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1 The hypersymplectic action functional

In this paper we outline the construction of a hyperkähler analogue of sym-
plectic Floer homology [6, 7, 8]. The theory is a based on the gradient flow
of the hypersymplectic action functional on the space of maps from a suit-
able 3-manifold M to a hyperkähler manifold X. The gradient flow lines
satisfy a nonlinear analogue of the Dirac equation and can also be viewed
as hyperkähler analogues of holomorphic curves. If the target manifold X
is flat the analysis in symplectic Floer theory can be adapted to the hy-
perkähler setting as explained below. The full details are given in [16]. To
extend the theory to the non-flat case one must deal with new bubbling and
compactness phenomena.

We assume throughout that X is a hyperkähler manifold with complex
structures I, J,K and symplectic forms ω1, ω2, ω3. We also assume that M
is a compact oriented 3-manifold equipped with a volume form σ ∈ Ω3(M)
and a positive frame v1, v2, v3 ∈ Vect(M) of the tangent bundle. Associated
to these data is a natural 1-form on the space F := C∞(M,X) of smooth
functions f : M → X defined by

f̂ 7→

∫

M

(
ω1(∂v1

f, f̂) + ω2(∂v2
f, f̂) + ω3(∂v3

f, f̂)
)

σ (1)

for f̂ ∈ TfF = Ω0(M,f∗TX). This 1-form is closed if and only if the vector
fields vi are volume preserving, i.e. Lvi

σ = 0. Since every closed oriented 3-
manifold is parallelizable it admits a volume preserving frame (Gromov [14,
Section 2.4.3]). Our main examples are the 3-torus with the coordinate
vector fields and the 3-sphere with the standard hypercontact structure.
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The zeros of the 1-form (1) are the solutions f : M → X of the nonlinear
elliptic first order partial differential equation

/∂(f) := I∂v1
f + J∂v2

f + K∂v3
f = 0. (2)

This is a nonlinear analogue of the Dirac equation that was first introduced
by Taubes [22]. In his paper Taubes also considered natural extensions of (2)
for more general 3-manifolds where the target manifold X is equipped with
a suitable group action of SO(3) or S1. This leads to interesting analogues
of the Seiberg–Witten equations.

Obviously, the constant functions are solutions of (2). When M = S3

other solutions arise from the composition of rational curves with suitable
Hopf fibrations (see Example 3.1 below). When M = T

3 solutions can be
obtained from elliptic curves. In the case M = Γ\G solutions arise from
the composition of K-holomorphic curves Σ → X with π : M → Σ. These
examples are homologically trivial, even though Hopf-fibrations over holo-
morphic spheres in the K3-surface do represent nontrivial homotopy classes
in π3. A homologically nontrivial example with target manifold X := H/Z

4

with its standard hyperkähler structure and domain M := T
3 = R

3/Z
3 with

vector fields vi = ∂/∂ti is given by f(t) := t1 + it2 + (1 + j)t3.
In Taubes’ setting one of the motivating ideas was to obtain nonlinear

analogues of the Seiberg–Witten equations and possibly new invariants of
smooth three and four manifolds. Our motivation was to develop a new
type of Floer theory for hyperkähler manifolds in analogy with symplectic
Floer theory. This led us to study the L2 gradient flow equation of the
1-form (1) (see (6) below), which is also known as the Cauchy–Riemann–
Fueter equation and plays a similar role in quaternionic geometry as the
Cauchy–Riemann equation does in complex geometry (see [15]).

Hypercontact structures

A hypercontact structure on a 3-manifold M is a triple of contact forms
α = (α1, α2, α3) ∈ Ω1(M, R3) such that

α1 ∧ dα1 = α2 ∧ dα2 = α3 ∧ dα3 =: σ

and αi ∧ dαj + αj ∧ dαi = 0 for i 6= j. The Reeb vector fields v1, v2, v3

are pointwise linearly independent and preserve the volume form σ. The
hypercontact structure is called positive if they form a positive frame of the
tangent bundle. In this setting the 1-form (1) is the differential of the action
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functional A : F → R defined by

A (f) := −

∫

M

(
α1 ∧ f∗ω1 + α2 ∧ f∗ω2 + α3 ∧ f∗ω3

)
. (3)

A positive hypercontact structure is called a Cartan structure if the αi form
a dual frame of the cotangent bundle, i.e. αi(vj) = δij . In the Cartan case

κ := dα1(v2, v3) = dα2(v3, v1) = dα3(v1, v2)

is constant and dαi = καj∧αk and [vi, vj ] = κvk for every cyclic permutation
i, j, k of 1, 2, 3. (We use the sign convention of [19] for the Lie bracket.)

