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AN APPROXIMATION THEOREM
FOR THE ALGEBRAIC RICCATI EQUATION*

FRANZ KAPPELt AND DIETMAR SALAMON#

Abstract. For an infinite-dimensional linear quadratic control problem in Hilbert space, approximation
of the solution of the algebraic Riccati operator equation in the strong operator topology is considered
under conditions weaker than uniform exponential stability of the approximating systems. As an application,
strong convergence of the approximating Riccati operators in case of a previously developed spline
approximation scheme for delay systems is established. Finally, convergence of the transfer-functions of
the approximating systems is investigated.
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1. Introduction and hypotheses. Let H, U, and Y be Hilbert spaces, and consider
the linear system

Z(t) = Az(t)+ Bu(t), z(0)=¢ € H,
y(1) = Cz(1),

where A:dom A - H is the infinitesimal generator of a strongly continuous semigroup
S(t)e £(H),and Be £(U, H), C € #¥(H, Y) are bounded linear operators. Associated
with (1.1) we consider the algebraic Riccati equation

(1.2) (AY, Po)+(Py, Ap) —(B*Pys, B* Pp)+(Cyy, Co) =0

for ¢, Y e dom A. This equation has a nonnegative operator solution P = P*e £(H)
if and only if for every ¢ € H there exists a control function u € L*(0, o; U) such that
the integral

1.1)

(13) J(u>=1<u,¢>=j0 QP+ ly(OP) di

is finite. Under this assumption for every ¢ € H there exists a unique optimal control
that is given by the feedback law

u(t)=—B*Pz(1),

where P is the minimal nonnegative solution of (1.2). A nonnegative solution of (1.2)
exists under the assumption that system (1.1) is stabilizable, meaning that there exists
an operator K € £(H, U) such that A+ BK generates an exponentially stable semi-
group. If (1.1) is also detectable in the sense that for some operator Le £(Y, H) the
operator A+ LC generates an exponentially stable semigroup, then the solution P of
(1.2) is unique in the class of nonnegative operators on H and the closed-loop semigroup
generated by A— BB*P is exponentially stable [1], [6].
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THE ALGEBRAIC RICCATI EQUATION 1137

Together with (1.1) we also consider a sequence of approximating control systems
N =ANZN(@)+B NN (1), N (0)=7Ne,
yN(t)=CNzN(n),

where zV e R“™) yN e R™™)| yN e RP™ and AN, BN, C" are matrices of suitable
dimensions. We assume that there exist injective linear maps

N:R*MosH, VRS U, KNV:RP Y Y
and surjective linear maps

N,H_)Rk(N) N.U__)Rm(N) N'Y—>R”(N)

such that =™ N, pNjN, 0Nk are identity maps and « Vo N are orthogonal

projections. On the spaces R“™, R™™ ) and R”™ we will always consider the induced
inner products (z, w)n ={(t"z, a”w),,, z, we R*™ (u, vy = (i™u, jNv)y, u, ve R™,
and (x, y)n = (k™x, kVp)y, x, y e RPN (AN)*, (BN)*, (CN)*, - - - always denote the
adjoint matrices with respect to the induced inner products.

The purpose of this paper is to investigate the convergence properties of the
solution matrices P~ = (P™)* of the approximating algebraic Riccati equations

(1.5) (AM)*PN + PYAN — PYBY(BY)*PN +(CM)*C™ =0.
To formulate the results we introduce the following concepts. The approximating
systems (1.4) are called strongly convergent to (1.1) if

(1.6) S(t)e = lim Ne? "7 No, S(t)*e = lim Ve "' 7 No

N ->oco N

(1.4)

NNNk

uniformly on compact time intervals for all ¢ € H,
BNpN > B, jN(BN)*xN > B*, and

(1.7) jNpN >idy strongly
and
(1.8) kNeNaNsc, N(eN)*eN - C*, and

kNo™N >idy strongly.
We will call systems (1.4) uniformly output stable if there exists a constant ¢ >0 such

