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1 Introduction

Associated to a partition n− k ≥ a1 ≥ · · · ≥ ak ≥ 0 is a symmetric function

θa = det
(
(ti

ai+k−j)ki,j=1

)
/ det

(
(ti

k−j)ki,j=1

)
,

an irreducible representation ρa : U(k) → Aut(Va) whose highest weight
is determined by a, and a Schubert cycle Σa in the Grassmannian G(k, n)
of complex k-planes in Cn. The Weyl character formula asserts that θa
is the character of ρa, Chern-Weil theory associates a characteristic class
[θ(FA/2πi)] ∈ H∗(G(k, n)) of the tautological bundle bundle E → G(k, n)
to every symmetric polynomial θ, and Agnihotri observed that the class
ωa = [θa(FA/2πi)] is Poincaré dual to the Schubert cycle Σa. The corre-
spondence ρ 7→ [θρ(FA/2πi)] was introduced by Witten. This gives rise to a
triangle of ring isomorphisms

S(k, n− k)
Weyl ↗ ↘ Chern−Weil

R(k, n− k)
Witten−→ H∗(G(k, n))

Here S(k, n − k) is a finite dimensional quotient of the ring of symmetric
functions in k arguments andR(k, n−k) is a corresponding finite dimensional
quotient of the representation ring of U(k). These isomorphisms are uniquely
determined by the correspondence

φi
↗ ↘

ΛiCk −→ ci(E
∗)

where the φi are the elementary symmetric functions. Witten’s motivation
for considering the isomorphism R(k, n−k)→ H∗(G(k, n)) is his conjecture
that it should identify the Verlinde algebra with the quantum cohomology
of the Grassmannian. The purpose of the present survey is to describe this
picture in the classical context.
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2 Symmetric polynomials

2.1 Elementary symmetric functions

This section contains some foundational material about the ring of symmetric
polynomials. An excellent reference is MacDonald [6]. Let S = S(k) denote
the ring of symmetric polynomials in the variables t1, . . . , tk with complex
coefficients. Of fundamental importance are the elementary symmetric
functions φi for 1 ≤ i ≤ k and the complete symmetric functions ψj
for j ≥ 1. They are defined by

φi =
∑

1≤ν1<···<νi≤k
tν1 · · · tνi , ψj =

∑

1≤ν1≤···≤νj≤k
tν1 · · · tνj .

The power series

φ(λ) =
k∑

i=0

φiλ
i, ψ(λ) =

∞∑

j=0

ψjλ
j

can be expressed in the form

φ(λ) =
k∏

ν=1

(1 + tνλ), ψ(λ) =
k∏

ν=1

1

1− tνλ
. (1)

The expression for φ is obvious and the one for ψ is equivalent to the following
identity.

Lemma 2.1
ψ(λ)φ(−λ) = 1. (2)

Proof: Fix j ≥ 1 and denote

γi =
∑

ν1>···>νi≤νi+1≤···≤νj
tν1 · · · tνj , i = 1, . . . , j.

Then γ1 = ψj, γj = φj, and γi + γi+1 = φiψj−i for i = 1, . . . , j − 1. Hence

j∑

i=0

(−1)iφiψj−i = ψj +
j−1∑

i=1

(−1)i(γi + γi+1) + (−1)jφj = 0. 2
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In terms of the coefficients the previous lemma shows that each φi is a
polynomial in the ψ1, . . . , ψk, namely

φi =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 ψ3 · · · ψi
1 ψ1 ψ2 · · · ψi−1

0 1 ψ1 · · · ψi−2
...

. . .
. . .

. . .
...

0 · · · 0 1 ψ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

, ψj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 φ3 · · · φj
1 φ1 φ2 · · · φj−1

0 1 φ1 · · · φj−2
...

. . .
. . .

. . .
...

0 · · · 0 1 φ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

for all i, j ≥ 0. These equations are easily seen to be equivalent to (2). The
first identity continues to hold for i > k with φi = 0 and hence the ψj satisfy
the relations

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1 ψ2 ψ3 · · · ψi
1 ψ1 ψ2 · · · ψi−1

0 1 ψ1 · · · ψi−2
...

. . .
. . .

. . .
...

0 · · · 0 1 ψ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, for all i > k. (4)

2.2 Schur polynomials and Young diagrams

A partition is a finite sequence of nonnegative integers a1 ≥ · · · ≥ ak ≥ 0.
Associated to every partition is a Young diagram Ya with ai squares in
the i-th row. The rows are understood to be aligned on the left. The dual
partition b1 ≥ · · · ≥ b` ≥ 0 is obtained by transposing the Young diagram.

b1 b2 b3 · · · b`

a1

a2

a3

...

ak
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Thus bj is the number of squares in the j-th column and ` ≥ a1. (The
numbers ai and bj are not required to be nonzero.) Explicitly, the numbers
bj are defined by

bj = # {i | ai ≥ j} , j ≥ 1. (5)

The next lemma shows how the Schur polynomials in the ψj are related
to Schur polynomials in the φi via transposition of Young diagrams. Note
that (3) appears as a special case.

Lemma 2.2 Let a1 ≥ · · · ≥ ak ≥ 0 and b1 ≥ · · · ≥ b` ≥ 0 be related by (5).
Then
∣∣∣∣∣∣∣∣∣∣

ψa1 ψa1+1 · · · ψa1+k−1

ψa2−1 ψa2 · · · ψa2+k−2
...

...
. . .

...
ψak−k+1 ψak−k+2 · · · ψak

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

φb1 φb1+1 · · · φb1+`−1

φb2−1 φb2 · · · φb2+`−2
...

...
. . .

...
φb`−`+1 φb`−`+2 · · · φb`

∣∣∣∣∣∣∣∣∣∣

.

Proof: Equation (2) is equivalent to

j∑

i=1

(−1)iφiψj−i = 0

for every j ≥ 0 and this can be expressed in the form Ψ = Φ−1 where

Ψ =




1 ψ1 · · · ψn−1

0
. . .

. . .
...

...
. . . ψ1

0 · · · 0 1



, Φ =




1 −φ1 · · · (−1)n−1φn−1

0
. . .

. . .
...

...
. . . −φ1

0 · · · 0 1




for every n. Thus every minor of Ψ agrees with the complementary minor of
ΦT (the transpose of Φ). Suppose n = k + ` and define

αi = i+ ak−i, βj = j + k − bj+1

for i = 0, . . . , k− 1 and j = 0, . . . , `− 1. Then βj = j + #{i |αi ≤ i+ j} and
hence

{0, . . . , n− 1} = {α0, . . . , αk−1} ∪ {β0, . . . , β`−1}.
Now consider the minor of Ψ with rows α0, . . . , αk−1 and columns 0, . . . , k−1.
This agrees up to a sign with the minor of Φ with rows k, . . . , n − 1 and
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columns β0, . . . , β`−1. In fact, the signs in the definition of Φ cancel with the
sign in this identification and we obtain

det
(
(ψαi−j)

k−1
i,j=0

)
= det

(
(φk+i−βj)

`−1
i,j=0

)
.

In terms of the coefficients ai and bj this becomes

det
(
(ψak−i+i−j)

k−1
i,j=0

)
= det

(
(φbj+1+i−j)

`−1
i,j=0

)
.

This is the required identity. 2

Corollary 2.3 If a1 ≥ · · · ≥ am > 0 with m > k then

∣∣∣∣∣∣∣∣∣∣

ψa1 ψa1+1 · · · ψa1+m−1

ψa2−1 ψa2 · · · ψa2+m−2
...

...
. . .

