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Abstract

The purpose of this expository paper is to give a self-contained
proof of maximal Lp/Lq regularity for the heat equation on Rn, and to

explain the role of the Besov space B
2−2/q,p
q for the initial conditions.
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1 Introduction

This is an expository paper. Its purpose is to give self-contained proofs of the
following three theorems. For n ∈ N let (t, x) = (t, x1, . . . , xn) be the coordi-
nates on Rn+1 and denote the Laplace operator on Rn by ∆ :=

∑n
i=1 ∂

2/∂x2
i .

Abbreviate ∂t := ∂/∂t and ∂i := ∂/∂xi for i = 1, . . . , n. The gradient of a
smooth function f : Rn → C is the function∇f := (∂1f, . . . , ∂nf) : Rn → Cn.

Theorem 1.1. For every positive integer n and every pair of real numbers
p, q > 1 there exists a constant c = c(n, p, q) > 0 such that every compactly
supported smooth function u : Rn+1 → C satisfies the estimate(∫ ∞

−∞
‖∂tu‖qLp(Rn) dt

)1/q

≤ c

(∫ ∞
−∞
‖∂tu−∆u‖qLp(Rn) dt

)1/q

. (1.1)

Proof. See page 90.

Theorem 1.1 leads to the question under which assumption on the initial
condition u0 the solution u : [0,∞)× Rn → C of the heat equation

∂tu = ∆u, u(0, ·) = u0, (1.2)

belongs to the space W 1,q([0,∞), Lp(Rn,C)) ∩ Lq([0,∞),W 2,p(Rn,C)). The
answer involves the Besov space Bs,p

q (Rn,C) for 0 < s < 2 and p, q > 1. This
space is the completion of C∞0 (Rn,C) with respect to the norm

‖f‖Bs,pq := ‖f‖Lp + ‖f‖bs,pq , (1.3)

for f ∈ C∞0 (Rn,C), where

‖f‖q
bs,pq

:=

∫ ∞
0

sup|h|≤r
(∫

Rn|f(x+ h)− 2f(x) + f(x− h)|p dx
)q/p

rsq
dr

r
. (1.4)
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Theorem 1.2. For every positive integer n and every pair of real numbers
p, q > 1 there exists a constant c = c(n, p, q) > 0 with the following signif-
icance. Let u0 ∈ C∞0 (Rn,C) and suppose that u : [0,∞) × Rn → C is the
unique solution of the heat equation (1.2) such that ut := u(t, ·) is square
integrable for all t ≥ 0. Define the number 0 < s < 2 by

s := 2− 2/q.

Then
1

c
‖u0‖bs,pq ≤

(∫ ∞
0

‖∂tu‖qLp(Rn) dt

)1/q

≤ c ‖u0‖Bs,pq . (1.5)

If 0 < s < 1 (or, equivalently, 1 < q < 2) then the norm ‖u0‖Bs,pq on the right
can be replaced by the norm ‖u0‖bs,pq of the homogeneous Besov space.

Proof. See page 131.

Theorem 1.3. For every positive integer n and every real number p ≥ 2
there exists a constant c = c(n, p) > 0 such that every compactly supported
smooth function u : Rn+1 → C satisfies the estimate

‖∇u(T, ·)‖Lp(Rn) ≤ c

(∫ T

−∞
‖∂tu−∆u‖2

Lp(Rn) dt

)1/2

(1.6)

for all T ∈ R.

Proof. See page 11.

Theorem 1.1 is called maximal regularity and was proved in the sixties
by deSimon [10] for p = 2 and Ladyshenskaya–Solonnikov–Uralćeva [21] for
p = q. In [2] Benedek–Calderón–Panzone proved that the assertion is inde-
pendent of q for general analytic semigroups (Theorem 9.3). In our proof for
p = q we follow the approach of Lamberton [20]. A proof of Theorem 1.1
for all p and q (which applies to general analytic semigroups and extends the
result of Lamberton) can be found in Hieber–Prüss [15].

The Besov spaces Bs,p
q (Rn,C) were introduced in 1959 by Besov [3]. The-

orem 1.2 is due to Peetre [31] and Triebel [38, 39] for 1 < q < 2, and to
Grigor’yan–Liu [13, Thm 1.5 & Rmk 1.8] for q ≥ 2 (see also [17, Thm 6.7]
and [23, Thm 5.8]). The present exposition follows the argument in [13].

We will use without proof the theory of strongly continuous semigroups
and the basic properties of the Fourier transform.
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Before entering into the proofs we formulate some consequences of these
results. The inhomogeneous heat equation on Rn with a compactly supported
smooth function u0 : Rn → C as initial condition and a smooth compactly
supported inhomogeneous term f : (0,∞)× Rn → C has the form

∂tu = ∆u+ f, u(0, ·) = u0. (1.7)

This equation has a unique solution u : [0,∞)× Rn → C such that u(t, ·) is
square integrable for all t. This solution can be expressed in the form

u(t, x) =

∫
Rn
Kt(x− y)u0(y) dy +

∫ t

0

∫
Rn
Kt−s(x− y)f(s, y) dy ds (1.8)

for t ≥ 0, where K : Rn+1 → R denotes the fundamental solution of the heat
equation. It is given by

K(t, x) := Kt(x) :=
1

(4πt)n/2
e−|x|

2/4t (1.9)

for t > 0 and by K(t, x) := Kt(x) := 0 for t ≤ 0.

Remark 1.4. (i) A simple computation shows that, for every n ∈ N, there
exists a constant c = c(n) > 0 such that

‖Kt‖L1 = 1, ‖∇Kt‖L1 ≤
c√
t
, ‖∂tKt‖L1 ≤

c

t
,

∥∥∂2
tKt

∥∥
L1 ≤

c

t2

for all t > 0.

(ii) Let u : Rn+1 → C be a smooth function with compact support contained
in [0,∞)× Rn and define ft(x) := f(t, x) := ∂tu(t, x)− (∆u)(t, x) for t ∈ R
and x ∈ Rn. Then u satisfies equation (1.7) with u0 = 0 and hence is given
by equation (1.8). Thus the gradien of ut is given by ∇ut =

∫ t
0
∇Kt−s ∗ fs ds

for t ≥ 0. Hence, by (i) and Young’s inequality,

‖∇ut‖Lp ≤
∫ t

0

‖Kt−s ∗ fs‖Lp ds

≤
∫ t

0

‖Kt−s‖L1 ‖fs‖Lp ds ≤
∫ t

0

c√
t− s

‖fs‖Lp ds.

By Hölder’s inequality this implies the estimate (1.6) with the exponent 2 on
the right replaced by any number q > 2 (and a constant depending on T ).
To prove the estimate for q = 2 requires different arguments that will be
spelled out in Section 2.
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The next corollary asserts that the heat equation defines a strongly con-
tinuous semigroup on the Besov spaces. The condition s = 2 − 2/q is not
needed for this result but it suffices for our purposes.

Corollary 1.5. Fix an integer n ∈ N and real numbers p, q > 1. Define
s := 2 − 2/q. Then the solutions of the heat equation (1.2) on Rn define a
strongly continuous semigroup S(t) on the Besov space Bs,p

q (Rn,C) given by

S(t)f :=

{
Kt ∗ f, for t > 0,
f, for t = 0,

f ∈ Bs,p
q (Rn,C).

It is a contraction semigroup with respect to the norm

‖f‖p,q := ‖f‖Lp +

(∫ ∞
0

‖∆(Kt ∗ f)‖qLp dt
)1/q

. (1.10)

Proof. By Theorem 1.2 the norm ‖·‖p,q in (1.10) is equivalent to the norm
in (1.3). Hence the completion of C∞0 (Rn,C) with respect to the norm (1.10)
is the Besov space Bs,p

q (Rn,C). Moreover, by definition,

‖S(t)f‖p,q = ‖Kt ∗ f‖Lp +

(∫ ∞
t

‖∆(Kτ ∗ f)‖qLp dτ
)1/q

≤ ‖f‖p,q

for all t > 0 and all f ∈ C∞0 (Rn,C). This implies that the function

[0,∞)→ Bs,p
q (Rn,C) : t 7→ S(t)f (1.11)

is continuous for every f ∈ Bs,p
q (Rn,C). (Choose a sequence fk ∈ C∞0 (Rn,C)

that converges to f with respect to the norm (1.10); then the function
[0,∞)→ Bs,p

q (Rn,C) : t 7→ S(t)fk is continuous for each k and converges uni-
formly to (1.11); so the latter is continuous.) This proves Corollary 1.5.

The next corollary implies that the solution to the inhomogeneous heat
equation with an inhomogeneous term in Lq([0, T ], Lp(Rn,C)) is a continuous
function with values in the appropriate Besov space.

Corollary 1.6. Fix an integer n ∈ N, real numbers p, q > 1, and a compact
interval I = [0, T ]. Define s := 2 − 2/q. Then there exists a constant c > 0
such that every smooth function I × Rn → C : (t, x) 7→ u(t, x) = ut(x) with
compact support satisfies the inequality

sup
0≤t≤T

‖ut‖Bs,pq ≤ c

(∫ T

0

(
‖ut‖qLp + ‖∂tut‖qLp + ‖∆ut‖qLp

)
dt

)1/q

. (1.12)
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Proof. Throughout denote by c1 = c1(n, p, q) the constant of Theorem 1.1
and by c2 = c2(n, p, q) the constant of Theorem 1.2. Fix a smooth function
u : [0, T ]× Rn → C with compact support and abbreviate

ut(x) := u(t, x), ft(x) := ∂tut(x)−∆ut(x)

for 0 ≤ t ≤ T and x ∈ Rn. Then

ut = Kt ∗ u0 +

∫ t

0

Kt−τ ∗ fτ dτ

for 0 < t ≤ T and hence

‖ut0 −Kt0 ∗ u0‖Lp ≤
∫ t0

0

‖ft‖Lp dt ≤ t0
1−1/q

(∫ t0

0

‖ft‖qLp dt
)1/q

(1.13)

for t0 ∈ [0, T ] by Hölder’s inequality. Fix a constant 0 < t0 ≤ T and define

vt :=

{
ut −Kt ∗ u0, for 0 ≤ t ≤ t0,
Kt−t0 ∗ (ut0 −Kt0 ∗ u0), for t > t0,

gt :=

{
ft, for 0 ≤ t ≤ t0,
0, for t > t0.

Then

vt =

∫ t

0

Kt−τ ∗ gτ dτ, ∂tvt −∆vt = gt

for all t > 0 and hence, by Theorem 1.1,(∫ ∞
0

‖∂tvt‖qLp dt
)1/q

≤ c1

(∫ ∞
0

‖gt‖qLp dt
)1/q

= c1

(∫ t0

0

‖ft‖qLp dt
)1/q

.

Since vt = Kt−t0 ∗ (ut0−Kt0 ∗u0) for t > t0, it follows from Theorem 1.2 that

‖ut0 −Kt0 ∗ u0‖bs,pq ≤ c2

(∫ ∞
t0

‖∂tvt‖qLp dt
)1/q

≤ c1c2

(∫ t0

0

‖ft‖qLp dt
)1/q

.

Combine this with (1.13) to obtain

sup
0≤t≤T

‖ut −Kt ∗ u0‖Bs,pq ≤ c3

(∫ T

0

‖∂tut −∆ut‖qLp dt
)1/q

. (1.14)

where c3 := c3(n, p, q, T ) := c1c2 + T 1−1/q.
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It remains to estimate u0. First, since

u0 =
1

T

∫ T

0

(ut + (t− T )∂tut) dt,

we have
‖u0‖Lp ≤ T−1/q ‖u‖Lq(I,Lp) + T 1−1/q ‖∂tu‖Lq(I,Lp) . (1.15)

Second, define

ht := ∂tut −∆ut, wt :=

∫ t

0

Kt−τ ∗ hτ dτ

for 0 ≤ t ≤ T . Then, by Theorem 1.1,

‖∂tw‖Lq(I,Lp) ≤ c1 ‖h‖Lq(I,Lp) = c1 ‖∂tu−∆u‖Lq(I,Lp) . (1.16)

Third, Kt ∗ u0 = ut − wt and so(∫ T

0

‖∆(Kt ∗ u0)‖qLp dt
)1/q

≤ ‖∂tu‖Lq(I,Lp) + ‖∂twt‖Lq(I,Lp) . (1.17)

Fourth, since ‖∆Kt‖L1 ≤ C/t for some constant C = C(n) > 0, we have(∫ ∞
T

‖∆(Kt ∗ u0)‖qLp dt
)1/q

≤ C

(
T q−1

q − 1

)1/q

‖u0‖Lp . (1.18)

By (1.15), (1.16), (1.17), (1.18), there is a constant c0 > 0 such that every
compactly supported smooth function I × Rn → C : (t, x) 7→ u(t, x) = ut(x)
satisfies the estimate

‖u0‖p,q ≤ c0

(
‖u‖Lq(I,Lp) + ‖∂tu‖Lq(I,Lp) + ‖∆u‖Lq(I,Lp)

)
. (1.19)

By Corollary 1.5 the function Kt ∗ u0 satisfies the same estimate with the
same constant. Moreover,

‖Kt ∗ u0‖Bs,pq ≤ c2‖Kt ∗ u0‖p,q

by Theorem 1.2. This implies

‖Kt ∗ u0‖Bs,pq ≤ c0c2

(
‖u‖Lq(I,Lp) + ‖∂tu‖Lq(I,Lp) + ‖∆u‖Lq(I,Lp)

)
. (1.20)

for all t ∈ [0, T ]. The estimate (1.12) follows directly from (1.14) and (1.20).
This proves Corollary 1.6.
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Corollary 1.7. Let n, p, q, s and I = [0, T ] be as in Corollary 1.6. Then
the identity on the space of complex valued smooth functions on I ×Rn with
compact support extends to a bounded linear operator

Lq(I,W 2,p(Rn,C)) ∩W 1,q(I, Lp(Rn,C))→ C(I, Bs,p
q (Rn,C)).

Proof. This follows directly from the estimate (1.12) in Corollary 1.6.

The next corollary shows that the result of Corollary 1.7 is sharp.

Corollary 1.8. Let n, p, q, s and I = [0, T ] be as in Corollary 1.6 and let
f ∈ Lp(Rn,C). Then the following are equivalent.

(i) f ∈ Bs,p
q (Rn,C)

(ii) There exists a function

u ∈ Lq(I,W 2,p(Rn,C)) ∩W 1,q(I, Lp(Rn,C))

such that u(0, ·) = f .

Proof. If f ∈ Bs,p
q (Rn,C) then the function ut := Kt ∗ f satisfies the require-

ments of part (ii) with ∂tu = ∆u, by Theorem 1.2 and the Calderón–Zygmund
inequality in Corollary 6.2. That (ii) implies (i) follows immediately from
Corollary 1.7. This proves Corollary 1.8.

Corollary 1.9. Let n, p, q, s and I = [0, T ] be as in Corollary 1.6 and con-
sider the Banach spaces

Wq,p := Lq(I,W 2,p(Rn,C)) ∩W 1,q(I, Lp(Rn,C)),

F q,p := Bs,p
q (Rn,C)× Lq(I, Lp(Rn,C)).

(1.21)

Define the operators D :Wq,p → F q,p and T : F q,p →Wq,p by

Du := (u(0, ·), ∂tu−∆u),

(T (f, g))(t, x) := (Kt ∗ f)(x) +

∫ t

0

∫
Rn
Kt−s(x− y)g(s, y) dy ds

(1.22)

Then D and T are bijective bounded linear operators and T = D−1

Proof. That D is a bounded linear operator follows from Corollary 1.6 and
that T is a bounded linear operator follows from Theorems 1.1 and 1.2.
Moreover, it follows from the basic properties of the heat kernel Kt that
DT (f, g) = (f, g) for every pair of smooth functions f : Rn → C and
g : I × Rn → C with compact support. Hence D ◦ T = id and so D is sur-
jective. That D is injective follows from a standard uniqueness result for
solutions of the heat equation. Thus D is a bijective bounded linear operator
and D−1 = T . This proves Corollary 1.9.
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2 Proof of Theorem 1.3

For p = q = 2 the estimates of Theorem 1.1 and Theorem 1.3 follow from a
straight forward integration by parts argument. An extension of this argu-
ment leads to a proof of Theorem 1.3. For a compactly supported smooth
function f : Rn → C with mean value zero and a real number p > 1 define

‖f‖W−1,p(Rn) := sup
φ 6≡0

|
∫
Rn Re(φf)|
‖∇φ‖Lq(Rn)

, q :=
p

p− 1
.

Here the supremum is understood over all nonvanishing smooth functions
φ : Rn → C with compact support.

Theorem 2.1. Let T > 0 and let u : [0, T ] × Rn → C be a compactly
supported smooth function. Write

ut(x) := u(t, x)

and suppose that ∫
Rn
ut(x) dx = 0

for all t ∈ [0, T ]. Then, for every p ≥ 2,

‖uT‖2
Lp(Rn) +

∫ T

0

1

‖ut‖p−2
Lp(Rn)

(∫
Rn
|ut|p−2|∇ut|2

)
dt

≤ ‖u0‖2
Lp(Rn) + (p− 1)2

∫ T

0

‖∂tut −∆ut‖2
W−1,p(Rn) dt.

(2.1)

The integrand on the left is taken to be zero for each t with ut ≡ 0.

Proof. It suffices to prove the assertion under the assumption that ut 6≡ 0 for
all t ∈ [0, T ]. Define

ft(x) := f(t, x) := ∂tu(t, x)− (∆u)(t, x)

for t ∈ [0, T ] and x ∈ Rn. Then ft : Rn → C is a smooth function with
compact support and mean value zero for all t ∈ [0, T ]. Moreover,

∂t|u|p = p|u|p−2Re(u∂tu), ∇(|u|p−2u) =
p

2
|u|p−2∇u+

p− 2

2
|u|p−4u2∇u.
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Hence, by Hölder’s inequality,

1

p− 1

∥∥∇(|u|p−2u)
∥∥
Lq(Rn)

=

(∫
Rn

(
|u|p−2|∇u|

) p
p−1

) p−1
p

=

(∫
Rn

(
|u|p−2|∇u|2

) p
2p−2 |u|p

p−2
2p−2

) p−1
p

≤
(∫

Rn
|u|p−2|∇u|2

) 1
2
(∫

Rn
|u|p
) p−2

2p

=

(
‖u‖p−2

Lp(Rn)

∫
Rn
|u|p−2|∇u|2

) 1
2

.

This implies

d

dt

1

p

∫
Rn
|u|p =

∫
Rn
|u|p−2Re(u∂tu) =

∫
Rn
|u|p−2Re(u(f + ∆u))

=

∫
Rn
|u|p−2uf − p

2

∫
Rn
|u|p−2|∇u|2 − p− 2

2

∫
Rn
|u|p−4

∑
i

Re(u2(∂iu)2)

≤
∥∥∇(|u|p−2u)

∥∥
Lq(Rn)

‖f‖W−1,p(Rn) −
∫
Rn
|u|p−2|∇u|2

≤ (p− 1)

(
‖u‖p−2

Lp(Rn)

∫
Rn
|u|p−2|∇u|2

) 1
2

‖f‖W−1,p(Rn) −
∫
Rn
|u|p−2|∇u|2.

It follows that

d

dt

1

2
‖u‖2

Lp(Rn) =
1

‖u‖p−2
Lp(Rn)

d

dt

1

p

∫
Rn
|u|p

≤ (p− 1)

(
1

‖u‖p−2
Lp(Rn)

∫
Rn
|u|p−2|∇u|2

) 1
2

‖f‖W−1,p(Rn)

− 1

‖u‖p−2
Lp(Rn)

∫
Rn
|u|p−2|∇u|2

≤ (p− 1)2

2
‖f‖2

W−1,p(Rn) −
1

2

1

‖u‖p−2
Lp(Rn)

∫
Rn
|u|p−2|∇u|2.

The assertion of Theorem 2.1 follows by integrating this inequality over the
interval 0 ≤ t ≤ T .
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The next corollary shows that Theorem 1.3 holds (for p ≥ 2) with the
constant c =

√
n(p− 1).

Corollary 2.2. Let p ≥ 2 and T ≥ 0. Then every compactly supported
smooth function u : Rn+1 → C satisfies the estimates

‖∇uT‖2
Lp(Rn) ≤ n ‖∇u0‖2

Lp(Rn) + n(p− 1)2

∫ T

0

‖∂tu−∆u‖2
Lp(Rn) dt

and

‖uT‖Lp(Rn) ≤ ‖u0‖Lp(Rn) +

∫ T

0

‖∂tu−∆u‖Lp(Rn) dt.

Proof. Let u : Rn+1 → C be a compactly supported smooth function. Then
the function ∂iut : Rn → C has mean value zero for every t. Moreover, it
follows directly from the definition and the Hölder inequality that

‖∂if‖W−1.p(Rn) ≤ ‖f‖Lp(Rn)

for every compactly supported smooth function f : Rn → C and every index
i = 1, . . . , n. Hence it follows from Theorem 2.1 that

‖∂iuT‖2
Lp(Rn) ≤ ‖∂iu0‖2

Lp(Rn) + (p− 1)2

∫ T

0

‖∂i(∂tu−∆u)‖2
W−1,p(Rn) dt

≤ ‖∇u0‖2
Lp(Rn) + (p− 1)2

∫ T

0

‖∂tu−∆u‖2
Lp(Rn) dt

for all i. Since ‖∇f‖2
Lp = ‖

∑
i|∂if |2‖Lp/2 ≤

∑
i‖|∂if |2‖Lp/2 =

∑
i‖∂if‖2

Lp for
all f ∈ C∞0 (Rn,C), the first inequality follows by taking the sum over all i.
The second inequality follows from (1.8) with ft(x) := ∂tu(t, x)− (∆u)(t, x).
Namely,

‖uT‖Lp(Rn) =

∥∥∥∥KT ∗ u0 +

∫ T

0

KT−t ∗ ft dt
∥∥∥∥
Lp(Rn)

≤ ‖KT ∗ u0‖Lp(Rn) +

∫ T

0

‖KT−t ∗ ft‖Lp(Rn) dt

≤ ‖KT‖L1(Rn) ‖u0‖Lp(Rn) +

∫ T

0

‖KT−t‖L1(Rn) ‖ft‖Lp(Rn) dt

≤ ‖u0‖Lp(Rn) +

∫ T

0

‖ft‖Lp(Rn) dt.

Here the third step follows from Young’s inequality and the last step follows
from part (i) of Remark 1.4. This proves Corollary 2.2.
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Corollary 2.3. For every p ≥ 2 and every T > 0 the identity on the space of
compactly supported smooth functions on [0, T ]×Rn extends to a continuous
inclusion operator

W 1,2([0, T ],W 2,p(Rn,C)) ∩ L2([0, T ], Lp(Rn,C))→ C([0, T ],W 1,p(Rn,C)).

Proof. For f ∈ C∞0 (Rn,C) define

‖f‖W 1,p(Rn) :=

(∫
Rn
|f |p + |∇f |p

)1/p

and

‖f‖W 2,p(Rn) :=

(∫
Rn
|f |p + |∇f |p +

n∑
i,j=1

|∂i∂jf |p
)1/p

.

Then, in particular,

‖∆f‖Lp(Rn) ≤ n1/p ‖f‖W 2,p(Rn) .

By Corollary 2.2, every smooth function function u : [0, T ] × Rn → C with
compact support satisfies the inequality

‖ut‖2
W 1,p(Rn) ≤ ‖ut‖

2
Lp(Rn) + ‖∇ut‖2

Lp(Rn)

≤ ‖us‖2
Lp(Rn) +

(∫ t

s

‖∂tu−∆u‖Lp(Rn)

)2

+ n ‖∇us‖2
Lp(Rn) + n(p− 1)2

∫ t

s

‖∂tu−∆u‖2
Lp(Rn)

≤ (n+ 1) ‖us‖2
W 1,p(Rn) + (n(p− 1)2 + T )

∫ T

0

‖∂tu−∆u‖2
Lp(Rn)

≤ (n+ 1) ‖us‖2
W 2,p(Rn)

+ 2n2/p(n(p− 1)2 + T )

∫ T

0

(
‖∂tu‖2

Lp(Rn) + ‖u‖2
W 2,p(Rn)

)
for 0 ≤ s ≤ t ≤ T . Replacing u(t, x) with u(T − t, x), we obtain the same
inequality for t ≤ s ≤ T . Integrate the resulting inequality over the interval
0 ≤ s ≤ T to obtain

sup
0≤t≤T

‖ut‖2
W 1,p(Rn) ≤ c

∫ T

0

(
‖∂tu‖2

Lp(Rn) + ‖u‖2
W 2,p(Rn)

)
,

where c := n+1
T

+ 2n2/p(n(p− 1)2 + T ). This proves Corollary 2.3.
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Corollary 2.4. Theorems 1.1 and 1.3 hold for p = q = 2.

Proof. For p = 2 Theorem 2.1 asserts that the inequality

‖uT‖2
L2(Rn) +

∫ T

−∞
‖∇ut‖2

L2(Rn) dt ≤
∫ T

−∞
‖∂tut −∆ut‖2

W−1,2(Rn) dt

holds for every T ∈ R and every compactly supported smooth function
u : Rn+1 → C such that

∫
Rn ut = 0 for all t. For T sufficiently large it follows

under the same assumption on u that∫ ∞
−∞
‖∇ut‖2

L2(Rn) dt ≤
∫ ∞
−∞
‖∂tut −∆ut‖2

W−1,2(Rn) dt.

Replace u by ∂iu, use the inequality ‖∂if‖W−1,2(Rn) ≤ ‖f‖L2(Rn) for every
smooth function f ∈ C∞0 (Rn,C), and take the sum over all i to obtain∫ ∞

−∞
‖∂tut‖2

L2(Rn) dt

≤ (n+ 1)

∫ ∞
−∞
‖∂tu−∆u‖2

L2(Rn) dt+ (n+ 1)

∫ ∞
−∞
‖∂i∂iu‖2

L2(Rn) dt

≤ (n+ 1)

∫ ∞
−∞
‖∂tu−∆u‖2

L2(Rn) dt+ (n+ 1)
n∑
i=1

∫ ∞
−∞
‖∇∂iut‖2

L2(Rn) dt

≤ (n+ 1)2

∫ ∞
−∞
‖∂tut −∆ut‖2

L2(Rn) dt.

This proves the assertion of Theorem 1.1 for p = q = 2 with c = n + 1.
Moreover, it follows from Corollary 2.2 that the assertion of Theorem 1.3
holds for p = 2 with c =

√
n. This proves Corollary 2.4.

Corollary 2.5. Assume 1 < p ≤ 2, let u0 : Rn → C be a compactly supported
smooth function, and define

ut := Kt ∗ u0 : Rn → C

for t ≥ 0. Thus u(t, x) := ut(x) is the unique solution of (1.7) with f = 0
such that ut is square integrable for all t. Then(∫ ∞

0

‖∇ut‖2
Lp(Rn) dt

)1/2

≤ 1

p− 1
‖u0‖Lp(Rn) . (2.2)

13



Proof. Define q := p/(p− 1) ≥ 2 and let g : [0,∞)×Rn → C be any smooth
function with compact support such that gt := g(t, ·) has mean value zero
for all t. Define vt(x) = v(t, x) by

vt(x) :=

∫ ∞
t

(Ks−t ∗ gs)(x) ds =

∫ ∞
t

(∫
Rn
Ks−t(x− y) ∗ gs(y) dy

)
ds

for t ≥ 0 and x ∈ Rn. Then ∂tv + ∆v = g, vt is square integrable for all t,
and Theorem 2.1 implies that

‖v0‖2
Lq(Rn) ≤ (q − 1)2

∫ ∞
0

‖gt‖2
W−1,q(Rn) dt.

Moreover,

d

dt

∫
Rn

Re(vtut) =

∫
Rn

Re((∂tvt)ut) +

∫
Rn

Re(vt(∂tut))

=

∫
Rn

Re((∂tvt)ut) +

∫
Rn

Re(vt(∆ut))

=

∫
Rn

Re((∂tvt + ∆vt)ut)

=

∫
Rn

Re(gtut).

Integrate this equation over the interval 0 ≤ t <∞ to obtain∫ ∞
0

(∫
Rn

Re(gtut)

)
dt = −

∫
Rn

Re(v0u0) ≤ ‖u0‖Lp(Rn) ‖v0‖Lq(Rn)

≤ (q − 1) ‖u0‖Lp(Rn)

(∫ ∞
0

‖gt‖2
W−1,q(Rn) dt

)1/2

.

Since (∫ ∞
0

‖∇ut‖2
W 1,p(Rn) dt

)1/2

= sup
g

∫∞
0

(∫
Rn Re(gtut)

)
dt(∫∞

0
‖gt‖2

W−1,q(Rn) dt
)1/2

,

where the supremum on the right is over all nonvanishing compactly sup-
ported smooth functions g : [0,∞)×Rn → C such that gt := g(t, ·) has mean
value zero for all t, it follows that(∫ ∞

0

‖∇ut‖2
W 1,p(Rn) dt

)1/2

≤ (q − 1) ‖u0‖Lp(Rn) .

Since (q − 1) = (p− 1)−1, this proves Corollary 2.5.
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Corollary 2.6. Assume 1 < p ≤ 2, let u0 : Rn → C be a compactly sup-
ported smooth function, and define ut := Kt ∗ u0 : Rn → C for t ≥ 0 as in
Corollary 2.5. Then(∫ ∞

0

‖∂tut‖2
Lp(Rn) dt

)1/2

+
n∑
i=1

(∫ ∞
0

‖∇∂iut‖2
Lp(Rn) dt

)1/2

≤ 2n

p− 1
‖∇u0‖Lp(Rn) .

(2.3)

Proof. Apply the estimate (2.2) in Corollary 2.5 to the function ∂iu and take
the sum over all i to obtain

n∑
i=1

(∫ ∞
0

‖∇∂iut‖2
Lp(Rn) dt

)1/2

≤
n∑
i=1

1

p− 1
‖∂iu0‖Lp(Rn)

≤ n

p− 1
‖∇u0‖Lp(Rn) .

Since

∂tu = ∆u =
n∑
i=1

∂i∂iu

it follows that(∫ ∞
0

‖∂tut‖2
Lp(Rn) dt

)1/2

≤
n∑
i=1

(∫ ∞
0

‖∇∂iut‖2
Lp(Rn) dt

)1/2

≤ n

p− 1
‖∇u0‖Lp(Rn) .

This proves Corollary 2.6.

Corollary 2.6 is a kind of converse of Corollary 2.3. While Corollary 2.3
asserts (for p ≥ 2) that every function in the space

Wp := W 1,2([0, T ], Lp(Rn,C)) ∩ L2([0, T ],W 2,p(Rn,C))

is a continuous function on the intervall [0, T ] with values in W 1,p(Rn,C),
Corollary 2.6 asserts (for p ≤ 2) that every element u0 ∈ W 1,p(Rn,C) extends
to a function in Wp that agrees with u0 at t = 0.
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3 Riesz–Thorin and Stein interpolation

Assume throughout that (X,A, µ) and (Y,B, ν) are measure spaces. For
1 ≤ p ≤ ∞ denote by Lp(X,µ) and Lp(Y, ν) the complex Lp-spaces. Also
denote by X the set of all equivalence classes of A-measurable step func-
tions f : X → C with support of finite measure and by Y the set of all
equivalence classes of B-measurable step functions g : Y → C with support
of finite measure. The equivalence relation in both cases is equality almost
everywhere. Whenever convenient we abuse notation and denote by f either
an equivalence class of measurable functions on X (respectively Y ) or a rep-
resentative of the corresponding equivalence class. We begin our exposition
with the Riesz–Thorin Interpolation Theorem [32, 37].

Theorem 3.1 (Riesz–Thorin). Let 1 ≤ p0, p1, q0, q1 ≤ ∞, let

T : Lp0(X,µ) ∩ Lp1(X,µ)→ Lq0(Y, ν) ∩ Lq1(Y, ν)

be a linear operator, and suppose that there exist positive real numbers c0, c1

such that, for all f ∈ Lp0(X,µ) ∩ Lp1(X,µ),

‖Tf‖Lq0 ≤ c0 ‖f‖Lp0 , ‖Tf‖Lq1 ≤ c1 ‖f‖Lp1 (3.1)

Fix a real number 0 < λ < 1 and define the numbers pλ, qλ, cλ by

1

pλ
:=

1− λ
p0

+
λ

p1

,
1

qλ
:=

1− λ
q0

+
λ

q1

, cλ := c1−λ
0 cλ1 . (3.2)

If qλ =∞ assume that (Y,B, ν) is semi-finite. Then

‖Tf‖Lqλ ≤ cλ ‖f‖Lpλ (3.3)

for all f ∈ Lp0(X,µ) ∩ Lp1(X,µ) ⊂ Lpλ(X,µ).

Proof. See page 17.

The proof requires Hadamard’s Three Lines Theorem. Define

S :=
{
z ∈ C

∣∣ 0 ≤ Re(z) ≤ 1
}
. (3.4)

Theorem 3.2 (Hadamard Three Lines Theorem). Let Φ : S→ C be a
bounded continuous function that is holomorphic in int(S). Then

sup
Re(z)=λ

|Φ(z)| ≤

(
sup

Re(z)=0

|Φ(z)|

)1−λ(
sup

Re(z)=1

|Φ(z)|

)λ

for all λ ∈ [0, 1].
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Proof. Define c0 := supRe(z)=0|Φ(z)| and c1 := supRe(z)=1|Φ(z)|. Then the
function Ψn : S→ C defined by

Ψn(z) :=
Φ(z)

c1−z
0 cz1

e
z2−1
n

is continuous, is holomorphic in int(S), and converges to zero as |z| tends to
infinity. Hence it attains its maximum on the boundary of S. Since

|Ψn(z)| ≤ e
Re(z2)−1

n = e
Re(z)2−Im(z)2−1

n ≤ 1 for Re(z) = 0, 1,

it follows that |Ψn(z)| ≤ 1 for all z ∈ C with 0 ≤ R(z) ≤ 1. Take the limit
n→∞ to obtain the inequality

|Φ(z)| ≤ |c1−z
0 cz1| = c

1−Re(z)
0 c

Re(z)
1

for all z ∈ C with 0 ≤ R(z) ≤ 1. This proves Theorem 3.2.

Proof of Theorem 3.1. The proof follows the exposition in [18].

Step 1. The assertion holds when p0 = p1 =: p.

In this case pλ = p and it follows from Hölder’s inequality and equations (3.1)
and (3.2) that

‖Tf‖Lqλ ≤ ‖Tf‖
1−λ
Lq0 ‖Tf‖

λ
Lq1 ≤ c1−λ

0 cλ1 ‖f‖Lp

for all f ∈ Lp(X,µ). This proves Step 1.

Step 2. Let h ∈ Lq0(Y, ν) ∩ Lq1(Y, ν). Thus h ∈ Lqλ(Y, ν) and so gh is
integrable for all g ∈ Y . Define rλ ∈ [0,∞] by

1

qλ
+

1

rλ
= 1, (3.5)

let c > 0, and assume that ∣∣∣∣∫
Y

gh dν

∣∣∣∣ ≤ c ‖g‖Lrλ (3.6)

for all g ∈ Y . Then ‖h‖Lqλ ≤ c.

Assume first that 1 < qλ < ∞ and so 1 < rλ < ∞. Hence Y is dense in
Lrλ(Y, ν) by [33, Lemma 4.12]. Thus the inequality (3.6) continues to hold
for all g ∈ Lrλ(Y, ν). Define g : Y → C by g(y) := |h(y)|qλ−2h(y) whenever
h(y) 6= 0 and g(y) := 0 otherwise. Then g ∈ Lrλ(Y, ν) and ‖g‖Lrλ = ‖h‖qλ−1

Lqλ .
Hence ‖h‖qλLqλ =

∣∣∫
Y
gh dν

∣∣ ≤ c ‖g‖Lrλ = c ‖h‖qλ−1
Lqλ and so ‖h‖Lqλ ≤ c.
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Next assume qλ =∞ and so rλ = 1. Then Y is dense in L1(Y, ν) by [33,
Lemma 4.12] and so (3.6) continues to hold for all g ∈ L1(Y, ν). Assume,
by contradiction, that ‖h‖L∞ > c. Then there is a δ > 0 such that the set
B := {y ∈ Y | |h(y)| > c+ δ} has positive measure. Since (Y,B, ν) is semi-
finite, there exists a measurable set E ⊂ B such that 0 < ν(E) <∞. Define
g by g(y) := |h(y)|−1h(y) for y ∈ E and by g(y) := 0 for y ∈ Y \ E. Then
g ∈ L1(Y, ν) and∣∣∣∣∫

Y

gh dν

∣∣∣∣ =

∫
E

|h| dν ≥ (c+ δ)ν(E) > cν(E) = c ‖g‖L1

in contradiction to (3.6).
Next assume qλ = 1 and so rλ = ∞. Suppose, by contradiction, that

‖h‖L1 > c. Since Y is dense in L1(Y, ν) there is a k ∈ Y such that

‖h− k‖L1 <
‖h‖L1 − c

2
.

Define g : Y → C by g(y) := |k(y)|−1k(y) whenever k(y) 6= 0 and g(y) := 0
otherwise. Then g ∈ Y , ‖g‖L∞ = 1, and

∫
Y
gk dν = ‖k‖L1 . Hence∣∣∣∣∫

Y

gh dν

∣∣∣∣ ≥ ‖k‖L1 − ‖h− k‖L1 ≥ ‖h‖L1 − 2 ‖h− k‖L1 > c = c ‖g‖L∞

in contradiction to (3.6). This proves Step 2.

Step 3. Let rλ be as in Step 2. Then the inequality∫
Y

(Tf)g dν ≤ cλ ‖f‖Lpλ ‖g‖Lrλ (3.7)

holds for all f ∈X and all g ∈ Y .

