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Abstract

The purpose of this expository paper is to give a self-contained
proof of maximal LP /L7 regularity for the heat equation on R", and to

—2/q

explain the role of the Besov space Bg P for the initial conditions.
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1 Introduction

This is an expository paper. Its purpose is to give self-contained proofs of the
following three theorems. For n € N let (¢,x) = (¢, z1,...,2,) be the coordi-
nates on R"™ and denote the Laplace operator on R™ by A := >"" | 9*/9z2.
Abbreviate 0y := 0/0t and 9; := 9/0x; for i = 1,...,n. The gradient of a
smooth function f : R" — Cis the function Vf := (0, f,...,0.f) : R" — C".

Theorem 1.1. For every positive integer n and every pair of real numbers
p,q > 1 there exists a constant ¢ = c(n,p,q) > 0 such that every compactly
supported smooth function u : R"™ — C satisfies the estimate

0 1/q 00 1/q
([ 10ty dt) <[ 100 dullyy de) (1)

Proof. See page [90 O

Theorem [1.1] leads to the question under which assumption on the initial
condition ugy the solution u : [0,00) x R™ — C of the heat equation

Oru = Au, u(0, -) = up, (1.2)

belongs to the space W4([0, o), LP(R™, C)) N L4([0, 00), W*P(R",C)). The
answer involves the Besov space B;?(R",C) for 0 < s <2 and p,q > 1. This
space is the completion of C§°(R"™, C) with respect to the norm

sz = 1l + 1 f e (13)
for f € C5°(R",C), where

I/

00 ([ h) —2 — B dz)"”
., ::/ supjp<r (Jenlf (@ + 1) 7asqf“(x)+j“(ﬂc )| dx) % (1.4)



Theorem 1.2. For every positive integer n and every pair of real numbers
p,q > 1 there exists a constant ¢ = c(n,p,q) > 0 with the following signif-
icance. Let uy € C(R™,C) and suppose that u : [0,00) x R" — C is the
unique solution of the heat equation such that u, := u(t,-) is square
integrable for allt > 0. Define the number 0 < s < 2 by

s:=2-2/q.

[e%e) 1/q
o < ([ 10l ) <cllulgr 05)
0

If0 < s <1 (or, equivalently, 1 < q < 2) then the norm ||u||gs» on the right
can be replaced by the norm ||u0||b;,p of the homogeneous Besov space.

Then

1
= |luo
C

Proof. See page [131] [

Theorem 1.3. For every positive integer n and every real number p > 2
there exists a constant ¢ = ¢(n,p) > 0 such that every compactly supported
smooth function u : R"1 — C satisfies the estimate

T 1/2
96T,z < ¢ ([ 1000~ Bl ) (16)
for all T € R.
Proof. See page [11] m

Theorem is called maximal regularity and was proved in the sixties
by deSimon [I0] for p = 2 and Ladyshenskaya—Solonnikov—Uraléeva [21] for
p = ¢q. In [2] Benedek—Calderén—Panzone proved that the assertion is inde-
pendent of ¢ for general analytic semigroups (Theorem . In our proof for
p = q we follow the approach of Lamberton [20]. A proof of Theorem [1.1
for all p and ¢ (which applies to general analytic semigroups and extends the
result of Lamberton) can be found in Hieber—Priiss [15].

The Besov spaces B;P(R", C) were introduced in 1959 by Besov [3]. The-
orem [1.2] is due to Peetre [31] and Triebel [38, 39 for 1 < ¢ < 2, and to
Grigor’yan—Liu [I3, Thm 1.5 & Rmk 1.8] for ¢ > 2 (see also [I7, Thm 6.7]
and [23, Thm 5.8]). The present exposition follows the argument in [13].

We will use without proof the theory of strongly continuous semigroups
and the basic properties of the Fourier transform.

3



Before entering into the proofs we formulate some consequences of these
results. The inhomogeneous heat equation on R™ with a compactly supported
smooth function uy : R" — C as initial condition and a smooth compactly
supported inhomogeneous term f : (0,00) x R” — C has the form

Ou = Au+ f, u(0, ) = uyp. (1.7)

This equation has a unique solution u : [0,00) x R™ — C such that u(¢,-) is
square integrable for all ¢t. This solution can be expressed in the form

)= [ Ko =t dr+ [ [ Kosa—nfnads 09

for t > 0, where K : R""! — R denotes the fundamental solution of the heat
equation. It is given by

1 2
,_ ,_ |2 /4t
K(t,z) = K(z) == (47?75)"/26 (1.9)
for t > 0 and by K(t,x) := K;(z) := 0 for t <0.
Remark 1.4. (i) A simple computation shows that, for every n € N, there
exists a constant ¢ = ¢(n) > 0 such that

C

%,

C

||Kt||L1 = 1a ”VKtHLl S HLI S ﬁ

10l < 50 07
for all t > 0.

(ii) Let u : R™™ — C be a smooth function with compact support contained
in [0,00) x R™ and define fi(x) := f(t,z) := Jwu(t,z) — (Au)(t,z) for t € R
and x € R™. Then u satisfies equation (1.7]) with uy = 0 and hence is given
by equation . Thus the gradien of w; is given by Vu; = fot VK, 4% fsds
for t > 0. Hence, by (i) and Young’s inequality,

t
IVl < [ IKims £l ds
0

t t
C
< [ 1l 1] pdss/ il ds.

By Holder’s inequality this implies the estimate ([1.6)) with the exponent 2 on
the right replaced by any number ¢ > 2 (and a constant depending on 7).
To prove the estimate for ¢ = 2 requires different arguments that will be
spelled out in Section



The next corollary asserts that the heat equation defines a strongly con-
tinuous semigroup on the Besov spaces. The condition s = 2 — 2/q is not
needed for this result but it suffices for our purposes.

Corollary 1.5. Fiz an integer n € N and real numbers p,q > 1. Define
s :=2—2/q. Then the solutions of the heat equation (1.2) on R™ define a
strongly continuous semigroup S(t) on the Besov space ByP(R",C) given by

sp={ J0 2 senpm)

It is a contraction semigroup with respect to the norm

oo 1/q
1AL = e + ( / JAK, )], dt) . (1.10)

Proof. By Theorem [1.2] the norm ||-||,, in (1.10)) is equivalent to the norm
in ((1.3)). Hence the completion of C3°(R", C) with respect to the norm ([1.10))
is the Besov space B;?(R", C). Moreover, by definition,

00 1/q
IS flg = I * fll o + (/t A = f)ll 7 dT) <l

for all ¢ > 0 and all f € Cg°(R",C). This implies that the function
[0,00) = BJP(R",C) : t = S(t)f (1.11)

is continuous for every f € ByP(R",C). (Choose a sequence f;, € Cg°(R",C)
that converges to f with respect to the norm ; then the function
[0,00) — BSP(R™,C) : t — S(t) fy is continuous for each k and converges uni-
formly to ; so the latter is continuous.) This proves Corollary O

The next corollary implies that the solution to the inhomogeneous heat
equation with an inhomogeneous term in L?([0, T, LP(R", C)) is a continuous
function with values in the appropriate Besov space.

Corollary 1.6. Fiz an integer n € N, real numbers p,q > 1, and a compact
interval I = [0,T]. Define s := 2 —2/q. Then there exists a constant ¢ > 0
such that every smooth function I x R" — C : (t,x) — u(t,z) = w(x) with
compact support satisfies the inequality

1/q

T
s(/ (||ut||%p+||atut||%p+|mut||%p)dt) o (L12)
0

sup ||uw|
0<t<T
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Proof. Throughout denote by ¢; = ¢1(n,p,q) the constant of Theorem
and by ¢y = ¢a2(n, p,q) the constant of Theorem . Fix a smooth function
u: [0,7] x R" — C with compact support and abbreviate

w () = u(t, z), fi(@) = Oy () — Auy(x)

for 0 <t < T and z € R™. Then

t
ut—Kt*uo—l—/ K . x f.dr
0

for 0 < ¢t < T and hence

1/q

to to
o, = K =l < [l e < a0 ([T @) )
0 0

for tg € [0, T] by Holder’s inequality. Fix a constant 0 < ¢ty < 7" and define

Ky 4y * (ugy — Ky, * ug), for t > tg,

L fta fOl"OStStoa
9= 0, fort > t.

v'_{ut—Kt*uo, for 0 <t <t,
t =

Then .
Uy = / K ; *x g;dr, Oy — Avy = gt
0

for all ¢ > 0 and hence, by Theorem [I.1]

oo 1/q 00 1/q to 1/q
(/ H(’)tth‘ipdt> s(/ HgtH%pdt) =(/ Hft!l%pdt> |
0 0 0

Since vy = K4 % (ug, — Ky, *x ug) for t > to, it follows from Theorem that

oo 1/q to 1/q
< ([ Moty ) < ([T )
to 0

Combine this with (1.13)) to obtain

||, — Ky * uo

T 1/q
B;,p S C3 </ ||atut — Aut“qu dt) . (114)
0

sup ||us — K * ug
0<t<T

where ¢ := c3(n,p,q,T) := crco + T4,
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It remains to estimate ug. First, since

1 T
o = - / (g + (t — T)yuy) dt,
T Jo

we have
luoll o < T Null oy oy + T N100ttll o g 1 - (1.15)

Second, define
t
ht = 8tut — Aut, W ‘= / Kt*T * hT dr
0

for 0 <t < T. Then, by Theorem [I.1]

||atw||Lq(I,Lp) <a ||h||Lq(LLp) = c1[|0u — AUHLQ(I,LP) : (1.16)
Third, K; x ug = u; — w; and so
T 1/q

([ 180K wlfde) < 1ulagan + W0y (117

Fourth, since [|AK;| ;. < C/t for some constant C' = C(n) > 0, we have

e 1/q Tq—l 1/q
([ 1amrwia) “<c(C5) tul,. 0

T

By (1.15)), (1.16)), (1.17), (1.18), there is a constant cg > 0 such that every
compactly supported smooth function I x R* — C: (¢, z) — u(t,x) = u(x)
satisfies the estimate

HUOHM < co (”uHLq(I,LP) + ||8tu||LQ(I,LP) + ”Au“Lq(I,LP)> : (1.19)

By Corollary the function K x ug satisfies the same estimate with the
same constant. Moreover,

||Kt*U0|

Bew < ol | Ky x uol|pq
by Theorem [1.2] This implies

|| Ky wo

Bsw < CoCa (HUHLq(I,LP) + ||atu||Lq(LLp) + ||Au||Lq(I,LP)> - (1.20)

for all t € [0,T]. The estimate (1.12) follows directly from (1.14)) and (|1.20)).
This proves Corollary [1.6] ]



Corollary 1.7. Let n,p,q,s and I = [0,T] be as in Corollary [1.6, Then
the identity on the space of complex valued smooth functions on I x R™ with
compact support extends to a bounded linear operator

LI, W*P(R",C)) N W (I, LP(R",C)) — C(I, Bi*(R",C)).
Proof. This follows directly from the estimate ([1.12]) in Corollary . O]

The next corollary shows that the result of Corollary is sharp.
Corollary 1.8. Let n,p,q,s and I = [0,T] be as in Corollary [1.6 and let
f € LP(R™ C). Then the following are equivalent.

(i) f € B;P(R",C)
(ii) There exists a function
u € LI, W*P(R™ C)) N W(I, LP(R™, C))
such that u(0,-) = f.
Proof. 1f f € By?(R", C) then the function u; := K, * f satisfies the require-
ments of part (ii) with d,u = Au, by Theorem and the Calderén—Zygmund

inequality in Corollary [6.2] That (ii) implies (i) follows immediately from
Corollary [I.7] This proves Corollary [I.8| O

Corollary 1.9. Let n,p,q,s and I = [0,T] be as in Corollary [1. and con-
sider the Banach spaces

WP .= LI, W*P(R™,C)) nWH(I, LP(R"™, C)),

FiP .= BP(R",C) x LI, L*(R", C)). (1.21)
Define the operators D : WP — FP and T : F9P — WP by
Du = (u(0, ), Oyu — Au),
(1.22)

T = (K N+ [ [ Koo = nats.n) dy s

Then D and T are bijective bounded linear operators and T = D!

Proof. That D is a bounded linear operator follows from Corollary and
that 7 is a bounded linear operator follows from Theorems and [1.2]
Moreover, it follows from the basic properties of the heat kernel K, that
DT(f,g9) = (f,g) for every pair of smooth functions f : R* — C and
g: I xR" — C with compact support. Hence Do T = id and so D is sur-
jective. That D is injective follows from a standard uniqueness result for
solutions of the heat equation. Thus D is a bijective bounded linear operator

and D~ = 7. This proves Corollary [1.9] O
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2 Proof of Theorem 1.3

For p = ¢ = 2 the estimates of Theorem [I.1| and Theorem follow from a
straight forward integration by parts argument. An extension of this argu-
ment leads to a proof of Theorem [I.3] For a compactly supported smooth
function f : R™ — C with mean value zero and a real number p > 1 define

| fyn Re(0))] P
Flw-ron i=supsom—",  ¢i= —.
I HW Lp(R") 620 HV¢‘|L‘1(R") p—1

Here the supremum is understood over all nonvanishing smooth functions
¢ : R" — C with compact support.

Theorem 2.1. Let T > 0 and let u : [0,7] x R* — C be a compactly
supported smooth function. Write

u(z) = u(t, )
and suppose that

/n u(z)dx =0

for allt € [0,T). Then, for every p > 2,

T
2 1 -
lerlseny + | = ([ 9wl ) a

HutHLP(Rn) (2.1>

T
< ol gy + (p — 1 / (N S—)
0

The integrand on the left is taken to be zero for each t with u; = 0.

Proof. Tt suffices to prove the assertion under the assumption that u; % 0 for
all t € [0,T]. Define

fi(x) == f(t,x) == Owu(t,x) — (Au)(t, z)

for t € [0,7] and x € R". Then f; : R® — C is a smooth function with
compact support and mean value zero for all ¢ € [0,7]. Moreover,

lu|P~*u*Vu.

—2
ol = plu’Re(@du).  V(|jul~0) = Slu 2V +

9



Hence, by Holder’s inequality,

1 2\
- p—2 — p—2 p—
Iy = ([ 1))
p=1
= ([ Qi) rss)
R
1 p=2
2 2p
< ([ wvﬂwﬁ)(/hw)
(e
This implies
d1 P p—2 - p—2 —
IX [ = [ jup=Remom) = [ Ju~*Re(a(s + du)
p R Rn Rn

= | |ufPuf - a2 - 222 M 4ZRe Oiu)?)
oo =5 ;

suwww%wmwmmwumﬂ—AhMﬂvw

1
2
sw—n(wmm@AwMﬂvw)HﬂmLmﬂ—AwMﬂvw.

It follows that
d1 1 d1

A L
2 e = gy
1
2
< (- )Q|n hM”WW)Hﬂmme
L R")
1 _
- [l
LP(R"
(p - 1)2 2 1 1

< s - a2Vl

2 [lul ey S

The assertion of Theorem follows by integrating this inequality over the
interval 0 < ¢ < T. O
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The next corollary shows that Theorem holds (for p > 2) with the
constant ¢ = y/n(p — 1).

Corollary 2.2. Let p > 2 and T > 0. Then every compactly supported
smooth function u : R"*! — C satisfies the estimates

T
2 2 2
[Vur||ze ey < nllVuollpsgay + nlp — 1)2/0 [0k — Aul|7,gny dt
and
T
[t pogny < [lwoll pogeny +/0 [0 — Auf 1 ny dt.

Proof. Let u : R""1 — C be a compactly supported smooth function. Then

the function J;u; : R® — C has mean value zero for every t. Moreover, it

follows directly from the definition and the Holder inequality that
||aif||W*1<P(]R") < ”f“LP(IR”)

for every compactly supported smooth function f : R™ — C and every index
i =1,...,n. Hence it follows from Theorem .1 that

T
2 2 2
||8iuT||LP(R”) < ||8iu0||LP(]R") + (- 1)2/ 10:(9pu — Au)”wflyp(Rn) dt
0

T
2 2
< [Vt ey + (9 — 1)? / 00t — Al o
0

for all 4. Since ||V f[Z, = 22,10 1| oz < 22 M0if Pll oz = 32:10:f |12 for
all f € C°(R™,C), the first inequality follows by taking the sum over all i.
The second inequality follows from (1.8) with f;(z) := Guu(t, x) — (Au)(t, ).
Namely,

T
ozl oy = HK cut [ Koo g
0

LP(R™)

T
< (1K # toll oy + / VKo Full o di

T
< HKTHLl(Rn) HUOHLP(R") +/0 HKT*tHLl(lR") HftHLP(R”) dt
T
< Yol ey + / T

Here the third step follows from Young’s inequality and the last step follows
from part (i) of Remark [1.4] This proves Corollary [2.2] O
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Corollary 2.3. For every p > 2 and every T' > 0 the identity on the space of
compactly supported smooth functions on [0,T] x R"™ extends to a continuous
inclusion operator

Wh2([0, T), W*P(R", C)) N L2([0, T], L*(R", C)) — C([0, T}, W"P(R", C)).
Proof. For f € C3°(R",C) define

1/p
1l = ( [ 1sp+ IVf|p)

and

n 1/p
1oy = ( Lup1var+ ZW@-fI”) .

ij=1
Then, in particular,

HAfHLP(R") <n'/? HfHW2,p(Rn) :

By Corollary , every smooth function function w : [0,7] x R* — C with
compact support satisfies the inequality

2 2 2
HutHWLP(Rn) < HutHLP(R") + ”VUtHLp(Rn)

t 2
2
< e+ ([ 1000~ Bl
t
2 2
4 V) + 1l = 0 [ 00 = B

2 S r 2

< (04 1) ol + (00 = 17+ T) [ 040 = Bulge
0

2

< (0 1) s

T
2 2
+ 20*?(n(p - 1)° +T)/ <”at“”LP<Rn> + ”““WQ”’(R"))
0

for 0 < s <t <T. Replacing u(t,x) with u(T — ¢,x), we obtain the same
inequality for ¢ < s < T'. Integrate the resulting inequality over the interval
0 < s <T to obtain

T
2 2 2
sup [ulinngeny < [ (100lagen, + 1)
0<t<T 0

where ¢ := 2t 4 2n%/P(n(p — 1)2 4+ T). This proves Corollary O
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Corollary 2.4. Theorems and[1.3 hold for p = q = 2.

Proof. For p = 2 Theorem [2.1] asserts that the inequality

T

T
2 2 2
R N T Ay R e

—00 —0o0

holds for every T' € R and every compactly supported smooth function
u: R — C such that [, u, = 0 for all ¢. For T sufficiently large it follows
under the same assumption on u that

|10l dt < [ o - Al d

o0

Replace u by Oyu, use the inequality [|0;f |y —12@ny < || fllp2n) for every
smooth function f € C§°(R",C), and take the sum over all 7 to obtain

> 2
JC -

—00
o0

<) [ 0= Bl dt+ 0+ 1) [ 00 ) d

o0 —0o0

< (n+ 1)/ 19 = Aulfzpey dt + (n+ 1>Z/ [V Ol 2y
- i=1 Y7

S (n -+ 1)2/ Hatut — AutHig(Rn) dt.

[e.9]

This proves the assertion of Theorem for p = ¢ = 2 with ¢ = n + 1.
Moreover, it follows from Corollary that the assertion of Theorem
holds for p = 2 with ¢ = y/n. This proves Corollary ]

Corollary 2.5. Assumel < p <2, letug : R" — C be a compactly supported
smooth function, and define

u = Ky xup: R" — C

fort > 0. Thus u(t,z) := w(x) is the unique solution of (1.7) with f =0

such that u; is square integrable for all t. Then

0o 1/2
1
2
(/0 ||vut||Lp(R") dt) < p_1 HUOHLP(R”) : (2.2)

13



Proof. Define ¢ :=p/(p—1) > 2 and let g : [0,00) Xx R — C be any smooth
function with compact support such that g, := g(¢,) has mean value zero
for all t. Define v,(z) = v(t,x) by

wte)i= [ Kevrg)yds = [ ( [ Ko=) 00 dy) ds

for t > 0 and x € R”. Then dv + Av = g, v; is square integrable for all ¢,
and Theorem [2.1| implies that

oo

2 2
ool gy < (7= 1)? / T —

Moreover,
%/n Re(Tyu;) = /n Re((0y0y)uy) + /Rn Re(:(0yur))
— / Re((at@t)ut)Jr/Rn Re(vy(Aw))
_ / Re((047, + ATJu)

= /n Re(g,uy)-

Integrate this equation over the interval 0 < ¢ < oo to obtain

/ ( Re@tut)) it =~ [ Re(tuuo) < ol e lola
0 Rn n

o 1/2
2
<(-1) HUOHLP(R") (/0 ||gtHW*1’q(R") dt) '

Since

2 ) R7 t Ut
<j;] ||‘gt||W‘ Lq(Rn) d )

where the supremum on the right is over all nonvanishing compactly sup-
ported smooth functions g : [0, 00) x R™ — C such that g, := ¢(¢, ) has mean
value zero for all ¢, it follows that

(9] 1/2
([ 190y ) < 0= 1 e
Since (¢ — 1) = (p — 1)7, this proves Corollary [2.5] O
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Corollary 2.6. Assume 1 < p < 2, let ug : R — C be a compactly sup-
ported smooth function, and define u; := Ky xug : R® — C fort > 0 as in
Corollary[2.5. Then

o /2 00 1/2
([ 1oty )+ 3 ([ 19000y )
0 i=1 0 (2.3)

2n
p—1

Vol o gny -

Proof. Apply the estimate (2.2 in Corollary 2.5/ to the function d;u and take
the sum over all ¢ to obtain

n n

oo 1/2
1
2
> (/0 IV Ot 1o ey dt) < Zp—_ 7 1050l o ey

i=1 1=1
n

<
= -1

Vo] 1o gy -

Since .
Ou=Au =Y 00
i=1
it follows that

( [ 10 dt) < Z(/ 1900t dt)

i=1
n
< p—] Vo] L gy
This proves Corollary [2.6] O
Corollary is a kind of converse of Corollary 2.3] While Corollary
asserts (for p > 2) that every function in the space

WP .= W*2([0,T], LF(R",C)) N L*([0, T], W*P(R", C))

is a continuous function on the intervall [0,7] with values in W?(R", C),
Corollary[2.6|asserts (for p < 2) that every element uy € W1P(R", C) extends
to a function in WP that agrees with uy at t = 0.
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3 Riesz—Thorin and Stein interpolation

Assume throughout that (X, A4, ) and (Y,B,r) are measure spaces. For
1 < p < oo denote by LP(X, p) and LP(Y,v) the complex LP-spaces. Also
denote by 2" the set of all equivalence classes of A-measurable step func-
tions f : X — C with support of finite measure and by % the set of all
equivalence classes of B-measurable step functions ¢ : Y — C with support
of finite measure. The equivalence relation in both cases is equality almost
everywhere. Whenever convenient we abuse notation and denote by f either
an equivalence class of measurable functions on X (respectively Y') or a rep-
resentative of the corresponding equivalence class. We begin our exposition
with the Riesz—Thorin Interpolation Theorem [32] [37].

Theorem 3.1 (Riesz—Thorin). Let 1 < pg,p1,qo, 1 < 00, let
T2 (X, 1) 0 L (X, 1) = LY, 0) N L2 (Y, )

be a linear operator, and suppose that there exist positive real numbers cgy, ¢y
such that, for all f € LP(X,pu) N LP (X, p),

1T f oo < collfll o s 1T f o < et [l fll o (3.1)
Fiz a real number 0 < A < 1 and define the numbers py, qx, cx by
pi)\ = 1;0)\—1—1%, q—l)\ = 1;))\—1—%, cy = 0(1)7)‘6%. (3.2)
If g = oo assume that (Y, B,v) is semi-finite. Then
ITfllox < exllfllon (3-3)
for all f € LPo(X, pu) N LPY (X, ) C LPA(X, ).
Proof. See page [17] H
The proof requires Hadamard’s Three Lines Theorem. Define
S:={z€C|0<Re(z) <1}. (3.4)

Theorem 3.2 (Hadamard Three Lines Theorem). Let ® : S — C be a
bounded continuous function that is holomorphic in int(S). Then

1-A A
sup |®(2)] < < sup l@(2)|> ( sup |‘1>(Z)|>
Re(z)=A Re(z)=0 Re(z)=1
for all X € [0, 1].
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Proof. Define ¢y 1= SUPRe(,)—o|®(2)| and ¢; = supge(,)—1|®(z)|. Then the
function ¥,, : S — C defined by

22—1
U,.(2) (I)_(Z) e n
B

is continuous, is holomorphic in int(S), and converges to zero as |z| tends to
infinity. Hence it attains its maximum on the boundary of S. Since

Re(z2)71 Re(z)Qflm(z)Qfl

U,(2)|<e = =e n <1 for Re(z) =0, 1,

it follows that |V, (z)| <1 for all z € C with 0 < R(z) < 1. Take the limit
n — oo to obtain the inequality

[B(2)] < ey ei] =g e
for all z € C with 0 < R(z) < 1. This proves Theorem [3.2] O

Proof of Theorem[3.1. The proof follows the exposition in [18].
Step 1. The assertion holds when py = p1 =: p.
In this case p) = p and it follows from Holder’s inequality and equations (3. 1])

and (3.2) that
NTFllpor S VTl ITF 7 < o7 1F N o
for all f € LP(X, u). This proves Step 1.
Step 2. Let h € L(Y,v) N L®(Y,v). Thus h € L™(Y,v) and so gh is
integrable for all g € % . Define ry € [0,00] by
1 1

P (3.5)

/ ghdv
Y

forall g € . Then ||h|;q, <c.

