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Abstract

We study the heat flow in the loop space of a closed Riemannian
manifold M as an adiabatic limit of the Floer equations in the cotan-
gent bundle. Our main application is a proof that the Floer homology of
the cotangent bundle, for the Hamiltonian function kinetic plus potential
energy, is naturally isomorphic to the homology of the loop space.

1 Introduction

Let M be a closed Riemannian manifold and denote by LM the free loop space.
Consider the classical action functional

svio) = | 1 (510 - vate) ) a

for x : S1 — M. Here and throughout we identify S! = R/Z and think of
x € C*(81, M) as a smooth map = : R — M which satisfies z(¢t+1) = x(t). The
potential is a smooth function V : S' x M — R and we write V;(z) := V (¢, z).
The critical points of Sy are the 1-periodic solutions of the ODE

Vi = —VVi(z), (1)

where VV; denotes the gradient and V;4 denotes the Levi-Civita connection.
Let P = P(V) denote the set of 1-periodic solutions z : ST — M of (1). In the
case V = 0 these are the closed geodesics. Via the Legendre transformation the
solutions of (1) can also be interpreted as the critical points of the symplectic
action Ay : LT*M — R given by

vt = [ (<y<t>,¢<t>> - H(t,xu),y(t») dt

*Partial financial support by TH-Projekt 00321.



where z = (z,y) : S — T*M and the Hamiltonian H = Hy : S' x T*M — R
is given by

H(t,2,) = 5l +V(t,0) e

fory € TxM. A loop z(t) = (x(t),y(t)) in T*M is a critical point of Ay iff
x is a solution of (1) and y(t) € T, M is related to @(t) € Ty)M via the
isomorphism T'M — T*M induced by the Riemannian metric. For such loops
z the symplectic action Ay (z) agrees with the classical action Sy (z).

The negative L? gradient flow of the classical action gives rise to a Morse-
Witten complex which computes the homology of the loop space. For a regular
value a of Sy we shall denote by HM$ (LM, Sy ) the homology of the Morse-
Witten complex of the functional Sy corresponding to the solutions of (1) with
Sv(x) < a. Here we assume that Sy is a Morse function and its gradient flow
satisfies the Morse-Smale condition (i.e. the stable and unstable manifolds inter-
sect transversally, see [3] for the unstable manifold). As in the finite dimensional
case one can show that the Morse-Witten homology HMS (LM, Sy) is naturally
isomorphic to the singular homology of the sublevel set

LM ={z e LM|Sv(z)<a}.

On the other hand one can use the L? gradient flow of Ay to construct Floer
homology groups HFS(T*M, Hy ). Our main result is the following.

Theorem 1.1. Assume Sy is Morse and a is either a regular value of Sy or
is equal to infinity. Then there is a natural isomorphism

HF(T" M, Hy; R) = HM(LM, Sy; R)

for every principal ideal domain R. If M is not simply connected then there
18 a separate isomorphism for each component of the loop space. The isomor-
phism commutes with the homomorphisms HF®(T*M, Hy) — HF®(T*M, Hy')
and HM®(LM, Sy) — HM® (LM, Sy) for a < b.

Corollary 1.2. Let Sy and a be as in Theorem 1.1. Then there is a natural
isomorphism
HF{(T*M,Hy; R) 2 H,.(L°M; R)

for every principal ideal domain R. If M is not simply connected then there
is a separate isomorphism for each component of the loop space. The isomor-
phism commutes with the homomorphisms HF®(T*M, Hy) — HF®(T*M, Hy')
and H,(L*M) — H.(L°M) for a < b.

Proof. The definition of the Morse homology groups involve a perturbation V :
LM — R (of the function z — fol Vi(x(t)) dt) that satisfies the hypotheses
(V0—V4) of Section 2 and the transversality requirements of Theorem A.6. Now
Theorem A.7 in Appendix A (proved in the forthcoming paper [31]) asserts that
the Morse homology group HM{ (LM, Sy; R) = HMS (LM, Sy; R) is naturally
isomorphic to the singular homology group H.(L£*M; R). Hence the assertion
follows from Theorem 1.1. O



Both the Morse-Witten homology HMZ(LM,Sy) and the Floer homology
HF$(T*M, Hy) are based on the same chain complex C'¢ which is generated
by the solutions of (1) and graded by the Morse index (as critical points of
Sv). In [28] it is shown that this Morse index agrees, up to a universal additive
constant zero or one, with minus the Conley-Zehnder index. Thus it remains to
compare the boundary operators and this will be done by considering an adia-
batic limit with a family of metrics on T*M which scales the vertical part down
to zero. Another approach to Corollary 1.2 is contained in Viterbo’s paper [25].
While the present paper was being completed a new proof of Corollary 1.2 was
given by Abbondandolo and Schwarz [1]. Some recent applications of Corol-
lary 1.2 can be found in [30]; these applications require the statement with
action windows and fixed homotopy classes of loops.

The Floer chain complex and its adiabatic limit

We assume throughout that Sy is a Morse function on the loop space, i.e. that
the 1-periodic solutions of (1) are all nondegenerate. (For a proof that this holds
for a generic potential V' see [28].) Under this assumption the set

PYV) :={zeP(V)|Sv(x) <a}

is finite for every real number a. Moreover, each critical point x € P(V) has
well defined stable and unstable manifolds with respect to the (negative) L2
gradient flow (see for example Davies [3]). Call Sy Morse—Smale if it is a
Morse function and the unstable manifold W*"(y) intersects the stable manifold
W#(x) transversally for any two critical points z,y € P(V).

Assume Sy is a Morse function and consider the Z-module

ct=c'(V)= @ Za

zeP(V)

If Sy and Ay are Morse—-Smale then this module carries two boundary opera-
tors. The first is defined by counting the (negative) gradient flow lines of Sy.
They are solutions u : R x S — M of the heat equation

Osu — V0w — VVi(u) =0 (3)
satisfying
lirf u(s, t) = xF(t), ligl Osu =0, (4)

where % € P(V). The limits are uniform in ¢. The space of solutions of (3)
and (4) will be denoted by M%(z~,2%; V). The Morse-Smale hypothesis guar-
antees that, for every pair 2% € P%(V), the space M°(z~,27;V) is a smooth
manifold whose dimension is equal to the difference of the Morse indices. In the
case of Morse index difference one it follows that the quotient M%(z~,27;V)/R
by the (free) time shift action is a finite set. Counting the number of solutions



with appropriate signs gives rise to a boundary operator on C*(V'). The ho-
mology HM§ (LM, Sy ) of the resulting chain complex is naturally isomorphic to
the singular homology of the loop space for every regular value a of Sy:

HMS(LM,Sy) 2 H.(L"M;Z), LM :={x e LM|Sy(x) <a}.

The details of this isomorphism will be established in a separate paper (see
Appendix A for a summary of the relevant results).

The second boundary operator is defined by counting the negative gradient
flow lines of the symplectic action functional Ay. These are the solutions (u,v) :
R x S' — T'M of the Floer equations

Osu — Vpv — VVi(u) =0, Vv + Oru — v =0, (5)
ligcn u(s,t) = 2 (t), ligl v(s,t) = E(t). (6)

Here we also assume that d,u and Vv converge to zero, uniformly in ¢, as |s]
tends to infinity. For notational simplicity we identify the tangent and cotangent
bundles of M via the metric. Counting the index-1 solutions of (5) and (6) with
appropriate signs we obtain the Floer boundary operator. We wish to prove that
the resulting Floer homology groups HFZ(T*M, Hy ) are naturally isomorphic
to HMg (LM, Sy). To construct this isomorphism we modify equation (5) by
introducing a small parameter € as follows

Osu — Vv —VV(t,u) =0,  Viv+e 2(0u—v) =0. (7)

The space of solutions of (7) and (6) will be denoted by M¢(z~, 2 ; V). The
Floer homology groups for different values of ¢ are isomorphic (see Remark 1.3
below). Thus the task at hand is to prove that, for ¢ > 0 sufficiently small,
there is a one-to-one correspondence between the solutions of (3) and those
of (7). A first indication, why one might expect such a correspondence, is the
energy identity

1 oo 1
B (u,0) 5/ /O(|asu|2+|vtv+vv;(u)|2+g2|vsu|2+g-2|atu—v|2)

= Sy(z) =Sy(zt) (8)

for the solutions of (7) and (6). It shows that d;u — v must converge to zero
in the L? norm as ¢ tends to zero. If d;u = v then the first equation in (7) is
equivalent to (3).

Remark 1.3. Let M be a Riemannian manifold. Then the tangent space of
the cotangent bundle T*M at a point (z,y) with y € T,*M can be identified
with the direct sum T, M & T*M. The isomorphism takes the derivative Z(t)
of a curve R — T*M : t — z(t) = (x(¢),y(¢t)) to the pair (&(t), Vzy(t)). With
this identification the almost complex structure J. and the metric G. on T*M,

given by
(0  —eg! _(e7lg 0
Je = (alg 0 ) ’ Ge = ( 0 eg )’



are compatible with the standard symplectic form w on T*M. Here we denote
by g : TM — T*M the isomorphism induced by the metric. The case ¢ =1
corresponds to the standard almost complex structure. The Floer equations for
the almost complex structure J. and the Hamiltonian (2) are

Osw — Je(w)(Orw — X g, (w)) = 0.

If we write w(s,t) = (u(s,t),v(s,t)) with v(s,t) € T3 (s M then this equation
has the form

dsu — g~ 'V — eVVi(u) = 0, Voo + e 1gdu —e o =0. (9)

A function w = (u,v) is a solution of (9) if and only if the functions u(s,t) :=
u(e™1s,t) and 0(s,t) := g tv(ets, t) satisfy (7). In view of this discussion it
follows from the Floer homotopy argument that the Floer homology defined with
the solutions of (7) is independent of the choice of € > 0. The only nonstandard
aspect of this argument is the apriori estimate of Section 5 with € = 1 which
carries over verbatim to the time dependent Floer equation. For the standard
theory see [8, 22, 23].

Assume Sy is Morse-Smale. Then we shall prove that, for every a € R, there
exists an g9 > 0 such that, for 0 < € < g9 and every pair 2+, 2~ € P4(V) with
Morse index difference one, there is a natural bijective correspondence between
the (shift equivalence classes of) solutions of (3), (4) and those of (7), (6). This
will follow from Theorems 4.1 and 10.1 below.

It is an open question if the function Sy is Morse—Smale (with respect to the
L? metric on the loop space) for a generic potential V. However, it is easy to
establish transversality for a general class of abstract perturbations V : LM — R
(see Section 2). We shall use these perturbations to prove Theorem 1.1 in
general.

The general outline of the proof is similar to that of the Atiyah—Floer con-
jecture in [5] which compares two elliptic PDEs via an adiabatic limit argument.
By contrast our adiabatic limit theorem compares elliptic with parabolic equa-
tions. This leads to new features in the analysis that are related to the fact that
the parabolic equation requires different scaling in space and time directions.

The present paper is organized as follows. The next section introduces a
relevant class of abstract perturbations V : LM — R. Section 3 explains
the relevant linearized operators and states the estimates for the right inverse.
These are proved in Appendices C and D. In Section 4 we construct a map
7 : MO (2=, 2%; V) — Me(2x~,2"; V) which assigns to every parabolic cylinder
of index one a nearby Floer connecting orbit for e > 0 sufficiently small. The
existence of this map was established in the thesis of the second author [27],
where the results of Section 3, Section 4, and Appendix D were proved. Sec-
tions 5, 6, and 7 are of preparatory nature and establish uniform estimates for
the solutions of (7). Section 5 shows that the solutions of (7) (with fixed end-
points) are all contained in a fixed compact subset of T*M that is independent
of €. The proof uses an inequality

(6207 + 02 — ) [uf2 > —c(|v? + 1). (10)



Integrating this inequality over the t-variable and using a bound on the action
one first obtains an estimate for sup, fol |v(s,t)|? dt; using (10) again gives the
required estimate for sup |v|. Section 6 then gives estimates for the first, and
Section 7 for the second derivatives. In each case the operator £292 + 92 — O
reappears and the axioms on the perturbation V in Section 2 require that the
estimate is first established in an integrated form. Section 8 deals with exponen-
tial decay, Section 9 establishes local surjectivity of the map 7¢ by a time-shift
argument, and in Section 10 we prove that 7°¢ is bijective. Things are put
together in Section 11 where we compare orientations and prove Theorem 1.1.
Appendix A summarizes some results about the heat flow (3) which will be
proved in [31]. In Appendix B we prove several mean value inequalities that
play a central role in our apriori estimates of Sections 5, 6, and 7.

2 Perturbations

In this section we introduce a class of perturbations of equations (3) and (7)
for which transversality is easy to achieve. The perturbations take the form of
smooth maps V : LM — R. For z € LM let grad V(z) € Q°(S,2*T M) denote
the L2-gradient of V; it is defined by

! d
/ (grad V(u), Osu) dt := d—V(u)
O S

for every smooth path R — LM : s — u(s,-). The covariant Hessian of V at
aloop = : S — M is the operator

Hy(z) : QST 2*TM) — QY (St 2*T M)
defined by
Hy (u)0su := Vsgrad V(u)

for every smooth map R — LM : s — wu(s,-). The axiom (V1) below asserts
that this Hessian is a zeroth order operator. We impose the following conditions
on V; here |-| denotes the pointwise absolute value at (s,t) € R x St and |||,
denotes the LP-norm over S* at time s. Although condition (V'1), the first part
of (V2), and (V3) are all special cases of (V4) we state the axioms in the form
below, because some of our results don’t require all the conditions to hold.

(V0) V is continuous with respect to the C” topology on LM. Moreover, there
is a constant C' > 0 such that

sup [V(z)|+ sup ngadV(m)HLm(Sl) < C.
z€LM wELM

(V1) There is a constant C' > 0 such that
|Vagrad V(u)| < C(|0sul + [|0sull1.),
[Vigrad V()] < C(1+|0yul)

for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S*.



(V2) There is a constant C' > 0 such that
2
|V5V5gradV(u)| S C’(|V555U| + ||V585u||L1 + (|6su| + ||asu||L2) )7
[V Vgrad V(u)| < C(1d,ul + (1 + |0ul) (195u] + |90l 1))

and
IV, Vigrad V(u) — Hy (u)Vsdsu| < C(|0sul + | 0sul|2)*

for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S*.
(V3) There is a constant C' > 0 such that

WV Vigrad V(w)| < C(IV,Vdsul + |V Vidsu] s

+ (1% 0ul + [ VsDull =) (105l + D] )
(105l + 10sull ) (052l + 10,2l ),
ViV, Vigrad V(w)| < C(INiVedul + [%idsul (10,0] + |9ul] 1)
(1 + [0vul) (| VaOsul + [ Vadsull 1)
(1+ 1ol (105l + 9ull,2)*).
(

|ViViVisgrad V(u)| < |Vi Vi0su| + (1 + |3tu|) |Vi0sul

(1+ 00l + [%0pu]) (|05u] + 9] 1))

for every smooth map R — LM : s — u(s,-) and every (s,t) € R x S*.

(V4) For any two integers k > 0 and ¢ > 0 there is a constant C = C(k,¥)
such that

wivssavo] <o 5 [ TT[vewia] | T (v 950l

kisti ej]>0 ej]:()
for every smooth map R — LM : s — u(s, ) and every (s,t) € RxS1; here
p; > 1and szzo 1/p; = 1; the sum runs over all partitions ki +- - -+k,, =
kand ¢y +---+ ¥, < €suchthat k; +£; > 1 for all j. For £ = 0 the same
inequality holds with an additional summand C' on the right.

Remark 2.1. The archetypal example of a perturbation is

V(z):=p (||:c — 170||2L2) /01 Vi(x(t)) dt,

where p : R — [0, 1] is a smooth cutoff function, ¢ : S' — M is a smooth loop,
and z — x¢ denotes the difference in some ambient Euclidean space into which
M is (isometrically) embedded. Any such perturbation satisfies (V0 — V4).



Remark 2.2. If )
Via) = [ Vita(e) d
0
then
gradV(z) = VVi(z),  Hy(@)§ = VeVVi(z),
for x € LM and & € Q(S, 2*TM).

With an abstract perturbation V the classical and symplectic action are
given by

I
Sv() = [ BOF dt=v(a)
0
and
1 . 1 ,
Ave) = [ (w0300 = 510 ) dt = V(o)
for x € LM and y € Q°(St,2*T*M). Equation (7) has the form
Osu — Vv — grad V(u) = 0, Vv + e 2(dpu — v) = 0, (11)
and the limit equation is
Osu — Vi Opu — grad V(u) = 0. (12)

Here grad V(u) denotes the value of grad V on the loop t — u(s, t). The relevant
set of critical points consists of the loops = : S — M that satisfy the differential
equation V& = —grad V(z) and will be denoted by P(V). The subset P*(V) C
P (V) consists of all critical points z with Sy(z) < a.

Assume that the critical points of Sy are all nondegenerate. Then every
solution (u, v) of (11) with finite energy E°(u,v) := [, o1 (|0su* + £2[Viv|?) <
oo converges exponentially and in the C'*°-topology to critical points of Ay as
s tends to £oo. Moreover, every sequence of solutions of (11) with a uniform
bound on the first derivatives (and € > 0 fixed) has a subsequence that converges
in the C*°-topology. These two assertions follow by an easy adaptation of the
standard arguments (with Hamiltonian perturbations) to the present case (see
for example [22]).

3 The linearized operators

Throughout this section we fix a perturbation V that satisfies (VO — V4). Lin-
earizing the heat equation (12) gives rise to the operator

DY Q%R x ST, u*TM) — QR x S*, u*TM)

given by
D¢ = Vil — Vi€ — R(€, 0yu)dyu — Hy (), (13)



for every element ¢ of the set Q°(R x S, u*T' M) of smooth vector fields along u.
Here R denotes the Riemann curvature tensor. If Sy is Morse then this is a
Fredholm operator between appropriate Sobolev completions. More precisely,
define

L, = LD Wy = WP

as the completions of the space of smooth compactly supported sections of the
pullback tangent bundle ©*TM — R x S with respect to the norms

I 1 1/p
|s||£—(/ / |§|Pdtds> ,

00 1 1/p
||€||W=(/_ /0|§IP+IVS£IP+|VtW§IPdtds) .

Then DY : WP — [P is a Fredholm operator for p > 1 (Theorem A.4) with
index

index DY = indy(z~) — indy (z ™).
Here indy (z) denotes the Morse index, i.e. the number of negative eigenvalues
of the Hessian of Sy. This Hessian is given by

A%2)€ = =i Vi€ — R(E, @)i — Hy(x)E,

where Hy denotes the covariant Hessian of V (see Section 2). The Morse—
Smale condition asserts that the operator DY is surjective for every finite energy
solution of (12). That this condition can be achieved by a generic perturbation
V is proved in [31] (see Appendix A).

Linearizing equation (11) gives rise to the first order differential operator

D5, WHP(R x 8", u*TM & w*TM) — LP(R x S*, u*TM ® u*TM)

given by

n Vsn + R(, Osu)v + 572(Vt§ -n)
for (¢,m) € WHP(R x St u*TM @ u*TM).
Remark 3.1. Assume Sy is Morse and let p > 1. Then D; , is a Fredholm

u,v

operator for every pair (u,v) that satisfies (6) and its index is given by

index Dy, ,, = indy(z~) — indy (™).

De, (5) _ (Vs§ — Vi — R(§, Qyu)v — Hv(u)ﬁ) (14)

To see this rescale u and v as in Remark 1.3. Then the operator on the rescaled
vector fields £(s,t) := &(e's,t) and 7j(s,t) :== g~ (e~ 's,t) has the same form
as in Floer’s original papers [8] with the almost complex structure J. of Re-
mark 1.3. That this operator is Fredholm was proved in [6, 23, 19] for p = 2.
An elegant proof of the Fredholm property for general p > 1 was given by Don-
aldson [4] for the instanton case; it adapts easily to the symplectic case [22].
The Fredholm index can be expressed as a difference of the Conley—Zehnder
indices [23, 19]. That it agrees with the difference of the Morse indices was
proved in [27, 28].



Let us now fix a solution u of (12) and define v := d,u. For this pair (u,v)

we must prove that the operator Dy, := Dy ,,,, is onto for £ > 0 sufficiently

small and prove an estimate for the right inverse which is independent of e.
We will establish this under the assumption that the operator DY is onto. To
obtain uniform estimates for the inverse with constants independent of ¢ we
must work with suitable e-dependent norms, which in case p = 2 are suggested
by the energy identity (8). For compactly supported vector fields ¢ = (£,7) €
QR x S, u*TM & u*TM) define

00 1 1/p
||<||0,p,g—</ / (|§|p+ap|n|p)dtds) |

oo 1
e = ([~ [ (P et + e e + &2 v
—o0 J0

1/p
+ % |VE)P + 3 |Vsn|p) dtds) .

Theorem 3.2. Let (u,v) : R x S1 — TM be a smooth map such that v and
the derivatives Osu, Opu, ViOsu, ViOpu are bounded and limg_, 4o u(s,t) exists,
uniformly in t. Then, for every p > 1, there are positive constants ¢ and €g such
that, for every e € (0,&¢) and every ¢ = (&,n) € WHP(R x SY, w*TM & u*TM),
we have

e M INE = nll o + [1%emll o + VRl o + € 1Vnll

(15)
< (I15.Clg e + el o + 2 1)

0,p,e

The formal adjoint operator (D, ,)* defined below satisfies the same estimate.
Moreover, the constants ¢ and o are invariant under s-shifts of u.

The formal adjoint operator
(D) : W*P(R x S, uw*TM & u*TM) — W'P(R x S', uw*TM & u*TM)

with respect to the (0,2, e)-inner product associated to the (0,2, e)-norm has
the form

(D: ) (5) _ (—Vs§ — Vin — R(§,v)0ru — Hy(u)€ + > R(n, U)asu)
wvl o\ —Vin +e2(Vi€ — 1)

for &, m € WHP(R x ST, u*TM). We shall also use the operator
7ot LP(S*, 2*T M) x LP(S*, a*TM) — WhP(S* 2*T M)

given by
(&) = (1 - e%V) 7 (€ — £* Vi)

forz € LM and &, n € Q°(S1, 2*T M). This operator, for the loop x(t) = u(s,t),
will be applied to the pair (£(s,-),n(s,-)). The rationale for introducing this
operator is explained in Appendix D.

10



Theorem 3.3. Assume Sy is Morse-Smale and let u € M°(x=,27;V). Then,
for every p > 1, there are positive constants ¢ and o (invariant under s-shifts
of u) such that, for every ¢ € (0,e0) the following are true. The operator
D5, := Dy, g,, s onto and for every pair

= (&) €im (D) ¢ WHP(R x SY,u*TM @ u*TM)

we have

€71, + €2 1"l + /2 €71, < o (2 D5 o e + I (DECHIL,) 5 (16)

1 e < € (£IDEC g e + I7(DEC ) (7)

The proofs of Theorems 3.2 and 3.3 are given in Appendix D. They are
based on a simplified form of Theorem 3.2 for flat manifolds with ¥V = 0 which
is proved in Appendix C. In particular, Corollary C.3 shows that the e-weights
on the left hand side of equation (15) appear in a natural manner by a rescaling
argument and, for p = 2, these terms can be interpreted as a linearized version
of the energy. This was in fact the motivation for introducing the above e-
dependent norms. The proof of Theorem 3.3 is based on Theorem 3.2 and a
comparison of the operators DY and Ds.