[s'e)
[ e anop ars gl
0

for all ¢ H and N=1,2,---. Systems (1. 4) are said to be uniformly input-output
stable if the functions CN av 'BN N=1,2,- -, are integrable on 0= ¢t <o0 and there
exists a constant ¢, > 0 such that

[&NCN (iwl = AN) BNV | = ¢
forallweRand N=1,2, -

Remarks. (1) Uniform output stability of systems (1.4) in connection with strong
convergence to (1.1) implies that system (1.1) is output stable in the sense that

J | CS(t)@||* dt = const. ||@||> for all ¢ € H.
(1]

(2) If the approximating systems (1.4) are strongly convergent to system (1.1)
and the matrices K~ e R™N)*K(N) | [N ¢ RKN)*P(N) are chosen such that the operator
sequences j VK NaN e L(H, U), NLNo™ € (Y, H) and their adjoints "~ (K")*p",
KN(LN)*#N converge strongly to K, L and K*, L*, respectively, then the feedback
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systems
N()=(AN +B KMV () + BN (1),  ZN(0)=7"o,
yNy=CcN(@),  wN(@)=K"zN(1),
and the dynamic observers
N() = (AN +LNCN)ZN (1) - LNyN (1) + BNu™N (1),
zZN(0) = 7No, wN(t)=KNzN (1),
are also strongly convergent. This can be seen by using the variation of parameters
formula, Gronwall’s inequality and Lebesgue’s dominated convergence theorem.

(3) Let systems (1.4) converge strongly to system (1.1). By (1.6) and the uniform
boundedness principle we see that there exists a constant M,; =1 such that

||¢NeAN’fn-N|| =M,
for te[0,1] and N =1, 2, -. By standard considerations this implies
(1.11) [eNeA MmN | = Me®, tz0, N=1,2,---,

where a is some real constant. It follows that || S(?)| = M,e*’, t=0. However, the
exponential growth rate of S(¢) may be strictly less than a,=inf a, where the infimum
is over all a for which (1.11) holds with some constant M, = 1. By the Trotter-Kato
theorem we see that

(1.9)

(1.10)

lim [[(AI=A)'z= NAT=AN)'7Nz|| =0
N ->o0
for all ze H uniformly for Re A = y for any y> a,.
(4) From the definition of the norms on R*™ R™™ and R*™ it is obvious
that ™[ =™ = |k~ || =1and also |7 || = o™ || = o™ | =1. Let H" =range V#",
UN =range jVp" and Y" =range k"o™. Then, for instance,

[e™B™p™ [ ocu™ ™y = | B | oqmev grenoy,
[ENCNa™ g ymy = [ CN || omeeo growy.
In § 2 we will make use of these observations repeatedly.

2. The convergence result. The following theorem is the main result of this paper.

THEOREM 1. Let systems (1.4), K~ e Rm(N>KN) [N ¢ gk(N>p(N) g ¢ ¢(H, U),
and Le #(Y, H) be given. Assume that

(i) Systems (1.4) are strongly convergent to (1.1);

(i) jNKNaN > K, SN (KN pN > K* NLNeN > L kKN (LN )* 7N > L* strongly,

(iii) A+ BK and A+ LC generate exponentially stable semigroups,

(iv) Systems (1.9) are uniformly output stable and uniformly input-output stable; and

(v) Systems (1.10) are uniformly input-output stable.
Then
Pp = lim NP NzNg
N->o0
for every ¢ € H, where P ¥$(H) and PN e R“N*™) qre the minimal nonnegative
solutions of (1.2) and (1.5), respectively.

An earlier version of this convergence theorem was proved in [3] under stronger
assumptions. In particular the following property of the approximation scheme is
assumed (see [3, Conjecture 7.1]): If the semigroup S(¢) is exponentially stable, then
the approximating semigroups satisfy an estimate [exp (A"Nt)|=Me ®,t=0, N=
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1,2, -+, with constants M =1, 8> 0 independent of N. This assumption is not met
by the spline approximation scheme for delay systems developed in [4] and [5]. On
the other hand, in this case convergence of the P"’s has been observed numerically
[4]. In § 3 we will show that the spline scheme indeed satisfies the requirements of
Theorem 1.