Assume first that 1 < ¢, < oo and so 1 < ry, < oco. Hence % is dense in
L™ (Y,v) by [33, Lemma 4.12]. Thus the inequality (3.6)) continues to hold

for all g € L™ (Y, v). Define g : Y — C by g(y) := |h(y)|*2h(y) whenever
h(y) # 0 and g(y) := 0 otherwise. Then g € L™ (Y, v) and ||g|| .- = ||h]|%s "

Hence |[Al|7s, = | [y ghdv| < cllgllpn = cllh| 7" and so [|h] o, < c.

let ¢ > 0, and assume that

< cllgll s (3.6)
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Next assume gy = oo and so 7y = 1. Then % is dense in L'(Y,v) by [33,
Lemma 4.12] and so continues to hold for all g € L'(Y,v). Assume,
by contradiction, that ||h||;. > ¢. Then there is a § > 0 such that the set
B :={y €Y ||h(y)| > ¢+ d} has positive measure. Since (Y,B,v) is semi-
finite, there exists a measurable set £ C B such that 0 < v(E) < oo. Define

g by g(y) == |h(y)|"*h(y) for y € E and by g(y) := 0 for y € Y \ E. Then
g € L'(Y,v) and

/ghdu
Y

in contradiction to (3.6]).
Next assume ¢y = 1 and so ry = co. Suppose, by contradiction, that
A1 > c. Since & is dense in L'(Y,v) there is a k € % such that

Al g2 = ¢
h—Fk||, < ———.
I~ Kl < 11
Define g : Y — C by g(y) := |k(y)|"*k(y) whenever k(y) # 0 and g(y) := 0
otherwise. Then g € %, ||g;» =1, and [, gk dv = k| .. Hence

/ghdu
Y

in contradiction to (3.6). This proves Step 2.
Step 3. Let ry be as in Step 2. Then the inequality

/Y (THgdv < e |1 Flos 9]0 (3.7)

holds for all f € 2 and all g € ¥
This is the heart of the proof of Theorem [3.1 Write

k ¢
f= Z aiX A, 9= ijXBj, (3.8)
i=1 j=1

where aq,...,a, and by,...,by are nonzero complex numbers, the A; are
pairwise disjoint measurable subsets of X with finite measure, and the B;
are pairwise disjoint measurable subsets of Y with finite measure. Here
x4 denotes the characteristic function of a set A C X and xp denotes the
characteristic function of a set B C Y. Choose ¢;,%; € R such that

a; = |a;le’”, by = [bjle™”

fori=1,...;kand j=1,... ¢

_ /E [hldv > (c+ 0)w(E) > cv(E) = c|gll s

> [kl = 1h = Kl e = 1Al = 212 = Ell o > ¢ = ¢ llgll

18



For z € S define f,: X - Cand g, :Y — C by

k
( Z) z
fa(z) = Z|a |%@¢le
i=1
Zf (3.9)
9091 =(1==)q1 —zag. i
gz(y) = Z|b “10@!1 (T=Na1—Xag e iXB,
j=1

forz € X and y € Y. Then f, = f and g, = ¢g. Moreover, the function
® : S — C defined by

B(z) = / (Tf.)g. dv

z zZ z z (3'1())
_ Z!a |5 | [ o) / (Txa,) dv
B
for z € Sis holomorphic. Let z € C with Re(z) = 0. Then
(@) [P0 = |ai| TP = |agPr = |f ()|

for v € A; and

g2 (y)[ = [by] o 0 R = by o= R = [by T = [g()[™
for y € B;. Hence

1D(2)] < Tl oo 9=l o < o 1 Fll oo 11920 o0 = co lLFIENE (gl

for all z € C with Re(z) = 0. A similar argument shows that

|¢)(z)| < ||TfZ||L‘10 ngHLm < HszLm ||gZ||LT1 =0 ||f||122’§p1 ||9||9“§T1

for all z € C with Re(z) = 1. Hence it follows from Hadamard’s Three Lines
Theorem [3.2] that

[P < ( sup I@(Z)I) ( sup \‘P(Z)I)
Re(z)=0 Re(z)=1

PA/Po o\ pA/P1 ra/r\
< (o P gl ) (e IR gl )
= o l[fllgen lgll o -

The last equation uses the identities ¢ = ¢ ¢} and 1A = 1;—0’\ + p% as well

as%zl—izl—ﬂ—izﬂ—{—%.ThlsproveSStep?).

qx q0 q1 To
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Step 4. |Tf|paon < x| fllpen for all f € 2.

Let f € 2. Then Step 3 shows that h := T'f satisfies the hypotheses of
Step 2 with ¢ := ¢, || ]| ;»,. Hence the assertion follows from Step 2.

Step 5. We prove the theorem.

For py = p; the assertion holds by Step 1. Hence assume p, # p; and,
without loss of generality, that py < co. Then p) < co. Fix a function

fe L’ (X, p) NI (X, ).
We prove that there exists a sequence f,, € 2 such that
W =l =0, I (TA)) = (THE)  (3.11)

for almost every y € Y. To see this assume first that f > 0. Then there
exists a monotone sequence of measurable step functions f, : X — [0, 00)
such that 0 < s1(z) < so(x) < -+ and lim, oo fu(z) = f(x) for all z € X
(see [33, Theorem 1.26]). Since po,py < oo and f € LPX (X, u) N LP(X, ),
the functions fP» and f? are integrable. Since |f,(z) — f(z)|P» < f(z)P
and |fn(x) — f(z)P0 < f(x)P for all z € X, it follows from the Lebesgue
Dominated Convergence Theorem (see [33, Theorem 1.45]) that

nlggo”fn_f”Lm =0, nILHOIOan_fHLPO = 0.

Since |T'f, = Tfl 10 < collfa — fllpee, we have limy, o0 [T fr — T ]| 0y = 0.
Hence there exists a subsequence, still denoted by f,,, such that T f,, converges
almost everywhere to T'f (see [33, Corollary 4.10]). This is the required
sequence in the case f > 0. To obtain the result in general apply this
argument to the positive and negative parts of the real and imaginary parts
of an arbitrary function f € LPo(X, )N LP* (X, ). This proves the existence
of a sequence f, € 2 that satisfies .

Since [|Tfr, = T finllax < collfn — finll s for all n,m € N, by Step 4, it
follows from that T'f,, is a Cauchy sequence in L% (Y,r) and hence
converges in L% (Y,v). Since T'f, converges to T'f almost everywhere, its
limit in L9 (Y, v) agrees with T'f. Hence T'f € L™ (Y,v) and

T [T fullgon = [T o (3.12)
By (3.11)), (3.12)), and Step 4 we have
||TfHL‘1>\ = nh_{go HTfn”qu < nh_{lolo ||fn||LP>\ = C\ ||f||Lp>\ .

This proves Step 5 and Theorem [3.1] O
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The Stein Interpolation Theorem in [36] is an extension of the Riesz—
Thorin Interpolation Theorem, where the operator 7' is replaced by a holo-
morphic operator family {7 }.cs, parametrized by the elements of the strip
S ={z€C|0<Re(z) <1} in (3.4). Denote by L (Y,r) the space of all
equivalence classes of measurable functions g : ¥ — C such that the restric-
tion of g to every measurable subset of Y with finite measure is integrable.
Recall that 2" denotes the set of all equivalence classes of A-measurable step
function f : X — C with support of finite measure.

Theorem 3.3 (Stein). Let 1 < pg, p1,q0, 1 < 00 and let
T.: 2 — LL.(Y,v), z €8,

be a family of linear operators satisfying the following two conditions.
(a) Forall f € Z and all g € ¥ the function

S—>(C:zr—>/yg(TZf)dV

is continuous and is holomorphic in int(S).

(b) There exist positive real numbers ¢y, c; such that

[ Titfllpao < collfllpo,  ITagief o < e [ llom (3.13)

forall f € Z and all t € R.
Let O < X\ < 1 and define py, qx, cx by

1 1—XA A 1 I1—XA A
— = + =, — = + —, ey = ey (3.14)
P Po b1 ax do q1
If g\ = oo assume that (Y, B,v) is semi-finite. Then
IT3f Nl pan < ex [ fllon (3.15)
forall f e Z.

Proof. The proof is a straight forward extension of the proof of Theorem [3.1]
Namely, let f € 2 and g € %, and define the function ® : S — C by

B(z) = /Y 0(Tof.) dv

for z € S, where f, : X — C and g, : Y — C are given by (3.9) (with f and
g given by (3.8)). Then it follows as in Step 3 in the proof of Theorem
that | [, 9(T3F) dv] = [®(N)] < e [1f]l o llgll e By Step 2 in the proof of
Theorem [3.1] this implies the assertion of Theorem [3.3] O
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4 Marcinkiewicz interpolation

The Marcinkiewicz interpolation theorem provides a criterion for a linear
operator on L?(u) to induce a linear operator on LP for 1 < p < 2. Let
(X, A, ) be a measure space. For a measurable function f : X — R define
the (Borel measurable) function x; : [0,00) — [0, c0] by

ke(t) == w(A(L, f)), At f)={zeX||f(x)|>t}, fort>0. (4.1)

Lemma 4.1. Let 1 < p < oo and let f,g: X — R be measurable functions.
Then, for allt > 0,

Fraat) < Rp(/2) + g (t/2) (4.2)

tPr(t) /|f|pd,u p/ sP k() ds. (4.3)

Proof. The inequality (4.2)) holds because A(t, f+g) C A(t/2, f)UA(t/2,9).
We prove (4.3)) in four steps.

Step 1. tPks(t) < [ |f|P du for all t > 0.

Since tPx a¢,p) < | fIP it follows that Pry(t) = [ Pxcaep die < [ |fIP dp for
all t > 0. This proves Step 1.

Step 2. If ky(t) = oo for some t > 0 then [ |f|Pdu= o0 = [[7t' ks (t)dt.
By Step 1, we have [,|f|[Pdu = co. Moreover, t*~'xkf(t) = oo for t > 0
sufficiently small and hence [~ 7~ 'k (t) dt = co. This proves Step 2.

Step 3. Assume (X, A, p) is o-finite and k¢(t) < oo for allt > 0. Then
equation (4.3)) holds.

Let B C 2[0°) be the Borel o-algebra and denote by m : B — [0, 00] the
restriction of the Lebesgue measure to B. Let (X x [0,00), A® B, u® m) be
the product measure space in [33, Def 7.10]. We prove that

Q(f) =={(z,t) € X x [0,00) [0 < t < |f(2)|} € AR B.
To see this, assume first that f is an A-measurable step-function. Then
there exist finitely many pairwise disjoint measurable sets A;,..., A, € A
and positive real numbers a;, ..., ap such that [f| = S2¢_, aixa,. In this

case Q(f) = Ur_, 4; x [0,0;) € A® B. Now consider the general case. Then
there is a sequence of A-measurable step-functions f; : X — [0, 00) such that
0< fi <fy<--- and f; converges pointwise to |f| (see [33, Thm 1.26]).
Since Q(f;) € A® B for all i, we have Q(f) = U2, Q(fi) € AR B.
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Now define h : X x [0,00) — [0,00) by h(z,t) := pt?~!. This function is
A ® B-measurable and so is hyg(y). Hence, by Fubini’s Theorem,

[ - [ ( / 'f(m)'ptp—ldt) du(a)
= [ ([ e tim®) dute)
= [ (/] et dute) ) amee

_ / (AR, f)) d.

This proves Step 3.
Step 4. Assume k¢(t) < oo for allt > 0. Then (4.3)) holds.

Define X := {z € X | f(z) # 0}, Ay := {A € A| A C Xo}, and po := ptla,.
Then the measure space (Xg, Ao, o) is o-finite because X,, := A(1/n, f) is
a sequence of A,-measurable sets such that (X,) = rf(1/n) < oo for all n
and Xy = J —, X,,. Moreover, fy := f|x, : Xo = R is Ap-measurable and
Kkf = Ky,. Hence it follows from Step 3 that

Jirrdn= [ Anpdn= [ o= [ o i
X Xo 0 0

This proves Step 4 and Lemma [4.1} O

Fix real numbers 1 < p < ¢. Then Holder’s inequality implies

q—p a(p—1)

LA, < AT AL (4.4)

for every measurable function f : X — R and hence

LY () N LA () C LP(p).

Since the intersection L'(x) N L9(u) contains (the equivalences classes of) all
characteristic functions of measurable sets with finite measure, it is dense in
LP(p) (see [33, Lem 4.12]). The following theorem was proved in 1939 by
Jézef Marcinkiewicz (a PhD student of Antoni Zygmund). To formulate the
result it will be convenient to slightly abuse notation and use the same letter
f to denote an element of £P(u) and its equivalence class in LP(u).
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For a measurable function f : X — C define
11 2= sup s (6) < 11 (4.5

We emphasize that the map f — |[/f]/1, is not a norm because it only
satisfies the weak triangle inequality

1/2 1/2 1/2
1f+ a2 < IFIR2 + [lgll2

However the formula d; o (f, g) :== || f — gH1/2 defines a metric on L'(R"™, C)

1,00
and the completion of L'(R™, C) with respect to this metric is the topological
vector space LV>(R™, C) of weakly integrable functions (see [33 Section 6.1]).

Theorem 4.2 (Marcinkiewicz). Let ¢ > 1 and let T : L9(pu) — L (u) be a
linear operator. Suppose there are constants ¢c; > 0 and ¢, > 0 such that

ITflhoe < eliflls T, < e llFAl, (4.6)

for all f € L'(u) N LY(p). Fiz a constant 1 < p < q. Then

P g—p  alp-1)

p(Q - 1) (=1 _plg—1)
T <e,|lfll. . C:ZZ(—) e 4.7
1T, < el £, p G- =1 e (4.7)

for all f € L*(p) N L9(p). Thus the restriction of T to L*(p) N L9(u) extends
(uniquely) to a bounded linear operator from LP(u) to itself for 1 <p < q.

Proof. Let ¢ > 0 and let f € £'(u) N L9(u). For ¢t > 0 define

£(x) ::{ g(:c), if | f(z)] > ct, (@) ::{ ?C,(x% it |f(2)] > e,

i) <, if [f ()] < ct.
Then
| A(s, f), ifs>ct, [0, if s > ct,
Als, fi) = { Alct.f), it s < o, A9 = { Als, /)\ Alet, f), if s < ct,
| Ry(s), ifs>ct, |0, if s > ct,
i ls) = { ke(ct), if s <et, a(s) = { ke(s) — kp(et), if s < ct.
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By Lemma [4.1] and Fubini’s Theorem, this implies

[T = [To ([T watas) a
0 0 0
:/ tp2(cmf(ct)+/ nf()d)dt
0
:cl_p/ ke (t) dt+// 2 dt ry(s) ds
0

:cl—p/o 1 ()dt+/0 S/C_l i (s) ds

p—1
1—
c
- |fIPdp
p—1Jx ‘

and

/ Pl gl dt —/ Pl (/ qs" kg, (s) ds) dt
0 0 0
e8] ct
= /0 Pt (/0 qs"  (ks(s) — ky(ct)) ds) dt
- q/ / P79 dt s17 sy (s) ds — cq/ P kg (ct) dt
0 s/c 0
© gp—=1.q—p 00
- q/ ke(s)ds — qu/ P k(1) dt
0 q—pr 0

q—p
:C p/ Ve (1) dt

Cq P
= /If\pdu

Moreover, f = f; + g; for all ¢ > 0. Hence, by Lemma [4.1] and ([4.6),

rrp, (1/2) + R, (/2)
2 21 .
T ISt + 55 179l

1A, + (2%)

IN

rry(t)

IN

201

IN

||9t||q-
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Hence, by Lemma [4.1] and the identities on page [25]
/ TPy = p/ Ve (1) dt
X 0
< per [0l dep(2e) [ gl d
0 0

p2cict P p(2¢,)9ctP
= < e ” Bl |17 du
p—1 q—p X

(¢—p)/(a—1) (ap—q)/(q—1)
plg —1)2Pc c
( )2Pcy q /|f|pdu
X

(¢—p)p—1)
Here the last equation follows with the choice of ¢ := (2¢,)Y @Y /(2¢,)9/ (=Y,
This proves Theorem O

Theorem extends to Banach space valued functions. Here is an exam-
ple for such an extension that is used in Section[d] Consider the positive real
axis equipped with the Lebesgue measure. For a strongly Lebesgue measur-
able function f : [0,00) — X with values in a Banach space X define the
function ¢ : (0,00) — [0, 00] by

rp(r)=p ({t =0] If ()| >r}) for r > 0.

This function depends only on the equivalence class of f up to equality almost
everywhere.

Corollary 4.3 (Marcinkiewicz). Fiz a real number 1 < q < oo. Let X be
a Banach space and let

T+ L9([0,00), X) = ([0, %0). X)
be a linear operator. Suppose there exist positive constants ci,c, such that

ITHle < collfllza:  suprar(r) < x|l il
T

for all f € L9([0,00), X) N L'([0,00), X ). Then

p(q — 1 1/p pqq:pl 2(2:1)
Tl <ol =2 (2D ) e
for 1 <p<qand f e L([0,00), X) N LY]0,00), X) C LP([0, ), X).

Proof. The proofs of Lemma and Theorem carry over verbatim to
Banach space valued functions. O
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5 The Calderén—Zygmund inequality

The next definition is taken from the exposition in Parissis [29].

Definition 5.1. Let n € N and let A, := {(z,y) € R" x R" |z = y} be the
diagonal in R™ x R™. Fiz two constants C > 0 and 0 < o0 < 1. A Calderén—
Zygmund pair on R" with constants C and o is a pair (T, K), consisting
of a bounded linear operator T : L*(R",C) — L*(R"™,C) and a continuous
function K : (R™ x R")\ A,, — C, satisfying the following azioms.

(CZ1) [T Il < Cfllye for all f € L*(R™,C).

(CZ2) If f : R" — C is a continuous function with compact support then
the restriction of Tf to the open set R™ \ supp(f) is continuous and

(Tf)(x)= | K(z,y)f(y)dy  for all x € R™ \ supp(f). (5.1)

R

(CZ3) Let z,y € R™ such that x # y. Then

K(e) € (52
(CZA4) Let z,2',y,y € R" such that x # vy, x # v, and ' #y. Then
1 Cly—y'|°
y=yl<sle—yl = IK(%Z/)—K(%Z/)!SW—%’
/ 1 / C’x_xl‘g '
o =2l <jle—yl = |K($,y)—K($,y)!§m-

We remark that if (7', K) is a Calderén—Zygmund pair then so is (177, K),
where the operator 7" : L*(R",C) — L*(R",C) is given by T"f = T'f +bf for
all f € L?(R",C) and some bounded measurable function b : R™ — C. Thus
the operator 7' is not uniquely determined by K. However, it is easy to see
that the function K is uniquely determined by the operator T'. (Exercise!)

Theorem 5.2 (Calderén—Zygmund). Fiz an integer n € N, a real number
1 < p < oo, and two constants C' > 0 and 0 < 0 < 1. Then there ezists a
constant ¢ = c¢(n, p,o,C) > 0 such that every Calderén—Zygmund pair (T, K)
on R™ with constants C' and o satisfies the inequality

1T f e < cllflls (5.4)
for all f € L*(R™,C) N LP(R", C).
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Proof. The proof has four steps. Denote by p the Lebesgue measure on R™.
Step 1. There is a constant ¢ = c¢(n, o, C') > 1 with the following significance.
Let (T, K) be a Calderén-Zygmund pair on R™ with the constants C and o,

let B C R™ be a countable union of closed cubes @; C R™ with pairwise
disjoint interiors, and let h € L*(R",C) N LY(R",C) such that

hlrm s = 0, / h(z)dx =0 for all i € N. (5.5)

Then .
krn(t) < c (,u(B) + i ||h||1) for allt > 0. (5.6)

For i € N define h; : R™ — R by h;(z) := h(z) for z € Q; and by h;(x) :=0
for z € R\ Q;. Denote by ¢; € Q; the center of the cube Q; and by 2r; > 0 its
side length. Then |z — ¢;| < y/nr; for all z € @Q;. Fix an element x € R™\ Q;.
Then it follows from that

(Thi)(x) = K(x,y)hi(y) dy
b (5.7)
— [ (K@) - Kloa)hi) dy.

The function h; need not be continuous. Since = ¢ ); one can approximate

h; in L*(R™, C) by a sequence of compactly supported continuous functions

that vanish near x. For the approximating sequence the first equation in ({5.7)

holds by ; now take the limit. The second equation follows from (/5.5]).
Now choose x € R™ such that |z — ¢;| > 3y/nr;. Then

d(z,Q;) := inf |z — y| > 2v/nr;
YEQ;
and so |y — ¢;| < /nr; < 3|z —y| for all y € Q;. Hence, by (5.3) and (5.7),

(Thi) ()] < | [K(x,y) — K(z,q)[|hi(y)] dy

Qi

< sup|K(z,y) — K(z,q)| || hill;

yeQ;

cly — ql|”

< sup ———— H z”

ye; [T — y|n+a 1

card

<

——— || h]]; -
d(f]?, Qi)n+o- || ||1
Here C' is the constant in (5.3)) and ¢; := Cn?/2.
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Define
Pi={z e R ||z — g <3vr} .

Then d(z,Q;) > |v — q;| — v/nr; for all x € R™*\ P;. Hence

1
Thixdxgcrf/ ——dx ||h;
/Rn\P)( (@) o7 [ e T
; dthiHl

1
7 n+1
/|y>3ﬁm (lyl = v/mr)"™"

00 n—1
Wy dr
= arf / sl
% 3/ (7"— \/ﬁri)n—l—a 2111

o [ (s+/mr)"Hds
= CWwnT; P Al
2\/57"1' S

s
< 2n71 o e h
< 2" wrs /Qﬁ” ~iro Ihilly

= il

Here ¢y := ¢12" ' "n"267'w, and w, := Vol,_1(S""'). The third step in
this computation follows from Fubini’s Theorem in polar coordinates. Thus
we have proved that

/ (Thi)(@)|de < s ||hill,  for all i € N. (5.8)
R\ P;

Recall that Th and Th; are only equivalence classes in L*(R™). Choose square
integrable functions on R” representing these equivalence classes and denote
them by the same letters T'h, T'h;. We prove that there exists a Lebesgue
null set £ C R™ such that

|(Th)(z)] < Z ((Th;)(x)|  forallz € R"\ E. (5.9)

To see this, note that the sequence _¢_, h; converges to h in L*(R") as £ tends
to infinity and so the sequence 3\_, T'h; converges to Th in L*(R"). By [33,
Cor 4.10] a subsequence converges almost everywhere. Hence there exists a
Lebesgue null set £ C R™ and a sequence of integers 0 < {1 < lo < f3 < ---
such that the sequence Zf;l(ThZ)(x) coverges to (Th)(x) as v tends to infin-
ity for all x € R"\ E. Since |Zf;1(Thi)(x)| <32 [(Thy) ()] for all z € R™,
this proves .
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Now define
A= U P.
Then it follows from . and ( . that
Th)(z)|dr < / (Th;) dx
L. e WD )
= Z / x)| dz

< Z/n v)| da

= c|hl,

Moreover, N _

Z ) =cs Y Q) = esp(B),

i=1 i=1
where o(Bor) o

0 = aln) = Ly oy ~ M Beve) =
Hence
tirn(t) < tp(A) +tu ({z € R"\ A|[(Th)(2)] > t})

IN

)+ [ T

csti(B) + ez ||h]l
C4(tN(B) + ||h||1)

IAINA

for all ¢ > 0, where
¢y = max{cy, c3}.

This proves Step 1.
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Step 2 (Calder6n—Zygmund Decomposition).
Let f € L*R™,C) N LY (R",C) and t > 0. Then there exists a countable
collection of closed cubes QQ; C R™ with pairwise disjoint interiors such that

1(Qs) < % [ 1@l <2u(@)  JorallieN (310

and
lf(x)] <t  for almost all x € R" \ B, (5.11)

where B = J;2, Qi.
For £ € Z™ and ¢ € Z define

Q(E, () == {x eR" ‘ 270 <@ <276+ 1)} .