This is the heart of the proof of Theorem 3.1. Write

f =
k∑
i=1

aiχAi , g =
∑̀
j=1

bjχBj , (3.8)

where a1, . . . , ak and b1, . . . , b` are nonzero complex numbers, the Ai are
pairwise disjoint measurable subsets of X with finite measure, and the Bj

are pairwise disjoint measurable subsets of Y with finite measure. Here
χA denotes the characteristic function of a set A ⊂ X and χB denotes the
characteristic function of a set B ⊂ Y . Choose φi, ψj ∈ R such that

ai = |ai|eiφi , bj = |bj|eiψj

for i = 1, . . . , k and j = 1, . . . , `.
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For z ∈ S define fz : X → C and gz : Y → C by

fz(x) :=
k∑
i=1

|ai|
(1−z)p1+zp0
(1−λ)p1+λp0 eiφiχAi ,

gz(y) :=
∑̀
j=1

|bj|
q0q1−(1−z)q1−zq0
q0q1−(1−λ)q1−λq0 eiψjχBi

(3.9)

for x ∈ X and y ∈ Y . Then fλ = f and gλ = g. Moreover, the function
Φ : S→ C defined by

Φ(z) :=

∫
Y

(Tfz)gz dν

=
∑
i,j

|ai|
(1−z)p1+zp0
(1−λ)p1+λp0 |bj|

q0q1−(1−z)q1−zq0
q0q1−(1−λ)q1−λq0 ei(φi+ψj)

∫
Bj

(TχAi) dν
(3.10)

for z ∈ S is holomorphic. Let z ∈ C with Re(z) = 0. Then

|fz(x)|p0 = |ai|
p0p1

(1−λ)p1+λp0 = |ai|pλ = |f(x)|pλ

for x ∈ Ai and

|gz(y)|r0 = |bi|
r0(q0−1)q1

q0q1−(1−λ)q1−λq0 = |bi|
q0q1

q0q1−(1−λ)q1−λq0 = |bj|
qλ
qλ−1 = |g(x)|rλ

for y ∈ Bj. Hence

|Φ(z)| ≤ ‖Tfz‖Lq0 ‖gz‖Lr0 ≤ c0 ‖fz‖Lp0 ‖gz‖Lr0 = c0 ‖f‖pλ/p0Lpλ ‖g‖
rλ/r0
Lrλ

for all z ∈ C with Re(z) = 0. A similar argument shows that

|Φ(z)| ≤ ‖Tfz‖Lq0 ‖gz‖Lr0 ≤ c1 ‖fz‖Lp1 ‖gz‖Lr1 = c1 ‖f‖pλ/p1Lpλ ‖g‖
rλ/r1
Lrλ

for all z ∈ C with Re(z) = 1. Hence it follows from Hadamard’s Three Lines
Theorem 3.2 that

|Φ(λ)| ≤

(
sup

Re(z)=0

|Φ(z)|

)1−λ(
sup

Re(z)=1

|Φ(z)|

)λ

≤
(
c0 ‖f‖pλ/p0Lpλ ‖g‖

rλ/r0
Lrλ

)1−λ (
c1 ‖f‖pλ/p1Lpλ ‖g‖

rλ/r1
Lrλ

)λ
= cλ ‖f‖Lpλ ‖g‖Lrλ .

The last equation uses the identities cλ = c1−λ
0 cλ1 and 1

pλ
= 1−λ

p0
+ λ

p1
as well

as 1
rλ

= 1− 1
qλ

= 1− 1−λ
q0
− λ

q1
= 1−λ

r0
+ λ

r1
. This proves Step 3.

19



Step 4. ‖Tf‖Lqλ ≤ cλ ‖f‖Lpλ for all f ∈X .

Let f ∈ X . Then Step 3 shows that h := Tf satisfies the hypotheses of
Step 2 with c := cλ ‖f‖Lpλ . Hence the assertion follows from Step 2.

Step 5. We prove the theorem.

For p0 = p1 the assertion holds by Step 1. Hence assume p0 6= p1 and,
without loss of generality, that p0 <∞. Then pλ <∞. Fix a function

f ∈ Lp0(X,µ) ∩ Lp1(X,µ).

We prove that there exists a sequence fn ∈X such that

lim
n→∞

‖f − fn‖Lpλ = 0, lim
n→∞

(Tfn)(y) = (Tf)(y) (3.11)

for almost every y ∈ Y . To see this assume first that f ≥ 0. Then there
exists a monotone sequence of measurable step functions fn : X → [0,∞)
such that 0 ≤ s1(x) ≤ s2(x) ≤ · · · and limn→∞ fn(x) = f(x) for all x ∈ X
(see [33, Theorem 1.26]). Since p0, pλ < ∞ and f ∈ Lpλ(X,µ) ∩ Lp0(X,µ),
the functions fpλ and fp0 are integrable. Since |fn(x) − f(x)|pλ ≤ f(x)pλ

and |fn(x) − f(x)|p0 ≤ f(x)p0 for all x ∈ X, it follows from the Lebesgue
Dominated Convergence Theorem (see [33, Theorem 1.45]) that

lim
n→∞

‖fn − f‖Lpλ = 0, lim
n→∞

‖fn − f‖Lp0 = 0.

Since ‖Tfn − Tf‖Lq0 ≤ c0 ‖fn − f‖Lp0 , we have limn→∞ ‖Tfn − Tf‖Lq0 = 0.
Hence there exists a subsequence, still denoted by fn, such that Tfn converges
almost everywhere to Tf (see [33, Corollary 4.10]). This is the required
sequence in the case f ≥ 0. To obtain the result in general apply this
argument to the positive and negative parts of the real and imaginary parts
of an arbitrary function f ∈ Lp0(X,µ)∩Lp1(X,µ). This proves the existence
of a sequence fn ∈X that satisfies (3.11).

Since ‖Tfn − Tfm‖Lqλ ≤ c0 ‖fn − fm‖Lpλ for all n,m ∈ N, by Step 4, it
follows from (3.11) that Tfn is a Cauchy sequence in Lqλ(Y, ν) and hence
converges in Lqλ(Y, ν). Since Tfn converges to Tf almost everywhere, its
limit in Lqλ(Y, ν) agrees with Tf . Hence Tf ∈ Lqλ(Y, ν) and

lim
n→∞

‖Tfn‖Lqλ = ‖Tf‖Lqλ . (3.12)

By (3.11), (3.12), and Step 4 we have

‖Tf‖Lqλ = lim
n→∞

‖Tfn‖Lqλ ≤ cλ lim
n→∞

‖fn‖Lpλ = cλ ‖f‖Lpλ .

This proves Step 5 and Theorem 3.1.
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The Stein Interpolation Theorem in [36] is an extension of the Riesz–
Thorin Interpolation Theorem, where the operator T is replaced by a holo-
morphic operator family {Tz}z∈S, parametrized by the elements of the strip
S = {z ∈ C | 0 ≤ Re(z) ≤ 1} in (3.4). Denote by L1

loc(Y, ν) the space of all
equivalence classes of measurable functions g : Y → C such that the restric-
tion of g to every measurable subset of Y with finite measure is integrable.
Recall that X denotes the set of all equivalence classes of A-measurable step
function f : X → C with support of finite measure.

Theorem 3.3 (Stein). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let

Tz : X → L1
loc(Y, ν), z ∈ S,

be a family of linear operators satisfying the following two conditions.

(a) For all f ∈X and all g ∈ Y the function

S→ C : z 7→
∫
Y

g(Tzf) dν

is continuous and is holomorphic in int(S).

(b) There exist positive real numbers c0, c1 such that

‖Titf‖Lq0 ≤ c0 ‖f‖Lp0 , ‖T1+itf‖Lq1 ≤ c1 ‖f‖Lp1 (3.13)

for all f ∈X and all t ∈ R.

Let 0 < λ < 1 and define pλ, qλ, cλ by

1

pλ
:=

1− λ
p0

+
λ

p1

,
1

qλ
:=

1− λ
q0

+
λ

q1

, cλ := c1−λ
0 cλ1 . (3.14)

If qλ =∞ assume that (Y,B, ν) is semi-finite. Then

‖Tλf‖Lqλ ≤ cλ ‖f‖Lpλ (3.15)

for all f ∈X .

Proof. The proof is a straight forward extension of the proof of Theorem 3.1.
Namely, let f ∈X and g ∈ Y , and define the function Φ : S→ C by

Φ(z) :=

∫
Y

gz(Tzfz) dν

for z ∈ S, where fz : X → C and gz : Y → C are given by (3.9) (with f and
g given by (3.8)). Then it follows as in Step 3 in the proof of Theorem 3.1
that |

∫
Y
g(Tλf) dν| = |Φ(λ)| ≤ cλ ‖f‖Lpλ ‖g‖Lqλ . By Step 2 in the proof of

Theorem 3.1 this implies the assertion of Theorem 3.3.
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4 Marcinkiewicz interpolation

The Marcinkiewicz interpolation theorem provides a criterion for a linear
operator on L2(µ) to induce a linear operator on Lp for 1 < p < 2. Let
(X,A, µ) be a measure space. For a measurable function f : X → R define
the (Borel measurable) function κf : [0,∞)→ [0,∞] by

κf (t) := µ(A(t, f)), A(t, f) :=
{
x ∈ X

∣∣ |f(x)| > t
}
, for t ≥ 0. (4.1)

Lemma 4.1. Let 1 ≤ p <∞ and let f, g : X → R be measurable functions.
Then, for all t > 0,

κf+g(t) ≤ κf (t/2) + κg(t/2), (4.2)

tpκf (t) ≤
∫
X

|f |p dµ = p

∫ ∞
0

sp−1κf (s) ds. (4.3)

Proof. The inequality (4.2) holds because A(t, f +g) ⊂ A(t/2, f)∪A(t/2, g).
We prove (4.3) in four steps.

Step 1. tpκf (t) ≤
∫
X
|f |p dµ for all t ≥ 0.

Since tpχA(t,f) ≤ |f |p it follows that tpκf (t) =
∫
X
tpχ(A(t,f) dµ ≤

∫
X
|f |p dµ for

all t ≥ 0. This proves Step 1.

Step 2. If κf (t) =∞ for some t > 0 then
∫
X
|f |p dµ =∞ =

∫∞
0
tp−1κf (t) dt.

By Step 1, we have
∫
X
|f |p dµ = ∞. Moreover, tp−1κf (t) = ∞ for t > 0

sufficiently small and hence
∫∞

0
tp−1κf (t) dt =∞. This proves Step 2.

Step 3. Assume (X,A, µ) is σ-finite and κf (t) < ∞ for all t > 0. Then
equation (4.3) holds.

Let B ⊂ 2[0,∞) be the Borel σ-algebra and denote by m : B → [0,∞] the
restriction of the Lebesgue measure to B. Let (X × [0,∞),A⊗B, µ⊗m) be
the product measure space in [33, Def 7.10]. We prove that

Q(f) :=
{

(x, t) ∈ X × [0,∞)
∣∣ 0 ≤ t < |f(x)|

}
∈ A⊗ B.

To see this, assume first that f is an A-measurable step-function. Then
there exist finitely many pairwise disjoint measurable sets A1, . . . , A` ∈ A
and positive real numbers α1, . . . , α` such that |f | =

∑`
i=1 αiχAi . In this

case Q(f) =
⋃`
i=1 Ai× [0, αi) ∈ A⊗B. Now consider the general case. Then

there is a sequence of A-measurable step-functions fi : X → [0,∞) such that
0 ≤ f1 ≤ f2 ≤ · · · and fi converges pointwise to |f | (see [33, Thm 1.26]).
Since Q(fi) ∈ A⊗ B for all i, we have Q(f) =

⋃∞
i=1Q(fi) ∈ A⊗ B.
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Now define h : X × [0,∞)→ [0,∞) by h(x, t) := ptp−1. This function is
A⊗ B-measurable and so is hχQ(f). Hence, by Fubini’s Theorem,∫

X

|f |p dµ =

∫
X

(∫ |f(x)|

0

ptp−1 dt

)
dµ(x)

=

∫
X

(∫ ∞
0

(hχQ(f))(x, t) dm(t)

)
dµ(x)

=

∫ ∞
0

(∫
X

(hχQ(f))(x, t) dµ(x)

)
dm(t)

=

∫ ∞
0

ptp−1µ(A(t, f)) dt.

This proves Step 3.

Step 4. Assume κf (t) <∞ for all t > 0. Then (4.3) holds.

Define X0 := {x ∈ X | f(x) 6= 0}, A0 :=
{
A ∈ A

∣∣A ⊂ X0

}
, and µ0 := µ|A0 .

Then the measure space (X0,A0, µ0) is σ-finite because Xn := A(1/n, f) is
a sequence of An-measurable sets such that µ0(Xn) = κf (1/n) <∞ for all n
and X0 =

⋃∞
n=1Xn. Moreover, f0 := f |X0 : X0 → R is A0-measurable and

κf = κf0 . Hence it follows from Step 3 that∫
X

|f |p dµ =

∫
X0

|f0|p dµ0 =

∫ ∞
0

tp−1κf0(t) dt =

∫ ∞
0

tp−1κf (t) dt.

This proves Step 4 and Lemma 4.1.

Fix real numbers 1 ≤ p ≤ q. Then Hölder’s inequality implies

‖f‖p ≤ ‖f‖
q−p
p(q−1)

1 ‖f‖
q(p−1)
p(q−1)
q (4.4)

for every measurable function f : X → R and hence

L1(µ) ∩ Lq(µ) ⊂ Lp(µ).

Since the intersection L1(µ)∩Lq(µ) contains (the equivalences classes of) all
characteristic functions of measurable sets with finite measure, it is dense in
Lp(µ) (see [33, Lem 4.12]). The following theorem was proved in 1939 by
Józef Marcinkiewicz (a PhD student of Antoni Zygmund). To formulate the
result it will be convenient to slightly abuse notation and use the same letter
f to denote an element of Lp(µ) and its equivalence class in Lp(µ).
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For a measurable function f : X → C define

‖f‖1,∞ := sup
t>0

tκf (t) ≤ ‖f‖L1 . (4.5)

We emphasize that the map f 7→ ‖f‖1,∞ is not a norm because it only
satisfies the weak triangle inequality

‖f + g‖1/2
1,∞ ≤ ‖f‖

1/2
1,∞ + ‖g‖1/2

1,∞.

However the formula d1,∞(f, g) := ‖f − g‖1/2
1,∞ defines a metric on L1(Rn,C)

and the completion of L1(Rn,C) with respect to this metric is the topological
vector space L1,∞(Rn,C) of weakly integrable functions (see [33, Section 6.1]).

Theorem 4.2 (Marcinkiewicz). Let q > 1 and let T : Lq(µ)→ Lq(µ) be a
linear operator. Suppose there are constants c1 > 0 and cq > 0 such that

‖Tf‖1,∞ ≤ c1 ‖f‖1 , ‖Tf‖q ≤ cq ‖f‖q (4.6)

for all f ∈ L1(µ) ∩ Lq(µ). Fix a constant 1 < p < q. Then

‖Tf‖p ≤ cp ‖f‖p , cp := 2

(
p(q − 1)

(q − p)(p− 1)

)1/p

c
q−p
p(q−1)

1 c
q(p−1)
p(q−1)
q , (4.7)

for all f ∈ L1(µ)∩Lq(µ). Thus the restriction of T to L1(µ)∩Lq(µ) extends
(uniquely) to a bounded linear operator from Lp(µ) to itself for 1 < p < q.

Proof. Let c > 0 and let f ∈ L1(µ) ∩ Lq(µ). For t ≥ 0 define

ft(x) :=

{
f(x), if |f(x)| > ct,
0, if |f(x)| ≤ ct,

gt(x) :=

{
0, if |f(x)| > ct,
f(x), if |f(x)| ≤ ct.

Then

A(s, ft) =

{
A(s, f), if s > ct,
A(ct, f), if s ≤ ct,

A(s, gt) =

{
∅, if s ≥ ct,
A(s, f) \ A(ct, f), if s < ct,

κft(s) =

{
κf (s), if s > ct,
κf (ct), if s ≤ ct,

κgt(s) =

{
0, if s ≥ ct,
κf (s)− κf (ct), if s < ct.
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By Lemma 4.1 and Fubini’s Theorem, this implies∫ ∞
0

tp−2 ‖ft‖1 dt =

∫ ∞
0

tp−2

(∫ ∞
0

κft(s) ds

)
dt

=

∫ ∞
0

tp−2

(
ctκf (ct) +

∫ ∞
ct

κf (s) ds

)
dt

= c1−p
∫ ∞

0

tp−1κf (t) dt+

∫ ∞
0

∫ s/c

0

tp−2 dt κf (s) ds

= c1−p
∫ ∞

0

tp−1κf (t) dt+

∫ ∞
0

(s/c)p−1

p− 1
κf (s) ds

=
c1−pp

p− 1

∫ ∞
0

tp−1κf (t) dt

=
c1−p

p− 1

∫
X

|f |p dµ

and∫ ∞
0

tp−q−1 ‖gt‖qq dt =

∫ ∞
0

tp−q−1

(∫ ∞
0

qsq−1κgt(s) ds

)
dt

=

∫ ∞
0

tp−q−1

(∫ ct

0

qsq−1(κf (s)− κf (ct)) ds
)
dt

= q

∫ ∞
0

∫ ∞
s/c

tp−q−1 dt sq−1κf (s) ds− cq
∫ ∞

0

tp−1κf (ct) dt

= q

∫ ∞
0

sp−1cq−p

q − p
κf (s) ds− cq−p

∫ ∞
0

tp−1κf (t) dt

=
cq−pp

q − p

∫ ∞
0

tp−1κf (t) dt

=
cq−p

q − p

∫
X

|f |p dµ.

Moreover, f = ft + gt for all t ≥ 0. Hence, by Lemma 4.1 and (4.6),

κTf (t) ≤ κTft(t/2) + κTgt(t/2)

≤ 2

t
‖Tft‖1,∞ +

2q

tq
‖Tgt‖qq

≤ 2c1

t
‖ft‖1 +

(2cq)
q

tq
‖gt‖qq .
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Hence, by Lemma 4.1 and the identities on page 25,∫
X

|Tf |p dµ = p

∫ ∞
0

tp−1κTf (t) dt

≤ p2c1

∫ ∞
0

tp−2 ‖ft‖1 dt+ p(2cq)
q

∫ ∞
0

tp−q−1 ‖gt‖qq dt

=

(
p2c1c

1−p

p− 1
+
p(2cq)

qcq−p

q − p

)∫
X

|f |p dµ

=
p(q − 1)2pc

(q−p)/(q−1)
1 c

(qp−q)/(q−1)
q

(q − p)(p− 1)

∫
X

|f |p dµ

Here the last equation follows with the choice of c := (2c1)1/(q−1)/(2cq)
q/(q−1).

This proves Theorem 4.2.

Theorem 4.2 extends to Banach space valued functions. Here is an exam-
ple for such an extension that is used in Section 9. Consider the positive real
axis equipped with the Lebesgue measure. For a strongly Lebesgue measur-
able function f : [0,∞) → X with values in a Banach space X define the
function κf : (0,∞)→ [0,∞] by

κf (r) := µ
({
t ≥ 0

∣∣ ‖f(t)‖ > r
})

for r > 0.

This function depends only on the equivalence class of f up to equality almost
everywhere.

Corollary 4.3 (Marcinkiewicz). Fix a real number 1 < q <∞. Let X be
a Banach space and let

T : Lq([0,∞), X)→ Lq([0,∞), X)

be a linear operator. Suppose there exist positive constants c1, cq such that

‖T f‖Lq ≤ cq ‖f‖Lq , sup
r>0

rκT f (r) ≤ c1 ‖f‖L1

for all f ∈ Lq([0,∞), X) ∩ L1([0,∞), X). Then

‖T f‖Lp ≤ cp ‖f‖Lp , cp := 2

(
p(q − 1)

(q − p)(p− 1)

)1/p

c
q−p
p(q−1)

1 c
q(p−1)
p(q−1)
q

for 1 < p < q and f ∈ Lq([0,∞), X) ∩ L1([0,∞), X) ⊂ Lp([0,∞), X).

Proof. The proofs of Lemma 4.1 and Theorem 4.2 carry over verbatim to
Banach space valued functions.
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5 The Calderón–Zygmund inequality

The next definition is taken from the exposition in Parissis [29].

Definition 5.1. Let n ∈ N and let ∆n := {(x, y) ∈ Rn × Rn |x = y} be the
diagonal in Rn×Rn. Fix two constants C > 0 and 0 < σ ≤ 1. A Calderón–
Zygmund pair on Rn with constants C and σ is a pair (T,K), consisting
of a bounded linear operator T : L2(Rn,C) → L2(Rn,C) and a continuous
function K : (Rn × Rn) \∆n → C, satisfying the following axioms.

(CZ1) ‖Tf‖L2 ≤ C ‖f‖L2 for all f ∈ L2(Rn,C).

(CZ2) If f : Rn → C is a continuous function with compact support then
the restriction of Tf to the open set Rn \ supp(f) is continuous and

(Tf)(x) =

∫
Rn
K(x, y)f(y) dy for all x ∈ Rn \ supp(f). (5.1)

(CZ3) Let x, y ∈ Rn such that x 6= y. Then

|K(x, y)| ≤ C

|x− y|n
. (5.2)

(CZ4) Let x, x′, y, y′ ∈ Rn such that x 6= y, x 6= y′, and x′ 6= y. Then

|y − y′| < 1

2
|x− y| =⇒ |K(x, y)−K(x, y′)| ≤ C |y − y′|σ

|x− y|n+σ ,

|x− x′| < 1

2
|x− y| =⇒ |K(x, y)−K(x′, y)| ≤ C |x− x′|σ

|x− y|n+σ .

(5.3)

We remark that if (T,K) is a Calderón–Zygmund pair then so is (T ′, K),
where the operator T ′ : L2(Rn,C)→ L2(Rn,C) is given by T ′f = Tf+bf for
all f ∈ L2(Rn,C) and some bounded measurable function b : Rn → C. Thus
the operator T is not uniquely determined by K. However, it is easy to see
that the function K is uniquely determined by the operator T . (Exercise!)

Theorem 5.2 (Calderón–Zygmund). Fix an integer n ∈ N, a real number
1 < p < ∞, and two constants C > 0 and 0 < σ ≤ 1. Then there exists a
constant c = c(n, p, σ, C) > 0 such that every Calderón–Zygmund pair (T,K)
on Rn with constants C and σ satisfies the inequality

‖Tf‖Lp ≤ c ‖f‖Lp (5.4)

for all f ∈ L2(Rn,C) ∩ Lp(Rn,C).
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Proof. The proof has four steps. Denote by µ the Lebesgue measure on Rn.

Step 1. There is a constant c = c(n, σ, C) ≥ 1 with the following significance.
Let (T,K) be a Calderón–Zygmund pair on Rn with the constants C and σ,
let B ⊂ Rn be a countable union of closed cubes Qi ⊂ Rn with pairwise
disjoint interiors, and let h ∈ L2(Rn,C) ∩ L1(Rn,C) such that

h|Rn\B ≡ 0,

∫
Qi

h(x) dx = 0 for all i ∈ N. (5.5)

Then

κTh(t) ≤ c

(
µ(B) +

1

t
‖h‖1

)
for all t > 0. (5.6)

For i ∈ N define hi : Rn → R by hi(x) := h(x) for x ∈ Qi and by hi(x) := 0
for x ∈ R\Qi. Denote by qi ∈ Qi the center of the cube Qi and by 2ri > 0 its
side length. Then |x− qi| ≤

√
nri for all x ∈ Qi. Fix an element x ∈ Rn \Qi.

Then it follows from (5.1) that

(Thi)(x) =

∫
Qi

K(x, y)hi(y) dy

=

∫
Qi

(
K(x, y)−K(x, qi)

)
hi(y) dy.

(5.7)

The function hi need not be continuous. Since x /∈ Qi one can approximate
hi in L2(Rn,C) by a sequence of compactly supported continuous functions
that vanish near x. For the approximating sequence the first equation in (5.7)
holds by (5.1); now take the limit. The second equation follows from (5.5).

Now choose x ∈ Rn such that |x− qi| > 3
√
nri. Then

d(x,Qi) := inf
y∈Qi
|x− y| > 2

√
nri

and so |y − qi| ≤
√
nri <

1
2
|x− y| for all y ∈ Qi. Hence, by (5.3) and (5.7),

|(Thi)(x)| ≤
∫
Qi

|K(x, y)−K(x, qi)||hi(y)| dy

≤ sup
y∈Qi
|K(x, y)−K(x, qi)| ‖hi‖1

≤ sup
y∈Qi

c|y − qi|σ

|x− y|n+σ
‖hi‖1

≤ c1r
σ
i

d(x,Qi)n+σ
‖hi‖1 .

Here C is the constant in (5.3) and c1 := Cnσ/2.
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Define
Pi :=

{
x ∈ Rn

∣∣ |x− qi| ≤ 3
√
nri
}
.

Then d(x,Qi) ≥ |x− qi| −
√
nri for all x ∈ Rn \ Pi. Hence∫

Rn\Pi
|(Thi)(x)| dx ≤ c1r

σ
i

∫
Rn\Pi

1

(|x− qi| −
√
nri)

n+σ dx ‖hi‖1

= c1r
σ
i

∫
|y|>3

√
nri

1

(|y| −
√
nri)

n+1 dy ‖hi‖1

= c1r
σ
i

∫ ∞
3
√
nri

ωnr
n−1dr

(r −
√
nri)

n+σ ‖hi‖1

= c1ωnr
σ
i

∫ ∞
2
√
nri

(s+
√
nri)

n−1
ds

sn+σ
‖hi‖1

≤ c12n−1ωnr
σ
i

∫ ∞
2
√
nri

ds

s1+σ
‖hi‖1

= c2 ‖hi‖1 .

Here c2 := c12n−1−σn−σ/2σ−1ωn and ωn := Voln−1(Sn−1). The third step in
this computation follows from Fubini’s Theorem in polar coordinates. Thus
we have proved that∫

Rn\Pi
|(Thi)(x)| dx ≤ c2 ‖hi‖1 for all i ∈ N. (5.8)

Recall that Th and Thi are only equivalence classes in L2(Rn). Choose square
integrable functions on Rn representing these equivalence classes and denote
them by the same letters Th, Thi. We prove that there exists a Lebesgue
null set E ⊂ Rn such that

|(Th)(x)| ≤
∞∑
i=1

|(Thi)(x)| for all x ∈ Rn \ E. (5.9)

To see this, note that the sequence
∑`

i=1 hi converges to h in L2(Rn) as ` tends

to infinity and so the sequence
∑`

i=1 Thi converges to Th in L2(Rn). By [33,
Cor 4.10] a subsequence converges almost everywhere. Hence there exists a
Lebesgue null set E ⊂ Rn and a sequence of integers 0 < `1 < `2 < `3 < · · ·
such that the sequence

∑`ν
i=1(Thi)(x) coverges to (Th)(x) as ν tends to infin-

ity for all x ∈ Rn \E. Since |
∑`ν

i=1(Thi)(x)| ≤
∑∞

i=1 |(Thi)(x)| for all x ∈ Rn,
this proves (5.9).
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Now define

A :=
∞⋃
i=1

Pi.

Then it follows from (5.8) and (5.9) that∫
Rn\A
|(Th)(x)| dx ≤

∫
Rn\A

∞∑
i=1

|(Thi)(x)| dx

=
∞∑
i=1

∫
Rn\A
|(Thi)(x)| dx

≤
∞∑
i=1

∫
Rn\Pi

|(Thi)(x)| dx

≤ c2

∞∑
i=1

‖hi‖1

= c2 ‖h‖1 .

Moreover,

µ(A) ≤
∞∑
i=1

µ(Pi) = c3

∞∑
i=1

µ(Qi) = c3µ(B),

where

c3 = c3(n) :=
µ(B3

√
n)

µ([−1, 1]n)
= µ(B3

√
n/2) =

ωn3nnn/2

2nn
.

Hence

tκTh(t) ≤ tµ(A) + tµ
({
x ∈ Rn \ A

∣∣ |(Th)(x)| > t
})

≤ tµ(A) +

∫
Rn\A
|(Th)(x)| dx

≤ c3tµ(B) + c2 ‖h‖1

≤ c4

(
tµ(B) + ‖h‖1

)
for all t > 0, where

c4 := max{c2, c3}.

This proves Step 1.
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Step 2 (Calderón–Zygmund Decomposition).
Let f ∈ L2(Rn,C) ∩ L1(Rn,C) and t > 0. Then there exists a countable
collection of closed cubes Qi ⊂ Rn with pairwise disjoint interiors such that

µ(Qi) <
1

t

∫
Qi

|f(x)| dx ≤ 2nµ(Qi) for all i ∈ N (5.10)

and
|f(x)| ≤ t for almost all x ∈ Rn \B, (5.11)

where B :=
⋃∞
i=1Qi.

For ξ ∈ Zn and ` ∈ Z define

Q(ξ, `) :=
{
x ∈ Rn

∣∣ 2−`ξi ≤ xi ≤ 2−`(ξi + 1)
}
.

Let
Q :=

{
Q(ξ, `)

∣∣ ξ ∈ Zn, ` ∈ Z
}

and define the subset Q0 ⊂ Q by

Q0 :=

{
Q ∈ Q

∣∣∣∣ tµ(Q) <
∫
Q
|f(x)| dx and, for all Q′ ∈ Q,

Q ( Q′ =⇒
∫
Q′
|f(x)| dx ≤ tµ(Q′)

}
.

Then every decreasing sequence of cubes in Q contains at most one element
of Q0. Hence every element of Q0 satisfies (5.10) and any two cubes in Q0

have disjoint interiors. Define B :=
⋃
Q∈Q0

Q. We prove that

x ∈ Rn \B, x ∈ Q ∈ Q =⇒ 1

µ(Q)

∫
Q

|f(x)| dx ≤ t. (5.12)

Suppose, by contradiction, that there exists an element x ∈ Rn \ B and
a cube Q ∈ Q such that x ∈ Q and tµ(Q) <

∫
Q
|f(x)| dx. Then, since

‖f‖1 < ∞, there exists a maximal cube Q ∈ Q such that x ∈ Q and
tµ(Q) <

∫
Q
|f(y)| dy. Such a maximal cube would be an element of Q0

and hence x ∈ B, a contradiction. This proves (5.12). Now the Lebesgue
Differentiation Theorem [33, Thm 6.14] asserts that there exists a Lebesgue
null set E ⊂ Rn\B such that every element of Rn\(B∪E) is a Lebesgue point
of f . By (5.12), every point x ∈ Rn \ (B ∪ E) is the intersection point of a
decreasing sequence of cubes over which |f | has mean value at most t. Hence
it follows from [33, Thm 6.16] (a corollary of the Lebesgue Differentiation
Theorem) that |f(x)| ≤ t for all x ∈ Rn \ (B ∪ E). This proves Step 2.
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Step 3. Let c = c(n, σ, C) ≥ 1 be the constant in Step 1 and let (T,K) be a
Calderón–Zygmund pair on Rn with the constants C and σ. Then

‖Tf‖1,∞ ≤
(
2n+1 + 6c

)
‖f‖1 (5.13)

for all f ∈ L2(Rn,C) ∩ L1(Rn,C).

Fix a function f ∈ L2(Rn) ∩ L1(Rn,C) and a constant t > 0. Let the Qi be
as in Step 2 and define

B :=
⋃
i

Qi.

Then µ(Qi) <
1
t

∫
Qi
|f(x)| dx for all i by Step 2 and hence

µ(B) =
∑
i

µ(Qi) ≤
1

t

∑
i

∫
Qi

|f(x)| dx ≤ 1

t
‖f‖1 .

Define g, h : Rn → R by

g := fχRn\B +
∑
i

∫
Qi
f(x) dx

µ(Qi)
χQi , h := f − g.

Then
‖g‖1 ≤ ‖f‖1 , ‖h‖1 ≤ 2 ‖f‖1 .

Moreover, h vanishes on Rn \B and
∫
Qi
h(x) dx = 0 for all i. Hence it follows

from Step 1 that

κTh(t) ≤ c

(
µ(B) +

1

t
‖h‖1

)
≤ 3c

t
‖f‖1 . (5.14)

Moreover, it follows from Step 2 that |g(x)| ≤ t for almost every x ∈ Rn \B
and |g(x)| ≤ 2nt for every x ∈ int(Qi). Thus |g| ≤ 2nt almost everywhere.
Hence it follows from [33, Lemma 7.36] that

κTg(t) ≤
1

t2

∫
Rn
|g(x)|2 dx ≤ 2n

t

∫
Rn
|g(x)| dx ≤ 2n

t
‖f‖1 . (5.15)

Now combine (5.14) and (5.15) with the inequality (4.2) to obtain

κTf (2t) ≤ κTg(t) + κTh(t) ≤
2n+1 + 6c

2t
‖f‖1 .

Here the splitting f = g + h depends on t but the constant c does not. Mul-
tiply the inequality by 2t and take the supremum over all t to obtain (5.13).
This proves Step 3.
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Step 4. Fix a real number 1 < p < ∞ as well as n ∈ N and C > 0
and 0 < σ ≤ 1. Then there exists a constant c = c(n, p, σ, C) > 0 such that
‖Tf‖Lp ≤ c ‖f‖Lp for all f ∈ L2(Rn,C) ∩ Lp(Rn,C) and every Calderón–
Zygmund pair (T,K) on Rn with constants C and σ.

For p = 2 this holds by assumption, and for 1 < p < 2 it follows from Step 3
and the Marcinkiewicz Interpolation Theorem 4.2 with q = 2.

Now assume 2 < p < ∞ and choose 1 < q < 2 such that 1/p + 1/q = 1.
Define the function K∗ : (Rn × Rn) \∆n → R by

K∗(x, y) := K(y, x)

and let T ∗ : L2(Rn,C) → L2(Rn,C) be the adjoint operator of T . Then
(T ∗, K∗) is again a Calderón–Zygmund pair on Rn with constants C and σ.
To see this, note that

〈T ∗g, f〉L2 = 〈g, Tf〉L2

=

∫
Rn

∫
Rn
g(x)K(x, y)f(y) dy dx

=

∫
Rn

∫
Rn
K∗(y, x)g(x)f(y) dx dy

for any two continuous functions f, g : Rn → C with disjoint compact sup-
ports. This implies (T ∗g)(y) =

∫
Rn K

∗(y, x)g(x) dx for every continuous
function g : Rn → C with compact support and every y ∈ Rn \ supp(g).
Moreover, the function K∗ evidently satisfies (5.2) and (5.3) and T ∗ has the
same operator norm as T . Now define c := c(n, q, σ, C). Then, by what we
have already proved, ‖T ∗g‖Lq ≤ c ‖g‖Lq for all g ∈ C∞0 (Rn,C). Hence

‖Tf‖Lp = sup
0 6=g∈C∞0 (Rn,C)

〈g, Tf〉L2

‖g‖Lq

= sup
06=g∈C∞0 (Rn,C)

〈T ∗g, f〉L2

‖g‖Lq

≤ sup
06=g∈C∞0 (Rn,C)

‖T ∗g‖Lq ‖f‖Lp
‖g‖Lq

≤ cq ‖f‖Lp

for all f ∈ L2(Rn,C) ∩ Lp(Rn,C). Here the first equality follows from [33,
Thm 4.33] and the fact that C∞0 (Rn,C) is a dense subspace of Lq(Rn,C).
This proves Theorem 5.2.

33



6 The Mikhlin multiplier theorem

The Fourier transform on Rn is the unique bounded linear operator

F : L2(Rn,C)→ L2(Rn,C)

given by

(F (u))(ξ) := û(ξ) :=

∫
Rn
e−i〈ξ,x〉u(x) dx (6.1)

for ξ ∈ Rn and u ∈ L2(Rn,C) ∩ L1(Rn,C). Its inverse is

(F−1(û))(x) = u(x) =
1

(2π)n

∫
Rn
ei〈ξ,x〉û(ξ) dξ (6.2)

for x ∈ Rn and û ∈ L2(Rn,C) ∩ L1(Rn,C). If m : Rn → C is a bounded
measurable function, it determines a bounded linear operator

Tm : L2(Rn,C)→ L2(Rn,C)

given by
Tmu := F−1(mF (u))

for u ∈ L2(Rn,C). The Mikhlin Multiplier Theorem gives conditions on
m under which this operator extends to a (unique) bounded linear operator
from Lp(Rn,C), still denoted by Tm, which agrees with the original operator
on the intersection L2(Rn,C)∩Lp(Rn,C). We state and prove this result in a
slightly weaker form than in Mikhlin [25] and Hörmander [16]. This version
suffices for the purposes of the present exposition.

Theorem 6.1 (Mikhlin). For every integer n ∈ N, every constant C > 0,
and every real number 1 < p < ∞ there exists a constant c = c(n, p, C) > 0
with the following significance. Let m : Rn \ {0} → C be a Cn+2 function
that satisfies the inequality

|∂αm(ξ)| ≤ C

|ξ||α|
(6.3)

for every ξ ∈ Rn \ {0} and every multi-index α = (α1, . . . , αn) ∈ Nn
0 with

|α| = α1 + · · ·+ αn ≤ n+ 2. Then

‖Tmf‖Lp ≤ c ‖f‖Lp . (6.4)

for all f ∈ L2(Rn,C) ∩ Lp(Rn,C).
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Proof. The proof is based on the generalized Calderón–Zygmund inequality
in Theorem 5.2 and follows the argument in Parissis [29]. The main idea is
to show that there exists a function Km : Rn \ {0} → C such that Tm and
the function

Rn × Rn \∆m → C : (x, y) 7→ Km(x− y)

form a Calderón–Zygmund pair as in Definition 5.1. One would like to
choose Km such that m is the Fourier transform of Km. The difficulty is
that, in the interesting cases, m is not the Fourier transform of any inte-
grable function. To overcome this problem one can use the Littlewood–Paley
decomposition (Section 8). More precisely, let φ : Rn → R be a Schwartz
function such that φ(x) = φ(−x) for all x ∈ Rn so that its Fourier transform

φ̂ := F (φ) is a smooth real valued function that satisfies φ̂(ξ) = φ̂(−ξ) for

all ξ ∈ Rn. Assume in addition that φ̂ satisfies the conditions

φ̂(ξ) > 0 for 1/
√

2 ≤ |ξ| ≤
√

2,

φ̂(ξ) ≥ 0 for 1/2 ≤ |ξ| ≤ 2,

φ̂(ξ/2) + φ̂(ξ) = 1 for 1 ≤ |ξ| ≤ 2,

φ̂(ξ) = 0 for |ξ| /∈ [1/2, 2].

