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AN APPROXIMATION THEOREM
FOR THE ALGEBRAIC RICCATI EQUATION*

FRANZ KAPPEL AND DIETMAR SALAMON

Abstract. For an infinite-dimensional linear quadratic control problem in Hilbert space, approximation
of the solution of the algebraic Riccati operator equation in the strong operator topology is considered
under conditions weaker than uniform exponential stability of the approximating systems. As an application,
strong convergence of the approximating Riccati operators in case of a previously developed spline
approximation scheme for delay systems is established. Finally, convergence of the transfer-functions of
the approximating systems is investigated.
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1. Introduction and hypotheses. Let H, U, and Y be Hilbert spaces, and consider
the linear system

,( t) Az( t) + Bu( t), z(0) o 6 H,
(1.1)

y(t)=Cz(t),

where A’dom A- H is the infinitesimal generator of a strongly continuous semigroup
S(t) (H), and B ( U, H), C ’(H, Y) are bounded linear operators. Associated
with (1.1) we consider the algebraic Riccati equation

(1.2) (Ad/, P)+(P, A)-(B*PO, B*P)+(CO, C)=0

for o, , dom A. This equation has a nonnegative operator solution P P* (H)
if and only if for every H there exists a control function u L2(0, ; U) such that
the integral

(1.3) J(u) J(u, )-- (llu(t)ll/ Ily(t)ll) dt

is finite. Under this assumption for every e H there exists a unique optimal control
that is given by the feedback law

u(t) -B*Pz(t),

where P is the minimal nonnegative solution of (1.2). A nonnegative solution of (1.2)
exists under the assumption that system (1.1) is stabilizable, meaning that there exists
an operator K (H, U) such that A+ BK generates an exponentially stable semi-
group. If (1.1) is also detectable in the sense that for some operator L (Y, H) the
operator A + LC generates an exponentially stable semigroup, then the solution P of
(1.2) is unique in the class ofnonnegative operators on H and the closed-loop semigroup
generated by A-BB*P is exponentially stable [1], [6].
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Together with (1.1) we also consider a sequence of approximating control systems

,N (t) AN2N (t) + BNttN (t), Z
N (0) ,/. N(,

(1.4) yN(t)=CNzN(t)
where zN Rk(N), U

N Rm(N), yN RP(N), and AN, BN, CN are matrices of suitable
dimensions. We assume that there exist injective linear maps

N Rk(N) N Rm(N) kN RP(N)H, j U, Y

and surjective linear maps
N Rk(N) N re(N) N RP(N)7r "H p "UR tr "Y

such that 7rN N, pNjN, trNkN are identity maps and NTrN, jNpN, kNtrN are orthogonal
projections. On the spaces Rk(s), Rre(N), and RP(N) we will always consider the induced
inner products (z, w)N (Nz, NW)H, Z, W RkN) (u, V)N (jNu, jNv)u, U, V R"N)

and (x,y)N=(kNx, kNy)y, x,yRPN). (AN)*, (BN)*, (CN)*, always denote the
adjoint matrices with respect to the induced inner products.

The purpose of this paper is to investigate the convergence properties of the
solution matrices pN= (pN). of the approximating algebraic Riccati equations

(1.5) (AN)*PN + pNAN--pNBN(BN)*PN +(CN)*CN =0.

To formulate the results we introduce the following concepts. The approximating
systems (1.4) are called strongly convergent to (1.1) if

(1.6) S(t) lim ,NeANtTI’N, S(t)*tp lim Ne(AN)*tT"I’N
Nc N-

uniformly on compact time intervals for all o H,
NBNpN B, jN(BN)*rN B*, and

(1.7) jSpN
_
idu strongly

and

kNCNTrN - C I,N(cN)*o"N C*, and
(1.8) kNo"N- idY strongly.

We will call systems (1.4) uniformly output stable if there exists a constant c > 0 such

O
IIkNCNe’rNII dt<__ cll ll =

for all H and N 1, 2,’’’. Systems (1.4) are said to be uniformly input.output
stable if the functions CNeA lN, N 1, 2, , are integrable on 0_<- < and there
exists a constant Cl > 0 such that

IIkCN ioI- AN)-BpNII-<- c,

for allweRand N=l,2,....
Remarks. (1) Uniform output stability of systems (1.4) in connection with strong

convergence to (1.1) implies that system (1.1) is output stable in the sense that

’llCS(t)!] dr_-_ const, for all H.