Let
2:={Q(&0)|¢ez" tel}
and define the subset 2, C 2 by

tu(Q) < Jolf(x)|dr and, for all Q" € 2, }
Qo = L@l <m@) |

Then every decreasing sequence of cubes in £ contains at most one element
of Zy. Hence every element of 2, satisfies (5.10) and any two cubes in 2
have disjoint interiors. Define B := UQE 9, @ We prove that

Qoiz{QGQ‘

n L N da
T€R'\B, 1€Qec2  — M<Q>/Q|f()|d <t (512)

Suppose, by contradiction, that there exists an element x € R \ B and
a cube @@ € 2 such that z € @ and tu(Q) < fQ\f(x)\dx. Then, since
|lfll; < oo, there exists a maximal cube ) € 2 such that z € @ and
tu(@Q) < fQ|f(y)|dy. Such a maximal cube would be an element of 2,
and hence x € B, a contradiction. This proves . Now the Lebesgue
Differentiation Theorem [33] Thm 6.14] asserts that there exists a Lebesgue
null set £ C R™\ B such that every element of R\ (BUE) is a Lebesgue point
of f. By (5.12), every point x € R™ \ (B U E) is the intersection point of a
decreasing sequence of cubes over which |f| has mean value at most ¢. Hence
it follows from [33, Thm 6.16] (a corollary of the Lebesgue Differentiation
Theorem) that |f(z)| <t for all z € R™\ (B U E). This proves Step 2.
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Step 3. Let ¢ = ¢(n,o0,C) > 1 be the constant in Step 1 and let (T, K) be a
Calderon—Zygmund pair on R™ with the constants C and o. Then

ITfll oo < (27 +6) II£Ily (5.13)
for all f € L*(R",C) N L'(R",C).

Fix a function f € L*(R™) N L*(R™,C) and a constant ¢ > 0. Let the @Q; be
as in Step 2 and define

Then pu(Q;) < + fQ |f(x)| dz for all 7 by Step 2 and hence

PR %;/@iwx)mx < Il

Define g, h : R* — R by

f(z) dx
g —fon\B+Z Ja, ooy Xe  h=f-g
Then
lglly < A1l ||h||1 < 2| flly-
Moreover, h vanishes on R"\ B and [, h 0 x)dx = 0 for all 7. Hence it follows
from Step 1 that
1 3c
wrnlt) < e (u(B) + 3 Il ) < 211l (5.14)

Moreover, it follows from Step 2 that |g(z)| <t for almost every z € R" \ B
and |g(z)| < 2"t for every = € int(Q;). Thus |g| < 2"t almost everywhere.
Hence it follows from [33, Lemma 7.36] that
1
krg(t) < o

2" 2"
<i [ lo@Pde<® [ g@lde< sl G1)
R” R”

Now combine (5.14) and (5.15]) with the inequality (4.2)) to obtain

2”+1 + 6¢
krp(2t) < krg(t) + kra(t) < ——— I f]; -

Here the splitting f = g + h depends on ¢ but the constant ¢ does not. Mul-
tiply the inequality by 2¢ and take the supremum over all ¢ to obtain ((5.13)).
This proves Step 3.
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Step 4. Fixz a real number 1 < p < oo as well asn € N and C' > 0
and 0 < o < 1. Then there exists a constant ¢ = ¢(n,p,0,C) > 0 such that
ITfNle < cllfllp for all f € L*R™,C) N LP(R™,C) and every Calderdn—
Zygmund pair (T, K) on R™ with constants C' and o.

For p = 2 this holds by assumption, and for 1 < p < 2 it follows from Step 3
and the Marcinkiewicz Interpolation Theorem with ¢ = 2.

Now assume 2 < p < oo and choose 1 < g < 2 such that 1/p+1/¢ = 1.
Define the function K* : (R x R")\ A,, — R by

K*(x,y) := K(y,x)

and let T* : L*(R",C) — L?(R",C) be the adjoint operator of T. Then
(T*, K*) is again a Calderén—Zygmund pair on R"™ with constants C' and o.
To see this, note that

<T*g7f>L2 = g7Tf

- /n/n )f(y) dy dx
- / RnK*(% 2)g(x) f(y) d dy

for any two continuous functions f,g : R" — C with disjoint compact sup-
ports. This implies (T%g)(y) = [gn K*(y,x)g(z)dx for every continuous
function g : R® — C with compact support and every y € R"™ \ supp(g).
Moreover, the function K* evidently satisfies and and T* has the
same operator norm as 7'. Now define ¢ := ¢(n, ¢,0,C). Then, by what we
have already proved, ||T*g||,, < c||g|| ., for all g € C§°(R™, C). Hence

(9,Tf)
1Tl = sup e
0#£9€C5° (R™,C) ||g||Lq
T*
_ sup < gvf)LQ
0#£9€C5° (R™,C) 19l £q
179l o [ 2o
< sup
© 0£geCE(R™C) 191l £a
< e lfllzw

for all f € L*(R™, C) N LP?(R",C). Here the first equality follows from [33,
Thm 4.33] and the fact that C§°(R",C) is a dense subspace of LI(R™, C).
This proves Theorem [
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6 The Mikhlin multiplier theorem

The Fourier transform on R”™ is the unique bounded linear operator
Z : L*(R",C) — L*(R",C)

given by

(F(w))(€) = a(€) == / e 6@y (z) d (6.1)

n

for £ € R" and u € L*(R",C) N L'(R",C). Its inverse is

Z1@))(z) = u(z) = ! &g
(F @) = ulo) = s [ ) de (62

for x € R" and u € L*(R",C) N L*(R",C). If m : R* — C is a bounded
measurable function, it determines a bounded linear operator
T,,: L*(R",C) — L*(R",C)
given by
Tou = F 1 (mZF (u))

for u € L*(R",C). The Mikhlin Multiplier Theorem gives conditions on
m under which this operator extends to a (unique) bounded linear operator
from LP(R", C), still denoted by T,,, which agrees with the original operator
on the intersection L?(R", C)N LP(R™, C). We state and prove this result in a

slightly weaker form than in Mikhlin [25] and Hérmander [16]. This version
suffices for the purposes of the present exposition.

Theorem 6.1 (Mikhlin). For every integer n € N, every constant C > 0,
and every real number 1 < p < oo there exists a constant ¢ = ¢(n,p,C) > 0
with the following significance. Let m : R™ \ {0} — C be a C™? function
that satisfies the inequality
C

€[
for every £ € R" \ {0} and every multi-index o = (v, ..., ) € Ny with
la] =a1 4+ 4+ a, <n+2. Then

1T flle < el fll - (6.4)
for all f € L*(R™,C) N LP(R", C).

|0%m(£)] < (6.3)
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Proof. The proof is based on the generalized Calderén—Zygmund inequality
in Theorem and follows the argument in Parissis [29]. The main idea is
to show that there exists a function K,, : R™\ {0} — C such that 7, and
the function

R" xR"\ A,, = C: (z,y) = Kn(zr —y)

form a Calderén-Zygmund pair as in Definition [5.1, One would like to
choose K,, such that m is the Fourier transform of K,,. The difficulty is
that, in the interesting cases, m is not the Fourier transform of any inte-
grable function. To overcome this problem one can use the Littlewood—Paley
decomposition (Section . More precisely, let ¢ : R — R be a Schwartz
function such that ¢(x) = ¢(—z) for all x € R" so that its Fourier transform
(Z = Z(¢) is a smooth real valued function that satisfies 5(5) = 5(—5) for
all £ € R". Assume in addition that éﬁ\ satisfies the conditions

$€) >0 for 1/V2 < ¢ < V2,

c}(f) >0 for1/2<¢l <2, 65)
oE/2) +o(6) =1 for1<¢ <2,

o€) =0 for [¢ & [1/2,2].

In Definition below a function ¢ with these properties is called a Little-
wood—Paley function and that it exists is shown in Example 8.2 For j € Z
define the function ¢; : R® — R by

6i(x) == 290(2x), (€)== H(27¢) (6.6)
for z,£ € R™. Then it follows from that 3772 (ﬁ(ﬁ) = 1 and hence
> 6(Om(&) =m(¢)  forall & € R"\ {0} (6.7)
j=—00

For j € Z the function (Ejm : R® — C is of class C"*? and has compact
support and we denote its inverse Fourier transform by

Kj = ﬁ_l(g/gjm).

We prove in three steps that the series K, := Z;’i_oo K defines a continuous
function on R™\ {0} and that the pair (7,,,, (z,y) — K,,(z —y)) satisfies the
requirements of Definition 5.1}
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Step 1. There exists a constant ¢c; = c1(n,C') > 0 with the following signifi-
cance. Letm : R" — C be a C™"*? function that satisfies (6.3) for |a| < n+2.
Then, for all x € R™\ {0}, the limit

N (6.8)

-~

1 . 4
T / 6 G279 m(€) de
N—)OOj:_N (27-‘-)77, 2j71§‘§|§2j+1 ( ) ( )

exists, the resulting function K,, : R\ {0} — C is C"', and
| Ko (2)| 4 |||V K () for all z € R™\ {0}. (6.9)

1
= zI”
Each function K; has a C"*? Fourier transform K = éﬁ\jm with support in

the compact set {£ € R"| 2771 < |¢| <27t} Hence K is smooth and, for
every o € N, every integer 0 < k < n + 2, and every z € R", we have

e [ G m(©e e e

k
! H(277 - i 0 .
T 2n) /n(if)w(?—ﬂ{)m(g) (E i|:i|2 8@) (i(e) ¢
i=1

8QK]’(I‘> =

k
(1)k/ '<g)nl’z‘a .o T o —]
&,z - ah(9~I d
a Jef \ & TRag ) (90RO bt

(1)/ e\

— | — “p(277 d

@ %k 7 \ap) %8 027em(e) de
The integrand is supported in the domain {¢ € R™ | 277! < |¢] < 2711}, Hence
there exists a constant c; > 0, depending only on n, ¢, a, and the constant
C' in (6.3)), such that |8§((1§)a¢(2*35)m(§))| < p270el=R) for all € € R™, all
Jj € Z, and all 5 € Ny with |f| = k < n+ 2. This implies

ku 23<\a| k) 9i(n+lal—k)
/ d§ = c3———=—  (6.10)
\BI k |¢|<2i+1 ||

forall o € Ny, all j € Z, all k € {0,1,...,n+2}, and all x € R™\ {0}. Here

C3 1= CoT ”nk Yw, and w, := Vol,_1(S"1), so w,/n is the volume of the

unit ball in R", and we have used the identity > 5 _, k!/B! = n*.

|0°K;
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Now fix a nonzero vector x € R™ and let jo € Z be the largest integer
such that 2% < |z|7!. Then 2/ < |z|7! and 27Uo+Y) < |z|. Hence it follows
from with k£ = 0 that

Jo Jo
Z |0°Kj(x)] < c3 Z g/ (ntled)
j=—o0 j=—o00
_ €8 gjo(n+lal)
1 — 21l
263
|z|ntel’

because ——%—r < 2¢3 and 20+l < ||~ Flel This holds for all o € Nj.
Now assume |a| € {0,1} and use (6.10) with £ =n + 2 > n + |a| to obtain
°° . 2i(lal-2)
Z |0°K;(@)] < e Z |x‘n+2
J=jo+1 J=jo+1

cg  20o+D(al-2)

1 — Qlal-2 |x|n+2
2c3

|I|n+\o<|’

<

because = < 2c3 and 200TD(el=2) < |z[2=lel " This proves Step 1 with
the constant ¢; = 4(n + 1)c3

Step 2. Let ¢i,m, K,, be as in Step 1. Then the function
R x R"\ {A,) = C: (z,y) — Kn(zr —y) (6.11)
satisfies conditions (5.2)) and (5.3)) in Definition with o = 1 and with C

replaced by 2" ey .

The estimate (5.2)) follows directly from (6.9). To prove (5.3)), fix a vector
x € R"\ {0} and let y € R™ such that |y| < |z|/2. Then

1
2n+ c1

VK, (x—ty)| <
| (z —ty)| < z — ty|l = [

for 0 <t < 1. Hence it follows from the mean value inequality that

2n+161’y‘
|K(2) — Kin(z — y)| < Tt

Hence the function (6.11)) satisfies ([5.3)) with o = 1 and this proves Step 2.
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Step 3. Let ¢i,m, K, be as in Step 1. Then the function (6.11)) satisfies
condition (5.1)) in Definition with T =T,,.

Let f,g : R" — C be continuous functions with compact support and assume
supp(f) Nsupp(g) = 0. Define the function h : R* — C by

h(z) := /n@f(:v%—y)dy for x € R"

Then h vanishes near the origin and h= EJ? Hence

(9, Tnf)e = W<§7Tmf>m

- (Qi)n | miehie) ae

= Jm oo / i fjﬁ(&)m@)ﬁ(&) g
_ ngr;o/n 'iNKJ(:v)h(—x)dx

= (2)h(—z) dx

- /Rn/suppg) 9W)f(y — ) dydz
= (9, K * f)p2

Here the first equality follows from Plancherel’s Theorem, the second equal-
ity follows from the definition of the operator 7;,, the third equality uses the
formula h = g f the fourth equality uses Lebesgue dominated convergence,
the fifth equality follows again from Plancherel’s Theorem, the sixth equality
follows from Lebesgue dominated convergence and the fact that h has com-
pact support and vanishes near the origin, the seventh equality follows from
the definition of h and the last equality follows from Fubini’s theorem. It
follows that ( = [ K —y)dz for all z € R™ \ supp(f). This
proves Step 3 By Step 2 and Step 3 the operator T}, and the function (|6.11|)
form a Calderén-Zygmund pair on R" with constants 2"*'¢; and o = 1.
Hence the assertion follows from Theorem [5.2] This proves Theorem [6.1 [
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Corollary 6.2 (Calderén—Zygmund). For every integer n € N and every
real number 1 < p < oo there ezists a constant ¢ = c¢(n,p) > 0 such that

> l0dsull, < cllAul, (6.12)
ij=1
for all uw € Cg°(R™, C).
Proof. For i,5 € {1,...,n} define
Ly

Tiif == 0i(K; * f), Ki(x) := (6.13)

B Wn’x|n’

for f € C3°(R™). Then Poisson’s identity asserts that
for all u, f € Cg°(R",C) (e.g. [33, Thm 7.41]). The second equation in ((6.14))

~

implies that &, * £(€) = —i&;|€|2f(€) for all ¢ € R"\ {0}, and hence

Tyf =mif.  my(©) = %

This implies that Tj; extends to a bounded linear operator from L?(R" C)
to itself (see also [33| Lem 7.44]). Since the function m,; satisfies the require-
ments of Theorem [6.1] there is a constant ¢ > 0 such that ||T;; f[|» < [ f]|
for all f € Cg°(R™). Take f := Aw and use the first equation in (6.14]) to

(6.15)

obtain the estimate (6.12)). This proves Corollary [6.2] O
Corollary 6.3. For every real number 1 < p < oo and every C' > 0
there exists a constant ¢ = c(p,C) > 0 with the following significance.

Let m :R\ {0} = C be a C° function such that |m®(&)| < C|&|7F for
k=0,1,2,3 and £ € R\ {0}. If (X, A, pn) is a o-finite measure space,
LP(X, ) is the complex LP-space, f € LP(R,LP(X,u)) N L*(R, L*(X, u)),
and the function T, f € L*(R, L*(X, n)) is defined by
T (€) = m(§)](€)
for ¢ € R, then T, f € L*(R, L*(X, p)) and
HTmeLP(R,LP(X,M)) <c HfHLP(]R,LP(X,M)) : (6.16)

Proof. For functions f : R — C, where X is a singleton, the assertion follows
from Theorem [6.1] The general case then follows from Fubini’s theorem. [
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7 The Khinchin inequality

The present section of preparatory nature. It is used in the proof of the
Littlewood—Paley inequality in Section [§] which in turn is useful for under-
standing Besov spaces. Neither this nor the next section are needed for the
proof of Theorem They are placed here because the Mikhlin Multiplier
Theorem in Section [6] and the Khinchin inequality play central roles in the
proof of the Littlewood—Paley inequality in Section [§|

The Khinchin Inequality was discovered by Alexandr Khinchin [19]
in 1923. It is an estimate for the L” norms of linear combinations of the
Rademacher functions py : [0, 1] — R, defined by

(t) = 1, if sin(2%rt) >0,
PEEZ =1, if sin(2bat) < 0
for 0 <t <1 and k € N. These functions form an orthonormal sequence in

the Hilbert space L%([0,1]). In the language of probability theory they are
independent random variables with values +1, each with probability 1/2.

(7.1)

Theorem 7.1 (Khinchin Inequality). Fiz a real number 0 < p < oo.
Then there exist constants A, > 0 and B, > 0 such that

n 1/2 1] n P\ Up n 1/2
k=1 k=1 k=1

for all n € N and all n-tuples of complex numbers Ay, ..., A\, € C.

Proof. If 0 < p < 2 then, by Hélder’s inequality with exponent 2/p, every
Lebesgue measurable function f : [0,1] — C satisfies || f]|;, < [/f|l 2, so
the second inequality in (7.2) holds with B, = 1, because the p; form an
orthonormal sequence in L?([0, 1]). To prove the inequality for p > 2, define
Eni={x1}"={e=(e1,...,en) e € {1, +1} fori=1,...,n}.

For A = (A, ..., \,) € C™ define the function fy : [0,1] — C by
) =) Nipi(t)ydt  for 0<t <L
i=1

Then
P

iai)\i

=1

1 ) 1
[ inwra =53

Eegn

for all p > 0.
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Fix an even integer p = 2m > 2 and let A = (A, ..., \,) € R". Then

2m
||f)\||L2m = (Zgz z)
668
_ (2m)! 515
o Z Z 51 5!

€€En |B|=2m
(2m)
) _|5|z; Ba!- 5!(2525‘3)
(Qm)! 2yen 2\an
|0;=:m (2041)! - (2an)|()\1> - ()\n)

Here the -sums are over all multi-indices 5 = (01, ..., f,) € N that satisfy
Bl = 81+ -+ + By = 2m. The last step uses the identities ) __. e? =0
for every multi-index 8 € N{ such that one of the numbers 3; is odd and
> ce, €7 = 2" when all the f; are even. Since (12° < (20)! < (1(2()* for every
integer ¢ > 0 (with equality for £ = 0 and ¢ = 1), we obtain

m!(2m)™ o N
Il < Z 2a1+—"’+ana1!...an!()\%) ()
loo|=m

= w3 T )

|lal=m
)
=1

LAl o <m > N2 (7.3)
=1

This implies
foralln € Nall A = (Aq,...,A\,) € R" and all m € N. For m = 2 a slightly
better estimate is 4!/(2a)! < 3 - (2!/al) for all & € Njj with |a| = 2, and so
IAallfe < VB3N (7.4)
i=1

forallm € Nand all A = (Aq,...,\,) € R™
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Now let p > 2 and choose an integer m > 2 such that 2m — 2 < p < 2m.
Use Holder’s inequality with exponents

2m — 2 2m — 2 1 1
, ri= +
p—2 q T

7= 2m —p

to obtain

/lf)\|p /|fA|’"
< ( / ) - ( / ) A

pm—2m

2m—p pm—2m 2m—p 1/2 —p
Il < WAIE 1Al < IAIE™ (m2 |7l

|m1

and hence

pm—2m p
= m2m=2 [|A[, < 51 1ALl -

This proves the second inequality in (7.2]) for \; € R with B, := /p/2 + 1.

Hence it holds for \; € C with B, :=2/p/2+ 1 = /2p+ 4.
The first inequality in - ) holds for p > 2 with A, = 1 by Holder’s

inequality. To prove it for 1 < p < 2, we use Young’s mequahty ab < aq—i- b
with ¢ :=3/2, r :=3, a == |3, &;\[¥3, and b =Y, ;A3 to obtaln

2 4

Multiply by 3/2 and take take the average over all € € &,. Then

g% for all ¢ > 0.

s

3t o 4 3t o 3 4 9
Il = 5 1A = 5 1allze = 5 1A = S Il = ¢ Al = 372 AL,

Here the second step uses and the last two steps use t := 37/2||\||; "
This proves the first inequality in for p = 1 with 4; = 37'/2. For
1 < p < 2 use the Riesz—Thorin Interpolation Theorem qith g9 = ¢1 = 2,
po=1,p=2¢c=V3 c=1,(2/p—1)/po+(2-2/p)/p1 = 1/p. Then

1Mz < (VB Al = 372 £l
This proves the first inequality in for 1 < p < 2 and \; € R with
A, = 3275, Hence it holds for \; € C with Ay = 3%*%/2. This proves
Theorem [7.1] for p > 1. O
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Remark 7.2. Sharp constants for the Khinchin inequalities in (7.2]) (for
tuples of real numbers \;) were found by Haagerup [14]. They are

. L% '
min 1,( F(%) ) ,
. (7.5)

L)\
max 1,( F(%) )

Another proof that this number A, is the sharp constant for the first inequal-
ity in ((7.2]) was given by Nazarov—Potkorytov [27].

N
3=

A, =2

14

N
D=

B, =2

Proof of Theorem[7.1] for p > 0. The second inequality in (7.2)) was proved
above for all p > 0. We prove the first inequality in for p > 0 following
the argument in [27]. If p > 2 then, by Holder’s inequality with exponent p/2,
every Lebesgue measurable function f : [0,1] — C satisfies || f||,. < [|f|l,»,
so the first inequality in holds with A, = 1, because the p; form an
orthonormal sequence in L?([0,1]). Now assume 0 < p < 2 and define the
number ¢, > 0 and the function &, : (0, 1] — (0,00) by

Cp = /000 1= cos(r) dr (7.6)

rp+1
and 2
*1-— A
Kp(A) 1= / lcoiglrﬂ dr for 0 <A < 1. (7.7)
0 T
The function &, : (0,1] — (0, 00) is continuous. We prove that it satisfies
_ 1 e /2

To see this, choose € > 0 such that log(1 —x?/2) > —z? for 0 < z < &. Since
1 —2?%/2 <|cos(x)| <1 for all x € R, this implies

2 1 2
0 =log <|cos()\7“)|1/>‘ > > ﬁlog (1 — %) > —r?

for all A, > 0 such that 0 <r < e/
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’1/)\2

This implies |cos(Ar) > ¢~ and hence

1—|cos()\r)|l/’\2 <l—e" < p? for0<r<e<

> m

Thus (1 — |cos(Ar)|Y/*)/rPt1 < ¢1=P for 0 < r < ¢ and the function r — 71~?
is integrable on the interval (0,e) because p < 2. Second, the inequality
(1 — [cos(Ar)|YX*) /r+L < 471 holds for all 7 and the function r — rP*+! is
integrable on the interval [e, 00) because p > 0. Third, take the logarithm
and use 'Hospital’s rule to obtain

/22 _ 22

lim |cos(Ar)| e for all » > 0.
A—0

Hence ([7.8) follows from the Lebesgue Dominated Convergence Theorem.
By ([7.8) and continuity, we have

% 1 — Jcos(\r)|YN
5,:= inf / [osOn)IT 5~ g, (7.9)
0

0<A<1 rptl

Moreover, by definition of the constant ¢, > 0 in (7.6)), we have

o0 1 _
cp|s|p:/ Mdr (7.10)
0

rp+1

for all s € R. Choose Ay,..., A, € R\ {0} such that

> =1
k=1
Now take s := 1, Appx(t) in (7.10) to obtain

S hanlt)| = /0 * 1= cos(r Y (1))

p

CP rp+1

~ Re /OO 1 — exp(ir 32y, Arpr(t)) dr
0

rp+l

~ Re /Oo 1 — T exp(irAepi(t)) .
0

rp+l1
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Integrate this identity over the interval 0 <t < 1. Then

1 n p 1 n .
*1- Nepr(t)) di
Cp/o E Aepr(t)| dt = Re/o Jo k=1 exp(irAep(t)) i
k=1

rp+1

0

TP+1

rp+ 1

_ /°° 1 —[1I,_, cos(rAx) o
0
This formula is called Haagerup’s Integral Representation. Young’s

inequality asserts that
n n 1
[oe<> Loy

k=1 =1 Pk
for ar, > 0 and 1 < p < oo such that >, 1/py = 1. Take
1
Pk = 37 ag ;= |cos(rig)|
3

to obtain

n

H lcos(rAg)| < Z A2 [cos(rA)| Y =1 — Z A2 (1 _ |cos(r/\k)|1/’\%>
k=1 k=1 k=1

for all » > 0 and hence
p

N 1 — Tl |cos(rA
Cp/o Zkkpk(t) dt > /0 Hk;;L—l ( k>|dr
k=1
2
o 71— Jeos(rAg) [
2
2 Z/\k/o il dr
k=1
> 5,

Here the last step follows from ((7.9)). This proves the first inequality in (7.2)
with the constant
Ay = <5p/cp)l/p

for n-tuples of nonzero real numbers Ay, ..., A, with >, A7 = 1. Hence
it holds for all n-tuples of real numbers by linearity and continuity. This
completes the second proof of Theorem [7.1] O

It is shown in Nazarov—Potkorytov [27] that the number A, = (8,/c,)"/?
in the above proof is the sharp constant in ((7.5)).
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8 The Littlewood—Paley inequality

The Littlewood—Paley decomposition expresses a function f : R” — C as a
sum of functions f, whose Fourier transforms are supported in the domain
2F=1 < |¢| < 281 Such a decomposition is a powerful tool for obtaining L?
estimates via the Fourier transform. It was already used in the proof of the
Mikhlin Multiplier Theorem [6.1}

Definition 8.1. Fix an integer n € N and a smooth function ¢ : R" — R in
the Schwartz space ./ (R™). Assume

o(x) = ¢p(—x) for all x € R™, (8.1)

so that the Fourier transform (6.1)) is real valued and satisfies éﬁ\(f) = éﬁ\(—ﬁ)
for all & € R™. The function ¢ is called a Littlewood—Paley function if
it satisfies the conditions

6(6) >0,  for1/V2< g <V2,
0€) 20, for1/2< <2 52
P(§) =0,  for ¢ ¢ [1/2,2],
SE/2)+ (&) =1, for1<[¢| <2,
and hence -
Y o2t =1 forallg R\ {0}. (8.3)
k=—00

Example 8.2. Let f; : [0,00) — [0, 1] be a smooth function such that

Bo(r) =1, forr <1,
Bo(r) >0, for1<r <2,
Bo(r) < 1, for v2<r <2,
Bo(r) =0, forr > 2.