(6.5)

In Definition 8.1 below a function φ with these properties is called a Little-
wood–Paley function and that it exists is shown in Example 8.2. For j ∈ Z
define the function φj : Rn → R by

φj(x) := 2njφ(2jx), φ̂j(ξ) := φ̂(2−jξ) (6.6)

for x, ξ ∈ Rn. Then it follows from (6.5) that
∑∞

j=−∞ φ̂k(ξ) = 1 and hence

∞∑
j=−∞

φ̂j(ξ)m(ξ) = m(ξ) for all ξ ∈ Rn \ {0}. (6.7)

For j ∈ Z the function φ̂jm : Rn → C is of class Cn+2 and has compact
support and we denote its inverse Fourier transform by

Kj := F−1(φ̂jm).

We prove in three steps that the series Km :=
∑∞

j=−∞Kj defines a continuous
function on Rn \ {0} and that the pair (Tm, (x, y) 7→ Km(x− y)) satisfies the
requirements of Definition 5.1.
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Step 1. There exists a constant c1 = c1(n,C) > 0 with the following signifi-
cance. Let m : Rn → C be a Cn+2 function that satisfies (6.3) for |α| ≤ n+2.
Then, for all x ∈ Rn \ {0}, the limit

Km(x) :=
∞∑

j=−∞

Kj(x)

= lim
N→∞

N∑
j=−N

1

(2π)n

∫
2j−1≤|ξ|≤2j+1

ei〈ξ,x〉φ̂(2−jξ)m(ξ) dξ

(6.8)

exists, the resulting function Km : Rn \ {0} → C is C1, and

|Km(x)|+ |x||∇Km(x))| ≤ c1

|x|n
for all x ∈ Rn \ {0}. (6.9)

Each function Kj has a Cn+2 Fourier transform K̂j = φ̂jm with support in
the compact set {ξ ∈ Rn | 2j−1 ≤ |ξ| ≤ 2j+1}. Hence Kj is smooth and, for
every α ∈ Nn

0 , every integer 0 ≤ k ≤ n+ 2, and every x ∈ Rn, we have

∂αKj(x) =
1

(2π)n

∫
Rn

(iξ)αφ̂(2−jξ)m(ξ)ei〈ξ,x〉 dξ

=
1

(2π)n

∫
Rn

(iξ)αφ̂(2−jξ)m(ξ)

(
n∑
i=1

xi
i|x|2

∂

∂ξi

)k

ei〈ξ,x〉 dξ

=
(−1)k

(2π)n

∫
Rn
ei〈ξ,x〉

(
n∑
i=1

xi
i|x|2

∂

∂ξi

)k

(iξ)αφ̂(2−jξ)m(ξ) dξ

=
(−1)k

(2π)n

∫
Rn
ei〈ξ,x〉

∑
|β|=k

k!

β!

(
x

i|x|2

)β
∂βξ
(
(iξ)αφ̂(2−jξ)m(ξ)

)
dξ

The integrand is supported in the domain {ξ ∈ Rn | 2j−1 ≤ |ξ| ≤ 2j+1}. Hence
there exists a constant c2 > 0, depending only on n, φ, α, and the constant
C in (6.3), such that |∂βξ ((iξ)αφ̂(2−jξ)m(ξ))| ≤ c22j(|α|−k) for all ξ ∈ Rn, all
j ∈ Z, and all β ∈ Nn

0 with |β| = k ≤ n+ 2. This implies

|∂αKj(x)| ≤ c2

(2π)n

∑
|β|=k

k!

β!

2j(|α|−k)

|x|k

∫
|ξ|≤2j+1

dξ = c3
2j(n+|α|−k)

|x|k (6.10)

for all α ∈ Nn
0 , all j ∈ Z, all k ∈ {0, 1, . . . , n+ 2}, and all x ∈ Rn \ {0}. Here

c3 := c2π
−nnk−1ωn and ωn := Voln−1(Sn−1), so ωn/n is the volume of the

unit ball in Rn, and we have used the identity
∑
|β|=k k!/β! = nk.

36



Now fix a nonzero vector x ∈ Rn and let j0 ∈ Z be the largest integer
such that 2j0 ≤ |x|−1. Then 2j0 ≤ |x|−1 and 2−(j0+1) < |x|. Hence it follows
from (6.10) with k = 0 that

j0∑
j=−∞

|∂αKj(x)| ≤ c3

j0∑
j=−∞

2j(n+|α|)

=
c3

1− 2−n−|α|
2j0(n+|α|)

≤ 2c3

|x|n+|α| ,

because c3
1−2−n−|α|

≤ 2c3 and 2j0(n+|α|) ≤ |x|−(n+|α|). This holds for all α ∈ Nn
0 .

Now assume |α| ∈ {0, 1} and use (6.10) with k = n+ 2 > n+ |α| to obtain

∞∑
j=j0+1

|∂αKj(x)| ≤ c3

∞∑
j=j0+1

2j(|α|−2)

|x|n+2

=
c3

1− 2|α|−2

2(j0+1)(|α|−2)

|x|n+2

<
2c3

|x|n+|α| ,

because c3
1−2|α|−2 ≤ 2c3 and 2(j0+1)(|α|−2) < |x|2−|α|. This proves Step 1 with

the constant c1 = 4(n+ 1)c3.

Step 2. Let c1,m,Km be as in Step 1. Then the function

Rn × Rn \ {∆n)→ C : (x, y) 7→ Km(x− y) (6.11)

satisfies conditions (5.2) and (5.3) in Definition 5.1 with σ = 1 and with C
replaced by 2n+1c1.

The estimate (5.2) follows directly from (6.9). To prove (5.3), fix a vector
x ∈ Rn \ {0} and let y ∈ Rn such that |y| ≤ |x|/2. Then

|∇Km(x− ty)| ≤ c1

|x− ty|n+1
≤ 2n+1c1

|x|n+1

for 0 ≤ t ≤ 1. Hence it follows from the mean value inequality that

|Km(x)−Km(x− y)| ≤ 2n+1c1|y|
|x|n+1

.

Hence the function (6.11) satisfies (5.3) with σ = 1 and this proves Step 2.
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Step 3. Let c1,m,Km be as in Step 1. Then the function (6.11) satisfies
condition (5.1) in Definition 5.1 with T = Tm.

Let f, g : Rn → C be continuous functions with compact support and assume
supp(f) ∩ supp(g) = ∅. Define the function h : Rn → C by

h(x) :=

∫
Rn
g(y)f(x+ y) dy for x ∈ Rn

Then h vanishes near the origin and ĥ = ĝf̂ . Hence

〈g, Tmf〉L2 =
1

(2π)n

〈
ĝ, T̂mf

〉
L2

=
1

(2π)n

〈
ĝ,mf̂

〉
L2

=
1

(2π)n

∫
Rn
m(ξ)ĥ(ξ) dξ

= lim
N→∞

1

(2π)n

∫
Rn

N∑
j=−N

φ̂j(ξ)m(ξ)ĥ(ξ) dξ

= lim
N→∞

∫
Rn

N∑
j=−N

Kj(x)h(−x) dx

=

∫
Rn
Km(x)h(−x) dx

=

∫
Rn

∫
supp(g)

Km(x)g(y)f(y − x) dy dx

= 〈g,Km ∗ f〉L2

Here the first equality follows from Plancherel’s Theorem, the second equal-
ity follows from the definition of the operator Tm, the third equality uses the
formula ĥ = ĝf̂ , the fourth equality uses Lebesgue dominated convergence,
the fifth equality follows again from Plancherel’s Theorem, the sixth equality
follows from Lebesgue dominated convergence and the fact that h has com-
pact support and vanishes near the origin, the seventh equality follows from
the definition of h, and the last equality follows from Fubini’s theorem. It
follows that (Tmf)(x) =

∫
Rn K(x)f(x− y) dx for all x ∈ Rn \ supp(f). This

proves Step 3. By Step 2 and Step 3 the operator Tm and the function (6.11)
form a Calderón–Zygmund pair on Rn with constants 2n+1c1 and σ = 1.
Hence the assertion follows from Theorem 5.2. This proves Theorem 6.1.
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Corollary 6.2 (Calderón–Zygmund). For every integer n ∈ N and every
real number 1 < p <∞ there exists a constant c = c(n, p) > 0 such that

n∑
i,j=1

‖∂i∂ju‖Lp ≤ c ‖∆u‖Lp (6.12)

for all u ∈ C∞0 (Rn,C).

Proof. For i, j ∈ {1, . . . , n} define

Tijf := ∂i(Kj ∗ f), Kj(x) :=
xj

ωn|x|n
, (6.13)

for f ∈ C∞0 (Rn). Then Poisson’s identity asserts that

Tij∆u = ∂i∂ju, ∆(Kj ∗ f) = ∂jf (6.14)

for all u, f ∈ C∞0 (Rn,C) (e.g. [33, Thm 7.41]). The second equation in (6.14)

implies that K̂j ∗ f(ξ) = −iξj|ξ|−2f̂(ξ) for all ξ ∈ Rn \ {0}, and hence

T̂ijf = mij f̂ , mij(ξ) =
ξiξj
|ξ|2

. (6.15)

This implies that Tij extends to a bounded linear operator from L2(Rn,C)
to itself (see also [33, Lem 7.44]). Since the function mij satisfies the require-
ments of Theorem 6.1, there is a constant c > 0 such that ‖Tijf‖Lp ≤ c‖f‖Lp
for all f ∈ C∞0 (Rn). Take f := ∆u and use the first equation in (6.14) to
obtain the estimate (6.12). This proves Corollary 6.2.

Corollary 6.3. For every real number 1 < p < ∞ and every C > 0
there exists a constant c = c(p, C) > 0 with the following significance.
Let m : R \ {0} → C be a C3 function such that |m(k)(ξ)| ≤ C|ξ|−k for
k = 0, 1, 2, 3 and ξ ∈ R \ {0}. If (X,A, µ) is a σ-finite measure space,
Lp(X,µ) is the complex Lp-space, f ∈ Lp(R, Lp(X,µ)) ∩ L2(R, L2(X,µ)),
and the function Tmf ∈ L2(R, L2(X,µ)) is defined by

T̂mf(ξ) := m(ξ)f̂(ξ)

for ξ ∈ R, then Tmf ∈ Lp(R, Lp(X,µ)) and

‖Tmf‖Lp(R,Lp(X,µ)) ≤ c ‖f‖Lp(R,Lp(X,µ)) . (6.16)

Proof. For functions f : R→ C, where X is a singleton, the assertion follows
from Theorem 6.1. The general case then follows from Fubini’s theorem.
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7 The Khinchin inequality

The present section of preparatory nature. It is used in the proof of the
Littlewood–Paley inequality in Section 8, which in turn is useful for under-
standing Besov spaces. Neither this nor the next section are needed for the
proof of Theorem 1.1. They are placed here because the Mikhlin Multiplier
Theorem in Section 6 and the Khinchin inequality play central roles in the
proof of the Littlewood–Paley inequality in Section 8.

The Khinchin Inequality was discovered by Alexandr Khinchin [19]
in 1923. It is an estimate for the Lp norms of linear combinations of the
Rademacher functions ρk : [0, 1]→ R, defined by

ρk(t) :=

{
1, if sin(2kπt) ≥ 0,
−1, if sin(2kπt) < 0

(7.1)

for 0 ≤ t ≤ 1 and k ∈ N. These functions form an orthonormal sequence in
the Hilbert space L2([0, 1]). In the language of probability theory they are
independent random variables with values ±1, each with probability 1/2.

Theorem 7.1 (Khinchin Inequality). Fix a real number 0 < p < ∞.
Then there exist constants Ap > 0 and Bp > 0 such that

Ap

(
n∑
k=1

|λk|2
)1/2

≤

(∫ 1

0

∣∣∣∣∣
n∑
k=1

λkρk(t)

∣∣∣∣∣
p

dt

)1/p

≤ Bp

(
n∑
k=1

|λk|2
)1/2

(7.2)

for all n ∈ N and all n-tuples of complex numbers λ1, . . . , λn ∈ C.

Proof. If 0 < p ≤ 2 then, by Hölder’s inequality with exponent 2/p, every
Lebesgue measurable function f : [0, 1] → C satisfies ‖f‖Lp ≤ ‖f‖L2 , so
the second inequality in (7.2) holds with Bp = 1, because the ρk form an
orthonormal sequence in L2([0, 1]). To prove the inequality for p > 2, define

En := {±1}n =
{
ε = (ε1, . . . , εn)

∣∣ εi ∈ {−1,+1} for i = 1, . . . , n
}
.

For λ = (λ1, . . . , λn) ∈ Cn define the function fλ : [0, 1]→ C by

fλ(t) :=
n∑
i=1

λiρi(t) dt for 0 ≤ t ≤ 1.

Then ∫ 1

0

|fλ(t)|p dt =
1

2n

∑
ε∈En

∣∣∣∣∣
n∑
i=1

εiλi

∣∣∣∣∣
p

for all p > 0.
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Fix an even integer p = 2m ≥ 2 and let λ = (λ1, . . . , λn) ∈ Rn. Then

‖fλ‖2m
L2m =

1

2n

∑
ε∈En

(
n∑
i=1

εiλi

)2m

=
1

2n

∑
ε∈En

∑
|β|=2m

(2m)!

β1! · · · βn!
εβλβ

=
1

2n

∑
|β|=2m

(2m)!

β1! · · · βn!

(∑
ε∈En

εβ

)
λβ

=
∑
|α|=m

(2m)!

(2α1)! · · · (2αn)!
(λ2

1)α1 · · · (λ2
n)αn .

Here the β-sums are over all multi-indices β = (β1, . . . , βn) ∈ Nn
0 that satisfy

|β| = β1 + · · · + βn = 2m. The last step uses the identities
∑

ε∈En ε
β = 0

for every multi-index β ∈ Nn
0 such that one of the numbers βi is odd and∑

ε∈En ε
β = 2n when all the βi are even. Since `!2` ≤ (2`)! ≤ `!(2`)` for every

integer ` ≥ 0 (with equality for ` = 0 and ` = 1), we obtain

‖fλ‖2m
L2m ≤

∑
|α|=m

m!(2m)m

2α1+−···+αnα1! · · ·αn!
(λ2

1)α1 · · · (λ2
n)αn

= mm
∑
|α|=m

m!

α1! · · ·αn!
(λ2

1)α1 · · · (λ2
n)αn

= mm

(
n∑
i=1

λ2
i

)m

.

This implies

‖fλ‖2
L2m ≤ m

n∑
i=1

λ2
i (7.3)

for all n ∈ N all λ = (λ1, . . . , λn) ∈ Rn and all m ∈ N. For m = 2 a slightly
better estimate is 4!/(2α)! ≤ 3 · (2!/α!) for all α ∈ Nn

0 with |α| = 2, and so

‖fλ‖2
L4 ≤

√
3

n∑
i=1

λ2
i (7.4)

for all n ∈ N and all λ = (λ1, . . . , λn) ∈ Rn.
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Now let p > 2 and choose an integer m ≥ 2 such that 2m− 2 ≤ p < 2m.
Use Hölder’s inequality with exponents

q :=
2m− 2

2m− p
, r :=

2m− 2

p− 2
,

1

q
+

1

r
= 1

to obtain∫ 1

0

|fλ|p =

∫ 1

0

|fλ|
2m−p
m−1 |fλ|

pm−2m
m−1

≤
(∫ 1

0

|fλ|2
) 2m−p

2m−2
(∫ 1

0

|fλ|2m
) p−2

2m−2

= ‖fλ‖
2m−p
m−1

L2 ‖fλ‖
pm−2m
m−1

L2m

and hence

‖fλ‖Lp ≤ ‖fλ‖
2m−p
pm−p
L2 ‖fλ‖

pm−2m
pm−p
L2m ≤ ‖λ‖

2m−p
pm−p
2

(
m1/2 ‖λ‖2

) pm−2m
pm−p

= m
pm−2m
2pm−2p ‖λ‖2 ≤

√
p

2
+ 1 ‖λ‖2 .

This proves the second inequality in (7.2) for λi ∈ R with Bp :=
√
p/2 + 1.

Hence it holds for λi ∈ C with Bp := 2
√
p/2 + 1 =

√
2p+ 4.

The first inequality in (7.2) holds for p ≥ 2 with Ap = 1 by Hölder’s
inequality. To prove it for 1 ≤ p < 2, we use Young’s inequality ab ≤ 1

q
aq+ 1

r
br

with q := 3/2, r := 3, a := |
∑

i εiλi|2/3, and b := t|
∑

i εiλi|4/3 to obtain

t

∣∣∣∣∣∑
i

εiλi

∣∣∣∣∣
2

≤ 2

3

∣∣∣∣∣∑
i

εiλi

∣∣∣∣∣+
t3

3

∣∣∣∣∣∑
i

εiλi

∣∣∣∣∣
4

for all t ≥ 0.

Multiply by 3/2 and take take the average over all ε ∈ En. Then

‖fλ‖L1 ≥
3t

2
‖fλ‖2

L2 −
t3

2
‖fλ‖4

L4 ≥
3t

2
‖λ‖2

2 −
3t3

2
‖λ‖4

2 = t ‖λ‖2
2 = 3−1/2 ‖λ‖2 .

Here the second step uses (7.4) and the last two steps use t := 3−1/2‖λ‖−1
2 .

This proves the first inequality in (7.2) for p = 1 with A1 = 3−1/2. For
1 < p < 2 use the Riesz–Thorin Interpolation Theorem 3.1 qith q0 = q1 = 2,
p0 = 1, p1 = 2, c0 =

√
3, c1 = 1, (2/p− 1)/p0 + (2− 2/p)/p1 = 1/p. Then

‖λ‖2 ≤ (
√

3)
2
p
−1 ‖fλ‖Lp = 3

1
p
− 1

2 ‖fλ‖Lp .
This proves the first inequality in (7.2) for 1 ≤ p < 2 and λi ∈ R with

Ap := 3
1
2
− 1
p . Hence it holds for λi ∈ C with Ap := 3

1
2
− 1
p/2. This proves

Theorem 7.1 for p ≥ 1.
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Remark 7.2. Sharp constants for the Khinchin inequalities in (7.2) (for
tuples of real numbers λi) were found by Haagerup [14]. They are

Ap = 2
1
2
− 1
p min

1,

(
Γ(p+1

2
)

Γ(3
2
)

) 1
p

 ,

Bp = 2
1
2
− 1
p max

1,

(
Γ(p+1

2
)

Γ(3
2
)

) 1
p

 .

(7.5)

Another proof that this number Ap is the sharp constant for the first inequal-
ity in (7.2) was given by Nazarov–Potkorytov [27].

Proof of Theorem 7.1 for p > 0. The second inequality in (7.2) was proved
above for all p > 0. We prove the first inequality in (7.2) for p > 0 following
the argument in [27]. If p ≥ 2 then, by Hölder’s inequality with exponent p/2,
every Lebesgue measurable function f : [0, 1] → C satisfies ‖f‖L2 ≤ ‖f‖Lp ,
so the first inequality in (7.2) holds with Ap = 1, because the ρk form an
orthonormal sequence in L2([0, 1]). Now assume 0 < p < 2 and define the
number cp > 0 and the function κp : (0, 1]→ (0,∞) by

cp :=

∫ ∞
0

1− cos(r)

rp+1
dr (7.6)

and

κp(λ) :=

∫ ∞
0

1− |cos(λr)|1/λ
2

rp+1
dr for 0 < λ ≤ 1. (7.7)

The function κp : (0, 1]→ (0,∞) is continuous. We prove that it satisfies

lim
λ→0

κp(λ) =

∫ ∞
0

1− e−r2/2

rp+1
dr > 0. (7.8)

To see this, choose ε > 0 such that log(1− x2/2) > −x2 for 0 < x < ε. Since
1− x2/2 ≤ |cos(x)| ≤ 1 for all x ∈ R, this implies

0 = log
(
|cos(λr)|1/λ

2
)
≥ 1

λ2
log

(
1− (λr)2

2

)
> −r2

for all λ, r > 0 such that 0 < r < ε/λ.
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This implies |cos(λr)|1/λ
2

≥ e−r
2

and hence

1− |cos(λr)|1/λ
2

≤ 1− e−r2 ≤ r2 for 0 < r < ε ≤ ε

λ
.

Thus (1−|cos(λr)|1/λ2)/rp+1 ≤ r1−p for 0 < r < ε and the function r 7→ r1−p

is integrable on the interval (0, ε) because p < 2. Second, the inequality

(1 − |cos(λr)|1/λ
2

)/rp+1 ≤ rp+1 holds for all r and the function r 7→ rp+1 is
integrable on the interval [ε,∞) because p > 0. Third, take the logarithm
and use l’Hospital’s rule to obtain

lim
λ→0
|cos(λr)|1/λ

2

= e−r
2/2 for all r > 0.

Hence (7.8) follows from the Lebesgue Dominated Convergence Theorem.
By (7.8) and continuity, we have

δp := inf
0<λ≤1

∫ ∞
0

1− |cos(λr)|1/λ
2

rp+1
dr > 0. (7.9)

Moreover, by definition of the constant cp > 0 in (7.6), we have

cp |s|p =

∫ ∞
0

1− cos(rs)

rp+1
dr (7.10)

for all s ∈ R. Choose λ1, . . . , λn ∈ R \ {0} such that

n∑
k=1

|λk|2 = 1.

Now take s :=
∑n

k=1 λkρk(t) in (7.10) to obtain

cp

∣∣∣∣∣
n∑
k=1

λkρk(t)

∣∣∣∣∣
p

=

∫ ∞
0

1− cos(r
∑n

k=1 λkρk(t))

rp+1
dr

= Re

∫ ∞
0

1− exp(ir
∑n

k=1 λkρk(t))

rp+1
dr

= Re

∫ ∞
0

1−
∏n

k=1 exp(irλkρk(t))

rp+1
dr.
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Integrate this identity over the interval 0 ≤ t ≤ 1. Then

cp

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkρk(t)

∣∣∣∣∣
p

dt = Re

∫ ∞
0

1−
∫ 1

0

∏n
k=1 exp(irλkρk(t)) dt

rp+1
dr

= Re

∫ ∞
0

1− 2−n
∑

εk=±1

∏n
k=1 exp(irεkλk)

rp+1
dr

=

∫ ∞
0

1−
∏n

k=1 cos(rλk)

rp+1
dr.

This formula is called Haagerup’s Integral Representation. Young’s
inequality asserts that

n∏
k=1

ak ≤
n∑
k=1

1

pk
apkk

for ak ≥ 0 and 1 ≤ pk <∞ such that
∑n

k=1 1/pk = 1. Take

pk :=
1

λ2
k

, ak := |cos(rλk)|

to obtain
n∏
k=1

|cos(rλk)| ≤
n∑
k=1

λ2
k |cos(rλk)|1/λ

2
k = 1−

n∑
k=1

λ2
k

(
1− |cos(rλk)|1/λ

2
k

)
for all r > 0 and hence

cp

∫ 1

0

∣∣∣∣∣
n∑
k=1

λkρk(t)

∣∣∣∣∣
p

dt ≥
∫ ∞

0

1−
∏n

k=1|cos(rλk)|
rp+1

dr

≥
n∑
k=1

λ2
k

∫ ∞
0

1− |cos(rλk)|1/λ
2
k

rp+1
dr

≥ δp.

Here the last step follows from (7.9). This proves the first inequality in (7.2)
with the constant

Ap := (δp/cp)
1/p

for n-tuples of nonzero real numbers λ1, . . . , λn with
∑n

k=1 λ
2
k = 1. Hence

it holds for all n-tuples of real numbers by linearity and continuity. This
completes the second proof of Theorem 7.1.

It is shown in Nazarov–Potkorytov [27] that the number Ap = (δp/cp)
1/p

in the above proof is the sharp constant in (7.5).
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8 The Littlewood–Paley inequality

The Littlewood–Paley decomposition expresses a function f : Rn → C as a
sum of functions fk whose Fourier transforms are supported in the domain
2k−1 ≤ |ξ| ≤ 2k+1. Such a decomposition is a powerful tool for obtaining Lp

estimates via the Fourier transform. It was already used in the proof of the
Mikhlin Multiplier Theorem 6.1.

Definition 8.1. Fix an integer n ∈ N and a smooth function φ : Rn → R in
the Schwartz space S (Rn). Assume

φ(x) = φ(−x) for all x ∈ Rn, (8.1)

so that the Fourier transform (6.1) is real valued and satisfies φ̂(ξ) = φ̂(−ξ)
for all ξ ∈ Rn. The function φ is called a Littlewood–Paley function if
it satisfies the conditions

φ̂(ξ) > 0, for 1/
√

2 ≤ |ξ| ≤
√

2,

φ̂(ξ) ≥ 0, for 1/2 ≤ |ξ| ≤ 2,

φ̂(ξ) = 0, for |ξ| /∈ [1/2, 2],

φ̂(ξ/2) + φ̂(ξ) = 1, for 1 ≤ |ξ| ≤ 2,

(8.2)

and hence
∞∑

k=−∞

φ̂(2−kξ) = 1 for all ξ ∈ Rn \ {0}. (8.3)

Example 8.2. Let β0 : [0,∞)→ [0, 1] be a smooth function such that

β0(r) = 1, for r ≤ 1,

β0(r) > 0, for 1 ≤ r ≤
√

2,

β0(r) < 1, for
√

2 ≤ r ≤ 2,
β0(r) = 0, for r ≥ 2.

Define the function β : Rn → R by

β(ξ) := β0(|ξ|)− β0(2|ξ|) for ξ ∈ Rn.

Then β satisfies the conditions in (8.2) and hence its inverse Fourier trans-
form φ is a Littlewood–Paley function.
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Theorem 8.3 (Littlewood–Paley). Fix an integer n ∈ N, a real number
1 < p <∞, and a Littlewood–Paley function φ : Rn → R. Then there exists
a constant c = c(n, p, φ) ≥ 1 with the following significance. For k ∈ Z define
the function φk : Rn → R by φk(x) := 2nkφ(2kx). Let f ∈ Lp(Rn,C) and
define the function Sφ(f) : Rn → [0,∞] by

(Sφ(f))(x) :=

(
∞∑

k=−∞

|(φk ∗ f)(x)|2
)1/2

for x ∈ Rn. (8.4)

Then (Sφf)(x) <∞ for almost every x ∈ Rn and

c−1 ‖f‖Lp ≤ ‖Sφ(f)‖Lp ≤ c ‖f‖Lp . (8.5)

Proof. See page 48.

Lemma 8.4. Let θ : Rn → R be a function in the Schwartz space S (Rn),
whose Fourier transform has compact support, and assume

∫
Rn θ(x) dx = 1.

For k ∈ Z define the function θk : Rn → R by

θk(x) := 2knθ(2kx), θ̂k(ξ) = θ̂(2−kξ) for x, ξ ∈ Rn. (8.6)

Let p > 1. Then

lim
k→∞
‖f − θk ∗ f‖Lp = 0, lim

k→−∞
‖θk ∗ f‖Lp = 0. (8.7)

for all f ∈ Lp(Rn). The convergence is in L∞ whenever f : Rn → R is con-
tinuous and has compact support.

Proof. Since ‖θk‖L1 = ‖θ‖L1 < ∞ for all k ∈ Z, the family of convolution
operators Lp(Rn) → Lp(Rn) : f 7→ θk ∗ f is uniformly bounded. Hence it
suffices to prove (8.7) for smooth functions with compact support.

Let f ∈ C∞0 (Rn) and ε > 0. For r > 0 denote Br := {x ∈ Rn | |x| < r}
and choose R > 0 such that supp(f) ⊂ BR. Second, choose r > 0 such that,
for all x, y ∈ Rn,

|y| ≤ r =⇒ |f(x− y)− f(x)| ≤ ε

3 ‖θ‖L1 Vol(BR+r)1/p
.

Third, choose k0 ∈ N so large that∫
Rn\B

2k0r

|θ(y)| dy < ε

3 ‖f‖Lp
.
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Now let k ∈ N such that k ≥ k0. Then θk ∗ f − f = fk + gk − ckf , where

fk(x) :=

∫
Br

θk(y)(f(x− y)− f(x)) dy,

gk(x) :=

∫
Rn\Br

θk(y)f(x− y) dy,

ck :=

∫
Rn\Br

θk(y) dy.

The function fk is supported in BR+r and satisfies the inequality

|fk(x)| ≤ ‖θ‖L1 sup
|y|≤r
|f(x− y)− f(x)| ≤ ε

3Vol(BR+r)1/p

for all x ∈ BR+r. Hence ‖fk‖Lp ≤ ε/3. Moreover, it follows from Young’s
inequality that

‖gk‖ ≤ ‖θk‖L1(Rn\Br) ‖f‖Lp = ‖θ‖L1(Rn\B
2kr

) ‖f‖Lp < ε/3,

and we have ‖ckf‖Lp ≤ ‖θk‖L1(Rn\Br) ‖f‖Lp < ε/3. Hence ‖θk ∗ f − f‖Lp < ε
for every integer k ≥ k0 and this proves the first assertion in (8.7). To
prove the second assertion, observe that ‖θk‖Lp = 2kn(1−1/p) ‖θ‖Lp and so,
by Young’s inequality, ‖θk ∗ f‖Lp ≤ 2kn(1−1/p) ‖θ‖Lp ‖f‖L1 . Since p > 1, this
shows that

lim
k→−∞

‖θk ∗ f‖Lp = 0.

The verification of the assertion about uniform convergence will be omitted.
This proves Lemma 8.4.

Proof of Theorem 8.3. The proof follows the exposition of Machedon [24].
Fix a constant 1 < p < ∞, let Ap > 0 be the constant in the Khinchin in-
equality (7.2), and, for k ∈ N, let ρk : [0, 1]→ R be the Rademacher function
in (7.1). First observe that φk is a Schwartz function and hence belongs to
Lq(Rn,C) for q := p/(p−1). Hence φk ∗f : Rn → C is continuous for each k.
For f ∈ Lp(Rn,C) and N ∈ N define the function SNφ (f) : Rn → [0,∞) by

(SNφ (f))(x) :=

(
N∑

k=−N

|(φk ∗ f)(x)|2
)1/2

for x ∈ Rn. (8.8)
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Define the bijection κ : N→ Z by κ(2j) = j for j ∈ N and κ(2j+1) := −j for
j ∈ N0. Then κ restricts to a bijection from {1, . . . , 2N + 1} to {−N, . . . , N}
for each N ∈ N. Hence Theorem 7.1 asserts that

∣∣(SNφ f)(x)
∣∣ =

(
N∑

k=−N

|(φk ∗ f)(x)|2
)1/2

≤ 1

Ap

∥∥∥∥∥
2N+1∑
j=1

(φκ(j) ∗ f)(x)ρj

∥∥∥∥∥
Lp([0,1])

for all x ∈ Rn and so

∥∥SNφ f∥∥pLp =

∫
Rn

(
N∑

k=−N

|(φk ∗ f)(x)|2
)p/2

dx

≤
(

1

Ap

)p ∫ 1

0

∫
Rn

∣∣∣∣∣
2N+1∑
j=1

ρj(t)(φκ(j) ∗ f)(x)

∣∣∣∣∣
p

dx dt

(8.9)

for f ∈ C∞0 (Rn,C) and N ∈ N. For 0 ≤ t ≤ 1 and N ∈ N define the function
mN
t : Rn \ {0} → C and the operator TNt : L2(Rn,C)→ L2(Rn,C) by

mN
t :=

2N+1∑
j=1

ρj(t)φ̂κ(j), TNt f :=
2N+1∑
j=1

ρj(t)φκ(j) ∗ f

for f ∈ C∞0 (Rn,C). Then T̂Nt f = mN
t f̂ for all f ∈ C∞0 (Rn,C) and all t. We

prove that mN
t satisfies condition (6.3) in the Mikhlin Multiplies Theorem 6.1

with a constant C > 0 that is independent of t and N . To see this, define

Cα := sup
ξ∈Rn

∣∣∣∂αφ̂(ξ)
∣∣∣ for α ∈ Nn

0 .

Fix an element ξ ∈ Rn \ {0} and choose k ∈ Z such that 2k ≤ |ξ| ≤ 2k+1.

Then φ̂κ(j)(ξ) = φ̂(2−κ(j)ξ) = 0 for κ(j) 6= k, k + 1. Hence∣∣∂αmN
t (ξ)

∣∣ ≤ ∣∣∣ρκ−1(k)(t)(∂
αφ̂k)(ξ) + ρκ−1(k+1)(t)(∂

αφ̂k+1)(ξ)
∣∣∣

≤
∣∣∣(∂αφ̂k)(ξ)∣∣∣+

∣∣∣(∂αφ̂k+1)(ξ)
∣∣∣

= 2−|α|k
∣∣∣(∂αφ̂)(2−kξ)

∣∣∣+ 2−|α|(k+1)
∣∣∣(∂αφ̂)(2−k−1ξ)

∣∣∣
≤ 2Cα2−|α|(k+1)

≤ 2Cα |ξ|−|α|

for all α ∈ Nn
0 , ξ ∈ Rn \ {0}, and 0 ≤ t ≤ 1.
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By Theorem 6.1 there exists a constant c = c(n, p, φ) > 0 such that∥∥TNt f∥∥Lp ≤ c ‖f‖Lp (8.10)

for all f ∈ Lp(Rn,C), N ∈ N, and 0 ≤ t ≤ 1. By (8.9) and (8.10), we have∥∥SNφ f∥∥pLp ≤ ( 1

Ap

)p ∫ 1

0

∥∥TNt f∥∥pLp dt ≤ ( c

Ap

)p
‖f‖pLp (8.11)

for all f ∈ Lp(Rn,C) and N ∈ N. For each f ∈ Lp(Rn,C) this implies that
the monotonically increasing sequence

(
(SNφ f)(x)

)
N∈N is bounded for almost

every x ∈ Rn (see [33, Lem 1.47]). Moreover, the second inequality in (8.5)
follows from (8.11) and the Lebesgue Monotone Convergence Theorem by
taking the limit N →∞.

It suffices to prove the first inequality in (8.5) for real valued functions.
Consider the real Hilbert space H := `2(Z) and, for N ∈ N, define the linear
operator S N : Lp(Rn)→ Lp(Rn, H) by

(S Nf)(x) :=
(

(φk ∗ f)(x)
)N
k=−N

for f ∈ Lp(Rn) and x ∈ Rn. Then∥∥S Nf
∥∥
Lp

=
∥∥SNφ (f)

∥∥
Lp
≤ c

Ap
‖f‖Lp

for all f ∈ Lp(Rn,C) by (8.11), and so the operator sequence S N is uni-
formly bounded. A function g ∈ Lp(Rn, H) assigns to (almost) every x ∈ Rn

a square summable sequence (gk(x))k∈Z of real numbers, such that each func-
tion gk is p-integrable. Thus g is a bi-infinite sequence of Lp functions such
that

‖g‖Lp(Rn,H) =

∥∥∥∥∥∥
(

∞∑
k=−∞

|gk|2
)1/2

∥∥∥∥∥∥
Lp(Rn)

<∞.

Define the linear operator T N : Lp(Rn, H)→ Lp(Rn) by

T Ng :=
N∑

k=−N

φk ∗ gk

for g ∈ Lp(Rn, H). Since φk(−x) = φk(x) for all k ∈ N and all x ∈ Rn, T N

is the dual of the operator S N : Lq(Rn) → Lq(Rn, H) with q := p/(p − 1).
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Hence the operator sequence T N is uniformly bounded and so is the operator
sequence U N : Lp(Rn, H)→ Lp(Rn) defined by

U Ng :=
N∑

k=−N

(
φk−1 + φk + φk+1) ∗ gk for g ∈ Lp(Rn, H).

Thus there exists a constant C = C(n, p, φ) > 0 such that∥∥U Ng
∥∥
Lp(Rn)

≤ C ‖g‖Lp(Rn,H) (8.12)

for all g ∈ Lp(Rn, H).
Now let f ∈ Lp(Rn)∩L1(Rn). Then ‖φk ∗f‖L1 ≤ ‖φ‖L1‖f‖L1 , so φk ∗f is

integrable for all k ∈ Z. Moreover, since φ is a Littlewood–Paley function, we
have φ̂k−1(ξ)+φ̂k(ξ)+φ̂k+1(ξ) = 1 for all ξ ∈ Rn that satisfy 2k−1 ≤ |ξ| ≤ 2k+1

and thus for all ξ ∈ supp(φ̂k). This implies

̂U NS N+1f =
N∑

k=−N

(
φ̂k−1 + φ̂k + φ̂k+1

)
φ̂kf̂ =

N∑
k=−N

φ̂kf̂

and hence

U NS N+1f =
N∑

k=−N

φk ∗ f (8.13)

for all N ∈ N and all f ∈ Lp(Rn)∩L1(Rn). Since both sides of this equation
depend continuously on f in Lp(Rn), and Lp(Rn)∩L1(Rn) is dense in Lp(Rn),
equation (8.13) continues to hold for all f ∈ Lp(Rn). Hence∥∥∥∥∥

N∑
k=−N

φk ∗ f

∥∥∥∥∥
Lp

=
∥∥U NS N+1f

∥∥
Lp
≤ C

∥∥S N+1f
∥∥
Lp

= C
∥∥SN+1

φ (f)
∥∥
Lp

for all f ∈ Lp(Rn), where C is the constant in (8.12). Take the limit N →∞
and use Lemma 8.4 to obtain the inequality

‖f‖Lp ≤ C ‖Sφ(f)‖Lp

for all f ∈ Lp(Rn). This proves Theorem 8.3.

The Littlewood–Paley inequality is used in Corollary 13.9 to relate the
Besov space B1,p

2 (Rn,C) to the Sobolev space W 1,p(Rn,C).
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9 Maximal regularity for semigroups

Let X be a complex Banach space and let {S(t)}t≥0 be a strongly continuous
semigroup of operators, i.e. the map [0,∞) → X : t 7→ S(t)x is continuous
for every x ∈ X, S(0) = id, and S(s + t) = S(s)S(t) for all s, t ≥ 0. Its
infinitesimal generator is the linear operator A : dom(A)→ X defined by

Ax := lim
t→0

1

t

(
S(t)x− x

)
for x ∈ dom(A) (the linear subspace of all elements x ∈ X such that the
limit exists); the domain is dense and the operator A has a closed graph.