The archetypal example is the 3-sphere M = S3, understood as the unit
quaternions, with

v1(y) = iy, v2(y) = jy, v3(y) = ky.

Hypercontact structures were introduced by Geiges–Gonzalo [10, 11, 12].
They use the term taut contact sphere for what we call a hypercontact
structure. They proved that every Cartan hypercontact 3-manifold is diffeo-
morphic to a quotient of the 3-sphere by the right action of a finite subgroup
of Sp(1).

Tori

Let M = T
3 = R

3/Z
3 be the standard 3-torus equipped with the standard

volume form σ = dt1 ∧ dt2 ∧ dt3 and vi =
∑3

j=1 aij∂j where A = (aij)
3
i,j=1

is a nonsingular real 3 × 3 matrix. In this case the lift of the 1-form (1) to

the universal cover F̃ of F is the differential of the function

A =

3∑

i,j=1

aijAij : F̃ → R (4)

where Aij(f) denotes the ωi-symplectic action of the loop tj 7→ f(t), av-
eraged over the remaining two variables tk, t` with k, ` 6= j. If X is flat
and F0 ⊂ F denotes the space of contractible maps f : T

3 → X then A

descends to F0. Explicitly, we have

Aij(f) := −

∫ 1

0

∫ 1

0

∫

D

u∗
tk,t`

ωi dtk dt`

for f ∈ F0, where utk ,t` : D → X is a smooth family of maps satisfying
utk ,t`(e

2πitj ) = f(t1, t2, t3).
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Hyperbolic spaces

A third class of examples arises from unit tangent bundles of higher genus
surfaces or equivalently from quotients of the group G := PSL(2; R). Let
H ⊂ C denote the upper half plane and P :=

{
(z, ζ) ∈ C

2 | Im(z) = |ζ|
}

the
unit tangent bundle of H. The group G acts freely and transitively on P by

g∗(z, ζ) :=

(
az + b

cz + d
,

ζ

(cz + d)2

)
, g =:

(
a b
c d

)
∈ SL(2; R)..

Now let Γ ⊂ PSL(2; R) be a discrete subgroup acting freely on H such that
the quotient Σ := Γ\H is a closed Riemann surface. Then the 3-manifold

M := Γ\G

is diffeomorphic to the unit tangent bundle T1Σ = Γ\P via [g] 7→ [g∗(i, 1)].
The group G carries a natural bi-invariant volume form σ ∈ Ω3(G) given by

σ(gξ, gη, gζ) :=
1

2
trace([ξ, η]ζ)

for ξ, η, ζ ∈ g := Lie(G) = sl(2; R). This volume form descends to M and is
invariant under the right action of G. Now consider the traceless matrices

ξ1 :=

(
1 0
0 −1

)
, ξ2 :=

(
0 1
1 0

)
, ξ3 :=

(
0 −1
1 0

)
.

The resulting vector fields vi(g) := gξi on G are Γ-equivarient and preserve
the volume form σ. Hence they descend to volume preserving vector fields
on M (still denoted by vi) and so the 1-form (1) is closed in this setting.

Note that σ(v1, v2, v3) = 2 and dπ(v3) = 0, dπ(v1) = idπ(v2). The Lie
brackets of the vector fields vi are given by

[v2, v3] = −2v1, [v3, v1] = −2v2, [v1, v2] = 2v3

(because the ξi act on G on the right). Hence, if αi ∈ Ω1(M) denote the
1-forms dual to the vector fields vi, we have

dα1 = −2α2 ∧ α3, dα2 = −2α3 ∧ α1, dα3 = 2α1 ∧ α2.