Define the function 5 : R® — R by

B(E) == BollE]) — Bo(2¢])  for & € R™.

Then f satisfies the conditions in (8.2]) and hence its inverse Fourier trans-
form ¢ is a Littlewood—Paley function.
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Theorem 8.3 (Littlewood—Paley). Fiz an integer n € N, a real number
1 < p< oo, and a Littlewood—Paley function ¢ : R™ — R. Then there exists
a constant ¢ = ¢(n,p, ¢) > 1 with the following significance. For k € 7. define
the function ¢p : R" — R by ép(x) = 2"%¢(2%x). Let f € LP(R*,C) and
define the function Sy(f) : R" — [0, 00] by

o 1/2
(Sp(f)(z) = ( > (0 f)(w)IQ) forz eR™. (8.4)

k=—o0

Then (Syf)(z) < oo for almost every x € R™ and

cHIf e < 1Se(Hll o < ellflls - (8.5)
Proof. See page 48| O]
Lemma 8.4. Let 6 : R — R be a function in the Schwartz space ./ (R"),

whose Fourier transform has compact support, and assume fRn O(x)dr = 1.
For k € 7 define the function 6, : R™ — R by

On(z) == 250(2%x),  0,(¢) =0(27%¢)  forx,& €R™ (8.6)
Let p > 1. Then

B f =B fl, =0, lm 6ok fl, =0 (87)

for all f € LP(R™). The convergence is in L™ whenever f : R™ — R is con-
tinuous and has compact support.

Proof. Since ||0k||;. = ||0]|;1 < oo for all k& € Z, the family of convolution
operators LP(R™) — LP(R™) : f + 6 % f is uniformly bounded. Hence it
suffices to prove for smooth functions with compact support.

Let f € C°(R™) and € > 0. For r > 0 denote B, := {z € R"||z| <r}
and choose R > 0 such that supp(f) C Bg. Second, choose r > 0 such that,
for all x,y € R",

g
< .
S SO Vol B )

lyl <r = |f(x —y) — f(=)

Third, choose ky € N so large that

€
0(y) dy < o
/R"\B 3£l

2k0
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Now let k£ € N such that & > ky. Then 0, x f — f = fi + g — c.f, where
fle) = [ O =) = F@) o,
a@) = [ 8-y dy
R\ B,

Cp = / 01 (y) dy.
R\ B,

The function f; is supported in Bg,, and satisfies the inequality

€
| fi(@)] < (1] . Eglf(x —y) = f(2)] < 3Vol(Broy )P

for all + € Bpy,. Hence || fi]|,, < €/3. Moreover, it follows from Young’s
inequality that

lgxll < ”HkHLl(R"\Br) 1l = HeHLl(R"\BQkT) 1fll e <e/3,

and we have [lcef o < N0l s oy 11 < /3. Hence 8 % f = £l < e
for every integer k > ko and this proves the first assertion in . To
prove the second assertion, observe that ||6],, = 2"0=1/?)|0||,, and so,
by Young’s inequality, ||0x * f||,;, < 28"0=VP)|10]| ., | f|l,: - Since p > 1, this
shows that

i 6% fll,, = 0.

The verification of the assertion about uniform convergence will be omitted.
This proves Lemma [3.4] O

Proof of Theorem[8.3. The proof follows the exposition of Machedon [24].
Fix a constant 1 < p < oo, let A, > 0 be the constant in the Khinchin in-
equality (7.2), and, for k € N, let pj : [0, 1] — R be the Rademacher function
in ([7.1)). First observe that ¢ is a Schwartz function and hence belongs to
LY(R",C) for ¢ := p/(p—1). Hence ¢y * f : R" — C is continuous for each k.
For f € LP(R",C) and N € N define the function S}'(f) : R" — [0, c0) by

N 1/2
(85 (N))() = < D (e f)(w)\2> forzeR"  (8.8)

k=—N
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Define the bijection k : N — Z by k(2j) = j for j € Nand k(2j+1) := —j for
J € Ng. Then k restricts to a bijection from {1,...,2N+1} to {—N,..., N}
for each N € N. Hence Theorem [7.1] asserts that

N 1/2 IN+1
‘(Séﬁvf)(m)‘ = (Z |(¢k*f)(x)|2> SAL Z(gbn(j)*f)(fﬁ)pj
k}N = Lr((0.1)
for all x € R™ and so
N p/2
st = [ (3 \(MW) "

o 2N+1 P (8.9)

T L L[ ]

for f € C°(R™,C) and N € N. For 0 <t <1 and N € N define the function
mY :R"\ {0} — C and the operator T} : L*(R",C) — L*(R",C) by

2N+1 N 2N+1
my =Y pi0oey, T =) pi(Dbui) * f
j=1 Jj=1

for f € C§°(R™,C). Then E]\Tf = m{vffor all f e CP(R",C) and all t. We
prove that m{¥ satisfies condition (6.3) in the Mikhlin Multiplies Theorem
with a constant C' > 0 that is independent of ¢ and N. To see this, define

C, = sup 80‘5(5)‘ for a € Nj.

¢eRn

Fix an element ¢ € R™\ {0} and choose k € Z such that 2% < [¢] < 2F+1,
Then ¢,;)(€) = ¢(27"9¢) = 0 for k(j) # k, k + 1. Hence

0 (O] < [perw (BEGE) + o4 (DO Fri1) (©)
(©°30)(©)] + | Fes)(€)|

21 (§7G) (27 Fg) | + 271D (9o G) (27|
QCQQ*\QI(RH)
2C ¢

foralla € Njj, £ € R"\ {0}, and 0 <t < 1.

IA

IN

IAINA
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By Theorem [6.1] there exists a constant ¢ = ¢(n,p, ) > 0 such that

1T f Nl < el fllp (8.10)
forall f € LP(R",C), N e N,and 0 <t < 1. By and , we have
» 1 p 1 » c p
Isisl, < () [ o, ae< () W sy
AP 0 Ap

for all f € LP(R™,C) and N € N. For each f € LP(R", C) this implies that
the monotonically increasing sequence ((S}'f)(z)) <y 18 bounded for almost
every € R" (see [33, Lem 1.47]). Moreover, the second inequality in ({8.5))
follows from and the Lebesgue Monotone Convergence Theorem by
taking the limit N — oo.

It suffices to prove the first inequality in for real valued functions.
Consider the real Hilbert space H := (*(Z) and, for N € N, define the linear
operator .V : LP(R") — LP(R™, H) by
N

(FN @) = (00 N@))
for f € LP(R™) and x € R"™. Then

17 £l = 1S5 DN < 151

k=—N

for all f € LP(R",C) by , and so the operator sequence .V is uni-
formly bounded. A function g € LP(R™, H) assigns to (almost) every x € R”
a square summable sequence (g (x))ez of real numbers, such that each func-
tion g, is p-integrable. Thus ¢ is a bi-infinite sequence of LP functions such

that
- 1/2
19/l e g, i) = ( > ’9k|2> < 0.

heee Lr(Rm)
Define the linear operator 7 : LP(R", H) — LP(R") by

N
TNg = Z O * g

k=—N

for g € LP(R™, H). Since ¢p(—z) = ¢p(x) for all k € N and all z € R", TV
is the dual of the operator .7V : LI(R") — L4(R", H) with ¢ := p/(p — 1).
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Hence the operator sequence .7 is uniformly bounded and so is the operator
sequence N : LP(R™, H) — LP(R") defined by

N

UN g = Z (k-1 + Gk + Ga) ¥ gr  for g € LP(R", H).

k=—N

Thus there exists a constant C' = C(n, p, ¢) > 0 such that
H%NQHLP(RTL) <C ”g”LP(Rn,H) (8.12)

for all g € LP(R™, H).

Now let f € LP(R")NLY(R™). Then ||¢* fllzr < ||@|lz1]lf]z1, S0 ¢n* f is
integrable for all k € Z. Moreover, since ¢ is a Littlewood-Paley function, we
have ¢p_1(&)+ k(&) +dry1(€) = 1 for all € € R™ that satisfy 2871 < |¢] < 2FF1

~

and thus for all £ € supp(¢y). This implies

N N
UNSNHLf = Z <§/b\k—1 +$k+$k+l>$kf: Z onf
k=—N k=—N
and hence v
N FNH Z o x f (8.13)

k=—N

for all N € N and all f € L?(R™) N L'(R"). Since both sides of this equation
depend continuously on f in LP(R"), and LP(R")NL'(R") is dense in LP(R"),
equation (8.13)) continues to hold for all f € LP(R™). Hence

N

> i f

k=—N

= |7l < el L = OS]

Lp

Lp

for all f € LP(R™), where C'is the constant in (8.12)). Take the limit N — oo
and use Lemma [8.4] to obtain the inequality

1l < CUSe(H o
for all f € LP(R™). This proves Theorem [8.3] O

The Littlewood—Paley inequality is used in Corollary to relate the
Besov space By”(R™,C) to the Sobolev space W?(R™, C).
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9 Maximal regularity for semigroups

Let X be a complex Banach space and let {S(¢)}:>0 be a strongly continuous
semigroup of operators, i.e. the map [0,00) — X : t — S(t)z is continuous
for every z € X, S(0) = id, and S(s +t) = S(s)S(t) for all s,t > 0. Its
infinitesimal generator is the linear operator A : dom(A) — X defined by

Az = lim%(S(t)x — )

t—0

for x € dom(A) (the linear subspace of all elements z € X such that the
limit exists); the domain is dense and the operator A has a closed graph.

Example 9.1. The main example in the present setting is the Banach space
X = LP(R",C) and the semigroup associated to the heat equation. Its
infinitesimal generator is the Laplace operator

A=A:W*(R",C)— LP(R" C) (9.1)
and the semigroup S(t) : LP(R",C) — LP(R", C) generated by A is given by
S(t)ug = Kt * g (9.2)

for t > 0 and uy € LP(R™,C), where K; : R* — R is the fundamental
solution . That the Laplace operator is closed is a consequence of
the Calder6n-Zygmund inequality in Corollary [6.2] Namely, if two functions
u, f € LP(R", C) satisfy
[ uso= [ 1o
R™ R™
for all ¢ € C§°(R™), then the standard local regularity theory, based on the
Calderén—Zygmund inequality, asserts that u € W2P (R™,C) and Au = f.

loc
Moreover, using a suitable smooth cutoff function one obtains an inequality

a2y < @ (Nl + 1 Auluq )

for @ :=[0,1]" and ©Q = (—1,2)". Take a countable sum of such inequalities
over appropriately shifted domains with the same constant ¢ to obtain

ol oy < 3% (Il oy + 1A ) -

This shows that u € W*P(R",C). It follows that the operator (9.1)) has a
closed graph and that the subspace W*P(R", C) is indeed the domain of the
infinitesimal generator of the semigroup (9.2)).
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If f:]0,7] — X is continuously differentiable, then the general theory of
semigroups asserts that the function u : [0,7] — X, defined by

u(t) == /Ot S(t—s)f(s)ds for 0 <t <T, (9.3)

is continuously differentiable, takes values in the domain of A, and satisfies
uw=Au+ f. (9.4)

Thus Au : [0,7] — X is continuous whenever f : [0,7] — X is continuously
differentiable.

Definition 9.2. Fiz a constant p > 1. A strongly continuous semigroup
[0,00) = L(X) : t — S(t) with infinitesimal generator A is called maximal
p-regular if, for every T' > 0, there exists a constant cr > 0, such that every
continuously differentiable function f :[0,T] — X satisfies the inequality

(/OT p dt) " S or (/OT LF @I dt) Up. (9.5)

This condition is independent of T'. The semigroup S s called uniformly
maximal p-regular if it is mazimal p-reqular and the constant in (9.5) can
be chosen independent of T.

A/O S(t—s)f(s)ds

The next theorem is due to Benedek—Calderén—Panzone [2].

Theorem 9.3 (Benedek—Calderén—Panzone). Let X be a complex re-
flexive Banach space and let S(t) be a strongly continuous semigroup on X
with infinitesimal generator A. Suppose that

im S(t) C dom(A?) forallt >0
and that there exists a constant ¢ > 0 such that

|4%5(t)a]| < 5l (9.6)

for allt >0 and all x € X. If S is (uniformly) mazximal p-reqular for some
p > 1 then S is (uniformly) mazimal p-regular for every p > 1.

Proof. See page [60 O
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We reproduce the proof in [2]. It relies on the following three lemmas.
Lemma 9.4. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies for some constant ¢ > 0. Then

/2 T IAS(E—5) — AS(t)]| ) dt < C (9.7)

Is|
for all s € R, where C' := clog(2).
Proof. 1f t > 2|s| then t > 0 and t — s > 0 and hence

/t 25 dr
< ‘ [ 1w ar

JAS(t — ) — AS()] = \

Hence

/ IAS(t — s) — AS()|| dt < / sl
2 2|

Is

= c(log(2]s]) — log(s|)
= clog(2).
This proves Lemma [9.4] O
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Lemma 9.5. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies for some constant C' > 0. Then
the following holds. If to > 0 and e > 0 and f : [0,00) — X is a bounded
function whose restriction to the interval (to—e,to+¢)N[0,00) is continuous
and which satisfies

to+e
supp(f) C [to — &t + €], / F(t) dt =0, (9.8)

/t:% A/Ots(f —5)f(s)ds

Proof. Define the function u : [0, 00) — X by

then e
it < C / sl 99)

to—e

u(t) = /OtS(t—s)f(s)ds for t > 0.

Since f(t) =0 for t ¢ [ty — €, to + €] we have u(t) = 0 for t <ty — e and

u(t) == St —tyo—e) /t0+€ S(ty+¢e—s)f(s)ds € dom(A) fort > ty+e.

to—e

Since f has mean value zero (the fourth equality below) it follows that

/ |Au(t)|| dt = / | Au(to +t)|| dt
t

0+2e
) to+e
_ / A Sito+t—s)f(s)ds|| dt
2e to—e
= / A/ S(t—s)f(to+ s)ds|| dt
2e —€

dt

- /200 A/E(S@f — ) = S(8)f(to + 5) ds

—&

IA

/:O _E IAS(t — 5) = AS@)| | (to + 5)I| ds dt

IA

/_5 /200 [AS(t — s) — AS(®)]| dt [ f(to + s)I| ds
= C/g 1f(to + )|| ds.

This proves Lemma [9.5] ]
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The next lemma is the heart of the proof of Theorem It can be
stated in two versions, namely for a finite interval [0, T'] or for the half infinite
interval [0,00). We choose the latter version because it is relevant for the
Laplace operator on R™. More precisely, we shall assume that our semigroup
is uniformly maximal g-regular for some ¢ > 1. This means that there exists
a constant ¢, > 0 such that the inequality

</Ooo HA/Ot S(t—s)f(s)ds q dt> " <c¢, (/OOO [FGIK dt> " (9.10)

holds for every continuously differentiable function f : [0,00) — X with
compact support. Denote by u the Lebesgue measure on [0, 00).

Lemma 9.6. Let S(t) be a strongly continuous semigroup of operators with
infinitesimal generator A that satisfies for some constant C' > 0. As-
sume also that there exist constants ¢ > 1 and c; > 0 such that holds
for every continuously differentiable function f : [0,00) — X with compact
support. Then every continuously differentiable function f : [0,00) — X with

compact support satisfies the inequality
C1 &
> r}) < —/ |f@) dt  (9.11)
r Jo

,u({tzo' HA/OtS(t—s)f(s)ds

for all v > 0, where ¢; := 4+ 4C + (2¢,)".

Proof. By assumption there exists a unique bounded linear operator
T+ L7([0,00), X) = L([0, 00), X)
such that .
('Tf)(t):A/O S(t—s)f(s)ds (9.12)

for every continuously differentiable function f : [0,00) — X with compact
support. For h € L1(]0,00), X) define the function k7, : (0,00) — [0, 00) by

rrn(r) = p ({t = 0] [(TR)()] > r}).

Although 7T h is only an equivalence class of measurable functions from [0, co)
to X, the number k7, (r) is independent of the choice of the representative
of this equivalence class and it is finite because Th is g-integrable. We prove
in three steps that the operator 7T satisfies for some constant ¢; > 0.

56



Step 1. Let h € L(]0,00), X) N L*(]0,00), X) and suppose that there exists
a countable collection of compact intervals I; C R with pairwise disjoint
interiors such that h is continuous in the interior of I;, satisfies

/ h(t)dt =0 forallieN,
I;
and vanishes on the complement of the set B :=J;-, I;. Then

wra(r) < 2u(B) + = bl (9.13)

for every r > 0.

For i € N denote by t; the center of the interval I;, let g; := %\M be half its
length, so I; = [t; — &;,t; + &;], and define the function h; : [0, 00) — X by

| h(), iftel,
hilt) = { 0, iftél.

Then it follows from Lemma [0.5 that

titei

[ wmeiase [ ol a (9.14)

for all i € N. Now recall that the functions Th; and Th are only defined as
equivalence classes in L%([0,00), X). Choose representatives of these equiv-
alence classes and denote them by the same letters 7h; and Th. We claim
that there exists a Lebesgue null set £ C [0, 00) such that

(TR < Z I(TR)@ - for all £ € [0,00) \ E. (9.15)

To see this, note that the sequence Zle h; converges to h in L? as ¢ tends
to infinity. Hence the sequence Zle Th; converges to Th in L. Hence
a subsequence converges to T h almost everywhere. This means that there
exists a Lebesque null set £ C R and a sequence of integers 0 < 1 < ly < ---
such that the sequence 3% (Th;)(t) converges to (Th)(t) as v tends to
infinity for all ¢ € [0,00) \ E. Since |32, (Thy)(®)|| < 322, 1(Th:)(t)]] for
all t and all v, this proves .
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Now define the set

A= (G[tl — 2e;,t; + 251]) N [0, 00).

i=1

Then it follows from ((9.14) and (9.15]) that

Th d d
/R\Aw o) dt < Z/R (t)] dt

Z/H,\r( )@ di

i=

IN

tit+e;

CZ/ |7 ()] dt

- 0/0 1R ()] dt.

IN

Moreover,
A) < 2§:M(L) =
Hence B
krn(r) < u(A)+u({t € 10,00) N A|ITR)()] > 7})

< wae s [Tl

IN

20(B)+ & [ ko))

This proves Step 1.

Step 2. Fiz a continuously differentiable function f : [0, 00) — X with com-
pact support and a constant r > 0. Then there exists a countable collection
of compact intervals I; C [0, 00) with pairwise disjoint interiors such that

1
L] < ;/ LF@OI dt <2\L]  foralli €N (9.16)
I;

and || f(t)]| < r for almost all t € [0,00) \ B, where B := |J;=, I;. Here
|I;| = u(1;) denotes the length of the interval I;.
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For k, ¢ € 7Z define
I(k, 0) :=[27,27(k + 1)].

Let .# = {I(k,é) ! ke Ny, (€ Z} and define the subset %, C .# by

on:{IEj

r|lI| < [, f| and, for all I' € .7,
ICTI = [Llfl <7l

Then every decreasing sequence of intervals in .# contains at most one ele-
ment of .. Hence every element of %, satisfies (9.16) and any two intervals
in # have disjoint interiors. Define B := |, s I. We prove that

1
te0,00)\ B, teles = m/”f”gr. (9.17)
1

Suppose, by contradiction, that there is a ¢ € [0,00) \ B and an interval
I € # such that ¢ € I and r|I| < [;||f||. Then, since || f[|;, < oo, there is a
maximal interval I € . such that ¢ € I and r|I| < [;||f]|. Such a maximal
interval would be an element of ., and hence t € B, a contradiction. This
proves ([9.17). Now the Lebesgue differentiation theorem [33, Theorem 6.14]
asserts that there exists a Lebesgue null set E C [0,00) \ B such that every
element of [0, 00)\ (BUE) is a Lebesgue point of the integrable function || f||.
By (9.17), every ¢ € [0,00) \ (B U E) is the intersection point of a decreas-
ing sequence of intervals over which || f|| has mean value at most r. Hence
If(@®)] < r for all r € [0,00) \ (BU E) by Lebesgue differentiation. This
proves Step 2.

Step 3. We prove the lemma.

Fix a continuously differentiable function f : [0,00) — X with compact
support and a constant r > 0. Let I; be as in Step 2 and define B := | J;2, L.
Then the set B has Lebesgue measure

uB) =>In <33 [Irold< ) [lro)

For each subset A C [0, 00) denote by x4 : [0,00) — {0, 1} the characteristic
function of A. Define g, h : [0,00) — X by

= 1
g:= fX[O,oo)\B+Z A (/1 f(t)dt) X1, h=f—-g
i=1 7" i
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Then f =g+ hand ||g||;: < ||fl|l;x and ||h|;x < 2] f||;:. Since h vanishes
on R\ B and has mean value zero on I; for all ¢ it follows from Step 1 that

24 2C

C
rrn(r) < 2u(B) + — [kl < [RAFP

Moreover, it follows from Step 2 that ||g(¢)| < 2r almost everywhere. Hence
it follows from [33, Lemma 7.36] that

i) < o [T ar < / oo de

cd . 24—1:q
< & [ e gl de< = )),
™ Jo
Hence 51 o0 4 901
+20 + 297 ¢l
Ry (2r) < Rrg(r) + Kn(r) < . Al
This proves Step 3 and Lemma [0.6] O

Proof of Theorem[9.3 Let ¢ > 1 and assume that S is uniformly maximal ¢-
regular and satisfies . Then, by Lemma there exist constants ¢; > 0
and ¢, > 0 such that the operator

T L9([0, 50), X) = L([0, 50), X)
in (9.12)) satisfies the inequalities

ITHle < callfllzas suprars(r) < ev ||l
T

for all f € L9([0,00), X) N LY(]0, 00), X). Hence, by Corollary [4.3|

g—p _ a(p—1)

—1 1/p

77l < ulllls =2 (2} g
for 1 < p<gqand f e LI[0,00), X) N L'(]0,00), X) C LP([0,00), X). This
shows that S is uniformly maximal p-regular for 1 < p < ¢q. Moreover the
dual semigroup S* also satisfies and is uniformly maximal ¢*-regular,
where 1/q + 1/¢* = 1. Hence, by what we have just proved, it is uniformly
maximal p*-regular for 1 < p* < ¢*. By duality this implies that S is
uniformly maximal p-regular for 1/p + 1/p* = 1 and hence for all p with
q < p < co. This proves Theorem [9.3] O]
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10 Coifman—Weiss Transference

Fix a positive integer n and a constant 1 < p < oco. For an integrable function
¢ € L*(R™,C) and a complex Banach space X define

x 16 % fllzr
N (¢) = sup :
rerr@r N0y [ fllze

For X = C abbreviate

N¢) = NE(¢) = sup MOl
feLr(R™,C)\{0} ||f||LP

The map N, : L'(R",C) — [0,00) is a norm and N,(¢) < ||¢||,. for all
¢ € L'(R",C), by Young’s inequality. For many functions this inequality
is strict and it may then be interesting to obtain estimates in terms of the
number N,(¢) instead of the L'-norm. A specific instance of this is Theo-
rem below, which is an example of the Coifman—Weiss transference
principle.

(10.1)

Lemma 10.1. Fiz a constant 1 < p < oo, let (Y,B,v) be a measure space,
and denote by LP(Y,v) the Banach space of complex valued LP functions on

(Y, B,v). Then Ny (¢) = N,(¢) for all ¢ € L*(R™,C).

Proof. Denote by p the Lebesgue measure on R™ and fix a Lebesgue in-
tegrable function ¢ : R" — C. Let % C LP(Y,v) be the space of (equiv-
alence classes of) B-measurable step functions on Y with v-finite support
(up to equality v-almost everywhere). Then % is dense in LP(Y,v) by [33
Lem 4.12]. Hence the space of (equivalence classes of) Lebesgue measur-
able step functions on R"™ with values in ¢ (up to equality almost every-
where) is dense in LP(R™, LP(Y,v)). Now fix a Lebesgue measurable step
function f : R™ — Y. Then there exists a finite sequence of pairwise disjoint
Lebesgue measurable sets Aj,..., A, C R™ with u(A4;) < oo for all 4, and a
finite sequence g1, ..., g, € % such that

V4
f(t) = Z X4, (t)gi

for t € R™. With this notation, we have

¢
LI gy = S i(A2) /Y gal? do.
=1
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Now abbreviate

U0 = (f) (y) = ZxAi(t)g (y)

fort € R” and y € Y. Then
¢
(6= D)) =3 ([ olt=dn(s)) o) = @+ P00

=1

for all ¢ € R” and all y € Y. Since each of the functions ¢g; : ¥ — C is
supported on a subset of finite measure, it follows from Fubini’s Theorem for
o-finite measure spaces (see [33] Thm 7.20]) that

6% snsscon = [ ([ V@ mOp duto) vty

Y

Now it follows from the definition of N,(¢) that

N0 FOF dp(t) < Ny(¢)” A ) du(t)

Zu ) lgi(y

for all y € Y. Integrate this inequality over Y to obtain

L

16 % FIGon, oivany < No(@F D n(A /\gzv’ dv

=1

Nop(@) | F 1o @n Lo vy

Since the space of measurable step functions f : R" — % with support of
finite Lebesgue measure is dense in LP(R™, LP(Y, v)), this implies

¢ f”Lp(R",Lp(Yu)) < Np(9) ||fHLP(R",LP(Y,V))
for all f € LP(R™, LP(Y,v)). Thus
Ny T(g) < Ny(9)-

The converse inequality is obvious and this proves Lemma [10.1] O
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The next lemma is a special case of the transference principle in Coifman—
Weiss [7, 8]. Let X be a complex Banach space and denote by Aut(X) the
group of invertible bounded complex linear operators on X.