To construct a solution of (11) near a parabolic cylinder it is useful to com-
bine Theorems 3.2 and 3.3 into the following corollary. This corollary involves
an e-dependent norm which at first glance appears to be somewhat less natural
but plays a useful role for technical reasons.

Given a smooth map u : R x S' — M and a compactly supported pair of
vector fields ¢ = (&,7) € Q°(R x ST, u*TM @ u*TM) we define

¢l = €Ml + 2 nll,, + &2 NN, + Il — V€l + 2 Ve,

(18)
+e Vel + € V€l + 2P (1€l o + 272/ 1]

For small € this norm is much bigger than the (1,p,e)-norm. If the last two
summands on the right hand side of (18) are dropped one obtains an equivalent
norm with a factor independent of € (see (20) below).

Corollary 3.4. Assume Sy is Morse-Smale and let u € M®(x=,2%; V). Then,
for every p > 1, there are positive constants ¢ and ¢ such that, for every
e € (0,e0) the following holds. If

¢=(&n)em(Dy), (¢ =(&n)=D,

then
el < e (I, + /2 'l,) - (19)

11



Proof. Let ¢y be the constant of Theorem 3.2 and c¢3 be the constant of Theo-
rem 3.3. Then, by Theorem 3.3,

el + <2 lnl, + /2 el

<y (€'l + 2 'l + | (@ - W) A — 2%, )
<o ((L+) €, + (2 + mpe®) 0],

<o (111, + 2 l) -

Here the second step follows from Lemma D.3. Combining the last estimate
with Theorem 3.2 we obtain

In = Vel + < 1%l + & [€ll, + <2 Vel

< cae (€l + < In'll, + gl + 2l

<o (€'l + 2 'l + ca (€70, + 2 ')
< st +e) (€N, + <2 'l,) -

Now let ¢ be the constant of Lemma 3.5 below. Then

&2 |¢ll < es (IIEll, + 2/ 1%l + € 1NG¢1,)

(20)
U ), < cs (12 I, + e %amll, + 2 %l )
(Here we used the cases (31, 82) = (1/2,1) and (51, 52) = (1/2,3/2).) Combin-
ing these four estimates we obtain (19). O

The second estimate in the proof of Corollary 3.4 shows that one can obtain a
stronger estimate than (19) from Theorems 3.2 and 3.3. Namely, (19) continues
to hold if ||C]|. is replaced by the stronger norm where the L? norms of V;§ — 17,
Vin, Vi€, and V,n are multiplied by an additional factor e~*/2. The reason for
not using this stronger norm lies in the proof of Theorem 4.1. In the first step
of the iteration we solve an equation of the form D¢y = ¢/ = (0,7’) where 7’ is
bounded (in LP) with all its derivatives. Our goal in this first step is to obtain
the sharpest possible estimate for {y and its first derivatives. We shall see that
this estimate has the form ||o[|, < ce? and that such an estimate in terms of
g2 cannot be obtained with the stronger norm indicated above.

Lemma 3.5. Let u € C®°(R x S, M) such that ||0sulleo and ||Osul|s are finite
and limg_. 1o u(s,t) exists, uniformly in t. Then, for every p > 2, there is a
constant ¢ > 0 such that

€)oo < ce= @817 (e, + 5 D]l + ™ |9t )

for every e € (0,1], every pair of nonnegative real numbers 31 and B2, and every
compactly supported vector field € € Q°(R x SY,u*TM).
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Proof. Define @ : Z. :==R x (R/e""1Z) — M and £€Q%Z., a*TM) by
(s, t) == u(es,eP1t),  E(s,t) = £(e72s,711).

The estimate is equivalent to the Sobolev inequality

€l < e (lell, + 1%l + 1%:€]l,)

with a uniform constant ¢ = ¢(p, ||0sul|, ,[|0sul| ) that is independent of ¢ €
(0,1]. (To see how the L* bounds on d;u and d;u enter the estimate, embedd
M into some Euclidean space and use the Gauss-Weingarten formula.) O

4 Existence and uniqueness

Throughout this section we fix a perturbation V that satisfies (V0 — V4). In
the next theorem we denote by

O(x,8) : TuM — Top, ()M
parallel transport along the geodesic 7 +— exp,(7€).

Theorem 4.1 (Existence). Assume Sy is Morse-Smale and fix two constants
a € R and p > 2. Then there are positive constants ¢ and €9 such that the
following holds. For every ¢ € (0,¢0), every pair x* € P4(V) of index difference
one, and every u € M°(x=,at; V), there exists a pair (uf,v°) € ME(z~,z7;V)
of the form

u® =exp,(§), v =P, &) (u+n),  (&n) €im (D),
where £ and 1 satisfy the inequalities

IS =l 2o+ 1€l o + V2 Il 1+ I N3E ] o

(21)
+ eIVl o + € IVsEll o + € [Venll o < e

and
€l e < e, Il e < e2?27R. (22)
Remark 4.2. The estimates (21) and (22) can be summarized in the form
€l < ee®
for ¢ := (&, 1) (with a larger constant c).

Theorem 4.3 (Uniqueness). Assume Sy is Morse-Smale and fix two constants
a € R and C > 0. Then there are positive constants § and €y such that, for
every € € (0,g9), every pair x+ € P*(V) of index difference one, and every
u € MOz, 2, V) the following holds. If

(&omi) € m (DY), |léill e <02 il < C, (23)
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fori=1,2 and the pairs

uj = exp, (&), v o= @(u, &) (O + ),
belong to the moduli space M*(x~,x*; V), then (u§,v5) = (u§, v§).

In the hypotheses of Theorem 4.3 we did not specify the Sobolev space to
which ¢; = (&;, ;) is required to belong. The reason is that ¢; is smooth and, by
exponential decay, belongs to the Sobolev space W*P(R x S*, u*TM @ u*TM)
for every integer k > 0 and every p > 1.

Definition 4.4. Assume Sy is Morse-Smale and fiz three constants a € R,
C >0, andp > 2. Choose positive constants g, §, and ¢ such that the assertions
of Theorem 4.1 and 4.3 hold with these constants. Shrink €y so that 66(1)/2 <

and 055/2 < C. Define the map
T MOz, 2" V) = ME(z—, 2™, V)
by
Te(u)i= (u5,0%), = exp,(€), v = B, E)(@u+ ),

where the pair (§,m) € im (D5)* is chosen such that (21) and (22) are satisfied
and (exp, (), ®(u,&)(Ou +n)) € M=(z~,zt; V). Such a pair (§,n) exists, by
Theorem 4.1, and is unique, by Theorem 4.3. The map T ¢ is shift equivariant.

The proof of Theorem 4.1 is based on the Newton—Picard iteration method
to detect a zero of a map near an approximate zero. The first step is to define a
suitable map between Banach spaces. In order to do so let (u,v) : Rx St — TM
be a smooth map and consider the map Fg , : WHP(Rx ST, w*TM & u*TM) —
LP(R x S*, u*TM ® u*TM) given by

T @ = <@(ub§)_l B o-l) 7 (@(ﬁf@i n)> @

u\  [Osuf — Vv — grad V(u®)
-7:5 <’UE> T < VS’UE +€—2(atua _ UE) . (25)

Thus, abbreviating ® := ®(u, £), we have

. (5) _ (‘1"1 (05 exp,,(€) — Ve(@(v + 1)) — grad V(expu(@)))
w\n) T\ @ (Ve(@(v 4 1) + e 20rexp,(€) —e (v +m) )

where

Moreover, the differential of F; , at the origin is given by dF;, ,(0,0) = D5,
(see [27, Appendix A.3]).

One of the key ingredients in the iteration is to have control over the variation
of derivatives. This is provided by the following quadratic estimates.
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Proposition 4.5. There exists a constant § > 0 with the following significance.
For everyp > 1 and every co > 0 there is a constant ¢ > 0 such that the following
is true. Let (u,v) : Rx St — TM be a smooth map and Z = (X,Y),( = (§,n) €
QR x ST, u*TM @ u*TM) be two pairs of vector fields along u such that
[0stlloc + [10rulloc + l[vllso < o, [[€lloc + 1 Xloo <8, Inlloc + 1Y ][0 < co.

Then the vector fields Fy, Fs along u, defined by
£ £ (3 Fl
fu,v(Z—i_C)_‘Fu,v(Z)_d]:u,v(Z)C = )

satisfy the inequalities

1Fu, < clelloe (e, + Inll, + I196€0, + I%:¢1, €]
+ (19X, + 19X, ) €% + € 19X, €l Il
+ e X0 e (1IN0, 1€l + 1%€1L Il ).
1Fell, < cliglo (=72 €l + Inll, + IVl + =2 %20, gl )
+ (X1, + =2 %X, ) IEl% + e INX T, €l Dl

+ XNl (72 1€, Il oo + V€L Il )

Proposition 4.6. There exists a constant § > 0 with the following significance.
For everyp > 1 and every co > 0 there is a constant ¢ > 0 such that the following
is true. Let (u,v) : Rx St — TM be a smooth map and Z = (X,Y),( = (&,n) €
QR x SL,u*TM @ u*TM) be two pairs of vector fields along u such that
[0sullos + [[0kulloc + lvllse <o, [ X[loo <6, [[Y]loo < co.

Then the vector fields Fy, F» along u, defined by

175 (26 - 475,006 = (71 )
satisfy the inequalities
173, < eliélle (10, + 1YL, + 191, + 19X, 1)
+ X oo (Inll, + 1€l + IV6E0, 1X Nl + %X, [l ).
1Ball, < eliéle (521X, + 2 IGX I, 1X D + 1Y 1, + 19511, )

+ el Xl (5—2 Vel 11X oo+ llmll,, + [1Vs€1, + (Vs X, IInlloo)-
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For the proof of Propositions 4.5 and 4.6 we refer to [27, Chapter 5]. To
understand the estimate of Proposition 4.6 note that n and Y appear only as
zeroth order terms, that V,¢ and V; X appear only in cubic terms in F}, and
that V;¢ and V, X appear only in cubic terms in F5. This follows from the fact
that the first component of F. is linear in d;u and the second component is
linear in O;u. In Proposition 4.5 we have included cubic terms that arise when
the derivative hits X. In this case we must use the L® norms on the factors
& and n and can profit from the fact that V;X and V, X will be small in LP.
The constant § appears as a condition for the pointwise quadratic estimates in
suitable coordinate charts on M.

We now reformulate the quadratic estimates in terms of the norm (18).

Corollary 4.7. There exists a constant 6 > 0 with the following significance.
For every p > 1 and every co > 0 there is a constant ¢ > 0 such that the
following holds. If (u,v), Z = (X,Y) and ¢ = (§,n) satisfy the hypotheses of
Proposition 4.5 then

H]:i,v(z + C) - fz,v(z) - dfi,v(z)<"07p7€3/2
< ellcll. (=72 el oo + 27 2 ) + e 22NN (€] + 2 Il )-

If (u,v), Z = (X,Y) and ¢ = (§,n) satisfy the hypotheses of Proposition 4.6
then
—1/2— —1- 2
|dF5 (Z)¢ - d}';jw(O)CHO)p)ag/2 <c (5 1/2 3/2p|||Z”|5 g 7/2p|||Z|||5) licll...
Proof. The result follows from Propositions 4.5 and 4.6 via term by term in-
spection. In particular, we must use the inequalities

Il < e2UCh., Ml <e7272PICHL, 11Xl < 722012,
at various places. These follow from the definition of the norm (18). O

Proof of Theorem 4.1. Given u € M°(z~,2%;V) with 2% € P*(V) we aim to
detect an element of M*(z~,z"; V) near u. We set v := dyu and carry out the
Newton-Picard iteration method for the map Fy := F; 5, ,. Key ingredients
are a small initial value, a uniformly bounded right inverse and control over the
variation of derivatives (which is provided by the quadratic estimates above).
Because Sy is Morse-Smale, the sets P%(V) and M%(z~,27;V)/R are finite
(the latter in addition relies on the assumption of index difference one). All
constants appearing below turn out to be invariant under s-shifts of u. Hence
they can be chosen to depend on a only.

Since M°(z~,2";V)/R is a finite set it follows from Theorems A.1 and A.2
that there is a constant ¢y > 0 such that

[0sull o + [10wull o, + [[ViOrull o, < co (26)
and

ViOsull o + [[Visull, + [Vt Vidsull,, < co (27)

16



for every u € M=, 2%;V). Thus the assumptions in Theorem 3.2, Theo-
rem 3.3, Proposition 4.5, Proposition 4.6 and Lemma 3.5 are satisfied. More-
over, by (27) the value of the initial point Zy := 0 is indeed small with respect
to the (0, p, &)-norm:

€ € 0
1750l = 170l = (65 ) | e 9

0,p,e

Here we used in addition (24), (25) and the parabolic equations. Define the
initial correction term (o = (o, n0) by

Go = =Dy (DL D)~ Fr (0).

Recursively, for v € N, define the sequence of correction terms ¢, = (£,,7,) by
¢ = =D (DD Fi(Z,),  Z,=(X,,Y)) Z (e (29)

We prove by induction that there is a constant ¢ > 0 such that

c
|||CV|”5 = 21, 2 vai(ZV+1)||O,p,53/2 = 2 7/2 3/2p (H,,)

Initial Step: v = 0. By definition of {y we have

D3 =750 = ()

Thus, by Theorem 3.3 (with constant ¢; > 0),

€olly + &/ llnollp + /2 Veollp < e1 (]1(0, Vedew)llo,p,e + I (0, Vedru)llp)
<a (EQHvsatu”p + EQHvtvsatqu)

S 600162.

Here the second inequality follows from Lemma D.3 and the last from (27). By
Theorem 3.2 (with constant ¢y > 0),

| Vi&o — 770||p + EHthOHP + 5||VS§OHP + 52||vs770|‘p

< 22 (110, 0wl .« + ol + 2ol
< c9¢ (g]|ViOpullp + coc1?)

< 6002(1 + 016)52.

The last inequality follows again from (27). Combining these two estimates
with (20) we obtain

2P (|60l + 2P ol < Mol < 2. (30)
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with a suitable constant ¢ > 0 (depending only on ¢, c1,ce and the constant
of Lemma 3.5). This proves the first estimate in (H,) for v = 0. To prove the
second estimate we observe that Z; = (o and hence, by Proposition 4.5 (with
constant ¢z > 0),

EACAI
= IF2(Go) = F2(0) = DiCollg o
< call€olloe (1€0llp + lolly + [ %ollp + Vel l1oloc )

+ s olloe (=720 llp + Inolly + [¥5éollp + €21 ¥eéo o <

< ceT/273/2p,

with a suitable constant ¢ > 0 (depending only on cg, ¢1, c2 and the constant of
Lemma 3.5). Thus we have proved (H,) for v = 0. From now on we fix the
constant ¢ for which the estimate (Hy) has been established.

Induction step: v — 1 = v. Let v > 1 and assume that (Hy),...,(H,—-1)
are true. Then

v—1 v—1
1Zoll < Sl < =3 27" < 2e?
£=0 {=0

C —
IF5(Z) o pesre < 2V_1€7/2 820

By (29) we have
DG = —Fu(Zy), G €im(Dy)".
Hence, by Corollary 3.4, (with constant ¢4 > 0),

CCyq _ &
16 < ea |FE(Z) g pevre < gomge™> 77 < e (31)

The last inequality holds whenever c4e3/2-3/2P < 1/2.

By what we have just proved the vector fields Z, and ¢, satisfy the require-
ments of Corollary 4.7 (with the constant ¢5 > 0). Hence

IFe(Zor) o pesse < WFalZo +G) = FilZ0) = dF5(Z0)Gullo oo
+ |dFe(Z,)6 — Dilullg pesr

_ _ 2
<es (726 + e G2 ) NG,
+ese T T NZ . (Nolloo + £/ Il ) UG,
— — —1— 2
+ese" V232 Z, | 1G N, + ese T2 Z 1R,
< e (2227 4 2S3TIP) G, + 2652 TG,

+2ee5% 23|I, + Acese® TG,

IN

1
s G,

€ 7/2-3/2p
50 ¢ .

IN
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In the third step we have used the inequalities
€)oo < e722PNG, < e3P
and
1€Moo + €2 I lloe < e72PNG . < ce®727

as well as || Z||,, < 2ce?. The fourth step holds for ¢ sufficiently small, and the
last step follows from (31). This completes the induction and proves (H,) for
every v.

It follows from (H,) that Z, is a Cauchy sequence with respect to | - || ..
Denote its limit by

(= lim Z, =) (.

V—00 V:O
By construction and by (H, ), the limit satisfies
ISl <2ee?,  Fo(¢) =0, ¢ €im(D;)*.
Hence, by (24), the pair

(u®,v%) := (expu(§), D(u, §)(Iru + 1))

is a solution of (11). Since ||(]|. is finite so is the LP-norm of (dsu®, Viv®).
Hence, by the standard elliptic bootstrapping arguments for pseudoholomorphic
curves, the shifted functions u®(s+-,),v°(s+-,-) converge in the C* topology
on every compact set as s tends to +o0o. Since ¢ € WP, the limits must be
the periodic orbits 2% and, moreover, the pair (9su®(s,t), Vsv°(s,t)) converges
to zero, uniformly in ¢, as s tends to +co. Hence (u®,v®) € M(z—,z7; V).
Evidently, each step in the iteration including the constants in the estimates is
invariant under time shift. This proves Theorem 4.1. O

Proof of Theorem 4.3. Fix a constant p > 2 and an index one parabolic cylinder
u € Mz~ ,2%;V). Denote v := Qyu and F: = F° As in the proof of

u,0 "

Theorem 4.1, the map u satisfies the estimates (26) and (27). Denote by
T (u) = (uf,v%) = (exp,(X), ®(u, X)(Oru + Y))

the solution of (11) constructed in Theorem 4.1 and let Z := (X,Y’). Then
Zem (D),  Fi(Z2)=0, |IZ]. < ce?

for a suitable constant ¢ > 0. Now suppose (u®,v¢) € M®(z~,2"; V) satisfies
the hypotheses of the theorem. This means that there is a pair

C=(&mn) e WH(R x SY,u*TM & u*TM)
such that

Ceim(Dy)*,  Fi(O)=0, [él, <V nlle <C.
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The difference
(=) =¢-Z
satisfies the inequalities

1€ < 062 + 732 <2662, I/l < C 4?27 <20,

provided that e is sufficiently small. Hence, by Corollary 3.4 (with a constant
¢1 > 0) and Corollary 4.7 (with a constant c; > 0), we have

BN < 1 D3¢ g o

<a || FiZ+C) = F(2) = dFZ)C |y oo

+ o1 [dFL(2)¢ = dFZ(0)¢ o, o0

_ — 2

< erea (672 oo + 7 1€ ) NC'I.

+ crea ™ Y Z) (1o + /2 17 o ) IS,

+ creae TR Z iGN, + creas T YZINC,
< 163 (26 +46%) ¢ + cereac®> 42 (25 + 2C) | '),

+ cereped/ 232 Il. + 62010253_7/2p|||cl|||5

1
< SICIL

The last inequality holds when ¢ and e are sufficiently small. It follows that
¢’ =0 and this proves the theorem. O

5 An apriori estimate

In this section we prove that the solutions of (11) and (6) are all contained in a
fixed compact subset of T*M that is independent of €. Recall that the energy
of such a solution is given by

[e%s) 1
E*(u,v) = / / (||85u||2 + &2 ||VS’U||2) dtds = Sy(x~) — Sy(a™).
—o0 J0

Theorem 5.1. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO) and (V1). Then there is a constant C = C(co,V) > 0 such that
the following holds. If 0 < & <1 and (u,v) : Rx S — TM is a solution of (11)
such that
E* (u,v) < ¢, sup Ay (u(s, ), v(s,-)) < co (32)
seR
then ||v]|eo < C.

For ¢ =1 and V(z) = fol Vi(z(t)) dt this result was proved by Cieliebak [2,
Theorem 5.4]. His proof combines the 2-dimensional maximum principle and
the Krein-Rutman theorem. Our proof is based on the following L2-estimate.
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Proposition 5.2. Fiz a constant co > 0 and a perturbation V : LM — R that
satisfies (V0) and (V1). Then there is a constant ¢ = ¢(cg, V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32) then

1
sup/ (s, t)|* dt < c.
seR Jo

Proof. Define F': R — R by

1
Fls) = / (s, £)[? dt.
0
We prove that there is a constant p = (V) > 0 such that
e2F" — F' + uF +1>0. (33)
To see this we abbreviate
L. =202 + 07 — 0, L. =V, V, + ViV, — V..

By (11), we have
Lev = —Vigrad V(u) (34)

and hence

2
v
La% =2 |Voul* + |[Viv]* 4 (Lov,v)

=2 |Vu]? + Vo> = (Vigrad V(u), v)
> &2 |Vl + [Vool” — C(1 +|0pul) [v]

> &2 |Vl + [Viol* — C(1 + |v] + €2 Vo)) [ (35)
g? C? e2C? 1
> Nl Wl = (G0 5 ) of -5

1
> (C+C?) v - 5
Here C' is the constant in (V1). Integrating this inequality over the interval

0 <t <1 gives (33) with u:= 2C + 2C?. Tt follows from (33) and Lemma B.3
with f replaced by f+ 1/u and r := 1/2 that

1 /4 ah 1
F(s) < F(9)+ - < 16exc /5_1 <F(J) + u) do (36)

for every s € R.
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Next we observe that, by (32), we have

Co > AV(U’(Sa ')a ’U(S7 ))
1 2
= / ((U(s,t)ﬁtu(&t)) - @) dt — V(u(s,"))
0

1 VS 2
_ /O (% - €2<v(8,t),vsv(s,t)>> dt —V(u(s,-))

1 2
z/ (@ —54|st(s,t)|2> dt — C.
0

Here C is the constant in (V0) and we have used the fact that d,u = v — e2V;v.
This implies

1
F(s) <4 <c0 +C +/ 2 |Vo(s, t)]? dt)
0

for every s € R. Integrating this inequality we obtain
s+1
/ F(o)do <8¢+ 8C + 8E(u,v) < 16¢o + 8C.
s—1

Now the assertion follows from (36). O

Proof of Theorem 5.1. In the proof of Proposition 5.2 we have seen that there
is a constant g = p(V) > 0 such that every solution (u,v) of (11) with0 <e <1
satisfies the inequality

Lol > —plol® - 1. (37)

Now let (s9,tp) € R x S and apply Lemma B.2 with r = 1 to the function
w:R xR D P — R, given by w(s,t) := |v(s + so, t + to)|* + 1/p:
€ 1 1
[u(s0, to)|* < 2026”/ / (|v(s + s0,t +to)|* + —) dtds
—1-eJ-1 H

1 1
< 12¢qe (— +sup/ (s, t)]? dt) .
0

Hw seR

Hence the result follows from Proposition 5.2. O

6 Gradient bounds

Theorem 6.1. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
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that satisfies (32), i.e. E°(u,v) < co and sup,cp Av(u(s,-),v(s,-)) < co, then
Dgu(s, O + [Vyu(s, 1)

s+1/2 p1
+/ / (|Vt(95u|2+|Vsasu|2+|V,5V5U|2+€2|VSVSU|2> (38)
s—1/2 Jo

< CEFS—1,8+1] (uv ’U)

for all s and t. Here Ef(u,v) denotes the energy of (u,v) over the domain

I xSt

Remark 6.2. Note that (38) implies the estimate

10ru — v|| ;e < €2/ CE=(u,v)
for every solution (u,v) : R x S* — TM of (11) that satisfies (32).