...
ψam−m+1 ψam−m+2 · · · ψam

∣∣∣∣∣∣∣∣∣∣

= 0. (6)

Proof: Suppose ` ≥ a1 and let b1 ≥ · · · ≥ b` ≥ 0 be defined by (5). Then
the identity of Lemma 2.2 holds with k replaced by m. But b1 = m > k and
hence the first row on the right hand side is zero. 2

Remark 2.4 Let R be any commutative ring with unit and

ψ(λ) =
∞∑

j=0

ψjλ
j ∈ R(λ)

be a power series with coefficients in R. Suppose that the ψj satisfy (4) for
i > k with ψ0 = 1. Then there exists a polynomial

φ(λ) =
k∑

i=1

φiλ
i ∈ R[λ]

which satisfies (2). In fact the coefficients φ0 = 1, φ1, . . . , φk are given by (1).
Hence Lemma 2.2 and Corollary 2.3 continue to hold in this case. In partic-
ular, the ψj satisfy the relation (6). 2
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2.3 Jacobi-Trudi identity

Consider the symmetric polynomials

θa1,...,ak =

∣∣∣∣∣∣∣∣∣∣

t1
a1+k−1 t2

a1+k−1 · · · tk
a1+k−1

t1
a2+k−2 t2

a2+k−2 · · · tk
a2+k−2

...
...

...
t1
ak t2

ak · · · tk
ak

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

t1
k−1 t2

k−1 · · · tk
k−1

t1
k−2 t2

k−2 · · · tk
k−2

...
...

...
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣

(7)

for a1 ≥ a2 ≥ · · · ≥ ak ≥ 0. The Jacobi-Trudi identity expresses these
functions explicitly as Schur polynomials in the ψj. The proof is taken from
MacDonald [6],page 25,I (3.4) (see also Fulton [3],Lemma A.9.3).

Lemma 2.5 (Jacobi-Trudi) For any integers a1 ≥ a2 ≥ · · · ≥ ak ≥ 0 we
have

θa1 ,...,ak =

∣∣∣∣∣∣∣∣∣∣

ψa1 ψa1+1 · · · ψa1+k−1

ψa2−1 ψa2 · · · ψa2+k−2
...

...
. . .

...
ψak−k+1 ψak−k+2 · · · ψak

∣∣∣∣∣∣∣∣∣∣

. (8)

Proof: We follow the argument in [6]. Write αi = ai + k − i and denote

by φ
(j)
i the i-th symmetric function of the variables t1, . . . , tj−1, tj+1, . . . , tk

(with tj omitted). Then the matrices

Tα =




t1
α1 t2

α1 · · · tk
α1

t1
α2 t2

α2 · · · tk
α2

...
...

...
t1
αk t2

αk · · · tk
αk



, Ψα =




ψα1−k+1 ψα1−k+2 · · · ψα1

ψα2−k+1 ψα2−k+2 · · · ψα2

...
...

...
ψαk−k+1 ψαk−k+2 · · · ψαk



,

Φ =




(−1)k−1φ
(1)
k−1 (−1)k−1φ

(2)
k−1 · · · · · · (−1)k−1φ

(k)
k−1

(−1)k−2φ
(1)
k−2 (−1)k−2φ

(2)
k−2 · · · · · · (−1)k−2φ

(k)
k−2

...
...

...

−φ(1)
1 −φ(2)

1 · · · · · · −φ(k)
1

1 1 · · · · · · 1



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satisfy
Tα = ΨαΦ. (9)

To see this consider the polynomial

φ(j)(λ) =
k−1∑

i=0

φ
(j)
i λi =

∏

ν 6=j
(1 + tνλ).

By (3), we have

ψ(λ)φ(j)(−λ) =
1

1− tjλ
=
∞∑

ν=0

tj
νλν.

Comparing coefficients one finds

tj
ν = ψν − ψν−1φ

(j)
1 + ψν−2φ

(j)
2 ∓ · · ·+ (−1)k−1ψν−k+1φ

(j)
k−1

and this equivalent to (9). Taking determinants we obtain

det(Tα) = det(Ψα) det(Φ).

The result now follows from the identity det(Φ) = det(Tδ) which is obtained
by specializing to α = δ = (k − 1, k − 2, . . . , 1, 0) with det(Ψδ) = 1. 2

Exercise 2.6 Use Lemma 2.5 to prove (6) for the complete symmetric func-
tions. 2

Exercise 2.7 Let θa be given by (7). Then

θ1,...,1,0,...,0 = φi, θj,0,...,0 = ψj.

Give a direct proof of the first identity. Hint: Consider the coefficient of
t0
k−i in the polynomial det(ti

j)ki,j=0 =
∏

0≤i<j≤k(tj − ti). 2

Exercise 2.8 Prove that the polynomials θa are linearly independent. Hint:
Denote by

Θa = det
(
(tj

ai+k−i)ki,j=1

)
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the numerator in (7). Use the identity

Θa1,...,ak =
k∑

i=1

(−1)i−1t1
ai+k−iΘa1+1,...,ai−1+1,ai+1,...,ak(t2, . . . , tk)

and prove, by induction over k, that the Θa with |a| = d are linearly inde-
pendent for each d. 2

Proposition 2.9 The polynomials θa for a1 ≥ · · · ≥ ak ≥ 0 form a basis
of the vector space S(k) of symmetric polynomials with complex coefficients.
Hence every symmetric polynomial can be expressed as a polynomial in the
φi or, alternatively, (nonuniquely) as a polynomial in the ψj.

Proof: A basis of the space Sd(k) of symmetric polynomials of degree d is
given by the polynomials

pa(t) =
∑

σ∈Sk
tσ(1)

a1 · · · tσ(k)
ak

where a1 ≥ · · · ≥ ak ≥ 0 with |a| = ∑
i ai = d. Thus the dimension of Sd(k)

is equal to the number of θa’s of degree d and the result follows from the
linear independence of the θa (Exercise 2.8). 2

2.4 Littlewood-Richardson rule

Structure constants

The product in S(k) can be expressed in terms of the structure constants
N c
ab defined by

θaθb =
∑

c

N c
abθc. (10)

It turns out that these constants are uniquely determined by the relations (4)
and the formula (8).

Lemma 2.10 Let R be a commutative ring with unit. Suppose that the
sequence ψ0 = 1, ψ1, ψ2, . . . in R satisfies the relations (4). Then the elements

θa1 ,...,ak = det(ψai+j−i)
k
i,j=1

satisfy (10) for any two partitions a, b of length k where the constants N c
ab

are the same as those in the Ring S(k) of symmetric polynomials.
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Proof: The structure constants can be obtained in three steps. Firstly,
use (8) to write θa and θb as sums of products of the form ψj1 · · ·ψjk with
j1 ≥ j2 ≥ · · · ≥ jk ≥ 0 (at most k factors). Then the product θaθb is a sum of
products of the ψj with at most 2k factors in each summand. The second and
crucial step is to express a product ψj1 · · ·ψjm with m > k factors as a sum of
such products with at most k factors. This can be done by induction over m
and jm using the relations (6). (It follows from Corollary 2.3 and Remark 2.4
that the ψj satisfy (6).) The third step is to express any product ψj1 · · ·ψjk
as a linear combination of the polynomials θc for certain partitions c of length
k. This third step follows by induction from (8). (See Exercise 2.11 below.)
Combining these three steps one obtains an expression for θaθb as a linear
combination of the θc. The resulting coefficients are the structure constants
N c
ab. In all three steps the constants depend only on the formula (8) for the

θa and on the relations (6) between the ψj but not on the particular ring in
question. This proves the lemma. 2

Exercise 2.11 Use (8) to prove that

ψjψi = θj,i,0,...,0 + θj+1,i−1,0,...,0 + · · ·+ θj+i,0,...,0, i ≤ j.

Find an expression for ψj1ψj2ψj3 as a linear combination of the θa. 2

Littlewood-Richardson

Although the structure constants N c
ab can, in principle, be determined from

the proof of Lemma 2.10 this is, in practice, a highly nontrivial task. A
beautiful algorithm for determining these constants was found by Littlewood
and Richardson. To state the result we need some notation. The set of
partitions a ∈ Zk carries a natural partial order

a ≺ c ⇐⇒ ai ≤ ci ∀ i.

Thus, if Ya denotes denotes the Young diagram determined by a, then a ≺ c
iff Ya ⊂ Yc. The set theoretic difference Yc−Ya is called a skew diagram. A
tableau T of shape c− a is a labelling of the squares in the skew diagram
Yc − Ya by positive integers such that the labels are nondecreasing from left
to right and strictly increasing from top to bottom. The weight of T is

10



the vector b = (b1, . . . , b`) where bi is the number of occurences of i in the
tableau. Obviously the weight satisfies

|b| = |c| − |a|.