This implies that the 1-form (1) is the differential of the action functional

A (f) :=

∫

M
(α1 ∧ f∗ω1 + α2 ∧ f∗ω2 − α3 ∧ f∗ω3) .

However, in this setting the energy identity (7) discussed below does not
help in the compactness proof. This is the reason why we do not include
the higher genus case in our discussion in the main part of this paper.
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2 Floer theory

In [16] we prove an existence result for the solutions of the perturbed non-
linear Dirac equation

/∂H(f) := I∂v1
f + J∂v2

f + K∂v3
f −∇H(f) = 0. (5)

Here H : X × M → R is a smooth function and we denote by ∇H(f)
the gradient with respect to the first argument. The linearized operator
for this equation is self adjoint and we call a solution f : M → X of (5)
nondegenerate if the linearized operator is bijective. In the nondegenerate
case, and when X is flat, one can count the solutions with signs, however,
it turns out that this count gives zero. Nevertheless we have the following
hyperkähler analogue of the Conley-Zehnder theorem confirming the Arnold
conjecture for the torus [2]. In fact, in the torus case with v1 = ∂/∂t1 the
solutions of (5) can be interpreted as the periodic orbits of a suitable infinite
dimensional Hamiltonian system.

Theorem 2.1. [16] Let M be either a compact Cartan hypercontact 3-mani-
fold (with Reeb vector fields vi) or the 3-torus (with a constant frame vi).
Let X be a compact flat hyperkähler manifold. Then the space of solutions
of (5) is compact. Moreover, if the contractible solutions are all nondegener-
ate, then their number is bounded below by the sum of the Z2-Betti numbers
of X. In particular, equation (5) has a contractible solution for every H.

The proof of Theorem 2.1 is based on the observation that the solu-
tions of (5) are the critical points of the perturbed hypersymplectic action
functional AH(f) := A (f) −

∫
M H(f)σ. As in symplectic Floer theory, this

functional is unbounded above and below, and the Hessian has infinitely
many positive and negative eigenvalues. Thus the standard techniques of
Morse theory are not available for the study of the critical points. However,
with appropriate modifications, the familiar techniques of Floer homology
carry over to the present case, at least when X is flat, and thus give rise to
natural Floer homology groups for a pair (M,X).

The Floer chain complex is generated by the solutions of (5). The bound-
ary operator is determined by the finite energy solutions u : R × M → X of
the negative gradient flow equation

∂su + I∂v1
u + J∂v2

u + K∂v3
u = ∇H(u). (6)

The Fredholm theory for these equations is standard. The index is given by
the spectral flow and depends only on the endpoints. Transversality can be
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established along the lines of [9]. A key ingredient in the compactness proof
is the energy identity

E (f) =
1

2

∫

M
|df |2 =

1

2

∫
|I∂v1

f + J∂v2
f + K∂v3

f |2 −

∫

M

3∑

i=1

εi ∧ f∗ωi (7)

for f : M → X, where the εi ∈ Ω1(M) are dual to the vector fields vi.
In the torus case these forms are closed and thus the last term in (7) is
a topological invariant. In the Cartan hypercontact case this term is the
hypersymplectic action A (f).

To compute the Floer homology groups we choose a Morse–Smale func-
tion H : X → R and study the equation

∂su + ε−1 (I∂v1
u + J∂v2

u + K∂v3
u) = ∇H(u) (8)

for small values of ε. The gradient lines of H are solutions of this equa-
tion and in [16] we prove that, for ε > 0 sufficiently small, there are no
other contractible solutions. This implies that our Floer homology groups
HF∗(M,X) are isomorphic to the singular homology H∗(X; Z2).