The proof of Theorem 1 rests on the relationship between the algebraic Riccati
equation (1.2) and the optimal control problem (1.3). We first establish two lemmas.
For system (1.1), respectively systems (1.4), we define the operators & €~ :H -
L*(0,00; Y) by

(Ep)(1)=CS(e, =0,
(&Np) (1) =kNCNe MmN, 120,
respectively. Then the adjoint operators €*, (€™)*: L*(0,0; Y)— H are given by

%’*y=r S()*C*y(1) dt,

0
and

(e o)

(8N)*y= J WNeAOM(CNY* Ny (1) dt.

0

LEMMA 1. Assume that S(t) is exponentially stable and systems (1.4) are uniformly
output stable and converge strongly to system (1.1). Then

gN> ¢ and (€N)*-> &*
strongly as N - co.
Proof. For any T>0 we get

T
I~ 8 e o= |
0

(s o]

|CS(t)p —kNCNeA™ N | dt +3 J |CS(T+t)p|? dt

0

+3 J [KNCNeA ™ (e*™ 7 Np — aNS(T) )| dt
0

+3 J [kNCNeA 7 NS(T) o |? dt =t ay+ ar+ az + .
0

The estimate for a, is

T
a, =2 I I(C=kNCNxN)S(t)e|? at
0

T

+2 sup IENCNaN|)? J 1S()o —1Ne2 N |? dt.

V]
For any T >0 the right-hand side tends to zero as N - o, because systems (1.4) are
strongly convergent to (1.1).
For a, we get from the exponential stability of S(t) (i.e., | S(¢)| = Me™™, t=0,
for some B> 0)

gt M
x=3|C|e ZBTE el
Using uniform output stability of systems (1.4) we obtain
a; =3¢V e TaNe - S(T)el?,

a,=3c||S(Te|*=3cM? e 7| |
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These estimates together show that
&Np>%p as N>

for any ¢ € H.

For the proof of (¢™)*y - &*y it is enough to consider y with compact support.
Let supp y< [0, T], T>0. Then

T
| €*y — (&N )*y|| = L [S(6)*C*y(1) =L NeA™ e NC*y(1)|| dt

T
+J [eNeA  a N [(C* =N (CNY*aN)p(2)| dt.
0

The right-hand side tends to zero by the Lebesgue dominated convergence theorem
using strong convergence of systems (1.4) to (1.1) and (1.11). a

Remark. If dim Y <00 and systems (1.4) are uniformly exponentially stable (i.e.,
[ NeA N || = Me ™, t=0, N=1,2,- - -, for some constants M =1, a > 0), then

|€—€N|=]%*—(€")*|>0 as N>oo.

We only have to observe that ||CS()~kNCNe”™ ™| is exponentially decaying as
t > o0 uniformly with respect to N.

To state the next lemma we introduce the operators ¥, 9" :L*(0,; U)-
L*(0,; Y) by

(@u)(t)=ItCS(t~s)Bu(s) ds, t=0,

0

(9Nu)(t) = j KNCN AT BNyNy(s) ds,  1=0,
(V]
for u e L*(0, c0; U). The adjoint operators are given by

e

(@*y)(t)=f B*S(s—t)*C*y(s)ds, 120,

t

[eo)
(™) y)(1)= J JNBN)* AN o Ny (s) ds, 120,
t
for y e L*(0, o; Y).
LemMMA 2. Assume that S(t) is exponentially stable, systems (1.4) are strongly
convergent to system (1.1) and, furthermore, systems (1.4) are uniformly input-output
stable and uniformly output stable. Then

éN>% and (%V)*-> @*
strongly as N - 0.
Proof. Using Parseval’s equality and uniform input-output stability we obtain the
estimate