Associated to every tableau T is a word w(T ) = λ1λ2 · · ·λN where the
integers λi > 0 are obtained by reading the labels in the squares from right
to left and in successive rows from top to bottom. The word w(T ) is called
monotone if the number of occurences of the symbol i in each substring
λ1λ2 · · ·λν is greater than or equal to the number of occurences of i + 1.
Note that if the word w(T ) is monotone then the number ` of labels is
bounded above by the number k of rows. Moreover, in this case the weight
b is a partition and it satisfies b ≺ c. The following formula for the structure
constants N c

ab is the Littlewood-Richardson rule. A proof can be found
in MacDonald [6], Section I.9. The result shows, in particular, that N c

ab is
always nonnegative and can only be nonzero if a ≺ c, b ≺ c, and |a|+|b| = |c|.

Theorem 2.12 (Littlewood-Richardson) The constant N c
ab is the num-

ber of Young tableaus T of shape c− a and weight b such that the word w(T )
is monotone.

2.5 Quotient rings

Consider the subspace

I` = span {θa | a1 > `} .

Since N c
ab = 0 whenever a 6≺ c this subspace is an ideal and the quotient will

be denoted by
S(k, `) = S(k)/I`.

This quotient can be identified with the subspace spanned by the θa with
` ≥ a1 ≥ · · · ≥ ak ≥ 0. With this interpretation the product is given by
multiplication in S(k) followed by projection onto S(k, `). The dimension of
S(k, `) as a complex vector space is

dim S(k, `) =

(
k + `

k

)
.
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As a ring S(k, `) is generated by the polynomials φ1, . . . , φk. But while
S(k) = C[φ1, . . . , φk] is freely generated by the φi there are now relations
θa1,...,ak = 0 whenever a1 ≥ · · · ≥ ak ≥ 0 with a1 > `. One checks easily that
these relations are equivalent to

ψj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 φ2 φ3 · · · φj
1 φ1 φ2 · · · φj−1

0 1 φ1 · · · φj−2
...

. . .
. . .

. . .
...

0 · · · 0 1 φ1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 for j = `+ 1, . . . , `+ k. (11)

Namely, if (11) holds then, by developing the determinant expression for ψj
with respect to the first row, we see that ψj = 0 for all j > `. If this holds
then the formula (8) shows that θa = 0 whenever a1 > `. (Compare with
Remark 2.4.) It follows that the ring S(k, `) can be naturally identitified
with the quotient

S(k, `) ∼= C[φ1, . . . , φk]

〈ψ`+1 = 0, . . . , ψ`+k = 0〉 .

From an algebraic point of view there is now a natural symmetry between
the variables φ1, . . . , φk and ψ1, . . . , ψ`.

Remark 2.13 There is a natural isomorphism

S(k, `)
∼=−→ S(`, k)

which interchanges the roles of φi and ψj. In other words the isomorphism
maps the elementary symmetric functions in t1, . . . , tk to the complete sym-
metric functions in the variables u1, . . . , u` and vice versa. By Lemma 2.2,
this isomorphism maps

θa1 ,...,ak(t1, . . . , tk) 7→ θb1 ,...,b`(u1, . . . , u`)

where the bj = # {i | ai ≥ j} are given by the transpose Young diagram. 2
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3 Grassmannian

3.1 Symplectic quotient

Let G(k, n) denote the Grassmannian of k-planes in Cn. This manifold can be
described as a symplectic quotient as follows. Consider the space M = Cn×k

of complex n×k-matrices as a symplectic manifold with its standard complex
and symplectic structures. The unitary group U(k) acts on Cn×k on the right
by Φ 7→ ΦU−1 for U ∈ U(k). This action is Hamiltonian and a moment map
µ : Cn×k → u(k) is given by

µ(Φ) =
i

2
(Φ∗Φ− 1l).

Here we identify the Lie algebra g = u(k) with its dual via the inner product
〈ξ, η〉 = trace(ξ∗η) for ξ, η ∈ u(k). The moment map has been normalized
(by adding a central element) so that the zero set µ−1(0) consists of unitary
k-frames, i.e.

µ−1(0) = F(k, n) =
{

Φ ∈ Cn×k |Φ∗Φ = 1l
}
.

Thus the quotient is diffeomorphic the Grassmannian

G(k, n) ∼= F(k, n)/U(k) = Cn×k//U(k).

The diffeomorphism F(k, n)/U(k)→ G(k, n) is given by Φ 7→ Λ = im Φ.

3.2 Schubert cycles

Fix a complete flag

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Cn

with dim Vν = ν. For any k-dimensional subspace Λ ⊂ Cn consider the
subspaces Λ∩Vν. Their dimensions form a nondecreasing sequence of integers
λν = dim (Λ ∩ Vν) with λν ≤ λν+1 ≤ λν + 1 and λ0 = 0, λn = k. Thus the
jumps in the λν form a strictly increasing sequence 0 < ν1 < · · · < νk ≤ n
such that

dim (Λ ∩ Vν) = i, νi ≤ ν < νi+1,

13



for i = 0, . . . , k where ν0 = 0 and νk+1 = n. Thus νi ≥ i is the smallest
integer with dim(Λ ∩ Vνi) = i. It is convenient to characterize the jumps by
the decreasing sequence ai = n− k+ i− νi. These numbers form a partition

n− k ≥ a1 ≥ a2 ≥ · · · ≥ ak ≥ 0

and they are characterized by the condition

dim(Λ ∩ Vn−k+i−ai) = i, dim(Λ ∩ Vn−k+i−ai−1) = i− 1. (12)

The Schubert cycle associated to the integer vector a = (a1, . . . , ak) and the
flag V = (V0, . . . , Vn) is the set of all k-planes Λ ∈ G(k, n) which satisfy (12).
This set is a smooth submanifold of G(k, n) denoted by

Σa = Σa(V ) = Σk,n
a1 ,...,ak

(V0, . . . , Vn)

For generic flags V and W the Schubert cycles Σa(V ) and Σb(W ) are trans-
verse. Moreover, the Schubert cycles represent homology classes and these
generate the integral homology of G(k, n) additively. More precisely, they
have the following fundamental properties. Proofs can be found in Griffiths-
Harris [4] and Milnor-Stasheff [7].

Theorem 3.1 (i) Each Σa is a smooth submanifold of G(k, n) with

codimc Σa = a1 + · · ·+ ak = |a|.

(ii) The closure of Σa is given by

Σa =
⋃

a′
a≺a′

Σa′

where a ≺ a′ iff ai ≤ a′i for all i. Thus the Σa represent homology classes
σa = [Σa] ∈ H2k(n−k)−2|a|(G(k, n); Z).

(iii) The classes σa generate H∗(G(k, n); Z) additively and, in particular,

dim H∗(G(k, n); Z) =

(
n

k

)
.

(iv) The intersection number of 2-Schubert cycles σa and σb is given by

σa · σb =

{
1, if ak+1−i + bi = n− k for all i,
0, otherwise.

14



3.3 Duality

It is useful to examine the duality between G(k, n) and G(n− k, n) via the
obvious diffeomorphism

f : G(k, n)→ G(n− k, n), f(Λ) = Λ⊥.

The action on Schubert cycles corresponds to transposition of Young dia-
grams as follows.

Proposition 3.2 Let the partitions a ∈ Zk and b ∈ Zn−k be related by bj =
#{i | ai ≥ j} as in (5) and define the flag W by Wν = V ⊥n−ν. Then the
diffeomorphism f : G(k, n)→ G(n− k, n) maps the Schubert cycle Σa(V ) to
Σb(W ):

f(Σa(V0, . . . , Vn)) = Σb(V
⊥
n , . . . , V

⊥
0 ).