Theorem 2.2. [16] Let M be either a compact Cartan hypercontact 3-mani-
fold (with Reeb vector fields vi) or the 3-torus (with a constant frame vi). Let
X be a compact flat hyperkähler manifold and fix a class τ ∈ π0(F ). Then,
for a generic perturbation H : X×M → R, there is a natural Floer homology
group HF∗(M,X, τ ;H) associated to a chain complex generated by the solu-
tions of (5) where the boundary operator is defined by counting the solutions
of (6). The Floer homology groups associated to different choices of H are
naturally isomorphic. Moreover, for the component τ0 of the constant maps
there is a natural isomorphism HF∗(M,X, τ0;H) ∼= H∗(X; Z2).

Remark 2.3. An important technical ingredient in the compactness proof
is the estimate

L eu + ru ≥ −A − B(eu)3/2 (9)

for the energy density

eu :=
1

2
|∂su|

2 +
1

2

3∑

i=1

|∂vi
u|2

and the scalar curvature ru : R × M → R along u given by

ru := 2

3∑

j=1

〈
R(∂su, ∂vj

u)∂vj
u, ∂su

〉
+

3∑

i,j=1

〈
R(∂vi

u, ∂vj
u)∂vj

u, ∂vi
u
〉
.
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In the flat case we have ru = 0. Since the exponent 3/2 is equal to the
critical exponent (n+2)/n for n = 4 (with regard to compactness questions
and mean value estimates), the estimate (9) then gives rise to a crucial mean
value inequality (see [23]), and hence to the relevant compactness result for
the solutions of (6) (see [16]).

Remark 2.4. For general hyperkähler manifolds the estimate (9) implies

L e ≥ −c(1 + e2).

In dimensions n = 3, 4 the exponent 2 is larger than the critical exponent
(n + 2)/n. For the critical points f of AH this means that the energy

E (f) =
1

2

∫

M
|df |2 dvolM

does not control the sup norm of |df | even if we assume that there is no
energy concentration near points. This is related to noncompactness phe-
nomena that can be easily observed in examples. Namely, composing a
holomorphic sphere u : S2 → X (for Jλ = λ1I + λ2J + λ3K) with a suit-
able Hopf fibration h : S3 → S2 gives rise to a solution f := u ◦ h : S3 → X
of (2) (see Example 3.1 below). Thus, if uν : S2 → X is a sequence of
Jλ-holomorphic curves whose derivatives blow up near z0, then fν := uν ◦ h
is a sequence of solutions of (2) whose derivatives blow up along the Hopf
circle h−1(z0), while the energy remains bounded.

Remark 2.5. The precise condition we need for extending the standard
techniques of Floer theory to our setting is that X has nonpositive sec-
tional curvature. As every hyperkähler manifold has vanishing Ricci ten-
sor, nonpositive sectional curvature implies that X is flat and hence is
a quotient of a hyperkähler torus by a finite group. An example is the
quotient of the standard 12-torus H

3/Z
12 by the Z2-action determined by

(x, y, z) 7→ (y, x, z + 1/2).

3 A more general setting

There is conjecturally a much richer theory which provides Floer homological
invariants for all triples (M,X, τ), consisting of a Cartan hypercontact 3-
manifold M , a compact hyperkähler manifold X, and a homotopy class τ
of maps from M to X. One basic observation is that every holomorphic
sphere in a hyperkähler manifold gives rise to a solution of (2) on M = S3.
Another point is that π3(X) can be a very rich group. For example, the third
homotopy group of the K3-surface has 253 generators (see [1, Appendix]).
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Example 3.1. Think of the 3-sphere as the unit sphere in the quaternions
H ∼= R

4 and of the 2-sphere as the unit sphere in the imaginary quaternions
Im(H) ∼= R

3. For λ = λ1i + λ2j + λ3k ∈ S2 define hλ : S3 → S2 by
hλ(y) := −ȳλy and denote

Jλ := λ1I + λ2J + λ3K, ωλ = λ1ω1 + λ2ω2 + λ3ω3.

If u : S2 → X is a Jλ-holomorphic sphere then

f := u ◦ hλ : S3 → X

is a critical point of A and

E(u) =
1

2

∫

S2

|du|2 =

∫

S2

u∗ωλ =
1

2π
A (u ◦ hλ).

To see this, assume λ = i and write

h1(y) := −ȳiy, h2(y) := −ȳjy, h3(y) := −ȳky.