£ 2

I %Nu||2=J dt

0

t
J KNCN AN (=9 BNy Ny () ds
0

gj IKNCN (iwl = AN BNpN || d(@)|? deo

-0

s 0}
éc%j (@) doo = eZull?,
—00



THE ALGEBRAIC RICCATI EQUATION 1141

which implies uniform boundedness of the operators 4". Therefore it is enough to
consider input functions u# with compact support, supp u<[0, T]. Let y= %u and
y™ = 9™u. Then the estimate

- @l= [ 1e-KC ) 505 Buti -5l as
+sup [|[KNCN7N || I‘ [(S(s)~NeA™ 7N )Bu(t —s)|| ds

t
+ M, e sup |ENCNaN || J I(B=NBNp™)u(t—ys)| ds
0

for 0=t = T, shows that ||y(-) =¥~ (‘)| 2¢0.7:v) > 0 as N - o (using strong convergence
of systems (1.4) to system (1.1) and the Lebesgue dominated convergence theorem).
Moreover, we have

T

y(t+T)=(8p)(t) with ¢=j S(T —s)Bu(s) ds,
0

T
yN(t+T)=(E e™)(t) with ™ =" j e T BNyNy(s) ds
0
and hence it follows from Lemma 1 that y™ >y in L*(T,; Y) as N - 0.
For the adjoint operators we again need to consider y with compact support only,
say supp y< [0, T], T>0. Then

[(E™)*y —4*y|?

_ j

Using strong convergence of systems (1.4) to (1.1) (together with the estimate (1.11))
we see that we can apply the Lebesgue dominated convergence theorem twice. O

Proof of Theorem 1. Let Sk (t) and S,(t) denote the semigroups generated by
A+ BK and A+ LC, respectively. We first observe that J(u) <o for u e L*(0,c0; U)
if and only if v=u—Kze L*(0,00; U), where z(t) is the mild solution of 7(t)=
Az(t)+ Bu(t), z(0)= ¢, i.e., z(¢) =S(t)¢p +L') S(t—s)Bu(s) ds. Indeed, since

2

dt.

T
J (B*S(s—t)*C*=jN(BN)* e 4V 0(CN)*aN)y(s) ds
t

z(t1) =Sk (t)o+ J Sk (t—s)Bv(s) ds
V]
(this is rather obvious for ¢ € dom A and u being differentiable and follows by a density
argument in the general case), z(t) is square integrable if v is. But then u=v+Kze
L*(0,00; U) and y = Cze L*(0,00; Y), i.e., J(u) <. Conversely, if J(u) < then the
formula

t
z(1) = SL(t)<p+j Si(t=s)(Bu(s)— Ly(s)) ds
0
shows that z and v = u — Kz are square integrable.
Therefore the control problem of minimizing (1.3) subject to (1.1) is equivalent
to the problem of minimizing

e

@) JK<v>=JK<v,¢>=j (o) + Kz (P + [y(0]P) de

0
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subject to

(2.2) z=(A+BK)z+Bv, z(0)=¢, y=Cz

The functional (2.1) is bounded for all ve L*(0,00; U) and can be written in the form
Tk (v, @) = o+ Tol,

where the operators € : H - L*(0,00; U x Y) and 7 : L*(0, 00; U) - L*(0, c0; U X Y) are
defined by

(Ge)(1) = (KSk(t)e, CSk(t)p),
(Tv)(t)=(v(t)+ K Jl Sk (t—s)Buv(s) ds, C Jn Sk (t—s)Buv(s) ds).

Hence the optimal control ¥ satisfies
(2.3) T*Tb+ T*6p =0.
We define the operator %: L*(0, c0; U x Y) - L*(0, c; U) by

t

F(u, y)(t) =u(t)-K J S.(t=s)(Bu(s) = Ly(s)) ds.