Proof: Let αi = i+n−k−ai and βj = j+bn−k+1−j. Then βj = j+#{i |αi ≤
i+ j − 1} and hence

{1, . . . , n} = {α1, . . . , αk} ∪ {β1, . . . , βn−k}.
Now let Λ ∈ Σa(V ) and denote

λν = dim (Λ ∩ Vν), λ′ν = dim (Λ⊥ ∩ V ⊥n−ν) = ν − k + λn−ν.

for ν = 1, . . . , n. Then

λν 6= λν−1 ⇐⇒ ν ∈ {αi}.
Hence

λ′ν 6= λ′ν−1 ⇐⇒ λ′ν − 1 = λ′ν−1

⇐⇒ λn−ν+1 = λn−ν

⇐⇒ n− ν + 1 /∈ {αi}
⇐⇒ n− ν + 1 ∈ {βj}
⇐⇒ ν ∈ {n + 1− βj}
⇐⇒ ν ∈ {n + 1− j − bn−k+1−j}
⇐⇒ ν ∈ {j + k − bj}

This means that Λ⊥ is an element of the Schubert cycle in G(n− k, n) asso-
ciated to b and W . 2
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3.4 Tautological bundles

Consider the canonical vector bundles

E → G(k, n), F → G(k, n)

with fibres EΛ = Λ and FΛ = Λ⊥ over Λ ∈ G(k, n). Thus E can be identified
with the quotient

E ∼= F(k, n)× Ck
U(k)

where U(k) acts on (Φ, z) ∈ F(k, n) × Ck via [Φ, z] ≡ [ΦU, U−1z]. The
correspondence is given by [Φ, z] 7→ (im Φ,Φz). Let us denote the Chern
classes of the dual bundles by

ci = ci(E
∗), dj = cj(F

∗)

for i = 1, . . . , k and j = 1, . . . , n − k. These classes are related to the
homology classes σa as follows. For a proof see Milnor-Stasheff [7].

Proposition 3.3 The Chern classes of E∗ and F ∗ are given by

ci(E
∗) = PD(ξi), cj(F

∗) = (−1)jPD(ηj)

where ξi and ηj denote the homology classes of the special Schubert cycles

ξi = σ1,...,1,0,...,0, ηj = σj,0,...,0

(with 1 occurring i times in the first case).

3.5 Giambelli’s formula

Each homology class σa can be expressed as a polynomial in the ξi or re-
spectively in the ηj. An explicit formula for this polynomial was found by
Giambelli and this is the contents of the following theorem. A proof of the
first identity can be found in Griffiths-Harris [4], page 205, and the second
identity follows from the first and Lemma 2.2.
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Theorem 3.4 (Giambelli) Fix integers n− k ≥ a1 ≥ · · · ≥ ak ≥ 0 and let
k ≥ b1 ≥ · · · ≥ bn−k ≥ 0 be defined by (5). Then

σa1 ,...,ak =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ηa1 ηa1+1 ηa1+2 · · · ηa1+k−1

ηa2−1 ηa2 ηa2+1 · · · ηa2+k−2

ηa3−2 ηa3−1 ηa3 · · · ηa3+k−3
...

...
...

. . .
...

ηak−k+1 ηak−k+2 ηak−k+3 · · · ηak

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ξb1 ξb1+1 ξb1+2 · · · ξb1+n−k−1

ξb2−1 ξb2 ξb2+1 · · · ξb2+n−k−2

ξb3−2 ξb3−1 ξb3 · · · ξb3+n−k−3
...

...
...

. . .
...

ξbn−k−n+k+1 ξbn−k−n+k+2 ξbn−k−n+k+3 · · · ξbn−k

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here multiplication is to be understood as the intersection product (i.e. the
Poincaré dual of the cup-product of the Poincaré duals).

Giambelli’s theorem shows that the ci generate the cohomology of G(k, n)
multiplicatively. Relations arise from the identities

j∑

i=1

cidj−i = 0

for j = 1, . . . , n. For j = 1, . . . , n − k these identities determine the dj as
functions of the ci and for j = n− k+ 1, . . . , n they become relations for the
ci which can be expressed in the form

dj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2 c3 · · · cj
1 c1 c2 · · · cj−1

0 1 ψ1 · · · cj−2
...

. . .
. . .

. . .
...

0 · · · 0 1 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, for all j > n− k. (13)

(Compare with equation (4).) That these are the only relations follows from
dimensional considerations. Thus the cohomology ring of the Grassmannian
can be naturally identified with

H∗(G(k, n); Z) =
Z[c1, . . . , ck]

〈dn−k+1 = 0, . . . , dn = 0〉 .

17



Giambelli’s formula can also be used to prove that the products

cm = c1
m1 ∧ . . . ∧ ckmk

with m1 + · · · + mk ≤ n − k form an additive basis of the cohomology of
G(k, n). Moreover, Mielke and Whitehouse conjectured that the quantum
product of up to n− k of the classes ci agrees with the ordinary cup-product
(c.f. [9]). Combining this with the computation by Witten [12] and Siebert-
Tian [10] of the quantum cohomology of G(k, n) as an abstract ring would
then determine the quantum product structure in the basis PD(σa).

Exercise 3.5 Check that Giambelli’s formula for a = (j, 0, . . . , 0) is equiva-
lent to

∑j
i=0 ci(E

∗)cj−i(F ∗) = 0.

Exercise 3.6 Prove that
∫
G(k,n) ck(E

∗)n−k = 1.

4 Representations

4.1 Root systems

Let G be a compact Lie group and T ⊂ G be a maximal torus. Denote
the corresponding Lie algebras by g = Lie(G) and t = Lie(T ) and let Λ ⊂ t

denote the integral lattice (i.e. τ ∈ Λ iff exp(τ) = 1). Consider the root
space decomposition

g
c = t

c ⊕
⊕

α∈∆

g
α

of the complexified Lie algebra where the α are linear functionals α : t→ iR
with α(Λ) ⊂ 2πiZ and

[τ, ξ] = α(τ)ξ for τ ∈ t, ξ ∈ g
α.

The basic facts are that α ∈ ∆ iff −α ∈ ∆ with g−α = ḡα and if [ξ, η] 6= 0
for ξ ∈ gα and η ∈ gβ then α + β ∈ ∆ with gα+β = [gα, gβ]. Thus there is a
decomposition ∆ = ∆+ ∪∆− such that

α ∈ ∆+ ⇐⇒ −α ∈ ∆−

and
α, β ∈ ∆+, α+ β ∈ ∆ =⇒ α + β ∈ ∆+.
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Call ∆+ the set of positive roots. Choosing a set of positive roots is
equivalent to choosing a Borel subgroup B ⊂ Gc with Lie algebra

b = Lie(B) = t
c ⊕

⊕

α∈∆+

g
α.

Note that this subgroup is invariant under conjugation by elements of the
torus. Denote the opposite Borel subgroup by B̄ ⊂ Gc. Its Lie algebra is

b̄ = Lie(B̄) = t
c ⊕

⊕

α∈∆−
g
α.

Note that both Gc/B and Gc/B̄ can be identified with G/T and this deter-
mines two opposite complex structures on this quotient. We shall denote by
JB the complex structure obtained by the identification

G/T ∼= Gc/B̄.

This corresponds to the identification of the tangent space of G/T at 1 with
the complex vector space ⊕α∈∆+gα.

Weyl group

Different choices of Borel subgroups containing T are related by the conjugate
action of the Weyl group. Denote by

N(T ) = {g ∈ G | gtg−1 = t}

the normalizer of the torus. Any g ∈ N(T ) gives rise to an automorphism
sg : T → T defined by

sg(t) = gtg−1

for t ∈ T . The Weyl group W is the finite group of these automorphisms.
Thus

W = N(T )/T = {sg | g ∈ N(T )}
where T acts on the right. For s ∈ W the induced automorphism of the
Lie algebra will still be denoted by s : t → t and det(s) ∈ {±1} denotes its
determinant. The proof of the following proposition is an easy exercise.
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Proposition 4.1 (i) If g ∈ N(T ) and α ∈ ∆ then α ◦ sg ∈ ∆ with

g
α◦sg = g−1

g
αg.

(ii) If g ∈ N(T ) and B ⊂ Gc is a Borel subgroup for T then so is g−1Bg.
The corresponding system of positive roots is given by

∆+
g−1Bg =

{
α ◦ sg |α ∈ ∆+

B

}
.