The proof of Theorem 6.1 has five steps. The first step is a bubbling argu-
ment and establishes a weak form of the required L estimate (with dsu replaced
by €205u and Vv replaced by e3V,v). The second step establishes an L2-version
of the estimate, namely an estimate for [[Osu(s, )|/ p2(s1) + € [Vsv(s, )|l 12(1)-
The third step is an auxiliary result of the same type for the second derivatives.
The fourth step establishes the L> bound with Vsv replaced by eViv. The final
step then proves the theorem in full.

Lemma 6.3. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V'1). Then the following holds.

(i) For every§ > 0 there is aneg > 0 such that every solution (u,v) : RxS! —
M of (11) and (32) with 0 < € < g¢ satisfies the inequality

e2|0sul| o, + % || Vsv| o, < 6. (39)
(i) For every eg > 0 there is a constant ¢ > 0 such that every solution (u,v) :
R x St — M of (11) and (32) with g9 < e <1 satisfies
[0sull o, + V5ol < e
Proof. We prove (i). Suppose, by contradiction, that the result is false. Then

there is a sequence of solutions (u,,v,) : R x S — M of (11) with £, > 0
satisfying

E® (uy,v,) < co, sup Ay (uy (s, ), v, (s, ) < co, lim e, =0,

SGR V—00

and
e 10sun |l o + €5 I Vsvn || > 26

for suitable constants ¢y > 0 and 6 > 0. Since (u,,v,) has finite energy the
functions |0su,(s,t)| and |Vsv,(s,t)| converge to zero as |s| tends to infinity.
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Hence the function |9su,| + €,|Vsv, | takes on its maximum at some point z, =
Sy + ity i.e.

Cy = Sup (|asuu| +ey |VSUV|) = |asuu(51/7tu)| +ey |VSUU(SU7tV)|
RxS?t

and
g2c, > 0. (40)

Applying a time shift and using the periodicity in ¢ we may assume without loss
of generality that s, =0 and 0 <t¢, < 1.
Now consider the sequence

W, = (t,7,) : R? = TM

defined by

- s t N S t

Uy(s,t) i=uy [ —, b, + , Uy (s,t) i =eyv, [ —, b + .

Cy EvCy Cy EvCy
This sequence satisfies the partial differential equation
- - 1 - N 1
65”1/ - VtUu — _§U7 VSUV + atuu = T’UV7 (41)
Cy Ev-Cy

where

&u(s,t) :=grad V(uy(s/cy, )ty +t/evcy) € Ty (s,0)M.
By definition of ¢, we have
|05t (0,¢,)| + |Vs0,(0,t,)] = 1 (42)

and
|8sau(5at)| + |V51~),,(s,t)| <1

for all s and ¢. Since |0, | is uniformly bounded, by Theorem 5.1, and |£,| is
uniformly bounded, by axiom (V0), it then follows from (41) that @, and o,
are uniformly bounded in C'. Moreover, it follows from (V1) that

Vil (s, 1) <

v-v v

14 [Oruy(s/cu, ty +t/eve,)|) =C L + D¢ty (s, 1)]
€

and
C
V(5,01 < = (10005t t/20e,)] + 901/, ) agsny ) < 2C.

Since the sequence 1/e2¢, is bounded, by (40), it now follows from (41) that
Oy, — V0, and V,0, + 0,4, are uniformly bounded in C', and hence in WP
for any p > 2 and on any compact subset of R?. Since @, and 9, are uniformly
bounded in C*, this implies that they are also uniformly bounded in W?2P? over
every compact subset of R?, by the standard elliptic bootstrapping techniques
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for J-holomorphic curves (see [16, Appendix B]). Hence, by the Arzéla—Ascoli
theorem, there is a subsequence that converges in the C'' topology to a solution
(i, ) of the partial differential equation

0st — V0 = 0, V0 + Opti = AD,

where A = lim,, _, 1 /512,01,. Since v, is uniformly bounded and £, — 0 we have
© =0 and so @ is constant. On the other hand it follows from (42) that (a, )
is nonconstant; contradiction. This proves (i).

The proof of (ii) is almost word by word the same, except that £, no longer
converges to zero while ¢, still diverges to infinity. So the limit w = (@,?) :
C —TM = T*M is a J-holomorphic curve with finite energy and, by removal
of singularities, extends to a nonconstant J-holomorphic sphere @ : S% — T*M,
which cannot exist since the symplectic form on T*M is exact. O

The second step in the proof of Theorem 6.1 is to prove an integrated version
of the estimate with Vv replaced by eViv.

Lemma 6.4. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V2). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S' — TM is a solution of (11)
that satisfies (32) then, for every s € R,

1
/ (|8Su(s,t)|2 + €2 |st(57t)|2) dt
0

s 2, 2 2 2 2, 4 2 (43)
+/ / (|Vt(95u| + 2 |V,ul? + 22 [ViVol? + 1 |V, Vo )
s—1/4 JO
< OEf571/2,5+1/2] (u,v).

Corollary 6.5. Fiz a constant co > 0 and a perturbation V : LM — R that
satisfies (VO — V2). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32), then

s+1/4 p1 )
/1/4 /o IVsvl™ < CEf 2 541/9) (1, 0)
for every s € R.

Proof. Since Vv = V.0,u + €2V, V,v this estimate follows immediately from
Lemma 6.4. O

Proof of Lemma 6.4. Define the functions f,g: R x S! — R by
1
f= 3 (|8Su|2 + €2 |st|2)

and

g = (|V,565u|2 + 2 |Vdsul® + €2 [ViV0)? + &4 |V5VSU|2),

N | =
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and abbreviate
1 1
F(s) ::/ f(s,t)dt, G(s) == / g(s,t)dt.
0 0

Recall the definition of L. := 202 + 0} — 05 and L. := £2V,V, + ;V, — V; in
the proof of Proposition 5.2. Then

L.f =29+ U+¢&%V, U := (0su, L0su), V= (Vsv, L Vv).  (44)

We shall prove that U and V satisfy the pointwise inequality
U1+ V] < uf + = (g4 [100ula g, + €t [ Vadoul (45)
S p 5 ) sUllLz(s1) sUsUl[p2(51)
for a suitable constant p > 0. Inserting this inequality in (44) gives

1
Laf+ﬂf+FZg+§(9—G)~
Now integrate over the interval 0 <t < 1 to obtain
e2F" —F' + (u+1)F > G.

With this understood the result follows from Lemma B.3 and Lemma B.6 via a
covering argument.
To prove (45) we observe that, by (11),

L.0su = €2V, V, (Vv + grad V(u)) + ViV, (U — EQVS’U)
— Vi (Vv + grad V(u))
=2 [V, Vi] v + [V, Vi] v — Vigrad V(u) + €2V, Vigrad V(u)
= 262 R(9su, Oyu) Vv + €% (Vo u R) (s, Dyu)v — R(Dsus, Dpu)v
+ 2 R(V,0su, Ou)v + 2 R(0,u, V,0u)v
— Vigrad V(u) + €2V, Vigrad V(u).

(46)

Now fix a sufficiently small constant § > 0 and choose 9 > 0 such that the
assertion of Lemma 6.3 (i) holds. Choose C' > 0 such that the assertion of
Theorem 5.1 holds and assume 0 < ¢ < g9 < §/C. Then, by Theorem 5.1 and
Lemma 6.3, we have

loully <6 SVl <8 ole<C el <25 (47)

The last estimate uses the identity d;u = v — £2V,v. Now take the pointwise
inner product of (46) with dsu and estimate the resulting seven expressions
separately. By (47) and (V'1), the terms four, five, and six are bounded by the
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right hand side of (45). For the last term we find, by (V2),
2 |(Dsu, Vi Vsgrad V(u))| < e2C |Os ] (|V585u| + ||V565U||L2(51))
, 2
+ £2C |9su) (IasUI + ||3su||L2(sl))
< 20 oyl (Vi + VDl sy
+ 206 |9,u) (|6su| + ||3su||L2(sl))
1 2 2
<uf + 5 (9410l + < INOulEacsn) )

For the first three terms on the right in (46) we argue as follows. Differentiate
the equation v = dyu + £2V,v covariantly with respect to s to obtain

Vv = V,0yu + €2V, Vv, du = v —e?V,05u — £*V,V,0. (48)
Now express half the first term on the right in (46) in the form

82<85u, R(9su, 8tu)st>

= 62<8Su, R(9su, v)Vtasu> + €4<8Su, R(9su, v)VSVSv>
— 54<85u, R(0su, Vtasu)VtaSu> — 56<85u, R(0su, Vtasu)VSVSv>
— %(95u, R(0su, VsVsv)ViOsu) — €%(0su, R(dsu, Vs Vsv) Vs Vsv).

Here we have replaced d,u and Viv by the expressions in (48). In the first two
terms we eliminate one of the factors dsu by using the inequality £2|0su| < §
and in the last four terms we eliminate both factors 0,u by the same inequality.
The next two terms in our expression for U have the form

52<85u, (Vo,uR) (Osu, Oru)v) — (Osu, R(Osu, Opu)v).

Replace dyu by the expression in (48) and elimate in each of the resulting sum-
mands one or two of the factors £20,u as above. This proves the required
estimate for U and 0 < ¢ < &y.

To estimate V' we observe that, by (11),

L-Vw = Vi Vi(e?Vev — v) + Vi Vi Voo + Vi([V;, Vi]v)
= —V;Vi0su + V,Vs(0su — grad V(u)) — Vi (R(9su, Oyu)v)
= —R(0su, Ou)0su — V,Vsgrad V(u) — Vi (R(9su, Opu)v)
= —2R(0su, Opu)dsu + R(Jsu, Opu)grad V(u)
— (Vs,uR) (Osu, Oyu)v — R(V,0su, Oyu)v — R(Dsu, ViOpu)v
— V,Vigrad V(u).

(49)

The last step uses the identity Vv = d;u — grad V(u). Now take the pointwise
inner product with £2V,v. Then the first term has the same form as the one
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dicussed above. In the second and fourth term we estimate £|0;u| by 26 and we
use (V0). For the last term we find, by (V2),

£2|(Viv, ViVegrad V()] < 2C Vo] (10,0l + 10,u] + 10, 2 51,
+ [0cu] (1051 + 105l 51,
< 2C Vool (1%t + 105l + 0,1l s

+2:C5 Vool (10, + 105t ) )
1 2
<uf+5 (94 10ulacsn)

This leaves the terms three and five. In the third term we estimate £2|0,u|? by
462 and use the identity

Vv = Vidru + €2V, Vv
of (48). For term five we use the identity
Vo = V(v — £2V,v) = dsu — grad V(u) — €2V, Vv
to obtain the expression
e2(V,v, R(Osu, Osu — grad V(u) — e2V; Vsv)v)
= —2(V,v, R(9su, grad V(u))v) — e*(Viv, R(dsu, Vi Viv)v).

In the last summand we use the estimate 2|0su| < §. This proves (45) for
0 < e <egp. Foregg <e <1 the estimate (45) follows immediately from (46),
(49), and Lemma 6.3 (ii). O

The third step in the proof of Theorem 6.1 is to estimate the summand
gt ||V585u||ig(51) in (45) in terms of the energy. This is the content of the
following lemma.

Lemma 6.6. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32) then, for every s € R,

1
/ (22 Vil + =* [Vl +2* [Vl +° [V Vo)
0 (50)
< OE[ES—1/2,3+1/2] (u, v).
Proof. Define f; and g1 by

2f1 = |0sul® + €2 |Vov|* + &2 [V0sul® + &t [Voul® + &t |V, Viu|?
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and
291 = |ViOsul? + €2 [V,0sul® + 2 |ViVo|* + 4 [V, Vo]
+ 2 |ViVidul? + e* [V Viosul? + £ |V, V,05ul®
+ &9 |V, V,0u)® + e* [V Vi Vo|? + €8 |V, V, Vo]
and abbreviate Fy(s) := fol fi(s,t)dt and G1(s) := fol g1(s,t)dt. Then
Lefi =291 + U 4+ €2V + 2U, + U, + €V, (51)
where U := (Osu, L:05u) and V := (Vsv, L:Vsv) as in Lemma 6.4 and
Uy := (VOsu, LNVOsu), Us = (Vs0su, LV,05u),
Vi = (VMV, LV V).
We shall prove the estimate
U]+ |V|+ & |Us| + & |Us + Vi
<pufi+ % (91 + [10sull T2 g1y + € I Vedstl T2 gy +° HVSVS[?SUH%Q(SI)) (52)
<pfi+F1+9g+G

for a suitable constant p > 0. By (51) and (52), L.f1 + pf1 + FA > g1 — G1.
Integrating this inequality over the interval 0 <t < 1 gives

2F — F) + (u+1)F, > 0.
Hence it follows from Lemma B.3 with r := 1/5 that

s+1/4 052
Fi(s) < c/ Fi(o)do <c <1 + —> Gom1/2,541/2) (U V)
s—1/4 2 ’

Here ¢ := 100coe*11)/25 where ¢, is the constant of Lemma B.3, and the second
inequality follows from Lemma 6.4. Now use Lemma 6.4 again and the identity
2V, Vv = V,u — V,0:u to estimate the term &8 |V5VS’U|2.

It remains to prove (52). For the terms |U| 4 &2 |V/| the estimate was estab-
lished in (45). To estimate the term &2 |U;| write

LNOu = VL Osu + €2 [V, Vs, Vi]0su — [V, V] 0su

= ViL.Osu + 2V, (R(O5u, Oyu)Osu))
+ 2 R(05u, 0yu) Vs0su — R(Dsu, Dyu)Osu

= 262V}, (R(Osu, Opu) V) + €2V, ((Vo, o R) (s, Oyu)v)
= Vi (R(9su, Opu)v) (53)
+ &2V (R(ViOsu, Opu)v) 4 €2V (R(O5u, VsOru)v)
— V,Vigrad V(u) + €2V, V, Vigrad V(u)
+ &2V, (R(0su, Oyu)dsu))
+ 2 R(0su, O;u) V,0su — R(Osu, Ou)0su.
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The last equation follows from (46). Now take the pointwise inner product with
e2V,0su. We begin by explaining how to estimate the first term. We encounter
an expression of the form e*(V;0su, (Vs, . R)(9su, Oyu) Vsv). Here we can use the
identity

Vv = ViOyu + €2V, Vv

to obtain an inequality
|Vsv| [VeOsul < 3g1

By (47) we can estimate the product ¢*|8,u||8,u|> by a small constant. An-
other expression we encounter is e4(V;dsu, R(V;0su, Oyu) Vsv); by (47), we have
e*|0u| |Vsv| < 26% and so the expression can be estimated by a small constant
times g;. Then we encounter the expression €*(V;d5u, R(dsu, V;0;u)Viv); here
we use the identity

Viowu = V(v — £2V,0) = dsu — grad V(u) — £2V,V,u;

the crucial observation is that the summand Js;u can be dropped when inserting
this formula in R(dsu, V;0yu); in the summand e*(V;05u, R(9su, grad V(u))Viv)
we use (V0) and &2 |9su| < §; for the summand £°(V;05u, R(Osu, V; Vsv) Vsv)
we use €°|dsul |Viv| < 62 and ¢ |V;0su| |[ViViv| < Cgi. The last expression
we encounter is *(V;0su, R(0su, 0;u)V; Vsv); here we use €3 |0sul |0yu| < 262,
by (47), and again € |V,0su| |V, Vsv| < Cgq. This deals with the first term; the
next two terms can be estimated by the same method.

In the fourth term we encounter the expression £*(V,0su, R(V, Vi0su, dyu)v);
here we use ¢ |dyu| < 26 and €2 |V;0su| |V, VsOsu| < Cg1. Another expression
is e*(Vi0su, R(Vs0su, Oyu)Viv); here we use Vv = dsu — grad V(u) and the
inequalities €% |0 ul |Oyu| < 262 and ¢ |V;0su| |VsOsu| < Cgp. A third expression
is e*(V,0su, R(Vi0su, V;0pu)v); here we use the formula

£2V,05u + V,Oyu = €2V, (Vv + grad V(u)) + Vi (v — €2V,0)

5 9 (54)
= Osu + *R(0su, Oyu)v — grad V(u) + e*Vigrad V(u);
so the curvature term can be estimated by
|R(Vs0su, Vidu)| < C |VeBsul (1 + |0su| + € |05ul [Oyul) . (55)

Here we have used (V0) and (V1) and the fact that the term [|Osul| ;1 1) is
uniformly bounded, by Lemma 6.4. This completes the discussion of the éourth
term. The fifth term is similar, except that the cubic expression in the second
derivatives vanishes. The last three terms can be disposed of similarly; the only
new expression that appears is e*(V;0su, (Vo R)(0su, Oyu)0su); here we use
Oyu = v—e2V,v and the inequalities €2 |0su| < § as well as |V;dsu| [0su| < g1+ f1
and |V, 0su| |[Vsv| < 3g1.

This leaves the terms involving gradV. For £2(V;dsu, V;Vsgrad V(u)) we
use (V2) and for e*(V;05u, V; Vs Vigrad V(u)) we use (V3). Both terms can be
estimated by Ce(f1+ g1+ ||65UH%2(51) + &t ||V585u||iz(51)). This completes the
estimate of &2 |Uy|.
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To estimate the term * |U, + V;| write
LVs0su = Vo L0su + ViV, Vi]0su
= Vs L0su — Y (R(Osu, Opu)0su) — R(Osu, Opu) ViOsu
= 2e%V, (R(Osu, 0pu)Vsv) + €2V, (Vo,u R) (Dsu, Oyu)v)
— Vs (R(Osu, Opu)v) (56)
+ &2V, (R(V:0su, Oyu)v) + €2V, (R(Osu, ViOpu)v)
— V. Vigrad V(u) + €2V, V, Vigrad V(u)
— Vi (R(0su, Opu)dsu) — R(Osu, Oyu) Vi Osu
(where the last equation follows from (46)) and
LN Vv = VLNV + 2V Vs, Vi Vev — [V, Vi Viv
= VLV + €2V, (R(Osu, Opu) Vsv))
+ 2 R(Dsu, 0;u) Vs Vsv — R(9u, Oyu) Vsv
= =2V, (R(9su, Opu)dsu) + Vi, (R(9su, Opu)grad V(u))
=V, ((V,uR) (05, Oyu)v)
— ¥ (R(M:0su, Oru)v) — Vi (R(Osu, Vi Opu)v)
— ViViVigrad V(u) + 2V, (R(9su, Oyu) Vsv))
+ 2 R(05u, 0;u) Vs Vv — R(Osu, Ou) Vv

(57)

(where the last equation follows from (49)). The terms that require special at-
tention are those involving grad V and the cubic terms in the second derivatives.
The cubic terms in the second derivatives are

Uso := 2e%(V,05u, R(V;05u, Vi0su)v),
Vio := 26XV, Vv, R(V;0pu, V;Osu)v).
Now insert
Vi0su = Vs (Vv + grad V(u)) , Vioiu = V, (v — 52VSU)

into Ugy and Vi, respectively. Then the only difficult remaining terms are
the ones involving again three second derivatives. After replacing ViViv by
ViViv + R(9su, Oyu)v we obtain

Usi := 265(V,05u, R(V; Vv, Vi0pu)v),
Vi1 = =269V, Vu, R(V;: Vs, ViOsu)v).
The sum is
Ug + Vi = 2¢%(V,05u — Vi Vv, R(V; Vv, V,0pu)v)
= 2¢5(V,(0su — Vi) + R(Osu, Oyu)v, R(V;: Vv, Vs0su)v)
= 2¢%(V,grad V(u) + R(9,u, yu)v, R(V;: Vv, V,0pu)v)

and can be estimated in the required fashion. In particular we can use (V1)
and Lemma 6.3 to get a pointwise bound on e2V,grad V(u).
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The terms involving grad V can be estimated by

% |(Vesu, Vs Vs Vsgrad V(u))| + e [(Vssu, Vi Vagrad V(u))|

+ & (Vi Vv, R(Osu, yu) Vigrad V(u))| 4 e |(ViViv, ViV Vigrad V(u))|

< 02 |V,0,u (54 IV, VBt + €2 [V Dsu| + |3Su|)
+ C=2 [Vdgul (=* [V Vabull o sn) + € VoDt agsny + 105l sy )
+ Ce2 |V V| (52 |V:Vi0sul + € [ViOsul + [0sul + ||3su||Lz<s1>)
+ Ce* [V Vu]?

< pfi+ % (91 F 10sull T2 g1y + € [IVeDstel T2 51y +° ||V5V585u||i2(51)> :

Here the first inequality follows from (V1 — 3); it also uses the identity
Vi0ru = Osu — Vigrad V(u) — RAVAVAY

and the fact that €2 |0su| and € |0;u| are uniformly bounded (Lemma 6.3). All
the other summands appearing in our expression for ¢* |Us + V| can be esti-
mated by the same arguments as for €2 |U;|. This implies (52) for small . For
g0 < e < 1 and p sufficiently large the estimate (52) follows from (53), (56),
(57) and Lemma 6.3 (ii). The same tricks as above are needed to deal with the
cubic terms in the second derivatives but no care needs to be taken concerning
the value of €. This completes the proof of Lemma 6.6. O

The fourth step in the proof of Theorem 6.1 is to establish the L> estimate
with Vv replaced by eV;v.

Lemma 6.7. Fixz a constant ¢ > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (82), i.e. E°(u,v) < ¢o and supgeg Ay (u(s,-),v(s,-)) < co, then

0su(s, )| + % [Vov(s, t)|* < CE,_, ..y (u,v) < Ceg (58)
for all s and t.

Proof. Let f, g, F, G, U, V, and u be as in the proof of Lemma 6.4. Choose a
constant C' > 0 such that the assertions of Lemmas 6.4 and 6.6 hold with this
constant. Then, by (44) and (45), we have

Lef =29+U+¢€*V
1
> —uf— 3 (Hasulliz(sl) + ¢t Hvsasu||2L?(Sl))

2 —puf = CE;_y/3 o172 (u,0)
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for all (s,t) € R x S*. Let sgp € R and denote

C
a = ;EFSO_1750+1] (u,v).