0

Then straightforward computations show that, for t=0,

t

(FTv)(t)=v(t)+Kz(t) - K J' S;(t—s)(Bv(s)+ BKz(s)— LCz(s)) ds,

0

where z(t)= j(', Sk (t—s)Bu(s) ds. Let w(t) denote the integral term in the above
equation.  Then w(t) is the unique mild solution of w=
(A+ LC)w+ Bu(t)+ BKz(t) — LCz(t), w(0) = 0. Obviously, z(t) is also a mild solution
of this problem, i.e., w(¢) = z(t). Thus we have

(FTv)(t)=v(t)+ Kz(t) — Kz(t) = v(1), t=0,
ie.,
FIv=v forall ve L*0,00; U).

This implies [|v]|*= [|F|*|To|* = | F| X0, T*To) = | F|*|0]| |T*Tv], i.e.,

| T*Tv| = | Z|||lv||] for all ve L*0,©; U).
Hence the operator 7*J is boundedly invertible, and from (2.3) we get

D=—(T*T) ' T*%e.
The identity Jx (9, ¢) = J (i, ¢) ={¢p, Pp) shows that
(¢, Poy=(bp, o+ Tb)=(p, €*Cp—€*T(T*T) ' T*%p)

and hence
(2.4) P=¢*I-J(T*T)'T*&.
Defining the approximating operators

@N . R*M) 5 [2(0, 00y RKNV) x RPYV),

TN L*(0, 00; R™ ™)) > L2(0, 00; R™N) x RPN,

FNLX0, 00; R™ ™) x RPN 5 1%(0, 00; R™N))
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in the obvious way we get analogously as above
(2.5) PN =(@M)* I =T (T TN)(TN)*) €N
Lemma 1 applied to systems (1.9) shows that
(2.6) GNOEN)YENTN > € and N(EV)* (VDo) €* strongly.

Here j¥ @ k™ denotes the direct sum of j~ and k" defined by (jN®k™)(u™, yN)=
GNuN, KNy, uN e R™™) | yN e RPN etc. Moreover, in abuse of notation we define
iNu for ue L*(0,00; R™™) by (jNu)(t) = u(t), t=0, etc.

By Lemma 2 applied to systems (1.9) we obtain

2.7) GNOEMYTNpN > T and jN(TV)*(pNDaN)> T* strongly.
By assumption (v) of Theorem 1 we have

sup [|F" || <co.
N

This and the estimate
[(TN*T N | = | FN) 20"

for all v™ e L*(0,00; R™™) show that ||((TN)*J™)7"|| are uniformly bounded. By
Remark (4) of §1 also ||jN((TN)*TN)'pN| are uniformly bounded. Then for ve
L*(0, 00; U)

PNUTNETN) N0 = (T*T) Mo =N (TNFTN) oMo =N N ()
—((T*T) o= pN(T*T) o).
The second term on the right-hand side converges to zero as N - co. For the first term
we get
PNTN*TN) T pNo—iNpN(THFT)

=N (TN TN) N (THT = NIV TNp NN (T*T) M,
which proves
(2.8) FNTNY*TNY N 5 (T*T)™" strongly.
The representations (2.4) and (2.5) together with (2.6)-(2.8) prove that

NPNEN > P strongly. o
Remark. If the matrices e"*2 K™ =0, are uniformly exponentially stable,
then the operators €V« converge to € in the uniform operator topology (see the
remark following Lemma 1). Then it follows that the operators « VPN7" also converge
in the uniform operator topology provided dim U <oo0 and dim Y <co. It remains an
open question whether convergence of the P" in the uniform operator topology can
be established under weaker assumptions.
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3. Spline approximation for delay equations. The system
x(t) =Agx (1) +A;x(t—h)+Bou(t),  y(t)=Cox(1),

x(0)=¢°% x(r)=¢'(r) for —h=7r<0,
with x(t)eR", u(t)eR™, y(t)eR” and ¢ =(¢°, ¢")eR"x L*(—h, 0; R") is equivalent
to system (1.1) in the Hilbert space
H=M?=R"x L*—h, 0, R").