Moreover, g−1Bg = B if and only if g ∈ T .

(iii) For any two Borel subgroups B,B′ ⊂ Gc containing the same torus T
there exists a g ∈ N(T ) such that B′ = g−1Bg. In particular, there exists a
g ∈ N(T ) such that

B̄ = g−1Bg, g2 = 1.

Simple roots

A positive root α ∈ ∆+ is called simple if it cannot be written as a sum
α = α′+α′′ with α′, α′′ ∈ ∆+. Let us fix a collection of simple roots α1, . . . , α`.
These roots together with the centre span the dual torus t∗. Let us now fix
an invariant inner product on g and for each root α ∈ ∆ choose a vector
ηα ∈ tc such that

α(τ) = 〈ηα, τ〉
for τ ∈ tc and define

hα =
2ηα
|ηα|2

∈ t
c. (14)

Then the vectors hαi together with the center span the complexified torus tc.

4.2 Irreducible representations

Let us fix a maximal torus T ⊂ G and a Borel subgroup B ⊂ Gc with
corresponding system ∆+ of positive roots. Let V be a Hermitian vector
space and

ρ : G→ Aut(V )

be a unitary representation. Denote by ρ̇ : g → End(V ) the corresponding
Lie algebra homomorphism. There is a natural decomposition

V =
⊕

λ∈Σ

V λ
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into the eigenspaces under the action of the torus T . The subspaces V λ are
labelled by the linear maps λ : t→ iR which satisfy

ρ̇(τ)v = λ(τ)v for τ ∈ t, v ∈ V λ.

The λ’s are called the weights of the representation. It is easy to check that
if λ ∈ Σ is a weight and α ∈ ∆ is a root such that ρ̇(gα)V λ 6= {0} then λ+α
is again a weight and

ρ̇(gα)V λ ⊂ V λ+α.

The following proposition summarizes the fundamental properties of the
weight systems of irreducible representations.

Theorem 4.2 Let ρ : G → Aut(V ) be an irreducible representation with
weight system Σ ⊂ Hom(t, iR) and fix a Borel subgroup B ⊂ Gc for the
maximal torus T ⊂ G. Then the following holds.

(i) There exists a unique weight λ ∈ Σ (called the highest weight with
respect to B) such that λ+α /∈ Σ for all α ∈ ∆+

B . The corresponding weight
space V λ is one-dimensional.

(ii) Two irreducible representations with the same highest weights are iso-
morphic.

(iii) If hα ∈ tc is defined by (14) for α ∈ ∆ then λ(hα) ∈ Z for all λ ∈ Σ and
all α ∈ ∆. Moreover, if λ is the highest weight then

λ(hα) > 0 for α ∈ ∆+
B .

(iv) If G has a discrete centre and α1, . . . , α` ∈ ∆+
B are the simple roots, then

for any nonnegative integers m1, . . . , m` ≥ 0 there exists a unique irreducible
representation (up to isomorphism) with highest weight λ satisfying

λ(hαi) = mi

for i = 1, . . . , `.

The previous theorem shows that every highest weight is a nonnegative
linear combination of the minimal highest weights µi : t→

√
−1R defined by

µi(hαj ) = δij.
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With mi as above the highest weight λ is given by

λ =
∑̀

i=1

miµi.

Sometimes it is convenient to denote a representation ρ : G → Aut(V )
simply by the vector space V . In many cases the action is obvious (e.g. the
unitary group U(k) acts in an obvious way on ΛiCk and SjCk). The highest
weight of a representation V with respect to B will sometimes be denoted
by λV,B. Also, if the Borel subgroup B ⊂ Gc is clear from the context (such
as the group of upper triangular matrices in the unitary case) then we shall
denote by Vλ the representation with highest weight λ. The next proposition
concerns the action of the Weyl group on the the weight spaces. The proof
is an easy exercise.

Proposition 4.3 (i) If λ is a weight of V and g ∈ N(T ) then λ ◦ sg is a
weight of V with weight space

V λ◦sg = ρ(g−1)V λ.

(ii) For every g ∈ N(T ) and every Borel subgroup B ⊂ Gc with T ⊂ B

λV,g−1Bg = λV,B ◦ sg.

Duality

Associated to a representation ρ : G→ Aut(V ) is the dual or contragredient
representation ρ̄ : G → Aut(V̄ ) where one can think of V̄ either as the real
vector space V with the reversed complex structure or as the dual space and
then

V̄ = Hom(V,C), ρ̄(g) = ρ(g)∗−1.

Thus, if φ : V → C is a complex linear map then ρ̄(g)φ = φ ◦ ρ(g)−1. It is
interesting to determine the highest weight of V̄ with respect to the original
Borel subgroup B. Firstly, note that the weights of V̄ are given by

ΣV̄ = {−λ |λ ∈ ΣV } .
This implies that λV̄ ,B̄ = −λV,B. Hence, by Proposition 4.3 the highest weight
of V̄ with respect to B is given by

λV̄ ,B = −λV,B ◦ ad(g), (15)

where g ∈ N(T ) is chosen such that g−1Bg = B̄.
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4.3 Borel-Weil theory

Fix a maximal torus T ⊂ G. A linear functional λ : t→ iR is called a weight
if exp(τ) = 1 implies λ(τ) ∈ 2πiZ. For each weight λ there exists a unique
homomorphism

χλ : T → S1

such that χ̇λ = λ. Thus every character λ gives rise to a complex line bundle

L = Lλ = G×χλ C→ G/T

where T acts on C by χλ
−1. A point in L is an equivalence class of pairs [g, z]

where g ∈ Gc and z ∈ C under the equivalence relation [g, z] ≡ [gt, χλ(t)
−1z]

for t ∈ T . Now fix a system ∆+ of positive roots and denote the corresponding
Borel subgroup by B. Recall that B determines a complex structure JB on
G/T ∼= Gc/B̄. The Borel-Weil theorem asserts that a representation V with
highest weight λ is isomorphic to the space H0(Gc/B̄, Lλ) of holomorphic
sections of Lλ with a suitable holomorphic structure.

Remark 4.4 (i) There is a conjugation Gc 7→ Gc : g 7→ ḡ on the complex-
ified Lie group which extends the obvious conjugation on the Lie algebra
gc. This conjugation maps the Borel subgroup B to B̄ and the extension
ρ : Gc → Aut(V ) of a unitary representation satisfies

ρ(ḡ)−1 = ρ(g)∗

for g ∈ Gc.

(ii) For any weight λ the homomorphism χλ : T → S1 extends uniquely to
B (but not in general to Gc). This extension is determined by the extension
of λ to b via λ(gα) = 0 for α ∈ ∆+. Similarly, there is an extension to B̄
which will also be denoted by χλ : B̄→ C∗. Both extensions evidently agree
on B ∩ B̄ = T c and they are related under conjugation by

χλ(b̄)−1 = χλ(b)

for b ∈ B. 2

The above line bundle L = Lλ → G/T can be identified with the quotient

Lλ =
G× C
T

∼= Gc × C
B̄
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where B̄ and T act on C via χλ
−1. Thus a point in L is an equivalence

class of pairs [g, z] where g ∈ Gc and z ∈ C under the equivalence relation
[g, z] ≡ [gb̄, χλ(b̄)

−1z] for b̄ ∈ B̄. A section of L can be expressed as a function
f : Gc → C which satisfies

f(gb̄) = χλ(b̄)−1f(g) (16)

for g ∈ Gc and b̄ ∈ B̄. A holomorphic section is simply a holomorphic map
which satisfies (16). The space of holomorphic sections will be denoted by
H0(Gc/B̄, Lλ).

Theorem 4.5 (Borel-Weil) Let ρλ : G→ Aut(Vλ) be an irreducible repre-
sentation with highest weight λ. Then there exists an isomorphism

Vλ ∼= H0(Gc/B̄, Lλ).