Lemma 10.2 (Coifman—Weiss). Let U : R" — Aut(X) be a strongly con-
tinuous group homomorphisms and suppose that there is an M > 1 such that

UG <M forall s e R™.

Then

. o(s)U(s)xds

forallz € X, allp>1, and all ¢ € L*(R",C).

< M*N; () ||| (10.2)

Proof. Fix a constant p > 1 and an element x € X. Since both sides of the
inequality depend continuously on ¢ € L'(R",C), and C§*(R",C) is
dense in L'(R", C), it suffices to prove the estimate for ¢ € C5°(R",C). Fix
a smooth function ¢ : R® — C with compact support and choose vectors
a,b € R" such that a; < b; for all i and supp(¢) C [a1,b1] X - X [an, by,]. For
T=(T1,...,T,) € R" with T; > b; define the function fr : R" — X by

Fr(s) = U(T — s)x, if0<s; <T;—a; for all i,
TAS) = 0, otherwise.

Then || fr|l;, < [L(Ti — a;)Y?M|z||. Let t = (t1,...,t,) € R" such that
b; <t; <T, for all i. Then 0 <t; —s; <T; — a; for all s; € [a;,b;] and hence

(¢ fr)(t) = . o(s)fr(t —s)ds =U(T —t) s d(s)U(s)x ds.

Thus || fp. #(s)U(s)zds|| = [|U(E — T)(¢ * fr)(t)|| < M ||[(¢ = fr)(t)|| when
b; < t; <T;. Take the LP norm over the product of these intervals to obtain

‘ M| * frll _ MNX () || frll o
[T = b = TL(T: = b)' e

T; — a; e 27X
< T (7=2) Ny @l

7

<

- o(s)U(s)xds

The inequality ((10.2)) follows by taking the limit 7; — oo. This completes
the proof of Lemma [10.2] O]
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The Coifman—Weiss transference principle extends to strongly continuous
positive contraction semigroups on LP spaces. Fix a number 1 < p < oo and
any measure space (Y,B,v). Let LP(Y,v) be the Banach space of complex
valued LP functions on (Y,B,v). A strongly continuous semigroup S(t) of
bounded linear operators on LP(Y,v) is called a contraction semigroup
if ||S(t)|| < 1 for all t > 0. It is called a positive semigroup if it is the
complexification of a strongly continuous semigroup on the real L? space and

f>0 — St)f=0
for all t > 0 and every real valued L? function f:Y — R.

Theorem 10.3. Let S(t) be a strongly continuous positive contraction semi-
group on LP(Y,v). Then there exist

e a measure space (Y, B, D),

e linear operators v : LP(Y,v) — LP(Y,7) and 7 : L?(Y,7) — LP(Y,v),

e and a strongly continuous group of linear operators {g(t)}teR on Lp(?, v),
satisfying the following conditions.

(i) For allt > 0 we have
70S8(t)or=S(t) (10.3)

and, 1 particular, mo ¢t = id.

(ii) ¢ is an isometric embedding, i.e.

e o 5y = [ fllzrevay - for all f € LP(Y,v).
(iii) 7 is a contraction, i.e.

I (Dllovar < I lpnpsy  Jor all f € LY, D).
(iv) S(t) : LP(Y, D) — LP(Y, D) is a group of isometries, i.e.

ISl o5z = 1l pogs  forallt €R and all f € LP(Y, D).

(v) The operator S(t) is positive for everyt € R, i.e. it is the complezification
of a bounded linear operator on the real LP space and

f=0= Stf=0

for every LP-funtion ]7: Y > R.
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Proof. The proof of Theorem [10.3| is a rather lengthy construction. The
starting point is the case where Y is a finite set and the semigroup S(t) is
replaced by the iterates of a single operator S. In this situation the assertion
is a theorem of Akcoglu—Sucheston [I]. We explain their result, following the
exposition in Fendler [11, Theorem 2.2.1].

Assume Y is a finite set. Then the space LP(Y,v) of complex valued LP
functions can be identified with the vector space C™ and it suffices to consider
the standard ¢P-norm ||y, := (E?Zl\yi]p)l/p. (Otherwise conjugate first by
the diagonal matrix whose diagonal entries are the pth roots of the weights.)
A positive linear operator is then a matrix S = (5;:)7,=; € R™" with non-
negative entries. Given such a matrix with ¢’ operator norm ||S| < 1,
the Akcoglu—Sucheston Theorem asserts that there is a o-finite mea-
sure space (Y,B,V), a Banach space isometry S : LP(Y,v) — LP(Y,V),
an isometric embedding ¢ : C" — L”(?,D), and a contracting projection
71 LP(Y,7) — C" such that m o S¥ o, = S* for every integer k > 0.

Let S € R™™ be a matrix with nonnegative entries and [|S|| < 1. De-
note the transposed matrix by S* = (Si;)7,—; and think of it as as the dual
operator on C", equipped with the norm ||-||,, where 1/p +1/q = 1. De-
note by R C R" the subset of vectors with nonnegative entries and, for
y=(y1,...,Yn) € R} and r > 0, abbreviate y" := (y7,...,v}).

For I C {1,...,n} denote by ¢; : R — R™ the obvious injection and by
77 : R® — R! the obvious projection. Define S; := So¢;: Rf — R". Then

yeRL, Swl, = ISilllvll, = Si(Sw)y~" = SiI"y"". (104)

To sce this, let y € RY with ||Sryll, = [IS7]| [lyll, and define = := (Sry)P~".

Then ||z]|2 = |[Sy|[P, hence [|z]|, = [|Sryll5~", and therefore

(v, S1) < \lyllpllSrelly < [1Sillllyllpllzlly = [1Stylly = (Sry, ) = (v, St) -

This implies (y, S7z) = ||y|,||S;z||,, hence Siz is a positive multiple of y?~1,

and so Sjz = ||S7||P y*~!. This proves (10.4).
Next observe that any two vectors y, z € R} satisfy

(y,2) =0, (Sy, Sz) =0,
S*(Sy)p—l < yp—l } — { S<y+z)p_1 _ (Sy)p_l + (Sz)p_l. (105)

To see this, note that 0 < (Sz, (Sy)P~1) = (z,5*(Sy)P~!) < (z,y?»™1) =0
and hence (Sz, (Sy)?~!) = 0. This shows that when (Sy); # 0 we must have
(Sz); = 0 and vice versa. Hence (S(y + 2))P~! = (Sy)P~! + (Sz)P~! and this
proves ([10.5)).
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Next observe that, since ||S|| < 1, there exists a vector u € R’} with
strictly positive entries such that

S*(Su)P~t < wPh (10.6)

To see this, choose a vector y € R} such that [[y|, =1 and |Sy|, = [|S].
Then S*(Sy)P~t = ||S||" y?~! < yP~! by (10.4). Assume that the set

I={ie{l,....,n}|y; =0}

is nonempty and choose z € R/ such that ||z[|, = 1 and ||S;z, = [|S;]|. Then
Sx(Srz)P~t = ||S[||P 2P~ < 2P~ by (10.4) and (y,¢7(2)) = 0 by definition.
Hence (Sy, Str(2)) = 0 by (10.5)) and so

S (Sur(2)) = (S7(Su(2)' ™) < w2
With this understood, it follows also from ([10.5)) that
S*(Sx)P~t = S*(Sy)P 4+ S*(Sep(2))P Tt <y (2)P T = 2P

If {ie{l,...,n}|z; =0} # 0, continue by induction to obtain a vector
u € R™ with positive entries that satisfies .

The measure space (17, B, v) will be constructed as a Borel subset of R?
equipped with the Borel o-algebra B and the restriction of the Lebesgue
measure to B. Choose two n-tuples of pairwise disjoint compact intervals of
length one, denoted by I,..., I, and Jy,...,J,, and define

Z() = LnJIz X Jz
=1

Now choose a bi-infinite sequence of pairwise disjoint compact rectangles
7, C R, ke 7\ {0},

such that each Z has positive Lebesgue measure and Z;, N Z, = () for all .
By ((10.6]) there exists a vector u = (u1,...,u,) € R7 such that

S*(Su)P~t <yt and u; > 0 for all 1.
Let v := Su and observe that v; = 0 if and only if S;; = 0 for all 7. Define
I:={1,...,n}, J:={jel|v;#0}.
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Moreover, define

fij = S]z& for (Z,]) el x J,
N (10.7)
nij = Sji (—) for (i,7) € I x 1.

Since v; = (Su); = > 1, Sju; for all j, we have
d gy=1  forallje
=1
Since Y77 St~ = (S 0P71); = (S*(Su)P~1); < wP™! for all i, we have

ijgl for all 7 € 1.
j=1

For j € J divide the interval I; into n compact subintervals I;; of length &;;
whose interiors are disjoint. For ¢ € I choose n compact subintervals J;; C J;
of length 7,; whose interiors are disjoint. (Thus J;; is a point when j ¢ J.)
Define

ijelxJ

R = U R,’j, Rij =1; X Jij cC I; x J,.

ijerxJ
For i € I and j € J there is a unique affine diffeomorphism
Tij « Rij = Qigy Tij(@,y) = (ayx + bij, cijy + dij),  aij,ci5 > 0.

Now define a transformation 7 : | J, ., Zx = Uyey Zi as follows.

(a) The restriction of 7 to R is the transformation from R to @ given by
Ry = Tij : Rij = Qy; (up to a set of measure zero).

T

(b) If R # Zy, define T as a piecewise affine bijection (up to a set of measure

zero) from Zy \ R onto Z; and from Z, onto Zyq for k € N. If R = Z, define
7 as the identity on (J;=, Z.

(c) If Q # Zy, define 7 as a piecewise affine bijection (up to a set of measure
zero) from Z_; onto Zy \ @ and from Z_;_; onto Z_; for k € N. If Q = Z,
define 7 as the identity on J;—,; Z_.
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With this definition the map

is a diffeomorphism on the complement of a set of measure zero. Now define

}71: UZk’

keZ

let B be the Borel o-algebra on 57, and denote by v = pu the restriction of
the Lebesgue measure to B. Then the pushforward measure 7, is abso-
lutely continuous with respect to the Lebesgue measure and vice versa, by
construction. Thus there exists a measurable function

p:Y = (0,00),

unique almost everywhere, such that

(r)(B) = (B)) = [ pay
B
for every Borel set B C Y. Since 771(Qi;) = Ry; and the restriction of 7 to
R;; is an affine diffeomorphism, the restriction plq,; : Qi; — (0,00) is the
constant function

P M(RU) _ M (ﬂ) for (%.7) el xJ (108)

Q) & \u
(See equation (10.7).) Define the linear map S : LP(Y,7) — LP(Y,7) by

Sf=p"(for™) (10.9)
for fe LP(?, v), define the projection 7 : Lp(f/, v) — C" by

w(Pyi= [ Fan (10.10)

I;xJ;

for j =1,...,n, and define the injection ¢+ : C" — Lp(f/,ﬁ) by

W(y) = ZinIixJi (10.11)

i=1

fory = (y1,...,yn) € R". Then Sis an isometry, ¢ is an isometric embedding,

7 is a contracting projection, and 7 o ¢ = id.
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To prove that 7o Skoy = S* call a function fve Lp(?, v) admissible if
it depends only on the first variable in R? and vanishes on (J;~; Z_.

Claim. For every y € C" the function L(yl is admissible. ]ffE Lp(?, V) is
admissible then Sf is admissible and (S f) = Sm(f).

The first_assertion follows directly from the definition. Hence assume that
f € LP(Y,v) is admissible. Then Sf depends only on the first variable,
because 7 is piecewise affine and 77! maps the vertical rectangle Q;; onto
the horizontal rectangle R;;. And S fvanishes on Z_y, for each k € N because

T HZ) CZ yUZ 4.
So Sf is admissible. If j ¢ J then
I; x J; C Zy\ Q,
hence Sf vanishes on I; x J;, because 771(Zy \ Q) C Z_1, and therefore
(Sf); = 0= (S7(]));-
If j € J then, by (10.7), (10.8), (10.9), and (10.10),

"GP = [ rFer =3 [ o For )

n v 1-p _ n 1 .
— ' fdr =Y S;— / fdp
; (u2> /Rij ; ’ Nij J Ry,

= 5[ Fan=(se(D),

L;XJi

The last but one equation holds because fvdepends only on the first variable.
This proves the claim. It follows directly from the claim that 7o S* oy = S*
for every integer k£ > 0 and this proves the Akcoglu-Sucheston theorem [1J.

The Akcoglu-Sucheston theorem was carried over to positive contractions
on general LP spaces by Coifman—Rochberg—Weiss [7]. The extension to
strongly continuous positive contraction semigroups on general LP spaces as
stated above can be found in the manuscript of Fendler [I1, Theorem 4.2.1],
to which we also refer for further details of the proof of Theorem [10.3, [
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Theorem 10.4 (Coifman—Weiss). Let (Y,B,v) be a measure space and
let S(t) be a strongly continuous positive contraction semigroup on LP(Y,v).
Then

s)f ds Np (D) 1 Lo v (10.12)
Lr(Y,v)
for all f € LP( ,V), allp > 1, and all ¢ € L'(]0,00),C).
Proof. Let B B
X = LP(Y,P)

and the unitary group B "
R — L(X):t— S(t)

and the linear operators
v LP(Y,v) = LP(Y, D), 7 LYY, D) — LP(Y,v),
be as in Theorem [10.3] Thus
S(t)=moS(t)or

for all t > 0, the map ¢ : LP(Y,v) — LP(?, V) is an isometric embedding, and

7 ()., =117

for all f € LP(Y, 7). Then

Lr(Y,7)

by Lemma Since S (t) is a unitary group on X, it then follows from
Lemma [10.2l with M = 1 that

aras| | ( / " 031 ds)
LP(Yyw)
Lp(?,a)
) 1 o5 59
p( ) ANl 2o
for all f € LP(Y,v). This proves Theorem [10.4] O
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11 Proof of Theorem 1.1

In view of Theorem it suffices to prove Theorem [1.1| for p = ¢. For this
case expositions based on different methods can be found in the paper [20] by
Lamberton and in the book [22] by Lieberman. The proof in [22] is close in
spirit to the proof of the Calderén-Zygmund inequality in Theorem [5.2] In
our proof of Theorem for p = ¢ we follow the approach of Lamberton [20]
which is based on semigroup theory, Stein interpolation, the Mikhlin and
Marcinkiewicz multiplier theorems, and Coifman—Weiss transference.

Lemma 11.1. Let ( € C\ (—00,0]. Then the linear operator
¢—A:W*(R",C) — L*(R",C)

1s bijective and satisfies the following estimates.
(1) If Re(¢) > 0 and ¢ # 0 then, for all f € LQ(R” C)

(=D)L < Tl £l
(ii) If Re(¢) < 0 and Im(C) # O then, for all f € L*(R",C),

(¢ =) ]l < 11l

=~ [m(Q)] ( )|
Proof. The proof has three steps. Throughout the proof all norms are L?
norms and all inner products are L? inner products for compactly supported
functions on R” with values in R, R", or C.

Step 1. Let u,v € C§°(R") and let ( = & +in € C with & > 0. Define
fy9 € CER™) by ¢(f +ig) := (¢ — A)(u+1iv) so that

Au=&u—nv—Ef +ng,

11.1
Av=nu+&v—nf —£&g. ( )
Then [[ull72 + [vll72 < I1f172 + lgll7e-
Integration by parts shows that
—[[Vull* = (u, Au) = E[lul® = n (u,v) = & (u, f) +n(u,g)
IV = (o 0) = ) el )~ Elng)
—(Vo,Vu) = (v, Au) = € (u,0) = [|o|* = & (v, f) +n (v, 9), ‘
(u, Av)

—(Vu, V) = (u, Av) = nlul|* + & (u,v) =1 {u, f) — € (v, g).

71



Add the first two inequalities in ((11.2)) and subtract the last two identities
in (11.2)) to obtain

& (lull® + 1lvl1%) < €((u, £) + (v,9)) +n({v, f) — (u, g))
0 (lall® + [[ol*) = n((u, ) + (v,9)) = €({v, £) = (u. 9)).

Multiply the (first) inequality in (11.3)) by & > 0 and multiply the (second)
equation in (11.3) by n and take the sum to obtain

4+ ) (lull” + [ol*) < (€ +0°) ((w, £) + (v, 9)).
Since &2 + 7% > 0 it follows that

(11.3)

1
Jull” + 11oll* < (s 1) + (0,90 < 5 (ull® + ol + 1717 + llg])-

This proves Step 1.

Step 2. Let u,v € C°(R™) and let ( = £ +in € C with £ < 0 and n # 0.

Define f,g € C(R™) by ¢(f +1ig) := (¢ — A)(u + iv) so that holds.
Then

2 2 142 2 2
lullzz + lollze < Jo7 ¢ (LFIZ + llgllz2) -

We argue as in the proof of Step 1 to obtain ((11.3)). Since i # 0 the (second)
equation in ((11.3) can be written in the form

(u, f+n7'g) + (v.g —n7'Ef)
ull ||f +n7"¢g|| + vl ||g — n~ "¢ /||

=l + el + 5 (17 + el + llg —n~'e )

1 1
= 5 (el + o)) + 5 (14 b 'eP) (LI + lgl?)

2 2
[[al™ + [J]]

IN

IN

This proves Step 2.
Step 3. We prove the lemma.

If u € Cg°(R™, C) then, by Step 1 and Step 2, we have |[ul] < [¢|71[[(¢ — A)ul|
for Re(¢) > 0 and [[u] < [Im(¢)[™" [[(¢ — A)ul| for Re(¢) < 0, Im(¢) # 0.
These inequalities continue to hold for all u € W22(R",C) and show that
the linear operator ¢ — A : W22(R",C) — L*(R",C) is injective. By the
regularity argument outlined in Example it is also surjective. This proves

Lemma [I1.11 O

72



It follows from part (i) of Lemma and the Hille-Yoshida—Phillips
Theorem that the operator A generates a strongly continuous contraction
semigroup S(t) on L?(R",C). In Example [9.1| we have seen that this semi-
group is given by

S(thuo = Kyxug = | Ki(z —y)uoly) dy (11.4)
R”
for up € L?*(R",C) and ¢t > 0, where K; : R® — R is the fundamental
solution ([1.9)) of the heat equation on R™. Now fix a constant 1 < p < oc.
Since ||Ky||pr = 1 for all ¢t > 0 it follows from Young’s inequality that

15 () uollp < lluoll e (11.5)

for all t > 0 and all ug € L*(R",C) N LP(R",C). In [20] Lamberton proved a
general LP regularity theorem for strongly continuous semigroups on L? that
satisfy the estimates of Lemma|l1.1{and ([11.5). Here is his result. As before
all L? spaces are understood as complex LP spaces.

Theorem 11.2 (Lamberton). Let (X, A, 1) be a o-finite measure space
and let A : dom(A) — L*(X, ) be the infinitesimal generator of a strongly
continuous semigroup S(t) on L*(X, ). Assume A and S satisfy the follow-
mg.

(I) If ¢ € C\ (—00,0] then the operator ( — A : dom(A) — L*(X,u) is
bijective and, for all f € L*(X, ),

_ 4 A 1l i Re(Q) > 0,
6= < { S FRe@ 20 iy 0. 119

(IT) Let 1 < p < co. Then S(t) defines a strongly continuous positive con-
traction semigroup on LP, i.e. if t > 0 and ug € L*(X, u) N LP(X, ) then

1S (E)uoll o < [luoll 1o (11.7)
and, if ug is real valued, then so is S(t)ug and ug > 0 implies S(t)ug > 0.
Then, for every real number 1 < p < oo, there exists a constant C, > 0

such that every continuously differentiable function f : R — L*(X, ) with
compact support satisfies the inequality

(L)) se-amoa ) Veq ([ vl ) "

(11.8)
Proof. See page O
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Condition (I) in Theorem implies that A generates what in semi-
group theory is called an analytic semigroup. Lamberton’s theorem in [20]
is more general in that he merely assumes that A generates an analytic semi-
group. This corresponds to a more general estimate than and, in
particular, the spectrum of A is then not required to be contained in the
negative real axis but only in a cone of angle less than 7 around the negative
real axis. The discussion in this section is restricted to the case where
holds because that suffices for our intended application.

A key ingredient in Lamberton’s proof is the Fourier transform for

L? functions on R with values in L?*(X, ). It is the unique bounded linear
operator . : L*(R, L*(X,u)) — L*(R, L*(X, p)) given by

(F)(©) =) = [ el (11.9)
for ¢ € R and v € L*(R, L*(X, u)) N LY(R, L?(X, p)). Tts inverse is
(F@N® =ut) =5 [ ae s (11.10)

fort € Rand @ € L*(R, L*(X, u))NL' (R, L?(X, it)). Using the Fourier trans-
form and the operator A one can define an operator family on L2(R, L?(X, i)
as follows. As before we use the notation S = {z € C|0 < Re(z) < 1}.

Definition 11.3. Fiz two real numbers 0y, 601 such that
0< by < g <O <m
and define the function p:S xR — C by
p(2,€) = |¢]el(1=2)00+201)sign(€) (11.11)

for z € S and & € R, where sign(§) := 1 for £ > 0 and sign(&) := 0 for £ < 0.
For z € S define the operator U, : L*(R, L*(X, n)) — L*(R, L*(X, i) by

U.=Ftol.0f,  (UHE) = pz8)(p(z8) — A7 fla) (1112)
for f € L*(R,L*(X,pn)) and & € R. 1t is well defined because the opera-

tor norm of the bounded linear operator p(z,€)(p(z,&) — A)™" on L*(X, p)
satisfies the inequality

- 1 if [(1=X)0+ M0y | < Z,
(2, €) (p(2,€) = A) 7| 112y < { e il - N+ A1 | > 2.
(11.13)

forall z=X+1ir €S and all £ € R, by (11.6).
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With this definition in place, Lamberton’s proof of Theorem [11.2 requires
the following seven lemmas. The first lemma shows that for a suitable choice
of A the operator U, agrees with the operator for which we intend to prove
an LP estimate.

Lemma 11.4. Choose a constant 0 < X\ < 1 such that
(1= M\)fo + M, :g (11.14)

and let f: R — L*(X, ) be a continuously differentiable function with com-
pact support. Then
t

(Uxf)(t) = A/ S(t—s)f(s)ds+ f(t) (11.15)

fort >0 and (Uyf)(t) =0 fort <0.
Proof. Define the function v : R — L?(X, ) by

v(t) ::A/t S(t—s)f(s)ds+ f(t) for t € R.

—0o0

For 6 > 0 define us,vs : R — L*(X, u) by

us(t) == / e S(s)f(t — s)ds, vs(t) == tus(t) = (A = d)us(t) + f(t)

—0o0
for t € R. (Here we use the fact that us takes values in the domain of A

and is continuously differentiable.) Then vy = v. With g := f the function
vs = s can also be expressed in the form

t
vs(t) = / e =St — 5)g(s) ds for t > 0. (11.16)

—00

For § > 0 the function v; belongs to L*(R, L?(X,u)). Denote its Fourier
transform by Us := % (vs). The Fourier transform of the operator valued
function [0,00) — L(L*(X,u)) : t — e °.S(t) is given by (i€ +§ — A)~L.

Hence 55(€) — (i€ + 8 — A)~15(€) = i€(i€ +6 — 4)- J(€) by (LI6). Take
the limit § — 0 to obtain v € L*(R, L*(X, u)) and

5(€) = (Z(v))(€) = iE(iE — A)TLF(©).

Now it follows from equations (11.11]) and (11.14) that p(\, &) = i¢ for all
¢ € R. This implies Uy f(§) = i£(i€ — A)71f(€) = 0(€) for all £ and hence
Uyf = v. This proves Lemma [11.4] O]
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The main task is now to prove a uniform L? estimate for the operators
Ui for all 7 € R. This task will be accomplished in Lemma below.
The first step is to express the operator Uy in Definition [11.3|in terms of the
semigroup. The proof will take up the next four pages.

Lemma 11.5. Define the function ¢q : R x (0,00) — R by
(52 — %) cos(bp)

m(r2 4+ s2 — 2rssin(fy))?