(2) If the approximating systems (!.4) are strongly convergent to system (1.1)
and the matrices K N e RmeNkN, L e Rkarc chosen such that the operator
sequences jK e(H, U), tL (H) and their adjoints t(K)*p
k(L)* convere strongly to K, L and K*, L*, respectively, then the feedback



1138 F. KAPPEL AND D. SALAMON

systems

(1.9)
:N(t) (AN +BNKN)zN(t)+BNvN(t), zN(0) rNp,

yN(t) CNzN(t), wN(t)= KNzN(t),
and the dynamic observers

(1.10)
.N(t)=(AN +LNCN)zN(t)-LNyN(t)+BNuN(t),

zN (0) zrNo, W
N (t) K NZN (t),

are also strongly convergent. This can be seen by using the variation of parameters
formula, Gronwall’s inequality and Lebesgue’s dominated convergence theorem.

(3) Let systems (1.4) converge strongly to system (1.1). By (1.6) and the uniform
boundedness principle we see that there exists a constant M1--> 1 such that

for [0, 1] and N 1, 2,.... By standard considerations this implies

(1.11) IINeANtcrNII<--M1 e t>__--0, N=1,2,’’’,

where a is some real constant. It follows that I[S(t)[I <-Me’, t>-O. However, the
exponential growth rate of S(t) may be strictly less than ao inf a, where the infimum
is over all a for which (1.11) holds with some constant M1 --> 1. By the Trotter-Kato
theorem we see that

lim II(AI--A)-lz--N(AI--AN)-’rNzl[=O
Nooo

for all z H uniformly for Re A >_- y for any 3’ > ao.
(4) From the definition of the norms on Rk(N), Rm(N), and Rp(N) it is obvious

that II  ll--IIj ll Ilk[[- 1 and also ZrN ]lpSll IIrN 1. Let HN =range tscrN
us rangejpN and yS range kNtrN. Then, for instance,

In 2 we will make use of these observations repeatedly.

2. The convergence result. The following theorem is the main result of this paper.
THEOREM 1. Let systems (1.4), K Nlm(s)xk(s), LsRk(s)p(s), K (H, U),

and L( Y, H) be given. Assume that
(i) Systems (1.4) are strongly convergent to (1.1);
(ii) jNKNcrN --> K, N(KN)*pN --> K*, NLo’N --> L, kN(LN)*crN --> L* strongly;
(iii) A + BK and A+ LC generate exponentially stable semigroups;
(iv) Systems (1.9) are uniformly output stable and uniformly input-output stable; and
(v) Systems (1.10) are uniformly input-output stable.

Then

P lim tNpNTI’N
Nc

for every H, where P(H) and pN Rk(N)xk(N) are the minimal nonnegative
solutions of (1.2) and (1.5), respectively.

An earlier version of this convergence theorem was proved in [3] under stronger
assumptions. In particular the following property of the approximation scheme is
assumed (see [3, Conjecture 7.1])" If the semigroup S(t) is exponentially stable, then
the approximating semigroups satisfy an estimate [[exp (ANt)[[ <= Me-tt, t_>0, N=
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1, 2,. ., with constants M => 1,/3 > 0 independent of N. This assumption is not met
by the spline approximation scheme for delay systems developed in [4] and [5]. On
the other hand, in this case convergence of the pN’s has been observed numerically
[4]. In 3 we will show that the spline scheme indeed satisfies the requirements of
Theorem 1.

The proof of Theorem 1 rests on the relationship between the algebraic Riccati
equation (1.2) and the optimal control problem (1.3). We first establish two lemmas.
For system (1.1), respectively systems (1.4), we define the operators g, g,v :H
L2(0, oo; Y) by

(qg)(t)= CS(t)p, t>=O,
(cNp)(t) kNCNeA ’Tr qo, >__ O

respectively. Then the adjoint operators g’*, (gN)* L2(0, oo; Y)-* H are given by

*y S(t)* C’y(t) dt,

and

(gS)*y Ne(AN)*t(cN)*o’Ny(t) dt.