Then
L(f+a)+u(f+a)>0

for sp —1/2 < s < 59 + 1/2. Hence we may apply Lemma B.2 with » = 1/3 to
the function w(s,t) := f(so+ s,to +1) + a:

so+e/3

f(s0,t0) < 54026“/9/ /1(f(s7t) + a) dtds

so—1/9—¢/3
S()+1/2

§54626“/9/ / ( |8su(s, t)]? +—|Vv(s )? —|—a) dtds
5071/2
< 5dcget? (E‘[Esofl,soJrl] (u,v) + a)

C
= 54c2eﬂ/9 (1 + E) ‘[Eso—l,so-i-l] (u’ U)'

This proves the lemma. O
Proof of Theorem 6.1. Define fo and go by
2fy := |0sul* + Voo,
25 := |Vi0sul® + €2 [V,0sul® + Vi Vi) + €2 |V, Viu|?
and abbreviate Fy(s fo fa(s,t) dt and Ga(s fo g2(s,t) dt. Then
Lefo=29+U+V (59)

where U and V' are as in the proof of Lemma 6.4. These functions satisfy the
estimate

1
U1+ VI < ufa + 5 (92 + I0sul}s +=* [ Vdsull3) (60)

for a suitable constant o > 0; here ||-|| ;- denotes the L?-norm over the circle at

time s. This follows from (46) and (49) via term by term inspection. (We use

the fact that |Osul, € |Vsv|, and |0,u| are uniformly bounded, by Lemma 6.7.)
By Lemmas 6.4 and 6.6, we have

1
/0 (|8Su(s,t)|2 + &4 |V, 0su(s, t)|2) dt < CEf,_ /9 41179 (u,0)

for a suitable constant C' and every s € R. Hence it follows from (59) and (60)
that

Le fo(s,t) = —pfa(s,t) — CEf571/2,5+1/2] (u,v)
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for all (s,t) € R x S1. Fix a number sq and abbreviate

C

a = ;EFSO_1750+1] (u,v).

Then
Le(fo+a)+p(fa+a) =0

for sp —1/2 < s < 59 + 1/2. Hence we may apply Lemma B.2 with » = 1/3 to
the function w(s,t) := fa(so + s,t0 + 1) + a:

so+e/3

f2(s0,t0) < 54026“/9/ /1(f2(5775) + a) dids

so—1/9—¢/3
So+1/2

§54cze“/9/ / < |8u(s, t)]> + = |Vv(s ) +a> dtds
5071/2
< 5 (Bfyo1,0p1)(:0) + )

C
= C3 (1 + E) ‘[550_1)80+1] (u,u).

Here the third inequality, with a suitable constant cs, follows from Corollary 6.5.
This proves the pointwise estimate.
To prove the L%-estimate integrate (59) and (60) over 0 < ¢ < 1 to obtain

E2F) — Fy + (n+1)F, > Go
for every s € R. Hence, by Lemma B.6 and a covering argument, we have

1/2 3/4

Ga(s)ds < 04/ Fy(s)ds

—1/2 —3/4

for every s € R and a constant ¢4 > 0 that depends only on R, r, and p. Now
it follows from Corollary 6.5 that

3/4
Fy(s)ds < es EBf,_y o1q)(u,0)
—3/4
for every s > 0 and some constant c;5 = ¢5(cg, V) > 0. Hence
/2 ,1
/ / (|V,585u|2 + |Vtvs’u|2 + 52 |VSVS’U|2> dtds < 2C4C5E‘[5571 s+1] (U,’U).
1/2Jo ’
The estimate for V;9;u now follows from the identity

ViOsu = Vs Vv + Vigrad V(u) = Vi Visv + R(0su, Opu)v + Vigrad V(u).

This proves Theorem 6.1. O
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7 Estimates of the second derivatives

Theorem 7.1. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO —V4). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32) then

HvtaSuHLP([fT,T]xSl) + HVSaSu”LP([—T,T]XSl)

+ IV Vel o1,y x 51y + 11Vs Vel o1 1y 51) (61)
< c\/E[‘inLTH] (u,v)

forT>1and 2 <p<oo.

For p = 2 the estimate, with V;Viv replaced by £V;Vsv, was established
in Theorem 6.1. The strategy is to prove the estimate for p = oo and, as a
byproduct, to get rid of the factor ¢ for p = 2 (see Corollary 7.3 below). The
result for general p then follows by interpolation.

Lemma 7.2. Fiz a constant ¢ > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32), then

1
/ (1%0su(s, O + [Va0su(s, ) + [%¥au(s, ) + € [V Tao(s, )2
0

s+1/4  p1
+/ / (|VtVt85u|2 + |V V,0sul + €2 |VSV535U|2)
s—1/4 JO

s+1/4 rl
+/ / (|vtvtvsv|2 N \AVAVATI |V5VSV5U|2)
s—1/4 Jo

< CEFS—1/275+1/2] (u,v)
for every s € R.

Corollary 7.3. Fix a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S' — TM is a solution of (11)
that satisfies (32), then

s+1/4 p1 )
i /0 VaVeol® < CEf,_y g 19 (s v)
for every s € R.

Proof. Since
V,Viv = Vs VsOuu + €2V, V, Vv = R(0,u, 0yu)0su + Vi Vs0su + €2V, V, Vv

this estimate follows immediately from Lemma 7.2. O
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Proof of Lemma 7.2. Define f3 and g3 by
2fs = |0sul” + |Vev]* + [Vidsul® + |ViOsul” + [V Vao|” + 2|V, Vo
and

293 := |ViOsul® + €2 |[V,0sul* + |[ViViv]* + &2 |V, Viu]?
+ [ViViOsul? + €2 |V Vidsul® + | Vi ViOsul® + &2 |V, Vi dsul?
+ |V,5VtVSv|2 +e2 |VSVtVSv|2 +e2 |V,5VSVS’U|2 +et |V5VSVS’U|2

and abbreviate

1 1
F5(s) ::/0 f3(s,t)dt, Gs(s) ::/0 g3(s,t) dt.

Then
Lofs =293+ U+V 4+ U, +Us +V, + €2V, (62)

where U, V, Uy, Us, V; are as in the proof of Lemma 6.6 and V; is defined
analogously. These functions satisfy the estimate

U+ V| + |Us| + |Us + V3| + €2 |V

1
< ufs+ 5 (95 + 10sulfe + V0l e+ [VVulll:)  (63)

1
<pfs+F3+ 5(93 + G3)

for a suitable constant o > 0; here ||-|| ;> denotes the L?-norm over the circle at
time s. For U and V this follows from (45) and (49) in the proof of Lemma 6.4.
For U; this follows from (53) and for Us + V; from (56) and (57) by the same
arguments as in the proof of Lemma 6.6. The improved estimate (63) follows
by combining these arguments with Theorem 6.1. For Vs we use the formula

LV, = Vi LoVo + [V, V| Viw

=V, L:V,v
— WV (R(Osu, Oyu)Vsv)) — R(Osu, Opu) Vi Vv

= =2V, (R(9su, Opu)dsu) + Vs (R(9su, Opu)grad V(u))
— Vs (Va,uR) (Osu, Opu)v)
— Vs (R(V,0su, Oyu)v) — Vs (R(9su, V,Oyu)v)
— ViViVsgrad V(u)
— Vi (R(Osu, Opu) Vsv)) — R(Osu, Opu) Vi, Vsv.

(64)

(The last equation uses (49).) The desired estimate now follows from a term
by term inspection; since all the first derivatives are uniformly bounded, by
Theorem 6.1, we only need to examine the second and third derivatives; in
particular, the cubic term 52<VSVSU,R(VS(95u,Vt&u)v> can be estimated by
Ce? |V, V| |V,0su| (see (55) in the proof of Lemma 6.6).
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It follows from (62) and (63) that

1
Lefs+ufs+F3 > g3+ 5(93 —G3).
Integrating this inequality over the interval 0 <t < 1 gives
2Fy) — Fi+ (n+1)F3 > Gs.

By Theorem 6.1 and Corollary 6.5 we have

s+1/4
/ " Fy(s)ds < CEstl/Q,erl/Q] (u,v)

for a suitable constant C = C(co, V) > 0. Hence the estimate for the second
derivatives follows from Lemma B.3 with r := 1/5. The estimate for the third
derivatives follows from Lemma B.6 and a covering argument. O

Lemma 7.4. Fiz a constant cg > 0 and a perturbation V : LM — R that
satisfies (VO — V3). Then there is a constant ¢ = c¢(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S' — TM is a solution of (11)
that satisfies (32), then

[Vadeull oo + € [IVsBeul| oo + € [ VeOsul| oo
+ e [[ViViv| poo + €2 (Vi Va0 oo + €% | Vs Vv 1o < e

Proof. For every solution (u,v) of (11) define
a(s,t) == ules, t), 0(s,t) :=ev(es, t).

Then

05t — V0 = egrad V(a), V.0 + O = (65)

0

o
By Theorem 6.1, Lemma 7.2, and (V0 — V3), the function w :=
vector field

(t,?) and the

C(s,t) := (e grad V(u(es, -))(t), v(es, t))
along w are both uniformly bounded in W32 (under the assumption (32)); here
we use the identities

Vioru = Osu — grad V(u) — e2V; Vs,
ViViOiu = Vi0,u — Vigrad V(u) — e2V,V; Vi,
V,Viv = Vv — 2V Vv — Vigrad V(u),
ViViViv = ViVu — 2V, V, V,u — V; Vigrad V(u).

It follows that 1w and ¢ are both uniformly bounded in WP for any p > 2.
Since

Dt + J (10)0ytd = ¢

it follows from [16, Proposition B.4.9] that @ and ¢ are uniformly bounded in
W3P and hence in C2. This proves the lemma. O
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Lemma 7.5. Fiz a constant ¢ > 0 and a perturbation V : LM — R that
satisfies (VO — V4). Then there is a constant C = C(co,V) > 0 such that the
following holds. If 0 < e <1 and (u,v) : R x S* — TM is a solution of (11)
that satisfies (32), then

1

/0 54 |stsasu(5, t)|2 dt S OE[ES_1/2)8+1/2] (U, 'U)
for every s € R.
Proof. Define f4 and g4 by

2f1 = |0sul” + |Vov|? + |[Visul* + [V Vidsul?

2 2 2 2 2 2
294 = |V,Osu|” + &* |Vs0sul” + |V Vsv|”™ + €7 | Vs Vi)
+ |ViVi0su)? + €2 |VaVidsul? + [ViViVidsul® + €2 |V Vi Vidsul?

and abbreviate Fy(s) := fol fa(s,t)dt and G4(s) := fol ga(s,t) dt. Then

Lefy =29, +U+V 4+ U + Uy, (66)

where U, V, U; are as in Lemma 6.6 and Uy := (V;Vi0su, L.V Vi0su). We shall
prove that there is a constant g > 0 such that

1
U1+ V] 4+ |0+ Ul < s+ 5 (924 105l a(sn) + €2 1900l o)) (67)

It follows from (66) and (67) that

1
Lefa+pfa+ Fy > ga+ 5(94 —Gy).
Integrating this inequality over the interval 0 < ¢ <1 gives
2F) — Fy+ (u+1)F; > 0.

By Theorem 6.1 and Lemma 7.2, we have

s+1/4
/ ” Fy(o) do < cEf_y /3 o112 (u,0)

for a suitable constant ¢ = ¢(cg, V). Hence, by Lemma B.3 with r = 1/5, there
is a constant C' = C(co, V) such that Fy(s) < CE[_, 5 9 (u,v) for every
s € R; this gives

1
/0 [ViVidsu(s, t)|* dt < CEf, 9 41 /2(us0).

Now use (46) and
2ViVudsu = LoOu — Vi VOsu + ViOsu

to get the required estimate for £* |V, V,0sul.

38



For U and V the estimate (67) was established in the proof of Theorem 6.1;
for Uy it follows from (53) via the arguments used in the proof of Lemma 6.6.
For Uy, we use the identity

LoViNidsu = NViLeVidgu + [V Vi, Vi Vidu — [Va, Vi Vidyu

= ViL.Osu + 2V, (R(Osu, Oyu) Vi Osu))
+ 2 R(05u, 0;u) Vs Vi Osu — R(Dsu, Opu) Vi Osu
= 26’V V, (R(Osu, 04u) Viv) + ViV (Yo, uR) (9su, Byu)v)
— ViV (R(9su, Opu)v)
+ 2V (R(Vs05u, Osu)v) + 2V V (R(Dsu, ViOsu)v) (68)
— ViViVigrad V(u) + 2V, V; Vi Vsgrad V(u)
+ 2V, Vs (R(Dsu, Opu)Osu) )
+ &2V, (R(su, 0yu) V,dsu) — Vi, (R(Dsti, Oyt)dstr)
+ &2V, (R(dsu, Oyu) V;Osu))
+ 2 R(05u, 0;u) Vs ViOsu — R(Dsu, Opu) Vi Osu.
Here the last equation follows from (53). To establish (67) we now use the
pointwise estimates on the first derivatives in Theorem 6.1 and the pointwise
estimates on the second derivatives in Lemma 7.4. The term by term analy-

sis shows that all the second, third, and fourth order factors appear with the
appropriate powers of . This proves (67) and the lemma. O

Proof of Theorem 7.1. For p = 2 the estimate (61) follows from Theorem 6.1
and Corollary 7.3. To prove it for p = oo define f5 and g5 by

2fs := |0sul® + |Viv|? + [Vi0sul? + |Vidsul?® + [ViViv|? + |V, Vio?

and
293 := |ViOsul® 4 €2 [V,0sul® + |[ViViv]? + &2 |V Viv]?
+ |ViViOsul? + €2 |V Vidsul” + |ViViOsul® + &2 |V, V,dsul?
SR VA VA VR IR VA VA VAT L vAVA VAT REE  VA VA VAT
Then

L5f5:2g5+U+V+Ut+US+Vt+‘/S (69)

where U, V', Uz, Us, V4, and Vy are as in Lemma 6.6. These functions satisfy

the estimate
U+ V] + U] + [Us + Vi| + Vi (70)
<pfs+gs+ ||35u||2L2 + ||V535u||ig +et ||VsVsasUI|2L2

for all (s,t) € R x S* and a suitable constant g > 0. To see this one argues as
in the proof of Lemma 7.2 and notices that the factor €2 in front of |V| is no
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longer needed. (It can now be dropped since, by Corollary 7.3, the L2-norm of
f5 is controlled by the energy.)
By (69) and (70), we have

L.fs+pfs > — ”asU”iz(sl) - ||vsasu||2Lz(S1) -t Hvsvsasu||iz(s1)
2 _CEfs—1/27s+1/2] (u,v)

for every s € R and suitable positive constants ¢ and C. Here the last inequality
follows from Lemmas 7.2 and 7.5. Let so € R and denote

a:= %EFSOfl,soJrl] (u,v).
Then
Le(fs +a) + p(fs +a) 20
for sop —1/2 < s < 59 + 1/2. Hence we may apply Lemma B.2 with » = 1/3 to
the function w(s,t) := fe(so + s,t0 + 1) + a:

so+e/3

f5(s0,t0) < 54026”/9/ /1 (f5(s,t) + a) dtds
0

5071/9*8/3
So+1/2

1
< 54626;#9/ / (f5(s) + a) dtds
so—1/2 JO
< 5 (Bfy-1ap4n (0:0) +0)

c
= C3 (1 + E) [550_1)804_1] (u,u).

Here the third inequality, with a suitable constant c¢s = ¢3(cg, V) > 0, follows
from Theorem 6.1 and Corollaries 6.5 and 7.3. This proves (61) for p = co. To
prove the result for general p we apply the interpolation inequality

1-2 2
1€l Lo < NENT2 N3

to the terms on the left hand side of the estimate and use the results for p = 2
and p = co. This proves the theorem. O

8 Uniform exponential decay

Theorem 8.1. Fiz a perturbation V : LM — R that satisfies (VO — V3).
Suppose Sy is Morse and let a € R be a regular value of Sy,. Then there exist
positive constants 6, ¢, p such that the following holds. If x* € P*(V),0<e <1,
To > 0, and (u,v) € M=(z~,2"; V) satisfies

Eﬂi\[*Tg,Tg] ('LL, 'U) < 6, (71)

then
Ef oy (us0) < ce PTES () (u,0)

for every T > Ty + 1.
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Corollary 8.2. Fiz a perturbation V : LM — R that satisfies (VO —V3). Sup-
pose Sy is Morse and let x* € P(V). Then there exist positive constants d,c, p
such that the following holds. If 0 < e <1, Ty > 0, and (u,v) € Me(x~,2T;V)
satisfies (71) then

|0su(s, )° + [Vov(s,1)|* < ce I BE, _gy 7y (1) (72)
for every |s| > Ty + 2.
Proof. Theorem 6.1 and Theorem 8.1. O

The proof of Theorem 8.1 is based on the following two lemmas.

Lemma 8.3 (The Hessian). Fiz a perturbation V : LM — R that satisfies (VO—
V2). Suppose Sy is Morse and fix a € R. Then there are positive constants dg
and ¢ such that the following is true. If xo € PY(V) and (x,y) € C>(S, TM)
satisfy

r = exp,, (&), y = ®(x0,80) (s o + o), l€ollyy1.2 + lIn0lloe < o,
then

€12 + ISR + [l + ]
< ¢ (I + R(&, 0)y + Ho(@)e]* + 19€ = 1)

for all £,m € QV(SY,2*TM). Here ||-|| denotes the L*-norm on S*.
Proof. The operator

A%(z,y)(&,m) = (=Vin — R(&, dx)y — Hy(2)§, Vi§ —n)

on L2(SY, 2*TM @ x*T M) with dense domain W12(SY, 2*T M @ z*T M) is self-
adjoint if y = Oyx. In the case (z,y) = (xo,Opxo) it is bijective, because Sy is
Morse. Hence the result is a consequence of the open mapping theorem. Since
bijectivity is preserved under small perturbations (with respect to the operator
norm), the result for general pairs (z,y) follows from continuous dependence of
the operator family on the pair (x,y) with respect to the W1 2-topology on
and the L*-topology on y. The set P*(V) is finite, because Sy is Morse (see
[28]). Hence we may choose the same constants dg and ¢ for all zo € P*(V). O

Lemma 8.4. Fiz a perturbation V : LM — R that satisfies (V0). Suppose Sy
is Morse and let a € R be a regular value of Sy. Then, for every §g > 0, there
is a constant 61 > 0 such that the following is true. Let (z,y): S — TM be a
smooth loop such that

Av(z,gy) <a,  [[Viy +grad V(z)l| o + [0z = yll o <&

(where the isomorphism g : TM — T*M is induced by the metric). Then there
is a periodic orbit xo € P*(V) and a pair of vector fields &y, no € Q°(St, x*T M)
such that

z = exp,, (§o), y = ®(x0,80)(0rwo + 10),
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and
160l oo + Vol oo + M0l o + [[Vem0ll o < do-

Proof. First note that
1 t
3 0 = Avtagn) + Vi) = [ (ote).a0) o) a
1 1 )
oo [ (Gl +1a0) - vl a

where C' is the constant in (V0). Hence, assuming §; < 1, we have

lyls <4(a+C+1).

Now

= [2(y, Viy + grad V(@) — 2(y, grad V(=))|

Ly
at "
<201+ O)fyl < (C+ )"+ [yl
Integrate this inequality to obtain

ly(t))? — [y(to)]* < (C+ 1) +|lyll3

for to,t1 € [0, 1]. Integrating again over the interval 0 < tg < 1 gives

lylle < €+ 1) +2yl2 < c (73)

where 2 := (C + 1) +8(a+ C +1).
Now suppose that the assertion is wrong. Then there is a §p > 0 and a
sequence of smooth loops (z,,y,) : St — TM satisfying

AV(qugyV) S a, JL%(”VIEyV + gra‘dv(mV)Hoo + ||(9t(EU - yV”oo) = O’

but not the conclusion of the lemma for the given constant dp. By (73), we
have sup,, ||y, ||, < oo. Hence sup,, ||0;z, ||, < oo and also sup,, || Viy, ||, < oo.
Hence, by the Arzela—Ascoli theorem, there exists a subsequence, still denoted
by (x,,¥.,), that converges in the C°-topology. Our assumptions guarantee that
this subsequence actually converges in the C!-topology. Let (zo,v0) : S* — TM
be the limit. Then d;z¢ = yo and Viyo + grad V(zg) = 0. Hence zg € P*(V)
and (z,,y,) converges to (z9,0;z0) in the C*-topology. This contradicts our
assumption on the sequence (z,,y,) and hence proves the lemma. O

Proof of Theorem 8.1. To begin with note that Sy(x) > —Cy for every a €
P(V), where Cj is the constant in (V0). Hence, with ¢ := a + Cy, we have

zt e PYV) = Sy(x7) <cg, Sylz™) —Sp(a™) < cp.

Let C' > 0 be the constant of Theorem 6.1 with this choice of ¢g. Let §p and ¢ be
the constants of Lemma 8.3 and d; > 0 the constant of Lemma 8.4 associated
to a and dp. Then choose § > 0 such that vC& < 8;. Below we will shrink the
constants 01 and 0 further if necessary.
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In the remainder of the proof we will sometimes use the notation wu4(t) :=
u(s,t) and vs(t) := v(s,t). Moreover, ||-|| will always denote the L? norm on S*
and [|-|| . the L* norm on S*.

Now let 2* € P*(V), 0 < ¢ < 1, and Ty > 0, and suppose (u,v) €
ME(x™,2T; V) satisfies (71). Then, by Theorem 6.1, we have

susllog + 1¥vslloo < /OB,y 44y (u,0) < VO3 <61 (74)

for |s| > To + 1. Hence, by Lemma 8.4, we know that, for every s € R with
|s| > Ty + 1, there is a periodic orbit z; € P*(V) such that the C'-distance
between (ug, vs) and (x4, Opxs) is bounded by dg. Hence we can apply Lemma 8.3
to the pair (us,vs) and the vector fields (9sus, Vsvs) for |s| > Ty + 1. Since

ViVsv + R(Osu, yu)v + Hy(u)0su = V,05u, Vi0su — Vv = —2V, Vo,

we obtain from Lemma 8.3 that

Hasusn2 + ||V,555USH2 + ||sts||2 + ||VtVSU5”2

(75)
< ¢ (%0 > + £* %o, )
for |s| > Ty + 1.
Define the function F': R — [0, 00) by
1 1
F(s) = _/ (19:us, ) + 2 [Vu(s, 1)) di.
2Jo
We shall prove that
1
F(s) =z —F(s) (76)

for |s| > Ty 4+ 1. The proof of (76) is based on the identity
F"(s) = 2| Vs0sul|® + 262 ||V, Vvl
+ (Osu, Vs Vigrad V(u) — Hy (u) ViOsu)
+ (9su, BR(0su, Ou)Vsv) + (Osu, (Va,u R)(9su, Oyu)v) (77)
+ (0su, R(Osu, Viv)v) — €2 (su, R(Osu, Vs Viv)v)
+ e%(0su, R(Vsv, v) Vs Osu)

which will be proved below. Here all norms and inner products are understood
in L2(SY,u*TM) and we have dropped the subscript s for us and vs. The
L*> norms of v and 8,u = v — 2V, v are uniformly bounded, by Theorems 5.1
and 6.1. Hence there is a constant ¢’ > 0 such that

F"(s) > 2| VsOsus||® + 262 ||V Viws]|?

