schur polynomial in the 1);:

,QZ)(M wal-i-l e wal-f—k—l
%2—1 ,lvz)(m e QﬁaQ-Hc—Q

wakfk%‘rl wakkarQ t ,l/}ak
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It is important to note that each character 0,, = 0, extends uniquely to a
polynomial on C*** if one interprets the variables ¢, ..., as the eigenvalues
of the matrix A € C¥**. Just write 6, as a Schur polynomial in the variables
¢; via Lemma 2.2 and use the fact that the ¢; are the coefficients of the
characteristic polynomial det(1+ AA) = Zf:o ¢;\'. Thus a symmetric poly-
nomial in the eigenvalues is a polynomial of the same degree in the entries
of the matrix.

Weyl dimension formula

The dimension formula of Theorem 4.9 takes the form

a;—a;+7—1 icimi+ o +mj_1+J—1
dimVa:H .]Jr.] =H<J< o1 J1|j )
i< Jj—t 2t (k=1
for a; > --- > ay, where m; = a; — a;.1 and V,, denotes the representation

with highest weight A = 3, a;;. To see this just note that with ¢;; = ¢; —¢;
and d given by (20) we have (0,¢;;) = j — i and (A, &;;) = a; — a;. The reader
may check that the dimension formula is in agreement with the identities

dim A‘ck = <k>, dim S’ct = <k +j. a 1)-
¢ J

4.6 Representation ring

Consider the representation ring
R =R(U(k))

which is generated by the irreducible representations p, : U(k) — V, with
a; > --- > ap. An element of R can be thought of as a formal linear
combination of the form

p=> 1%a

with integer coeflicients x® € Z. If the £ are all nonnegative then we may
think of p as the direct sum of the representations p, where each p, appears x®
times. In the negative case an element p € R"*(U(k)) should be interpreted
as a difference of two representations just like in K-theory. The multiplicative
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structure is given by the tensor product. The ring R(U(k)) carries a natural
pairing defined by

( - 1, ifa=10",
Par PO ) =90, ifa # b*
where aj = —a,,_; as on page 28. This pairing is not positive definite but
it satisfies the Frobenius condition
(p@p,p") = (p,p @p"). (21)

Let &, : U(k) — S* denote the central representation defined by
§0(U) = det(U)"

for U € U(k) and ¢ € z. This representation corresponds to the highest
weight £ = (¢,... () € Z¥ and it satisfies

o ® 0 = Pase: (22)
This implies that there is a family of metrics
(0, 0")e=(p.p @ 0_4) =(p@p,0_0)

which all satisfy the Frobenius condition.

Structure constants

The product on R can be expressed in terms of the structure constants NJ,

defined by
Pa @ py =Y Ngype.

The associativity law then takes the form
v p7d d v
ZNabNuc = Z Nal/Nbc
Moreover, the Frobenius condition can be expressed as

. nc
Nabc:Nbca:Ncaba Nabc = Nab'
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In fact, by symmetry of the tensor product, the constants N, are invariant
under all permutations of the indices. Condition (22) takes the form

c _ c _ c—{
at+lb — ab+£_Nab

for all weights a,b,c and all integers ¢. The next proposition shows that
the structure constants NS, agree with those in the ring R(k) of symmetric
polynomials with complex coefficients in k£ variables. Hence these constants
are given by the Littlewood-Richardson rules of Theorem 2.12.

Proposition 4.12 The map
R(U(k)) — S(k): p— 0,

is a ring isomorphism from the representation ring of U(k) to the ring of
symmetric polynomials in k variables.

Proof: That the map is a ring homomorphism follows from (18). Moreover,
by the Weyl character formula in Theorem 4.11, it identifies the two canonical
bases p, +— 0,. O

Multiplicities

The structure constants can be explicitly expressed in terms of the characters
as follows. For any representation p : G — Aut(V') denote by

VE={veV|plgw=vVgeG}
the subspace which is fixed under G. Then the orthogonal projection
O, :V - Ve

is given by
1

Iy = Vol(G) /Gp(g) dg

where dg denotes an invariant metric on G Hence the dimension of the in-
variant subspace is given by

1

dim V¢ = trace(Ily) = VT(G) /Gé’p(g) dg.
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Now fix some irreducible representation py : G — Aut(Vy). Then the mul-
tiplicity with which py occurs in p (denoted by mult,(\)) agrees with the
dimension of the subspace (V ®@V,)¢. To see this note that (V@ Vy )% = {0}
unless A = ) in which case the subspace is 1-dimensional. Thus

) — 1 B
mult, (V) = dim (V0 V3)© = s L0096, (9) " dg. (23)
This formula plays a crucial role in Witten’s quantum field theory approach
to the Verlinde algebra in [12]. It shows that the structure constants NS, can
be expressed in the form

NGy = v [ Gal0)ulo)élo) " do. (24)

Vol(G)
where 6, = 0,, = trace® o p, : G — C denotes the character of the repre-
sentation p,. The reader may check that these constants satisfy the above
conditions.