LEMMA 1. Assume that S( t) is exponentially stable and systems (1.4) are uniformly
output stable and converge strongly to system (1.1). Then

r and N)._ .
strongly as N .

Proof For any T> 0 we get

Iocs(t) at + 3 CS(T+ t) = at

+ 3 IIkNCNeAt(eATN S(T)) dt

The estimate for is

2 II(C-kC%)S()ll de

N

For any T> 0 the right-hand side tends to zero as N , because systems (1.4) are
strongly convergent to (1.1).

For a2 we get from the exponential stability of S(t) (i.e., IIs(t)ll Me-’, tO,
for some fl > 0)

M= 3 c = e-=
2

Using uniform output stability of systems (1.4) we obtain

3 3c11 eANTN@ S( T)II =,
4 3clIS( T) I1= 3cM e-=ll =.



1140 F. KAPPEL AND D. SALAMON

These estimates together show that

as

for any H.
For the proof of (cN)*y ..> g.y it is enough to consider y with compact support.

Let supp y c [0, T], T> 0. Then
r

*’ CII*y-()*yll <= [IS(t)*C*y(t)-r% r *y(t)l dt

+ IlrNe(A)*’ N C* N s),crVI1( - (c )y(t)l[ at.

The right-hand side tends to zero by the Lebesgue dominated convergence theorem
using strong convergence of systems (1.4) to (1.1) and (1.11). El

Remark. if dim Y< oo and systems (1.4) are uniformly exponentially stable (i.e.,
I’NeANt’rrN <: Me-st, > 0, N 1, 2,. for some constants M >= 1, a > 0), then

I[e- eNlI I1*-()*11-0 as N-->c.

We only have to observe that IICS(t)-kSCNeANtrSll is exponentially decaying as
oo uniformly with respect to N.
To state the next lemma we introduce the operators q3, v :L2(0, cx3; U)->

L2(0, o; Y) by

(u)(t) CS(t-s)Bu(s) ds, teO,

(cNu)(t) kNcN eAt-s)BNpNU(S) ds,

for u e L2(O, 3; U). The adjoint operators are given by

(*y)(t) B*S(s-t)*C*y(s) as,

((N)*y)(t) jn(BV)* e(AN)*(s-t)(cN)*o’Ny(s) ds,

for y L2(0, ; Y).
LEMMA 2. Assume that S(t) is exponentially stable, systems (1.4) are strongly

convergent to system (1.1) and, furthermore, systems (1.4) are uniformly input-output
stable and uniformly output stable. Then

cN and ()* *
strongly as N --> o.

Proof. Using Parseval’s equality and uniform input-output stability we obtain the
estimate

u[[2= kNC eAS(t-s)BNpNu(s) ds dt

f_oo llkNCN(ioI--AN)-’BNPlll[a(o)ll- do
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which implies uniform boundedness of the operators N. Therefore it is enough to
consider input functions u with compact support, supp u c [0, T]. Let y u and
yN 3Nu. Then the estimate

ily(t)-yN(t)[[<= I[(C--kNCNrN)S(s)Bu(t--s)[[ ds

+sup Ilkcrll II(S(s)-NeAN’TrrV)Bu(t-s)]l ds
N

+MleaT sup I[kCrll II(B-Bl"p)u(t-s)ll ds
N

for 0 ==. T, shows that IlY(" yV (.)ii L2o,r; Y) ._> 0 as N --> (using strong convergence
of systems (1.4) to system (1.1) and the Lebesgue dominated convergence theorem).
Moreover, we have

y(th- T) ()(t)

yS(t+ T) (’vpv)(t)

with q S( T- s)Bu(s) ds,

with qn N eAN(T-s)B%Nu(s) ds

and hence it follows from Lemma 1 that y --> y in L2( T, o; y) as N--> .
For the adjoint operators we again need to consider y with compact support only,

say supp y c [0, T], T> 0. Then

II(N)*Y ,yll =

(B*S(s- t)*C*-j(Brq)* e(*(’-(CN)*o’S)y(s) ds

Using strong convergence of systems (1.4) to (1.1) (together with the estimate (1.11))
we see that we can apply the Lebesgue dominated convergence theorem twice. [3