¢ ovul, <|asus|2 T s ||vsvs||)

I (|asus| 19Vl + [V ||vsasus||)

> (| VaOsus|| + €2 ||V, Vius || .
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Here the first inequality uses (V2). To understand the last step note that,
by (74), we have ||0susl|,, < VC6 and so the inequality follows from (75),
provided that § > 0 is sufficiently small. Now use (75) again to obtain (76).
Thus we have proved that F”(s) > p?F(s) for |s| > To + 1, where p =
¢1/2. Since F(s) does not diverge to infinity as |s| — oo it follows by standard
arguments (see for example [5, 22]) that F(s) < e =T~ (T, + 1) for s >
Ty + 1 and similarly for s < —Ty — 1.
It remains to prove (77). By direct computation,
F'(s) = ||V565u||2 +¢? HVSVSUH2 +G(s) + H(s),
where
G(s) := (Osu, Vs VsOsu)

= (Osu, Vs Vs (Vv + grad V(u)))

= (Osu, [VsVs, ViJv + Vi Vsgrad V(u) + V, Vi Viu)

= (0su, [VsVs, Viv + Vs Vsgrad V(u)) — (Vi 0u, Vs Vyv)

= (Osu, Vs[Vs, Vi + [Vs, V| Vsv + Vs Vigrad V(u))

—(Vi(v = °Viv), Vi Viv),
H(s) := e* Vv, Vs Vi V,v)

= (Vsv, Vs Vs (v — Oru))

= <V5’U, VsVsv — [v57 Vt]asu - Vtvsasu>

= <VS'U, stsv - [vsv Vt]asu> + <Vtv5'U, Vsasu>

= (Vov, Vs Vv — [Vs, V]0su) + ([, Vv + Vi (0su — grad V(u)), VsOsu) .

Here all inner products are in L?(S',u*TM); in each formula the fourth step
uses integration by parts. The sum is
G(s) + H(s) = |VaOsu|? + €2 | Vs Vi |
+ (9su, Vs Vigrad V(u)) — (Vsgrad V(u), VsOsu)
+ (9su, BR(0su, Opu) Vsv) + (Osu, (Vo u R)(Osu, Opu)v)
+ (Osu, R(Osu, VsOpu)v)
+ (Osu, R(Vs0su, Oyu)v) — (R(Dsu, Opu)v, VsOsur).
To obtain (77) replace Vid;u by Viv — 2V, Vyv. Moreover, by the first Bianchi
identity, the last two terms can be expressed in the form
(0su, R(VsOsu, Opu)v) — (R(9su, Opu)v, VsOsu)
= (Osu, R(Vs0su, Oyu)v) + (Osu, R(v, VsOsu)Oyu)
= —(0su, R(Oyu, v)VsOsu)
= (0su, R(v — Oy, v) Vs 05u)
= e2(Dsu, R(V,v,v)V,05u)

This proves (77) and the theorem. O
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9 Time shift

The next theorem establishes local surjectivity for the map 7°¢ constructed in
Definition 4.4. The idea is to prove that, after a suitable time shift, the pair
¢ = (&m) with u® = exp,(§) and v¢ = ®(u,§)(0ru + n) satisfies the hypothesis
¢ € im (Dg)* of Theorem 4.3. The neighbourhood, in which the next theorem
establishes surjectivity, depends on e.

Theorem 9.1. Fiz a perturbation V : LM — R that satisfies (VO — V4).
Assume Sy is Morse-Smale and fiz a reqular value a € R of Sy. Fiz two
constants C > 0 and p > 1. Then there are positive constants d, €g, and ¢ such
that 9 < 1 and the following holds. If = € P*(V) is a pair of index difference
one,

ue MOz 2T V), (u®,v°) € M*(x~,z*; V)
with 0 < € < g, and
u® = exp,(£°),
where €5 € QO(R x SY,u*T M) satisfies
1€°]| o < 02172, €81, < 6¢72, V€|, < C, (78)
then there is a real number o such that

(w,v%) =T (u(o +-,-),  lof <c(ll€°]], + ).

Proof. It suffices to prove the result for a fixed pair 2+ € P?(V) of index differ-
ence one and a fixed parabolic cylinder v € M°%(z~,27;V). (The assumptions
and conclusions of the theorem are invariant under simultaneous time shift of u
and (u®,v%); up to time shift there are only finitely many index one parabolic
cylinders with Sy < a.) Define

c* = 8p(r7) = Sy(z™) > 0. (79)

Then, by the energy identity (107), we have ||85U||%2(RX51) = c*. Let (u%,0v%) €
ME(x~,2T; V) with € € (0,1]. Denote the time shift of u by

Ue(S,t) == u(s + o,t)
for o € R and define ¢ = ((0) = (§,n) by
ut = erpy,(§), v = P(uo,§) (Orug +1). (80)

The pair (§,n) is well defined whenever o ||0su||; o + [|£°]|  is smaller than the
injectivity radius pa; of M (i.e. when o and §¢'/? are sufficiently small). We
assume throughout that

6?2 < pTM

and choose o¢ > 0 so that o¢ ||Osu|| ;e < par/2.
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By Theorem A.1 and Theorem 5.1, there is a constant ¢y > 0 such that, for
every ¢ € (0,1] and every (u®,v°) € Mc(xz~,2";V), we have

10sullog + 10rull o + [[07]| s < co- (81)

It follows from (80) and (81) that ||n(o)||, < co for every o € [—0y¢, 0p]. Choose
0o > 0 so small that the assertion of the Uniqueness Theorem 4.3 holds with
C = ¢p and 0 = dg. We shall prove that for every sufficiently small € > 0 there
is a o € [—00,0¢] such that

Co) € im(D;)", €@l < doc™ (o)l < co- (82)

It then follows from Theorem 4.3 that (u®,v®) = T¢(u,). The proof of (82)
will take five steps and uses the following estimate. Choose ¢ > 1 such that
1/p+1/q = 1. Then, by parabolic exponential decay (see Theorem A.2), there
is a constant ¢; > 0 such that, for r = p, ¢, oo,

l0cull, + 1%0cull, + IVadsul, + [V Vidsul], < ca. (83)

STEP 1. For o € [—00,00] and € > 0 sufficiently small define
0% (o) == —(Z;, C>s )
where ¢ = ((o) is given by (80),

e X\ _ Osu \ (&
: ye |- Vtasu 77* )
® L 5* L £\ * e (e V¥\—1 e Osu
and Z: denotes the time shift of Z¢. Then 6°(c) = 0 if and only if { €
im(D;,_)*.
For ¢ > 0 sufficiently small, the operator D%, is onto, by Theorem 3.3, and, by

assumption, it has index one (see Remark 3.1). Hence Z¢ is well defined and
spans the kernel of DS; so

(2°)" = (ker D5)* = im(D5)"

where 1 denotes the orthogonal complement with respect to the e-dependent
L? inner product. It remains to prove that Z¢ # 0 for € > 0 sufficiently small.
To see this note that dsu # 0 and so the (0,2, €)-norm of the pair (Osu, V;0su) is
bounded below by a positive constant (the parabolic energy identity gives v/c*
as a lower bound). On the other hand,

* £\ % 15 ek —1 0
¢ =@ (P3P (gm0 (5)
and ||7-(0, VsV;0su)||,,» tends to zero as ¢ — 0. Hence, by Theorem 3.3, the

(0,2,¢)-norm of (* converges to zero as ¢ tends to zero. It follows that Z¢ # 0
for € > 0 sufficiently small and this proves Step 1.
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STEP 2. There are positive constants €y and co such that
0°0)] < e (I, +2)
for 0 < e <eg and every (u® = exp, (£%),v°) € M*(z~,z; V) satisfying (78).
We first prove that that there are positive constants £y and ¢z such that
X5 + 1Yl < es (85)

for 0 < € < gg. For the summands Osu of X¢ and V,0;u of Y¢ this follows
from (83) with r = g. Moreover, by (84) and Theorem 3.3, we have

€1, + 2l < ea (2110, %%0sw) o .. + 17 (0, TVidw)l, ) .
< 0453/2(51/2 + Kq) ||V8Vt(95u||q ‘

The last step uses Lemma D.3 with constant «q > 1. This proves (85). It follows
from (85) that

6°(0)] < e (1%, + 22 "l ) (87)
where n° € Q°(R x S, u*T M) is defined by
v =: ®(u, ) (du® + n°).

Define the linear maps Ej(z,§) : ToM — Ty, (¢)M by the formula

TP

%ezpm(f) =: F1(2,£)0:x + Ea(x, &)V, € (88)

for every smooth path x : R — M and every vector field ¢ € QO(R, 2*T M)
along z. Abbreviate ® := ®(u, &%) and E; := E;(u, &) for i = 1,2. Then

7 =& ' — du
=01 (v° — 9uf) + Y (ELdu + ExViEL) — Owu
=207 V0" + T EL VLT + (O E) — 1)0u.

By Corollary 8.2, there is a constant cs such that [|V;v®||, < 5. Moreover, there
is a constant cg > 0 such that [|[®~!E; — ]1||p < c6|€°||,,- Hence there is another
constant ¢7 > 0 such that

191, < er (= + 191, + 1€°1,) < er (1€°1), +C +1).

Combining this with (87) proves Step 2.
STEP 3. There is a constant cg > 0 such that

I€(0) I < 06 +eslol, (o)l < co,

IVl < s, %€ + Osugl, < es (Jo] +6572) . IIE(@)]], < 6V/2 + eso]

for0<e<egy and |o| < oy.
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For every o € R, we have
d(u(s +0,t),u(s,t)) < L(7) < o} [|0sull ,

where v(r) := u(s + ro,t), 0 < r < 1. Moreover, by (78), d(u(s,t),u°(s,t)) <
de'/2. Hence the first estimate of Step 3 follows from the triangle inequality.
The second estimate follows from the identity

1(0) = ®(uq, £(0)) ™ 0" — dpue

and (81). To prove the next two estimates we differentiate the identity

£

exp,, (§(0)) = u

with respect to ¢ and s to obtain
Ey (ucn 5)851140 + E2(um g)vcré. =0, £y (uda g)asua + E2(uaa €)VS§ = 0su®.

By the energy identities the L? norms of dsu and dsu® are uniformly bounded
and hence, so is the L? norm of V,£. Moreover,

1N + 0o, = || (B2 By = 1) O], < e €0 e < exo (o] +0572) .

Hence the L? norm of V£ is uniformly bounded. Now differentiate the function
o~ [[{(o)],, to obtain the inequality [[£(o)]], < [[£(0)[|, + ci1]o|. Then the last
inequality in Step 3 follows from (78).

STEP 4. Shrinking og and €y, if necessary, we have

d
do
for 0 < e <ey and |o| < ag, where c* is defined by (79).

We will investigate the two terms in the sum

d 15 _ d € d €
59 (0)__%<X07€(0)>_52%@/0777(0» (89)

separately. The key term is (X2, V,£). We have seen that X& is L9-close to
Osu, and V£ is LP-close to —dsu,. We shall prove that all the other terms are
small and hence 9,6° is approximately equal to |\8Su||§ More precisely, for the
first term in (89) we obtain

_4 (XE €)= —(XE,V,8) — (V, X5, €)

do
= ||3su||§ - <X§, Osugy + VG§> - <§*a 8sud>
- <vsasu0'7§> - <£;7VS€>
> || 9sully - erz (10vs + Vol + 1€, + €], )

> || 9sully - e1s (Jo| + 0222 + £%2).

C*
0°(o) > —
()25
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Here the second step follows from integration by parts. The third step uses
the inequalities [[X*[[, < ¢ (see (85)), [|Osull, + [[VsOsull, < ¢ (see (83)), and
[Vs€ll, < ¢ (see Step 3). The last step uses Step 3 and (86).

To estimate the second term in (89) we differentiate the identity

D(uq,£(0))(0ruo +n(0)) = v

with respect to o to obtain
VBt + Voml, < exa (J10wull, + [1%61],) < ers.

In the first inequality we have used the fact that the L* norms of n(o) and
Osus are uniformly bounded. In the second inequality we have used Step 3.
Combining this estimate with (83) we find that the L? norm of V7 is uniformly
bounded. Differentiating the same identity with respect to s we obtain

I¥:Butto + Vnl, < 16 (%0, + 1sull, + IVl ) < rr.
Here the last inequality follows from Step 3 and Corollary 8.2. Using (83) again,
we obtain that the LP norm of V,n is uniformly bounded. Now

d

(Y5 n) = (Y5 m) +€2(Y5, Vo)

= —eX(YE, V) + 2(YE,Von)

< c15”.

82

In the last estimate we have used (85) and the uniform estimates on the L?
norms of V,n and Vy7n. Putting things together we obtain

d
07(0) > [9,ull; = cro (Jo] + %) .
Since ||8Su||§ = ¢*, the assertion of Step 4 holds whenever 0 < € < ¢, |o| < 0y,
and c19(0g + 6(1)/2) < c*/2.

STEP 5. We prove Theorem 9.1.

Suppose the pair (u®,v°) satisfies the requirements of the theorem with £ and ¢
sufficiently small. Then, by Steps 2 and 4, there is a o € [—0y, 0¢] such that

0°(0) =0, o] <coolll€°]l, +€%), 0=

c*

Let £ := &(0) and 7 := n(c). Then, by Step 1, we have ¢ := (§,7) € im (D;_)*
and, by Step 3,

€]l s < (6 + csean(d +&%/2))e'/2, Ml < co

If § + cgcao(6 + £3/2) < §p then, by Theorem 4.3, (u®,v%) = T°(uy ). O
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10 Surjectivity

Theorem 10.1. Fiz a perturbation V : LM — R that satisfies (VO — V4).
Assume Sy is Morse-Smale and fix a constant a € R. Then there is a constant
g0 > 0 such that, for every ¢ € (0,0) and every pair = € P*(V) of index
difference one, the map T¢ : M%(z=,2%; V) — M=(x~,2%;V), constructed in
Definition 4.4, is bijective.

The proof relies on the following two lemmas. We use the notation

T 1
Ei_pm)(u) ;:/ / |Oul® dtds
-7.J0

foru:Rx S'— M and T > 0.

Lemma 10.2. Assume Sy is a Morse function. Let 2+ € P(V) and (ui,v;) €
MEi(z= 27 V) where g; is a sequence of positive real numbers converging to
zero. Then there is a pair xo, 1 € P(V), a parabolic cylinder u € M%(xq,x1;V),
and a subsequence, still denoted by (u;,v;), such that the following holds.

(i) (us,v;) converges to (u,dyu) strongly in C' and weakly in WP on every
compact subset of Rx S and for every p > 1. Moreover, v;—0su; converges
to zero in the C' norm on every compact subset of R x S'.

(ii) ForallseR and T >0,
SV(U(S’ )) = Zliglo AV(ui(S; ')a Ui(87 ))7
E;_pq(u) = lim EF:’T)T] (ug,v;).

11— 00

Proof. By the energy identity (8) and Theorems 5.1, 6.1, and 7.1, there is a
constant ¢ > 0 such that

lvill o + 110eusll o, + 10suill o, + IVevill o + || Vsvill o, < e (90)
HvsatUin + ||vsasui||p + ||VtVSUi||p =+ ||vsvsvi||p < c, (91)
[Vi0ruil| o + [[ViVevill o <€ (92)

for every i € N and every p € [2,00]. In (90) the estimate for V,v; follows from
the one for dsu; and the identity Viv; = dsu; — grad V(u;). The estimate for
Ozu; follows from the ones for v; and Viv; and the identity diu; = v; — EZZVS’UZ'.
In (92) the estimate for V;0;u; follows from the ones for Viv; and V;Vsv; and
the identity V;0yu; = Viv; — 2V, Vsv;. The estimate for V;Viv; follows from the
ones for V;0su; and dyu,; and the identity V;Viv; = Vi0su; — Vigrad V(u;).

By (90), (91), and (92) the sequence (u;,v;) is bounded in C? and hence in
W2P ([T, T]x S1) for every T > 0 and every p > 1. Hence, by the Arzela-Ascoli
theorem and the Banach—Alaoglu theorem, a suitable subsequence, still denoted
by (u;, v;), converges strongly in C'* and weakly in W?2? on every compact subset
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of R x S! to some W2P-function (u,v) : R x S — T M. By (90) and (91), the
sequence
V; — 6tul- = E?VSUZ'

converges to zero in the C' norm. Hence v = O,u. Moreover, the sequence
Osu; — Vi Oru; — grad V(u;) = EthVSUi

converges to zero in the sup-norm, by (91), so the limit v : R x S — M
satisfies the parabolic equation (12). By the parabolic regularity theorem A.3,
u is smooth and so is v = dyu. This proves (i).

To prove (ii) note that

T 1
E[fT,T] (u) = lim / / |8Sui|2 dsdt
-7 JO0

T 1
lim / / (|85ui|2 + &2 |V5’UZ‘|2) dsdt
11— 00 -T 0

= lETgQ E[Ei'LT] (ui7 Ui)

for every T'; here the second identity follows from (90). Hence the limit u has
finite energy and so belongs to the moduli space M°(zg,z1;V) for some pair
xo,21 € P(V). To prove convergence of the symplectic action at time s note
that

V(u(s,-)) = lim V(ui(s,-)),

11— 00

because V is continuous with respect to the C° topology on LM. Moreover
I 5
So(u(s,-)) = 3 [Opu(s, t)|” dt
0
1

_ lim ((@ui(&t),vi(s,t» - % |vi(s,t)|2> dt

1—00 0
= lim Ag(u;(s,-),vi(s,")).
Here the second equality follows from the fact that d:u;(s,-) and v;(s,-) both
converge to dyu(s, ) in the sup-norm. This proves the lemma. O

Lemma 10.3. Assume Sy is a Morse function. Let z* € P(V) and (u;,v;) €
MEi(z= 2T; V) where g; is a sequence of positive real numbers converging to
zero. Then there exist periodic orbits x= = 2%,z ... 2 = ot € P(V),
parabolic cylinders u® € MO(xF=1, 2% V) for k € {1,...,4}, a subsequence,
still denoted by (ui,v;), and sequences s¥ € R, k € {1,...,£}, such that the
following holds.

(i) For every k € {1,...,0} the sequence (s,t) — (u;(sk + s,t),v;(s¥ + s,1))
converges to (u¥, 0,u¥) as in Lemma 10.2.

(ii) s¥—st! diverges to infinity fork = 2,....0 and dsu® #0 fork =1,..., L.
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(iii) For every k € {0,...,¢} and every p > 0 there is a constant T > 0 such
that, for every i and every (s,t) € R x St,

sE4HT <s<sttl T = d(ui(s,t), 25 (t)) < p.

Z+1

(Here we abbreviate s{ := —oo and s; 7" := 00.)

Proof. Denote a := Sy(x~) and choose p > 0 so small that d(z(t),2'(t)) > 2p
for every t € R and any two distinct periodic orbits z, 2’ € P%(V). Choose s}

such that

sup supd(z~ (t),u;(s, 1)) < p, supd(z~ (t),ui(s}, 1)) = p. (93)
s<st t t

Passing to a subsequence we may assume, by Lemma 10.2, that the sequence
(ui(st+-,-),vi(st +-,-)) converges in the required sense to a parabolic cylinder
ul € MO(20 215 V), where 20, 2! € P(V). By (93), we have 2° = 2~ and z! #
2%, Hence dsu' # 0 and so Sy(z!) < SV( 9). If ! = 2™ the lemma is proved.
If 2! # 2 choose T > 0 such that d(u'(s,t),z'(t)) < p for every t and every
s > T. Passing to a subsequence, we may assume that d(u;(s! +7T,t),z(t)) < p
for every t. Since z! # xT there exists a sequence s? > s} + T such that

sup sup d(zl(t)a UZ‘(S, t)) < P sup d(‘rl (t)vul(sfa t)) =p.
s}-l—TSsSs? t t

The difference s? — s} diverges to infinity and, by Lemma 10.2, there is a further
subsequence such that (u;(s?+-,),v;(s?+-,-)) converges to a parabolic cylinder
u? € MOzt 2%V), where Sy(z?) < Sy(z!). Continue by induction. The
induction can only terminate if ¢ = 2*. It must terminate because P¢(V) is a
finite set. This proves the lemma. O

Proof of Theorem 10.1. By Theorem 4.3 the map 7 ¢ is injective for £ > 0 suf-
ficiently small. We will prove surjectivity by contradiction.

Assume the result is false. Then there exist periodic orbits % € P%(V) of
Morse index difference one and sequences ¢; > 0 and (u;,v;) € M (z~,2;V)
such that

lim ¢, =0, (uiyvi) ¢ TS (MO (2™, 23 V). (94)

11— 00

Applying a time shift, if necessary, we assume without loss of generality that

Ay (u3(0, ), 0:(0, ) = %(Sy(x_) - Sy(at)). (95)

Fix a constant p > 2. We shall prove in two steps that, after passing to a
subsequence if necessary, there is a sequence u? € M%(z~,z7;V) and a constant
C > 0 such that

Ui = €TPy0 (51')7
where the sequence & € QY(R x St, (ud)*T M) satisfies

lim &7 2 (llgill + l&ill,) =0, V&l < C. (96)

92



Hence it follows from Theorem 9.1 that, for i sufficiently large, there is a real
number o; such that (u;,v;) = T (u?(o;+-,)). This contradicts (94) and hence
proves Theorem 10.1.

STEP 1. For every 6 > 0 there is a constant Ty > 0 such that
E]l%\[fTo,To] (ui,v;) <0 (97)

for every i € N.

Assume, by contradiction, that the statement is false. Then there is a constant
6 > 0, a sequence of positive real numbers T; — 0o, and a subsequence, still
denoted by (e;,u;,v;), such that, for every i € N,

EfiTini] (i, v;) < Sy(z7) — Sp(z™) — 4. (98)
Choose a further subsequence, still denoted by (u;,v;), that converges as in
Lemma 10.3 to a finite collection of parabolic cylinders u* € M°(z*~1 2*; V),
E=1,...,¢ withae™ =2%2',... 271 2 = 2% € P(V). We claim that £ > 2.
Otherwise, u;(s; + -, -) converges to u := u* € M@, 27;V) as in Lemma 10.2
(for some sequence s; € R). By (95) and Lemma 10.2 (ii), the sequence s; must
be bounded. By (98), this implies that

T 1
Ei_pm(u) = / / |85u|2 dtds < Sy(x™) — Sy(zt) -6
~r.Jo

for every T' > 0. This contradicts the fact that u connects = with . Thus
we have proved that £ > 2 as claimed. Since Sy is Morse-Smale it follows that
the Morse index difference of = and z is at least two. This contradicts our
assumption and proves Step 1.