It is easy to write down a linear map V → H0(Gc/B̄, L) which is equiv-
ariant with respect to the two actions of Gc. Just fix a highest weight vector
v0 ∈ V λ with respect to B such that ρ̇(τ)v0 = λ(τ)v0 for τ ∈ t. The definition
of highest weight then implies that ρ̇(gα)v0 = 0 for α ∈ ∆+ and it follows
that

ρ(b)v0 = χλ(b)v0

for b ∈ B. Now consider the map V → H0(Gc/B̄, L) : v 7→ fv defined by

fv(g) = 〈ρ(ḡ)v0, v〉 (17)

for v ∈ V and g ∈ Gc. Then it is easy to check that fv satisfies (16) and
that the map v 7→ fv intertwines the two actions of Gc. That this map
is bijective is a consequence of the fact that irreducible representations are
uniquely determined by their highest weights and this will not be discussed
here.

Remark 4.6 In terms of Borel-Weil theory the dual representation of V ∼=
H0(Gc/B̄, L) (with highest weight λ with respect to B) is given by

V̄ ∼= H0(Gc/B, L̄).

Here the bundle L̄→ Gc/B can be explicitly represented as the quotient L̄ =
Gc× C/B under the equivalence relation [g, z] ≡ [gb, χλ(b)z] for b ∈ B. Thus
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the dual representation is obtained by both reversing the complex structure
on G/T and replacing L by the dual bundle. An explicit isomorphism

V̄ → H0(Gc/B, L̄) : φ 7→ fφ

is given by
fφ(g) = φ(ρ(g)v0)

with v0 ∈ V as above. 2

4.4 Weyl character formula

The character of a unitary representation ρ : G → Aut(V ) is the function
θρ : G→ C defined by

θρ(g) = tracec(ρ(g)).

This function is invariant under conjugation and, since every g ∈ G is con-
jugate to some element of the maximal torus T , the character is uniquely
determined by its restriction to T . This restriction is still invariant under
the action of the Weyl group. The map ρ 7→ θρ is a ring homomorphism, i.e.

θρ1⊕ρ2 = θρ1 + θρ2 , θρ1⊗ρ2 = θρ1θρ2 . (18)

Evidently, the dimension of V is the value of the character at g = 1.

Theorem 4.7 Two representations of a compact Lie group G are isomorphic
if and only if they have the same character.

Fix a system ∆+ of positive roots with Borel subgroup B ⊂ Gc. Weyl’s
character formula expresses the character θρλ of an irreducible representation
ρλ : G→ Aut(Vλ) with heighest weight λ (with respect to B) as a weighted
average of the characters χλ ◦ s over the Weyl group W . More precisely,
define Aλ : T → C

Aλ(t) =
∑

s∈W
det(s)χλ ◦ s(t).

Note that this function vanishes at the identity t = 1. Taking λ equal to the
sum

δ =
1

2

∑

α∈∆+

α (19)
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one finds that

Aδ(t) =
∑

s∈W
det(s)χδ ◦ s(t) = χδ(t)

∏

α∈∆+

(
1− χα(t)−1

)
.

The next theorem is the required character formula.

Theorem 4.8 (Weyl character formula) If ρλ : G → Aut(Vλ) is the ir-
reducible representation with highest weight λ then 1

θρλ(t) =
Aλ+δ(t)

Aδ(t)
.

Theorem 4.9 (Weyl dimension formula) The dimension of the irredu-
cible representation Vλ with highes weight λ is given by

dim Vλ = θρλ(1) =

∏
α∈∆+〈λ+ δ, α〉
∏
α∈∆+〈δ, α〉 .

4.5 Unitary group

Borel subgroup

Consider the unitary group G = U(k) with maximal torus T consisting of
the unitary diagonal matrices. Then t is the space of diagonal matrices with
imaginary entries and we denote by εi : t→

√
−1R the evaluation of the i-th

diagonal entry. The roots are the functionals εij = εi − εj with i 6= j and
gεi−εj is the space of matrices whose (i, j)-entry is the only nonzero one. Let
us choose

∆+ = {εi − εj | i < j}
as the system of positive roots. The simple roots have the form εi− εi+1 and
the corresponding matrices hεi−εi+1

∈ tc are given by

hεi−εi+1
= diag(0, . . . , 0, 1,−1, 0, . . . , 0).

In this case gc = Ck×k, Gc = GL(k,C), and B ⊂ Gc is the subgroup of upper
triangular matrices with nonzero diagonal entries. The dual Borel subgroup
B̄ is the group of lower triangular matrices.

1If the center is discrete then δ is a weight despite the factor 1/2. In general, δ may
differ from a weight by a central element which cancels in the quotient.
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Irreducible representations

The minimal highest weights are

µi = ε1 + · · ·+ εi

for i = 1, . . . , k − 1. A general highest weight has the form

λ =
k−1∑

i=1

miµi =
k−1∑

i=1

aiεi

where ai = mi + · · · + mk−1 and thus a1 ≥ · · · ≥ ak−1 ≥ 0. To describe
representations of U(k) we must allow for the action of the center and obtain
highest weights of the form

λ =
k∑

i=1

miµi =
k∑

i=1

aiεi

where µk = ε1 + · · ·+εk and ai = mi+ · · ·+mk−1. Thus a1 ≥ · · · ≥ ak where
the integer ak = mk need not be positive. The action of the center is given
by the sum of the ai.

Throughout we denote by ρa : U(k)→ Aut(Va) the irreducible represen-
tation with highest weight λ =

∑
i aiεi. This representation can be explicitly

realized as a subspace

Va ⊂ (Λ1Ck)⊗m1 ⊗ (Λ2Ck)⊗m2 ⊗ · · · ⊗ (ΛkCk)⊗mk

where mi = ai − ai+1. The tensor product on the right contains a one-
dimensional subspace W λ (namely the tensor product of the subspaces
(Ce1 ∧ . . . ∧ ei)⊗mi) on which U(k) acts with weight λ =

∑
imiµi. The rep-

resentation V can then be defined as the smallest subspace which contains
W λ and is invariant under U(k).

Example 4.10 Of particular interest are the special representations

V1,...,1,0,...,0 = ΛiCk, Vj,0,...,0 = SjCk,

with 1 occurring i times in the first case. In particular, V0,...,0 = C is the
trivial representation (the multiplicative unit in the representation ring). 2
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Duality

Let G = U(k) and B ⊂ GL(k,C) be the group of upper triangular matrices.
Recall from Proposition 4.1 that there exists a g ∈ U(k) such that g−1Bg = B̄
where B̄ is the subgroup of lower triangular matrices. The required matrix g

is the anti-diagonal

g =




0 · · · · · 0 1
· 0 1 0
· · 1 0 ·
· · · · ·
· · · · ·
· 0 1 · ·
0 1 0 ·
1 0 · · · · · 0




.

If Va = Va1,...,ak denotes the representation of U(k) with heighest weight
λ =

∑
i aiεi with respect to B then the dual representation is given by

V̄a = Va∗

where the integers a∗1 ≥ a∗2 ≥ · · · ≥ a∗k are given by

a∗i = −ak+1−i

for i = 1, . . . , k. Note, in particular, that the sum of the ai changes sign under
a 7→ a∗ and this corresponds to the fact that in the dual representation the
action of the center is reversed.

Flag manifolds and Borel-Weil theory

The Borel subgroup B ⊂ Gc (of upper triangular matrices) is the stabilizer
of the standard flag C0 ⊂ C1 ⊂ · · · ⊂ Ck (where Ci is identified with the
subspace of all vectors of the form (z1, . . . , zi, 0, . . . , 0) ∈ Ck). Hence the
quotient Gc/B can be naturally identified with the flag manifold

F (k) =
{
E = {Ei}ki=0 |E0 ⊂ E1 ⊂ · · · ⊂ Ek, dimcEi = i

}
.

The diffeomorphism Gc/B → F (k) is given by g 7→ {gCi}i. Consider the
character χa : B → C∗ given by χa(b) =

∏
i bii

ai and associated to the highest
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weight λa =
∑
i aiεi with

a1 ≥ a2 ≥ · · · ≥ ak.

One checks easily that the line bundle L = La = Gc ×χa C → Gc/B ∼= F (k)
is the bundle whose fibre over a flag E = {Ei}i is the line

LE =
k⊗

i=1

Li
⊗ai ∼=

k⊗

i=1

(ΛiEi)
⊗mi, Li = Ei/Ei−1, mi = ai − ai+1.