These functions satisfy ∂vi
hi = 0 and ∂vj

hi = −∂vi
hj = 2hk for every cyclic

permutation i, j, k of 1, 2, 3. Hence h1 ∧ ∂v3
h1 = ∂v2

h1. If u : S2 → X is
an I-holomorphic sphere it follows that the function f := u ◦ h1 satisfies
∂v1

f = 0 and I∂v3
f = ∂v2

f and hence is a solution of (2). Moreover, for
every σ ∈ Ω2(S2), we have

2π

∫

S2

σ = −

∫

S3

α1 ∧ h∗
1σ

(When σ is exact both sides are zero. Since −α1 ∧ h∗
1dvolS2 = 4dvolS3 the

value of the factor follows from Vol(S2) = 4π and Vol(S3) = 2π2.) With
σ = u∗ω1 this implies 2π

∫
S2 u∗ω1 = −

∫
S2 α1 ∧ h∗

1u
∗ω1 = A (u ◦ h1). Here

the last equation follows from the fact that u∗ω2 = u∗ω3 = 0 for every
I-holomorphic curve u.

The main technical difficulty in setting up the Floer theory for general
hyperkähler manifolds is to establish a suitable compactness theorem. In
contrast to the familiar theory the derivatives for a sequence of solutions
of (5) or (6) will not just blow up at isolated points but along codimension-
2 subsets as explained in Remark 2.4 above. This phenomenon is analogous
to the codimension 4 bubbling in Donaldson–Thomas theory [4].
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4 Additional structures

Floer–Donaldson theory

Let Σ be a hyperkähler 4-manifold with complex structures i, j,k and sym-
plectic forms σ1, σ2, σ3. Consider the elliptic partial differential equation

du − Idui − Jduj − Kduk = 0 (10)

for smooth maps u : Σ → X. This is sometimes called the Cauchy–
Riemann–Fueter equation and it has been widely studied (see [22], [15,
Chapter 3] and references). For Σ = R × M with its standard hyperkähler
structure (see below) equation (10) is equivalent to (6) with H = 0. The
solutions of (10) satisfy the energy identity

E(u) =
1

8

∫

Σ
|du − Idui − Jduj − Kduk|2 dvolΣ −

∫

Σ

3∑

i=1

σi ∧ u∗ωi. (11)

The linearized operator Du : Ω0(Σ, u∗TX) → Ω1
H
(Σ, u∗TX) takes values in

the space of 1-forms on Σ with values in u∗TX that are complex linear with
respect to I, J , and K. When Σ is closed this operator is Fredholm between
appropriate Sobolev completions and its index is

ind(Du) = −
〈
c2(TX), u∗[Σ]

〉
+

χ(Σ)

24
dimR X, (12)

where χ(Σ) is the Euler characteristic. Equation (12) continues to hold in
the case Σ = S1 × M with its natural quaternionic structure. We sketch a
proof below. Conjecturally, there should be Gromov–Witten type invariants
obtained from intersection theory on the moduli space of solutions of (10).

One can also consider hyperkähler 4-manifolds Σ with cylindrical ends
ι± : R

± × M± → Σ. Here we assume that M± is either a Cartan hy-
percontact 3-manifold or a 3-torus. Then R

± × M± has a natural flat hy-
perkähler structure [3, 11]. In the hypercontact case the symplectic forms
are ωi = κ−1d(e−κsαi) = e−κs

(
−ds ∧ αi + αj ∧ αk

)
and in the torus case

they are ωi = −ds ∧ αi + αj ∧ αk for every cyclic permutation i, j, k of
1, 2, 3. In both cases the complex structure i is given by ∂s 7→ −v1, v1 7→ ∂s,
v2 7→ v3, v3 7→ −v2 and similarly for j and k. We assume that the em-
beddings ι± are hyperkähler isomorphisms onto their images and that the
complement Σ \ (im ι+ ∪ im ι−) has a compact closure. Alternatively, it
might also be interesting to consider hyperkähler 4-manifolds with asymp-
totically cylindrical ends as in [17, 18]. One can then (conjecturally) use the

9



solutions of equation (10) with Hamiltonian perturbations on the cylindrical
ends to obtain a homomorphism HF∗(M

−, X) → HF∗(M
+, X) respectively

HF∗(M+, X) → HF∗(M−, X).