4.7 Natural isomorphism

Consider the ring R(k,n — k) = R"*(U(k)) which is generated by the rep-
resentations p, with

n—k>a >ay>--->a; > 0. (25)

In [12] Witten calls these the representations at level (n — k,n). The mul-
tiplication is defined as the tensor product followed by the projection onto
R(k,n — k). Note here that the tensor product of two representations p,
and p, which both satisfy (25) is a sum of irreducible representations p,»,
however, the a” need not all satisfy (25). The product in R(k,n — k) is given
by simply neglecting those a” which do not satisfy (25). Another important
point to bear in mind is that the above metric (p, p’) vanishes on R(k,n—k).
However, there is a natural nondegenerate pairing

(PP )k = (p®p, 0k—n) (26)

which, by (22), determines a Frobenius structure on R(k,n — k).
In [12] Witten observed that there is a natural ring isomomorphism from
R(k,n — k) to the cohomology of the Grassmannian G(k,n). In view of
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Theorem 4.11 the character §, = trace® o p : U(k) — C of any finite dimen-
sional representation of U(k) is a symmetric polynomial and hence extends
uniquely to a polynomial on C*** which is invaraint under conjugation. This
extension can then be restricted to the Lie algebra u(k) and this restriction is
invariant under the conjugate action of U(k). Now fix a connection A on the
tautological bundle E — G(k,n) and denote by F4 € Q*(G(k,n), End(E))
its curvature. Then 6,(F4/27i) is a closed real valued 2|a|-form on G(k,n)
which represents some characteristic class of the bundle E. Witten’s isomor-
phism is the map

R(k,n—k) — H(G(k,n);Z) : p— [0,(Fa/2mi)]. (27)

If p =Y ,2%, is a virtual representation (i.e. some of the 2% are negative)
then 6, should be interpreted as the sum 60, = >°, 2%0,. It is tempting to
use (18) to show that the map p — [0,(F4/27i)] is a ring homomorphism.
However, care must be taken with the projection onto R(k,n — k), i.e. one
has to show that 6,(F/2mi) represents the zero cohomology class whenever
a; > n — k. The next theorem shows in fact that (27) is a ring isomorphism
which idenitifies the two canonical bases.

Theorem 4.13 Let a € ZF satisfy (25) and let A be a connection on the
tautological bundle E — G(k,n). Then

[0.(F4/27i)] = PD(0,) € H(G(k,n); z).
Moreover, (27) is a ring isomorphism.

Proof: We first prove the result for the multiplicative generators a =
(1,...,1,0,...,0) corresponding to the representations V, = A'‘C*. Namely,

Pick (t) = Z by, - tui

1<v <---<v; <k

and applying this polynomial to /—1/27 times the curvature of any U(k)-
connection gives the i-th Chern class. Hence, by Proposition 3.3, we find

[0i(Fa/2mv/=1)] = [01,..10..0(Fa/2mV/~1)]
= [Oricr(Fa/2mv/=1)]
= (=1)'a(E)
= ¢(E").
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This proves the result for a = (1,...,1,0,...,0). For a = (5,0,...,0) it
follows from Theorem 3.4 and Lemma 2.1 that

[G1(Fa/2m)] oo oo [(Fa/2m0)]
[0(Fa/2mi)] = o f
0 o 1 [¢i(Fa/2mi)]
C(EY) - e o(EY)
= ¢(F).

Now use Theorem 4.11 to express [0,(F4/27i)] as a determinant in the Chern
classes ¢;(F') and then use Theorem 3.4 to express this determinant as the
Poincaré dual of the Schubert cycle o,. This proves the first assertion. It fol-
lows that (27) maps p, — PD(0,) and hence is a vector space isomorphism.
That this isomorphism intertwines the two product structures follows from
Theorems 3.4 and 4.11 and Lemma 2.10. These results show that the struc-
ture constants are the same in both rings. O

Corollary 4.14 The map (27) is the unique ring isomorphism which maps
Aick — ¢;(E"), Sick s ¢;(F).