¢o(r,s) ==

for (r,s) € R x (0,00). (11.17)

This function is integrable over I X [e,00) for every e > 0 and every compact
interval I C R, and the operator Uy : L*(R, L*(X, n)) — L*(R, L*(X, u)) is
given by

Wor) ) =tiny [~ [ on(r5)(6)1(¢ ~ ) drds (11.19)
for every t € R and every function f: R — L*(X, u) that is twice continu-
ously differentiable and has compact support.

Proof. The proof has six steps.
Step 1. Define the functions K, K. : R — L(L*(X, 1)) by
K(€):=p(0,6)(p(0,) = 4) ", K.(6) = e P S()K(©).
Then ||Ko(€)llzez2y < 1K (€)llzizz) < 1 and
lim|| K. (&) f = K (€) fll= = 0
for all € € R and all f € L*(X, p).
By (LL1I),
p(0,€) = |¢|e S = I¢] cos(f) + i€ sin(&o).

Since 0 < 0y < m/2 the number p(0, &) has nonnegative real part and hence
le=P092] < 1 for all £ € R and all ¢ > 0. Moreover, the operator norm of
S(t) : L*(X,p) — L*(X, u) is at most one for all ¢, by (11.7). Hence

KOl e < 1K) ewe <1,
where the last inequality follows from . This proves the first assertion.
Since the operator K (&) commutes with the semigroup, it follows from the
definitions that ||[K.(&)f — K.(&)f||z2 < ||eP©9=S(e)f — fl|z2 for € € R,
e >0, and f € L*(X,u). Hence the second assertion follows from the fact
that S is a strongly continuous semigroup. This proves Step 1.
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Step 2. Let f: R — L?(X, u) be a twice continuously differentiable function

~

with compact support. Then f: R — L?(X, u) is integrable and

o0
-~

W0 =5 [ R de (1119

—00

for all t € R.
Define g := f. Then §(¢) = —£2f(€) and hence

. 1 1 .
1£()]z2 = §||9(§)||L2 < §||f||L1(R,L2(X,u))

for all £ € R\ {0}. Since f is continuous (near & = 0) it follows that the
function f: R — L?(X, u) is integrable. Hence Step 2 follows from the fact
that the Fourier transform of Uy f is the function Upf = K f : R — L*(X, u),
by definition, and hence is integrable as well.

Step 3. Let [ be as in Step 2 and define the function Uy f : R — L*(X, p)
by

(Uoef)() = = / T RO de. (11.20)

2r J_o
fort e R and e > 0. Then

lim [[(Uo)(t) — (U f) (1) 2 = 0

for all t € R.
By Step 2,
0O ~ o p)s = 5 [ [~ & (Rio) 0 - Re@)fie)) ae )
<5- [ |Rofo- k@],
for all £ € R. Moreover,
|R@fo-Ra@fe| , <2|fe] ,.
lim | Z(©)7(6) - K- f(©)]| , =0

-~

for all £ € R by Step 2. Since the function R — R : & — [[f(&)||r2 is
integrable, the assertion of Step 3 follows from the Lebesgue dominated con-
vergence theorem.
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Step 4. The function ¢g in (11.17)) is integrable over I X [g,00) for every
e > 0 and every compact interval I C R.

Since 0 < 0y < 7/2 we have sin(fy) < 1. Since 2rs < r? + s? it follows that

cos(6p)|s* — r?| cos(fp) 1
7(r? 4+ s2)2(1 —sin(6y))? — (1 —sin(6y))?2 r2 + 2

|Po(r, s)| < (11.21)

Since

_— S = — — S — =
T2+S2 |7"| e/r 1+82 |T| /Ir| 32 15

/°° 1 1 [~ ds 1 [ ds 1
< -

the function (r,s) — (r* 4+ s?)~! is integrable over I X [g,00) for every € > 0
and every compact interval I C R, and hence so is ¢g. This proves Step 4.

Step 5. Let ¢g be given by (11.17)). Then

Go(r,s) = L /OO p(0, &)ePODHIE ge (11.22)

2r J_o

for all (r,s) € R*\ {(0,0)}.
Fix a pair (r,s) € R?\ {(0,0)}. Since

p(0,€) = |¢]e5EE) = |¢| cos(fy) + i€ sin(6p),

the right hand side in ((11.22)) is the sum z* + 27, where

0o p<0 £>e—p(0,§)s+ir§ 00 ei@gfe—f(eieo s+ir) ei@g
0 s 0 2m

and

0 —p(0,8)s+ire o0 —_ ) p—r(0,—&)s—irg
5T — / ,0(0,5)6 df — / 10<Oa 5)6 df _ —+'
0

=z
oo 2m 2m
Hence
2T+ 2 = Re - e - = Re(eieoge_wos,—i_ ir)")
m(elfos —ir)? m|eifos — ir|t

Re(e 5% 4 2irs — e%or?) cos(0y)(s* — r?)
m(cos?(0y)s? + (sin(fy)s — 7)2)2  w(r2 + s2 — 2rssin(fy))?’

This proves Step 5.
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Step 6. Let f be as in Step 2. Then
(Uoef)(t / / ¢o(r,$)S(s)f(t —r)drds

for alle >0 and all t € R.
For all ¢ € C with Re(¢) > 0,
(C—A) "= / e~**S(s) ds.
0

Since Re(p(0,€)) > 0 for all £ € R\ {0} it follows from the definition of K (€)
in Step 1 that

K.(€) = p(0,6)e"9=5(e) (p(0,6) — A) "
= 00,00 (e) [ e 09 (s)ds

0
= 0(0.6) [ 0S(s)ds

for all ¢ > 0 and all £ € R. Hence it follows from the definition of Uy, f in
Step 3 that

1 [ ~

Uoht) = 5 [ ROF(©)de
= —/ [ oo, 00 s ) 7e) dsi

— %/ / / p(O, g)e—p 0,§)s+i(t—r)§s(s)f(r) dT‘dsdf
= % % (/oo /OO p(0, &)e POSHES(5) £ (¢ — 1) drds) dg.

Since [|p(0,¢)e OO HEDES(5) (1) L2 < \5 e leleosC0le=0%]| £ (r)|| 12 when-
ever s > ¢, the function (r,5,€) + p(0,&)ePOLHEG(s) f(t —7) is integrable
over R x [g,00) x R for all € > 0. Hence, by Fubini’s theorem,

(Uoef)(t) = / / ( / p(0,&)e” P<°f>8+"“€dg) S(s)f(t —r)drds
= / / do(r, $)S(s)f(t — r) drds.

Here the last equation follows from Step 5 and this proves Step 6. The
assertions of Lemma follow immediately from Steps 3, 4, and 6. m
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The next lemma (whose proof takes up three pages) examines the proper-
ties of the function ¢y : R x (0,00) — R in equation (I1.17) in Lemma[11.5]
It makes use of the Fourier transform on R?, given by

(FENem =) i= [ e Iutr,s) drds

for v € L*(R?*,C) N L' (R?,C) and &, € R. The inverse is

1 i(gr+ns)

o Lt ey

for v € L*(R?,C) N L}(R?,C) and r,s € R. A function v : R? — C is called
a Schwartz test function, if the functions (r,s) — r*s‘@mv(r, s)0v(r, s)
is bounded for all quadruples of nonnegative integers k, ¢, m,n. The (topo-
logical vector) space of Schwartz test functions is denoted by . (R?, C) and
the subspace of real valued Schwartz test functions is denoted by .7 (R?).
The space . (R?, C) is invariant under the Fourier transform. A tempered
distribution on R? is a continuous linear functional . (R?, C) — C.

Lemma 11.6. Let ¢y : R x (0,00) — R be the function defined by (11.17))
and define the linear map @, : C§°(R?,C) — C by

Y 1 cos(fp) v
/0 /oo m(r2 + s — 2rssin(fy)) Or oy (o8 drds (11.23)

(ZH@)(r,s) = v(r,s) =

for v e C°(R?,C). Then the following holds.
(1) Dy extends to a tempered distribution.

(ii) For allv € C°(R% C)

= lglg)/ / Go(r, s)v(r, s) ds (11.24)

(iii) The formula (Tyv)(r,s) := ®o(v(r — -, 5 — ) for v € . (R?,C) defines
a continuous linear operator Ty : /(R?* C) — . (R? C). Moreover,

|£‘ei903ign(§)
‘é'yeleoslgn( ) 4 1777
forv € #(R,C) and [m(€,n)] < (1—sin(60))~2 for all (€, 1) € RA\{(0,0)}.

(iv) If 1 < q < oo then Ty extends to a bounded linear operator from
Li(R? C) to itself.

Too(€,m) = m(&,mo(E,n),  m(&n) =

(11.25)
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Proof. We prove (i). Define the function Ky : R*> — R by Ky(r,s) := 0
whenever s < 0 or r = s = 0, and by
r cos(6p)

K, =
o(r, 5) m(r? 4+ s2 — 2rssin(6p))

whenever s > 0 and (r, s) # (0,0). Then K is locally integrable and a simple
computation shows that

0K
8_7‘()(T’S> = ¢o(r,s) for s > 0.

Hence the right hand side of ([11.23]) is well defined and it follows directly

from the definition that ®q is a tempered distribution. This proves (i).
We prove (ii). Fix a function v € C§°(R?, C) and define

B.(v) ::—/:O /: Ko, s)%(r, 5) drds

for £ > 0. Then lim._,o ®.(v) = Po(v) and integration by parts shows that

/ / aKO (r, s)v(r, s) drds—/:O/:%('f’,S)v(r,s)drds.

This proves part (ii)
We prove (iii). Smce

p(0,€) = [¢]€"™EMS) = |¢] cos(bp) + i€ sin(6y),
we have |p(0,&)|* = [£]? and
1p(0,€) +inl* = & +n* — 2ensin() = (€% + n*)(1 — sin(f)).
Since 0 < 6y < 7/2 it follows that sin(fy) < 1 and

m(E ) € —————  forall (€,1) € E*\ {(0,0)}
1 —sin(6p)
Since Re(p(0,€)) > 0 for £ € R\ {0}, we have
> 0 —p(0,€)s—isn ds = p(()?g) _ ) 11.26
/0 p(0,&)e = 0.6 + 1 m(&,n) (11.26)
for all nonzero pairs (£,7) € R?. Moreover,
Go(r,s) = % /Z p(0, &) POQHIE ge (11.27)

for all nonzero pairs (r, s) € Rx [0,00), by Step 5 in the proof of Lemma|L1.5]
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Next define
me(€,n) = e POV (g ) = / p(0,&)e 0Ot gs  (11.28)

for (¢,n) € R?\ {(0,0)}. Here the second equation follows from (11.26). Fix
a function v € C§°(R? C) and denote its Fourier transform by v := .Z(v).
Then v is integrable and hence so is m.v. Thus the inverse Fourier transform
of m.v is given by

(FH(meD))(r, s)

(271r) / e Im (&, m)0(€,m) dédn

/ / (0, &)e PO HreHi =g e Yy ds'dedn.
27T R2 Je

The integrand satisfies the inequality
[p(0, §)e OO e )| < el 00 (e, )|

for s > ¢ and so the function is integrable on R? x [, 00). Hence, by Fubini’s
theorem,

I N
p(0,€)e” P“’@S*"“f(% / TG m) dn ) dE ) ds'

/
/_OO p(0,&)e —P(0.8)s"+irg (/_00 e‘ir’gv(r/, s—s) dr/) df) ds'

o0

/ p(0,€)e PO HE=8 (17 s _ o' dr') d{) ds'

5 /_OO (/_:p(O €)e POy (1 gt 5 — o) dr') df) ds'
= /OO (/OO L p(O,f)ep(0’5)3/+ir/5d£> v(r—r',s—5) d'r”) ds'

r—rs—3§)dr'ds = o (v(r—-,s—")).

Il
n\
8
|
8
pSN
S
~
\.CD\
=

Here the last but one equation follows from (11.27)).
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Now define the function ¢, : R? — R by

| ¢o(r,s), ifs>e,
Ge(r, s) == { 0 sz e (11.29)
This function is locally integrable, by Lemma [11.5, and we have just proved
that

—

Ge ¥V = M0

for every smooth compactly supported function v : R?> — C. Moreover,
Im<(&,n)| < |m(€,m)| < cos(By)~! for all € and . Thus

Ime (&, mv(§,m) —m(&,n)v(€,n)| < ol )| v(&,n)

lim|me (€, 7)v(€; 1) —m(&,nv(&,n)] =0

for all (£,m) € R?\ {(0,0)}. Since the function R? — R : (§,n) — [0(&,n)]* is
integrable, it follows from the Lebesgue dominated convergence theorem that
lim. o ||m:0 — m@]| ;> = 0. This implies that the functions ¢.xv = .F 1 (m.0)
converge in L? as € tends to zero. Since the pointwise limit of this family is
the function Tyv, by part (ii) of the lemma (already proved), it follows that

lim ||¢. * v — Tpv|| ;2 = 0. (11.30)
e—0
Hence
F (Tyv) = lim F (¢ x v) = limm 0 = mov,
e—0 e—0

where the convergence is in L?(R?). This proves part (iii).
We prove (iv). The real and imaginary parts of m are given by

B €2 4 Ensin(y) €] cos(6)
Re(m(faﬁ)) - 52 + 772 + 2§T]Si1’l(¢90)’ ( (f 77)) 52 + ?7 I 2£USIH(90)

A calculation shows that there exist positive constants ¢; and ¢y such that

m C1
€1 ‘ £ ‘ < —
e +|Grten| < =
and 52 P 2
m C2
6|+ || + | G| < g2
for all (¢,7) € R?\ {(0,0)}. Hence the assertion of part (iv) follows from the
Mikhlin Multiplier Theorem [6.1] This proves Lemma [11.6 O
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To prove the desired estimate for the operator Uy we must replace ¢y by
integrable functions ¢. The next lemma introduces a class of operators that
will be used to approximate Uy. This is where the transference estimates in
Section [L0] are used.

Lemma 11.7. Fiz a number 1 < ¢ < oo and let ¢ € L'(R?,C) be a complex
valued Lebesgue integrable function such that ¢(r,s) = 0 for s < 0. Let
f R — LY(X, pn) be a continuous function with compact support and define
the function Tof : R — LU(X, ) by

(Tof)(t / / o(r,s)S(s)f(t —r)drds (11.31)
fort € R. Then Tyf is g-integrable and

1T6F 1| o zacxy < Nal@) AN o, pacx ) - (11.32)

(See equation (10.1)) for the definition of N,(¢).)

Proof. By Theorem and assumption (IT) in Theorem there is a
o-finite measure space (Y, B,v), an isometric embedding ¢ : LY(X,pu) —
L1(Y,v), a contracting projection m : LY(Y,v) — L9(X,u), and a strongly
continuous group of positive isometries U(t) € Aut(L?(Y,v)), such that

molU(s)or=95(s) for all s > 0.

For r, s € R define the operator % (r, s) on LY(R, L4(Y,v)) = LI(RX Y, 0 ®v)
(0 the Lebesgue measure on R) by

(% (r,8)[)(t) == U(s)f(t —7)
forr;s,t € Rand f € LYR, LY(Y,v)). Then % : R? — Aut(LY(R, LY (Y, v)))
is a strongly continuous group of isometries. Hence, by Lemma [10.2]

1oy = | [ [ 60908~ rdrds
0 J-oo L9(R,L9(X,p))

- / ) / o0 ) rU (NS — 1) drds
< //ngrS (5.7) (0o f) drds

La(R,La(X )

La(R,La(Y,w))
< Ny(9) fleo f”Lq R,L4(Y,v))
= Nq( ) ||f||Lq (R,L4(X 1))
for all f € LY(R, LY(X, p)). This proves Lemma [11.7] ]
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The next lemma introduces the required sequence of integrable functions
that converge to ¢q in the distributional sense.

Lemma 11.8. Let ¢ : R x (0,00) = R be the function in (11.17)) and let
Ty : L(R?,C) — LI(R?,C) be the operator in Lemma[11.6. Then there is a
sequence of smooth functions ¢, € . (R?) that satisfies the following.

(i) For alln € N and all (r,s) € R* with s <0, we have ¢,(r,s) = 0.
(ii) For all n € N and all real numbers 1 < g < oo, we have

No(én) < [[Toll21a) - (11.33)

(iii) For allv € (R?,C), we have

lim On(r,s)v(r,s)drds = hm/ / ¢o(r, s)v(r,s)drds.  (11.34)
R2

n—o0

Proof. Choose a sequence of smooth functions v, : R* — [0, 00) such that

supp(¥,,) C [—1/n,1/n] x [0,1/n], . Yn(r,s)drds =1

for all n € N and define ¢,, := Ty1),,. Then the Fourier transform of ¢, is
€] eifosign(s)
|£‘610051gn( ) + 1?7 .

Oul&m) = m(&m)Pu(€m),  m(En) =
(See equation in Lemmal[11.6])

We prove that ¢, satisfies (i). An integrable function is supported in the
half plane R x [0, co) if and only if its Fourier transform extends to a bounded
holomorphic function in the domain {n € C|Im(n) < 0} for every ¢ € R.
Since the summand |£|ei%®87() has a positive real part the multiplier m has
this property. Since v, is supported in R x [0, 00), its Fourier transform has
this property as well, and hence so does ngSn = m{ﬂ\n This shows that ¢, is
supported in R x [0, 00).

We prove that ¢, satisfies (ii). Namely,

[fn *vllpa = [[(T%n) * vl Lq

= [To(¢n * 0)|l

< ITollgepay ¥ * vll o
< ”TOHL(Lq) o]l 4

for all v € 7 (R?) and so N,(¢n) < | Toll £(zqy- This proves (ii).
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We prove that ¢, satisfies (iii). Let v € (R",C) be a Schwartz test

function and recall that
—hm/ / ¢o(r, s)v(r, s)drds
e—0
by (11.24)), that
(Tov)(r, 8) = (Pov)(r — -, 5 — )

in Lemma and that the Fourier transform of Tyv is given by 7/10; =mu,
where m : R?\ {(0,0)} — C is the bounded function in (11.25]). Define

w(r, s) :=v(—r, —s)
so that w(§,n) = v(—&, —n). Then
Bo(v) = (Tow)(0.0) = 5 [ mle.mi(—¢,—n) ded
and

¢n(ra S)U(T’, S) drds = <¢n * w>(0> 0)

RQ
1
= 5 %(5 n)o(=¢§, —n) dédn
= % m(&, ) (&, n)B(—E, —1) dEdn.

Since v, € 7 (IR?) is a sequence of approximate Dirac J-functions, its Fourier
transforms satisfy |1Zn(£,77)] < 1 for all n € N and all ({,7) € R", and
the sequence @/D\n converges to 1, uniformly on every compact subset of R2.
Moreover, since v is a Schwartz test function, so is v, and so ¥ is integrable.
(In fact, a sufficient condition for the integrability of ¥ is that v is three
times continuously differentiable and all derviatives of v up to order three
are integrable.) Now let x > 0. Then there exists an R > 0 such that

|v\<—

214/ 1 — sin(6y) /R2\BR

Choose ng € N such that (1 —sin(6y))""/2R*sup,,[0] supBRMn— 1| < k/3 for
every integer n > ng. Then |®o(v) — [z ¢uv| < & for every integer n > ny.
This proves Lemma [11.8] ]
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The next lemma is a convergence result that plays a central role in Lam-
berton’s proof of Theorem [11.2] (see [20, Lemma 3.4]). We reproduce his
proof below.

Lemma 11.9. Let fo, 90 € L (R,C), vy € L*(X, 1), uo € (e, dom(A¥),
and to > 0. Define the functions f,g: R — L*(X, u) by

f(t) = fo(t)S(to)Uo, g(t) = go(t)vo. (1135)
Fiz a constant § > 0 and define the functions U f, 7;5nf ‘R — L3(X, 1) by
W0 =ty [ [ ontrye ()10 — ) drds,

= / / P (1, s)e_JSS(s)f(t —r)drds,
where the ¢, are as in Lemma|11.8. Then
T (9,79 f) o raieny = (9 U0 ) e oo (11.37)

Proof. Choose a smooth cutoff function f : R — R such that 5(s) = 0 for
s < —tp/2 and S(s) =1 for s > 0. Define the functions ag, by : R — C by

ao(r) := /_oo To() fot —7)dt, bo(s) := B(s)e ™% /X@o(S(tg + s)ug) dp

[e.9]

(11.36)

for r € R and s > —ty and by by(s) := 0 for s < —ty. Then ag and by are
Schwartz test functions and hence so is the function v : R? — C given by
v(r,s) := ag(r)by(s). Moreover, it follows from ([11.35)) that

(9,75, >L2RL2X;L))

/ / / on(r,8)G0(t) folt —r)e” 8/ 0(S(to + s)ug) dpedrdsdt
= /Oo /oo Gn(r, 8)ao(r)bo(s) drds

for all n € N. Here we have used the fact that ¢,(r,s) = 0 for s < 0.
Similarly,

<g, Ugf>L2(R7L2(XM hm/ / oo(r, 8)ap(r)bo(s) drds.

Thus (11.37)) follows from ([11.34)) in Lemma with v(r, s) = ag(r)bo(s).
This proves Lemma [11.9 ]
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The final preparatory lemma for the proof of Theorem [11.2] puts things
together and establishes the required L? estimate for the operators Ui, intro-
duced in Definition I1.3]

Lemma 11.10. For every real number 1 < q < oo there exists a constant
C, > 0 such that, for allT € R and all f € L*(R, L*(X, u))NLY(R, LI(X, i),

o) 1/q o] 1/q
(/ |Use O dt) <¢, (/ 1O % dt) SEY

Proof. The proof has two steps.
Step 1. The inequality (11.38) holds for 7 = 0 with Cy = || To|| ey Here
Ty is the linear operator introduced in Lemma [I1.6,

Choose 1 < ¢’ < oo such that 1/¢g +1/¢' = 1. Assume first that f and g are

given by (I1.35) with fy, g0 € -7 (R), to > 0, vy € L*(X, ) N L9 (X, ), and
ug € LU(X, 1) Ny dom(A*). Then

) — 1 J
<g> UO f>L2(]R,L2(X,,u)) - nh_>r20 <g’ %nf>L2(R7L2(X,,u))

‘ 5
< nh_)rgo HgHLQ’(R,Lq/(X,,u)) HTanLq(R,Lq(X#))

< lim No(@n) 191l 1o 2o (o) 11l L pacx )
<

||T0||L(LL1) ”g”Lq’(R,Lq'(X,M)) ||f||L11(]R,LtI(X,u)) :

Here the first step follows from Lemma [I1.9] the second step is Hoélder’s
inequality, the third step follows from Lemma [I1.7, and the last step follows
from in Lemma [11.8] The estimate extends to linear combinations of
functions g as in (T1.35). These form a dense subspace of L7 (R, L7 (X, 1)),
so this inequality continues to hold for all g € LY (R, L? (X, u)). Divide by
91l o ®, 24’ (x 0y and take the supremum over all nonzero g to obtain

5
||UOfHLq(R,LQ(X,p)) < HTOHE(L‘I) Hf”LQ(R,Lq(X,,u)) :
for f asin ({11.35]) and their linear combinations. Take the limit § — 0. Then

||U0f||Lq(R,LfZ(X,u)) < ||T0||L(Lq) ||f||Lq(]R,L‘1(X,u)) : (11-39)
for all f as in , by Lemma Now take the limit 5 — 0 in (11.35))
to obtain that continues to hold for all f : R — LIY(R, LY(X, p)) of
the form f(t) = fo(t)uo, where fy € (R) is a Schwartz test function and
ug € LUX, p) N (yey dom(A*), as well as their linear combinations. These
form a dense linear subspace of LI(R, LY(X, u)), so (11.39) continues to hold
for all f € L*(R, L*(X,p)) N LY(R, L9(X, i)). This proves Step 1.
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Step 2. There exists a constant Cy, > 0 such that the inequality (11.38) holds
for all T € R and all f € L*(R, L*(X, pu)) N LYR, LY(X, p1)).

For all 7 € R we have
p(iT, 5) _ |é~|6i((1—i7’)90+i7'91)51gn(f)

|§|eieosign(g)677(91*90)51@1(5)
_ p(0’6—7(91—90)sign(€)§)

_ [ p(0,eTE)g)if € >0,
T p(0,em@=0)g) - if £ < 0.

(see equation ([11.11))). Thus it follows from the definition of the operator

Ui- in equation that
Uir (&) = K(e 7" FL(€) + K( ") F (&) (11.40)
where K (£) = p(0,€)(p(0,£) — A)~! as in the proof of Lemma , and

cooy . [ FO), fore>0, 5[0, forg>0,
FO=119 M2y TO={Fg mezo

For A > 0 consider the scaled operator Uy : LI(R, LY(X, u)) defined by
Uonf == (Uofa)a-1,  fa(t) = Af(AL).