STEP 2. Fori sufficiently large there is a parabolic cylinder u9 € M°(x=,27;V)
and a vector field & € Q°(R x S, (ul)*T' M) such that u; = expyo (&) and &
satisfies (96).

Let §, c and p denote the constants in Theorem 8.1 and choose Ty > 0, according
to Step 1, such that (97) holds with this constant 6. Then, by Corollary 8.2,

2 2 —pls i
|05ui (s, 1) + | Vsvi(s, )| < cze™”! ‘Eﬂz\[_TmTo](ui,Ui) (99)

for |s| > Tp+2 and a suitable constant ¢ > 0. By Theorem 5.1 and Theorem 6.1,
there is a constant ¢4 > 0 such that

[0ill oo + 10suill oo + 10cuill o + [[Vavill o < ca (100)

for every i. Here we have also used the identity d,u; = v; — sfvsvi. It follows
from (99) and (100) that there is a constant ¢5 > ¢4 such that

|Osui(s, )] + [Vevi(s, £)] < %
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for every (s,t) € R x S! and every i € N. Moreover, it follows from Theorem 7.1
that
|0su; — V;Opu; — gradV(ui)Hp = Ef HVtstin < cﬁsf.

for a suitable constant ¢g > 0. Now let dg = do(p,c5) and ¢ = ¢(p, c5) be the
constants in the parabolic implicit function theorem A.5. Then the function
u; satisfies the hypotheses of Theorem A.5, whenever 06512 < §p. Hence, for i
sufficiently large, there is a parabolic cylinder u{ € M%(z~,27;V) and a vector
field & € QO(R x St, (ud)*T M) such that

u; = exp,o (&),
”&”Wuo < ¢7 |0su; — ViOpu; — grad V(uy)|[, < coCrer.
By the Sobolev embedding theorem, we have
I€illoo < s lSillyy,, < cocrese?
for large i. Moreover, by definition of the Wyo-norm and Lemma D.4 we have
181, + INa&ell, < 21igillw,, < 2cec7e}.

Hence &; satisfies (96). This proves Step 2 and the theorem. O

Corollary 10.4. Fiz a perturbation V : LM — R that satisfies (VO — V4).
Assume Sy is Morse-Smale and fix a regular value a of Sy. Then there is a
constant 9 > 0 such that, for every e € (0,¢e¢], the following holds.

(i) Ifz* € PYV) have index difference less than or equal to zero and v # 2~
then Me(z—,2t; V) = 0.

(ii) If 2 € P*(V) have index difference one then

H#MO(z7, 2z V) /R = #M°(z™,2T; V) /R.

(iii) If 2* € P*(V) have index difference one and (u,v) € M®(z~,2"; V) then
D ., is surjective.

u,v

Proof. Assertion (i) follows from Lemma 10.3. Assertion (ii) follows from Theo-
rems 4.1 and 10.1. Assertion (iii) follows from Theorems 4.1, 3.3, and 10.1. O

11 Proof of the main result

Theorem 11.1. The assertion of Theorem 1.1 holds with Za-coefficients.
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Proof. Let V; be a potential such that Sy is a Morse function on the loop space
and denote

V() = /0 Vi(a(t)) dt.

Fix a regular value a of Syy. Choose a sequence of perturbations V; : LM — R,
converging to V in the C*> topology, such that Sy, : LM — R is Morse-Smale
for every i. We may assume without loss of generality that the perturbations
agree with V near the critical points and that P(V;) = P(V) for all i. Let &; > 0
be the constant of Corollary 10.4 for V = V;. Then, by Corollary 10.4,

#M (27, 2T V) /R = #M® (27,275 V) /R

for every pair ¥ € P*(V) with index difference one. Hence the Floer boundary
operator on the chain complex

C'(ViZy):= P Zox,
zePe(V)

defined by counting modulo 2 the solutions of (11) with V = V; and ¢ = ¢;
agrees with the Morse boundary operator defined by counting the solutions
of (12) with ¥V = V;. Let us denote the resulting Floer homology groups by
HFS(T*M,V;,e4;Z2). Then, by what we have just observed, there is a natural
isomorphism

HFL(T"M, Vi, 43 Z2) = HML (LM, Sy, Z2) = Ho({Sv, < a};Zs).

Here the last isomorphism follows from Theorem A.7. The assertion of Theo-
rem 1.1 with Zy coefficients now follows from the isomorphisms

HF{(T*M, Hy; Zo) X HFS(T*M; Vs, ei; Za)

and
Ha({Sv; < a};Z2) = Hi({Sv < a};Zs)

for 4 sufficiently large. Here the second isomorphism follows by varying the level
a and noting that the inclusions {Sy < a} — {Sy, < b} — {Sy < ¢} are
homotopy equivalences for a < b < ¢, ¢ sufficiently close to a, and i sufficiently
large. To understand the isomorphism on Floer homology, we first recall that the
Floer homology groups HF{(T*M, Hy;Zs) (for a nonregular Hamiltonian Hy
and a regular value a of the symplectic action Ay ) are defined in terms of almost
complex structures J and nearby Hamiltonian functions H, such that (J, H) is
a regular pair in the sense of Floer; one then defines HFS(T*M, Hy;Zs) =
HF$(T*M, H, J; Z2) and observes that the resulting Floer homology groups are
independent of J and of the nearby Hamiltonian H. Now let J = J., be the
almost complex structure of Remark 1.3 and choose a J,-regular Hamiltonian
H = Hy + W with W sufficiently close to zero and of compact support. Then
the Floer equation for the pair (J;,, H) can be written in the form

Osu + Vv = VVi(u) + Wi (u,v),  €2Vov+ du = v+ Wi (u,v). (101)
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Now the standard Floer homotopy argument can be used to relate the Floer
complex associated to (101) to that of

Osu + Vv = grad V; (u), £2V,v + Opu = v. (102)

To carry the standard theory over to the present case one must establish the
apriori bound of Section 5 for the solutions of the time dependent Floer equation.
To establish these one can use the arguments of Section 5 (with eps=1) in an
almost word by word fashion. In particular, the key estimate (35) remains
valid if the metric and perturbation depend on s. Once this is understood,
the standard Floer homotopy arguments apply (see [8, 22, 23] for example).
This shows that HFS(T* M, Hy; Zs) is isomorphic to HFS(T* M, V;, €;; Zs) for
sufficiently large. This proves Theorem 1.1 with Zs coefficients when a < oo.
For a = oo the result follows from naturality and a direct limit argument. [

To prove the result with integer coefficients it remains to examine the orien-
tations of the moduli spaces. The first step is a result about abstract Fredholm
operators on Hilbert spaces.

Let W C H be an inclusion of Hilbert spaces that is compact and has a dense
image. Let R — L(W, H) : s — A(s) be a family of bounded linear operators
satisfying the following conditions.

(A1) The map s — A(s) is continuously differentiable in the norm topology.
Moreover, there is a constant ¢ > 0 such that

IAG)EN g + Al er < cll€lly
for every s € R and every £ € W.

(A2) The operators A(s) are uniformly self-adjoint. This means that, for each
s, the operator A(s), when considered as an unbounded operator on H, is
self adjoint, and there is a constant ¢ such that

1€llw < e (IA)El e + 11€ll)

for every s € R and every £ € W.
(A3) There are invertible operators A* : W — H such that

lim [|A(s) 0.

s—+oo

- Ai”ﬁ(W,H) =

(A4) The operator A(s) has finitely many negative eigenvalues for every s € R.

Denote by S(W, H) the set of invertible self-adjoint operators A : W — H with
finitely many negative eigenvalues. For A € S(W, H) denote by E(A) the direct
sum of the eigenspaces of A with negative eigenvalues. Given AT € S(W, H)
denote by P(A~, AT) the set of functions A : R — L(W, H) that satisfy (A1-4)
and by P the union of the spaces P(A~, A) over all pairs AT € S(W, H). This
is an open subset of a Banach space.
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Denote
W= L*RW)NnW"*R,H), H:=L*R,H)

and, for every pair A* € S(W,H) and every A € P(A~, A"), consider the
operator Dy : W — 'H defined by

(Dag)(s) := &(s) + A(s)&(s)
for £ € W. This operator is Fredholm and its index is the spectral flow, i.e.
index(D4) = dim E(A™) — dim E(A™)

see Robbin—Salamon [19]). The formal adjoint operator D% : W — H is given
( j P A g
by D%n = —n + An. Denote by

det(Dy) := A (ker Dy) @ A (ker (Da)*)

the determinant line of D4 and by Or(D,4) the set of orientations of det(Dy).
For A € S(W, H) denote by Or(A) the set of orientations of E(A).

Remark 11.2 (The finite dimensional case). Assume W = H = R". Let AT
be nonsingular symmetric (n X n)-matrices and A € P(A~, AT). Suppose that
A(s) = A* for 45 > T. Define ®(s, s9) € R"*" by

0sP(s,50) + A(8)P(s,80) =0, D(s0,80) = 1L
Define
E*(s) := {5 e R"| ngcnmq)(r, s)E = O} .
Then E~(s) = E(A7) for s < =T and E*(s) = E(A*)* for s > T. Moreover,
kerD4 = E~(s) N ET(s), (imD4)*" = (B~ (s) + ET(s))*.
Hence there is a natural map
74 :Or(A7) x Or(A") — Or(Da4)

defined as follows. Given orientations of E(A~) = E~(s) and E(A") = E*(s)*,
pick any basis uy,...,us of E=(s) N ET(s) = ker D4. Extend it to a positive
basis of £~ (s) by picking a suitable basis v1, ..., v, of E~(s) N E*(s)*. Now
extend the vectors v; to a positive basis of E* (s)* by picking a suitable ba-
sis wi,...,w, of (E~(s) + E*(s))* = (imDa)*. Then the bases u,...,u,
of kerDy and ws,...,w, of (im ’DA)L determine the induced orientation of
det(Da). Note that this is well defined (a sign change in the u; leads to a sign
change in the wy,).
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Remark 11.3 (Catenation). Let Ag, Ay, Ay € S(W, H) and suppose that Ag; €
P(Ao, Al) and A5 € P(Al, Ag) satisfy

AO if s < —T, Al if s S —,‘T7
Ao (s) = = Ara(s) = 103
o1(5) {A1 ifs>T, 12(5) {A2 ifs>T. (103)

For R > T define A, € P(Ag, A2) by

(104)

Alg(s - R) if s Z 0.

If Dy, and Da,, are onto then, for R sufficiently large, the operator D 4r is
onto and there is a natural isomorphism

S® . ker Da,, ®ker Da,, — ker Dy,

The isomorphism S® is defined by composing a pre-gluing operator with the
orthogonal projection onto the kernel. That this gives an isomorphism follows
from exponential decay estimates for the elements in the kernel and a uniform
estimate for suitable right inverses of the operators D 4 (see for example [22]).

Theorem 11.4. There is a family of maps
74 : Or(A7) x Or(A™T) — Or(Da),

one for each pair of Hilbert spaces W C H with a compact dense inclusion, each
pair AT € S(W, H), and each A € P(A~, A1), satisfying the following azioms.

(Equivariant) 74 is equivariant with respect to the Za-action on each factor.

(Homotopy) The map (A,0™,07)—(A,74(07,0T)) from the topological space
{(A,0=,0") | A € P, o € Or(A*)} to {(A,0)|A € P,o € Or(Da)} is

continuous.

(Naturality) Let ®(s) : (W,H) — (W', H’) be a family of (pairs of ) Hilbert
space isomorphisms that is continuously differentiable in the operator norm
on H and continuous in the operator norm on W. Suppose that there
exist Hilbert space isomorphisms ®* : (W, H) — (W', H') such that ®(s)
converges to ®* in the operator norm on both spaces and <I>(s) converges
to zero in L(H) as s — +oo. Then

T, A(P 07, ®f0T) = du7a(07,0T)
for all A* € S(W,H), A€ P(A~,A"), and o* € Or(A*).
(Direct Sum) If Aj[ € S(W;,H;) and A; € ’P(A;,Aj) for j=0,1 then
Tao@41 (0 ® 01,05 @ 0]) = Taq (0 ,07) © 7a (01, 01 ).

for all ojt € Or(A;t).
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(Catenation) Let Ag, A1, As € S(W, H), suppose that Ag1 € P(Ap, A1) and
Ajs € P(A1, Ag) satisfy (103) and, for R > T, define A, by (104).
Assume Dy, and Da,, are onto. Then D yp, is onto for large R and

Aoz (00, 02) = ol (TA01 (00, 01), T4y, (01,02)) -
for og € Or(Ap), o1 € Or(Ay), and o2 € Or(Az). Here the map

o™ det(Day, ) x det(Da,,) — det(Dyx )

is induced by the isomorphism ST of Remark 11.3.

(Constant) If A(s) = AT = A~ and o7 = o~ € Or(A*) then ta(0™,0") is
the standard orientation of det(Da) = R.

(Normalization) If W = H =R" then 74 is the map defined in Remark 11.2.

The maps T4 are uniquely determined by the (Homotopy), (Direct Sum), (Con-
stant), and (Normalization) axioms.

Theorem 11.4 is standard with the techniques of [9] (although the assump-
tions are not quite the same as in the work of Floer and Hofer).

Proof of Theorem 1.1. Assume Sy is Morse-Smale. For 2 € P(V) denote by
W*(z) the unstable manifold of « with respect to the negative gradient flow of
Sy. Thus W¥(z) is the space of all smooth loops y : S — M such that there
exists a solution u : (—00,0] x ST — M of the nonlinear heat equation (12) that
converges to x as s — —oo and satisfies u(0,¢) = y(¢). Then W*(z) is a finite
dimensional manifold (see for example [3]). It is diffeomorphic to R* where
k = indy(x) is the Morse index of x as a critical point of Sy. Fix an orientation
of W*(x) for every periodic orbit x € P(V). These orientations determine a
system of coherent orientations for the heat flow as follows.

Fix a pair 7 € P(V) of periodic orbits that represent the same component
of LM. Denote by P°(z~,z7") the set of smooth maps u : R x S1 — M such
that u(s,-) converges to x& in the C? norm and d,u(s,-) converges to zero in
the C'! norm as s tends to +00. Then, in a suitable trivialization of the tangent
bundle u*T M, the linearized operator DY has the form of an operator D4 as
in Theorem 11.4 where the spaces E(A*) correspond to the tangent spaces
T,+W"(zF) of the unstable manifolds. Hence, by Theorem 11.4, the given
orientations of the unstable manifolds determine orientations

v%(u) € Or(det(D?))

of the determinant lines for all u € P°(z~,z%) and all 2* € P(V). By the
(Naturality) axiom, these orientations are independent of the choice of the triv-
ializations used to define them. By the (Catenation) axiom, they form a system
of coherent orientations in the sense of Floer—Hofer [9)].
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Next we show how the coherent orientations for the heat flow induce a system
of coherent orientations

v (u,v) € Or(det(D;, ,))

for the Floer equations (11). Let us denote by P(z~,z*) the set of smooth
maps (u,v) : R x S — TM such that (u(s,-),v(s,-)) converges to (z*,3%) in
the C! norm and (dsu, Vsv) converges to zero, uniformly in ¢, as s tends to 4-o00.
By the obvious homotopy arguments it suffices to assume u € P°(z~,2%) and
v = Oyu. We abbreviate

DE — 151

[ u,0ru*

It follows from the definition of the operators in (14) that

- (€ 0
D=0 = D (vtg>—(vsvt§+R<s,asu>8tu)'

Hence D¢ (€, Vi) is small in the (0,2, ¢)-norm. If the operator DY is onto then
the estimate of Theorem 3.3 shows that the operator D, is onto as well. As both
operators have the same index, their kernels have the same dimension. Hence,
again by Theorem 3.3, the map

ker DO — ker DS : € <V§§> — D5 (DEDSY) D (ég) (105)
is an isomorphism between the kernels and we define v¢(u, d;u) to be the image
of ¥°(u) under the induced isomorphism of the top exterior powers. If DY is not
onto we obtain a similar isomorphism between the determinant lines of DY and
D¢, by augmenting the operators first to make them surjective. That the result-
ing orientations v°(u, dyu) of the operators D%, satisfy the (Catenation) axiom
follows from a linear version of the standard pregluing construction; namely an
approzimate basis of the kernel of the glued operator can be obtained from pairs
of basis elements of the two operators involved in the gluing construction. This
gives an isomorphism

ker DY x ker’Dg12 — ker DY

uo1 uo2

and similarly for €. These isomorphisms commute with the isomorphisms (105)
up to small perturbations of order e. Hence the orientations v°(u,v) satisfy the
(Catenation) axiom and so form a system of coherent orientations for the Floer
equations.

Now assume that 2% € P(V) have Morse index difference one. Consider the
map

T M2, 2™ V) — ME(z, 2t V)

of Definition 4.4 and recall that, by Theorem 10.1, it is bijective. It follows
from the proof of Theorem 9.1 that the map 7° satisfies the following. Let
u € MOz, 2";V) and

(uf,v%) :=T%(u) € Me(x~,2"; V).
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Then the vector dsu € ker DY is positively oriented with respect to v°(u) if and
only if the vector (Jsu®, Vsv®) € ker Dj. . is positively oriented with respect
to v°(u®,v%). In other words, fix a positive generator Z € ker D% and let
Z¢ € ker D¢ be its image under the composition

us,ve

ker D) — ker D5, 5, — ker Dj-
of the isomorphism (105) with a parallel transport map. Then Z¢ determines
the orientation v°(u®, v®) of the kernel of D;. .. Moreover, the first component
dominates the e-inner product of (9su®, Vsv°) with Z= which therefore has the
same sign as the L2-inner product of dsu with Z. This brief sketch shows that
the bijection 7€ preserves the signs for the definitions of the two boundary
operators. Hence the Morse complex of the heat flow has the same boundary
operator as the Floer complex for e sufficiently small. Hence the resulting
homologies are naturally isomorphic, i.e. for every regular value a of Sy there

is a constant g > 0 such that
HF(T*M,V,e;Z) 2 HMS (LM, Sy; Z)

for 0 < € < gg. In fact, we have established this isomorphism on the chain level
and with integer coefficients. To complete the proof of Theorem 1.1 one can
now argue as in the proof of Theorem 11.1 to show that, given a potential V'
such that Sy is Morse and a regular value a of Sy, we have two isomorphisms

HF(T* M, Hy;Z) = HF(T* M, V), ; 7))
and
HM{ (LM, Sv; Z) = Ho ({Sv < a}; Z)

for a suitable perturbation V and € > 0 sufficiently small. This proves the result
for integer coefficients and a < co. The argument for general coefficient rings is
exactly the same.

To prove the result for a = oo we observe that, by construction, our isomor-
phisms HF (T*M, Hy; Z) =2 H,.({Sy < a};Z) intertwine the homomorphisms

HF(T*M, Hy; Z) — HFY(T*M, Hy;Z),  H.({Sv < a}) — H.({Sy < b})

for a < b. Hence the result for a = oo follows by taking the direct limit a — oo
and noting that there are natural isomorphisms

HF.(T* M, Hy) = lim HF?(T*M, Hy)

a€R
and
HL(£M) 2 lim H.({Sy < a}).
a€R
This proves Theorem 1.1. O
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A The heat flow

In this appendix we summarize results from [31] that are used in this paper.
We assume throughout this appendix that M is a closed Riemannian manifold.
Let V : LM — R be a smooth function that satisfies the axioms (V0 — V4).
Consider the action functional

I
Sv(a) = 3 [ )P dt - Via)
0
and the corresponding heat equation
Osu — Vi Opu — grad V(u) = 0 (106)

for smooth functions R x S* — M : (s,t) — u(s,t). In the following we denote
by P(V) € C*(S', M) the set of critical points z of Sy (i.e. of solutions of
the equation V& + grad V(x) = 0), and by P%(V) the set of all z € P(V) with
action Sy(z) < a. For two nondegenerate critical points 2+ € P(V) we denote
by M°(x~,2%; V) the set of all solutions u of (106) that converge to x*(t) as
s — Fo00. The energy of such a solution is given by

E(u) := /700 /0 0ul® dtds = Sy(z~) — Sy(a™). (107)

Theorem A.1 (Apriori estimates). Fiz a perturbation V : LM — R that satis-
fies (VO—=V1) and a constant co > 0. Then there is a constant C = C(cg,V) > 0
such that the following holds. If u : R x S* — M is a solution of (106) such
that Sy (u(s,-)) < co for every s € R then

18sull o + [[0rull o + [[ViOrull o < C.

Theorem A.2 (Exponential decay). Fiz a perturbation V : LM — R that
satisfies (VO — V4) and assume Sy is Morse.

(F) Let u: [0,00) x S1 — M be a solution of (106). Then there are positive
constants p and c1,ce,c3,... such that

195ull ot 00y x51) < exe ™"

for every T > 1. Moreover, there is a periodic orbit x € P(V) such that
u(s,t) converges to x(t) as s — oo.

(B) Letu:(—00,0] x St — M be a solution of (106) with finite energy. Then
there are positive constants p and c1,ca,cCs,... such that

—pT
H35u||ck((_oo7_T]X51) < cpe P
for every T > 1. Moreover, there is a periodic orbit x € P(V) such that

u(s,t) converges to x(t) as s — —oo.
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Theorem A.3 (Regularity). Fiz a constantp > 2 and a perturbationV : LM —
R that satisfies (VO —V4). Let u: R x S' — M be a continuous function which
is locally of class WP, Assume further that u is a weak solution of (106). Then
u s smooth.

The covariant Hessian of Sy at a loop z : S* — M is the operator A(z) :
W22(St 2*TM) — L*(S*, 2*T M), given by

A(x)§ = =ViVi§ — R(§, &)& — Hy ()¢

This operator is self-adjoint with respect to the standard L? inner product on
QO0(St,2*TM). In this notation the linearized operator DY : WP — LP is given
by

D2§ 1= Vsl + A(us)§
where us(t) := u(s,t). (See Section 3 for the definition of the spaces W,, = WP
and £, = LP.)

Theorem A.4 (Fredholm). Fiz a perturbationV : LM — R that satisfies (VO—
V4) and assume Sy is Morse. Let x* € P(V) and u : R x S' — M be a
smooth map such that u(s,-) converges to x™ in the C? norm and Osu converges
uniformly to zero as s — +o0o. Then, for every p > 1, the operator D% : WP —
LY is Fredholm and its Fredholm index is given by

index DY = indy(z~) — indy(z ™).

Here indy(x%) denotes the Morse index of x*, i.e. the number of negative
eigenvalues of A(z™).