Corollary 4.15 Ifa; > --- > ax, > 0 with |a| = k(n — k) and ay > n — k
then
0,(F,/2mi) = 0.
Syl Fa2m)

Proof: Let N = a;+k > n and note that G(k, n) is the closure of the Schu-
bert cycle X¥x_n = Xn_p,...n—n in G(k, N). By Theorem 4.13, the cohomol-

ogy class of 0,(F4/2mi) is Poincaré dual to the Schubert cycle ¥, C G(k, N)
and hence

0,(F4/2m1) = Xn_p - 2 = 0.
/G(k,n) (Fa/2mi) = Sx_y

Since a # n — k the last equality follows from Theorem 3.1. O
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Corollary 4.16 If 0 : C¥** — C is a polynomial which is invariant under
the adjoint action of G¢ = GL(k,C) then

1

Vol(G) /G 0(g) det(g)* " dg = /G(k,n) 0(Fa/2mi).

Proof: Every invariant polynomial can be decomposed as a finite sum

_ a a __ 1 -1
=T w5 = O0)ele)  do.

where 6, denotes the character of the representation with highest weight
a; > -+ > a > 0. By Corollary 4.15, the integral of 0,(F4/2mi) over
G(k,n) is zero unless a = n — k in which case the integral is 1 (Exercise 3.6).
Hence

) n—k — 1 k—n
/. oy PFa/2mi) = 2k = s [ 0tg) det(g)* " dg. o

Consider the formula of Corollary 4.16 with 6 = 6,60,0., where a, b, c € Z*
satisfy (25) and |a| + |b] + |¢| = k(n — k). In this case one obtains

Ga+ Oy 0n = / oy 0o(Fa/270) A Op(Fa/20) A Ou(Fa/2r)
G(k,n

1

R T(e) G9a<g)6b<g)9c<g)det(g)k’”dg

- Na bc—n—k-

The last equality follows from (24). The identity o, - 03 - 0c = Nopc—n—k 18
equivalent to the fact that the map p, — PD(o,) is a ring homomorphism.

In [12] Witten goes further and conjectures that the above isomorphism
R(k,n — k) — H*(G(k,n);Z) should intertwine the two deformed product
structures, i.e. in the case of the Grassmannian the quantum cohomology
structure, defined in terms of J-holomorphic curves u : ¥ — G(k,n), and in
the case of the representation ring the Verlinde algebra structure, defined
in terms of holomorphic sections of certain line bundles over moduli spaces
of flat U(k)-connections with parabolic structures over a surface ¥. This
conjecture was proved by Agnihotri in [1].

Acknowledgement Thanks to John Jones, Shaun Martin, Thomas Mielke,
John Rawnsley, and Sarah Whitehouse for many helpful discussions.

37



References

1]

2]

[10]

[11]

[12]

S. Agnihotri, Quantum cohomology and the Verlinde algebra, PhD the-
sis, Oxford, 1995.

A. Bertram, G. Daskalopoulos, and R. Wentworth, Gromov invari-
ants for holomorphic maps from Riemann surfaces to Grassmannians,
preprint, April 1993.

W. Fulton, Intersection Theory, Springer Verlag, 1984.

P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley
and Sons, 1978.

M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent.
Math. 82 (1985), 307-347.

[.G. MacDonald, Symmetric Functions and Hall Polynomials, Clarendon
Press, Oxford, 1979.

J. Milnor and J. Stasheff, Characteristic classes, Annals of Mathematics
Studies 76, Princeton University Press, 1974.

V.B. Mehta and C.S. Seshadri, Moduli of vector bundles on curves with
parabolic structures, Math. Ann. 248 (1980), 205.

T. Mielke and S. Whitehouse, The quantum cohomology of the Grass-
mannian, in preparation.

B. Siebert and G. Tian, On quantum cohomology rings of Fano mani-
folds and a formula of Vafa and Intriligator, Preprint, 1994.

E. Verlinde, Fusion rules and modular transformations in 2-D conformal
field theory, Nucl. Phys. B 300 (1988), 360.

E. Witten, The Verlinde algebra and the quantum cohomology of the
Grassmannian, preprint, iassns-hep-93/41, December 1993.

38