Example 9.1. The main example in the present setting is the Banach space
X := Lp(Rn,C) and the semigroup associated to the heat equation. Its
infinitesimal generator is the Laplace operator

A = ∆ : W 2,p(Rn,C)→ Lp(Rn,C) (9.1)

and the semigroup S(t) : Lp(Rn,C)→ Lp(Rn,C) generated by A is given by

S(t)u0 = Kt ∗ u0 (9.2)

for t ≥ 0 and u0 ∈ Lp(Rn,C), where Kt : Rn → R is the fundamental
solution (1.9). That the Laplace operator (9.1) is closed is a consequence of
the Calderón–Zygmund inequality in Corollary 6.2. Namely, if two functions
u, f ∈ Lp(Rn,C) satisfy ∫

Rn
u∆φ =

∫
Rn
fφ

for all φ ∈ C∞0 (Rn), then the standard local regularity theory, based on the
Calderón–Zygmund inequality, asserts that u ∈ W 2,p

loc (Rn,C) and ∆u = f .
Moreover, using a suitable smooth cutoff function one obtains an inequality

‖u‖pW 2,p(Q) ≤ c
(
‖u‖pLp(Ω) + ‖∆u‖pLp(Ω)

)
for Q := [0, 1]n and Ω = (−1, 2)n. Take a countable sum of such inequalities
over appropriately shifted domains with the same constant c to obtain

‖u‖pW 2,p(Rn) ≤ 3nc
(
‖u‖pLp(Rn) + ‖∆u‖pLp(Rn)

)
.

This shows that u ∈ W 2,p(Rn,C). It follows that the operator (9.1) has a
closed graph and that the subspace W 2,p(Rn,C) is indeed the domain of the
infinitesimal generator of the semigroup (9.2).
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If f : [0, T ]→ X is continuously differentiable, then the general theory of
semigroups asserts that the function u : [0, T ]→ X, defined by

u(t) :=

∫ t

0

S(t− s)f(s) ds for 0 ≤ t ≤ T, (9.3)

is continuously differentiable, takes values in the domain of A, and satisfies

u̇ = Au+ f. (9.4)

Thus Au : [0, T ]→ X is continuous whenever f : [0, T ]→ X is continuously
differentiable.

Definition 9.2. Fix a constant p > 1. A strongly continuous semigroup
[0,∞)→ L(X) : t 7→ S(t) with infinitesimal generator A is called maximal
p-regular if, for every T > 0, there exists a constant cT > 0, such that every
continuously differentiable function f : [0, T ]→ X satisfies the inequality(∫ T

0

∥∥∥∥A∫ t

0

S(t− s)f(s) ds

∥∥∥∥p dt)1/p

≤ cT

(∫ T

0

‖f(t)‖p dt
)1/p

. (9.5)

This condition is independent of T . The semigroup S is called uniformly
maximal p-regular if it is maximal p-regular and the constant in (9.5) can
be chosen independent of T .

The next theorem is due to Benedek–Calderón–Panzone [2].

Theorem 9.3 (Benedek–Calderón–Panzone). Let X be a complex re-
flexive Banach space and let S(t) be a strongly continuous semigroup on X
with infinitesimal generator A. Suppose that

imS(t) ⊂ dom(A2) for all t > 0

and that there exists a constant c > 0 such that∥∥A2S(t)x
∥∥ ≤ c

t2
‖x‖ (9.6)

for all t > 0 and all x ∈ X. If S is (uniformly) maximal p-regular for some
p > 1 then S is (uniformly) maximal p-regular for every p > 1.

Proof. See page 60.
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We reproduce the proof in [2]. It relies on the following three lemmas.

Lemma 9.4. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies (9.6) for some constant c > 0. Then∫ ∞

2|s|
‖AS(t− s)− AS(t)‖L(X) dt ≤ C (9.7)

for all s ∈ R, where C := c log(2).

Proof. If t > 2|s| then t > 0 and t− s > 0 and hence

‖AS(t− s)− AS(t)‖ =

∥∥∥∥∫ t−s

t

A2S(r) dr

∥∥∥∥
≤

∣∣∣∣∫ t−s

t

∥∥A2S(r)
∥∥ dr∣∣∣∣

≤ c

∣∣∣∣∫ t−s

t

1

r2
dr

∣∣∣∣
= c

∣∣∣∣1t − 1

t− s

∣∣∣∣
=

c|s|
t(t− s)

≤ c|s|
t(t− |s|)

.

Hence∫ ∞
2|s|
‖AS(t− s)− AS(t)‖ dt ≤

∫ ∞
2|s|

c|s|
t(t− |s|)

dt

=

∫ ∞
|s|

c|s|
(t+ |s|)t

dt

= c

∫ ∞
|s|

(
1

t
− 1

t+ |s|

)
dt

= c

∫ ∞
|s|

d

dt

(
log(t)− log(t+ |s|)

)
dt

= c
(

log(2|s|)− log(|s|
)

= c log(2).

This proves Lemma 9.4.
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Lemma 9.5. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies (9.7) for some constant C > 0. Then
the following holds. If t0 ≥ 0 and ε > 0 and f : [0,∞) → X is a bounded
function whose restriction to the interval (t0−ε, t0 +ε)∩ [0,∞) is continuous
and which satisfies

supp(f) ⊂ [t0 − ε, t0 + ε],

∫ t0+ε

t0−ε
f(t) dt = 0, (9.8)

then ∫ ∞
t0+2ε

∥∥∥∥A ∫ t

0

S(t− s)f(s) ds

∥∥∥∥ dt ≤ C

∫ t0+ε

t0−ε
‖f(t)‖ dt. (9.9)

Proof. Define the function u : [0,∞)→ X by

u(t) :=

∫ t

0

S(t− s)f(s) ds for t ≥ 0.

Since f(t) = 0 for t /∈ [t0 − ε, t0 + ε] we have u(t) = 0 for t ≤ t0 − ε and

u(t) := S(t− t0 − ε)
∫ t0+ε

t0−ε
S(t0 + ε− s)f(s) ds ∈ dom(A) for t > t0 + ε.

Since f has mean value zero (the fourth equality below) it follows that∫ ∞
t0+2ε

‖Au(t)‖ dt =

∫ ∞
2ε

‖Au(t0 + t)‖ dt

=

∫ ∞
2ε

∥∥∥∥A ∫ t0+ε

t0−ε
S(t0 + t− s)f(s) ds

∥∥∥∥ dt
=

∫ ∞
2ε

∥∥∥∥A ∫ ε

−ε
S(t− s)f(t0 + s) ds

∥∥∥∥ dt
=

∫ ∞
2ε

∥∥∥∥A ∫ ε

−ε
(S(t− s)− S(t))f(t0 + s) ds

∥∥∥∥ dt
≤

∫ ∞
2ε

∫ ε

−ε
‖AS(t− s)− AS(t)‖ ‖f(t0 + s)‖ ds dt

≤
∫ ε

−ε

∫ ∞
2|s|
‖AS(t− s)− AS(t)‖ dt ‖f(t0 + s)‖ ds

≤ C

∫ ε

−ε
‖f(t0 + s)‖ ds.

This proves Lemma 9.5.

55



The next lemma is the heart of the proof of Theorem 9.3. It can be
stated in two versions, namely for a finite interval [0, T ] or for the half infinite
interval [0,∞). We choose the latter version because it is relevant for the
Laplace operator on Rn. More precisely, we shall assume that our semigroup
is uniformly maximal q-regular for some q > 1. This means that there exists
a constant cq > 0 such that the inequality(∫ ∞

0

∥∥∥∥A ∫ t

0

S(t− s)f(s) ds

∥∥∥∥q dt)1/q

≤ cq

(∫ ∞
0

‖f(t)‖q dt
)1/q

(9.10)

holds for every continuously differentiable function f : [0,∞) → X with
compact support. Denote by µ the Lebesgue measure on [0,∞).

Lemma 9.6. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies (9.9) for some constant C > 0. As-
sume also that there exist constants q > 1 and cq > 0 such that (9.10) holds
for every continuously differentiable function f : [0,∞) → X with compact
support. Then every continuously differentiable function f : [0,∞)→ X with
compact support satisfies the inequality

µ

({
t ≥ 0

∣∣∣∣ ∥∥∥∥A ∫ t

0

S(t− s)f(s) ds

∥∥∥∥ > r

})
≤ c1

r

∫ ∞
0

‖f(t)‖ dt (9.11)

for all r > 0, where c1 := 4 + 4C + (2cq)
q.

Proof. By assumption there exists a unique bounded linear operator

T : Lq([0,∞), X)→ Lq([0,∞), X)

such that

(T f)(t) = A

∫ t

0

S(t− s)f(s) ds (9.12)

for every continuously differentiable function f : [0,∞) → X with compact
support. For h ∈ Lq([0,∞), X) define the function κT h : (0,∞)→ [0,∞) by

κT h(r) := µ
({
t ≥ 0

∣∣ ‖(T h)(t)‖ > r
})
.

Although T h is only an equivalence class of measurable functions from [0,∞)
to X, the number κT h(r) is independent of the choice of the representative
of this equivalence class and it is finite because T h is q-integrable. We prove
in three steps that the operator T satisfies (9.11) for some constant c1 > 0.

56



Step 1. Let h ∈ Lq([0,∞), X) ∩ L1([0,∞), X) and suppose that there exists
a countable collection of compact intervals Ii ⊂ R with pairwise disjoint
interiors such that h is continuous in the interior of Ii, satisfies∫

Ii

h(t) dt = 0 for all i ∈ N,

and vanishes on the complement of the set B :=
⋃∞
i=1 Ii. Then

κT h(r) ≤ 2µ(B) +
C

r
‖h‖L1 (9.13)

for every r > 0.

For i ∈ N denote by ti the center of the interval Ii, let εi := 1
2
|Ii| be half its

length, so Ii = [ti − εi, ti + εi], and define the function hi : [0,∞)→ X by

hi(t) :=

{
h(t), if t ∈ Ii,
0, if t /∈ Ii.

Then it follows from Lemma 9.5 that∫
ti+2εi

‖(T hi)(t)‖ dt ≤ C

∫ ti+εi

ti−εi
‖hi(t)‖ dt (9.14)

for all i ∈ N. Now recall that the functions T hi and T h are only defined as
equivalence classes in Lq([0,∞), X). Choose representatives of these equiv-
alence classes and denote them by the same letters T hi and T h. We claim
that there exists a Lebesgue null set E ⊂ [0,∞) such that

‖(T h)(t)‖ ≤
∞∑
i=1

‖(T hi)(t)‖ for all t ∈ [0,∞) \ E. (9.15)

To see this, note that the sequence
∑`

i=1 hi converges to h in Lq as ` tends

to infinity. Hence the sequence
∑`

i=1 T hi converges to T h in Lq. Hence
a subsequence converges to T h almost everywhere. This means that there
exists a Lebesque null set E ⊂ R and a sequence of integers 0 < `1 < `2 < · · ·
such that the sequence

∑`ν
i=1(T hi)(t) converges to (T h)(t) as ν tends to

infinity for all t ∈ [0,∞) \ E. Since ‖
∑`ν

i=1(T hi)(t)‖ ≤
∑∞

i=1 ‖(T hi)(t)‖ for
all t and all ν, this proves (9.15).
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Now define the set

A :=

(
∞⋃
i=1

[ti − 2εi, ti + 2εi]

)
∩ [0,∞).

Then it follows from (9.14) and (9.15) that∫
R\A
‖(T h)(t)‖ dt ≤

∞∑
i=1

∫
R\A
‖(T hi)(t)‖ dt

≤
∞∑
i=1

∫ ∞
ti+2εi

‖(T hi)(t)‖ dt

≤ C
∞∑
i=1

∫ ti+εi

ti−εi
‖hi(t)‖ dt

= C

∫ ∞
0

‖h(t)‖ dt.

Moreover,

µ(A) ≤ 2
∞∑
i=1

µ(Ii) = 2µ(B).

Hence

κT h(r) ≤ µ(A) + µ
({
t ∈ [0,∞) \ A

∣∣ ‖(T h)(t)‖ > r
})

≤ µ(A) +
1

r

∫
[0,∞)\A

‖(T h)(t)‖ dt

≤ 2µ(B) +
C

r

∫ ∞
0

‖h(t)‖ dt.

This proves Step 1.

Step 2. Fix a continuously differentiable function f : [0,∞)→ X with com-
pact support and a constant r > 0. Then there exists a countable collection
of compact intervals Ii ⊂ [0,∞) with pairwise disjoint interiors such that

|Ii| <
1

r

∫
Ii

‖f(t)‖ dt ≤ 2|Ii| for all i ∈ N (9.16)

and ‖f(t)‖ ≤ r for almost all t ∈ [0,∞) \ B, where B :=
⋃∞
i=1 Ii. Here

|Ii| = µ(Ii) denotes the length of the interval Ii.
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For k, ` ∈ Z define
I(k, `) := [2−`k, 2−`(k + 1)].

Let I :=
{
I(k, `)

∣∣ k ∈ N0, ` ∈ Z
}

and define the subset I0 ⊂ I by

I0 :=

{
I ∈ I

∣∣∣∣ r|I| < ∫I‖f‖ and, for all I ′ ∈ I ,
I ( I ′ =⇒

∫
I′
‖f‖ ≤ r|I ′|

}
.

Then every decreasing sequence of intervals in I contains at most one ele-
ment of I0. Hence every element of I0 satisfies (9.16) and any two intervals
in I0 have disjoint interiors. Define B :=

⋃
I∈I0

I. We prove that

t ∈ [0,∞) \B, t ∈ I ∈ I =⇒ 1

|I|

∫
I

‖f‖ ≤ r. (9.17)

Suppose, by contradiction, that there is a t ∈ [0,∞) \ B and an interval
I ∈ I such that t ∈ I and r|I| <

∫
I
‖f‖. Then, since ‖f‖L1 <∞, there is a

maximal interval I ∈ I such that t ∈ I and r|I| <
∫
I
‖f‖. Such a maximal

interval would be an element of I0 and hence t ∈ B, a contradiction. This
proves (9.17). Now the Lebesgue differentiation theorem [33, Theorem 6.14]
asserts that there exists a Lebesgue null set E ⊂ [0,∞) \ B such that every
element of [0,∞)\(B∪E) is a Lebesgue point of the integrable function ‖f‖.
By (9.17), every t ∈ [0,∞) \ (B ∪ E) is the intersection point of a decreas-
ing sequence of intervals over which ‖f‖ has mean value at most r. Hence
‖f(t)‖ ≤ r for all r ∈ [0,∞) \ (B ∪ E) by Lebesgue differentiation. This
proves Step 2.

Step 3. We prove the lemma.

Fix a continuously differentiable function f : [0,∞) → X with compact
support and a constant r > 0. Let Ii be as in Step 2 and define B :=

⋃∞
i=1 Ii.

Then the set B has Lebesgue measure

µ(B) =
∞∑
i=1

|Ii| ≤
1

r

∞∑
i=1

∫
Ii

‖f(t)‖ dt ≤ 1

r

∫ ∞
0

‖f(t)‖ dt.

For each subset A ⊂ [0,∞) denote by χA : [0,∞)→ {0, 1} the characteristic
function of A. Define g, h : [0,∞)→ X by

g := fχ[0,∞)\B +
∞∑
i=1

1

|Ii|

(∫
Ii

f(t) dt

)
χIi , h := f − g.
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Then f = g + h and ‖g‖L1 ≤ ‖f‖L1 and ‖h‖L1 ≤ 2 ‖f‖L1 . Since h vanishes
on R \B and has mean value zero on Ii for all i it follows from Step 1 that

κT h(r) ≤ 2µ(B) +
C

r
‖h‖L1 ≤

2 + 2C

r
‖f‖L1 .

Moreover, it follows from Step 2 that ‖g(t)‖ ≤ 2r almost everywhere. Hence
it follows from [33, Lemma 7.36] that

κT g(r) ≤
1

rq

∫ ∞
0

‖(T g)(t)‖q dt ≤
cqq
rq

∫ ∞
0

‖g(t)‖q dt

≤
cqq
rq

∫ ∞
0

(2r)q−1 ‖g(t)‖ dt ≤
2q−1cqq
r
‖f‖L1 .

Hence

κT f (2r) ≤ κT g(r) + κT h(r) ≤
2 + 2C + 2q−1cqq

r
‖f‖L1 .

This proves Step 3 and Lemma 9.6.

Proof of Theorem 9.3. Let q > 1 and assume that S is uniformly maximal q-
regular and satisfies (9.6). Then, by Lemma 9.6, there exist constants c1 > 0
and cq > 0 such that the operator

T : Lq([0,∞), X)→ Lq([0,∞), X)

in (9.12) satisfies the inequalities

‖T f‖Lq ≤ cq ‖f‖Lq , sup
r>0

rκT f (r) ≤ c1 ‖f‖L1

for all f ∈ Lq([0,∞), X) ∩ L1([0,∞), X). Hence, by Corollary 4.3,

‖T f‖Lp ≤ cp ‖f‖Lp , cp := 2

(
p(q − 1)

(q − p)(p− 1)

)1/p

c
q−p
p(q−1)

1 c
q(p−1)
p(q−1)
q

for 1 < p < q and f ∈ Lq([0,∞), X) ∩ L1([0,∞), X) ⊂ Lp([0,∞), X). This
shows that S is uniformly maximal p-regular for 1 < p < q. Moreover the
dual semigroup S∗ also satisfies (9.6) and is uniformly maximal q∗-regular,
where 1/q + 1/q∗ = 1. Hence, by what we have just proved, it is uniformly
maximal p∗-regular for 1 < p∗ < q∗. By duality this implies that S is
uniformly maximal p-regular for 1/p + 1/p∗ = 1 and hence for all p with
q < p <∞. This proves Theorem 9.3.
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10 Coifman–Weiss Transference

Fix a positive integer n and a constant 1 ≤ p <∞. For an integrable function
φ ∈ L1(Rn,C) and a complex Banach space X define

NX
p (φ) := sup

f∈Lp(Rn,X)\{0}

‖φ ∗ f‖Lp
‖f‖Lp

.

For X = C abbreviate

Np(φ) := NC
p (φ) = sup

f∈Lp(Rn,C)\{0}

‖φ ∗ f‖Lp
‖f‖Lp

. (10.1)

The map Np : L1(Rn,C) → [0,∞) is a norm and Np(φ) ≤ ‖φ‖L1 for all
φ ∈ L1(Rn,C), by Young’s inequality. For many functions this inequality
is strict and it may then be interesting to obtain estimates in terms of the
number Np(φ) instead of the L1-norm. A specific instance of this is Theo-
rem 10.4 below, which is an example of the Coifman–Weiss transference
principle.

Lemma 10.1. Fix a constant 1 ≤ p < ∞, let (Y,B, ν) be a measure space,
and denote by Lp(Y, ν) the Banach space of complex valued Lp functions on

(Y,B, ν). Then N
Lp(Y,ν)
p (φ) = Np(φ) for all φ ∈ L1(Rn,C).

Proof. Denote by µ the Lebesgue measure on Rn and fix a Lebesgue in-
tegrable function φ : Rn → C. Let Y ⊂ Lp(Y, ν) be the space of (equiv-
alence classes of) B-measurable step functions on Y with ν-finite support
(up to equality ν-almost everywhere). Then Y is dense in Lp(Y, ν) by [33,
Lem 4.12]. Hence the space of (equivalence classes of) Lebesgue measur-
able step functions on Rn with values in Y (up to equality almost every-
where) is dense in Lp(Rn, Lp(Y, ν)). Now fix a Lebesgue measurable step
function f : Rn → Y . Then there exists a finite sequence of pairwise disjoint
Lebesgue measurable sets A1, . . . , A` ⊂ Rn with µ(Ai) < ∞ for all i, and a
finite sequence g1, . . . , g` ∈ Y such that

f(t) =
∑̀
i=1

χAi(t)gi

for t ∈ Rn. With this notation, we have

‖f‖pLp(Rn,Lp(Y,ν)) =
∑̀
i=1

µ(Ai)

∫
Y

|gi|p dν.
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Now abbreviate

f y(t) :=
(
f(t)

)
(y) =

∑̀
i=1

χAi(t)gi(y)

for t ∈ Rn and y ∈ Y . Then

(
(φ ∗ f)(t)

)
(y) =

∑̀
i=1

(∫
Ai

φ(t− s) dµ(s)

)
gi(y) = (φ ∗ f y)(t)

for all t ∈ Rn and all y ∈ Y . Since each of the functions gi : Y → C is
supported on a subset of finite measure, it follows from Fubini’s Theorem for
σ-finite measure spaces (see [33, Thm 7.20]) that

‖φ ∗ f‖pLp(Rn,Lp(Y,ν)) =

∫
Y

(∫
Rn
|(φ ∗ f y)(t)|p dµ(t)

)
dν(y)

Now it follows from the definition of Np(φ) that∫
Rn
|(φ ∗ f y)(t)|p dµ(t) ≤ Np(φ)p

∫
Rn
|f y(t)|p dµ(t)

= Np(φ)p
∑̀
i=1

µ(Ai) |gi(y)|p

for all y ∈ Y . Integrate this inequality over Y to obtain

‖φ ∗ f‖pLp(Rn,Lp(Y,ν)) ≤ Np(φ)p
∑̀
i=1

µ(Ai)

∫
Y

|gi|p dν

= Np(φ)p ‖f‖pLp(Rn,Lp(Y,ν)) .

Since the space of measurable step functions f : Rn → Y with support of
finite Lebesgue measure is dense in Lp(Rn, Lp(Y, ν)), this implies

‖φ ∗ f‖Lp(Rn,Lp(Y,ν)) ≤ Np(φ) ‖f‖Lp(Rn,Lp(Y,ν))

for all f ∈ Lp(Rn, Lp(Y, ν)). Thus

NLp(Y,ν)
p (φ) ≤ Np(φ).

The converse inequality is obvious and this proves Lemma 10.1.
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The next lemma is a special case of the transference principle in Coifman–
Weiss [7, 8]. Let X be a complex Banach space and denote by Aut(X) the
group of invertible bounded complex linear operators on X.

Lemma 10.2 (Coifman–Weiss). Let U : Rn → Aut(X) be a strongly con-
tinuous group homomorphisms and suppose that there is an M ≥ 1 such that

‖U(s)‖ ≤M for all s ∈ Rn.

Then ∥∥∥∥∫
Rn
φ(s)U(s)x ds

∥∥∥∥ ≤M2NX
p (φ) ‖x‖ (10.2)

for all x ∈ X, all p ≥ 1, and all φ ∈ L1(Rn,C).

Proof. Fix a constant p ≥ 1 and an element x ∈ X. Since both sides of the
inequality (10.2) depend continuously on φ ∈ L1(Rn,C), and C∞0 (Rn,C) is
dense in L1(Rn,C), it suffices to prove the estimate for φ ∈ C∞0 (Rn,C). Fix
a smooth function φ : Rn → C with compact support and choose vectors
a, b ∈ Rn such that ai < bi for all i and supp(φ) ⊂ [a1, b1]× · × [an, bn]. For
T = (T1, . . . , Tn) ∈ Rn with Ti > bi define the function fT : Rn → X by

fT (s) :=

{
U(T − s)x, if 0 ≤ si ≤ Ti − ai for all i,
0, otherwise.

Then ‖fT‖Lp ≤
∏

i(Ti − ai)
1/pM‖x‖. Let t = (t1, . . . , tn) ∈ Rn such that

bi ≤ ti ≤ Ti for all i. Then 0 ≤ ti − si ≤ Ti − ai for all si ∈ [ai, bi] and hence

(φ ∗ fT )(t) =

∫
Rn
φ(s)fT (t− s) ds = U(T − t)

∫
Rn
φ(s)U(s)x ds.

Thus ‖
∫
Rn φ(s)U(s)x ds‖ = ‖U(t − T )(φ ∗ fT )(t)‖ ≤ M ‖(φ ∗ fT )(t)‖ when

bi ≤ ti ≤ Ti. Take the Lp norm over the product of these intervals to obtain∥∥∥∥∫
Rn
φ(s)U(s)x ds

∥∥∥∥ ≤ M ‖φ ∗ fT‖Lp∏
i(Ti − bi)1/p

≤
MNX

p (φ) ‖fT‖Lp∏
i(Ti − bi)1/p

≤
∏
i

(
Ti − ai
Ti − bi

)1/p

M2NX
p (φ)‖x‖.

The inequality (10.2) follows by taking the limit Ti → ∞. This completes
the proof of Lemma 10.2.
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The Coifman–Weiss transference principle extends to strongly continuous
positive contraction semigroups on Lp spaces. Fix a number 1 < p <∞ and
any measure space (Y,B, ν). Let Lp(Y, ν) be the Banach space of complex
valued Lp functions on (Y,B, ν). A strongly continuous semigroup S(t) of
bounded linear operators on Lp(Y, ν) is called a contraction semigroup
if ‖S(t)‖ ≤ 1 for all t ≥ 0. It is called a positive semigroup if it is the
complexification of a strongly continuous semigroup on the real Lp space and

f ≥ 0 =⇒ S(t)f ≥ 0

for all t ≥ 0 and every real valued Lp function f : Y → R.

Theorem 10.3. Let S(t) be a strongly continuous positive contraction semi-
group on Lp(Y, ν). Then there exist

• a measure space (Ỹ , B̃, ν̃),

• linear operators ι : Lp(Y, ν)→ Lp(Ỹ , ν̃) and π : Lp(Ỹ , ν̃)→ Lp(Y, ν),

• and a strongly continuous group of linear operators {S̃(t)}t∈R on Lp(Ỹ , ν̃),

satisfying the following conditions.

(i) For all t ≥ 0 we have

π ◦ S̃(t) ◦ ι = S(t) (10.3)

and, in particular, π ◦ ι = id.

(ii) ι is an isometric embedding, i.e.

‖ι(f)‖Lp(Ỹ ,ν̃) = ‖f‖Lp(Y,ν) for all f ∈ Lp(Y, ν).

(iii) π is a contraction, i.e.

‖π(f̃)‖Lp(Y,ν) ≤ ‖f̃‖Lp(Ỹ ,ν̃) for all f̃ ∈ Lp(Ỹ , ν̃).

(iv) S̃(t) : Lp(Ỹ , ν̃)→ Lp(Ỹ , ν̃) is a group of isometries, i.e.

‖S̃(t)f̃‖Lp(Ỹ ,ν̃) = ‖f̃‖Lp(Ỹ ,ν̃) for all t ∈ R and all f̃ ∈ Lp(Ỹ , ν̃).

(v) The operator S̃(t) is positive for every t ∈ R, i.e. it is the complexification
of a bounded linear operator on the real Lp space and

f̃ ≥ 0 =⇒ S̃(t)f̃ ≥ 0

for every Lp-funtion f̃ : Ỹ → R.
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Proof. The proof of Theorem 10.3 is a rather lengthy construction. The
starting point is the case where Y is a finite set and the semigroup S(t) is
replaced by the iterates of a single operator S. In this situation the assertion
is a theorem of Akcoglu–Sucheston [1]. We explain their result, following the
exposition in Fendler [11, Theorem 2.2.1].

Assume Y is a finite set. Then the space Lp(Y, ν) of complex valued Lp

functions can be identified with the vector space Cn and it suffices to consider
the standard `p-norm ‖y‖p := (

∑n
i=1|yi|p)

1/p
. (Otherwise conjugate first by

the diagonal matrix whose diagonal entries are the pth roots of the weights.)
A positive linear operator is then a matrix S = (Sji)

n
i,j=1 ∈ Rn×n with non-

negative entries. Given such a matrix with `p operator norm ‖S‖ ≤ 1,
the Akcoglu–Sucheston Theorem asserts that there is a σ-finite mea-
sure space (Ỹ , B̃, ν̃), a Banach space isometry S̃ : Lp(Ỹ , ν̃) → Lp(Ỹ , ν̃),

an isometric embedding ι : Cn → Lp(Ỹ , ν̃), and a contracting projection

π : Lp(Ỹ , ν̃)→ Cn such that π ◦ S̃k ◦ ι = Sk for every integer k ≥ 0.
Let S ∈ Rn×n be a matrix with nonnegative entries and ‖S‖ ≤ 1. De-

note the transposed matrix by S∗ = (Sij)
n
i,j=1 and think of it as as the dual

operator on Cn, equipped with the norm ‖·‖q, where 1/p + 1/q = 1. De-
note by Rn

+ ⊂ Rn the subset of vectors with nonnegative entries and, for
y = (y1, . . . , yn) ∈ Rn

+ and r > 0, abbreviate yr := (yr1, . . . , y
r
n).

For I ⊂ {1, . . . , n} denote by ιI : RI → Rn the obvious injection and by
πI : Rn → RI the obvious projection. Define SI := S ◦ ιI : RI → Rn. Then

y ∈ RI
+, ‖SIy‖p = ‖SI‖ ‖y‖p =⇒ S∗I (SIy)p−1 = ‖SI‖p yp−1. (10.4)

To see this, let y ∈ RI
+ with ‖SIy‖p = ‖SI‖ ‖y‖p and define x := (SIy)p−1.

Then ‖x‖qq = ‖SIy‖pp, hence ‖x‖q = ‖SIy‖p−1
p , and therefore

〈y, S∗Ix〉 ≤ ‖y‖p‖S∗Ix‖q ≤ ‖SI‖‖y‖p‖x‖q = ‖SIy‖pp = 〈SIy, x〉 = 〈y, S∗Ix〉 .

This implies 〈y, S∗Ix〉 = ‖y‖p‖S∗Ix‖q, hence S∗Ix is a positive multiple of yp−1,
and so S∗Ix = ‖SI‖p yp−1. This proves (10.4).

Next observe that any two vectors y, z ∈ Rn
+ satisfy

〈y, z〉 = 0,
S∗(Sy)p−1 ≤ yp−1

}
=⇒

{
〈Sy, Sz〉 = 0,

S(y + z)p−1 = (Sy)p−1 + (Sz)p−1.
(10.5)

To see this, note that 0 ≤ 〈Sz, (Sy)p−1〉 = 〈z, S∗(Sy)p−1〉 ≤ 〈z, yp−1〉 = 0
and hence 〈Sz, (Sy)p−1〉 = 0. This shows that when (Sy)i 6= 0 we must have
(Sz)i = 0 and vice versa. Hence (S(y + z))p−1 = (Sy)p−1 + (Sz)p−1 and this
proves (10.5).
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Next observe that, since ‖S‖ ≤ 1, there exists a vector u ∈ Rn
+ with

strictly positive entries such that

S∗(Su)p−1 ≤ up−1. (10.6)

To see this, choose a vector y ∈ Rn
+ such that ‖y‖p = 1 and ‖Sy‖p = ‖S‖.

Then S∗(Sy)p−1 = ‖S‖p yp−1 ≤ yp−1 by (10.4). Assume that the set

I := {i ∈ {1, . . . , n} | yi = 0}

is nonempty and choose z ∈ RI
+ such that ‖z‖p = 1 and ‖SIz‖p = ‖SI‖. Then

S∗I (SIz)p−1 = ‖SI‖p zp−1 ≤ zp−1 by (10.4) and 〈y, ιI(z)〉 = 0 by definition.
Hence 〈Sy, SιI(z)〉 = 0 by (10.5) and so

S∗(SιI(z))p−1 = ιI(S
∗
I (SιI(z))p−1) ≤ ιI(z)p−1.

With this understood, it follows also from (10.5) that

S∗(Sx)p−1 = S∗(Sy)p−1 + S∗(SιI(z))p−1 ≤ yp−1 + ιI(z)p−1 = xp−1.

If {i ∈ {1, . . . , n} |xi = 0} 6= ∅, continue by induction to obtain a vector
u ∈ Rn with positive entries that satisfies (10.6).

The measure space (Ỹ , B̃, ν̃) will be constructed as a Borel subset of R2

equipped with the Borel σ-algebra B̃ and the restriction of the Lebesgue
measure to B̃. Choose two n-tuples of pairwise disjoint compact intervals of
length one, denoted by I1, . . . , In and J1, . . . , Jn, and define

Z0 :=
n⋃
i=1

Ii × Ji.

Now choose a bi-infinite sequence of pairwise disjoint compact rectangles

Zk ⊂ R2, k ∈ Z \ {0},

such that each Zk has positive Lebesgue measure and Zk ∩ Z0 = ∅ for all k.
By (10.6) there exists a vector u = (u1, . . . , un) ∈ Rn

+ such that

S∗(Su)p−1 ≤ up−1 and ui > 0 for all i.

Let v := Su and observe that vj = 0 if and only if Sji = 0 for all i. Define

I := {1, . . . , n} , J := {j ∈ I | vj 6= 0} .
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Moreover, define

ξij := Sji
ui
vj

for (i, j) ∈ I × J,

ηij := Sji

(
vj
ui

)p−1

for (i, j) ∈ I × I.
(10.7)

Since vj = (Su)j =
∑n

i=1 Sjiui for all j, we have

n∑
i=1

ξij = 1 for all j ∈ J.

Since
∑n

j=1 Sjiv
p−1
j = (S∗vp−1)i = (S∗(Su)p−1)i ≤ up−1

i for all i, we have

n∑
j=1

ηij ≤ 1 for all i ∈ I.

For j ∈ J divide the interval Ij into n compact subintervals Iij of length ξij
whose interiors are disjoint. For i ∈ I choose n compact subintervals Jij ⊂ Ji
of length ηij whose interiors are disjoint. (Thus Jij is a point when j /∈ J .)
Define

Q :=
⋃

i,j∈I×J

Qij, Qij := Iij × Jj ⊂ Ij × Jj,

R :=
⋃

i,j∈I×J

Rij, Rij := Ii × Jij ⊂ Ii × Ji.

For i ∈ I and j ∈ J there is a unique affine diffeomorphism

τij : Rij → Qij, τij(x, y) = (aijx+ bij, cijy + dij), ai,j, cij > 0.

Now define a transformation τ :
⋃
k∈Z Zk →

⋃
k∈Z Zk as follows.

(a) The restriction of τ to R is the transformation from R to Q given by
τ |Rij := τij : Rij → Qij (up to a set of measure zero).

(b) If R 6= Z0, define τ as a piecewise affine bijection (up to a set of measure
zero) from Z0 \R onto Z1 and from Zk onto Zk+1 for k ∈ N. If R = Z0 define
τ as the identity on

⋃∞
k=1 Zk.

(c) If Q 6= Z0, define τ as a piecewise affine bijection (up to a set of measure
zero) from Z−1 onto Z0 \ Q and from Z−k−1 onto Z−k for k ∈ N. If Q = Z0

define τ as the identity on
⋃∞
k=1 Z−k.
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With this definition the map

τ :
⋃
k∈Z

Zk →
⋃
k∈Z

Zk

is a diffeomorphism on the complement of a set of measure zero. Now define

Ỹ :=
⋃
k∈Z

Zk,

let B̃ be the Borel σ-algebra on Ỹ , and denote by ν̃ = µ the restriction of
the Lebesgue measure to B̃. Then the pushforward measure τ∗µ is abso-
lutely continuous with respect to the Lebesgue measure and vice versa, by
construction. Thus there exists a measurable function

ρ : Ỹ → (0,∞),

unique almost everywhere, such that

(τ∗µ)(B) = µ(τ−1(B)) =

∫
B

ρ dµ

for every Borel set B ⊂ Ỹ . Since τ−1(Qij) = Rij and the restriction of τ to
Rij is an affine diffeomorphism, the restriction ρ|Qij : Qij → (0,∞) is the
constant function

ρ|Qij =
µ(Rij)

µ(Qij)
=
ηij
ξij

=

(
vj
ui

)p
for (i, j) ∈ I × J. (10.8)

(See equation (10.7).) Define the linear map S̃ : Lp(Ỹ , ν̃)→ Lp(Ỹ , ν̃) by

S̃f̃ := ρ1/p(f ◦ τ−1) (10.9)

for f̃ ∈ Lp(Ỹ , ν̃), define the projection π : Lp(Ỹ , ν̃)→ Cn by

π(f̃)j :=

∫
Ij×Jj

f̃ dµ (10.10)

for j = 1, . . . , n, and define the injection ι : Cn → Lp(Ỹ , ν̃) by

ι(y) :=
n∑
i=1

yiχIi×Ji (10.11)

for y = (y1, . . . , yn) ∈ Rn. Then S̃ is an isometry, ι is an isometric embedding,
π is a contracting projection, and π ◦ ι = id.
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To prove that π ◦ S̃k ◦ ι = Sk, call a function f̃ ∈ Lp(Ỹ , ν̃) admissible if
it depends only on the first variable in R2 and vanishes on

⋃∞
k=1 Z−k.

Claim. For every y ∈ Cn the function ι(y) is admissible. If f̃ ∈ Lp(Ỹ , ν̃) is

admissible then S̃f̃ is admissible and π(S̃f̃) = Sπ(f̃).

The first assertion follows directly from the definition. Hence assume that
f̃ ∈ Lp(Ỹ , ν̃) is admissible. Then S̃f̃ depends only on the first variable,
because τ is piecewise affine and τ−1 maps the vertical rectangle Qij onto

the horizontal rectangle Rij. And S̃f̃ vanishes on Z−k for each k ∈ N because

τ−1(Z−k) ⊂ Z−k ∪ Z−k−1.

So S̃f̃ is admissible. If j /∈ J then

Ij × Jj ⊂ Z0 \Q,

hence S̃f̃ vanishes on Ij × Jj, because τ−1(Z0 \Q) ⊂ Z−1, and therefore

π(S̃f̃)j = 0 = (Sπ(f̃))j.

If j ∈ J then, by (10.7), (10.8), (10.9), and (10.10),

π(S̃f̃)j =

∫
Ij×Jj

ρ1/p(f̃ ◦ τ−1)dµ =
n∑
i=1

∫
Qij

ρ1/p−1(f̃ ◦ τ−1)d(τ∗µ)

=
n∑
i=1

(
vj
ui

)1−p ∫
Rij

f̃dτ =
n∑
i=1

Sji
1

ηij

∫
Rij

f̃dµ

=
n∑
i=1

Sji

∫
Ii×Ji

f̃dµ = (Sπ(f̃))j.