Theorem A.5 (Implicit function theorem). Fiz a perturbation V : LM — R
that satisfies (V0 —V4). Assume Sy is Morse and that DY is onto for every u €
MOz, 2%, V) and every pair 2+ € P(V). Fix two critical points = € P(V)
with Morse index difference one. Then, for all cg > 0 and p > 2, there exist
positive constants 6o and c such that the following holds. If u: R x S' — M
is a smooth map such that lims_ 4.0 u(s, ) = x*(-) ewists, uniformly in t, and

such that
Co

aS 7t < )
Ouals. )] < 10

|Ovu(s,t)| < co
for all (s,t) € R x S* and
[0su — ViOru — grad V(u)|,, < do.

Then there ezist elements ug € M°(x~,2";V) and £ € im(DY )* N Wy, satis-
fying
u=expy, (&), [, <cllfsu—Vidiu—gradV(u)],.

Theorem A.6 (Transversality). For a generic perturbation V : LM — R satis-
fying (VO —V4) the function Sy : LM — R is Morse—Smale in the sense that
every critical point x of Sy is nondegenerate (i.e. the Hessian A(z) is bijective)
and every finite energy solution u : R x St — M of (106) is regular (i.e. the
Fredholm operator DY is surjective).
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Theorem A.7. Let V : LM — R be a perturbation that satisfies (VO — V4)
and assume that Sy is Morse—Smale. Then, for every reqular value a of Sy and
every principal ideal domain R, there is a natural isomorphism

HM®(LM,Sy; R) = H,(L°M;R), LM :={z € LM |Sy(z) < a}.

If M is not simply connected then there is a separate isomorphism for each com-
ponent of the loop space. The isomorphism commutes with the homomorphisms
HM® (LM, Sy) — HME (LM, Sy) and H.(LOM) — H,(L°M) for a < b.

Comments on the proofs

The apriori estimate. A uniform bound on fol |0yul? dt is obvious, by ax-
iom (V0) and the fact that Sy (u) decreases along the solutions of equation (106).
Using the estimate (35) with e = 0 one then gets

(3152 — 05)|0sul* > —p|Opul|* — 1.

One can now use Lemma B.1 to obtain the pointwise estimate.

Compactness, regularity, and exponential decay. For compactness and
Fredholm theory parabolic regularity theorems play a central role - a good
reference is [15]. The exponential decay estimates in the standard Floer theory
(eg [20, 22]) carry over to the parabolic case. The proof involves parabolic
(instead of elliptic) regularity theorems.

Fredholm theory. In a suitable Hilbert space setting the linearized operator
is of the Atiyah-Patodi-Singer type, and hence is Fredholm (in the Morse case)
- see for example [19]. As far as the Fredholm index is concerned, the story
is slightly simpler than in some other comparable situations, as all the critical
points have finite Morse indices (and their differences are the Fredholm indices).

The implicit function theorem A.5 now says that an approximate solution
with surjective Fredholm operator is close to a true solution. The proof here
is analogous to similar theorems in the literature (e.g. [16, Theorem 3.5.2]).
There are some additional subtleties in the parabolic case that were resolved by
the second author in an unpublished manuscript on which [31] will be based.
The subtleties are related to the appearence of terms of the form |0;u|? in the
quadratic estimate.

Transversality. This is the first of the two main points. The perturbations
in Section 2 were introduced precisely to make the transversality theory work.
The key issue is unique continuation: two solutions of equation (106) which
agree at time s = sp agree for all time. The proof is based on the beautiful
Agmon-Nirenberg technique (for the linearized equation differentiate log || (s)]]
when z(s) + A(s)z(s) = y(s)). This argument also works in backward time.
Now one can apply the usual Thom—Smale transversality theory. There’s a
universal moduli space of all pairs (V, ) such that u satisfies equation (106).
The key is to construct a suitable Hilbert space of perturbations of the type
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discussed in Section 2. This can be done by using a countable family of per-
turbations in the specific form of Remark 2.1. Then one has to prove that
this universal moduli space is indeed a Hilbert manifold, and that is where the
cutoff functions in Remark 2.1 will play the crucial role, which lead to global
perturbations, in the sense that they depend on the whole loop, but they can
be localized near any given specific loop.

With this understood the rest of the argument is standard: the regular values
of the projection (V,u) — V on the universal moduli space are the desired
regular perturbations for which the gradient flow of Sy is Morse-Smale.

Once transversality is established one can define the chain complex by count-
ing the gradient flow lines of Sy.

Computing the Morse homology of Sy,. This is the second main point. The
homology of the loop space can be computed via Morse theory - from a countable
cell complex with one cell for each perturbed closed geodesic (see [18] for the
path case). The difference between the present approach and the standard
theory is that we are led by the adiabatic limit analysis to consider the L2-
gradient flow of Sy (and hence a parabolic pde) while the standard theory
works with the W1 2-gradient flow (and hence with a potentially simpler ode -
though still in an infinite dimensional setting).

Let us assume that the critical points of Sy, all have different critical values,
and let ¢ be such a critical value with a critical point x of Morse index k. Then
the relative homology of the subsets L€ := {Sy < c+¢e} and L€ is one copy
of Z in dimension k (see [18]). Let us assume for simplicity that the critical
point on the next higher critical level ¢’ has a critical point 2’ of Morse index
k + 1. Then there’s a boundary map

Z = Hy1 (L5778, £6T) — Hy (LM, £79) = Z (108)

determined by a single integer. The key point is now to prove that this integer
agrees with the algebraic number of solutions of equation (106) connecting z’
to . Finite dimensional versions of this argument can be found in [17, 7, 21].

A relevant issue in the adaptation of this argument to the infinite dimensional
case is the observation that Morse critical points of parabolic gradient flows
have (finite dimensional) unstable manifolds. A proof which follows the finite
dimensional case can be found in [3], for the Yang—Mills functional over Riemann
surfaces, but the argument remains valid in greater generality.

If two critical points of index difference 1 do not lie on adjacent critical
levels, one has to replace the sublevel sets by appropriate cells, either following
Milnor’s book [18], or adapting Conley’s construction of index pairs to parabolic
pdes.

Once it has been established that the boundary map (108) is given by count-
ing connecting orbits, it follows by standard arguments in homology theory that
the operator obtained by counting the solutions of (106) defines indeed a chain
complex, and that its homology is isomorphic to the singular homology of the
loop space. (See [17] and also [21, 26, 29] for a finite dimensional version of this
argument. )
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Figure 1: Parabolic cylinders

B Mean value inequalities
Let n be a positive integer and denote by
A=+ 40,7

the standard Laplacian on R™. Given positive real numbers r and ¢ let B, =
B,(0) be the open ball of radius r in R™ and define the parabolic cylinders
P., P, P~ C R*t! by

Pf = (—r? —er,er) x By,
P, := (=12,0) x B,,
P7¢ = (—r* +er,—er) x B,.

(See Figure 1.) For r < 2¢ we simply define P¢ := (). The elements of P, are
denoted by (s,z) = (s,21,...,Zn).

Lemma B.1. For everyn € N there is a constant c, > 0 such that the following
holds for every r € (0,1]. Ifa >0 and w : R x R™ D P. — R is C! in the
s-variable and C? in the x-variable such that

(A = 95)w > —aw, w >0,

then )
Cnear

Proof. For a = 0 this is a special case of a theorem by Gruber for parabolic
differential operators with variable coefficients. (See Gruber [12, Theorem 2.1]
withp=1,0=1,A=1,0=1/2, R=r and f = 0; for an another proof see
Lieberman [14, Theorem 7.21] with R=r,p=1, p=1/2, f =0.)

To prove the result in general assume that w satisfies the hypotheses of the
lemma and define f(s,z) := e~ **w(s,x). Then

(A—95)f =e *(A—0s+a)w>0.
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Hence, by Gruber’s theorem,

w(0) =

— Tn+2/ f— T"+2 / w.

This proves the lemma. O

Lemma B.2. Let ¢y be the constant in Lemma B.1 with n = 2. Let ¢ > 0,
€(0,1], and a > 0. Ifw:R xR D P¢ — R is C! in the s-variable and C? in
the t-variable and satisfies

L.ow = (52652 +0,2 — 85) w > —aw, w >0, (109)
then
2026‘”2
w(0) < 3 /E w.

Proof. The idea of proof was suggested to us by Tom Ilmanen. Define a function
W on the domain P. C R x R? by

W(s,t,q) :==w(s +eq,t).

(Note that (s +¢eq,t) € P C R x R for every (s,t,q) € P, C R x R2.) Then, by
assumption, we have

(A - as) W(57 ta Q) = (st) (S + &q, ) —Cl’lU(S + &q, ) = _aW(Sa t7 Q)a

where A := 07 + 63. Hence it follows from Lemma B.1 with n = 2 that

w(0) = W(0) < ¢

It remains to estimate the integral on the right hand side:

T T 0
/ w S/ / W (s, t,q) dsdqdt
P, —rJ—rJ—r2
/ / / (z,t) dzdgdt
—r J—r 7‘2+8q
/ / / w(z,t) dzdgdt
—rJ—r r2—er
= 2r/ w.

The first step uses the fact that W > 0 and B, C [—r,7] x [—r,r]. The third step
uses the fact that w > 0 and (—r?+¢eq,eq) C (—r? —er,er), since 0 < g <r. O

(110)
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Lemma B.3. Fix three constants r € (0,1], € > 0, and u > 0. Let co be the
constant of Lemma B.1. If f : [-r? —er,er] — R is a C? function satisfying

E2f//_f/+,u‘f207 fZOa

then )
4egeh™ o7
o <225 [ g
r —r2—er
Proof. This follows immediately from Lemma B.2 with w(s,t) := f(s). O

Lemma B.4. Let R,r >0 andu : RxR" D Pry, — R be C' in the s-variable
and C? in the z-variable and f,g : Ppy, — R be continuous functions such that

(A—=0s)u>g—f, u >0, f >0, g>0.

Lol e Gra) L
Pr N PRryr r? Rr Pri-\Pr '

Proof. The proof rests on the following two inequalities. Let B, C R™ be
the open ball of radius r centered at zero. Then, for every smooth function
u:R™ — [0,00), we have

0 -1 d d
gu__n / U+ — u< — u (111)
2B, OV T Jos, dr Jam, dr Jom,

Then

(see [13, Theorem 2.1]). Secondly, every smooth function u : R x R™ — [0, 00)
satisfies

d [° 0 d
— (/ u(s, ))ds = / (—/ u(s, ))ds
do J_(Rto)2 \JoBp., —(R40)2 \40 JoB,. .

+2AR+o) [ u(Br R (1)

0 d
Z/ (—/ u(s,-))ds.
—(R+0)2 do OBRio

Now suppose u, f, g satisfy the assumptions of the lemma. Then, for 0 < o <r,

ot

< /P - (Au — dsu)

- /_()(R+U)2 (/aan %(57 .)) ds — /BRM (u(07 )= u(—(R+0)?, .))d:v
< /_O(RM)Z (% /Mma u(s, -)) ds + /BR“ uw(—(R+0)? z)dx

d [0
< — / u(s,-) ds—|—/ u(—(R+ 0)? x) dz.
dU 7(R+a)2 aBR+U BR+0
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Here the first step uses the inclusions Pr C Prys C Pgr4r. The third step
follows from (111) and the last from (112). Now integrate this inequality over
the interval 0 < o < ¢, with r/2 <t < r, to obtain

(L)
< /O(RH)Z (/(?BM u(s,~)> ds+/or </BM u(—(R+o)2,-)> do
= /O(RJrr)? </aBR+t uls, ) s + 2R / (R+r)? /er ) deds.

Here the last step follows by substituting s = —(R+0)?2. Integrate this inequal-
ity again over the interval /2 < ¢ < r to obtain

1
< U+ — U
</PR ‘/1;)1?+7‘ ) /IDR+T\PR 2R Pri.\Pr

This proves Lemma B.4. O

Lemma B.5. Let e, R, r be positive real numbers. Let u : R2 D Py ., —Rbea
C? function and f,g : Pg ., — R be continuous functions such that

(52852+8t2—85)u29—f, u >0, >0, g > 0.

for=2 D ([, Erm) fy )

R/2

Then

Proof. The idea of proof is as in Lemma B.2. Increase the dimension of the

domain from two to three and apply Lemma B.4 with n = 2. Define functions
U,F,G on Pr,, C R xR? by

U(s,t,q) :==u(s +eq,t), F(s,t,q):= f(s+eqt), G(s,t,q):=g(s+eqt).

The new variable o := s+ ¢eq satisfies (0,t) € Pg,,. C R xR whenever (s,t,q) €
Pri,. C R x R2. Use the differential inequality in the assumption of the lemma
to conclude (A — d5) U > G — F, where A := 07 + 97. Thus Lemma B.4 with
n = 2 yields

4 1
[a<] F+<—2+—>/ U
Pr PRryr r Rr Pryr

2(R+r)/PE f+2(R+r)(%+%)/s u.

R+r R+r
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The last step uses (110). By definition of G

0
/ G= / (/ g(s+eq,t) ds) dqdt
Pr BRCR2 R2
R/2 R/2 eq
/ / / g(o,t) dodgdt
R/2 R/2 R2+eq
R/2 [ R/2 [ —eR/2
/ / / (o,t) dodgdt
R/2J—R/2 R2+aR/2
R/2 [ —eR/2
/ / (0,t) dodt
R/2 R2+aR/2

of s

R/2

Y

| \/

This proves the lemma. O

Lemma B.6. Fix three positive constants r, R,e and three functions u, f,g
[—(R+71)2—e(R+71),e(R+7)] — R such that u is C? and f, g are continuous.
If

Ezu//_u/Zg_fa UZO, f207 gZOa

then

Re/2 2 (R+r)
/ g(s)d8§4(1—|——) / f(s)ds
—R2/44Re/2 R/ ) (Rir)2—e(Rer)
2 /4 1 e(R+r)
+4(1+1) (—2+—)/ u(s) ds.
R ¢ Rr) ) (Rir)?—c(Rir)
Proof. This follows immediately from Lemma B.5 with u, f, and g independent
of the t-variable. O
C Two fundamental L? estimates
Theorem C.1. For every p > 1 there is a constant ¢ = ¢(p) > 0 such that
10sull Lo + 11050l L» < e (105w = Opvll 1 + [|05v + Ou — ][ 1) (113)
for all u,v € C§°(R?).
Theorem C.2. For every p > 1 there is a constant ¢ = ¢(p) > 0 such that
10sull o + 10:0cull Lo < cl|Osu — O¢Orul| 1, (114)

for every u € C5°(R?).
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If we assume v = du then (113) follows from (114) (but not conversely). On
the other hand if the term 0sv + du — v on the right is replaced by dsv + Oz,
then (113) becomes the Calderon-Zygmund inequality. However, it seems that
the estimate (113) in its full strength cannot be deduced directly from the
Calderon—Zygmund inequality and the parabolic estimate (114). Theorems C.1
and C.2 will be proved below.

Corollary C.3. Letp > 1 and denote by ¢ = ¢(p) the constant of Theorem C.1.
Then

10l + 195l < € ([05 — Bpvll ., + D0+ (O — )| ,)  (115)
for every € > 0 and every pair u,v € C§°(R?).
Proof. Denote
= 0su — Oy, g = 0,0+ e %(Opu —v).
Now consider the rescaled functions
(s, t) := u(e?s, et), 0(s,t) == ev(e?s, et)
and ~
f(s,t) =2 f(e?s,¢t), G(s,t) == e3g(e?s, et).
Then ~
O0st — 00 = f, 050+ 0t — D = §.
Hence, by Theorem C.1,
sl + (1951 < e (171l + 3] ) -
Now the result follows from the fact that
0wl =P l0sullp IF e =770
and similarly for the other terms. O

We give a proof of (113) and (114) that is based on the Marcinkiewicz—Mihlin
multiplier method. To formulate the result, we consider the Fourier transform

F: L*(R?,C) — L*(R? C),
given by
FNor)i= g [ [ e o sty s
T JooJ—0

for f € L?(R?,C) N L'(R? C). Given a bounded measurable complex valued
function m : R? — C define the bounded linear operator

T : L*(R?,C) — L*(R?,C)

by
Tnf = fﬁl(m]—"f).

The following theorem is proved in [15].
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Theorem C.4 (Marcinkiewicz—Mihlin). For every ¢ > 0 and every p > 1 there
is a constant ¢, = c,(c) > 0 such that the following holds. If m : R? — C is
a measurable function such that the restriction of m to each of the four open
quadrants in R? is twice continuously differentiable and

|m(o, 7)| + |00sm(o,7)| + |70rm(c, 7)| + |67 0rm(o, T)| < ¢ (116)

for o,7 € R\ {0} then
f € LP(R?*,C) N L*(R?,C) = Tnf € LP(R?,C)
and
HTmeLp <o Hf”Lp

for every f € LP(R?,C) N L?(R?,C).
Remark C.5. The theorem of Marcinkiewicz—Mihlin in its original form is
slightly stronger than Theorem C.4, namely condition (116) is replaced by the

weaker conditions
sup |m(o,7)| < ¢, (117)

o,T
2l+1 2k+1

sup/ |0-m(o,£7)| dT < ¢, sup/ |0,m(+o,7)| do <c  (118)
o#£0 J2¢ T#0 J2k

and
2k+1 2@+1

/ / 10,0-m (%0, £7)| dr < ¢ (119)
2k 2¢

for all integers k and ¢ (and all choices of signs). In this form the result is
proved in Stein [24, Theorem 6’]. It is easy to see that (116) implies (118) with
c replaced by clog?2 and (119) with ¢ replaced by c(log 2)2.

Proof of Theorem C.2. Let u € C§°(R?) and define f € C§°(R?) by
f = 0su — 0 0su.
Denote the Fourier transforms of f and u by
fA = Ff, u = Fu.

Then

and hence

Denote the multiplier in this equation by
e

m(a, T) = m
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The formulae
. 2 _2 . _2 .
dom = —T om= 2T g om = 2T o)
(12 4 io) (12 +io0) (12 +io)

2 o)

show that the functions m, 0d,m, 70, m, and 679,90, m are bounded. (Estimate
each factor in the denominator from below by either the real or the imaginary
part.) Hence the result follows from Theorem C.4. O

Proof of Theorem C.1. Let u,v € C§°(R?) and define f,g € C§°(R?) by
f = 0su — Oy, g = 0sv + Qpu — .

Then R

f =iou — i10, g =1i00+iTtu — 0.

Solving this equation for u and ¥ we find

N 1—ic =~ iT ~
U= = R
0“4+ 7144+ 10 0“4+ 7144+ 10
N T ~ 10 N
V= e 9
0“4+ 7144+ 10 o+ 14410
and hence
ER o’ +ioc - oT .
u=iou = g
S . .
02+ 712 +i0 o2+ 72 +i0”
— R —O0T ~ 02 ~
Jsv = i0v = f+ g.

o2+ 712 +40 o2+ 72 +i0
The four multipliers in the last two equations satisfy (116). (To see this use
separation of the factors in the denominator into real and imaginary parts, as in

the proof of Theorem C.2, and the inequality 207 < 02 + 72.) Hence the result
follows from Theorem C.4. o

D The estimate for the inverse

We begin by proving a weaker version of the estimate in Theorem 3.2. Through-
out M is a compact Riemannian manifold.

Proposition D.1. Let u € C*®°(R x S, M) and v € QR x SY,u*TM) such
that ||0st| s, ||Ort]|co and ||v]|eo are finite and lims_, 4o u(s,t) exists, uniformly
in t. Then, for every p > 1, there is a constant ¢ > 0 such that

e Vi€ = nll,, + 1%anll,, + Vs, + € [ anll,,

B B (120)
< (%€ = Wunl, + & [[Von + =29 = ||, + 7 Uil + Il )

for every e € (0,1] and every pair of compactly supported vector fields ( =
(€,m) € Q°R x ST, u*TM & u*TM).
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Proof. Choose a finite open cover {U, }» of R x S with the following properties.
(i) For each « the set U, C R x S! is contractible.

(ii) For each « the closure of the image of U, under w is contained in a
coordinate chart on M.

(iii) There is a constant 7' > 0 and an open cover {I,}, of S such that
Uy N[T,00) x S = [T,00) x I, for every a. Similarly for the interval
(—o0, =T].

Assume first that £ and 1 are compactly supported in U, for some « and denote
by €a,Na : Usa — R™ the vector fields in local coordinates. By Corollary C.3,
there is a constant c,, depending only on p and the metric, such that

Hasé-a”p +e ||as77aHp < Ca(Hasga - atnaHp +e ||asnoz + 5_2(6155& - na)Hp)-

Here we denote by |||, the LP norm with respect to the Riemannian metric in
the coordinate charts on M. Replacing the partial derivatives 95 and 9; by the
covariant derivatives V; and V; we obtain

1l + < N2l < c(INAE — Vinll, + < [V + < 2(%ig ~ m)], o

+ Mgl + Il ).

for every ¢ with support in one of the sets U,. Here we have used the L*°
bounds on dsu and dyu. Observe that the constant ¢ depends on the Christoffel
symbols determined by our coordinate chart on M. Now let {8, }+ be a partition
of unity subordinate to the cover {U, } such that ||0s8a ||, + [|0¢Ba |l < oo for
every a. (Note that (3, need not have compact support when U,, is unbounded.)
Given any two compactly supported vector fields &,7 € QO(R x S*, u*TM)
apply (121) to the (compactly supported) pair (8,&, 3on) and take the sum to
deduce that (121) continues to hold for each pair (£,n) with an appropriate
larger constant ¢. This proves the proposition because the first two terms on
the left can be estimated by the last two terms and the right hand side. O

Under the assumptions of Proposition D.1 it follows immediately that

ISl pe < (21D o Cllowpee + lICllo,p.e) (122)

and similarly for (D ,)*. Moreover, note that the difference between Propo-
sition D.1 and Theorem 3.2 lies in the e-factors in front of [|£[|, and |[n]|, on
the right hand sides of the estimates. To prove Theorem 3.2 we must improve
these factors by e for ¢ and by €2 for . This requires the following parabolic
estimate. Let 1/p+ 1/q = 1. The formal adjoint operator

(Do) = Wi — L1
of DY : WP — [P is given by
(DY)*€ = —Vi€ — ViVié — R(€, 0yu)dyu — Hy (w)€. (123)
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Proposition D.2. Let u € C®°(R x S, M) such that ||0su| s, [|0stlloo and
IViOiul| o are finite and limg_, 4o u(s,t) exists, uniformly in t. Then, for every
p > 1, there is a constant ¢ > 0 such that

I%:gll, + IV Vg, < e (1196 = Vaviell, + liell, ) (124)
for every compactly supported vector field & € Q°(R x SY, u*TM).
Lemma D.3. Let x: S' — M be a smooth map, p > 1 and

_p ifp>2,
HW_{M@—U ifp<2. (125)

Then, for every e > 0 and every & € Q°(S, 2*T M), we have

(1= e V)~ €l < 1€y,
Vel = eVeVe) T Vikllp < mpll€lp,
el (M= eViVe) T ViVl < 2/l

These estimates continue to hold for u € C*°(R x S*, M) and compactly sup-
ported vector fields € € QO(R x S, u*TM).