Proof of Theorem 1. Let Sl(t) and Sl(t) denote the semigroups generated by
A+ BK and A+ LC, respectively. We first observe that J(u)< for u L2(0, ; U)
if and only if v= u-Kz L2(0, ; U), where z(t) is the mild solution of (t)=
Az(t) + Bu(t), z(0) q, i.e., z(t) S(t)q +o S(t s)Bu(s) ds. Indeed, since

z(t)=Si(t)q+ Stc(t-s)Bv(s) ds

(this is rather obvious for q dom A and u being differentiable and follows by a density
argument in the general case), z(t) is square integrable if v is. But then u v+ Kz
L2(0, ; U) and y Cz L2(O, ; Y), i.e., J(u) <. Conversely, if J(u) < then the
formula

z( t) Si( t)p + S( s)(Bu(s) Ly(s)) ds

shows that z and v u- Kz are square integrable.
Therefore the control problem of minimizing (1.3) subject to (1.1) is equivalent

to the problem of minimizing

(2.1) Jr(v) J(v, ,)- (ll v(t) + gz(t)ll=+ Ily(t)ll) dt
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subject to

(2.2) i (A + BK)z + Bv, z(O) q, y Cz.

The functional (2.1) is bounded for all v L2(0, ; U) and can be written in the form

&(v, )= I1+ rvll,
where the operators c H L2(0, ; U Y) and if: L2(0, ; U) L2(0, ; U x Y) are
defined by

()(t)=(KSr(t), CSr(t)),

(v)(t)=(v(t)+K S(t-s)Bv(s) ds, C S(t-s)Bv(s) ds

Hence the optimal control satisfies

(2.3) * +*p 0.

We define the operator : L(0, m; U x Y) L(0, m; U) by

(u,y)(t)=u(t)-K S(t-s)(Bu(s)-Ly(s)) ds.

Then straightforward computations show that, for 0,

(v)(t)=v(t)+Kz(t)-K S(t-s)(Bv(s)+BK(s)-LC(s)) ds,

where z(t)=IoS(t-s)Bu(s)ds. Let w(t) denote the integral term in the above
equation. Then w(t) is the unique mild solution of
(A + LC)w + By(t) + BKz(t) LC(t), w(0) 0. Obviously, (t) is also a mild solution
of this problem, i.e., w() z(t). Thus we have

(v)() v(l + g() g(t) v(), 0,

i.e.,

v v for all v e L(0, m; U).

This implies I11 I1111111= I111<, *> I1111 I1*11, i.e.,

I1*1 I111-1111 for all ve L(0, ; U).

Hence the operator * is boundedly inveible, and from (2.3) we get

-(*)-*.
The identity J(v ) J(, ) (, P) shows that

and hence

(.4 e= *(-g(*l-g*.
Defining the approximating operators

( L(O, ; R( x(),
L(0, ; R() L(0, ;

L(0, ;R(x() L(0, m;
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in the obvious way we get analogously as above

(2.5)

Lemma 1 applied to systems (1.9) shows that

(2.6) (jNkN)cnTrn--> and tn(n)*(pN)o’U)--> * strongly.

Here jO)k denotes the direct sum ofj and kN defined by (jO)k)(uN, y)
(jNuN, kNyN), U

s
E Ire(N), yS RP(N) etc. Moreover, in abuse of notation we define

jNu for u 6 L2(0, oo; R’()) by (jNu)(t)=jUu(t), t>--_O, etc.
By Lemma 2 applied to systems (1.9) we obtain

(2.7) (jNkN)-SpS-- and ju(-u)*(pUtru) * strongly.

By assumption (v) of Theorem 1 we have

sup
N

This and the estimate

for all vs L2(0, co; Rm(N)) show that I1((:’)*-")-111 are uniformly bounded. By
Remark (4) of 1 also IIj"((ff)*a-’)-’p"ll are uniformly bounded. Then for v
L2(0, oo; U)

j (( ),-)-lpND ff-, -)-1 D =jN((-N),-)-lpND _jNpN -,-)-1 D
((*-)-’ v _jNpN -.-)-, v).