The last but one equation holds because f̃ depends only on the first variable.
This proves the claim. It follows directly from the claim that π ◦ S̃k ◦ ι = Sk

for every integer k ≥ 0 and this proves the Akcoglu–Sucheston theorem [1].
The Akcoglu–Sucheston theorem was carried over to positive contractions

on general Lp spaces by Coifman–Rochberg–Weiss [7]. The extension to
strongly continuous positive contraction semigroups on general Lp spaces as
stated above can be found in the manuscript of Fendler [11, Theorem 4.2.1],
to which we also refer for further details of the proof of Theorem 10.3.
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Theorem 10.4 (Coifman–Weiss). Let (Y,B, ν) be a measure space and
let S(t) be a strongly continuous positive contraction semigroup on Lp(Y, ν).
Then ∥∥∥∥∫ ∞

0

φ(s)S(s)f ds

∥∥∥∥
Lp(Y,ν)

≤ Np(φ) ‖f‖Lp(Y,ν) (10.12)

for all f ∈ Lp(Y, ν), all p > 1, and all φ ∈ L1([0,∞),C).

Proof. Let
X̃ := Lp(Ỹ , ν̃)

and the unitary group
R→ L(X̃) : t 7→ S̃(t)

and the linear operators

ι : Lp(Y, ν)→ Lp(Ỹ , ν̃), π : Lp(Ỹ , ν̃)→ Lp(Y, ν),

be as in Theorem 10.3. Thus

S(t) = π ◦ S̃(t) ◦ ι

for all t ≥ 0, the map ι : Lp(Y, ν)→ Lp(Ỹ , ν̃) is an isometric embedding, and∥∥∥π (f̃)∥∥∥
Lp(Y,ν)

≤
∥∥∥f̃∥∥∥

Lp(Ỹ ,ν̃)

for all f̃ ∈ Lp(Ỹ , ν̃). Then

N X̃
p (φ) = Np(φ)

by Lemma 10.1. Since S̃(t) is a unitary group on X̃, it then follows from
Lemma 10.2 with M = 1 that∥∥∥∥∫ ∞

0

φ(s)S(s)f ds

∥∥∥∥
Lp(Y,ν)

=

∥∥∥∥π(∫ ∞
0

φ(s)S̃(s)ι(f) ds

)∥∥∥∥
Lp(Y,ν)

≤
∥∥∥∥∫ ∞

0

φ(s)S̃(s)ι(f) ds

∥∥∥∥
Lp(Ỹ ,ν̃)

≤ Np(φ) ‖ι(f)‖Lp(Ỹ ,ν̃)

= Np(φ) ‖f‖Lp(Y,ν)

for all f ∈ Lp(Y, ν). This proves Theorem 10.4.
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11 Proof of Theorem 1.1

In view of Theorem 9.3 it suffices to prove Theorem 1.1 for p = q. For this
case expositions based on different methods can be found in the paper [20] by
Lamberton and in the book [22] by Lieberman. The proof in [22] is close in
spirit to the proof of the Calderón–Zygmund inequality in Theorem 5.2. In
our proof of Theorem 1.1 for p = q we follow the approach of Lamberton [20]
which is based on semigroup theory, Stein interpolation, the Mikhlin and
Marcinkiewicz multiplier theorems, and Coifman–Weiss transference.

Lemma 11.1. Let ζ ∈ C \ (−∞, 0]. Then the linear operator

ζ −∆ : W 2,2(Rn,C)→ L2(Rn,C)

is bijective and satisfies the following estimates.

(i) If Re(ζ) ≥ 0 and ζ 6= 0 then, for all f ∈ L2(Rn,C)∥∥(ζ −∆)−1f
∥∥
L2 ≤

1

|ζ|
‖f‖L2 .

(ii) If Re(ζ) < 0 and Im(ζ) 6= 0 then, for all f ∈ L2(Rn,C),∥∥(ζ −∆)−1f
∥∥
L2 ≤

1

|Im(ζ)|
‖f‖L2 .

Proof. The proof has three steps. Throughout the proof all norms are L2

norms and all inner products are L2 inner products for compactly supported
functions on Rn with values in R, Rn, or C.

Step 1. Let u, v ∈ C∞0 (Rn) and let ζ = ξ + iη ∈ C with ξ ≥ 0. Define
f, g ∈ C∞0 (Rn) by ζ(f + ig) := (ζ −∆)(u+ iv) so that

∆u = ξu− ηv − ξf + ηg,

∆v = ηu+ ξv − ηf − ξg.
(11.1)

Then ‖u‖2
L2 + ‖v‖2

L2 ≤ ‖f‖2
L2 + ‖g‖2

L2.

Integration by parts shows that

−‖∇u‖2 = 〈u,∆u〉 = ξ‖u‖2 − η 〈u, v〉 − ξ 〈u, f〉+ η 〈u, g〉 ,
−‖∇v‖2 = 〈v,∆v〉 = η 〈u, v〉+ ξ‖v‖2 − η 〈v, f〉 − ξ 〈v, g〉 ,

−〈∇v,∇u〉 = 〈v,∆u〉 = ξ 〈u, v〉 − η ‖v‖2 − ξ 〈v, f〉+ η 〈v, g〉 ,
−〈∇u,∇v〉 = 〈u,∆v〉 = η‖u‖2 + ξ 〈u, v〉 − η 〈u, f〉 − ξ 〈u, g〉 .

(11.2)
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Add the first two inequalities in (11.2) and subtract the last two identities
in (11.2) to obtain

ξ
(
‖u‖2 + ‖v‖2) ≤ ξ

(
〈u, f〉+ 〈v, g〉

)
+ η
(
〈v, f〉 − 〈u, g〉

)
η
(
‖u‖2 + ‖v‖2) = η

(
〈u, f〉+ 〈v, g〉

)
− ξ
(
〈v, f〉 − 〈u, g〉

)
.

(11.3)

Multiply the (first) inequality in (11.3) by ξ ≥ 0 and multiply the (second)
equation in (11.3) by η and take the sum to obtain

(ξ2 + η2)
(
‖u‖2 + ‖v‖2) ≤ (ξ2 + η2)

(
〈u, f〉+ 〈v, g〉

)
.

Since ξ2 + η2 > 0 it follows that

‖u‖2 + ‖v‖2 ≤ 〈u, f〉+ 〈v, g〉 ≤ 1

2

(
‖u‖2 + ‖v‖2 + ‖f‖2 + ‖g‖2).

This proves Step 1.

Step 2. Let u, v ∈ C∞0 (Rn) and let ζ = ξ + iη ∈ C with ξ < 0 and η 6= 0.
Define f, g ∈ C∞0 (Rn) by ζ(f + ig) := (ζ −∆)(u + iv) so that (11.1) holds.
Then

‖u‖2
L2 + ‖v‖2

L2 ≤
∣∣η−1ζ

∣∣2 (‖f‖2
L2 + ‖g‖2

L2

)
.

We argue as in the proof of Step 1 to obtain (11.3). Since η 6= 0 the (second)
equation in (11.3) can be written in the form

‖u‖2 + ‖v‖2 =
〈
u, f + η−1ξg

〉
+
〈
v, g − η−1ξf

〉
≤ ‖u‖

∥∥f + η−1ξg
∥∥+ ‖v‖

∥∥g − η−1ξf
∥∥

≤ 1

2

(
‖u‖2 + ‖v‖2)+

1

2

(∥∥f + η−1ξg
∥∥2

+
∥∥g − η−1ξf

∥∥2
)

=
1

2

(
‖u‖2 + ‖v‖2)+

1

2

(
1 + |η−1ξ|2

) (
‖f‖2 + ‖g‖2) .

This proves Step 2.

Step 3. We prove the lemma.

If u ∈ C∞0 (Rn,C) then, by Step 1 and Step 2, we have ‖u‖ ≤ |ζ|−1 ‖(ζ −∆)u‖
for Re(ζ) > 0 and ‖u‖ ≤ |Im(ζ)|−1 ‖(ζ −∆)u‖ for Re(ζ) ≤ 0, Im(ζ) 6= 0.
These inequalities continue to hold for all u ∈ W 2,2(Rn,C) and show that
the linear operator ζ − ∆ : W 2,2(Rn,C) → L2(Rn,C) is injective. By the
regularity argument outlined in Example 9.1 it is also surjective. This proves
Lemma 11.1.
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It follows from part (i) of Lemma 11.1 and the Hille–Yoshida–Phillips
Theorem that the operator ∆ generates a strongly continuous contraction
semigroup S(t) on L2(Rn,C). In Example 9.1 we have seen that this semi-
group is given by

S(t)u0 = Kt ∗ u0 =

∫
Rn
Kt(x− y)u0(y) dy (11.4)

for u0 ∈ L2(Rn,C) and t ≥ 0, where Kt : Rn → R is the fundamental
solution (1.9) of the heat equation on Rn. Now fix a constant 1 < p < ∞.
Since ‖Kt‖L1 = 1 for all t > 0 it follows from Young’s inequality that

‖S(t)u0‖Lp ≤ ‖u0‖Lp (11.5)

for all t ≥ 0 and all u0 ∈ L2(Rn,C)∩Lp(Rn,C). In [20] Lamberton proved a
general Lp regularity theorem for strongly continuous semigroups on L2 that
satisfy the estimates of Lemma 11.1 and (11.5). Here is his result. As before
all Lp spaces are understood as complex Lp spaces.

Theorem 11.2 (Lamberton). Let (X,A, µ) be a σ-finite measure space
and let A : dom(A) → L2(X,µ) be the infinitesimal generator of a strongly
continuous semigroup S(t) on L2(X,µ). Assume A and S satisfy the follow-
ing.

(I) If ζ ∈ C \ (−∞, 0] then the operator ζ − A : dom(A) → L2(X,µ) is
bijective and, for all f ∈ L2(X,µ),∥∥(ζ − A)−1f

∥∥
L2 ≤

{
|ζ|−1 ‖f‖L2 , if Re(ζ) > 0,

|Im(ζ)|−1 ‖f‖L2 , if Re(ζ) ≤ 0, Im(ζ) 6= 0.
(11.6)

(II) Let 1 < p < ∞. Then S(t) defines a strongly continuous positive con-
traction semigroup on Lp, i.e. if t ≥ 0 and u0 ∈ L2(X,µ) ∩ Lp(X,µ) then

‖S(t)u0‖Lp ≤ ‖u0‖Lp , (11.7)

and, if u0 is real valued, then so is S(t)u0 and u0 ≥ 0 implies S(t)u0 ≥ 0.

Then, for every real number 1 < p < ∞, there exists a constant Cp > 0
such that every continuously differentiable function f : R → L2(X,µ) with
compact support satisfies the inequality(∫ ∞

−∞

∥∥∥∥A ∫ t

−∞
S(t− s)f(s) ds

∥∥∥∥p
Lp
dt

)1/p

≤ Cp

(∫ ∞
−∞
‖f(t)‖pLp dt

)1/p

.

(11.8)

Proof. See page 90
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Condition (I) in Theorem 11.2 implies that A generates what in semi-
group theory is called an analytic semigroup. Lamberton’s theorem in [20]
is more general in that he merely assumes that A generates an analytic semi-
group. This corresponds to a more general estimate than (11.6) and, in
particular, the spectrum of A is then not required to be contained in the
negative real axis but only in a cone of angle less than π around the negative
real axis. The discussion in this section is restricted to the case where (11.6)
holds because that suffices for our intended application.

A key ingredient in Lamberton’s proof is the Fourier transform for
L2 functions on R with values in L2(X,µ). It is the unique bounded linear
operator F : L2(R, L2(X,µ))→ L2(R, L2(X,µ)) given by

(F (u))(ξ) := û(ξ) :=

∫ ∞
−∞

e−iξtu(t) dt (11.9)

for ξ ∈ R and u ∈ L2(R, L2(X,µ)) ∩ L1(R, L2(X,µ)). Its inverse is

(F−1(û))(t) = u(t) =
1

2π

∫ ∞
−∞

eiξtû(ξ) dξ (11.10)

for t ∈ R and û ∈ L2(R, L2(X,µ))∩L1(R, L2(X,µ)). Using the Fourier trans-
form and the operator A one can define an operator family on L2(R, L2(X,µ))
as follows. As before we use the notation S = {z ∈ C | 0 ≤ Re(z) ≤ 1}.
Definition 11.3. Fix two real numbers θ0, θ1 such that

0 < θ0 <
π

2
< θ1 < π

and define the function ρ : S× R→ C by

ρ(z, ξ) := |ξ|ei((1−z)θ0+zθ1)sign(ξ) (11.11)

for z ∈ S and ξ ∈ R, where sign(ξ) := 1 for ξ ≥ 0 and sign(ξ) := 0 for ξ < 0.
For z ∈ S define the operator Uz : L2(R, L2(X,µ))→ L2(R, L2(X,µ)) by

Uz := F−1 ◦ Ûz ◦F , (Ûzf̂)(ξ) := ρ(z, ξ)
(
ρ(z, ξ)− A)−1f̂(x) (11.12)

for f̂ ∈ L2(R, L2(X,µ)) and ξ ∈ R. It is well defined because the opera-
tor norm of the bounded linear operator ρ(z, ξ)

(
ρ(z, ξ) − A)−1 on L2(X,µ)

satisfies the inequality∥∥ρ(z, ξ)
(
ρ(z, ξ)− A)−1

∥∥
L(L2)

≤
{

1, if |(1− λ)θ0 + λθ1| ≤ π
2
,

1
sin(θ1)

, if |(1− λ)θ0 + λθ1| > π
2
,

(11.13)
for all z = λ+ iτ ∈ S and all ξ ∈ R, by (11.6).
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With this definition in place, Lamberton’s proof of Theorem 11.2 requires
the following seven lemmas. The first lemma shows that for a suitable choice
of λ the operator Uλ agrees with the operator for which we intend to prove
an Lp estimate.

Lemma 11.4. Choose a constant 0 < λ < 1 such that

(1− λ)θ0 + λθ1 =
π

2
(11.14)

and let f : R→ L2(X,µ) be a continuously differentiable function with com-
pact support. Then

(Uλf)(t) = A

∫ t

−∞
S(t− s)f(s) ds+ f(t) (11.15)

for t ≥ 0 and (Uλf)(t) = 0 for t < 0.

Proof. Define the function v : R→ L2(X,µ) by

v(t) := A

∫ t

−∞
S(t− s)f(s) ds+ f(t) for t ∈ R.

For δ ≥ 0 define uδ, vδ : R→ L2(X,µ) by

uδ(t) :=

∫ t

−∞
e−δsS(s)f(t− s) ds, vδ(t) := u̇δ(t) = (A− δ)uδ(t) + f(t)

for t ∈ R. (Here we use the fact that uδ takes values in the domain of A
and is continuously differentiable.) Then v0 = v. With g := ḟ the function
vδ = u̇δ can also be expressed in the form

vδ(t) =

∫ t

−∞
e−δ(t−s)S(t− s)g(s) ds for t ≥ 0. (11.16)

For δ > 0 the function vδ belongs to L2(R, L2(X,µ)). Denote its Fourier
transform by v̂δ := F (vδ). The Fourier transform of the operator valued
function [0,∞) → L(L2(X,µ)) : t 7→ e−δtS(t) is given by (iξ + δ − A)−1.

Hence v̂δ(ξ) = (iξ + δ − A)−1ĝ(ξ) = iξ(iξ + δ − A)−1f̂(ξ) by (11.16). Take
the limit δ → 0 to obtain v ∈ L2(R, L2(X,µ)) and

v̂(ξ) := (F (v))(ξ) = iξ(iξ − A)−1f̂(ξ).

Now it follows from equations (11.11) and (11.14) that ρ(λ, ξ) = iξ for all

ξ ∈ R. This implies Ûλf(ξ) = iξ(iξ − A)−1f̂(ξ) = v̂(ξ) for all ξ and hence
Uλf = v. This proves Lemma 11.4.
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The main task is now to prove a uniform Lq estimate for the operators
Uiτ for all τ ∈ R. This task will be accomplished in Lemma 11.10 below.
The first step is to express the operator U0 in Definition 11.3 in terms of the
semigroup. The proof will take up the next four pages.

Lemma 11.5. Define the function φ0 : R× (0,∞)→ R by

φ0(r, s) :=
(s2 − r2) cos(θ0)

π(r2 + s2 − 2rs sin(θ0))2
for (r, s) ∈ R× (0,∞). (11.17)

This function is integrable over I× [ε,∞) for every ε > 0 and every compact
interval I ⊂ R, and the operator U0 : L2(R, L2(X,µ)) → L2(R, L2(X,µ)) is
given by

(U0f)(t) = lim
ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)S(s)f(t− r) drds (11.18)

for every t ∈ R and every function f : R → L2(X,µ) that is twice continu-
ously differentiable and has compact support.

Proof. The proof has six steps.

Step 1. Define the functions K̂, K̂ε : R→ L(L2(X,µ)) by

K̂(ξ) := ρ(0, ξ)
(
ρ(0, ξ)− A

)−1
, K̂ε(ξ) := e−ρ(0,ξ)εS(ε)K̂(ξ).

Then ‖K̂ε(ξ)‖L(L2) ≤ ‖K̂(ξ)‖L(L2) ≤ 1 and

lim
ε→0
‖K̂ε(ξ)f − K̂(ξ)f‖L2 = 0

for all ξ ∈ R and all f ∈ L2(X,µ).

By (11.11),

ρ(0, ξ) = |ξ|eiθ0sign(ξ) = |ξ| cos(θ0) + iξ sin(ξ0).

Since 0 < θ0 < π/2 the number ρ(0, ξ) has nonnegative real part and hence
|e−ρ(0,ξ)ε| ≤ 1 for all ξ ∈ R and all ε > 0. Moreover, the operator norm of
S(t) : L2(X,µ)→ L2(X,µ) is at most one for all t, by (11.7). Hence

‖K̂ε(ξ)‖L(L2) ≤ ‖K̂(ξ)‖L(L2) ≤ 1,

where the last inequality follows from (11.6). This proves the first assertion.

Since the operator K̂(ξ) commutes with the semigroup, it follows from the

definitions that ‖K̂ε(ξ)f − K̂ε(ξ)f‖L2 ≤ ‖e−ρ(0,ξ)εS(ε)f − f‖L2 for ξ ∈ R,
ε > 0, and f ∈ L2(X,µ). Hence the second assertion follows from the fact
that S is a strongly continuous semigroup. This proves Step 1.

76



Step 2. Let f : R→ L2(X,µ) be a twice continuously differentiable function

with compact support. Then f̂ : R→ L2(X,µ) is integrable and

(U0f)(t) =
1

2π

∫ ∞
−∞

eitξK̂(ξ)f̂(ξ) dξ (11.19)

for all t ∈ R.

Define g := f̈ . Then ĝ(ξ) = −ξ2f̂(ξ) and hence

‖f̂(ξ)‖L2 =
1

ξ2
‖ĝ(ξ)‖L2 ≤ 1

ξ2
‖f̈‖L1(R,L2(X,µ))

for all ξ ∈ R \ {0}. Since f̂ is continuous (near ξ = 0) it follows that the

function f̂ : R → L2(X,µ) is integrable. Hence Step 2 follows from the fact

that the Fourier transform of U0f is the function Û0f = K̂f̂ : R→ L2(X,µ),
by definition, and hence is integrable as well.

Step 3. Let f be as in Step 2 and define the function U0,εf : R→ L2(X,µ)
by

(U0,εf)(t) =
1

2π

∫ ∞
−∞

eitξK̂ε(ξ)f̂(ξ) dξ. (11.20)

for t ∈ R and ε > 0. Then

lim
ε→0
‖(U0,εf)(t)− (U0f)(t)‖L2 = 0

for all t ∈ R.

By Step 2,

‖(U0f)(t)− (U0,εf)(t)‖L2 =
1

2π

∥∥∥∥∫ ∞
−∞

eitξ
(
K̂(ξ)f̂(ξ)− K̂ε(ξ)f̂(ξ)

)
dξ

∥∥∥∥
L2

≤ 1

2π

∫ ∞
−∞

∥∥∥K̂(ξ)f̂(ξ)− K̂ε(ξ)f̂(ξ)
∥∥∥
L2
dξ

for all ξ ∈ R. Moreover,∥∥∥K̂(ξ)f̂(ξ)− K̂ε(ξ)f̂(ξ)
∥∥∥
L2
≤ 2

∥∥∥f̂(ξ)
∥∥∥
L2
,

lim
ε→0

∥∥∥K̂(ξ)f̂(ξ)− K̂ε(ξ)f̂(ξ)
∥∥∥
L2

= 0

for all ξ ∈ R by Step 2. Since the function R → R : ξ 7→ ‖f̂(ξ)‖L2 is
integrable, the assertion of Step 3 follows from the Lebesgue dominated con-
vergence theorem.
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Step 4. The function φ0 in (11.17) is integrable over I × [ε,∞) for every
ε > 0 and every compact interval I ⊂ R.

Since 0 < θ0 < π/2 we have sin(θ0) < 1. Since 2rs ≤ r2 + s2 it follows that

|φ0(r, s)| ≤ cos(θ0)|s2 − r2|
π(r2 + s2)2(1− sin(θ0))2

≤ cos(θ0)

π(1− sin(θ0))2

1

r2 + s2
. (11.21)

Since ∫ ∞
ε

1

r2 + s2
ds =

1

|r|

∫ ∞
ε/r

ds

1 + s2
≤ 1

|r|

∫ ∞
ε/|r|

ds

s2
=

1

ε

the function (r, s) 7→ (r2 + s2)−1 is integrable over I × [ε,∞) for every ε > 0
and every compact interval I ⊂ R, and hence so is φ0. This proves Step 4.

Step 5. Let φ0 be given by (11.17). Then

φ0(r, s) =
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s+irξ dξ (11.22)

for all (r, s) ∈ R2 \ {(0, 0)}.
Fix a pair (r, s) ∈ R2 \ {(0, 0)}. Since

ρ(0, ξ) = |ξ|eiθ0sign(ξ) = |ξ| cos(θ0) + iξ sin(θ0),

the right hand side in (11.22) is the sum z+ + z−, where

z+ :=

∫ ∞
0

ρ(0, ξ)e−ρ(0,ξ)s+irξ

2π
dξ =

∫ ∞
0

eiθ0ξe−ξ(e
iθ0s+ir)

2π
dξ =

eiθ0

2π(eiθ0s− ir)2

and

z− :=

∫ 0

−∞

ρ(0, ξ)e−ρ(0,ξ)s+irξ

2π
dξ =

∫ ∞
0

ρ(0,−ξ)e−ρ(0,−ξ)s−irξ

2π
dξ = z+.

Hence

z+ + z− = Re

(
eiθ0

π(eiθ0s− ir)2

)
=

Re(eiθ0(e−iθ0s+ ir)2)

π|eiθ0s− ir|4

=
Re(e−iθ0s2 + 2irs− eiθ0r2)

π(cos2(θ0)s2 + (sin(θ0)s− r)2)2
=

cos(θ0)(s2 − r2)

π(r2 + s2 − 2rs sin(θ0))2
.

This proves Step 5.
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Step 6. Let f be as in Step 2. Then

(U0,εf)(t) =

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)S(s)f(t− r) drds

for all ε > 0 and all t ∈ R.

For all ζ ∈ C with Re(ζ) > 0,

(ζ − A)−1 =

∫ ∞
0

e−ζsS(s) ds.

Since Re(ρ(0, ξ)) > 0 for all ξ ∈ R\{0} it follows from the definition of K̂ε(ξ)
in Step 1 that

K̂ε(ξ) = ρ(0, ξ)e−ρ(0,ξ)εS(ε)
(
ρ(0, ξ)− A

)−1

= ρ(0, ξ)e−ρ(0,ξ)εS(ε)

∫ ∞
0

e−ρ(0,ξ)sS(s) ds

= ρ(0, ξ)

∫ ∞
ε

e−ρ(0,ξ)sS(s) ds

for all ε > 0 and all ξ ∈ R. Hence it follows from the definition of U0,εf in
Step 3 that

(U0,εf)(t) =
1

2π

∫ ∞
−∞

eitξK̂ε(ξ)f̂(ξ) dξ

=
1

2π

∫ ∞
−∞

∫ ∞
ε

ρ(0, ξ)e−ρ(0,ξ)s+itξS(s)f̂(ξ) dsdξ

=
1

2π

∫ ∞
−∞

∫ ∞
ε

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s+i(t−r)ξS(s)f(r) drdsdξ

=
1

2π

∫ ∞
−∞

(∫ ∞
ε

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s+irξS(s)f(t− r) drds
)
dξ.

Since ‖ρ(0, ξ)e−ρ(0,ξ)s+i(t−r)ξS(s)f(r)‖L2 ≤ |ξ|e−|ξ| cos(θ0)εe−δs‖f(r)‖L2 when-
ever s ≥ ε, the function (r, s, ξ) 7→ ρ(0, ξ)e−ρ(0,ξ)s+irξS(s)f(t−r) is integrable
over R× [ε,∞)× R for all ε > 0. Hence, by Fubini’s theorem,

(U0,εf)(t) =

∫ ∞
ε

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s+irξ dξ

)
S(s)f(t− r) drds

=

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)S(s)f(t− r) drds.

Here the last equation follows from Step 5 and this proves Step 6. The
assertions of Lemma 11.5 follow immediately from Steps 3, 4, and 6.
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The next lemma (whose proof takes up three pages) examines the proper-
ties of the function φ0 : R× (0,∞)→ R in equation (11.17) in Lemma 11.5.
It makes use of the Fourier transform on R2, given by

(F (v))(ξ, η) := v̂(ξ, η) :=

∫
R2

e−i(ξr+ηs)v(r, s) drds

for v ∈ L2(R2,C) ∩ L1(R2,C) and ξ, η ∈ R. The inverse is

(F−1(v̂))(r, s) = v(r, s) =
1

(2π)2

∫
R2

ei(ξr+ηs)v̂(ξ, η) dξdη

for v̂ ∈ L2(R2,C) ∩ L1(R2,C) and r, s ∈ R. A function v : R2 → C is called
a Schwartz test function, if the functions (r, s) 7→ rks`∂mr v(r, s)∂ns v(r, s)
is bounded for all quadruples of nonnegative integers k, `,m, n. The (topo-
logical vector) space of Schwartz test functions is denoted by S (R2,C) and
the subspace of real valued Schwartz test functions is denoted by S (R2).
The space S (R2,C) is invariant under the Fourier transform. A tempered
distribution on R2 is a continuous linear functional S (R2,C)→ C.

Lemma 11.6. Let φ0 : R × (0,∞) → R be the function defined by (11.17)
and define the linear map Φ0 : C∞0 (R2,C)→ C by

Φ0(v) := −
∫ ∞

0

∫ ∞
−∞

r cos(θ0)

π(r2 + s2 − 2rs sin(θ0))

∂v

∂r
(r, s) drds (11.23)

for v ∈ C∞0 (R2,C). Then the following holds.

(i) Φ0 extends to a tempered distribution.

(ii) For all v ∈ C∞0 (R2,C)

Φ0(v) = lim
ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)v(r, s) ds. (11.24)

(iii) The formula (T0v)(r, s) := Φ0(v(r − ·, s − ·)) for v ∈ S (R2,C) defines
a continuous linear operator T0 : S (R2,C)→ S (R2,C). Moreover,

T̂0v(ξ, η) = m(ξ, η)v̂(ξ, η), m(ξ, η) :=
|ξ|eiθ0sign(ξ)

|ξ|eiθ0sign(ξ) + iη
, (11.25)

for v ∈ S (R2,C) and |m(ξ, η)| ≤ (1−sin(θ0))−1/2 for all (ξ, η) ∈ R2\{(0, 0)}.
(iv) If 1 < q < ∞ then T0 extends to a bounded linear operator from
Lq(R2,C) to itself.
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Proof. We prove (i). Define the function K0 : R2 → R by K0(r, s) := 0
whenever s < 0 or r = s = 0, and by

K0(r, s) :=
r cos(θ0)

π(r2 + s2 − 2rs sin(θ0))

whenever s ≥ 0 and (r, s) 6= (0, 0). Then K0 is locally integrable and a simple
computation shows that

∂K0

∂r
(r, s) = φ0(r, s) for s > 0.

Hence the right hand side of (11.23) is well defined and it follows directly
from the definition that Φ0 is a tempered distribution. This proves (i).

We prove (ii). Fix a function v ∈ C∞0 (R2,C) and define

Φε(v) := −
∫ ∞
ε

∫ ∞
−∞

K0(r, s)
∂v

∂r
(r, s) drds

for ε > 0. Then limε→0 Φε(v) = Φ0(v) and integration by parts shows that

Φε(v) =

∫ ∞
ε

∫ ∞
−∞

∂K0

∂r
(r, s)v(r, s) drds =

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)v(r, s) drds.

This proves part (ii).
We prove (iii). Since

ρ(0, ξ) = |ξ|eiθ0sign(ξ) = |ξ| cos(θ0) + iξ sin(θ0),

we have |ρ(0, ξ)|2 = |ξ|2 and

|ρ(0, ξ) + iη|2 = ξ2 + η2 − 2ξη sin(θ0) ≥ (ξ2 + η2)(1− sin(θ0)).

Since 0 < θ0 < π/2 it follows that sin(θ0) < 1 and

|m(ξ, η)| ≤ 1√
1− sin(θ0)

for all (ξ, η) ∈ R2 \ {(0, 0)}.

Since Re(ρ(0, ξ)) > 0 for ξ ∈ R \ {0}, we have∫ ∞
0

ρ(0, ξ)e−ρ(0,ξ)s−isη ds =
ρ(0, ξ)

ρ(0, ξ) + iη
= m(ξ, η). (11.26)

for all nonzero pairs (ξ, η) ∈ R2. Moreover,

φ0(r, s) =
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s+irξ dξ (11.27)

for all nonzero pairs (r, s) ∈ R×[0,∞), by Step 5 in the proof of Lemma 11.5.
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Next define

mε(ξ, η) := e−ρ(0,ξ)ε−iεηm(ξ, η) =

∫ ∞
ε

ρ(0, ξ)e−ρ(0,ξ)s−isη ds (11.28)

for (ξ, η) ∈ R2 \ {(0, 0)}. Here the second equation follows from (11.26). Fix
a function v ∈ C∞0 (R2,C) and denote its Fourier transform by v̂ := F (v).
Then v̂ is integrable and hence so is mεv̂. Thus the inverse Fourier transform
of mεv̂ is given by

(F−1(mεv̂))(r, s)

=
1

(2π)2

∫
R2

eirξ+isηmε(ξ, η)v̂(ξ, η) dξdη

=
1

(2π)2

∫
R2

∫ ∞
ε

ρ(0, ξ)e−ρ(0,ξ)s′+irξ+i(s−s′)ηv̂(ξ, η) ds′dξdη.

The integrand satisfies the inequality∣∣∣ρ(0, ξ)e−ρ(0,ξ)s′+irξ+i(s−s′)ηv̂(ξ, η)
∣∣∣ ≤ |ξ|e−|ξ| cos(θ0)ε|v̂(ξ, η)|

for s′ ≥ ε and so the function is integrable on R2× [ε,∞). Hence, by Fubini’s
theorem,

(F−1(mεv̂))(r, s)

=

∫ ∞
ε

(
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s′+irξ

(
1

2π

∫ ∞
−∞

ei(s−s
′)ηv̂(ξ, η) dη

)
dξ

)
ds′

=

∫ ∞
ε

(
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s′+irξ

(∫ ∞
−∞

e−ir
′ξv(r′, s− s′) dr′

)
dξ

)
ds′

=

∫ ∞
ε

(
1

2π

∫ ∞
−∞

(∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s′+i(r−r′)ξv(r′, s− s′) dr′
)
dξ

)
ds′

=

∫ ∞
ε

(
1

2π

∫ ∞
−∞

(∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s′+ir′ξv(r − r′, s− s′) dr′
)
dξ

)
ds′

=

∫ ∞
ε

(∫ ∞
−∞

(
1

2π

∫ ∞
−∞

ρ(0, ξ)e−ρ(0,ξ)s′+ir′ξdξ

)
v(r − r′, s− s′) dr′

)
ds′

=

∫ ∞
ε

∫ ∞
−∞

φ0(r′, s′)v(r − r′, s− s′) dr′ds′ = Φε(v(r − ·, s− ·)).

Here the last but one equation follows from (11.27).
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Now define the function φε : R2 → R by

φε(r, s) :=

{
φ0(r, s), if s ≥ ε,
0, if s < ε.

(11.29)

This function is locally integrable, by Lemma 11.5, and we have just proved
that

φ̂ε ∗ v = mεv̂

for every smooth compactly supported function v : R2 → C. Moreover,
|mε(ξ, η)| ≤ |m(ξ, η)| ≤ cos(θ0)−1 for all ξ and η. Thus

|mε(ξ, η)v̂(ξ, η)−m(ξ, η)v̂(ξ, η)| ≤ 2

cos(θ0)
|v̂(ξ, η)|

lim
ε→0
|mε(ξ, η)v̂(ξ, η)−m(ξ, η)v̂(ξ, η)| = 0

for all (ξ, η) ∈ R2 \{(0, 0)}. Since the function R2 → R : (ξ, η) 7→ |v̂(ξ, η)|2 is
integrable, it follows from the Lebesgue dominated convergence theorem that
limε→0 ‖mεv̂ −mv̂‖L2 = 0. This implies that the functions φε∗v = F−1(mεv̂)
converge in L2 as ε tends to zero. Since the pointwise limit of this family is
the function T0v, by part (ii) of the lemma (already proved), it follows that

lim
ε→0
‖φε ∗ v − T0v‖L2 = 0. (11.30)

Hence
F (T0v) = lim

ε→0
F (φε ∗ v) = lim

ε→0
mεv̂ = mv̂,

where the convergence is in L2(R2). This proves part (iii).
We prove (iv). The real and imaginary parts of m are given by

Re(m(ξ, η)) =
ξ2 + ξη sin(θ0)

ξ2 + η2 + 2ξη sin(θ0)
, Im(m(ξ, η)) =

|ξ|η cos(θ0)

ξ2 + η2 + 2ξη sin(θ0)
.

A calculation shows that there exist positive constants c1 and c2 such that∣∣∣∣∂m∂ξ (ξ, η)

∣∣∣∣+

∣∣∣∣∂m∂η (ξ, η)

∣∣∣∣ ≤ c1√
ξ2 + η2

and ∣∣∣∣∂2m

∂ξ2
(ξ, η)

∣∣∣∣+

∣∣∣∣ ∂2m

∂ξ∂η
(ξ, η)

∣∣∣∣+

∣∣∣∣∂2m

∂η2
(ξ, η)

∣∣∣∣ ≤ c2

ξ2 + η2

for all (ξ, η) ∈ R2 \ {(0, 0)}. Hence the assertion of part (iv) follows from the
Mikhlin Multiplier Theorem 6.1. This proves Lemma 11.6
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To prove the desired estimate for the operator U0 we must replace φ0 by
integrable functions φ. The next lemma introduces a class of operators that
will be used to approximate U0. This is where the transference estimates in
Section 10 are used.

Lemma 11.7. Fix a number 1 < q <∞ and let φ ∈ L1(R2,C) be a complex
valued Lebesgue integrable function such that φ(r, s) = 0 for s < 0. Let
f : R→ Lq(X,µ) be a continuous function with compact support and define
the function Tφf : R→ Lq(X,µ) by

(Tφf)(t) :=

∫ ∞
0

∫ ∞
−∞

φ(r, s)S(s)f(t− r) drds (11.31)

for t ∈ R. Then Tφf is q-integrable and

‖Tφf‖Lq(R,Lq(X,µ)) ≤ Nq(φ) ‖f‖Lq(R,Lq(X,µ)) . (11.32)

(See equation (10.1) for the definition of Nq(φ).)

Proof. By Theorem 10.3 and assumption (II) in Theorem 11.2 there is a
σ-finite measure space (Y,B, ν), an isometric embedding ι : Lq(X,µ) →
Lq(Y, ν), a contracting projection π : Lq(Y, ν) → Lq(X,µ), and a strongly
continuous group of positive isometries U(t) ∈ Aut(Lq(Y, ν)), such that

π ◦ U(s) ◦ ι = S(s) for all s ≥ 0.

For r, s ∈ R define the operator U (r, s) on Lq(R, Lq(Y, ν)) ∼= Lq(R×Y, σ⊗ν)
(σ the Lebesgue measure on R) by

(U (r, s)f)(t) := U(s)f(t− r)
for r, s, t ∈ R and f ∈ Lq(R, Lq(Y, ν)). Then U : R2 → Aut(Lq(R, Lq(Y, ν)))
is a strongly continuous group of isometries. Hence, by Lemma 10.2,

‖Tφf‖Lq(R,Lq(X,µ)) =

∥∥∥∥∫ ∞
0

∫ ∞
−∞

φ(r, s)S(s)f(· − r) drds
∥∥∥∥
Lq(R,Lq(X,µ))

=

∥∥∥∥∫ ∞
0

∫ ∞
−∞

φ(r, s)π(U(s)ι(f(· − r))) drds
∥∥∥∥
Lq(R,Lq(X,µ))

≤
∥∥∥∥∫ ∞

0

∫ ∞
−∞

φ(r, s)U (s, r)(ι ◦ f) drds

∥∥∥∥
Lq(R,Lq(Y,ν))

≤ Nq(φ) ‖ι ◦ f‖Lq(R,Lq(Y,ν))

= Nq(φ) ‖f‖Lq(R,Lq(X,µ))

for all f ∈ Lq(R, Lq(X,µ)). This proves Lemma 11.7
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The next lemma introduces the required sequence of integrable functions
that converge to φ0 in the distributional sense.

Lemma 11.8. Let φ0 : R × (0,∞) → R be the function in (11.17) and let
T0 : Lq(R2,C)→ Lq(R2,C) be the operator in Lemma 11.6. Then there is a
sequence of smooth functions φn ∈ S (R2) that satisfies the following.

(i) For all n ∈ N and all (r, s) ∈ R2 with s ≤ 0, we have φn(r, s) = 0.