-~

Then ]/”:\(/\f) = f(§), hence

Uoaf(€) = KOOF(),
and Up, has the same operator norm as Uy in L(LY(R, LY(X, 1))). Now
define the linear operators 1. : L*(R, L*(X, u)) — L*(R, L*(X, p)) by
H/i\f = f;-

These extend to bounded linear operators from L(R, LY(X, u)) to itself, still

denoted by Ilp, by Corollary with m = Xjo,.c). The formula ((11.40))
shows that

Ui = U07e—r(91_90)H+ + Uovef(el—eo)ﬂ_
for all 7 € R. Hence

||UiT||£(Lq(R,L‘1(X,u))) < (HH-i-H[Z(LQ(R,L‘I(X,M))) + HH—HL(LQ(R,L‘I(X,M)))) HTOHC(L‘I)
by Step 1. This proves Step 2 and Lemma [11.10 O
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Proof of Theorem[11.3. Fix a constant 1 < p < 0o, and choose constants

0<¢90<g<91<7r, 0< A<, l<g< o
such that L 1-x
7T —
1—=XN)by+ N0, = = -—= — 4 —. 11.41
=N+ =5, —=——+5 (11.41)

For z€ S= {2 € C|0 < Re(z) <1} let
U.: L*(R, L*(X,p)) — L*(R, L*(X, )

be the operator introduced in equation ((11.12)) in Definition . By (11.13),
1

sin(@l)
for all 7 € R and, by Lemma [11.10} there exists a constant C;, > 0 such that

|Ur4ir ||£(L2(]R,L2(X,u))

HUiT”L(Lq(R,LQ(X,u)) < Cq
for all 7 € R. Since the operator family {U, },es is holomorphic, it satisfies the
hypotheses of the Stein Interpolation Theorem [3.3|with (Y, B,v) = (X, A, u)
and py = qo = g and p; = ¢ = 2. Since 1/p = (1 — \)/q+ \/2 by (11.41), it
follows from Theorem [3.3] that
Cl—)\
HU/\fHLP(R,LP(X,u)) <6 Hf“LP(]R,LP(X,,u)) ) Cp = Sinzel))"

for every measurable step function f : R — L*(X, u) N LP(X, ) with com-
pact support, and hence also for every continuously differentiable function
f:R— LP(X,p) with compact support. Since (1 — A)fy + N0y = 7/2,
by , it follows from Lemma that

wnxszAEw—@ﬂ@w+fw
and hence

- . P 1/p 0o 1/p
(A’plswﬂw@@mwﬁﬁ SQ«AHﬂwhmﬁ)

for every continuously differentiable function f : R — LP(X, ) with compact

support, where C), := ¢, + 1. This proves Theorem [11.2] O
Proof of Theorem[1.1. By Theorem the assertion of Theorem [I.1] holds
for p = q. Hence it holds for all p and g by Theorem O
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12 Besov spaces

Throughout || denotes the Euclidean norm of h € R™, the closed ball in R”
of radius 7, centered at the origin, is denoted by

B, :={h eR"||h| <r},

and p denotes the Lebesgue measure on R”. For f € LP(R",C™) and h € R"
define the functions Ay f, A? f € LP(R™,C™) by

(Anf)(x) = f(z+h) = f(z),

(A2)(x) = flx +2h) — 2/(x + h) + f(z). (24)
For f € LP(R",C™) and r > 0 define
1 1/p
alr o= (s [ 18 ) (122
and
wi(r, f)p = p 1Ay walr, )y = sup |a%f],, - (123)

Theorem 12.1. Fix integers n,m € N and real numbers p,q > 1,0 < s < 1.
Then the following four norms on C§°(R™, C™) are equivalent:

[ wo(r T dr\

1Fllysr = (/O (—O(T;f)”) 7) : (12.4)
® (wi(r, [\ dr 1/

[ fllgsr = (/O <(Tf)) 7) ; (12.5)
oo wa(r, f)p q dr 1/q

[ fllger = </O (%) 7) ; (12.6)

1/

oo (T () B 127)

kEZ

The equivalence of the norms (12.6)) and (12.7) continues to hold for 1 <
s < 2. All these equivalences extend to the case ¢ = oo (where the L? norm
with respect to the measure dr/r is replaced by the supremum,).

Proof. See page 94l m
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Definition 12.2. Let n,m € N and 1 < p,q < oo and 0 < s < 2. The
completion of C°(R™, C™) with respect to the norm in 15 called the
homogeneous Besov space and is denoted by bjp(R”,(Cm). The comple-
tion of C3°(R™, C™) with respect to the norm

1f]

15 called the Besov space and s denoted by Bg’p(R”,Cm). These spaces
were introduced in 1959 by Besov [3]. The definition extends to g = oo, with
the L1-norm in (12.6)) with respect to dr/r replaced by the supremum.

B} = HfHLp + ||f

s,p
bq72

We emphasize that Definition [12.2] allows for s > 1, while Theorem [12.1

is restricted to the case s < 1. The norms ((12.4) and (12.5)) are infinite for
nonconstant functions when s > 1 and thus cannot be used directly to define
the Besov spaces By* for s > 1.

Lemma 12.3. Fix an integer n € N and a real number p > 1, and define
c:=c(n,p) := 2Y/P 4 214FV/P - Then, for all f € LP(R™,C™) and all r > 0,

wo(r; [y < wi(r, fp < cwolr, [y (12.8)

Proof. The first inequality in ((12.8)) follows directly from the definitions. To
prove the second inequality, fix an element f € LP(R™ C™) and abbreviate
o(r) == wo(f,r)p for 7 > 0. Since || Ao fll;» < 2[|Anf]|;» for all h, we have

1 1
lj“(BT) By M(BT)

Now let > 0 and suppose, by contradiction, that there is an element hy € B,
such that || Ap, fll» > co(r). Define A, = {h € B,| [|Anfll, < 2YP¢(r)}.
Then ||ALf||}, > 2¢(r)P for all h € B, \ A, and so

¢(2r)" = 1Aon fIIZ, dh <

/ 2| A1, dh = 26 (r)P.
BQ’I’

WBNA). | ,
w(By S B /\ IAn itz dh

1 » B »

< W(B) . |ALfI7e dh = o(1)P.

Since ¢(r) # 0, it follows that (B, \ 4,) < u(B,)/2 and so u(A,) > u(B,)/2.
Moreover, for all h € A,,

1At fll e 2 1Amo fll e = [ARF e > (¢ = 2'7) 6(r) = 27 HDP6 ().
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Since hg — A, C Bsy,, it follows that

1
o2y > / A1 dn

,U(BQT)

contradicting to the inequality ¢(2r) < 2¢(r). This proves Lemma [12.3]

Lemma 12.4 (Marchaud inequality). Fiz two integers n,m € N and a
real number p > 1. Then

wi (7, f)p < 2/00 it dp (12.9)

r p?
for all f € LP(R",C™) and all r > 0.
Proof. Since A2 f = Ao, f — 2A,, f, we have

1Anf =27 Aan | = 271|231
for all h € R". Replace h by 2*h to obtain
127 A f = 275 A f | 1 = 27 [ A £
for k € Z and h € R". Take the sum over k =0,1,...,m — 1 to obtain

m—1

AL =27 Agmnf]],, < D27 [AL S L
k=0
m—1

2 (27, £),)

IN

k=0
— 9 ZWQ27’fp2k

(26+1y

2m
S QT/ (p7f)pdp
. P2

for every h € R" with |h| < r and every m € N. This implies

wl(r,f)p§2r/2 r%dp—i—Q w1 (277, ),

Take the limit m — oo and use the inequality wy (27, f), < 2| f|/;» to
obtain the estimate (12.9). This proves Lemma [12.4] O
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Proof of Theorem [12.1] By definition and Lemma [I12.3] we have

1
M(B ) 5 ||Ahf’|][)m dh S wl(
with ¢ := 2V/P 4+ 21+ +1)/p Hence

£y < 11f

This shows that the norms ((12.4]) and ((12.5]) are equivalent. Second, it follows
directly from equation (12.1)) that ||A? f||,, < 2||Anf|,» and hence

[ fllgs < 211

Third, the Hardy inequality asserts that every Lebesgue measurable function
¢ :(0,00) — [0, 00) satisfies the inequality

(/ooo a (/oo olp) dp>q dr) N = % (/OOO 7”q+“_1¢(7“)qdr) " (12.10)

for any two real numbers ¢ > 1 and a > 0 (see for example [33 Exercise 4.52]).
Apply this inequality with a := q(1 — s) to the function ¢(r) := r~2ws(r, f),
and use the Marchaud inequality

wi(r, )y < 27‘/

r

- < (21/p+ 21+(n+1)/p) HfH”Zizo"

S,P .
bq,l

(p’f)P dp
p

in Lemma [12.4] to obtain the estimate

o 1/q
_ ( / ol (r, f)gdr)
0
[} oo 1/q
92 </ 741(178)71 (/ w2(p72f)17 dp>q dT)
0 T p
0o 1
2 / T,quq(lfs)fl WQ(T', )p ! dr /i
1—s5\Jo r?
2 (e 9] 1/‘1
- - < / (i, ) dr)
— 5 0
2

This shows that the norms ((12.5)) and ({12.6]) are equivalent.

IN

IN
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Now assume 0 < s < 2 and observe that

[y - pf (e

keZ

Yo (M)%

en  2r<r<aRtl re

21@—}—17 » q 1
ZQk <w2( o f) ) o

kEZ

= 200 (27w (25, f),)",

keZ

Z (2_k8W2(2k» f)p)q = 2he Z 2" (W2 (iﬂf) ) 2k1+1

keZ keZ

q
21+qs§ 2k inf WQ(T, )P
2k <p<2k+1 s

2k+1 q
dr
21+q5 p R
s [ ()

kEZ

. qs C")Q(raf)p ﬁ
= 21+/0 (—rs )r.

IA

IN

IN
S| =

IN

Hence 27° || f]|, sp < /1, sp < 2s+1/a ||f ”2’7 so the norms and ((12.7))
are equivalent. "This proves Theorem O

Corollary 12.5. (i) If 1 < ¢; < g2 < 0 then ByP C By for allp and s.
(i) If 0 < s1 < s3 < 2 then Bj»P C Byl'P for all p,q1, o

Proof. B;? is the completion of Cge(R™, C™) with respect to the norm

o0

1/q
gz = 1l + (Z (2’“w2(2’“,f)p)q) 7

k=0

which is nondecreasing in s and nonincreasing in ¢. This implies (i) and
BP C BjtP for sy < s3. Moreover, for 0 < s < s +¢& < 2, we have
S0 28 wa (27K f), < e suppen, 28¢ T we (27, f),, where ¢, := 1/(1 —279).
If € := sy — s, this yields ||f]| 5 sr < [fllgsr < e[ fllpszr < e[ fllp
This proves Corollary [12.5] O

3217.
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Definition 12.6. Let n € N and fiz real numbers p > 1 and 0 < s < 1. The
completion of C3°(R™, C) with respect to the norm

[ fllpsr = (/ / %dydw) " (12.11)

1s called the homogeneous Sobolev-Slobodeckij space and is denoted by
w*P(R™ C). The completion of C§°(R™, C) with respect to the norm

[ llwsw = M lzo 4 11 Fllps

is called the Sobolev-Slobodeckij space and is denoted by W*P(R", C).
These are refinements of the Sobolev spaces w'?(R™, C) and WHP(R",C) in
Definition below. They were introduced in 1958 by Slobodeckij [3])].

Lemma 12.7. Fizx an integer n € N and real numbers p > 1 and 0 < s < 1.
Then, for every f € C5°(R",C),

1 1/p
Hence by?(R",C) = w*P(R",C) and B;?(R",C) = W>P(R",C).

Proof. For x € R™ and r > 0 define S,(z) := {y € R" ||y — x| = r}. Then
i);,p:/ TSP“/ f(z) — f(x + h)|P dhdz dr
/ V@) = f dyaras

wsSP *

If

sl /;p(x)”(x) — f(y)[PdS(y) dpdrdx

e [ 1) = S dS () dps

1
B n+sp (By) /n/ n+p/S()f(x)_f(yﬂpdS(y)dpdx
= |f (@) = F)I”
B (n+spu (B1) // g W

1

= v spuay

This proves Lemma [12.7] O

wsP *
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Definition 12.8. Fix an integer n € N and a real number p > 1. The
completion of C3°(R™, C) with respect to the norm

951 = ([ 19 sera)” (12.12)

is called the homogeneous Sobolev space and is denoted by w'P(R",C).
The completion of C3°(R™, C) with respect to the norm

[ llwro = [1fll o + IVl 2o
is called the Sobolev space and is denoted by W' (R™, C).

Lemma 12.9. Fiz an integer n € N and a real number p > 1. Then every
function f € C§°(R", C) satisfies the inequalities

sup U1 o IVFll . < n lim i 21 (12.13)
r>0 T r—0 T
and
1 o0
Lap 220 o < 2n/ %j)”dr. (12.14)
2 r>0 r 0 T
Hence
biP(R",C) C w"?(R™,C) C b-P(R™, C),
1 ) CwP( ) C b2 ( ) (12.15)

B;?(R",C) c W"(R",C) c BLP(R",C).
Proof. The inequalities in (|12.14)) follow from by Marchaud’s in-
equality (12.9) in Lemma [12.4] and because wy(r, f), < 2wi(r, f),. To
prove (12.13)), abbreviate (V f(z),h) := Y, 8;f(x)h; for x,h € R". Then,
by the fundamental theorem of calculus, (A, f)(z) = fol (Vf(x+th),h) dt
and hence

[(Anf) ()] < Ihl/0 [V f(x+th)| dt. (12.16)

By Minkowsky’s inequality (e.g. [33, Theorem 7.19]), this implies

1 P 1/p
80fle < 01 ([ ([ 1956+ lar) a)

1 1/p
< |h|/0 ( i |Vf(m+th)|pdx) dt

= Al IV Al

Take the supremum over all h € B, to obtain wi(r, f), < r||Vf|,, for all
r > 0. This proves the first inequality in ((12.13]).

(12.17)
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Next we observe that
o) = 1) = (V1@ = [5G i) = V1)) d
and hence
(@00 )) ~ (V)1 < 1] [ 19500 +t0) = V7o)

for all x, h € R™. Fix h € R", integrate the pth power of this inequality, and
use Minkowsky’s inequality, to obtain

1ARS = (VL) < IR (/ </01|Vf(x+th) — V()| dt)p dx) v
' 1/p
< |h|/0 ( Rn|vf($+th)—vf(w)|pdx) gt

1
— / 18wV Fl,, dt.
0

For r > 0 and h € R™ with |h| < r this implies

1
KV e < [ARfll e + Ihl/ [AnN fllpp dt < wi(r, fp + rwi(r, Vf),.
0
Take h := re; to obtain

.11, < 20w,
and hence

0<p<r

jouf s < int (2 010,90,

for all » > 0. Take the limit » — 0 and use the fact that lim, ,ow(r, V), =0
to obtain

10:fll 1» < liminfM fori=1,...,n.
r—0 r
Hence .
oL Wl (T’, f)P
< : < SRR}
197k < 32 10511s < nlimipt 2
This proves the second inequality in ((12.13]) and Lemma m O

Remark 12.10. The second inequality in ([12.13]) implies that the right hand
side of ([12.5) is infinite for s > 1 unless f is constant. In contrast, equa-
tion ((12.6|) still defines a meaningful norm for 1 < s < 2.
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13 Besov, Littlewood—Paley, Peetre, Triebel

This section is devoted to the Littlewood—Paley characterization of the Besov
spaces (Theorem . The starting point is the choice of a suitable smooth
function ¢ : R® — R in the Schwartz space. The crucial point is that the
characterization of the Besov space in Theorem [13.5] is independent of the
choice of the function ¢, as long as it satisfies the conditions ((13.1]) and ([13.2))
below. The connection between Besov spaces and Littlewood—Paley theory
was first noted by Peetre [31].

Definition 13.1. Fiz an integer n € N and a smooth function ¢ : R™ — R
in the Schwartz space ./ (R™). Assume

o(z) = o(—x) for all z € R™, (13.1)

so that the Fourier transform

(&) = / e_i<x’§>q§(x) dx
1s real valued and satisfies

$(€) = p(—€)  forall € €R™.

The function ¢ is called a Triebel function if there is a 0 < § < 1/2 such
that

(&) >0,  for1/V2 <€l < V2,
(&) =0, for1/2<g <2, (13.2)

(&) =0,  for[¢| ¢[0,1/4].
It follows from and that

¢(z)dx =0, / zip(x)der =0 fori=1,...,n. (13.3)
R n

) ©) ©)

In particular, every Littlewood-Paley function is a Triebel function (see Def-
mation .

Lemma 13.2. (i) If ¢,% : R"™ — R are Triebel functions then so is ¢ * 1.
(ii) For every Triebel function ¢ : R™ — R there exists a Triebel function

-~

¥ @ R" — R such that supp(v)) C {£€R"[1/2 < [¢| <2} and ¢ x 1) is a
Littlewood—Paley function.
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Proof. Part (i) follows directly from the definition and the fact that the
Fourier transform of the convolution ¢ %1 is the product ggzz of the Fourier
transforms. To prove (ii) fix a Triebel function ¢ : R® — R. Then there
exists a constant v/2 < a < 2 such that 5(5) > ( for all £ € R™ such that
1/a < [¢] < a. Choose a smooth function 5 : [1,2] — [0, 1] such that

B(ry=1, for1<r<2/a,
B(r) >0, for2/a <r <2,
B(r) <1, for vV2<r<a,
B(r)=0, fora<r<2,

and extend it to [0, 00) by setting B(r) := 0 for r € [0,1/2] U [2,00) and
B(r):=1—p(2r) for 1/2 <r < 1.

Then supp(8) C [1/a,a] and B(r) > 0 for 1/v/2 <r < V2.
Now let ¢ : R®™ — C be the unique function in the Schwartz space
< (R™,C) whose Fourier transform is given by

12(5) _ { BUEN/o(€), if1/a < ¢ < e,

0, otherwise.

Then 7:0\ is a real valued function and @Z(g) = @(—f) > 0 for all £ € R™
Hence v is real valued and

Y(z) =p(—z)  forall z € R".
Second,
supp(¢)) C {€ € R"[1/a < [¢| < a} C {€ € R"[1/2 < |¢] < 2}
and
D) = B(E])/d(€) >0 for all £ € R™ such that 1/v/2 < |¢] < v/2.
Hence 9 is a Triebel function. Third,
HE/2)D(E/2) + 4 (&) = B(IEN/2) + BN = 1

for all £ € R™ with 1 < |€] < 2 and so ¢ * 1 is a Littlewood—Paley function.
This proves Lemma [13.2] ]
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Definition 13.3 (Peetre Maximal Functions).

Let n € N and let ¢ : R® — R be a Triebel function. For k € Z and t > 0
define the functions ¢, vy : R" — R by

dp(z) == 2" p(2F2), oi(x) =t "p(t ) for x € R". (13.4)
Thus qgk(f) = &5\(2*’“5) and p(&) = (;Aﬁ(tg) for all £ € R™ and

supp(dx) C {€ € R"|52* < [¢] < 2%/5},
supp(@r) C {§ € R" |6/t < |¢] < 1/0t},

where § > 0 is as in (13.2). Now fix a real number A > 0. For f € C5°(R",C)
denote by ¢ *x f and g * f the convolution and define the Peetre maximal
functions ¢ , f, 7, f : R" — [0,00) by

(Ppaf)(x) == (D5 % )z + 2)|

= su ,
e (14 24]2])

e e o L@ E D@+ 2)
(th,)\f)@j) T zeﬂg (1 + ‘Z|/t>)‘ :

(13.5)

forx e R", k€ Z, and t > 0.

Lemma 13.4. Letn € N and A > 0 and let ¢ : R" — R be a Triebel function.
Then the following holds.

(1) The Peetre maximal functions satisfy the inequalities
(Grnf) (@ +y) < 1+ 2"y (G5 f) (@),
(iaf)(@ +y) < L+ [yl/) (¢inf)(@)

forallke€Z,t>0, z,y € R", and f € C(R",C).
(ii) For every £ € Ny there exists a constant ¢ = c(n, l, X, ¢) > 0 such that

Z |aa Qbk* ‘<C2k2 sup |f(l‘+2’)|

= R 2T

o - |z + 2)]
2 1 DS e s Tz

(13.6)

(13.7)

forallk € Z, t >0, x € R", and f € CP(R™,C). Here the sum runs over
all multi-indices o = (o, . .., o) € Ny such that || = ay + -+ + a,, < L.
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Proof. For all t > 0 and all z,y, z € R", we have

1 < _Ltlyl/t
I+lz—a—y|/t — 1+ |z—2x|/t

Hence
i - (0 % f)(2)]
(Peaf)(@+y) = sup G T s
(e * f)(2)]

< (1+ t)* su

= (14 lyl/0Meinf)(@).
This proves the second inequality in ((13.6). The first inequality follows by

taking ¢ := 27%. This proves part (i).
To prove part (ii), define the constant ¢, := c4(n, A, @) by

o= [ (oMot dy

for every multi-index o € Nj. This number is finite because the function
¢ and all its derivatives belong to the Schwartz space . (R"). Now fix a
number ¢ > 0. Since ¢;(z) =t "¢(t"'z) for all z € R, we have

(e f)(x) = | ot z—y)f(ty)dy,

R

(0% f)() = t71° / (0 $)(2)f(z — t2) dz.

n

Hence

10%(py * f)(x)] = 7l

JRCCICHERBTE

[ aspreaeit e

— ¢ ld
(1+ [2)*

— | a ‘f(.CC—tZ)’
[ e R
—|a |f(l'—tZ)|
Calt | IZSEUIJRIZ TN
)
M

IN

IN

IN
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This proves the second inequality in (|13.7)) with

c=cn,l,\ ¢):= Z ca(n, A, 9).

lal<¢

The first inequality follows by taking ¢t = 27*. This proves Lemma [13.4, [

The next theorem is the main result of this section. It is stated in this
form in Ullrich [40, Theorem 2.9]. The proof given below is based on the
proof in [40] of the analogous, but technically more difficult, result about
the (in)homogeneous Triebel-Lizorkin spaces, and on the paper by Besov [4]
about weighted Besov and Triebel-Lizorkin spaces.

Theorem 13.5 (Peetre/Triebel). Fiz an integer n € N and real numbers
p,g>1,5>0, and A > n/p.

(1) Let ¢ : R™ — R be a Triebel function, so it satisfies (13.1)) and (13.2]). For
k € Z and t > 0 define the Peetre mazimal functions ¢r x and @ by (13.4)).

Then the formulas

1/

o 1/q
Bn, T (Z (2’“H¢k*f|!m)q> . (138)

k=—o00

ap = | f
bq,4

. 1/q
d)Z,AfHLp) ) : (13.9)
k=—00
o) /4
oo fllpe \* dt!
Hf”b;:g = ”f”b;:g;qﬁ = (/0 <% ) , (13.10)

q 1/q
— O OO ‘ g0:5:>\']tHLp dt
Hbegf; = Hbe;?mx = (/0 (t—s 7 (13.11)

(for f € C§°(R™, C)) define equivalent norms on C§°(R™, C). The equivalence
class of these norms is independent of the choice of the Triebel function ¢.

e}
Az = s, | = ( > (2k8‘

(ii) Assume p>1 and 0 < s < 2. Then the norms in part (i) are equivalent
to the norm ||- pep i ([12.6).
q,

Proof. The proof has six steps. The first four steps prove part (i) and the
last two steps prove part (ii). Throughout n € N is fixed.
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Step 1 (Peetre). Let ¢ : R® — R be a Triebel function and let s > 0,
p,q > 1, and X\ > n/p. Then there exists a constant ¢ = c(s,p,q,p,\) > 0
such that

boh DN <cl|f

boE

for all f € C3°(R™).

It follows directly from the definitions that |(¢y * f)(2)| < (¢}, f)(z) for all
x e R™all f e C(R™), and all A > 0. This proves the first inequality. The
second inequality in Step 3 is a theorem of Peetre [30]. The proof below fol-
lows the argument in Ullrich [40], Step 1] with the appropriate modifications.

Let 0 < 0 < 1/2 be as in (13.2]) and choose m € N such that 27 < 4.
We prove that, for each A > 0, there is a ¢ = ¢(n, p, A, ¢) > 0 such that

2k * p
|(dr % f)(@)]” < ¢ Z/ 1|+¢231j|’; f;T)Bpl dy (13.12)

forall k € N, 2 € R", and f € C§°(R"™). Choose a Triebel function ¢ such
that ¢ * ¢ is a Littlewood—Paley function (Lemma (13.2). Then

m

> ()5 Z 27 =1 for 27 < |¢] < 2™

j=—m =
This implies ZT:—m @(}b\j;ﬁ = gg, hence ET:_m Y, * ¢; x ¢ = ¢, and hence
Z Vjik * Qjk * Ok = Py for all k € Z.
j=—m

Define r := (n+1)(1 — 1/p). Then, for all f € C°(R™), z € R, k € Z,

(5 % f) ()] < Z [y % bjn * B * f)(2)]

Z |%+k*¢k)(95— WIH(@jn* )W) dy
j=—m
(@541 * )W)
<J;mcjk"“/ 1+J2+’“TI yﬁ“rdy’

where ¢ pnp = SUPepn (1 4 2°[2) 7| ($00 % 61)(2)]
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We estimate the constant ¢; ., 2. For £ € R™ and |j] < m,
(L4 2D | (gn + d1) (27" 2)]
<P [ s =l dy

(14 |2t / (27 — )| |62 7y) | dy

Rn
1 + |Z|))\+1"
< O, 2k : ( . d
R /]R (L4272 = gl (L + 27y
. 2m(n+1+2)\+2r)(1 + |2jzl))\+r
< Cn,p,/\2k / i A+r iagr 4Y
re (14272 =y (1 + |y|)

1
< Cn, ’A2m(n+1+2)\+2r)2kn/
’ re (L4 [yl

dy.