Thus the representation Va is given by

V̄a ∼= H0(F (k), La
∗).

Consider, for example, the case a = (1, . . . , 1, 0, . . . , 0) with 1 occurring i
times so that L∗aE = ΛiE∗i . Then any exterior i-form α ∈ Λi(Ck)∗ induces
a holomorphic section of s : F (k) → L∗a by restriction to Ei and this is the
required isomorphism between V̄a = Λi(Ck)∗ and H0(F (k), L∗a).

Weyl character formula

Recall that the character θρ : U(k) → C of a representation ρ : U(k) →
Aut(V ) is uniquely determined by its restiction to the maximal torus and
is invariant under the action of the Weyl group. In the case at hand the
maximal torus is the group of diagonal matrices and the Weyl group is the
symmetric group acting on the diagonal entries t1, . . . , tk by permutation.
Hence the character of a finite dimensional representation of U(k) can be
thought of a symmetric function in k variables. The Weyl character formula
asserts that the character of the irreducible representation Va with weight
λ =

∑
i aiεi where a1 ≥ · · · ≥ ak ≥ 0 agrees with the symmetric polynomial

θa introduced in (7).

Theorem 4.11 (Weyl) Let a1 ≥ · · · ≥ ak ≥ 0. Then the character of the
irreducible representation ρa : U(k)→ Aut(Va) with weight λ =

∑
i aiεi is the

symmetric polynomial (7):
θρa = θa.
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Proof: To apply the Weyl character formula to the unitary case note first
that the linear functional δ : t→ iR in (19) is given by

δ =
k∑

j=1

(k − j)εj −
k − 1

2

k∑

j=1

εj, (20)

where εj : t → iR is given by εj(t) = tj Moreover, the Weyl group is the
permutation group W ∼= Sk with sσ(t) = (tσ(1), . . . , tσ(k)) and det(sσ) =
sign(σ) is the sign of the permutation. In the quotient the last summand
cancels and it is convenient to replace δ by

δ0 =
k∑

j=1

(k − j)εj.

Then δ0 ◦ σ(t) =
∏
j t
k−j
σ(j) and hence

Aδ0(t) = det
(
(ti

k−j)ki,j=1

)
.

This shows that Theorem 4.8 specializes to

θρa(t) =
det

(
(ti

ai+k−j)ki,j=1

)

det
(
(ti

k−j)ki,j=1

) = θa(t). 2

Of particular interest are the special characters

θΛiCk =
∑

1≤ν1<···<νi≤k
tν1 · · · tνi = φi,

θSjCk =
∑

1≤ν1≤···≤νj≤k
tν1 · · · tνj = ψj.

These are obvious cases of the Weyl character formula. It follows from The-
orem 4.11 and the Jacobi-Trudi identity in Lemma 2.5 that the character of
ρa can also be expressed as the relevant Schur polynomial in the ψj:

θρa =

∣∣∣∣∣∣∣∣∣∣

ψa1 ψa1+1 · · · ψa1+k−1

ψa2−1 ψa2 · · · ψa2+k−2
...

...
. . .

...
ψak−k+1 ψak−k+2 · · · ψak

∣∣∣∣∣∣∣∣∣∣

.
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It is important to note that each character θρa = θa extends uniquely to a
polynomial on Ck×k if one interprets the variables t1, . . . , tk as the eigenvalues
of the matrix A ∈ Ck×k. Just write θa as a Schur polynomial in the variables
φi via Lemma 2.2 and use the fact that the φi are the coefficients of the
characteristic polynomial det(1l + λA) =

∑k
i=0 φiλ

i. Thus a symmetric poly-
nomial in the eigenvalues is a polynomial of the same degree in the entries
of the matrix.

Weyl dimension formula

The dimension formula of Theorem 4.9 takes the form

dim Va =
∏

i<j

ai − aj + j − i
j − i =

∏
i<j(mi + · · ·+ mj−1 + j − i)

1! 2! · · · (k − 1)!

for a1 ≥ · · · ≥ ak, where mi = ai − ai+1 and Va denotes the representation
with highest weight λ =

∑
i aiεi. To see this just note that with εij = εi− εj

and δ given by (20) we have 〈δ, εij〉 = j− i and 〈λ, εij〉 = ai− aj. The reader
may check that the dimension formula is in agreement with the identities

dim ΛiCk =

(
k

i

)
, dim SjCk =

(
k + j − 1

j

)
.

4.6 Representation ring

Consider the representation ring

R = R(U(k))

which is generated by the irreducible representations ρa : U(k) → Va with
a1 ≥ · · · ≥ ak. An element of R can be thought of as a formal linear
combination of the form

ρ =
∑

a

xaρa

with integer coefficients xa ∈ Z. If the xa are all nonnegative then we may
think of ρ as the direct sum of the representations ρa where each ρa appears xa

times. In the negative case an element ρ ∈ Rn−k(U(k)) should be interpreted
as a difference of two representations just like in K-theory. The multiplicative
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structure is given by the tensor product. The ring R(U(k)) carries a natural
pairing defined by

〈ρa, ρb〉 =

{
1, if a = b∗,
0, if a 6= b∗

where a∗i = −ak+1−i as on page 28. This pairing is not positive definite but
it satisfies the Frobenius condition

〈ρ⊗ ρ′, ρ′′〉 = 〈ρ, ρ′ ⊗ ρ′′〉. (21)

Let δ` : U(k)→ S1 denote the central representation defined by

δ`(U) = det(U)`

for U ∈ U(k) and ` ∈ Z. This representation corresponds to the highest
weight ` = (`, . . . , `) ∈ Zk and it satisfies

ρa ⊗ δ` = ρa+`. (22)

This implies that there is a family of metrics

〈ρ, ρ′〉` = 〈ρ, ρ′ ⊗ δ−`〉 = 〈ρ⊗ ρ′, δ−`〉

which all satisfy the Frobenius condition.

Structure constants

The product on R can be expressed in terms of the structure constants N c
ab

defined by
ρa ⊗ ρb =:

∑

c

N c
abρc.

The associativity law then takes the form

∑

ν

Nν
abN

d
νc =

∑

ν

Nd
aνN

ν
bc

Moreover, the Frobenius condition can be expressed as

Nabc = Nbca = Ncab, Nabc := N c∗
ab .
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In fact, by symmetry of the tensor product, the constants Nabc are invariant
under all permutations of the indices. Condition (22) takes the form

N c
a+` b = N c

a b+` = N
c−`
a b

for all weights a, b, c and all integers `. The next proposition shows that
the structure constants N c

ab agree with those in the ring R(k) of symmetric
polynomials with complex coefficients in k variables. Hence these constants
are given by the Littlewood-Richardson rules of Theorem 2.12.

Proposition 4.12 The map

R(U(k)) 7→ S(k) : ρ 7→ θρ

is a ring isomorphism from the representation ring of U(k) to the ring of
symmetric polynomials in k variables.

Proof: That the map is a ring homomorphism follows from (18). Moreover,
by the Weyl character formula in Theorem 4.11, it identifies the two canonical
bases ρa 7→ θa. 2

Multiplicities

The structure constants can be explicitly expressed in terms of the characters
as follows. For any representation ρ : G→ Aut(V ) denote by

V G = {v ∈ V | ρ(g)v = v ∀ g ∈ G}

the subspace which is fixed under G. Then the orthogonal projection

ΠV : V → V G

is given by

ΠV =
1

Vol(G)

∫

G
ρ(g) dg

where dg denotes an invariant metric on G Hence the dimension of the in-
variant subspace is given by

dim V G = trace(ΠV ) =
1

Vol(G)

∫

G
θρ(g) dg.
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Now fix some irreducible representation ρλ : G → Aut(Vλ). Then the mul-
tiplicity with which ρλ occurs in ρ (denoted by multρ(λ)) agrees with the
dimension of the subspace (V ⊗ V̄λ)G. To see this note that (Vλ⊗ V̄λ′)G = {0}
unless λ = λ′ in which case the subspace is 1-dimensional. Thus

multρ(λ) = dim (V ⊗ V̄λ)G =
1

Vol(G)

∫

G
θρ(g)θρλ(g)−1 dg. (23)

This formula plays a crucial role in Witten’s quantum field theory approach
to the Verlinde algebra in [12]. It shows that the structure constants N c

ab can
be expressed in the form

N c
ab =

1

Vol(G)

∫

G
θa(g)θb(g)θc(g)−1 dg, (24)

where θa = θρa = tracec ◦ ρa : G → C denotes the character of the repre-
sentation ρa. The reader may check that these constants satisfy the above
conditions.