(ii) For all n ∈ N and all real numbers 1 < q <∞, we have

Nq(φn) ≤ ‖T0‖L(Lq) . (11.33)

(iii) For all v ∈ S (R2,C), we have

lim
n→∞

∫
R2

φn(r, s)v(r, s) drds = lim
ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)v(r, s) drds. (11.34)

Proof. Choose a sequence of smooth functions ψn : R2 → [0,∞) such that

supp(ψn) ⊂ [−1/n, 1/n]× [0, 1/n],

∫
R2

ψn(r, s) drds = 1

for all n ∈ N and define φn := T0ψn. Then the Fourier transform of φn is

φ̂n(ξ, η) = m(ξ, η)ψ̂n(ξ, η), m(ξ, η) :=
|ξ|eiθ0sign(ξ)

|ξ|eiθ0sign(ξ) + iη
.

(See equation (11.25) in Lemma 11.6.)
We prove that φn satisfies (i). An integrable function is supported in the

half plane R×[0,∞) if and only if its Fourier transform extends to a bounded
holomorphic function in the domain {η ∈ C | Im(η) < 0} for every ξ ∈ R.
Since the summand |ξ|eiθ0sign(ξ) has a positive real part the multiplier m has
this property. Since ψn is supported in R× [0,∞), its Fourier transform has

this property as well, and hence so does φ̂n = mψ̂n. This shows that φn is
supported in R× [0,∞).

We prove that φn satisfies (ii). Namely,

‖φn ∗ v‖Lq = ‖(Tψn) ∗ v‖Lq
= ‖T0(ψn ∗ v)‖Lq
≤ ‖T0‖L(Lq) ‖ψn ∗ v‖Lq
≤ ‖T0‖L(Lq) ‖v‖Lq

for all v ∈ S (R2) and so Np(φn) ≤ ‖T0‖L(Lq). This proves (ii).
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We prove that φn satisfies (iii). Let v ∈ S (Rn,C) be a Schwartz test
function and recall that

Φ0(v) = lim
ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)v(r, s) drds

by (11.24), that
(T0v)(r, s) = (Φ0v)(r − ·, s− ·)

in Lemma 11.6, and that the Fourier transform of T0v is given by T̂0v = mv̂,
where m : R2 \ {(0, 0)} → C is the bounded function in (11.25). Define

w(r, s) := v(−r,−s)

so that ŵ(ξ, η) = v̂(−ξ,−η). Then

Φ0(v) = (T0w)(0, 0) =
1

2π

∫
R2

m(ξ, η)v̂(−ξ,−η) dξdη

and ∫
R2

φn(r, s)v(r, s) drds = (φn ∗ w)(0, 0)

=
1

2π

∫
R2

φ̂n(ξ, η)v̂(−ξ,−η) dξdη

=
1

2π

∫
R2

m(ξ, η)ψ̂n(ξ, η)v̂(−ξ,−η) dξdη.

Since ψn ∈ S (R2) is a sequence of approximate Dirac δ-functions, its Fourier

transforms satisfy |ψ̂n(ξ, η)| ≤ 1 for all n ∈ N and all (ξ, η) ∈ Rn, and

the sequence ψ̂n converges to 1, uniformly on every compact subset of R2.
Moreover, since v is a Schwartz test function, so is v̂, and so v̂ is integrable.
(In fact, a sufficient condition for the integrability of v̂ is that v is three
times continuously differentiable and all derviatives of v up to order three
are integrable.) Now let κ > 0. Then there exists an R > 0 such that

1

2π
√

1− sin(θ0)

∫
R2\BR

|v̂| < κ

3
.

Choose n0 ∈ N such that (1−sin(θ0))−1/2R2 supBR |v̂| supBR |ψ̂n−1| < κ/3 for
every integer n ≥ n0. Then |Φ0(v) −

∫
R2 φnv| < κ for every integer n ≥ n0.

This proves Lemma 11.8.

86



The next lemma is a convergence result that plays a central role in Lam-
berton’s proof of Theorem 11.2 (see [20, Lemma 3.4]). We reproduce his
proof below.

Lemma 11.9. Let f0, g0 ∈ S (R,C), v0 ∈ L2(X,µ), u0 ∈
⋂∞
k=1 dom(Ak),

and t0 > 0. Define the functions f, g : R→ L2(X,µ) by

f(t) := f0(t)S(t0)u0, g(t) := g0(t)v0. (11.35)

Fix a constant δ > 0 and define the functions U δ
0f, T δφnf : R→ L2(X,µ) by

(U δ
0f)(t) := lim

ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)e−δsS(s)f(t− r) drds,

(T δφnf)(t) :=

∫ ∞
0

∫ ∞
−∞

φn(r, s)e−δsS(s)f(t− r) drds,
(11.36)

where the φn are as in Lemma 11.8. Then

lim
n→∞

〈
g, T δφnf

〉
L2(R,L2(X,µ))

=
〈
g, U δ

0f
〉
L2(R,L2(X,µ))

. (11.37)

Proof. Choose a smooth cutoff function β : R → R such that β(s) = 0 for
s ≤ −t0/2 and β(s) = 1 for s ≥ 0. Define the functions a0, b0 : R→ C by

a0(r) :=

∫ ∞
−∞

g0(t)f0(t− r) dt, b0(s) := β(s)e−δs
∫
X

v0(S(t0 + s)u0) dµ

for r ∈ R and s ≥ −t0 and by b0(s) := 0 for s < −t0. Then a0 and b0 are
Schwartz test functions and hence so is the function v : R2 → C given by
v(r, s) := a0(r)b0(s). Moreover, it follows from (11.35) that〈

g, T δφnf
〉
L2(R,L2(X,µ))

=

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

φn(r, s)g0(t)f0(t− r)e−δs
∫
X

v0(S(t0 + s)u0) dµ drdsdt

=

∫ ∞
−∞

∫ ∞
−∞

φn(r, s)a0(r)b0(s) drds

for all n ∈ N. Here we have used the fact that φn(r, s) = 0 for s ≤ 0.
Similarly,〈

g, U δ
0f
〉
L2(R,L2(X,µ))

= lim
ε→0

∫ ∞
ε

∫ ∞
−∞

φ0(r, s)a0(r)b0(s) drds.

Thus (11.37) follows from (11.34) in Lemma 11.8 with v(r, s) = a0(r)b0(s).
This proves Lemma 11.9.
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The final preparatory lemma for the proof of Theorem 11.2 puts things
together and establishes the required Lq estimate for the operators Uiτ intro-
duced in Definition 11.3.

Lemma 11.10. For every real number 1 < q < ∞ there exists a constant
Cq > 0 such that, for all τ ∈ R and all f ∈ L2(R, L2(X,µ))∩Lq(R, Lq(X,µ)),(∫ ∞

−∞
‖(Uiτf)(t)‖qLq(X,µ) dt

)1/q

≤ Cq

(∫ ∞
−∞
‖f(t)‖qLq(X,µ) dt

)1/q

. (11.38)

Proof. The proof has two steps.

Step 1. The inequality (11.38) holds for τ = 0 with Cq = ‖T0‖L(Lq). Here
T0 is the linear operator introduced in Lemma 11.6.

Choose 1 < q′ <∞ such that 1/q + 1/q′ = 1. Assume first that f and g are
given by (11.35) with f0, g0 ∈ S (R), t0 > 0, v0 ∈ L2(X,µ) ∩ Lq′(X,µ), and
u0 ∈ Lq(X,µ) ∩

⋂
k∈N dom(Ak). Then〈

g, U δ
0f
〉
L2(R,L2(X,µ))

= lim
n→∞

〈
g, T δφnf

〉
L2(R,L2(X,µ))

≤ lim
n→∞

‖g‖Lq′ (R,Lq′ (X,µ))

∥∥T δφnf∥∥Lq(R,Lq(X,µ))

≤ lim
n→∞

Nq(φn) ‖g‖Lq′ (R,Lq′ (X,µ)) ‖f‖Lq(R,Lq(X,µ))

≤ ‖T0‖L(Lq) ‖g‖Lq′ (R,Lq′ (X,µ)) ‖f‖Lq(R,Lq(X,µ)) .

Here the first step follows from Lemma 11.9, the second step is Hölder’s
inequality, the third step follows from Lemma 11.7, and the last step follows
from (11.33) in Lemma 11.8. The estimate extends to linear combinations of
functions g as in (11.35). These form a dense subspace of Lq

′
(R, Lq′(X,µ)),

so this inequality continues to hold for all g ∈ Lq′(R, Lq′(X,µ)). Divide by
‖g‖Lq′ (R,Lq′ (X,µ)) and take the supremum over all nonzero g to obtain∥∥U δ

0f
∥∥
Lq(R,Lq(X,µ))

≤ ‖T0‖L(Lq) ‖f‖Lq(R,Lq(X,µ)) .

for f as in (11.35) and their linear combinations. Take the limit δ → 0. Then

‖U0f‖Lq(R,Lq(X,µ)) ≤ ‖T0‖L(Lq) ‖f‖Lq(R,Lq(X,µ)) . (11.39)

for all f as in (11.35), by Lemma 11.5. Now take the limit t0 → 0 in (11.35)
to obtain that (11.39) continues to hold for all f : R → Lq(R, Lq(X,µ)) of
the form f(t) = f0(t)u0, where f0 ∈ S (R) is a Schwartz test function and
u0 ∈ Lq(X,µ) ∩

⋂
k∈N dom(Ak), as well as their linear combinations. These

form a dense linear subspace of Lq(R, Lq(X,µ)), so (11.39) continues to hold
for all f ∈ L2(R, L2(X,µ)) ∩ Lq(R, Lq(X,µ)). This proves Step 1.
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Step 2. There exists a constant Cq > 0 such that the inequality (11.38) holds
for all τ ∈ R and all f ∈ L2(R, L2(X,µ)) ∩ Lq(R, Lq(X,µ)).

For all τ ∈ R we have

ρ(iτ, ξ) = |ξ|ei((1−iτ)θ0+iτθ1)sign(ξ)

= |ξ|eiθ0sign(ξ)e−τ(θ1−θ0)sign(ξ)

= ρ(0, e−τ(θ1−θ0)sign(ξ)ξ)

=

{
ρ(0, e−τ(θ1−θ0)ξ), if ξ ≥ 0,
ρ(0, eτ(θ1−θ0)ξ), if ξ < 0.

(see equation (11.11)). Thus it follows from the definition of the operator
Uiτ in equation (11.12) that

Ûiτf(ξ) = K̂(e−τ(θ1−θ0)ξ)f̂+(ξ) + K̂(eτ(θ1−θ0)ξ)f̂−(ξ) (11.40)

where K̂(ξ) = ρ(0, ξ)(ρ(0, ξ)− A)−1 as in the proof of Lemma 11.5, and

f̂+(ξ) :=

{
f̂(ξ), for ξ ≥ 0,
0, for ξ < 0,

f̂−(ξ) :=

{
0, for ξ ≥ 0,

f̂(ξ), for ξ < 0.

For λ > 0 consider the scaled operator U0,λ : Lq(R, Lq(X,µ)) defined by

U0,λf := (U0fλ)λ−1 , fλ(t) := λf(λt).

Then f̂λ(λξ) = f̂(ξ), hence

Û0,λf(ξ) = K̂(λξ)f̂(ξ),

and U0,λ has the same operator norm as U0 in L(Lq(R, Lq(X,µ))). Now
define the linear operators Π± : L2(R, L2(X,µ))→ L2(R, L2(X,µ)) by

Π̂±f := f̂±.

These extend to bounded linear operators from Lq(R, Lq(X,µ)) to itself, still
denoted by Π±, by Corollary 6.3 with m := χ[0,∞). The formula (11.40)
shows that

Uiτ = U0,e−τ(θ1−θ0)Π+ + U0,eτ(θ1−θ0)Π−

for all τ ∈ R. Hence

‖Uiτ‖L(Lq(R,Lq(X,µ))) ≤
(
‖Π+‖L(Lq(R,Lq(X,µ))) + ‖Π−‖L(Lq(R,Lq(X,µ)))

)
‖T0‖L(Lq)

by Step 1. This proves Step 2 and Lemma 11.10.
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Proof of Theorem 11.2. Fix a constant 1 < p <∞, and choose constants

0 < θ0 <
π

2
< θ1 < π, 0 < λ < 1, 1 < q <∞

such that

(1− λ)θ0 + λθ1 =
π

2
,

1

p
=

1− λ
q

+
λ

2
. (11.41)

For z ∈ S = {z ∈ C | 0 ≤ Re(z) ≤ 1} let

Uz : L2(R, L2(X,µ))→ L2(R, L2(X,µ))

be the operator introduced in equation (11.12) in Definition 11.3. By (11.13),

‖U1+iτ‖L(L2(R,L2(X,µ)) ≤
1

sin(θ1)

for all τ ∈ R and, by Lemma 11.10, there exists a constant Cq > 0 such that

‖Uiτ‖L(Lq(R,Lq(X,µ)) ≤ Cq

for all τ ∈ R. Since the operator family {Uz}z∈S is holomorphic, it satisfies the
hypotheses of the Stein Interpolation Theorem 3.3 with (Y,B, ν) = (X,A, µ)
and p0 = q0 = q and p1 = q1 = 2. Since 1/p = (1− λ)/q + λ/2 by (11.41), it
follows from Theorem 3.3 that

‖Uλf‖Lp(R,Lp(X,µ)) ≤ cp ‖f‖Lp(R,Lp(X,µ)) , cp :=
C1−λ
q

sin(θ1)λ
,

for every measurable step function f : R → L2(X,µ) ∩ Lp(X,µ) with com-
pact support, and hence also for every continuously differentiable function
f : R→ Lp(X,µ) with compact support. Since (1 − λ)θ0 + λθ1 = π/2,
by (11.41), it follows from Lemma 11.4 that

(Uλf)(t) = A

∫ t

0

S(t− s)f(s) ds+ f(t)

and hence(∫ ∞
0

∥∥∥∥A ∫ t

0

S(t− s)f(s) ds

∥∥∥∥p
Lp(X)

dt

)1/p

≤ Cp

(∫ ∞
0

‖f(t)‖pLp(X) dt

)1/p

for every continuously differentiable function f : R→ Lp(X,µ) with compact
support, where Cp := cp + 1. This proves Theorem 11.2.

Proof of Theorem 1.1. By Theorem 11.2 the assertion of Theorem 1.1 holds
for p = q. Hence it holds for all p and q by Theorem 9.3.
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12 Besov spaces

Throughout |h| denotes the Euclidean norm of h ∈ Rn, the closed ball in Rn

of radius r, centered at the origin, is denoted by

Br := {h ∈ Rn | |h| ≤ r} ,

and µ denotes the Lebesgue measure on Rn. For f ∈ Lp(Rn,Cm) and h ∈ Rn

define the functions ∆hf,∆
2
hf ∈ Lp(Rn,Cm) by

(∆hf)(x) := f(x+ h)− f(x),

(∆2
hf)(x) := f(x+ 2h)− 2f(x+ h) + f(x).

(12.1)

For f ∈ Lp(Rn,Cm) and r > 0 define

ω0(r, f)p :=

(
1

µ(Br)

∫
Br

‖∆hf‖pLp dh
)1/p

(12.2)

and

ω1(r, f)p := sup
|h|≤r
‖∆hf‖Lp , ω2(r, f)p := sup

|h|≤r

∥∥∆2
hf
∥∥
Lp
. (12.3)

Theorem 12.1. Fix integers n,m ∈ N and real numbers p, q ≥ 1, 0 < s < 1.
Then the following four norms on C∞0 (Rn,Cm) are equivalent:

‖f‖bs,pq,0 :=

(∫ ∞
0

(
ω0(r, f)p

rs

)q
dr

r

)1/q

, (12.4)

‖f‖bs,pq,1 :=

(∫ ∞
0

(
ω1(r, f)p

rs

)q
dr

r

)1/q

, (12.5)

‖f‖bs,pq,2 :=

(∫ ∞
0

(
ω2(r, f)p

rs

)q
dr

r

)1/q

, (12.6)

‖f‖bs,pq,3 :=

(∑
k∈Z

(
ω2(2k, f)p

2ks

)q)1/q

. (12.7)

The equivalence of the norms (12.6) and (12.7) continues to hold for 1 ≤
s < 2. All these equivalences extend to the case q = ∞ (where the Lq norm
with respect to the measure dr/r is replaced by the supremum).

Proof. See page 94.

91



Definition 12.2. Let n,m ∈ N and 1 ≤ p, q < ∞ and 0 < s < 2. The
completion of C∞0 (Rn,Cm) with respect to the norm in (12.6) is called the
homogeneous Besov space and is denoted by bs,pq (Rn,Cm). The comple-
tion of C∞0 (Rn,Cm) with respect to the norm

‖f‖Bs,pq,2 := ‖f‖Lp + ‖f‖bs,pq,2

is called the Besov space and is denoted by Bs,p
q (Rn,Cm). These spaces

were introduced in 1959 by Besov [3]. The definition extends to q =∞, with
the Lq-norm in (12.6) with respect to dr/r replaced by the supremum.

We emphasize that Definition 12.2 allows for s ≥ 1, while Theorem 12.1
is restricted to the case s < 1. The norms (12.4) and (12.5) are infinite for
nonconstant functions when s ≥ 1 and thus cannot be used directly to define
the Besov spaces Bs,p

q for s ≥ 1.

Lemma 12.3. Fix an integer n ∈ N and a real number p ≥ 1, and define
c := c(n, p) := 21/p + 21+(n+1)/p. Then, for all f ∈ Lp(Rn,Cm) and all r > 0,

ω0(r, f)p ≤ ω1(r, f)p ≤ cω0(r, f)p. (12.8)

Proof. The first inequality in (12.8) follows directly from the definitions. To
prove the second inequality, fix an element f ∈ Lp(Rn,Cm) and abbreviate
φ(r) := ω0(f, r)p for r > 0. Since ‖∆2hf‖Lp ≤ 2 ‖∆hf‖Lp for all h, we have

φ(2r)p =
1

µ(Br)

∫
Br

‖∆2hf‖pLp dh ≤
1

µ(Br)

∫
B2r

2p ‖∆hf‖pLp dh = 2pφ(r)p.

Now let r > 0 and suppose, by contradiction, that there is an element h0 ∈ Br

such that ‖∆h0f‖Lp > cφ(r). Define Ar := {h ∈ Br | ‖∆hf‖Lp ≤ 21/pφ(r)}.
Then ‖∆hf‖pLp > 2φ(r)p for all h ∈ Br \ Ar and so

µ(Br \ Ar)
µ(Br)

2φ(r)p <
1

µ(Br)

∫
Br\Ar

‖∆hf‖pLp dh

≤ 1

µ(Br)

∫
Br

‖∆hf‖pLp dh = φ(r)p.

Since φ(r) 6= 0, it follows that µ(Br\Ar) < µ(Br)/2 and so µ(Ar) > µ(Br)/2.
Moreover, for all h ∈ Ar,

‖∆h0−hf‖Lp ≥ ‖∆h0f‖Lp − ‖∆hf‖Lp >
(
c− 21/p

)
φ(r) = 21+(n+1)/pφ(r).
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Since h0 − Ar ⊂ B2r, it follows that

φ(2r)p ≥ 1

µ(B2r)

∫
h0−Ar

‖∆hf‖pLp dh

>
µ(Ar)

µ(B2r)
2p+n+1φ(r)p >

µ(Br)

µ(B2r)
2p+nφ(r)p = 2pφ(r)p,

contradicting to the inequality φ(2r) ≤ 2φ(r). This proves Lemma 12.3.

Lemma 12.4 (Marchaud inequality). Fix two integers n,m ∈ N and a
real number p ≥ 1. Then

ω1(r, f)p
r

≤ 2

∫ ∞
r

ω2(ρ, f)p
ρ2

dρ (12.9)

for all f ∈ Lp(Rn,Cm) and all r > 0.

Proof. Since ∆2
hf = ∆2hf − 2∆hf, we have∥∥∆hf − 2−1∆2hf

∥∥
Lp

= 2−1
∥∥∆2

hf
∥∥
Lp

for all h ∈ Rn. Replace h by 2kh to obtain∥∥2−k∆2khf − 2−k−1∆2k+1hf
∥∥
Lp

= 2−k−1
∥∥∆2

2khf
∥∥
Lp

for k ∈ Z and h ∈ Rn. Take the sum over k = 0, 1, . . . ,m− 1 to obtain∥∥∆hf − 2−m∆2mhf
∥∥
Lp
≤

m−1∑
k=0

2−k−1
∥∥∆2

2khf
∥∥
Lp

≤
m−1∑
k=0

2−k−1ω2(2kr, f)p)

= 2r
m−1∑
k=0

ω2(2kr, f)p
(2k+1r)2

2kr

≤ 2r

∫ 2mr

r

ω2(ρ, f)p
ρ2

dρ

for every h ∈ Rn with |h| ≤ r and every m ∈ N. This implies

ω1(r, f)p ≤ 2r

∫ 2mr

r

ω2(ρ, f)p
ρ2

dρ+ 2−mω1(2mr, f)p.

Take the limit m → ∞ and use the inequality ω1(2mr, f)p ≤ 2 ‖f‖Lp to
obtain the estimate (12.9). This proves Lemma 12.4.
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Proof of Theorem 12.1. By definition and Lemma 12.3, we have

1

µ(Br)

∫
Br

‖∆hf‖pLp dh ≤ ω1(r, f)pp ≤
cp

µ(Br)

∫
Br

‖∆hf‖pLp dh

with c := 21/p + 21+(n+1)/p. Hence

‖f‖bs,pq,0 ≤ ‖f‖bs,pq,1 ≤
(
21/p + 21+(n+1)/p

)
‖f‖bs,pq,0 .

This shows that the norms (12.4) and (12.5) are equivalent. Second, it follows
directly from equation (12.1) that ‖∆2

hf‖Lp ≤ 2 ‖∆hf‖Lp and hence

‖f‖bs,pq,2 ≤ 2 ‖f‖bs,pq,1 .

Third, the Hardy inequality asserts that every Lebesgue measurable function
φ : (0,∞)→ [0,∞) satisfies the inequality(∫ ∞

0

ra−1

(∫ ∞
r

φ(ρ) dρ

)q
dr

)1/q

≤ q

a

(∫ ∞
0

rq+a−1φ(r)q dr

)1/q

. (12.10)

for any two real numbers q ≥ 1 and a > 0 (see for example [33, Exercise 4.52]).
Apply this inequality with a := q(1− s) to the function φ(r) := r−2ω2(r, f)p
and use the Marchaud inequality

ω1(r, f)p ≤ 2r

∫ ∞
r

ω2(ρ, f)p
ρ2

dρ

in Lemma 12.4 to obtain the estimate

‖f‖bs,pq,1 =

(∫ ∞
0

r−sq−1ω1(r, f)qp dr

)1/q

≤ 2

(∫ ∞
0

rq(1−s)−1

(∫ ∞
r

ω2(ρ, f)p
ρ2

dρ

)q
dr

)1/q

≤ 2

1− s

(∫ ∞
0

rq+q(1−s)−1

(
ω2(r, f)p

r2

)q
dr

)1/q

=
2

1− s

(∫ ∞
0

r−qs−1ω2(r, f)qp dr

)1/q

=
2

1− s
‖f‖bs,pq,2 .

This shows that the norms (12.5) and (12.6) are equivalent.
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Now assume 0 < s < 2 and observe that∫ ∞
0

(
ω2(r, f)p

rs

)q
dr

r
=

∑
k∈Z

∫ 2k+1

2k

(
ω2(r, f)p

rs

)q
dr

r

≤
∑
k∈Z

2k sup
2k≤r≤2k+1

(
ω2(r, f)p

rs

)q
1

r

≤
∑
k∈Z

2k
(
ω2(2k+1, f)p

2ks

)q
1

2k

= 2qs
∑
k∈Z

(
2−ksω2(2k, f)p

)q
,

∑
k∈Z

(
2−ksω2(2k, f)p

)q
= 21+qs

∑
k∈Z

2k
(
ω2(2k, f)p

2(k+1)s

)q
1

2k+1

≤ 21+qs
∑
k∈Z

2k inf
2k≤r≤2k+1

(
ω2(r, f)p

rs

)q
1

r

≤ 21+qs
∑
k∈Z

∫ 2k+1

2k

(
ω2(r, f)p

rs

)q
dr

r

= 21+qs

∫ ∞
0

(
ω2(r, f)p

rs

)q
dr

r
.

Hence 2−s ‖f‖bs,pq,2 ≤ ‖f‖bs,pq,3 ≤ 2s+1/q ‖f‖bs,pq,2 , so the norms (12.6) and (12.7)

are equivalent. This proves Theorem 12.1.

Corollary 12.5. (i) If 1 ≤ q1 ≤ q2 ≤ ∞ then Bs,p
q1
⊂ Bs,p

q2
for all p and s.

(ii) If 0 < s1 < s2 < 2 then Bs2,p
q2
⊂ Bs1,p

q1
for all p, q1, q2.

Proof. Bs,p
q is the completion of C∞0 (Rn,Cm) with respect to the norm

‖f‖Bs,pq := ‖f‖Lp +

( ∞∑
k=0

(
2ksω2(2−k, f)p

)q)1/q

,

which is nondecreasing in s and nonincreasing in q. This implies (i) and
Bs2,p
q ⊂ Bs1,p

q for s1 < s2. Moreover, for 0 < s < s + ε < 2, we have∑∞
k=0 2ksω2(2−k, f)p ≤ cε supk∈N0

2k(s+εω2(2−k, f)p, where cε := 1/(1 − 2−ε).
If ε := s2 − s1, this yields ‖f‖Bs1,pq1

≤ ‖f‖Bs1,p1
≤ cε ‖f‖Bs2,p∞ ≤ cε ‖f‖Bs2,pq2

.

This proves Corollary 12.5.
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Definition 12.6. Let n ∈ N and fix real numbers p ≥ 1 and 0 < s < 1. The
completion of C∞0 (Rn,C) with respect to the norm

‖f‖ws,p :=

(∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dy dx

)1/p

(12.11)

is called the homogeneous Sobolev-Slobodeckij space and is denoted by
ws,p(Rn,C). The completion of C∞0 (Rn,C) with respect to the norm

‖f‖W s,p := ‖f‖Lp + ‖f‖ws,p

is called the Sobolev-Slobodeckij space and is denoted by W s,p(Rn,C).
These are refinements of the Sobolev spaces w1,p(Rn,C) and W 1,p(Rn,C) in
Definition 12.8 below. They were introduced in 1958 by Slobodeckij [34].

Lemma 12.7. Fix an integer n ∈ N and real numbers p ≥ 1 and 0 < s < 1.
Then, for every f ∈ C∞0 (Rn,C),

‖f‖bs,pp,0 =

(
1

(n+ sp)µ(B1)

)1/p

‖f‖ws,p .

Hence bs,pp (Rn,C) = ws,p(Rn,C) and Bs,p
p (Rn,C) = W s,p(Rn,C).

Proof. For x ∈ Rn and r > 0 define Sr(x) := {y ∈ Rn | |y − x| = r}. Then

‖f‖p
bs,pp,0

=

∫ ∞
0

1

rsp+1

∫
Rn

1

µ(Br)

∫
Br

|f(x)− f(x+ h)|p dh dx dr

=
1

µ(B1)

∫
Rn

∫ ∞
0

1

rn+sp+1

∫
Br(x)

|f(x)− f(y)|p dy dr dx

=
1

µ(B1)

∫
Rn

∫ ∞
0

∫ r

0

1

rn+sp+1

∫
Sρ(x)

|f(x)− f(y)|p dS(y) dρ dr dx

=
1

µ(B1)

∫
Rn

∫ ∞
0

∫ ∞
ρ

dr

rn+sp+1

∫
Sρ(x)

|f(x)− f(y)|p dS(y) dρ dx

=
1

(n+ sp)µ(B1)

∫
Rn

∫ ∞
0

1

ρn+sp

∫
Sρ(x)

|f(x)− f(y)|p dS(y) dρ dx

=
1

(n+ sp)µ(B1)

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dy dx

=
1

(n+ sp)µ(B1)
‖f‖pws,p .

This proves Lemma 12.7.
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Definition 12.8. Fix an integer n ∈ N and a real number p ≥ 1. The
completion of C∞0 (Rn,C) with respect to the norm

‖∇f‖Lp =

(∫
Rn
|∇f(x)|p dx

)1/p

(12.12)

is called the homogeneous Sobolev space and is denoted by w1,p(Rn,C).
The completion of C∞0 (Rn,C) with respect to the norm

‖f‖W 1,p := ‖f‖Lp + ‖∇f‖Lp
is called the Sobolev space and is denoted by W 1,p(Rn,C).

Lemma 12.9. Fix an integer n ∈ N and a real number p ≥ 1. Then every
function f ∈ C∞0 (Rn,C) satisfies the inequalities

sup
r>0

ω1(r, f)p
r

≤ ‖∇f‖Lp ≤ n lim inf
r→0

ω1(r, f)p
r

(12.13)

and
1

2
sup
r>0

ω2(r, f)p
r

≤ ‖∇f‖Lp ≤ 2n

∫ ∞
0

ω2(r, f)p
r2

dr. (12.14)

Hence

b1,p
1 (Rn,C) ⊂ w1,p(Rn,C) ⊂ b1,p

∞ (Rn,C),

B1,p
1 (Rn,C) ⊂ W 1,p(Rn,C) ⊂ B1,p

∞ (Rn,C).
(12.15)

Proof. The inequalities in (12.14) follow from (12.13) by Marchaud’s in-
equality (12.9) in Lemma 12.4, and because ω2(r, f)p ≤ 2ω1(r, f)p. To
prove (12.13), abbreviate 〈∇f(x), h〉 :=

∑n
i=1 ∂if(x)hi for x, h ∈ Rn. Then,

by the fundamental theorem of calculus, (∆hf)(x) =
∫ 1

0
〈∇f(x+ th), h〉 dt

and hence

|(∆hf)(x)| ≤ |h|
∫ 1

0

|∇f(x+ th)| dt. (12.16)

By Minkowsky’s inequality (e.g. [33, Theorem 7.19]), this implies

‖∆hf‖Lp ≤ |h|
(∫

Rn

(∫ 1

0

|∇f(x+ th)| dt
)p

dx

)1/p

≤ |h|
∫ 1

0

(∫
Rn
|∇f(x+ th)|p dx

)1/p

dt

= |h| ‖∇f‖Lp .

(12.17)

Take the supremum over all h ∈ Br to obtain ω1(r, f)p ≤ r ‖∇f‖Lp for all
r > 0. This proves the first inequality in (12.13).
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Next we observe that

f(x+ h)− f(x)− 〈∇f(x), h〉 =

∫ 1

0

〈∇f(x+ th)−∇f(x), h〉 dt

and hence

|(∆hf)(x)− 〈∇f(x), h〉| ≤ |h|
∫ 1

0

|∇f(x+ th)−∇f(x)| dt

for all x, h ∈ Rn. Fix h ∈ Rn, integrate the pth power of this inequality, and
use Minkowsky’s inequality, to obtain

‖∆hf − 〈∇f, h〉‖Lp ≤ |h|
(∫

Rn

(∫ 1

0

|∇f(x+ th)−∇f(x)| dt
)p

dx

)1/p

≤ |h|
∫ 1

0

(∫
Rn
|∇f(x+ th)−∇f(x)|p dx

)1/p

dt

= |h|
∫ 1

0

‖∆th∇f‖Lp dt.

For r > 0 and h ∈ Rn with |h| ≤ r this implies

‖〈∇f, h〉‖Lp ≤ ‖∆hf‖Lp + |h|
∫ 1

0

‖∆th∇f‖Lp dt ≤ ω1(r, f)p + rω1(r,∇f)p.

Take h := rei to obtain

‖∂if‖Lp ≤
ω1(r, f)p

r
+ ω1(r,∇f)p

and hence

‖∂if‖Lp ≤ inf
0<ρ≤r

(
ω1(ρ, f)p

ρ
+ ω1(ρ,∇f)p

)
for all r > 0. Take the limit r → 0 and use the fact that limr→0 ω1(r,∇f)p = 0
to obtain

‖∂if‖Lp ≤ lim inf
r→0

ω1(r, f)p
r

for i = 1, . . . , n.

Hence

‖∇f‖Lp ≤
n∑
i=1

‖∂if‖Lp ≤ n lim inf
r→0

ω1(r, f)p
r

.

This proves the second inequality in (12.13) and Lemma 12.9.

Remark 12.10. The second inequality in (12.13) implies that the right hand
side of (12.5) is infinite for s ≥ 1 unless f is constant. In contrast, equa-
tion (12.6) still defines a meaningful norm for 1 ≤ s < 2.
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13 Besov, Littlewood–Paley, Peetre, Triebel

This section is devoted to the Littlewood–Paley characterization of the Besov
spaces (Theorem 13.5). The starting point is the choice of a suitable smooth
function φ : Rn → R in the Schwartz space. The crucial point is that the
characterization of the Besov space in Theorem 13.5 is independent of the
choice of the function φ, as long as it satisfies the conditions (13.1) and (13.2)
below. The connection between Besov spaces and Littlewood–Paley theory
was first noted by Peetre [31].

Definition 13.1. Fix an integer n ∈ N and a smooth function φ : Rn → R
in the Schwartz space S (Rn). Assume

φ(x) = φ(−x) for all x ∈ Rn, (13.1)

so that the Fourier transform

φ̂(ξ) :=

∫
Rn
e−i〈x,ξ〉φ(x) dx

is real valued and satisfies

φ̂(ξ) = φ̂(−ξ) for all ξ ∈ Rn.

The function φ is called a Triebel function if there is a 0 < δ ≤ 1/2 such
that

φ̂(ξ) > 0, for 1/
√

2 ≤ |ξ| ≤
√

2,

φ̂(ξ) ≥ 0, for 1/2 ≤ |ξ| ≤ 2,

φ̂(ξ) = 0, for |ξ| /∈ [δ, 1/δ].

(13.2)

It follows from (13.1) and (13.2) that∫
Rn
φ(x) dx = 0,

∫
Rn
xiφ(x) dx = 0 for i = 1, . . . , n. (13.3)

In particular, every Littlewood-Paley function is a Triebel function (see Def-
inition 8.1).

Lemma 13.2. (i) If φ, ψ : Rn → R are Triebel functions then so is φ ∗ ψ.

(ii) For every Triebel function φ : Rn → R there exists a Triebel function

ψ : Rn → R such that supp(ψ̂) ⊂ {ξ ∈ Rn | 1/2 ≤ |ξ| ≤ 2} and φ ∗ ψ is a
Littlewood–Paley function.
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Proof. Part (i) follows directly from the definition and the fact that the

Fourier transform of the convolution φ ∗ ψ is the product φ̂ψ̂ of the Fourier
transforms. To prove (ii) fix a Triebel function φ : Rn → R. Then there

exists a constant
√

2 < α < 2 such that φ̂(ξ) > 0 for all ξ ∈ Rn such that
1/α ≤ |ξ| ≤ α. Choose a smooth function β : [1, 2]→ [0, 1] such that

β(r) = 1, for 1 ≤ r ≤ 2/α,

β(r) > 0, for 2/α ≤ r ≤
√

2,

β(r) < 1, for
√

2 ≤ r ≤ α,
β(r) = 0, for α ≤ r ≤ 2,

and extend it to [0,∞) by setting β(r) := 0 for r ∈ [0, 1/2] ∪ [2,∞) and

β(r) := 1− β(2r) for 1/2 ≤ r ≤ 1.

Then supp(β) ⊂ [1/α, α] and β(r) > 0 for 1/
√

2 ≤ r ≤
√

2.
Now let ψ : Rn → C be the unique function in the Schwartz space

S (Rn,C) whose Fourier transform is given by

ψ̂(ξ) =

{
β(|ξ|)/φ̂(ξ), if 1/α ≤ |ξ| ≤ α,
0, otherwise.

Then ψ̂ is a real valued function and ψ̂(ξ) = ψ̂(−ξ) ≥ 0 for all ξ ∈ Rn.
Hence ψ is real valued and

ψ(x) = ψ(−x) for all x ∈ Rn.

Second,

supp(ψ̂) ⊂ {ξ ∈ Rn | 1/α ≤ |ξ| ≤ α} ⊂ {ξ ∈ Rn | 1/2 ≤ |ξ| ≤ 2}

and

ψ̂(ξ) = β(|ξ|)/φ̂(ξ) > 0 for all ξ ∈ Rn such that 1/
√

2 ≤ |ξ| ≤
√

2.

Hence ψ is a Triebel function. Third,

φ̂(ξ/2)ψ̂(ξ/2) + φ̂(ξ)ψ̂(ξ) = β(|ξ|/2) + β(|ξ|) = 1

for all ξ ∈ Rn with 1 ≤ |ξ| ≤ 2 and so φ ∗ ψ is a Littlewood–Paley function.
This proves Lemma 13.2.
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Definition 13.3 (Peetre Maximal Functions).
Let n ∈ N and let φ : Rn → R be a Triebel function. For k ∈ Z and t > 0
define the functions φk, ϕt : Rn → R by

φk(x) := 2knφ(2kx), ϕt(x) = t−nφ(t−1x) for x ∈ Rn. (13.4)

Thus φ̂k(ξ) = φ̂(2−kξ) and ϕ̂t(ξ) = φ̂(tξ) for all ξ ∈ Rn and

supp(φ̂k) ⊂ {ξ ∈ Rn | δ2k ≤ |ξ| ≤ 2k/δ},
supp(ϕ̂t) ⊂ {ξ ∈ Rn | δ/t ≤ |ξ| ≤ 1/δt},

where δ > 0 is as in (13.2). Now fix a real number λ > 0. For f ∈ C∞0 (Rn,C)
denote by φk ∗ f and ϕt ∗ f the convolution and define the Peetre maximal
functions φ∗k,λf, ϕ

∗
t,λf : Rn → [0,∞) by

(φ∗k,λf)(x) := sup
z∈Rn

|(φk ∗ f)(x+ z)|
(1 + 2k|z|)λ

,

(ϕ∗t,λf)(x) := sup
z∈Rn

|(ϕt ∗ f)(x+ z)|
(1 + |z|/t)λ

.