Proof of the index formula. We relate Du to a Dirac operator on Σ
associated to a spinc structure. On Σ we have a Hermitian vector bundle
W = W+ ⊕ W− where

W+ := u∗TX ⊕ u∗TX, W− := HomH(TΣ, u∗TX) ⊕ HomI(TΣ, u∗TX).

Here HomH(TΣ, u∗TX) denotes the bundle of quaternionic homomorphisms
and HomI(TΣ, u∗TX) denotes the bundle of homomorphisms that are com-
plex linear with respect to I and complex anti-linear with respect to J and K.
The complex structures on W + and W− are given by (ξ1, ξ2) 7→ (Iξ2, Iξ1).
The spinc structure Γ : TΣ → End(W ) has the form

Γ(v) :=

(
0 −γ(v)∗

γ(v) 0

)

for v ∈ TzΣ where γ(v) : W +
z → W

−
z is given by

γ(v)(ξ1, ξ2) := (πH(
〈
v, ·

〉
ξ1), πI(

〈
v, ·

〉
ξ2)).

Here πH, πI : HomR(TΣ, u∗TX) → HomR(TΣ.u∗TX) denote the projections

πH

(
A

)
:= A − IAi − JAj− KAk, πI

(
A

)
:= A − IAi + JAj + KAk.

The Dirac operator D : Ω0(Σ,W+) → Ω0(Σ,W−) is the direct sum of Du

and D̃u : Ω0(Σ, u∗TX) → Ω1
I(Σ, u∗TX) given by D̃uξ := πI(∇ξ). These

operators have the same index and hence

2indR(Du) = indR(D) =
rankR(W+)

24
χ(Σ) +

1

2

〈
c1(W

+)2 − 2c2(W
+), [Σ]

〉
.

The last equation follows from the Atiyah–Singer index theorem (see [20]).
Alternatively, one can identify Ω0(Σ,W+) with Ω0,0(Σ, u∗TX)⊕Ω2,0(u∗TX)
via (ξ1, ξ2) 7→ (ξ1 +ξ2, J(ξ2−ξ1)ωj+K(ξ2−ξ1)ωk) and the space Ω0(Σ,W−)
with Ω1,0(Σ, u∗TX) via (α1, α2) → α1 + α2. Under these identifications
the Dirac operator D corresponds to the twisted Cauchy–Riemann operator
∂ + ∂∗ : Ωev,0(Σ, u∗TX) → Ωodd,0(Σ, u∗TX). Since I is homotopic to −I,
the complex Fredholm index of D is the holomorphic Euler characteristic of
the bundle u∗TX → Σ and, by the Hirzebruch–Riemann–Roch formula,

indR(Du) = indexC(D) =

∫

Σ
ch(u∗TX)td(TΣ).

With ch = rankC + c1 + 1
2 (c2

1 − 2c2) and td = 1+ 1
2c1 + 1

12(c2
1 + c2) this gives

again the above formula, and (12) follows because c1(TX) = c1(TΣ) = 0.
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Ring structure

As an example of this construction we obtain (conjecturally) a ring structure
on HF∗(S3, X). Take Σ := H \ {− 1

2 , 1
2} and define ι− : (−∞, 0] × S3 → H

by
ι−(s, y) := e−sy.

The image of this map is the complement of the open unit ball in H. The
embedding ι+ : [0,∞)×(S3tS3) → H is the disjoint union of the embeddings
(s, y) 7→ e−1−sy ± 1

2 . The resulting quaternionic pair of pants product

HF∗(S3, X) ⊗ HF∗(S3, X) → HF∗(S3, X)

should be independent of the choice of the embeddings and the Hamiltonian
perturbations used to define it. Moreover, counting the solutions of (10)
on the punctured cylinder R × M \ {pt}, will lead to a module structure of
HF∗(M,X) over HF∗(S3, X) for every M .