4.7 Natural isomorphism

Consider the ring R(k, n− k) = Rn−k(U(k)) which is generated by the rep-
resentations ρa with

n− k ≥ a1 ≥ a2 ≥ · · · ≥ ak ≥ 0. (25)

In [12] Witten calls these the representations at level (n− k, n). The mul-
tiplication is defined as the tensor product followed by the projection onto
R(k, n − k). Note here that the tensor product of two representations ρa
and ρb which both satisfy (25) is a sum of irreducible representations ρaν ,
however, the aν need not all satisfy (25). The product in R(k, n−k) is given
by simply neglecting those aν which do not satisfy (25). Another important
point to bear in mind is that the above metric 〈ρ, ρ′〉 vanishes on R(k, n−k).
However, there is a natural nondegenerate pairing

〈ρ, ρ′〉n−k = 〈ρ⊗ ρ′, δk−n〉 (26)

which, by (22), determines a Frobenius structure on R(k, n− k).
In [12] Witten observed that there is a natural ring isomomorphism from

R(k, n − k) to the cohomology of the Grassmannian G(k, n). In view of

34



Theorem 4.11 the character θρ = tracec ◦ ρ : U(k) → C of any finite dimen-
sional representation of U(k) is a symmetric polynomial and hence extends
uniquely to a polynomial on Ck×k which is invaraint under conjugation. This
extension can then be restricted to the Lie algebra u(k) and this restriction is
invariant under the conjugate action of U(k). Now fix a connection A on the
tautological bundle E → G(k, n) and denote by FA ∈ Ω2(G(k, n),End(E))
its curvature. Then θa(FA/2πi) is a closed real valued 2|a|-form on G(k, n)
which represents some characteristic class of the bundle E. Witten’s isomor-
phism is the map

R(k, n− k)→ H∗(G(k, n); Z) : ρ 7→ [θρ(FA/2πi)]. (27)

If ρ =
∑
a x

aρa is a virtual representation (i.e. some of the xa are negative)
then θρ should be interpreted as the sum θρ =

∑
a x

aθa. It is tempting to
use (18) to show that the map ρ 7→ [θρ(FA/2πi)] is a ring homomorphism.
However, care must be taken with the projection onto R(k, n − k), i.e. one
has to show that θa(FA/2πi) represents the zero cohomology class whenever
a1 > n− k. The next theorem shows in fact that (27) is a ring isomorphism
which idenitifies the two canonical bases.

Theorem 4.13 Let a ∈ Zk satisfy (25) and let A be a connection on the
tautological bundle E → G(k, n). Then

[θa(FA/2πi)] = PD(σa) ∈ H2|a|(G(k, n); Z).

Moreover, (27) is a ring isomorphism.

Proof: We first prove the result for the multiplicative generators a =
(1, . . . , 1, 0, . . . , 0) corresponding to the representations Va = ΛiCk. Namely,

ρΛiCk(t) =
∑

1≤ν1<···<νi≤k
tν1 · · · tνi

and applying this polynomial to
√
−1/2π times the curvature of any U(k)-

connection gives the i-th Chern class. Hence, by Proposition 3.3, we find

[φi(FA/2π
√
−1)] = [θ1,...,1,0...,0(FA/2π

√
−1)]

= [θΛiCk(FA/2π
√
−1)]

= (−1)ici(E)

= ci(E
∗).
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This proves the result for a = (1, . . . , 1, 0, . . . , 0). For a = (j, 0, . . . , 0) it
follows from Theorem 3.4 and Lemma 2.1 that

[ψj(FA/2πi)] =

∣∣∣∣∣∣∣∣∣∣∣

[φ1(FA/2πi)] · · · · · · [φj(FA/2πi)]

1
. . .

...
...

. . .
. . .

...
0 · · · 1 [φ1(FA/2πi)]

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

c1(E∗) · · · · · · cj(E
∗)

1
. . .

...
...

. . .
. . .

...
0 · · · 1 c1(E∗)

∣∣∣∣∣∣∣∣∣∣∣

= cj(F ).

Now use Theorem 4.11 to express [θa(FA/2πi)] as a determinant in the Chern
classes cj(F ) and then use Theorem 3.4 to express this determinant as the
Poincaré dual of the Schubert cycle σa. This proves the first assertion. It fol-
lows that (27) maps ρa 7→ PD(σa) and hence is a vector space isomorphism.
That this isomorphism intertwines the two product structures follows from
Theorems 3.4 and 4.11 and Lemma 2.10. These results show that the struc-
ture constants are the same in both rings. 2

Corollary 4.14 The map (27) is the unique ring isomorphism which maps

ΛiCk 7→ ci(E
∗), SjCk 7→ cj(F ).

Corollary 4.15 If a1 ≥ · · · ≥ ak ≥ 0 with |a| = k(n − k) and a1 > n − k
then ∫

G(k,n)
θa(FA/2πi) = 0.

Proof: Let N = a1 +k > n and note that G(k, n) is the closure of the Schu-
bert cycle ΣN−n = ΣN−n,...,N−n in G(k,N). By Theorem 4.13, the cohomol-
ogy class of θa(FA/2πi) is Poincaré dual to the Schubert cycle Σa ⊂ G(k,N)
and hence ∫

G(k,n)
θa(FA/2πi) = ΣN−n · Σa = 0.

Since a 6= n− k the last equality follows from Theorem 3.1. 2
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Corollary 4.16 If θ : Ck×k → C is a polynomial which is invariant under
the adjoint action of Gc = GL(k,C) then

1

Vol(G)

∫

G
θ(g) det(g)k−n dg =

∫

G(k,n)
θ(FA/2πi).

Proof: Every invariant polynomial can be decomposed as a finite sum

θ =
∑

a

xaθa, xa =
1

Vol(G)

∫

G
θ(g)θa(g)−1 dg,

where θa denotes the character of the representation with highest weight
a1 ≥ · · · ≥ ak ≥ 0. By Corollary 4.15, the integral of θa(FA/2πi) over
G(k, n) is zero unless a = n− k in which case the integral is 1 (Exercise 3.6).
Hence

∫

G(k,n)
θ(FA/2πi) = xn−k =

1

Vol(G)

∫

G
θ(g) det(g)k−n dg. 2

Consider the formula of Corollary 4.16 with θ = θaθbθc, where a, b, c ∈ Zk
satisfy (25) and |a|+ |b|+ |c| = k(n− k). In this case one obtains

σa · σb · σc =
∫

G(k,n)
θa(FA/2πi) ∧ θb(FA/2πi) ∧ θc(FA/2πi)

=
1

Vol(G)

∫

G
θa(g)θb(g)θc(g) det(g)k−n dg

= Na b c−n−k.

The last equality follows from (24). The identity σa · σb · σc = Na b c−n−k is
equivalent to the fact that the map ρa 7→ PD(σa) is a ring homomorphism.

In [12] Witten goes further and conjectures that the above isomorphism
R(k, n − k) → H∗(G(k, n); Z) should intertwine the two deformed product
structures, i.e. in the case of the Grassmannian the quantum cohomology
structure, defined in terms of J-holomorphic curves u : Σ→ G(k, n), and in
the case of the representation ring the Verlinde algebra structure, defined
in terms of holomorphic sections of certain line bundles over moduli spaces
of flat U(k)-connections with parabolic structures over a surface Σ. This
conjecture was proved by Agnihotri in [1].

Acknowledgement Thanks to John Jones, Shaun Martin, Thomas Mielke,
John Rawnsley, and Sarah Whitehouse for many helpful discussions.
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