(13.5)

for x ∈ Rn, k ∈ Z, and t > 0.

Lemma 13.4. Let n ∈ N and λ > 0 and let φ : Rn → R be a Triebel function.
Then the following holds.

(i) The Peetre maximal functions satisfy the inequalities

(φ∗k,λf)(x+ y) ≤ (1 + 2k|y|)λ(φ∗k,λf)(x),

(ϕ∗t,λf)(x+ y) ≤ (1 + |y|/t)λ(ϕ∗t,λf)(x)
(13.6)

for all k ∈ Z, t > 0, x, y ∈ Rn, and f ∈ C∞0 (Rn,C).

(ii) For every ` ∈ N0 there exists a constant c = c(n, `, λ, φ) > 0 such that∑
|α|≤`

|∂α(φk ∗ f)(x)| ≤ c2k` sup
z∈Rn

|f(x+ z)|
(1 + 2k|z|)λ

,

∑
|α|≤`

|∂α(ϕt ∗ f)(x)| ≤ ct−` sup
z∈Rn

|f(x+ z)|
(1 + |z|/t)λ

(13.7)

for all k ∈ Z, t > 0, x ∈ Rn, and f ∈ C∞0 (Rn,C). Here the sum runs over
all multi-indices α = (α1, . . . , αn) ∈ Nn

0 such that |α| = α1 + · · ·+ αn ≤ `.
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Proof. For all t > 0 and all x, y, z ∈ Rn, we have

1

1 + |z − x− y|/t
≤ 1 + |y|/t

1 + |z − x|/t
.

Hence

(ϕ∗t,λf)(x+ y) = sup
z∈Rn

|(ϕt ∗ f)(z)|
(1 + |z − x− y|/t)λ

≤ (1 + |y|/t)λ sup
z∈Rn

|(ϕt ∗ f)(z)|
(1 + |z − x|/t)λ

= (1 + |y|/t)λ(ϕ∗t,λf)(x).

This proves the second inequality in (13.6). The first inequality follows by
taking t := 2−k. This proves part (i).

To prove part (ii), define the constant cα := cα(n, λ, φ) by

cα :=

∫
Rn

(1 + |y|)λ |∂αφ(y)| dy

for every multi-index α ∈ Nn
0 . This number is finite because the function

φ and all its derivatives belong to the Schwartz space S (Rn). Now fix a
number t > 0. Since ϕt(x) = t−nφ(t−1x) for all x ∈ Rn, we have

(ϕt ∗ f)(x) =

∫
Rn
φ(t−1x− y)f(ty) dy,

∂α(ϕt ∗ f)(x) = t−|α|
∫
Rn

(∂αφ)(z)f(x− tz) dz.

Hence

|∂α(ϕt ∗ f)(x)| = t−|α|
∣∣∣∣∫

Rn
(∂αφ)(z)f(x− tz) dz

∣∣∣∣
= t−|α|

∣∣∣∣∫
Rn

(1 + |z|)λ(∂αφ)(z)
f(x− tz)

(1 + |z|)λ
dz

∣∣∣∣
≤ t−|α|

∫
Rn

(1 + |z|)λ |(∂αφ)(z)| |f(x− tz)|
(1 + |z|)λ

dz

≤ cαt
−|α| sup

z∈Rn

|f(x− tz)|
(1 + |z|)λ

≤ cαt
−|α| sup

z∈Rn

|f(x+ z)|
(1 + |z|/t)λ

.
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This proves the second inequality in (13.7) with

c = c(n, `, λ, φ) :=
∑
|α|≤`

cα(n, λ, φ).

The first inequality follows by taking t = 2−k. This proves Lemma 13.4.

The next theorem is the main result of this section. It is stated in this
form in Ullrich [40, Theorem 2.9]. The proof given below is based on the
proof in [40] of the analogous, but technically more difficult, result about
the (in)homogeneous Triebel–Lizorkin spaces, and on the paper by Besov [4]
about weighted Besov and Triebel–Lizorkin spaces.

Theorem 13.5 (Peetre/Triebel). Fix an integer n ∈ N and real numbers
p, q ≥ 1, s ≥ 0, and λ > n/p.

(i) Let φ : Rn → R be a Triebel function, so it satisfies (13.1) and (13.2). For
k ∈ Z and t > 0 define the Peetre maximal functions φk,λ and ϕt,λ by (13.4).
Then the formulas

‖f‖bs,pq,4 := ‖f‖bs,pq,4;φ :=

(
∞∑

k=−∞

(
2ks ‖φk ∗ f‖Lp

)q)1/q

, (13.8)

‖f‖bs,pq,5 := ‖f‖bs,pq,5;φ,λ :=

(
∞∑

k=−∞

(
2ks
∥∥φ∗k,λf∥∥Lp)q

)1/q

, (13.9)

‖f‖bs,pq,6 := ‖f‖bs,pq,6;φ :=

(∫ ∞
0

(
‖ϕt ∗ f‖Lp

ts

)q
dt

t

)1/q

, (13.10)

‖f‖bs,pq,7 := ‖f‖bs,pq,7;φ,λ :=

(∫ ∞
0

(∥∥ϕ∗t,λf∥∥Lp
ts

)q
dt

t

)1/q

(13.11)

(for f ∈ C∞0 (Rn,C)) define equivalent norms on C∞0 (Rn,C). The equivalence
class of these norms is independent of the choice of the Triebel function φ.

(ii) Assume p > 1 and 0 < s < 2. Then the norms in part (i) are equivalent
to the norm ‖·‖bs,pq,2 in (12.6).

Proof. The proof has six steps. The first four steps prove part (i) and the
last two steps prove part (ii). Throughout n ∈ N is fixed.
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Step 1 (Peetre). Let φ : Rn → R be a Triebel function and let s ≥ 0,
p, q ≥ 1, and λ > n/p. Then there exists a constant c = c(s, p, q, φ, λ) > 0
such that

‖f‖bs,pq,4;φ ≤ ‖f‖bs,pq,5;φ,λ ≤ c ‖f‖bs,pq,4;φ
for all f ∈ C∞0 (Rn).

It follows directly from the definitions that |(φk ∗ f)(x)| ≤ (φ∗k,λf)(x) for all
x ∈ Rn all f ∈ C∞0 (Rn), and all λ > 0. This proves the first inequality. The
second inequality in Step 3 is a theorem of Peetre [30]. The proof below fol-
lows the argument in Ullrich [40, Step 1] with the appropriate modifications.

Let 0 < δ ≤ 1/2 be as in (13.2) and choose m ∈ N such that 2−m < δ.
We prove that, for each λ > 0, there is a c = c(n, p, λ, φ) > 0 such that

|(φk ∗ f)(x)|p ≤ cp
m∑

j=−m

∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy (13.12)

for all k ∈ N, x ∈ Rn, and f ∈ C∞0 (Rn). Choose a Triebel function ψ such
that ψ ∗ φ is a Littlewood–Paley function (Lemma 13.2). Then

m∑
j=−m

ψ̂j(ξ)φ̂j(ξ) =
m∑

j=−m

ψ̂(2−jξ)φ̂(2−jξ) = 1 for 2−m ≤ |ξ| ≤ 2m.

This implies
∑m

j=−m ψ̂jφ̂jφ̂ = φ̂, hence
∑m

j=−m ψj ∗ φj ∗ φ = φ, and hence

m∑
j=−m

ψj+k ∗ φj+k ∗ φk = φk for all k ∈ Z.

Define r := (n+ 1)(1− 1/p). Then, for all f ∈ C∞0 (Rn), x ∈ Rn, k ∈ Z,

|(φk ∗ f)(x)| ≤
m∑

j=−m

|(ψj+k ∗ φj+k ∗ φk ∗ f)(x)|

≤
m∑

j=−m

∫
Rn
|(ψj+k ∗ φk)(x− y)| |(φj+k ∗ f)(y)| dy

≤
m∑

j=−m

cj,k,n,p,λ

∫
Rn

|(φj+k ∗ f)(y)|
(1 + 2k|x− y|)λ+r

dy,

where cj,k,n,p,λ := supz∈Rn(1 + 2k|z|)λ+r |(ψj+k ∗ φk)(z)| .
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We estimate the constant cj,k,n,p,λ. For x ∈ Rn and |j| ≤ m,

(1 + |z|)λ+r
∣∣(ψj+k ∗ φk)(2−kz)

∣∣
≤ (1 + |z|)λ+r

∫
Rn

∣∣ψj+k(2−kz − y)
∣∣ |φk(y)| dy

= (1 + |z|)λ+r2kn
∫
Rn

∣∣ψ(2jz − y))
∣∣ |φ(2−jy)| dy

≤ Cn,p,λ2
kn

∫
Rn

(1 + |z|)λ+r

(1 + |2jz − y|)λ+r(1 + 2−j|y|)n+1+λ+r
dy

≤ Cn,p,λ2
kn

∫
Rn

2m(n+1+2λ+2r)(1 + |2jz|)λ+r

(1 + |2jz − y|)λ+r(1 + |y|)n+1+λ+r
dy

≤ Cn,p,λ2
m(n+1+2λ+2r)2kn

∫
Rn

1

(1 + |y|)n+1
dy.

Here Cn,p,λ > 0 has been chosen such that |φ(y)| ≤
√
Cn,p,λ(1 + |y|)−n−1−λ−r

and |ψ(y)| ≤
√
Cn,p,λ(1 + |y|)−λ−r for all y ∈ Rn. Now take the supremum

over all z ∈ Rn to obtain the inequality

cj,k,n,p,λ ≤ C2kn, C := Cn,p,λ2
m(n+1+2λ+2r)

∫
Rn

1

(1 + |y|)n+1
dy.

Thus we have proved the estimate

|(φk ∗ f)(x)| ≤ C
m∑

j=−m

∫
Rn

2kn |(φj+k ∗ f)(y)|
(1 + 2k|x− y|)λ+r

dy (13.13)

for all k ∈ N, x ∈ Rn, and f ∈ C∞0 (Rn). If p = 1 then r = 0 and so (13.13) is
equivalent to (13.12). For p > 1 use Hölder’s inequality with the exponents
p, p′ such that 1/p+ 1/p′ = 1 to obtain rp′ = n+ 1 and∫

Rn

2kn |(φj+k ∗ f)(y)|
(1 + 2k|x− y|)λ+r

dy

≤
(∫

Rn

2kn

(1 + |2ky|)rp′
dy

)1/p′ (∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy

)1/p

=

(∫
Rn

1

(1 + |y|)n+1
dy

)1−1/p(∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy

)1/p

.

Hence (13.12) holds with c := C(
∫
Rn(1 + |y|)−n−1 dy)1−1/p(2m+ 1)1−1/p.
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Thus we have proved the estimate (13.12). This implies

|(φk ∗ f)(x+ z)|p

(1 + 2k|z|)λp
≤ cp

m∑
j=−m

∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|z|)λp(1 + 2k|x+ z − y|)λp
dy

≤ cp
m∑

j=−m

∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy.

Take the supremum over all z ∈ Rn to obtain the inequality

(φ∗k,λf)(x)p ≤ cp
m∑

j=−m

∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy (13.14)

for all x ∈ Rn, k ∈ Z, and f ∈ C∞0 (Rn). Assume λp > n, integrate over Rn,
and use Fubini’s Theorem to obtain∫

Rn

∫
Rn

2kn |(φj+k ∗ f)(y)|p

(1 + 2k|x− y|)λp
dy dx =

∫
Rn

∫
Rn

∣∣2kn(φj+k ∗ f)(y)
∣∣p

(1 + 2k|x− y|)λp
dx dy

=

∫
Rn

2kn

(1 + |2kx|)λp
dx ‖φj+k ∗ f‖pLp

=

∫
Rn

1

(1 + |x|)λp
dx ‖φj+k ∗ f‖pLp .

Hence it follows from (13.14) that∥∥φ∗k,λf∥∥Lp ≤ c

(∫
Rn

1

(1 + |x|)λp
dx

)1/p m∑
j=−m

‖φj+k ∗ f‖Lp , (13.15)

where c is the constant in (13.12). Let c′ := c(
∫
Rn(1 + |x|)−λp dx)1/p. Then

‖f‖bs,pq,5;φ,λ =

(
∞∑

k=−∞

(
2ks
∥∥φ∗k,λf∥∥Lp)q

)1/q

≤ c′

(
∞∑

k=−∞

(
2ks

m∑
j=−m

‖φj+k ∗ f‖Lp

)q)1/q

≤ 2msc′
m∑

j=−m

(
∞∑

k=−∞

(
2(j+k)s ‖φj+k ∗ f‖Lp

)q)1/q

= 2msc′(2m+ 1) ‖f‖bs,pq,4;φ
This proves Step 1.

106



Step 2 (Peetre). Let φ : Rn → R be a Triebel function and let s ≥ 0,
p, q ≥ 1, and λ > n/p. Then there exists a constant c = c(s, p, q, φ, λ) > 0
such that

‖f‖bs,pq,6;φ ≤ ‖f‖bs,pq,7;φ,λ ≤ c ‖f‖bs,pq,6;φ
for all f ∈ C∞0 (Rn).

This is the continuous time analogue of Step 1 and is proved by the same
arguments. First choose m ∈ N such that 2−m ≤ δ. Then, for each p > 1
and each λ > 0, there is a constant c = c(n, p, λ, φ) > 0, such that

|(ϕt ∗ f)(x)|p ≤ cp
m∑

k=−m

∫
Rn

t−n |(ϕ2kt ∗ f)(y)|p

(1 + |x− y|/t)λp
dy (13.16)

for all t > 0, x ∈ Rn, f ∈ C∞0 (Rn). This is proved by the same argument
as (13.12), with 2k replaced by t−1. As before, the estimate (13.16) implies

(ϕ∗t,λf)(x)p ≤ cp
m∑

j=−m

∫
Rn

t−n |(ϕ2jt ∗ f)(y)|p

(1 + |x− y|/t)λp
dy (13.17)

and, for λp > n, Fubini’s Theorem gives∫
Rn

∫
Rn

t−n |(ϕ2jt ∗ f)(y)|p

(1 + |x− y|/t)λp
dy dx =

∫
Rn

1

(1 + |x|)λp
dx ‖ϕ2jt ∗ f‖pLp .

Hence it follows from (13.17) that

∥∥ϕ∗t,λf∥∥Lp ≤ c′
m∑

j=−m

‖ϕ2jt ∗ f‖Lp , (13.18)

where c′ := c(
∫
Rn(1 + |x|)−λp dx)1/p, and so

‖f‖bs,pq,7;φ,λ =

(∫ ∞
0

(
t−s
∥∥ϕ∗t,λf∥∥Lp)q dtt

)1/q

≤ c′

(∫ ∞
0

(
t−s

m∑
j=−m

‖ϕ2jt ∗ f‖Lp
)q dt

t

)1/q

= 2msc′(2m+ 1) ‖f‖bs,pq,6;φ .

This proves Step 2.
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Step 3. Let φ, ψ : Rn → R be Triebel functions and let s ≥ 0 and p, q ≥ 1.
Then there exists a constant c = c(s, p, q, φ) > 0 such that

‖f‖bs,pq,6;φ ≤ c ‖f‖bs,pq,4;ψ

for all f ∈ C∞0 (Rn).

Choose δ > 0 such that

supp(φ̂) ⊂ {ξ ∈ Rn | δ ≤ |ξ| ≤ 1/δ}

as in (13.2) and choose m ∈ N such that 2−m ≤ δ/2. Choose a Triebel func-
tion θ such that ψ ∗ θ is a Littlewood–Paley function (Lemma 13.2). Then

m∑
j=−m

θ̂j+k(ξ)ψ̂j+k(ξ) =
m∑

j=−m

θ̂(2−j−kξ)ψ̂(2−j−kξ) = 1

for 2k−1δ ≤ |ξ| ≤ 2k+1/δ. Since

supp(ϕ̂2−kt) ⊂ {ξ ∈ Rn | 2k−1δ ≤ |ξ| ≤ 2k/δ}

for 1 ≤ t ≤ 2 and k ∈ Z, this implies

m∑
j=−m

ϕ̂2−ktθ̂j+kψ̂j+k = ϕ̂2−kt

and so

m∑
j=−m

ϕ2−kt ∗ θj+k ∗ ψj+k = ϕ2−kt for 1 ≤ t ≤ 2 and k ∈ Z. (13.19)

Hence, by Young’s inequality,

‖ϕ2−kt ∗ f‖Lp ≤
m∑

j=−m

‖ϕ2−kt ∗ θj+k ∗ ψj+k ∗ f‖Lp

≤ ‖φ‖L1 ‖θ‖L1

m∑
j=−m

‖ψj+k ∗ f‖Lp

for all k ∈ Z, 1 ≤ t < 2, and f ∈ C∞0 (Rn).
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This implies

‖f‖bs,pq,6;φ =

(
∞∑

k=−∞

∫ 2

1

(
‖ϕ2−kt ∗ f‖Lp

(2−kt)s

)q
dt

t

)1/q

≤

(
∞∑

k=−∞

(
2ks sup

1≤t≤2
‖ϕ2−kt ∗ f‖Lp

)q)1/q

≤ ‖φ‖L1 ‖θ‖L1

(
∞∑

k=−∞

(
2ks

m∑
j=−m

‖ψj+k ∗ f‖Lp
)q)1/q

≤ ‖φ‖L1 ‖θ‖L1

m∑
j=−m

(
∞∑

k=−∞

(
2ks ‖ψj+k ∗ f‖Lp

)q)1/q

≤ 2ms(2m+ 1) ‖φ‖L1 ‖θ‖L1 ‖f‖bs,pq,4;ψ .

This proves Step 3.

Step 4. Let φ, ψ : Rn → R be Triebel functions and let s ≥ 0 and p, q ≥ 1.
Then there exists a constant c = c(s, p, q, φ) > 0 such that

‖f‖bs,pq,4;ψ ≤ c ‖f‖bs,pq,6;φ

for all f ∈ C∞0 (Rn).

The proof is an adaptation of the argument in Ullrich [40, Substep 2.1].

Choose δ > 0 such that supp(ψ̂) ⊂ {ξ ∈ Rn | δ ≤ |ξ| ≤ 1/δ} as in (13.2) and
choose m ∈ N such that 2−m ≤ δ/2. Choose a Triebel function θ such that
θ ∗ φ is a Littlewood–Paley function (Lemma 13.2). Then

m∑
j=−m

ψ̂j+k(tξ)θ̂j+k(tξ)ϕ̂2−j−kt(ξ) =
m∑

j=−m

ψ̂(2−j−ktξ)θ̂(2−j−ktξ)φ̂(2−j−ktξ) = 1

for 2−m ≤ 2−kt|ξ| ≤ 2m or, equivalently, for 2k−m/t ≤ |ξ| ≤ 2k+m/t. Since

supp(ψ̂k) ⊂ {ξ ∈ Rn | 2k−m+1 ≤ |ξ| ≤ 2k+m−1}, this implies

ψ̂k(ξ) =
2∑

j=−2

ψ̂k(ξ)ψ̂k+j(tξ)θ̂k+j(tξ)ϕ̂2−j−kt(ξ) (13.20)

for all k ∈ Z, 1 ≤ t ≤ 2, and ξ ∈ Rn.
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For t > 0 let us temporarily define the function Ψt : Rn → R by

Ψt(x) := t−n(ψ + θ)(t−1x) for x ∈ Rn,

so its Fourier transform is ξ 7→ ψ̂(tξ)θ̂(tξ) and its L1 norm agrees with that
of ψ ∗ θ. Then, by (13.20),

ψk =
2∑

j=−2

ψk ∗Ψ2−j−kt ∗ ϕ2−j−kt for k ∈ Z and 1 ≤ t ≤ 2.

By Young’s inequality, this implies

‖ψk ∗ f‖Lp ≤ ‖ψ ∗ θ‖
2
L1

2∑
j=−2

‖ϕ2−j−kt ∗ f‖Lp

≤ 23s ‖ψ ∗ θ‖2
L1

2∑
j=−2

‖ϕ2−j−kt ∗ f‖Lp
(2−jt)s

for k ∈ Z, 1 ≤ t ≤ 2, and f ∈ C∞0 (Rn,C). Exponentiate by q and integrate
the resulting inequality over the interval 1 ≤ t ≤ 2 to obtain(

2ks ‖ψk ∗ f‖Lp
)q
≤ 23qs+1 ‖ψ ∗ θ‖2q

L1

∫ 2

1

(
2∑

j=−2

‖ϕ2−j−kt ∗ f‖Lp
(2−j−kt)s

)q

dt

t

for all k ∈ Z and all f ∈ C∞0 (Rn,C). With this understood, it follows from
the definition of the norms that

‖f‖bs,pq,4;ψ =

(
∞∑

k=−∞

(
2ks ‖ψk ∗ f‖Lp

)q)1/q

≤ 23s+1/q ‖ψ ∗ θ‖2
L1

(
∞∑

k=−∞

∫ 2

1

(
2∑

j=−2

‖ϕ2−j−kt ∗ f‖Lp
(2−j−kt)s

)q

dt

t

)1/q

≤ 23s+1/q ‖ψ ∗ θ‖2
L1

2∑
j=−2

(
∞∑

k=−∞

∫ 2

1

(
‖ϕ2−j−kt ∗ f‖Lp

(2−j−kt)s

)q
dt

t

)1/q

= 23s+1/q ‖ψ ∗ θ‖2
L1 5

(∫ ∞
0

(
‖ϕt ∗ f‖Lp

ts

)q
dt

t

)1/q

= 23s+1/q ‖ψ ∗ θ‖2
L1 5 ‖f‖bs,pq,6;φ .

This proves Step 4 and part (i) of Theorem 13.5.
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Step 5. Let φ : Rn → R be a Triebel function and let 0 < s < 2, p > 1, and
q ≥ 1. Then there exists a constant c = c(s, p, q, φ) > 0 such that

‖f‖bs,pq,4;φ ≤ c ‖f‖bs,pq,2

for all f ∈ C∞0 (Rn).

The proof follows the argument in [4, Section 5]. Since φ is a Triebel function,
its Fourier transform satisfies (13.2) for some constant 0 < δ ≤ 1/2. Choose
a function θ : Rn → R in the Schwartz space S (Rn) such that θ(x) = θ(−x)
for all x ∈ Rn and

θ̂(ξ) =

{
1, if |ξ| ≤ δ/2,
0, if |ξ| ≥ δ.

For k ∈ Z define θk(x) := 2knθ(2kx) so that θ̂k(ξ) = θ(2−kξ) and define the
function fk : Rn → R by

fk(x) := f(x)−
∫
Rn
θ(y)∆2

2−kyf(x) dy

= f(x)−
∫
Rn
θ(y)

(
f(x)− 2f(x− 2−ky) + f(x− 21−ky)

)
dy

= 2(θk ∗ f)(x)− (θk−1 ∗ f)(x).

(13.21)

Here the second equation uses the fact that θ(y) = θ(−y) for all y ∈ Rn and

the last equation uses the identity
∫
Rn θ = θ̂(0) = 1. Since p > 1, it follows

from equation (13.21) and Lemma 8.4 that

f = lim
N→∞

(fN+1 − f−N) = lim
N→∞

N∑
j=−N

(fj+1 − fj) =
∞∑

j=−∞

(fj+1 − fj),

where the convergence is in Lp(Rn). Thus

φk ∗ f =
∞∑

j=−∞

φk ∗ (fj+1 − fj) =
∞∑

j=−∞

φk ∗ (2θj+1 − 3θj + θj−1) ∗ f.

Since supp(θ̂j+1) ⊂ B2j+1δ and φ̂k vanishes on B2kδ, we have φ̂kθ̂j+1 = 0 for
all j < k and so

φk ∗ f =
∞∑
j=k

φk ∗ (fj+1 − fj) for all k ∈ Z.
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Hence

‖φk ∗ f‖Lp ≤
∞∑
j=k

‖φk ∗ (fj+1 − fj)‖Lp ≤
∞∑
j=k

‖φ‖L1 ‖fj+1 − fj‖Lp .

Multiply this inequality by 2ks to obtain

2ks ‖φk ∗ f‖Lp ≤ ‖φ‖L1

∞∑
j=k

2−(j−k)s2js ‖fj+1 − fj‖Lp .

The right hand side is the convolution of the summable sequence (2−ks)k∈N0

with a bi-infinite sequence in `q(Z). Hence, by Young’s inequality,

‖f‖bs,pq,4;φ =

(
∞∑

k=−∞

(
2ks ‖φk ∗ f‖Lp

)q)1/q

≤ ‖φ‖L1

(
∞∑
k=0

2−ks

)(
∞∑

j=−∞

(
2js ‖fj+1 − fj‖Lp

)q)1/q

=
‖φ‖L1

1− 2−s

(
∞∑

j=−∞

(
2js ‖fj+1 − fj‖Lp

)q)1/q

.

Now it follows from the definition of fj in (13.21) and Minkowsky’s inequality
in [33, Thm 7.19] that

‖fj+1 − fj‖Lp =

(∫
Rn

∣∣∣∣∫
Rn
θ(y)

(
∆2

2−j−1yf(x)−∆2
2−jyf(x)

)
dy

∣∣∣∣p dx)1/p

≤
(∫

Rn

(∫
Rn
|θ(y)|

∣∣∆2
2−j−1yf(x)−∆2

2−jyf(x)
∣∣ dy)p dx)1/p

≤
∫
Rn

(∫
Rn
|θ(y)|p

∣∣∆2
2−j−1yf(x)−∆2

2−jyf(x)
∣∣p dx)1/p

dy

=

∫
Rn
|θ(y)|

∥∥∆2
2−j−1yf −∆2

2−jyf
∥∥
Lp
dy

≤
∫
Rn
|θ(y)|

(∥∥∆2
2−j−1yf

∥∥
Lp

+
∥∥∆2

2−jyf
∥∥
Lp

)
dy.
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Abbreviate c := ‖φ‖L1 /(1− 2−s). Then the last two estimates yield

‖f‖bs,pq,4;φ ≤ c

(
∞∑

j=−∞

(
2js ‖fj+1 − fj‖Lp

)q)1/q

≤ c

(
∞∑

j=−∞

(
2js
∫
Rn
|θ(y)|

(∥∥∆2
2−j−1yf

∥∥
Lp

+
∥∥∆2

2−jyf
∥∥
Lp

)
dy

)q)1/q

≤ c

∫
Rn
|θ(y)|

(
∞∑

j=−∞

2jqs
(∥∥∆2

2−j−1yf
∥∥
Lp

+
∥∥∆2

2−jyf
∥∥
Lp

)q)1/q

dy

≤ 2c

∫
Rn
|θ(y)|

(
∞∑

j=−∞

2jqs
(∥∥∆2

2−j−1yf
∥∥q
Lp

+
∥∥∆2

2−jyf
∥∥q
Lp

))1/q

dy

≤ 2(1 + 2−qs)1/qc

∫
Rn
|θ(y)|

(
∞∑

j=−∞

2jqs
∥∥∆2

2−jyf
∥∥q
Lp

)1/q

dy.

Here the third step follows from Minkowsky’s inequality in [33, Thm 7.19].
Now let N > n+ s and choose a constant C > 0 such that

2(1 + 2−qs)1/qc|θ(y)| ≤ C

(1 + |y|)N
for all y ∈ Rn.

Then

‖f‖bs,pq,4;φ ≤
∫
B1

C

(1 + |y|)N

(
∞∑

j=−∞

2jqs
∥∥∆2

2−jyf
∥∥q
Lp

)1/q

dy

+
∞∑
`=1

∫
B

2`
\B

2`−1

C

(1 + |y|)N

(
∞∑

j=−∞

2jqs
∥∥∆2

2−jyf
∥∥q
Lp

)1/q

dy

≤
∞∑
`=0

2NCVol(B2`)

2`N

(
∞∑

j=−∞

2jqs sup
|h|≤2`−j

∥∥∆2
hf
∥∥q
Lp

)1/q

=
∞∑
`=0

2NCVol(B1)

2`(N−n−s)

(
∞∑

j=−∞

2(j−`)qs sup
|h|≤2`−j

∥∥∆2
hf
∥∥q
Lp

)1/q

=
2NCVol(B1)

1− 2−(N−n−s) ‖f‖bs,pq,3 .

Hence Step 5 follows from Theorem 12.1.
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Step 6. Let φ : Rn → R be a Triebel function and let 0 < s < 2, p > 1,
q ≥ 1, and λ > 0. Then there is a constant c = c(s, p, q, φ, λ) > 0 such that

‖f‖bs,pq,2 ≤ c ‖f‖bs,pq,5;φ,λ
for all f ∈ C∞0 (Rn).

The proof follows the argument in [4, Section 4] with a modification suggested
by the discussion in [40, Substep 1.1]. By Lemma 13.2 there exists a Triebel
function ψ : Rn → R such that ψ ∗ φ is a Littlewood–Paley function. This
means that

∑
j∈Z ψ̂j(x)φ̂j(x) = 1 for all x ∈ Rn \ {0}, and so it follows from

Lemma 8.4 with θk :=
∑k

j=−∞ ψj ∗ φj that

f = lim
N→∞

N∑
j=−N

ψj ∗ φj ∗ f =
∞∑

j=−∞

ψj ∗ φj ∗ f

for all f ∈ C∞0 (Rn), where the convergence is both in Lp and in L∞. Now
let c = c(n, 2, λ, ψ) > 0 be the constant in part (ii) of Lemma 13.4 for ` = 2,
fix a function f ∈ C∞0 (Rn), and let k ∈ Z and h ∈ Rn such that |h| ≤ 2−k.
Then ∆2

hf =
∑∞

j=−∞∆2
h(ψj ∗ φj ∗ f) and hence∥∥∆2
hf
∥∥
Lp
≤

∞∑
j=−∞

∥∥∆2
h(ψj ∗ φj ∗ f)

∥∥
Lp
. (13.22)

For j < k we use the inequality∣∣∆2
h(ψj ∗ φj ∗ f)(x)

∣∣ ≤ sup
|y|≤2|h|

∣∣∇2(ψj ∗ φj ∗ f)(x+ y)
∣∣ |h|2

≤ 2−2k sup
|y|≤21−k

∣∣∇2(ψj ∗ φj ∗ f)(x+ y)
∣∣

≤ c22(j−k) sup
|y|≤21−k

(φ∗j,λf)(x+ y)

≤ c22(j−k)(1 + 21−k+j)λ(φ∗j,λf)(x).

Here the first step follows from (12.16) by replacing f with ∆hf and repeating
the estimate. The last two steps follow from Lemma 13.4. (The matrix
∇2g(x) ∈ Cn×n is the Hessian of a smooth function g : Rn → C at x ∈ Rn,
and |∇2g(x)| is the Euclidean matrix norm.) Now take Lp norms to obtain

sup
|h|≤2−k

∥∥∆2
h(ψj ∗ φj ∗ f)

∥∥
Lp
≤ C2−2(k−j) ∥∥φ∗j,λf∥∥Lp for j < k, (13.23)

where C := 2λc.
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For j ≥ k we use the inequality∥∥∆2
h(ψj ∗ φj ∗ f)

∥∥
Lp
≤ 4 ‖ψj ∗ φj ∗ f‖Lp ≤ 4 ‖ψ‖L1 ‖φj ∗ f‖Lp . (13.24)

It follows from (13.22), (13.23), and (13.24) that

2ks sup
|h|≤2−k

∥∥∆2
hf
∥∥
Lp
≤

k−1∑
j=−∞

2ks sup
|h|≤2−k

∥∥∆2
h(ψj ∗ φj ∗ f)

∥∥
Lp

+
∞∑
j=k

2ks sup
|h|≤2−k

∥∥∆2
h(ψj ∗ φj ∗ f)

∥∥
Lp

≤ C
k−1∑
j=−∞

2−(k−j)(2−s)2js
∥∥φ∗j,λf∥∥Lp

+ 4 ‖ψ‖L1

∞∑
j=k

2−(j−k)s2js ‖φj ∗ f‖Lp .

Now use Young’s inequality for the convolution of bi-infinite sequences to
obtain

‖f‖bs,pq,3 =

(
∞∑

k=−∞

(
2ks sup
|h|≤2−k

∥∥∆2
hf
∥∥
Lp

)q)1/q

≤ C

(
∞∑
k=1

2−k(2−s)

)(
∞∑

j=−∞

(
2js
∥∥φ∗j,λf∥∥Lp)q

)1/q

+ 4 ‖ψ‖L1

(
∞∑
k=0

2−ks

)(
∞∑

j=−∞

(
2js ‖φj ∗ f‖Lp

)q)1/q

=
C2−(2−s)

1− 2−(2−s) ‖f‖bs,pq,5;φ,λ +
4 ‖ψ‖L1

1− 2−s
‖f‖bs,pq,4;φ

≤
(

C2−(2−s)

1− 2−(2−s) +
4 ‖ψ‖L1

1− 2−s

)
‖f‖bs,pq,5;φ,λ .

Here the last step uses the inequality ‖f‖bs,pq,4;φ ≤ ‖f‖bs,pq,5;φ,λ in Step 1. Thus

Step 6 follows from Theorem 12.1. This proves part (ii) of Theorem 13.5.
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Remark 13.6. (i) Theorem 13.5 is formulated in terms of norms on the
space C∞0 (Rn,C) and the homogeneous Besov space bs,pq (Rn,C) is the com-
pletion of C∞0 (Rn,C) with respect to any of the norms in Theorem 12.1 and
Theorem 13.5.

(ii) The norms in Theorem 13.5 extend naturally to the space of Schwartz
distributions. The convolution of a Schwartz function and a Schwartz dis-
tribution is a function and so the right hand sides of equations (13.8-13.11)
remain meaningful when f is a Schwartz distribution. However, the resulting
maps S ′(Rn,C)→ [0,∞] are no longer norms. They vanish on the subspace
P(Rn,C) ⊂ S ′(Rn,C) of all polynomials and may take the value infinity.
The Besov space embeds into the quotient space S ′(Rn,C)/P(Rn,C) and
can be identified with the subspace of this quotient space on which the quasi-
norms in Theorem 13.5 are finite. To prove this, one is confronted with the
additional difficulty of showing that if one of the quasi-norms in Theorem 13.5
is finite for some Schwartz distribution then so are the others. This difficulty
is carefully adressed in the paper by Ullrich [40], which also contains many
further results as well as copious references to the existing literature.

Theorem 13.7. Fix a positive integer n and real numbers p > 1 and q ≥ 1.

(i) For every real number 0 < s < 1 there is a c = c(n, p, q, s) ≥ 1 such that

‖f‖b1+s,pq,2
≤ ‖∇f‖bs,pq,1 ≤ c ‖f‖b1+s,pq,2

(13.25)

for all f ∈ C∞0 (Rn,C).

(ii) For every Triebel function φ : Rn → R there is a c = c(n, p, q, φ) ≥ 1
such that

c−1 ‖f‖b1,pq,2 ≤
(∫ ∞

0

‖ϕt ∗ ∇f‖qLp
dt

t

)1/q

≤ c ‖f‖b1,pq,2 (13.26)

for all f ∈ C∞0 (Rn,C).

Proof. The proof has three steps.

Step 1. We prove the first inequality in (13.25).

Let f ∈ C∞0 (Rn,C). Then ‖∆2
hf‖Lp ≤ |h|‖∆h∇f‖Lp for h ∈ Rn by (12.17).

Take the supremum over all h ∈ Rn with |h| ≤ r to obtain the estimate
ω2(r, f)p ≤ rω1(r,∇f)p for all r > 0 and hence

‖f‖q
b1+s,pq,2

=

∫ ∞
0

(
ω2(r, f)p
r1+s

)q
dr

r
≤
∫ ∞

0

(
ω1(r,∇f)p

rs

)q
dr

r
= ‖∇f‖q

bs,pq,1

for all p, q ≥ 1. This proves the first inequality in (13.25).
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Step 2. For every real number p > 1 there exists a constant c = c(n, p) ≥ 1
with the following significance. If f : Rn → C is a function in the Schwartz
space and g : Rn → C is the unique function in the Schwartz space whose
Fourier transform is given by

ĝ(ξ) = |ξ|f̂(ξ) for ξ ∈ Rn

then
c−1 ‖g‖Lp ≤ ‖∇f‖Lp ≤ c ‖g‖Lp .

For i = 1, . . . , n define the operator Ti : L2(Rn,C)→ L2(Rn,C) by

T̂ig(ξ) :=
iξi
|ξ|
ĝ(ξ).

Let p > 1. Then, by the Mikhlin Multiplier Theorem 6.1, there exists a
constant a C = C(n, p) > 0 such that

‖Tif‖Lp ≤ C‖f‖Lp

for all f ∈ L2(Rn,C)∩Lp(Rn,C) and all i. Now let f and g be as in Step 2.
Since

∂̂if(ξ) = iξif̂(ξ)

for i = 1, . . . , n and ξ ∈ Rn, we have

∂if = Tig for i = 1, . . . , n

and

g = −
n∑
i=1

Ti∂if.

Thus the estimates of Step 2 hold with c := nC.

Step 3. We prove (13.26) and the second inequality in (13.25).