The second term on the right-hand side converges to zero as N-. For the first term
we get

N -N)* ff-N Nv N ff-gS (( )- p -jp -)- v

which proves

(2.8) jN((r-N),-N)-lpN _.(-,-)-1 strongly.

The representations (2.4) and (2.5) together with (2.6)-(2.8) prove that

tNpNTtN " P strongly.

Remark. If the matrices e(AN+nK)t, t>0,= are uniformly exponentially stable,
then the operators NTrN converge to in the uniform operator topology (see the
remark following Lemma 1). Then it follows that the operators rnpNTrN also converge
in the uniform operator topology provided dim U < oo and dim Y< oo. It remains an
open question whether convergence of the Pu in the uniform operator topology can
be established under weaker assumptions.
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3. Spline approximation for delay equations. The system

)(t)=Aox(t)+Alx(t-h)+Bou(t), y(t)=Cox(t),
(3.1)

x(0)= x(r)=pl(z) for-hr<0,
with x(t) Rn, u(t) R", y(t)Rp and (po, pl) Rn x L2(_h, 0; R.) is equivalent
to system (1.1) in the Hilbert space

H M2= R x L2(-h, 0; R").
Operators A, B, and C are given by

dom A={q (p, q’) M21 q91 W"2(-h, 0; R"), p pl(0)},
A=(Aop+Aq(-h), () for pdomA,

Bu (Bou, 0) for u R’,
Cp Copo for p M2.

In [4] and [5] we have considered a sequence of approximating systems (1.4) where
k(N) n(N+ 2), m(N)=m, p(N)=p and the matrices As B, Cs are given by
AN (QN)-IHN with

I 0 0

The injections

h h
0 ---I ---I 0 0

3N 6N

0 0

h 2h-I 3-- I

2h h
---I ---I
3N 6N

h h
0 I I

6N 3N

Ao 0

I -1/2I -1/2I
0 1/2I 0

0

Bo

BN= i CN= (c’’’O)"

0 -1/2I
0 1/2I-1/2/.

are given by

NZ ZO, E ZijS
j=0

where z col (Zo, Zo,’’’, zs) Rn(+) and the functions s are the basis splines

so(r)=max o,g+l s(z)=max O,l-g-g
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and, for j 1,. ., N- 1,

" h h
N+j+ 1 for -(j + 1) -_<- " <= -j-,

h hsJV(r)= -N-j+I for -j--<’_-<-(j-1)-,
0 elsewhere.

The induced inner product on Rn(N+2) is given by (z, W)N zTQNw. Of course, U
UN R and Y yN Rp for all N.

The approximating systems (1.4) with these matrices are strongly convergent [4]
and if the delay system (3.1) is stable in the sense that Re A <0 for all roots of
det (AI-Ao-e-hA1)= 0, then the approximating systems (1.4) are uniformly output
stable [5]. Moreover, the approximating transfer functions are in this case given by

(3.2) CN iwI AN)-IBN Co( iwI Ao- a N iw )A,)-l Bo,

where S(,) is a sequence of rational functions converging to e-;h uniformly on
compact sets and satisfying [a N (A)I 2 on Re A >-- 0 for all N 1, 2,. [5]. This shows
that the approximating systems (1.4) are uniformly input-output stable for N sufficiently
large provided that the delay system (3.1) is stable (which is equivalent to exponential
stability of the corresponding system (1.1)).

THEOREM 2. Suppose that there exist matrices Ko Rmn and Lo Rnp such that
the delay systems

:( t) (Ao+ BoKo)x( t) + Alx( t- h),

:( t) (Ao+ LoCo)x( t) + Ax( h)

are stable and let the matrices AN, B u, CN be defined as above. Then there exist unique
nonnegative solutions

P 6 (M2) and pN Rn(N+2)xn(N+2)

of (1.2) and (1.5), respectively, and for every q m2

Pq lira NpNrNo.
Noo

Proof Define the matrices

KN--(Ko 0 0),

and apply Theorem 1.

Lo

Numerical examples for this convergence result are reported in [4].
Remark. The conditions ofTheorem 2 are stronger than stabilizability and detecta-

bility of the delay system (3.1). However, we are not aware of a stabilizable delay
system that cannot be stabilized by a feedback law of the form u(t)- Kox(t).