Operators A, B, and C are given by

dom A={p=(¢° ¢')e M?|p'e W"*(=h,0; R"), 0’ = ¢'(0)},

A= (A’ +A @' (—h),¢") for pcdom A,

Bu=(Byu,0) for ueR",

Co=Cop° for pe M.

In [4] and [5] we have considered a sequence of approximating systems (1.4) where
k(N)=n(N+2), m(N)=m, p(N)=p and the matrices A~, BY, C" are given by
AN =(QM)'H" with

(3.1)

i 0 . .. . 0 ]
h h
0 WI 6—NI o - . 0
h 2h
— ey
0 6NI 3N
QY = 0 ,
0
2h h
=1 I
3N 6N |
h h
0 0 O s~ 3NT
-Ao 0 M Al-
I i1 i1 o 0
0o ir o
HN = . . . .
0
0 -ir
| 0 0 31 -3
B,
0
BY=|.|, CV=(G:---0).
0

The injections ¢~ are given by

N
N_ _ N
¢ z—(zo, Y ZyS; ),
Jj=0

Rn(N+2)

where z=col (zg, zy0,* " *, ZiN) € and the functions s}V are the basis splines

s&(7) = max (0, N%+1>, sn(7) =max (O,I—N—-N-;'-.),
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and, for j=1,--+, N—1,

T h h

—+j+ for —(j+1) —=r=—j—

Nh jt+1 or —(j I)N T ]N’
N

s (7)= T, . h ; h

~N——j+1 for —j—=r=—(j-1)—

P or =T (J l)N,

0 elsewhere.

The induced inner product on R"N"? is given by (z, w)y = z"Q"w. Of course, U =
UN=R" and Y=Y~ =R’ for all N.

The approximating systems (1.4) with these matrices are strongly convergent [4]
and if the delay system (3.1) is stable in the sense that Re A <0 for all roots of
det (Al —Ay—e *"A,) =0, then the approximating systems (1.4) are uniformly output
stable [5]. Moreover, the approximating transfer functions are in this case given by

(3.2) CN(iwl — AN) 'BN = Co(iwl — Ag— a™ (iw)A,) ' By,

where a™(A) is a sequence of rational functions converging to e *" uniformly on
compact sets and satisfying |aV(A)|=2on Re A =0 forall N=1,2, - - - [5]. This shows
that the approximating systems (1.4) are uniformly input-output stable for N sufficiently
large provided that the delay system (3.1) is stable (which is equivalent to exponential
stability of the corresponding system (1.1)).

THEOREM 2. Suppose that there exist matrices Ko€ R™*" and Lye R™*? such that
the delay systems

X(t) = (Aot BoKo)x(t)+ A x(t—h),
x(t) =(Ao+ LyCo)x(t)+ A;x(t—h)

are stable and let the matrices AN, BY, C" be defined as above. Then there exist unique
nonnegative solutions

PE$(M2) and PNeRn(N+2)xn(N+2)
of (1.2) and (1.5), respectively, and for every ¢ € M*

Pp = lim VPN Ne.

N->oc0
Proof. Define the matrices
L,
N N 0
K "=(K, 0 --- 0), L™ =| .
0

and apply Theorem 1. 0

Numerical examples for this convergence result are reported in [4].

Remark. The conditions of Theorem 2 are stronger than stabilizability and detecta-
bility of the delay system (3.1). However, we are not aware of a stabilizable delay
system that cannot be stabilized by a feedback law of the form u(t) = Kox(t).

4. Convergence of transfer functions. In this section we give a short discussion of
the connection between strong convergence of systems (1.4) and convergence of the
corresponding transfer functions on the imaginary axis.