Proof. First consider the case p > 2: Let ¢ > 0 and & € Q°(SY, 2*TM). Define
n:=(1-eV,\V) '€

(The operator (1 — eV;V;) @ W2P(SY, 2*T M) — LP(S',2*TM) is bijective.)
Then

d? d -
Il = = (" (Ven,m))

= p(p = 2|l (Vim, n)? + plnl* =2 (Vi Ve, ) + | Ven]?)
> peHnl? — pe~ P2 € m)

> petnlP —pe~tnlP 7 f¢]

> e P — el
The third step uses the identity V,Vin = e “'np—e~1&. The last step uses Young’s
inequality

b 11
ab< 42 i1 (126)
T S T S

(0]



with 7 = p, a = |¢] and s = p/(p — 1), b = |n|P~L. Moreover,

< (Ivmlp_2 (Vim, n>)

dt
= [Vnl? + [Vin P2 (% Ven, n) + (p — 2)[Nen|P = (Ven, ) (Vi Vi, Vi)
= [Vinl? + 7 NP2 [0 — e VP2 (€, )
— e Hp = 2)|VnP~H (N, ) (€, Vim) + €7 (p — 2)[VinlP 4 (Vi m)?
> [Vinl? + 3¢ NP2 nl? — Bt NP2 IE + B2e T Nl (Vim, )
> [Vinl? — 25t VP2

_1\p/2 _
2|Vl — 2 (50" e g

V

The third step uses (126) with » = s = 2. The last step uses (126) with r = p/2,
a = p—;l5_1|§|2 and s = p/(p — 2), b = |[V;n|P~2. Now the first two estimates
of the lemma follow by integration over S*, respectively R x S'. (The integrals
of the left hand sides vanish, by periodicity.) The last estimate is an easy
consequence of the first:

el ViVl = Il = Ellp < llnllp + [I€ll» < 2[1€]»-

This proves the lemma for p > 2. Now assume 1 < p < 2 and let ¢ := p/(p—1).
Then ¢ > 2 and hence

(M1—eV,%) " Vi& )

Ve[ - eviw)TINig| = Ve sup

0#nelLa HWHq

P 8 et A
0#nelLd HUHQ

<qliéll,-

This prove the second estimate for p < 2. The other estimates follow similarly.
This proves the lemma. O

Lemma D.4. Let z € C*(S', M) and p > 1. Then
1%l < rep (57 IE]p + 01V Vi )

for 6 >0 and & € QO(SY,2*T M), where k, is defined by (125). This estimate
continues to hold for u € C*°(R x S*, M) and compactly supported vector fields
e Q'R x SY,u*TM).

Proof. Let 1/p+ 1/qg = 1. Since the operator

W29(SY x*TM) — LY(S*, x*TM) : n— 6 ' — 6V Vin
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is bijective, we have
(Vi€ 07 — 0V Vi)
Vi = su
H t§||p neWg’q Hcgfln_(;vtvtnnq

— sup —(&, 07 Vim) + (Vi Vi€, 0Vim)
neEW?2.a 6=t — 6V, Vinll,

I\
st 61— 0%,

< rp (571 el + 519 %¢, ) -

IN

(67 il + 8 1% %ell, )

To prove the last step, denote
¢ =n— 0"V

Then .
Vir = (1-82V%;) ' i

and hence, by Lemma D.3 with £ = 62, we have
IVl < rqd 1ICH, = Fp |67 10 — 3V %n)| -
We have used the fact that x, = k4. This proves the lemma. O

Proof of Proposition D.2. The proof follows the same pattern as that of Propo-
sition D.1. Let {U,}a be as above. If € is (compactly) supported in U, then,
by Theorem C.2,

Hasgoz”p + ||8t8t§a”p < ca [|0s€a — 8tat§a”p

Replacing 95 and 9; by Vs and V;, and using the L°° bounds on dsu, dyu, and
V;0iu, we find

19l + IN%iglly < e(I%€ = Wiviell, + il + 1%ell, )

Using a partition of unity {3, }«, subordinate to the cover {U, }4, such that

105 Ball oo + 10:Balloe + 110:0:Balloe < 00,

we deduce that the last estimate continues to hold for every compactly supported
vector field € € Q°(R x S, u*TM). Now apply Lemma D.4 with dep < 1/2 to
obtain the estimate (124). O

Proof of Theorem 3.2

Fix a constant p > 1 and define

f&n) =V —%m,  g(&n) =V +e *(GE—n),
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for compactly supported vector fields ¢ = (£,7) € Q°(R x S, u*TM & u*TM).
It suffices to show that

e INeg = nll,, + I1%anll,, + Vs, + € [ Vanl,,

(127)
< ¢ (If1, += lgll, + Nl + <2 1inll, )

for some constant ¢ > 0 independent of € and (£, 7). The general case (for D, )
then follows easily:

e INRE = ll, + I ¥eml, + I3l + & 1%l
< ¢(I1f = R(& oo — Ho(will, + ¢ llg + R(E dupoll, + €], + 2 lnll, )-

To prove the estimate for the formal adjoint operator (D;, ,)* apply (127) to the
vector fields £(—s,t) and n(—s,t) and then proceed as above.
To prove (127) we split ¢ into two components. Let

me(&n) = (=) THE—e"Vm),  u(€) = (€, WE),

(compare with equation (139) below) and define

(&) (M =eW)7HE—e2Vm)
o= (77?>> = mel = (w— AR —62th)> ’
¢ = (51) —C _( (1—eViVh)~H(e2Vin — eViVi€) )
m ) 07 \(M-eViV) (- Vi€ + (€2 —€)ViVim) )
Note that ng = V& and

& —eVim = (€% — &)V (128)

Since f and g are linear, we obtain the splitting f = fo + f1 and g = go + g1,
where f; := f(&,n:) and g; :== g(&;,n;) for i = 0,1. Thus

fo = Vi&o — Vi Vi&o, go = Vs Vi&o.

Now apply the parabolic estimate of Proposition D.2, with a constant ¢y > 0,
to & and the elliptic estimate of Proposition D.1, with a constant ¢; > 0, to

(&1,m1). This gives

e M 1N = nll,, + [I¥enll, + V€11, + € [ Venl,

< ViVl + [IVsoll, + £ Vs Vidoll,
+e V& = mll, + (Ve ll, + IVs&all, + & [ Vemll,

< co(llfoll, + lI€oll,,) +<llgoll, (129)
+e(Ifill, +ellgnll, +e i, + mll,)

<ci(IfIl, +ellgll, +e €, + lmll,)
+ (co +c1) [[foll, + (1 + c1)e llgoll, + co lI€oll,, -
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We examine the last five terms on the right individually. For this we shall need
the commutator identities

[VS, Vt] = R(asuv 815“’)7 (130)
[V G = 2N, Vi) — (Yo, R) (@, 00 s

— R(VOsu, Owu) + R(0su, ViOpu),
Ve, 1=eViV) ' = (1— VW) 7 1= eV, V] (1 — eV V) (132)

=c(1-eV%) ' [V, V(1 — eViV)
By Lemma D.3 and (131), we have
S [ AR AIE

1/2 ~1 1/2

< 2612 ||(1 = %) T Vil Vi), + et e, (133)

< 26y ||[Ve, Vil + g2 €],

<l -

Here we have used the L bounds on dsu, d;u, V;0su, and V,0su. Now the five
relevant terms are estimated as follows.

The term [|£ol|,,: By definition,
§o = (1-eViV) 1 (€ - e*Vim).
Hence, by Lemma D.3,
€oll,, < lI€1l, + &> I%nll, - (134)
The term || fo||p: Consider the identity

(1 —eViVh)fo — f+€°Vig
= Vo — eV Vibo — ViVi&o + eViViViVido — Vil + Vi Vien + Vi Vi€
= e?V,V,Vin + € R(Oyu, dsu)n + £[Vs, Vi Vi) &o.

Apply the operator (1—eV;V;) ™! to this equation and use Lemma D.3 and (133)
to obtain

1foll, < IFIL, + wpe®? llgll, + 2¢ [Vnll, +%es lInll,, + & 2ez I&ll, . (135)

where c3 1= ||R|| o [|0su|| o, [|0vu]| -
The term e||go||p: By (132), we have

gdo = sttéb
= (1-e%W) ! (MY + [V, Vi€ — e2VViVin — €[V, Vi Vi)
+e(1-eViV) Ve, V(1 - eVV) T (Vi€ — 2 ViVim) -
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Hence, by Lemma D.3, (130), and (133),
ellgoll, < rpe'/? IVl + cae €N, + 2% [ Vnll, + c2e™2 ],
+ 0¥ ||(1 - eViV) ! (Vi€ — 2ViVim)
< ripe!/? [Vt + 267 | Vil
T elispes + cs) Il + 322l

Hp (136)

The term 7 1||&1||p: By (128), we have
e = Vi + eVhn — Vi = £V — V.
Hence
e el <elNamll, + 1V Vikoll,
<<%l + <o (1ol + I6ol,) - )

In the last step we have used the parabolic estimate of Proposition D.2.

The term |[71]|p: By definition,
m=1-c%V%) " (n - ViE+ (£ - e)ViVin).
Hence, by the triangle inequality and Lemma D.3, we have
Imll, < | (1= e%%) ™ (- %ig)
< ln = Vigll, + kpvVE IVl -

Insert the five estimates (134-138) into (129) to obtain (15), provided that ¢ is
sufficiently small. This proves Theorem 3.2.

e [CERARAA

P (138)

The difference of D° and D

Geometrically, the difference between the operators DY and Dy, , is the difference
between configuration space and phase space, or between loops in M and loops
in T*M = TM. Consider the embedding

LM — LTM : x— (x,).
The differential of this embedding is given by
QST 2*TM) — QV(SY, 2*TM @ 2*TM) : € — (€, V€).

To compare the operators D% and D, := D, 9,4 We must choose a projection

onto the image of this embedding (along w). At first glance it might seem
natural to choose the orthogonal projection with respect to the inner product
determined by the (0, 2, ¢)-Hilbert space structure. This is given by

(&m) = (L= eV V) 7€ — Vi)

80



with o = 8 = 2. Instead we introduce the projection operator
me s LP(SY,w*TM) x LP(SY, u*TM) — WHP(S* w*T M)
given by
me(&,m) = (1 - eV% V) (€ — *Vim). (139)

The reason for this choice becomes visible in the proof of Proposition D.5 be-
low, which requires 8 = 2. Moreover, the estimates in Step 1 of the proof of
Theorem 3.3 are optimized for a = 1. We denote by ¢ : W1P(R x ST, u*TM) —
LP(SY,u*TM) x LP(S',u*TM) the inclusion

8o == (§o, Vibo)- (140)

The significance of these definitions lies in the next proposition and lemma. The
proofs rely on Lemma D.3.

Proposition D.5. Let u € C*®°(R x S*, M) be a smooth map such that the
derivatives Osu, Opu, ViOsu, Vi Oy, V;ViOyu are bounded. Then, for every p > 1,
there exists a constant ¢ > 0 such that

[DomeC = me D5, < ee' 2 €l + e nll, + c< | Vinll,

for e € (0,1] and compactly supported ¢ = (£,m) € Q'R x SL,u*TM & u*TM).
The same estimate holds for (DY)*m. — w.(D5)*. Moreover, the constant c is
invariant under s-shifts of u.

Lemma D.6. Forue C®(R x S', M), p>1, k, as in (125), and 0 < e <1,
g = m=Cll, < pe' 2 %€ = mll,, + £ [[Vinl,
In = VemeCll, < 1€ =nll, + Kpe'/? | Vinll,
1€ = tmeCllo e < 26022 Vi€ = 1l + 262 Vi,
I7eCll, < llemeCllo e < 26p (1€l p,
for every compactly supported ¢ = (&£,n) € QO(R x S, u*TM @ u*TM).

Proof. Denote
& =7 = (1 -V V) (€ — 2Vim).
Then

§—&=e(1-eVi%) V(= Vi) + (€2 — o) (1 — e V%) ' Vi
and hence, by Lemma D.3,
e = &oll, < rpe? 1%€ = nll, + e ¥nll,
Similarly,

n—Y% =1 -eVV) ' (n— Vi) + (% —e)(1—eVi¥) ' ViVin
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and hence, again by Lemma D.3,
e lln—Viboll, < e [I%€ = nll,, + rpe® [ Vinl,, -
Take the sum of these two inequalities to obtain
1€ = emeCllgpe < 1€ = oll, +lln — Vol
< 2kpe 2 ([N =, + 262 | Vim]l,
for 0 < e < 1. Moreover, using Lemma D.3 the formula for &y gives
I€oll, < N€ll, + mpe®? Nnll,, e 1%oll, < wpe'/? €N, + 262 mll,, -
Take these two inequalities to the power p and take the sum to obtain
[e7Cl[5 e = I&0lly + € [Vi&olly
< (14 wheP?) [I€lly + (khe?’® + 2PeP)e? ]y
< (26p)7 €16 e
for 0 < e < 1. This proves Lemma D.6. o
Proof of Proposition D.5. As above, denote
o =1 = (1—-eViV) 1 (€ — e*Vim).
Then
DI.¢ = Vo — ViViéo — R(€o, yu)dsu — Ho (u)éo
= (1-eViV) ! (V€ — e2ViVin — ViVl + €2V, Vi Vi)
+e(1—eVi%) Ve, ViViJGo
+ R((1— V%) Vi, Oyu)dvu + Hy(w) (1 — eV, V) ~1e?Vip
— R((1—eVi%) ¢, Qu)du — Hy(u)(1 — eV, V) €.
Denote ¢’ := (¢/,7') :== D¢, then
mD¢ = (1—eViVi) (¢ — e*Viny')
= (1- eV V) 1 (Vs — R(&, Opu)Opu — Hy (u)€
— "V Vin — 2V (R(€, Osu)Opu) — ViViE).
Taking the difference we find
Dyme( — meDy¢
= (1-eVW) T (=2%V%, Viln + ViV Vi + £V (R(E, Osu)Opu))
+e(1—eViV) Ve, ViVi)éo
+ R((1—eViVh) " 'e*Vim , Oyu)Ohu + Hy(u) (1 — eViVi) ™ 'e*Vin
+ (11— V%) ' R(& Ou)0u — R((1— VW) '€, Qu)dpu
+ (1= eViV) " Hy (w)€ — Hy(u)(1 — VW) e

(141)
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To finish the proof it remains to inspect the LP norm of this expression line by
line. Using Lemma D.3, we obtain for the first line

(1= eViW) ™" (=€*[Vs, Veln + €2V ViV + €2V (R(€, Osu)Opu) ) ||
< &?|| Rl 10stll o 101l l1mll, + 2¢ [ Vinll, (142)
+ e | Bl oo [10sull . [1eull [1€]], -

Application of (133) with constant Cy := C results in an estimate for the second
line in (141), namely

le(1— eV %) ! [V, ViWilo|, < €2Cu €], + €201 [Namll, . (143)
Lemma D.3 yields for line three in (141)

[R((1 = eWiW) eV, Opu) Dy + Hy(u) (1 - e ) Vi

< (1Rl 10sullz, + C)e? [Vl .

where C' is the constant in (V'1). Let us temporarily denote
T:=1-eV, V.

Then the penultimate line in (141) has the form [T}, ®] = T~1[®, T|T~! where
the endomorphism @ : w*T'M — w*TM is given by ®¢ = R(&, Oru)du. This
term can be expressed in the form

(T4, @) =T (M%) T ¢+ 2(V@)T Vi)

and hence
[T, @], < e'2m,pC gl -

Thus
(1= eV V) "' R(E, Oru)Opu — R((1 — eV W) '€, Opu) O,

(145)
<ePryCa i€,

where Cy depends on || Rz ||0sull ., VO], and [|[V;V;0yu|| . Similarly,
(1= eV%V) " Hy (W)€ = Hy(w) (A - eViV) e, < e 2rpCs €], (146)

where C'3 depends on the constants in (V1 —V3) and on [|0sul|, and ||V;0ul|
The estimates (142-146) together give the desired LP bound for (141) and this
proves the first claim of Proposition D.5. The estimate for (D9)*r.¢ — (7.D5)*¢
follows analoguously. Since all constants appearing in the proof depend on L
norms of derivatives of u, they are invariant under s-shifts of u. This completes
the proof of Proposition D.5. O

The next lemma establishes the relevant estimates for the operator DY and
its adjoint in the Morse-Smale case, i.e. when DY is onto.
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Lemma D.7. Let V : LM — R be a perturbation that satisfies (VO — V4).
Assume Sy is Morse-Smale and let u € M°(x=,27;V). Then, for every p > 1,
there is a constant ¢ > 0 such that

11l + I¥snll,, + %%l < e [[(Dw) ],
and
lel, + I%5¢l, + %%l < e ([le — (D2)*nl, +1D%l),)
for all compactly supported vector fields &, € Q°(R x S1,u*TM).

Proof. By Theorem A.4, the operators D% and (D%)* are Fredholm. Since Sy
is Morse-Smale, the operator DY is onto and (DY)* is injective. Moreover, the
operator

WE — L@ L5 /im (Dy)* : € = (D, [€])
is also an injective Fredholm operator. Hence the estimates follow from the
open mapping theorem. O

Proof of Theorem 3.3

Fix a constant p > 1. Then the L norms of dsu, ;u and V,0;u are finite
by Theorem A.1 and ||V;0sul|co is finite by Theorem A.2. Use the parabolic
equations for u to conclude that ||V;V;0iu||o is finite as well. Hence we are in
a position to apply Theorem 3.2 and Proposition D.5. We prove the estimate
in two steps.

STEP 1. There are positive constants ¢y = c1(p) and €9 = o(p) such that

Cllo e < NEll, + 2 nll, < 1 (£ D5 Cllo e + Ime(DEYC,)  (147)

for every e € (0,e9) and every compactly supported vector field ( = (§,n) €
QR x SL,u*TM @ u*TM).

By Lemmata D.4 and D.7, there exists a constant ¢ = c2(p) > 0 such that
€11, + 1981, + 1V, + IV Vagll, < ez [|(D)*¢

yp (148)
for every compactly supported ¢ € Q°(R x S*, u*TM). Hence

lell, < llE = mCll, + lIm<Cll,
< [lg = meCll, +e2 [|(DL) 7],
< [l6 = meCll, + €2 | (DY) 7e¢ = me(D5) ]|, + e m=(DE)C,
< (kp + caca)e (7 %6 = mll, + NGl ) + ez [lme(DE)Cl,
+eacs (12 ¢l + 22 Il )
< (kp + c2c3)cac (D) "Cllg e + 2 1m(D5) <L,

+ (eacs + Rpes + eacsen) (212 €], + € )
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In the fourth step we have used Lemma D.6 and Proposition D.5 with a constant
cs = c3(p) > 0. The final step follows from Theorem 3.2 for the formal adjoint
operator with a constant ¢4 = ¢4(p) > 0. Choose ¢ > 0 so small that

1
(cacs + Kpca + 020304)501/2 < 3 (149)

Then we can incorporate the term ||£]|, into the left hand side and obtain
lell, < 205y + eses)ese [(D5)"Cllo e + 262 [me(D5)Cl, + <2 - (150)
Similarly,
Inll, < lln = VemeCll, + [[VimeCll,
< lIn - Vimdll, + e2 |02 mec]
< (kp + cacse')eae! 2 ||(DL) (g pe + 2 (D),
+ (cacs + Rpea + cacoeas!?) (12 ¢, + €2 )
Use (149) again to obtain
Inll, < 2(kp + cacs)ese™ (D) Clo, e + 262 [7(DE) I, + NIl - (151)
The assertion of Step 1 now follows from (151) and (150).

STEP 2 We prove the theorem.

Let ¢ € (0,e0). By (122) for the formal adjoint operator (with a constant
¢5 > 0), we obtain

ISH1 p.e < €5 D2 Cllo e + €511l 0

< o (e 2 D5)* (152)
<es(e” + ere + 26p01) [[(Dr)*Cllo p e

Here we have also used the estimate (147) of Step 1 and Lemma D.6. It follows
that (D%)* is injective and hence D is onto.

Let ¢ = (£,m) € Q°(R x S, u*TM @ u*TM) be compactly supported and
denote

¢ = n") = (D)"C.
Recall that cg is the constant of Lemma D.7 and c3 is the constant of Proposi-
tion D.5. By Lemma D.7, with £ = n.(* and n = 7., we have

||7T5<*||p < ¢ Hﬂ'sc* - (Dg)*WsCHP + ¢ ||D27Ts<*Hp
< cg Hﬂ's(Di)*C - (Dg)*WsCHp +cs ||D27Ts<* - WsDiC*H

p
+ 6 [ DL,
< esee (e |IEll, + €% nll, + £ 1%enll,) + co [ mDEC7 I, (153)
+esee (€2 1E7 N, + % I, + & 137 1)
< 2¢sc6(1 + cac'?)eV? Cllg e + 6 ITD5CT
+ 3czcp (1 + caet/?)et/? [1€*Mlo.p.e + cacacee IDEC Mg e

< 12 llop,e + escacoe 1D g e + 6 mDEC -
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The fourth step follows by applying Theorem 3.2 twice, with the constant c,
namely for the operator (Dg)* to deal with the term V;7, and for the operator
D: to deal with the term V;n*. The final step follows from (152).

Now it follows from Lemma D.6 that

1€ lo,pe S NC™ = emeCTllg pe + lemeCTllop e
< 2hpe (671 Vg™ — ™I, + IIVm*Hp) + 7¢I, + e [[VemeC7l,,
< 2kpcae D¢ lo e + 1meCFIl, + (2 + drpea)e 2 1 g e
< ca(26p +esce)e [ DRl p o + (7 + 26 + 4HpC4)51/2 1" lo,p,e
+c6 D7, -

The third step follows from Theorem 3.2 for the operator D, and Lemma D.3.
The final step uses (153). Choosing ¢ > 0 sufficiently small, we obtain

||§*||p S ||C*||O7p75 S 204(2KJP + CSCG)E ||DZ<*||O,p,5 + 206 ||7T5DZ<*||;D . (154‘)

By (122), we have

1 e < 5 (21D o e + 16 o e ) -

Combining this with (154) we obtain (17).
We prove (16). By the triangle inequality and Lemmata D.6 and D.3, we
have

(1, < 17" = VmeC g e + [V (X = eVe¥) THE = 2Vr) |,
< rpel2 (T =, + NN, ) + e 2 IE N, + 22 [,
S KJPC4€1/2 ||Dic*||07p75 + 2KJP(1 + 045)5_1/2 ||<*||O,p,s

The last step follows from Theorem 3.2 for the operator Df. Similarly,

V€™, < INRE™ = (I, + [l [,
< 5 D5 o e + cse 1E71, + (1 + e5e®) 0", -

Combining the last two estimates with (154) proves (16). Since all constants ap-
pearing in the proof depend on L norms of derivatives of u, they are invariant
under s-shifts of u. This proves Theorem 3.3.
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