4. Convergence of transfer functions. In this section we give a short discussion of
the connection between strong convergence of systems (1.4) and convergence of the
corresponding transfer functions on the imaginary axis.
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If the semigroup S(t) is exponentially stable and systems (1.4) are strongly
convergent to system (1.1) and are uniformly input-output stable, then we can show that

lim kNcN(AI--AN)-IBNpN C(AI-A)-IB

uniformly on compact subsets of Re A > 0. The proof involves Vitali’s theorem on
sequences of holomorphic functions (see, for instance, [2, p. 309]). Despite the fact
that under the assumption of uniform input-output stability the functions kNcN(AI
AN)-IBNpN are uniformly bounded on Re A >-0 (and not only on compact subsets
of Re A > 0 as required in Vitali’s theorem) we cannot conclude uniform convergence
of these functions on compact subsets of the imaginary axis. This is demonstrated by
the following example.

Example. Let H 12 and U Y= R. For an element b (bl, b2,’" ")E 2 with
bj > 0 for all j we consider

(4.1) ,(t) -z(t) + bu(t), >- O, y(t) (b, z(t))l.
The solution semigroup of the homogeneous problem is S(t)= e-I, which obviously
is exponentially stable. We consider the approximating systems

,N(t)=ANzN(t)+bSu(t), t>--O, y(t)=(bN)TzN(t),(4.2)

where

AN diag (-1,. , -1, -b+l) E R(N+I)(N+I)

bN col (bl,. bN+) eRN+I.
The embedding N’RN+/2 is given by NZN=(Z,’’’,ZN+,O,’’’) for zN=
col (z,. , zN+) R+ and the "projections" rN by rNz CO1 (Z," , ZN+) for
z (z, z,. .) P.

The solutions of -z, z(0) q (ql, q2, ") 12, and :N AUz
are given by

N

z(t) e-’, zN(t) e-t qj + e-bZN+ltqN+l,
j=l

respectively. Therefore

z(t) NzN(t)l]2=(e- e-b+,,)21N+ 12 +e-2’

E Io1 =--> 0
N+I

as N-.

j=N+2

1
b+

Therefore

1 bv+l
IGN(i)I--[1 + itol Ilbll2+ Ibv+l + iol-Ilbll=+ 1

for all to R and N 1, 2,..., i.e., systems (4.2) are uniformly input-output stable.

It is obvious that lib *Nb N ll/2_ 0 as N -+ o0. Thus systems (4.2) are strongly convergent
to (4.1).

Obviously (bN) T eAtbN is integrable on t->_O. The transfer functions GN(A)
(bN)T(AI-AN)-IbN are given by
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For q (ql, q2, ") 12 we get
N

b T eA "rt"q e E bjqj nt- e b+ bN+ qgm +
j=l

Therefore

I(b) eAlt77-Nqg12 (e-’[I b [I,ll q II+ e-b’+l’bN+llqN+ll)2

=< 2e-2’ b if=It II/22 + 2e-2b+ltb2N+ II (N/’12
and

which proves uniform output stability of systems (4.2).
Finally, if we define

1
G(A) (b, (AI-A)-lb)l

l+A

then we immediately see that for A #-1 (note that b2+1-0 as N

for , #0,
lim G(A)

G(A)+I for A 0./’M

This example shows that even under additional assumptions we cannot obtain
uniform convergence ofthe transfer functions ofthe approximating systems on bounded
subsets of R in general. But we can prove the following proposition.

PROPOSITION 1. Under the assumptions of Lemma 1 we have

I C(ioI A)-IB- kNCN ioI AN )-IBpNI[ O

asNfor any U.
Proof Using Parseval’s identity we get

I2 IIC(ioI--A)-lqg--kNcN(i9I--AN)-ITrNNII2 dw

IICS(t)-kNCeA’rll2 dt--I1 ll=2L (o,; Y)

for , (/9
N U. Hence the result follows from Lemma 1 and (1.7) if we choose q B:

and qN ,NBNpN. [-]

In case of the spline scheme discussed in 3 we have uniform convergence of the
transfer functions (3.2) on compact intervals to the transfer function of the delay
system (1.1) 5 ].
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