1146 F. KAPPEL AND D. SALAMON

If the semigroup S(t) is exponentially stable and systems (1.4) are strongly
convergent to system (1.1) and are uniformly input-output stable, then we can show that
lim kNCN(AI-AN)Y'BNpN =C(AM[-A)"'B

N->oo

uniformly on compact subsets of Re A >0. The proof involves Vitali’s theorem on
sequences of holomorphic functions (see, for instance, [2, p.309]). Despite the fact
that under the assumption of uniform input-output stability the functions kNC™ (AT —
AN)'BNp" are uniformly bounded on Re A =0 (and not only on compact subsets
of Re A >0 as required in Vitali’s theorem) we cannot conclude uniform convergence
of these functions on compact subsets of the imaginary axis. This is demonstrated by
the following example.

Example. Let H=1 and U= Y =R. For an element b= (b,, b,, - - -) € I> with
b;>0 for all j we consider

4.1) Z(t)=—z(t)+ bu(t), t=0, y(t)=(b, z(1))p.

The solution semigroup of the homogeneous problem is S(¢) = e~ ‘I, which obviously
is exponentially stable. We consider the approximating systems

4.2) N = ANZN () +bNu(t), t=0, y(t)=(b™)zN (1),
where

AN =diag (-1, -+, —1, —bj4,) e RVTVXNTD

bN =C01 (bla Tty bN+])€RN+1.
The embedding ™ :RV*"'> [* is given by NzV=(z,, ", zn4+1,0,¢ ) for zV =
col(z,, "+, zn+1) RV and the “projections” 7" by #Nz=col(z,, - -, zZn+1) for
Z:(Zl’z2a o .)Elz'

The solutions of z = —z, z(0) = @ = (¢,, @3, - * *) € I?,and 2~ = ANzN, zN(0) = 7N,
are given by

N
z(t)=e'p, zZN()=e 'Y gtetRnlon,,,
j=1

respectively. Therefore

o0
lz() =N (D)= (e —e PRV ]on [ +e Y gl
j=N+2

j=N+
(e o)
=Y |¢>’>0 as N->co.
N+1

It is obvious that | —¢~b"™ | 2> 0 as N > co. Thus systems (4.2) are strongly convergent
to (4.1).

Obviously (V)T e*™b™N is integrable on t=0. The transfer functions GV (A) =
(b™M)T(AT—=AN)'BN are given by

GN) = 5 prythn
1+ 5 baiitA

Therefore

b1 )
TERN| =|b|+1
iw|

|N1+

for all weR and N=1,2,- -, i.e., systems (4.2) are uniformly input-output stable.

G o) = I+
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For ¢ = (g1, 2, * ) € I* we get

N
(bM) e mNp=e"' T bgjte by ion
j=1

Therefore
(6™ e mNpP = (e |bll2lle Nl 2+ e PR byl enial)
— . 2
=2e7||b|| 2]l @l +2e 7 M1 b onal?
and

J 6™ e a Mol di= bl ellE+|onnl = (b2 + Dol
V]

which proves uniform output stability of systems (4.2).
Finally, if we define
1
1+A
then we immediately see that for A # —1 (note that by ,,;~>0 as N - )
G()A) for A #0,
{G(/\)+1 for A =0.
This example shows that even under additional assumptions we cannot obtain
uniform convergence of the transfer functions of the approximating systems on bounded

subsets of R in general. But we can prove the following proposition.
ProposITION 1. Under the assumptions of Lemma 1 we have

G(A)=(b,(AI = A)"'b)p= bl

lim GN(A) =

N->co

J | C(iwI — A) "' B —kNCN (iwl — AN) ' BNpN¢||3 >0
as N - for any ¢£€ U.
Proof. Using Parseval’s identity we get

J | C (il —A)'¢ —kNCN (iwl — AN) "7 No N ||? do

=j 1CS(1)p —kNCN AN N | dt = | o — ENe N |20 .0rv)
0
for ¢, ™ € H. Hence the result follows from Lemma 1 and (1.7) if we choose ¢ = B¢
and o™ ="BVp "¢ 0

In case of the spline scheme discussed in § 3 we have uniform convergence of the
transfer functions (3.2) on compact intervals to the transfer function of the delay
system (1.1) [5].
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