The compactness and transversality results in the present paper show
that this construction is perfectly rigorous and gives rise to an associative
product on HF∗(S3, X) whenever X is flat. Moreover, in this case it agrees
with the usual cup product under our isomorphism

HF∗(S3, X) ∼= H∗(X; Z2).

Relations with Donaldson–Thomas theory

In [4] Donaldson and Thomas outline the construction of Donaldson type
invariants of 8-dimensional Spin(7)-manifolds Z and Floer homological in-
variants of 7-dimensional G2-manifolds Y . In the case Z = Σ × S, where Σ
and S are hyperkähler surfaces, they explain that solutions of their equation
on Σ × S correspond, in the adiabatic limit where the metric on S degen-
erates to zero, to solutions u : Σ → M (S) of (10) with values in a suitable
moduli space X = M (S) of bundles over S. In a similar vein there is a
conjectural correspondence between the Donaldson-Thomas-Floer theory of

Y = M × S

with the Floer homology groups HF∗(M,M (S)) discussed above whenever
M is either a Cartan hypercontact 3-manifold or a flat 3-torus. Namely, the
solutions of the Floer equation in Donaldson–Thomas theory on R×Y with
Y = M × S correspond, in the adiabatic limit, formally to the solutions
of (6) on R × M with values in M (S).
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Boundary value problems

If M is Cartan hypercontact 3-manifold with boundary ∂M and Reeb vector
fields v1, v2, v3 then there is a unique map λ : ∂M → S2 such that

ν :=
∑

i

λivi : ∂M → TM

is the outward pointing unit normal vector field. In this case the 1-form (1)
is not closed. Its differential is given by the formula

TfF × TfF → R : (f̂1, f̂2) 7→

∫

∂M
ωλ(f̂1, f̂2)dvol∂M .

This is a symplectic form on the space of maps ∂M → X. Thus it seems
natural to impose the Lagrangian boundary condition

f(y) ∈ Ly, y ∈ ∂M,

where
L :=

⊔

y∈∂M

Ly

is a smooth submanifold of ∂M ×X such that Ly is Lagrangian with respect
to ωλ(y) for every y ∈ ∂M . We conjecture that this is an elliptic boundary
condition for equation (5).

5 Concluding remarks

The details of the theory outlined here are worked out in [16] for compact
flat target manifolds X. The extension to general hyperkähler manifolds X
requires a careful understanding of the codimension 2 bubbing phenomenon
for the solutions of equation (6). In this general setting there should be a
rather rich class of examples. Once this is understood one can approach the
Donaldson–Thomas analogue of the Atiyah–Floer conjecture [5] for suitable
product manifolds M × S as suggested in [4] and described above.
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Preprint, ETH Zürich, July 2008.

[17] P.B. Kronheimer, The construction of ALE spaces as hyper-Khler quotients. J. Diff. Geom.
29 (1989), 665–683.

[18] P.B. Kronheimer, A Torelli-type theorem for gravitational instantons. J. Diff. Geom. 29

(1989), 685–697.

[19] D. McDuff, D.A. Salamon, J-Holomorphic Curves and Symplectic Topology, AMS Collo-
quium Publications Vol 52, 2004.

[20] J.D. Moore, Lectures on Seiberg-Witten Invariants, LNM 1629, Springer Verlag, 2001.

[21] S. Piunikhin, D.A. Salamon, M. Schwarz, Symplectic Floer-Donaldson theory and quantum
cohomology. Contact and Symplectic Geometry, edited by C.B. Thomas, Publications of
the Newton Institute, Cambridge University Press 1996, 171-200.

[22] C.H. Taubes, Nonlinear generalizations of a 3-manifold’s Dirac operator. In Trends in Math-
ematical Physics (Knoxville, TN, 1998), Vol. 13 of AMS/IP Stud. Adv. Math., pages 475–
486. Amer. Math.Soc., Providence, RI, 1999.

[23] K. Wehrheim, Energy quantization and mean value inequalities for nonlinear boundary
value problems. JEMS 7 (2005), 305–318.

13