Let φ be a Triebel functions and define ϕt(x) := t−nφ(t−1x) for t > 0 and
x ∈ Rn as in Definition 13.5. Define the functions ψ, ψt : Rn → R by

ψ̂(ξ) := |ξ|φ̂(ξ), ψt(x) := t−nψ(t−1x)

for t > 0 and x, ξ ∈ Rn. Then ψ satisfies (13.1) and (13.2) and hence is also
a Triebel function. Now let f ∈ C∞0 (Rn,C) and define g : Rn → C by

ĝ(ξ) := |ξ|f̂(ξ) for ξ ∈ Rn. (13.27)
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Then, for all t > 0 and all ξ ∈ Rn, we have

ϕ̂t ∗ g(ξ) = ϕ̂t(ξ)ĝ(ξ) = |ξ|φ̂(tξ)f̂(ξ) = |ξ|ϕ̂t(ξ)f̂(ξ) = |ξ|ϕ̂t ∗ f(ξ). (13.28)

Since |ξ|φ̂(tξ) = t−1ψ̂(tξ), this implies

ϕ̂t ∗ g(ξ) = t−1ψ̂(tξ)f̂(ξ) = t−1ψ̂t(ξ)f̂(ξ) = t−1ψ̂t ∗ f(ξ). (13.29)

It follows from (13.29) that

‖ϕt ∗ g‖Lp = t−1‖ψt ∗ f‖Lp

for all t > 0. Now let c = c(n, p) ≥ 1 be the constant of Step 2. Then it
follows from (13.28) that

c−1‖ϕt ∗ g‖Lp ≤ ‖ϕt ∗ ∇f‖Lp ≤ c‖ϕt ∗ g‖Lp

for all t > 0. Combining these two assertions we obtain

c−1‖ψt ∗ f‖Lp
t

≤ ‖ϕt ∗ ∇f‖Lp ≤ c
‖ψt ∗ f‖Lp

t
for all t > 0.

and hence

c−1 ‖f‖bs+1,p
q,6;ψ

= c−1

(∫ ∞
0

(
‖ψt ∗ f‖Lp

t1+s

)q
dt

t

)1/q

≤
(∫ ∞

0

(
‖ϕt ∗ ∇f‖Lp

ts

)q
dt

t

)1/q

≤ c

(∫ ∞
0

(
‖ψt ∗ f‖Lp

t1+s

)q
dt

t

)1/q

= c ‖f‖bs+1,p
q,6;ψ

for 0 ≤ s < 1. For s = 0 this implies the inequality (13.26) by Theorem 13.5.
For 0 < s < 1 this estimate can be written in the form

c−1 ‖f‖bs+1,p
q,6;ψ
≤ ‖∇f‖bs,pq,6;φ ≤ c ‖f‖bs+1,p

q,6;ψ

and so the second inequality in (13.25) follows from Theorem 12.1 and The-
orem 13.5. This proves Step 3 and Theorem 13.7.
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For s = 0 the equivalent norms of Theorem 13.5 can be used to define
a space b0,p

q (Rn,C) as the completion of C∞0 (Rn,C) with respect to these
norms. These spaces are increasing in q and it follows directly from the
definitions that b0,p

1 (Rn,C) ⊂ Lp(Rn,C) ⊂ b0,p
∞ (Rn,C). The next corollary

refines this assertion. It shows that b0,p
2 (Rn,C) ⊂ Lp(Rn,C) for 1 ≤ p ≤ 2

and Lp(Rn,C) ⊂ b0,p
2 (Rn,C) for 2 ≤ p ≤ ∞.

Corollary 13.8. Let n ∈ N and 1 < p <∞ and let φ be a Triebel function.
Then the following holds.

(i) If p ≤ 2 then there exists a constant c > 0 such that(∫ ∞
0

‖ϕt ∗ f‖2
Lp
dt

t

)1/2

≤ c ‖f‖Lp (13.30)

for all f ∈ C∞0 (Rn).

(ii) If p ≥ 2 then there exists a constant c > 0 such that

‖f‖Lp ≤ c

(∫ ∞
0

‖ϕt ∗ f‖2
Lp
dt

t

)1/2

(13.31)

for all f ∈ C∞0 (Rn).

Proof. We prove part (i). Assume 1 < p ≤ 2, let ψ be a Littlewood–Paley
function, and let c = c(n, p, ψ) be the constant of Theorem 8.3. Then

‖f‖p
b0,p2,3;ψ

=

(
∞∑

k=−∞

‖ψk ∗ f‖2
Lp

)p/2

=

(
∞∑

k=−∞

(∫
Rn
|(ψk ∗ f)(x)|p dx

)2/p
)p/2

≤
∫
Rn

(
∞∑

k=−∞

|(ψk ∗ f)(x)|2
)p/2

dx

= ‖Sψ(f)‖pLp
≤ cp ‖f‖pLp

for every f ∈ C∞0 (Rn,C). Here the third step uses Minkowski’s inequality
in [33, Thm 7.19] with the exponent 2/p and the last step follows from
Theorem 8.3. Now part (i) follows from the equivalence of the norms ‖·‖bs,pq,4;ψ
and ‖·‖bs,pq,6;φ in Theorem 13.5 with s = 0 and q = 2.
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We prove part (ii). Thus assume 2 ≤ p <∞, let ψ be a Littlewood–Paley
function, and let c = c(n, p, ψ) be the constant of Theorem 8.3. Then

c−p ‖f‖2
Lp ≤ ‖Sψ(f)‖2

Lp

=

∫
Rn

(
∞∑

k=−∞

|(ψk ∗ f)(x)|2
)p/2

dx

2/p

≤
∞∑

k=−∞

(∫
Rn
|(ψk ∗ f)(x)|p dx

)2/p

=
∞∑

k=−∞

‖ψk ∗ f‖2
Lp

= ‖f‖2
b0,p2,3;ψ

for every f ∈ C∞0 (Rn,C). Here the first step uses Theorem 8.3 and the third
step uses Minkowski’s inequality in [33, Thm 7.19] with exponent p/2. Thus
part (ii) follows from the equivalence of the norms ‖·‖bs,pq,4;ψ and ‖·‖bs,pq,6;φ in

Theorem 13.5 with s = 0 and q = 2. This proves Corollary 13.8.

Corollary 13.9. Let n ∈ N and 1 < p <∞.

(i) If p ≤ 2 then w1,p(Rn,C) ⊂ b1,p
2 (Rn,C) and W 1,p(Rn,C) ⊂ B1,p

2 (Rn,C).

(ii) If p ≥ 2 then b1,p
2 (Rn,C) ⊂ w1,p(Rn,C) and B1,p

2 (Rn,C) ⊂ W 1,p(Rn,C).

(iii) If p = 2 then b1,2
2 (Rn,C) = w1,2(Rn,C) and B1,2

2 (Rn,C) = W 1,2(Rn,C).

Proof. Assume p ≤ 2. Then, by Theorem 13.7 and part (i) of Corollary 13.8,
there exists a constant c ≥ 1 such that, for all f ∈ C∞0 (Rn),

c−1 ‖f‖b1,p2,2
≤
(∫ ∞

0

‖φt ∗ ∇f‖2
Lp
dt

t

)1/2

≤ c ‖∇f‖Lp .

Thus w1,p(Rn,C) ⊂ b1,p
2 (Rn,C). The inclusion W 1,p(Rn,C) ⊂ B1,p

2 (Rn,C)
follows by adding ‖f‖Lp on both sides of the inequality.

Assume p ≥ 2. Then, by Theorem 13.7 and part (ii) of Corollary 13.8,
there exists a constant c ≥ 1 such that, for all f ∈ C∞0 (Rn),

c−1 ‖∇f‖Lp ≤
(∫ ∞

0

‖φt ∗ ∇f‖2
Lp
dt

t

)1/2

≤ c ‖f‖b1,p2,2
.

Thus b1,p
2 (Rn,C) ⊂ w1,p(Rn,C). The inclusion B1,p

2 (Rn,C) ⊂ W 1,p(Rn,C)
follows by adding ‖f‖Lp on both sides of the inequality.
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14 Besov spaces and heat kernels

The following theorem is due to Triebel [39] for the standard heat equation
on Rn and for 0 < s < 1. It was extended by Grigor’yan and Liu [13] to a
large class of parabolic equations on general metric measure spaces.

Recall the notation ∆ =
∑

i ∂
2
i for the standard Laplace operator on Rn

and Kt : Rn → R for the fundamental solution of the heat equation in (1.9).
For k > 0 define the linear operator (−∆)k : S (Rn,C)→ S (Rn,C) by

̂(−∆)kf(ξ) := |ξ|2kf̂(ξ) for f ∈ S (Rn,C) and ξ ∈ Rn. (14.1)

For p, q ≥ 1, 0 < s/2 < k, and f ∈ S (Rn,C) define

‖f‖s,p,q;k :=

(∫ ∞
0

(∥∥(−t∆)k(Kt ∗ f)
∥∥
Lp

ts/2

)q
dt

t

)1/q

. (14.2)

Then, for 0 < m < s and k > (s−m)/2,

‖f‖s,p,q;k+m/2 = ‖(−∆)m/2f‖s−m,p,q;k. (14.3)

Theorem 14.1 (Triebel/Grigor’yan–Liu). Let n ∈ N and p, q > 1.

(i) Let 0 < s < 1. Then there exists a constant c ≥ 1 such that every
Schwartz test function f ∈ S (Rn,C) satisfies the inequalities

1

c
‖f‖bs,pq,2 ≤

(∫ ∞
0

(
‖t∆(Kt ∗ f)‖Lp

ts/2

)q
dt

t

)1/q

≤ c ‖f‖bs,pq,2 .

The first inequality continues to hold for 1 ≤ s < 2.

(ii) Let 0 < s < 2 and k > s/2. Then there exists a constant c ≥ 1 such that
every Schwartz test function f ∈ S (Rn,C) satisfies the inequalities

1

c
‖f‖Bs,pq,2 ≤ ‖f‖Lp +

(∫ ∞
0

(∥∥(−t∆)k(Kt ∗ f)
∥∥
Lp

ts/2

)q
dt

t

)1/q

≤ c ‖f‖Bs,pq,2 .

(iii) Let 0 < m < s < 2. Then there exists a constant c > 0 such that every
Schwartz test function f ∈ S (Rn,C) satisfies the inequalities

1

c
‖f‖bs,pq,2 ≤

∥∥(−∆)m/2f
∥∥
bs−m,pq,2

≤ c ‖f‖bs,pq,2 .
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Proof. Part (i) can be found in Triebel [39, Thm 1.7.3 & Thm 1.8.3]. Parts (ii)
and (iii) are due to Grigor’yan–Liu [13, Thm 1.5]. The proof given below
follows the argument in [13] for the standard Laplace operator on Rn.

Assume 0 < s < 2 and k > s/2. We prove in seven steps that the norm

S (Rn,C)→ [0,∞) : f 7→ ‖f‖Lp + ‖f‖s,p,q;k (14.4)

defined by (14.2) is equivalent to the norm

S (Rn,C)→ [0,∞) : f 7→ ‖f‖Lp + ‖f‖bs,pq,2
in (12.6). The first two steps establish the inequality ‖f‖bs,pq,2 ≤ c‖f‖s,p,q;1.

The heart of the proof is Step 3, which shows that ‖f‖s,p,q;1 ≤ c‖f‖bs,pq,0 for

0 < s < 1, and hence proves part (i). Steps 4 and 5 show that the norms
in (14.4) are equivalent for any two values of k > s/2. The last two steps
establish part (ii).

Step 1. Define the function Φ : Rn → R by

Φ(x) :=
1

(4π)n/2

(
n

2
− |x|

2

4

)
e−|x|

2/4, Φ̂(ξ) = |ξ|2e−|ξ|2 .

For t > 0 define Φt(x) := t−nΦ(t−1x) so that Φ̂t(ξ) = Φ̂(tξ). Then

‖f‖s,p,q;1 = 21/q

(∫ ∞
0

(
‖Φt ∗ f‖Lp

ts

)q
dt

t

)1/q

(14.5)

for all f ∈ S (Rn,C) and all p, q, s such that p, q ≥ 1 and 0 < s < 2.

By definition, we have

Φ√t = −t∂tKt = −t∆Kt, Φ̂√t = −t∆̂Kt.

Hence

‖f‖s,p,q;1 =

(∫ ∞
0

(
‖t∆(Kt ∗ f)‖Lp

ts/2

)q
dt

t

)1/q

=

(∫ ∞
0

(∥∥Φ√t ∗ f
∥∥
Lp

ts/2

)q
dt

t

)1/q

=

(
2

∫ ∞
0

(
‖Φt ∗ f‖Lp

ts

)q
dt

t

)1/q

for all f ∈ S (Rn,C). This proves Step 1.
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Step 2. Let p, q ≥ 1 and 0 < s < 2. Then there exists a constant c > 0 such
that

‖f‖bs,pq,2 ≤ c ‖f‖s,p,q;1
for all f ∈ S (Rn,C).

The function Φ̂ satisfies the first condition in (13.2), however, it does not
satisfy the second condition in (13.2). To obtain a function that does, choose
a smooth function β : Rn → R in the Schwartz space S (Rn) such that
β(x) = β(−x) for all x ∈ Rn and whose Fourier transform satisfies

supp(β̂) = {ξ ∈ Rn | 1/2 ≤ |ξ| ≤ 2} , β̂(ξ) > 0 for 1/2 < |ξ| < 2.

Then β is integrable. Define

φ := β ∗ Φ.

Then the Fourier transform of φ is given by φ̂(ξ) = β̂(ξ)Φ̂(ξ) and so φ
satisfies (13.1) and (13.2), i.e. φ is a Triebel function. Moreover,

φt = βt ∗ Φt

for all t > 0 and hence, by Young’s inequality,

‖φt ∗ f‖Lp = ‖βt ∗ Φt ∗ f‖Lp ≤ ‖βt‖L1 ‖Φt ∗ f‖Lp = ‖β‖L1 ‖Φt ∗ f‖Lp .

This implies(∫ ∞
0

(
‖φt ∗ f‖Lp

ts

)q
dt

t

)1/q

≤ ‖β‖L1

(∫ ∞
0

(
‖Φt ∗ f‖Lp

ts

)q
dt

t

)1/q

for all f ∈ S (Rn,C). Since the norm on the left is equivalent to ‖·‖bs,pq,2 by

Theorem 13.5, and the second factor on the right is 2−1/q‖f‖s,p,q;1 by Step 1,
this proves Step 2.

Step 3. Let p > 1, q ≥ 1, and 0 < s < 1. Then there exists a constant c > 0
such that

‖f‖s,p,q;1 ≤ c ‖f‖bs,pq,0
for all f ∈ S (Rn,C).
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This is the argument in [13, Section 3.1]. There is a constant c1 = c1(n) > 0
such that, for all t > 0 and all x ∈ Rn,

|Φt(x)| = 1

(4π)n/2tn

∣∣∣∣ |x|24t2
− n

2

∣∣∣∣ e− |x|24t2 ≤ c1

tn

(
1 +
|x|
t

)2

e−
1
8(1+

|x|
t )

2

.

The last step uses the inequality 1
8
(1 + |x|

t
)2 ≤ 1

4
+ |x|2

4t2
. Since Φt has mean

value zero, we have

(Φt ∗ f)(x) =

∫
Rn

Φt(h)
(
f(x− h)− f(x)

)
dh

and hence

|(Φt ∗ f)(x)| ≤
∫
Rn
|Φt(h)||f(x)− f(x− h)| dh

≤ c1

tn

∫
Rn

(
1 +
|h|
t

)2

e−
1
8(1+

|h|
t )

2

|f(x)− f(x− h)| dh
(14.6)

for all t > 0 and all x ∈ Rn. Choose a real number α > s. Then there is a
constant c2 > 0 such that (1 + r)2e−

1
8

(1+r)2 ≤ c2(1 + r)−(n+αp) for all r > 0.
Define c3 := c1c2. Then it follows from (14.6) that

|(Φt ∗ f)(x)| ≤ c1c2

tn

∫
Rn

(
1 +
|h|
t

)−n−αp
|f(x)− f(x− h)| dh

= c3t
αp

∫
Rn

|f(x)− f(x− h)|
(t+ |h|)n+αp

dh

= c3t
αp

∫
|h|≤t

|f(x)− f(x− h)|
(t+ |h|)n+αp

dh

+ c3t
αp

∞∑
i=1

∫
2i−1t≤|h|≤2it

|f(x)− f(x− h)|
(t+ |h|)n+αp

dh

≤ c3

tn

∫
|h|≤t
|f(x)− f(x− h)| dh

+
c3

tn

∞∑
i=1

1

2(i−1)(n+αp)

∫
2i−1t≤|h|≤2it

|f(x)− f(x− h)| dh

≤ c4

tn

∞∑
i=0

1

2i(n+αp)

∫
B2it

|f(x)− f(x− h)| dh,

where c4 := 2n+αpc3.
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Now use Hölder’s inequality to obtain

|(Φt ∗ f)(x)| ≤ c4

tn

∞∑
i=0

Vol(B2it)

2i(n+αp)

(
1

Vol(B2it)

∫
B2it

|f(x)− f(x− h)|p dh

)1/p

= c5

∞∑
i=0

2−iαp

(
1

Vol(B2it)

∫
B2it

|f(x)− f(x− h)|p dh

)1/p

= c5

∞∑
i=0

2−iα(p−1)

(
2−iαp

Vol(B2it)

∫
B2it

|f(x)− f(x− h)|p dh

)1/p

≤ c6

(
∞∑
i=0

2−iαp

Vol(B2it)

∫
B2it

|f(x)− f(x− h)|p dh

)1/p

.

Here c5 := c4Vol(B1). The last step uses Hölder’s inequality again and holds
with c6 := c5(

∑∞
i=0 2−iαp)(p−1)/p = c5(1 − 2−αp)−(p−1)/p. Integrate the pth

power of the last estimate over x ∈ Rn. This gives

‖Φt ∗ f‖Lp ≤ c6

(
∞∑
i=0

2−iαp
1

Vol(B2it)

∫
Rn

∫
B2it

|f(x)− f(x− h)|p dh dx

)1/p

= c6

(
∞∑
i=0

2−iαp
1

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)1/p

and hence

‖Φt ∗ f‖Lp
ts

≤ c6

(
∞∑
i=0

2−i(α−s)p
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)1/p

. (14.7)

Now assume q > p, raise both sides of equation (14.7) to the power q, and
use Hölders inequality with the exponent q/p > 1 and the dual exponent
q/(q − p). Then, since

∑∞
i=0 2−i(α−s)p <∞, we have(

‖Φt ∗ f‖Lp
ts

)q
≤ cq6

(
∞∑
i=0

2−i(α−s)p
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p

≤ c7

∞∑
i=0

2−i(α−s)p

(
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p

.
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By Step 1 this implies

‖f‖qs,p,q;1 = 2

∫ ∞
0

(
‖Φt ∗ f‖Lp

ts

)q
dt

t

≤ 2c7

∞∑
i=0

2−i(α−s)p
∫ ∞

0

(
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p
dt

t

= 2c7

∞∑
i=0

2−i(α−s)p
∫ ∞

0

(
t−sp

Vol(Bt)

∫
Bt

‖∆hf‖pLp dh
)q/p

dt

t

=
2c7

1− 2−(α−s)p

∫ ∞
0

1

tsq

(
1

Vol(Bt)

∫
Bt

‖∆hf‖pLp dh
)q/p

dt

t

=
(
c8 ‖f‖bs,pq,0

)q
.

This proves the estimate in Step 3 for q > p with c = c8.
Now assume 1 ≤ q ≤ p. Then (

∑∞
i=1 ai)

q/p ≤
∑∞

i=1 a
q/p
i for every sequence

of nonnegative real numbers ai ≥ 0, by the triangle inequality in `p/q. Hence
it follows from (14.7) that(

‖Φt ∗ f‖Lp
ts

)q
≤ cq6

(
∞∑
i=0

2−i(α−s)p
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p

≤ cq6

∞∑
i=0

2−i(α−s)q

(
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p

.

This implies

‖f‖qs,p,q;1 = 2

∫ ∞
0

(
‖Φt ∗ f‖Lp

ts

)q
dt

t

≤ 2cq6

∞∑
i=0

2−i(α−s)q
∫ ∞

0

(
(2it)−sp

Vol(B2it)

∫
B2it

‖∆hf‖pLp dh

)q/p
dt

t

=
2cq6

1− 2−(α−s)q

∫ ∞
0

1

tsq

(
1

Vol(Bt)

∫
Bt

‖∆hf‖pLp dh
)q/p

dt

t

=
(
c9 ‖f‖bs,pq,0

)q
.

Thus the estimate in Step 3 also holds for 1 ≤ q ≤ p with c = c9.

126



Step 4. Fix real numbers s, p, q, k,m such that p, q ≥ 1 and 0 < s/2 < k
and m > 0. Then there exists a constant c > 0 such that

‖f‖s,p,q;k+m/2 ≤ c ‖f‖s,p,q;k (14.8)

for all f ∈ S (Rn,C).

This is the easy direction of [13, Proposition 2.9], which asserts that, for
every fixed triple of real numbers s > 0 and p, q ≥ 1, the norms (14.4) for
different values of k > s/2 (not necessarily integers) are all equivalent. To
prove Step 2 we return to the notation

S(t)f := Kt ∗ f

for the strongly continuous semigroup S(t) on Lp(Rn,C) generated by the
Laplace operator A := ∆. Since the operator (−A)m/2 commutes with S(t)
for all m and t, we have∥∥(−tA)k+m/2S(t)f

∥∥
Lp

=
∥∥(−tA)m/2S(t/2)(−tA)kS(t/2)f

∥∥
Lp

≤
∥∥(−tA)m/2S(t/2)

∥∥
L(Lp)

∥∥(−tA)kS(t/2)f
∥∥
Lp

≤ 2m/2C
∥∥(−tA)kS(t/2)f

∥∥
Lp
,

where C := C(n,m, p) := supt>0‖(−tA)m/2S(t)‖L(Lp) < ∞. This number
is finite because (−tA)m/2S(t) is given by convolution with the function

Km,t := (−t∆)m/2Kt. Its Fourier transform is K̂m,t(ξ) = (t|ξ|2)m/2e−t|ξ|
2
. The

function Km,1 belongs to the Schwartz space and hence is integrable. More-

over, K̂m,t(ξ) = K̂m,1(t1/2ξ) and so Km,t(x) = t−n/2Km,1(t−1/2x). This implies
that the L1 norm of Km,t is independent of t and therefore C(n,m, p) <∞.
With this understood, we obtain

‖f‖s,p,q;k+m/2 =

(∫ ∞
0

(∥∥(−tA)k+m/2S(t)f
∥∥
Lp

ts/2

)q
dt

t

)1/q

≤ 2m/2C

(∫ ∞
0

(∥∥(−tA)kS(t/2)f
∥∥
Lp

ts/2

)q
dt

t

)1/q

= 2m/2+k−s/2C

(∫ ∞
0

(∥∥(−(t/2)A)kS(t/2)f
∥∥
Lp

(t/2)s/2

)q
dt

t

)1/q

= c ‖f‖s,p,q;k
with c := 2k−s/22m/2C. This proves Step 4.
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Step 5. Fix real numbers s, p, q, k,m such that p, q > 1, 0 < s < 2k, and
m > 0. Then there exists a constant c > 0 such that

‖f‖s,p,q;k ≤ c
(
‖f‖Lp + ‖f‖s,p,q;k+m/2

)
(14.9)

for all f ∈ S (Rn,C).

This is the nontrivial part of [13, Prop 2.9]. Here is the argument in [13].
Choose an integer N > ` := k +m/2. The proof is based on the identity

f =
N−1∑
j=0

1

j!
(−A)jS(1)f +

1

(N − 1)!

∫ 1

0

(−λA)NS(λ)f
dλ

λ
(14.10)

for f ∈ S (Rn,C) (sometimes called the Calderón Reproduction Formula).
The last summand in (14.10) is the remainder term in the Taylor expansion
of the function t 7→ S(t)f at t = 1 and this proves equation (14.10) for all
f ∈ W 2N,p(Rn,C). Replace f by (−tA)kS(t)f in (14.10) to obtain

(−tA)kS(t)f =
N−1∑
j=0

tk

j!
(−A)k+jS(t+ 1)f

+
1

(N − 1)!

∫ 1

0

tkλN−`(−A)k+N−`S(t+ λ/2)(−λA)`S(λ/2)f
dλ

λ
.

Since supt>0‖(−tA)k+jS(t)‖L(Lp) < ∞ for all j ≥ 0, this shows that there
exists a constant C = C(n,N, p) > 0 such that∥∥(−tA)kS(t)f

∥∥
Lp
≤ Ctk ‖f‖Lp

+ C

∫ 1/2

0

tkλN−`

(t+ λ)k+N−`

∥∥(−λA)`S(λ)f
∥∥
Lp

dλ

λ

(14.11)

for all f ∈ S (Rn,C) and all t > 0. Following [13] we denote the two terms
on the right in (14.11) by

J1(t) := tk ‖f‖Lp ,

J2(t) :=

∫ 1/2

0

tkλN−`

(t+ λ)k+N−`

∥∥(−λA)`S(λ)f
∥∥
Lp

dλ

λ
.

Hence, with C1 := (q(k − s
2
))−1/q,(∫ 1

0

(
J1(t)

t
s
2

)q
dt

t

)1/q

=

(∫ 1

0

tq(k−
s
2

)−1dt

)1/q

‖f‖Lp = C1 ‖f‖Lp . (14.12)
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Moreover, since k > s/2, we have∫ ∞
0

tk−
s
2λN−`+

s
2

(t+ λ)k+N−`
dλ

λ
≤
∫ t

0

λN−`+
s
2
−1

tN−`+
s
2

dλ+

∫ ∞
t

tk−
s
2

λk−
s
2

+1
dλ

=
1

N − `+ s
2

+
1

k − s
2

=: C2.

(14.13)

Hence, by Hölder’s inequality,(
J2(t)

t
s
2

)q
=

(∫ 1/2

0

tk−
s
2λN−`+

s
2

(t+ λ)k+N−`

∥∥(−λA)`S(λ)f
∥∥
Lp

λ
s
2

dλ

λ

)q

≤ Cq−1
2

∫ 1/2

0

tk−
s
2λN−`+

s
2

(t+ λ)k+N−`

(∥∥(−λA)`S(λ)f
∥∥
Lp

λ
s
2

)q
dλ

λ
.

By Fubini’s Theorem, this implies∫ 1

0

(
J2(t)

t
s
2

)q
dt

t

≤ Cq−1
2

∫ 1

0

∫ 1/2

0

tk−
s
2λN−`+

s
2

(t+ λ)k+N−`

∥∥(−λA)`S(λ)f
∥∥q
Lp

λ
sq
2

dλ

λ

dt

t

≤ Cq−1
2

∫ 1/2

0

(∫ 1

0

tk−
s
2λN−`+

s
2

(t+ λ)k+N−`
dt

t

) ∥∥(−λA)`S(λ)f
∥∥q
Lp

λ
sq
2

dλ

λ

≤ Cq
2

∫ 1/2

0

∥∥(−λA)`S(λ)f
∥∥q
Lp

λ
sq
2

dλ

λ
.

(14.14)

Here the last inequality follows from (14.13) with dλ/λ replaced by dt/t.
By (14.11), (14.12), and (14.14) we have

‖f‖s,p,q;k ≤

(∫ ∞
1

∥∥(−tA)kS(t)f
∥∥q
Lp

tsq/2
dt

t

)1/q

+

(∫ 1

0

∥∥(−tA)kS(t)f
∥∥q
Lp

tsq/2
dt

t

)1/q

≤ (C0 + CC1) ‖f‖Lp + CC2

(∫ ∞
0

(∥∥(−tA)`S(t)f
∥∥
Lp

ts/2

)q
dt

t

)1/q

for all f ∈ S (Rn,C), where C0 := supt≥1

∥∥(−tA)kS(t)
∥∥
L(Lp)

( 2
sq

)1/q. This

proves the estimate (14.9) and Step 5.
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Step 6. We prove part (iii) of Theorem 14.1. Let p > 1, q ≥ 1, and
0 < m < s < 2. Then there is a c > 0 such that every f ∈ S (Rn,C) satisfies

1

c
‖f‖bs,pq,2 ≤

∥∥(−∆)m/2f
∥∥
bs−m,pq,2

≤ c ‖f‖bs,pq,2 . (14.15)

Let φ : Rn → R be a Triebel function and define φt(x) := t−nφ(t−1x) for

x ∈ Rn and t > 0. Define the functions ψ, ψt : Rn → R by ψ̂(ξ) := |ξ|mφ̂(ξ)
and ψt(x) := t−nψ(t−1x) for t > 0 and x, ξ ∈ Rn, so ψ is also a Triebel

function. Now let f ∈ S (Rn,C) and g := (−∆)m/2f . Then ĝ(ξ) = |ξ|mf̂(ξ)

for all ξ ∈ Rn. Since ψ̂t(ξ) = tm|ξ|mφ̂t(ξ), this implies ψ̂tf̂ = tmφ̂tĝ, therefore
ψt ∗ f = tmφt ∗ g for all t > 0, and so∥∥(−∆)m/2f

∥∥
bs−m,pq,6;φ

=

(∫ ∞
0

(
‖φt ∗ g‖Lp
ts−m

)q
dt

t

)1/q

=

(∫ ∞
0

(
‖ψt ∗ f‖Lp

ts

)q
dt

t

)1/q

= ‖f‖bs,pq,6;ψ
for m < s < 2. Hence Step 6 follows from Theorem 13.5.

Step 7. We prove parts (i) and (ii) of Theorem 14.1.

Part (i) follows from Step 2 and Step 3. Moreover, the first inequality in
part (ii) follows from Step 2 and Step 4 for s/2 < k ≤ 1 and from Step 2
and Step 5 for k > 1. If 0 < s < 1 then the second inequality in part (ii)
follows from Step 3 and Step 5 for s/2 < k < 1 and from Step 3 and Step 4
for k ≥ 1. To prove the second inequality in part (ii) for 1 ≤ s < 2, choose
m such that 0 < m < s < m + 1 ≤ 2. By Step 4 (in the case k ≥ 1 + m/2)
and Step 5 (in the case k < 1 +m/2), there is a constant c45 > 0 such that

‖f‖s,p,q;k ≤ c45

(
‖f‖Lp + ‖f‖s,p,q;1+m/2

)
= c45

(
‖f‖Lp +

∥∥(−∆)m/2f
∥∥
s−m,p,q;1

)
for all f ∈ S (Rn,C) (see (14.3)). Since 0 < s−m < 1, Step 3 implies∥∥(−∆)m/2f

∥∥
s−m,p,q;1 ≤ c3

∥∥(−∆)m/2f
∥∥
bs−m,pq,2

with c3 ≥ 1. By Step 6, ‖(−∆)m/2f‖bs−m,pq,2
≤ c6‖f‖bs,pq,2 with c6 ≥ 1. Combine

these estimates to obtain ‖f‖s,p,q;k ≤ c7(‖f‖Lp + ‖f‖bs,pq,2) for all f ∈ S (Rn,C)
with c7 := c3c45c6. This proves Step 7 and Theorem 14.1.

130



15 Proof of Theorem 1.2

Proof of Theorem 1.2. Take k = 1 and s = 2− 2/q in Theorem 14.1. Then

1

c
‖f‖bs,pq,2 ≤

(∫ ∞
0

‖∆(Kt ∗ f)‖qLp dt
)1/q

≤ c ‖f‖Bs,pq,2 (15.1)

for f ∈ S (Rn,C) (with ‖f‖Bs,pq,2 on the right replaced by ‖f‖bs,pq,2 when s < 1).
Since ut := Kt ∗ f is the solution of the heat equation with u0 = f such that
ut ∈ L2 for all t, the estimate (15.1) is equivalent to (1.5).

The next corollary restates the estimates of Theorem 1.2 for p = q.

Corollary 15.1. Let n ∈ N and p > 1.

(i) If 1 < p < 2 then there exists a constant c ≥ 1 such that every Schwartz
test function f ∈ S (Rn,C) satisfies the inequalities

1

c

(∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+2p−2
dy dx

)1/p

≤
(∫ ∞

0

‖∆(Kt ∗ f‖pLp dt
)1/p

≤ c

(∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+2p−2
dy dx

)1/p

.

(15.2)

(ii) If p > 2 then there exists a constant c ≥ 1 such that every Schwartz test
function f ∈ S (Rn,C) satisfies the inequalities

1

c

(∫
Rn

∫
Rn

|∇f(x)−∇f(y)|p

|x− y|n+p−2
dy dx

)1/p

≤
(∫ ∞

0

‖∆(Kt ∗ f‖pLp dt
)1/p

≤ c

(
‖f‖Lp +

(∫
Rn

∫
Rn

|∇f(x)−∇f(y)|p

|x− y|n+p−2
dy dx

)1/p
)
.

(15.3)

Proof. If 0 < s < 1 then, by Lemma 12.7, the norm ‖·‖ws,p in (12.11) dif-
fers from the norm ‖·‖bs,pp,0 in (12.4) by a constant factor and so is equivalent

to the norm ‖·‖bs,pp,2 in (12.6) by Theorem 12.1. Hence part (i) follows from
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Theorem 1.2 with p = q and 0 < s = 2 − 2/p < 1. If 1 < s < 2 then,
by Lemma 12.7 and Theorems 12.1 and 13.7, the norm f 7→ ‖∇f‖ws−1,p

in (12.11) is equivalent the norm ‖·‖bs,pp,2 . Hence part (ii) follows from Theo-

rem 1.2 with p = q and 1 < s = 2− 2/p < 2. This proves Corollary 15.1

We remark that for p = q = 2 the energy identity asserts that

1

2
‖∇f‖L2 =

(∫ ∞
0

‖∆(Kt ∗ f)‖2
L2 dt

)1/2

= ‖f‖1,2,2;1 . (15.4)

Thus ‖·‖1,2,2;1 is the norm of the homogeneous Sobolev space w1,2(Rn,C).
The next corollary restates the estimates of Theorem 1.2 in general.

Corollary 15.2. Let n ∈ N and p, q > 1.

(i) If 1 < q < 2 then there exists a constant c ≥ 1 such that every Schwartz
test function f ∈ S (Rn,C) satisfies the inequalities

1

c

(∫ ∞
0

(∫
Rn

∫
Br

|f(x+ h)− f(x)|p

rn+(2−2/q)p
dhdx

)q/p
dr

r

)1/q

≤
(∫ ∞

0

‖∆(Kt ∗ f‖qLp dt
)1/q

≤ c

(∫ ∞
0

(∫
Rn

∫
Br

|f(x+ h)− f(x)|p

rn+(2−2/q)p
dhdx

)q/p
dr

r

)1/q

.

(ii) Assume q ≥ 2 and choose m such that 0 < m < 2 − 2/q < m + 1 ≤ 2.
Then there exists a constant c ≥ 1 such that every Schwartz test function
f ∈ S (Rn,C) satisfies the inequalities

1

c

(∫ ∞
0

(∫
Rn

∫
Br

|((−∆)m/2f)(x+ h)− ((−∆)m/2f)(x)|p

rn+(2−2/q−m)p
dhdx

)q/p
dr

r

)1/q

≤
(∫ ∞

0

‖∆(Kt ∗ f‖qLp dt
)1/q

≤ c ‖f‖Lp +

c

(∫ ∞
0

(∫
Rn

∫
Br

|((−∆)m/2f)(x+ h)− ((−∆)m/2f)(x)|p

rn+(2−2/q−m)p
dhdx

)q/p
dr

r

)1/q

.

When q > 2 and m = 1, the function (−∆)m/2f can be replaced by ∇f .
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Proof. This is just a restatement of Theorem 1.2 in more explicit terms.
Part (i) uses the equivalence of the norms ‖·‖bs,pq,2 and ‖·‖bs,pq,0 established in

Theorem 12.1. Part (ii) uses the fact that the norm ‖·‖bs,pq,2 in (12.6) is equiv-

alent to the norm f 7→ ‖(−∆)m/2f‖bs−m,pq,0
by Step 6 in the proof of Theo-

rem 14.1. The last assertion follows from Theorem 13.7.

Remark 15.3. The assertions of Corollary 13.9 about the inhomogeneous
Besov spaces B1,p

2 (Rn,C) can also be derived from Theorems 1.2 and 2.1.
(See also Lemma 12.9 for the weaker inclusions relating the Besov spaces
B1,p

1 (Rn,C) and B1,p
∞ (Rn,C) to W 1,p(Rn,C).) Here are the details.

(i) Let n ∈ N and p ≤ 2. By Theorem 1.2 with q = 2 and s = 2− 2/q = 1,
there exists a constant c > 0 such that

1

c
‖f‖b1,p2

≤
(∫ ∞

0

‖∆(Kt ∗ f)‖2
Lp dt

)1/2

≤ 2n

p− 1
‖∇f‖Lp (15.5)

for all f ∈ C∞0 (Rn,C). Here the second inequality follows from Corollary 2.6.
Hence w1,p(Rn,C) ⊂ b1,p

2 (Rn,C) andW 1,p(Rn,C) ⊂ B1,p
2 (Rn,C) for p ≤ 2 and

the inclusions are bounded linear operators.

(ii) Let n ∈ N and p ≥ 2. Let f ∈ C∞0 (Rn) and define u(t, x) := (Kt ∗ f)(x)
for t ≥ 0 and x ∈ Rn. Then the proof of Theorem 2.1 shows that

d

dt

1

p

∫
Rn
|u|p = −(p− 1)

∫
Rn
|u|p−2|∇u|2 ≥ −(p− 1) ‖u‖p−2

Lp ‖∇u‖
2
Lp .

The last step follows from Hölders inequality. This implies

d

dt

1

2
‖ut‖2

Lp =
1

‖ut‖p−2
Lp

d

dt

1

p
‖ut‖pLp ≥ −(p− 1) ‖∇u‖2

Lp

Integrate this inequality to obtain ‖f‖2
Lp ≤ (2p − 2)

∫∞
0
‖∇ut‖2

Lp dt. Now
replace f by ∂if for i = 1, . . . , n. Then, by the Calderón–Zygmund inequality
in Corollary 6.2,

‖∇f‖Lp ≤ c1

(∫ ∞
0

‖∆ut‖2
Lp dt

)1/2

≤ c2 ‖f‖B1,p
2

for all f ∈ C∞0 (Rn,C) with suitable constants c1 > 0 and c2 > 0, dependng
only on n and p. Here the last step follows from Theorem 1.2 with q = 2
and s = 2 − 2/q = 1. Hence B1,p

2 (Rn,C) ⊂ W 1,p(Rn,C) for p ≥ 2 and the
inclusion is a bounded linear operator.

(iii) It follows from (i) and (ii) that B1,2
2 (Rn,C) = W 1,2(Rn,C).
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Séminaire d’Analyse Fonctionnelle 84/85, Publications Mathématiques d’Universit’e Paris VII, 26
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[20] D. Lamberton, Équations d’évolution linéaires associées à des semi-groupes de contractions dans les
espaces Lp. Journal of Functional Analysis 72 (1987), 252–262.

[21] O.A. Ladyshenskaya, V.A. Solonnikov, N.N. Uralćeva, Linear and Quasilinear Equations of Parabolic
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