Here C,,,» > 0 has been chosen such that |¢(y)| < \/Crpa(1+ |y|) 172"
and [¢(y)| < \/Crpa(1l+ |y|)~>" for all y € R™. Now take the supremum
over all z € R" to obtain the inequality

1
Ciknp < Can, C .= Cn,p,AQm("+1+2/\+2T)/ (
Rn

—— dy.
T+ [yt @

Thus we have proved the estimate

ken *
|(dn % f)(2 |<02/n21+|§j|;’“ gf)&ﬁidy (13.13)

forall k €e Nyx € R", and f € C3°(R™). If p =1 then r = 0 and so ({13.13)) is
equivalent to (13.12). For p > 1 use Holder’s inequality with the exponents
p,p’ such that 1/p+ 1/p’ =1 to obtain rp’ = n + 1 and

[ 2o Do),
e (1 25 — g7

2k YO 2 G DI N
= (/ (1+ [25y]) dy) (/ (L4 2z — ) dy)

(L) (LA )

Hence (13.12) holds with ¢ := C([fp. (1 + |y|) ™"t dy)'~V/P(2m + 1) -1/P.
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Thus we have proved the estimate (13.12)). This implies

(6% )z + P _ 2 ({90 ()P
(L 25w sz/n L+ 2 Pr(l+ 2o + 2 — g7

. Z/ 2" (6 O

+ 28z —y[)*

Take the supremum over all z € R™ to obtain the inequality

2kzn * p
(raf) (@) < Z/ 1+¢2j;|§: f;|<)3p| dy (13.14)

for all z € R", k € Z, and f € C{°(R™). Assume A\p > n, integrate over R",
and use Fubini’s Theorem to obtain

2k | (i % f)(y) P 25" (s x W)
dydx = dx d
// (1 + 28z — gy U // 1+ 2%z — gy
_/ >, ds4 * FI2
e (TR T

1

— —d y P .
/Rn (1+ |{L‘|)>‘p $|I¢j+k *f”LP

Hence it follows from ((13.14]) that

/p m
C(/andx> > Ndssn* fll (13.15)

j=—m

where c is the constant in (13.12)). Let ¢’ := ¢( [, (1 + |2|)~*? dz)'/?. Then

(5 teia))

k=—o0
00 m a\ 1/
</ ( > <2ks > H%’He*f”m) )
k=—oc0 j=—m
m o'} 1/q
< md Yy (Z (240 ||¢>j+k*f||m)q)
j=—m \k=—0o0

= 27d@2m+ 1) |f

bSqP
q,4¢

This proves Step 1.
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Step 2 (Peetre). Let ¢ : R" — R be a Triebel function and let s > 0,
p,q > 1, and X\ > n/p. Then there exists a constant ¢ = c(s,p,q,p,\) > 0
such that

bsyp bSvP

<ellf
for all f € C5°(R™).

This is the continuous time analogue of Step 1 and is proved by the same
arguments. First choose m € N such that 27™ < §. Then, for each p > 1
and each A > 0, there is a constant ¢ = ¢(n,p, A, ¢) > 0, such that

‘(@t*f ’p <P Z / (P2kt*f)( )|p " (1316)

L+ [z —yl/t)"

forall t > 0,z € R, f € C§°(R"). This is proved by the same argument
as (13.12)), with 2* replaced by t~!. As before, the estimate ([13.16)) implies

(Pirf)a) < Z / - +(T;Jt *yf%zf dy (13.17)

and, for Ap > n, Fubini’s Theorem gives

|(p2ie * )W) / 1
dydr = = d ; b
/n/n 1—{—|x—y|/t))\p yax an (1_{_|x|),\p x”‘;@t*f”,;

Hence it follows from ({13.17)) that

¢ lipare = fllo (13.18)

j=—m

where ¢ := ¢([p. (1 + |z])~ dz)"/P, and so

4"
<¢ ( / GBS Hgomfum)q@) :

j=—m

=27 2m + 1) [ fllyes -

This proves Step 2.
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Step 3. Let ¢, : R — R be Triebel functions and let s > 0 and p,q > 1.
Then there ezists a constant ¢ = ¢(s,p,q, ») > 0 such that

/1],

oy S Cllfllegr

for all f € C§°(R™).
Choose 6 > 0 such that
supp(d) C {€ € R[4 < |¢] < 1/}

as in ((13.2) and choose m € N such that 2™ < §/2. Choose a Triebel func-
tion @ such that v x 0 is a Littlewood—Paley function (Lemma [13.2). Then

m

> 0k ©r() = Y 027 R (27 R =1

j=—m j=—m

for 2815 < |¢] < 2¥1/6. Since
supp(@y-+;) C {€ € R"[2V710 < [¢] < 2¢/5}
for 1 <t <2 and k € Z, this implies
Z @2*kt9j+k¢j+k = Da-ry
j=—m
and so
Z Pk * Ot ¥ Vg = Po—iy for1<t<2andk€Z. (13.19)
j=—m
Hence, by Young’s inequality,

m
[pa—re * fll o < Z [pa-rs * Ok * jr * fl 1

j=-m

< Nl 16l D lebjw * £l

j=—m

forall k € Z,1 <t <2, and f € C§°(R").
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This implies

s 1/q
”ﬂ@%::<z:/“cwzw*ﬂm0 7)
k:; 1/q
< ( Z <2k8 SUP [lp2- kt*f”Lp) )
o 0 m 1/q
sumuwwml<§j(fs§jH¢Hkamyyﬁ

k=—o00 j=—m

N N 1/q
gwm}Whlii(EI(fW%M*ﬂb)ﬁ

j=—m \k=—00
< 27 (@m 4+ 1) |62 101 17l
This proves Step 3.
Step 4. Let ¢,¢ : R™ — R be Triebel functions and let s > 0 and p,q > 1.
Then there ezists a constant ¢ = ¢(s,p,q, ») > 0 such that

1/ 1l

<
o S €I

Z,gub
for all f € C3°(R™).

The proof is an adaptation of the argument in Ullrich [40, Substep 2.1].

Choose § > 0 such that supp(¢) C {£€eR"|0 <€ <1/d} asin (13.2)) and
choose m € N such that 27 < §/2. Choose a Triebel function # such that
0 % ¢ is a Littlewood—Paley function (Lemma [13.2). Then

§j¢@%tfj+A%9%Jkt }j IO R g2 M) = 1

j=-m -

for 27™ < 27k¢|¢] < 2™ or, equivalently, for 287/t < |¢] < 2FF™/t. Since
supp () C {€ € R [ 28—+ < |¢| < 2Fm=1} this implies

= > D) Dr s (4 B s (H) -1, (6) (13.20)

i=—2

forall ke Z,1 <t <2 and £ € R".
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For t > 0 let us temporarily define the function ¥, : R® — R by
Uy(x) ==t (¢ +0)(t 'z) for z € R",

so its Fourier transform is £ +— 1[1(155) (tﬁ) and its L' norm agrees with that

of ¥ % 6. Then, by ((13.20] m,

= Z Vi * Wo—joiy * Qo—jky for ke Z and 1 <t <2.

j=—2

By Young’s inequality, this implies

2
% fll o < N0 #0117 D Nposre* fll

j=—2
] 92—k * f]
SIS SR
j=—2

for ke Z,1<t<2 and f € C°(R",C). Exponentiate by ¢ and integrate
the resulting inequality over the interval 1 < ¢ < 2 to obtain

q
: " lipo-s-se = fl |t
(2 = Tl ) < 25974 o = 018 / (Z ) T

for all k € Z and all f € C3°(R™,C). With this understood, it follows from
the definition of the norms that

o] 1/q
= (Z (2 e £l )
k=—o0
q 1/q
[pa-s—ke % fllp | dt
Z/ (Z S0221:15 L) 7)
k=—o00 -
1/q
[pa-3-r¢ * fll o
> [ (e)s)

k=—o00

q 1/q
— 93s+1/q |4 * QHil 5 (/ <||‘Pt ’:SfHLP) %)
0

= 2% [+ 07, 5| f

A (

< 2V g7, Y (
j=—2

bs,p .
q,6;¢

This proves Step 4 and part (i) of Theorem [13.5]
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Step 5. Let ¢ : R® — R be a Triebel function and let 0 < s < 2, p > 1, and
q > 1. Then there exists a constant ¢ = c(s,p,q,¢) > 0 such that

1Al , < cllf

b2
for all f € C5°(R™).
The proof follows the argument in [4, Section 5]. Since ¢ is a Triebel function,

its Fourier transform satisfies ((13.2]) for some constant 0 < 6 < 1/2. Choose
a function 0 : R” — R in the Schwartz space .%’(R") such that 6(x) = 0(—x)

for all z € R™ and " )
~ 1, if [¢ <4§/2,
b(8) = { 0. if ¢ >4

For k € Z define 0)(z) := 2*"0(2*x) so that ék(g) = 0(27%¢) and define the
function f; : R® — R by

fla) = 5(0) = [ 0830, 0o dy

= f(z) — / 0(y)(f(z) = 2f(x —27"y) + f(z —2"""y)) dy
=2(0r * f)(x) = (Op—1 % f)().

Here the second equation uses the fact that 6(y) = 0(—y) for all y € R™ and
the last equation uses the identity [;, 6 = 6(0) = 1. Since p > 1, it follows

from equation ([13.21)) and Lemma that
N 00

f=lm (fye = fon) = lim Y (F =)= D (Fe = f),
j=—N j=—oc0

(13.21)

where the convergence is in LP(R"). Thus

Srxf= ) brx(fimn—fi)= Y du* (20501 —30;+0,1) % f.

j=—o0 j=—o0

Since supp(é\jﬂ) C Bsj+15 and &Ek vanishes on Bgkrg, we have akgjﬂ = 0 for
all 7 < k and so

S f= opx(fisn—f;) forallkez
j=k
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Hence
Ik * Fllo <D M * (s = e < D Nl 1 i = Fill o -
j=k Jj=k

Multiply this inequality by 2*¢ to obtain

o0

2% |l gg o fllpe < Ndllpn > 279727 || fin = fill -

=k

The right hand side is the convolution of the summable sequence (27%%),cn,
with a bi-infinite sequence in ¢%(Z). Hence, by Young’s inequality,

o 1/q
= (Z (2k5||¢>k*f||Lp)q>
k

=—00

00 [e's) 1/q
< ol (Z 2) ( > (@ - fjan)q)
k=0 j=—00
0o 1/q
- %(jzzoo(2f5|\fm—fjum)q) .

Now it follows from the definition of f; in (13.21)) and Minkowsky’s inequality
in [33, Thm 7.19] that
P 1/p
d:v)

s = bl = ([ | ] 000 (03umsyf0) - 2 10) a

< </< )] | A2, f(2) — A2, F()] dy)pdx)up

</< P |ALs o () — A2 (@) dx)l/p .
/ O AS 51, f = D, f 0 dy

< [ P18 Sl + 133001,

Rn
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Abbreviate ¢ := ||¢||;. /(1 — 27°). Then the last two estimates yield

o 1/q
ke = © ( 2 (@i - fjHLp)q)

j=—o0

9\ V4
<o 32 (o Lo 1ttty 4 182001,) @) )

1/q
L (32 2 (1adtl ¢ 1601

j=—00

< [ o (5

1/q
< 2(1 4279 / Wy)\(Z 2 || A ayfllip> dy.
Rn

j=—o00

I/

1/q
2;qs<HA2 i 5, + (143 Jyf||qu>> dy

]7—00

Here the third step follows from Minkowsky’s inequality in [33, Thm 7.19].
Now let N > n + s and choose a constant C' > 0 such that
C

(1 +[yh»

1/q
s q
/ (1+ |?/| ( Z 2 HA? JnyLp> dy
- 1/q
+ 2”3 A2 ; a d
Z/zé\Bge 1 1 + |y| < Z ’ 2= nyLp) Yy

2(1 4 279)V4¢lf(y)| < for all y € R™.

Then

/=1 j=—o00
2N CVol(B v
=3 °22( 2WSW\MfH>
o Pl |h|<2¢-3
2N CVol(By) e
= Z Z N—n—s) Has Sup ||A fH
2 |h|<20-d
B 2NC’V01 (By)
o 1 — 92— (N—n—s)

Hence Step 5 follows from Theorem 12.1]
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Step 6. Let ¢ : R* — R be a Triebel function and let 0 < s < 2, p > 1,
q>1, and A > 0. Then there is a constant ¢ = ¢(s,p,q, »,\) > 0 such that

I/

for all f € C3°(R™).
The proof follows the argument in [4, Section 4] with a modification suggested
by the discussion in [40, Substep 1.1]. By Lemma there exists a Triebel

function ¢ : R™ — R such that ¢ * ¢ is a Littlewood-Paley function. This
means that > ., 1;(z)¢;(z) =1 for all z € R"\ {0}, and so it follows from

Lemma, with 6, := 2?2700 Y; * ¢; that

N

f=lm Y wiedixf= ) dixgixf
j=—N Jj=—00

for all f € C3°(R™), where the convergence is both in L? and in L>*. Now
let ¢ = ¢(n, 2, A, 1) > 0 be the constant in part (ii) of Lemma for ¢ =2,
fix a function f € C$°(R"), and let k € Z and h € R™ such that |h| < 27",
Then AZf =377 Aj(1; * ¢; * f) and hence

Al < Z [AACTEEIED 1 (13.22)

j—foo
For j < k we use the inequality

A7 (1 = ¢y = ()| < sup [V2(; % @5 % f)(x+y)| |hf

ly|<2|h|
< 272 sup [VA(yy %oy x ) (@ + )

ly|<2t-—k

< 22U sup (5, f)(x +y)
|y|S217k

< 2R (1 4 21_k+j)/\(¢;,>\f)(x)-

Here the first step follows from ([12.16)) by replacing f with Ay f and repeating
the estimate. The last two steps follow from Lemma [13.4 (The matrix
VZg(z) € C™ " is the Hessian of a smooth function g : R* — C at z € R",
and |V?g(x)| is the Euclidean matrix norm.) Now take L? norms to obtain
sup [|A7 (1) * ¢ f)],, < 2729 for j <k, (13.23)
|h|<27F

where C' := 2*c.
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For 7 > k we use the inequality
[ AT (W5 % 05 % )| 1, < 411y % 5% fllp < Al0l gy fll - (13.24)

It follows from ([13.22]), (13.23)), and (|13.24)) that

k—1
P Wil < 2, 2 p i e ér e Dl
+22k5||sup 1875 % 65+ ]|,
i=k
k—1
< C Z 9—(k=5)(2=s)9js ®
j=—00
Al > 27U g f
j=k

Now use Young’s inequality for the convolution of bi-infinite sequences to
obtain

o0 1/q
Hf”bfl:g = (Z (ka SUP HA fHLP) )

k=—00 |hl<
00 00 q 1/q
< c(zz—k<2—s>> (Z (2 ls; ))
k=1 j=—00
00 ') 1/q
—ks js 1
+ 4[] (22 )(2(2 chj*flle))
j=—00
C2-(2=9) 4|1 1
A . YTy
C2 4||2/1HL1
< (1—2—(2—5)+1 5¢>\’

Here the last step uses the inequality || f b < |If b in Step 1. Thus
Step 6 follows from Theorem [12.1] This proves part (11) of Theorem 135 O
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Remark 13.6. (i) Theorem is formulated in terms of norms on the
space Cg°(R", C) and the homogeneous Besov space b37(R", C) is the com-
pletion of C§°(R", C) with respect to any of the norms in Theorem and
Theorem [13.5]

(ii) The norms in Theorem extend naturally to the space of Schwartz
distributions. The convolution of a Schwartz function and a Schwartz dis-
tribution is a function and so the right hand sides of equations
remain meaningful when f is a Schwartz distribution. However, the resulting
maps ./ (R",C) — [0, co] are no longer norms. They vanish on the subspace
Z(R",C) c '(R",C) of all polynomials and may take the value infinity.
The Besov space embeds into the quotient space ./(R", C)/Z2(R",C) and
can be identified with the subspace of this quotient space on which the quasi-
norms in Theorem [13.5] are finite. To prove this, one is confronted with the
additional difficulty of showing that if one of the quasi-norms in Theorem[13.5
is finite for some Schwartz distribution then so are the others. This difficulty
is carefully adressed in the paper by Ullrich [40], which also contains many
further results as well as copious references to the existing literature.

Theorem 13.7. Fix a positive integer n and real numbers p > 1 and q¢ > 1.
(1) For every real number 0 < s < 1 there is a ¢ = ¢(n,p,q,s) > 1 such that
£ lhggen <I9S lhgg < el lhyyer (13.25)

for all f € C*(R™,C).
(ii) For every Triebel function ¢ : R" — R there is a ¢ = c(n,p,q,¢) > 1
such that

) ) dt 1/q
slgg < ([ e v &) <l (13.20
for all f € C3°(R™,C).
Proof. The proof has three steps.
Step 1. We prove the first inequality in ((13.25)).

Let f € C°(R™,C). Then [|A} e < [A[||ALV f]l1e for h € R™ by (12.17).
Take the supremum over all A € R™ with |h| < 7 to obtain the estimate
wa(r, fp < rwi(r, Vf), for all r > 0 and hence

* (wa(r, £\ dr * (wi(r, V), \? dr
e A e R B I\

for all p, ¢ > 1. This proves the first inequality in ((13.25)).
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Step 2. For every real number p > 1 there exists a constant ¢ = c¢(n,p) > 1
with the following significance. If f : R™ — C is a function in the Schwartz
space and g : R" — C is the unique function in the Schwartz space whose
Fourier transform is given by

~

9(&) = [lf(§)  for§ eR"

then
¢! ||9||Lp < ||vf||LP <c ||g||Lp .

For i = 1,...,n define the operator T} : L*(R",C) — L*(R",C) by
= i§i .
Tig(§) == mg(f)-

Let p > 1. Then, by the Mikhlin Multiplier Theorem [6.1] there exists a
constant a C' = C'(n,p) > 0 such that

ITifllr < Clfllze
for all f € L*(R™,C)N LP(R",C) and all . Now let f and g be as in Step 2.

Since . R
9; f(§) =1& f(€)
fori=1,...,n and £ € R", we have

oif =Tig fori=1,...,n
and .
g=- Z T;0:f.
i=1
Thus the estimates of Step 2 hold with ¢ := nC'.

Step 3. We prove (13.26)) and the second inequality in (|13.25)).

Let ¢ be a Triebel functions and define o;(x) := t"¢(t"'z) for t > 0 and
x € R™ as in Definition [13.5} Define the functions , ¢, : R* — R by

(€)= [€0(),  ilw) ==t )

for t > 0 and z,£ € R™. Then ¢ satisfies (13.1)) and ([13.2]) and hence is also
a Triebel function. Now let f € C§°(R",C) and define g : R* — C by

-~

9(&) = IElf(§)  for £ € R™. (13.27)
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Then, for all £ > 0 and all £ € R", we have

G (€)= GuO)TE) = [E16(tE) F(©) = |G F(€) = |€l e * F(€). (13.28)
Since |£|p(t€) = t~ (), this implies

~ ~ ~

Gorg(6) = O FIE) = T F(€) =t % [ (6). (13.29)
It follows from that

loe % glle =t [ty * flloe

for all £ > 0. Now let ¢ = ¢(n,p) > 1 be the constant of Step 2. Then it
follows from ([13.28)) that

Mo gller < llpe* Ve < cllge* gll1o

for all t > 0. Combining these two assertions we obtain

71 H¢t f||LP < ||SOt " VfHLp < ||¢t fHLP

1/q
1 Hf”bzz;lf — ! (/0 (Hi/fttHJZHLp) 7)
</oo (M)q ﬂ)l/q
0 t* t
e % fll o 1/q
(7 (Rt

= clf

for all £ > 0.

and hence

IA

IA

s+1,p
bq,G:w

for 0 < s < 1. For s = 0 this implies the inequality (13.26)) by Theorem [13.5]
For 0 < s < 1 this estimate can be written in the form

¥

e < HVf“bZ’fgm5 <cllf

s+1,p
bq,6;w

and so the second inequality in (13.25)) follows from Theorem and The-
orem [13.5] This proves Step 3 and Theorem ]
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For s = 0 the equivalent norms of Theorem [13.5 can be used to define
a space b)P(R", C) as the completion of C§°(R", C) with respect to these
norms. These spaces are increasing in ¢ and it follows directly from the
definitions that »)7(R™ C) c LP(R",C) C b%(R™,C). The next corollary
refines this assertion. It shows that by”(R”, C) C LP(R",C) for 1 < p < 2
and LP(R",C) C b37(R™,C) for 2 < p < oo.

Corollary 13.8. Letn € N and 1 < p < oo and let ¢ be a Triebel function.
Then the following holds.

(1) If p < 2 then there ezists a constant ¢ > 0 such that

9] ) dt 1/2
(/0 Hsot*fHLPT) <c|fll (13.30)

for all f € C§°(R™).
(ii) If p > 2 then there exists a constant ¢ > 0 such that

d
1l < c ( / o 12, l) (13.31)

for all f € C5°(R™).

Proof. We prove part (i). Assume 1 < p < 2, let ¥ be a Littlewood—Paley
function, and let ¢ = ¢(n, p,1) be the constant of Theorem . Then

p/2
!beoP (Z Hwk*fHLp>

_o;oo 2/p p/2
- (Z ( [N o da:) )
p/2
k=—o00
= ||5¢( )Nz
< | flI7n

for every f € C§°(R",C). Here the third step uses Minkowski’s inequality
in [33, Thm 7.19] with the exponent 2/p and the last step follows from
Theorem Now part (i)

and |[|-][, pee . in Theorem with s =0 and ¢ = 2.

P
q,4
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We prove part (ii). Thus assume 2 < p < oo, let ¥ be a Littlewood—Paley
function, and let ¢ = ¢(n, p, 1) be the constant of Theorem . Then

PNl S USe(HI

00 p/2
- /Rn(Zwk*f)(x)F) &

k=—o00

2/p

[e.9]

> ([ 1w pr a)”

k=—o0

= Z ||¢k*f||ip

k=—o00

2
= [ £l

2,39
for every f € C§°(R", C). Here the first step uses Theorem and the third
step uses Minkowski’s inequality in [33, Thm 7.19] with exponent p/2. Thus
part (ii) follows from the equivalence of the norms |- per , and |- bz, in
Theorem [13.5| with s = 0 and ¢ = 2. This proves Corollar,y’. O

Corollary 13.9. Letn € N and 1 < p < oo.

(i) If p < 2 then w'?(R",C) C by?(R*,C) and W'*(R",C) c By?(R",C).
(ii) If p > 2 then by?(R",C) C w'*(R™,C) and By?(R",C) Cc WHP(R™, C).
(iii) If p = 2 then by*(R",C) = w'?(R",C) and By*(R™,C) = W"?(R", C).
Proof. Assume p < 2. Then, by Theorem and part (i) of Corollary [13.8]
there exists a constant ¢ > 1 such that, for all f € C5°(R"),

) %0 , dt\?
iy < ([ hoe 98 %) <elw 1

IN

t

Thus w'?(R™,C) C by”(R",C). The inclusion W?(R",C) C By*(R",C)
follows by adding || f||» on both sides of the inequality.

Assume p > 2. Then, by Theorem and part (ii) of Corollary [13.8]
there exists a constant ¢ > 1 such that, for all f € C5°(R"),

) () ) dt 1/2
195 < ([0 T T) T < el

Thus by”(R™,C) C w'?(R",C). The inclusion B,”(R",C) ¢ W*(R" C)
follows by adding || f||» on both sides of the inequality. O
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14 Besov spaces and heat kernels

The following theorem is due to Triebel [39] for the standard heat equation
on R™ and for 0 < s < 1. It was extended by Grigor’yan and Liu [I3] to a
large class of parabolic equations on general metric measure spaces.

Recall the notation A = Y. 97 for the standard Laplace operator on R"
and K; : R — R for the fundamental solution of the heat equation in (1.9)).
For k > 0 define the linear operator (—A)* : Z(R", C) — .7 (R",C) by

(CAVFF(E) = ¢*F(6)  for f€ #(R",C)and € €R".  (14.1)

For p,g >1,0< s/2 <k, and f € #(R", C) define

0o _ k " q 1/q
T ( / ("( SR f)”m> %) )

Then, for 0 <m < s and k > (s —m)/2,

||st7p,q;k+m/2 = ||(_A)m/2f||s—m,p7q;k' (14‘3)

Theorem 14.1 (Triebel/Grigor’yan—Liu). Let n € N and p,q > 1.

(i) Let 0 < s < 1. Then there ezists a constant ¢ > 1 such that every
Schwartz test function f € Z(R™ C) satisfies the inequalities

! (Al 7 ey
st < ([ (PS5 ) ) < ey

The first inequality continues to hold for 1 < s < 2.

(ii) Let 0 < s <2 and k > s/2. Then there ezists a constant ¢ > 1 such that
every Schwartz test function f € #(R"™, C) satisfies the inequalities

o0 —tAY (K, * ) qd Ha
B§j§§||f”1:p+</0 (H( >t(s/2 f)HL) %) <c|fl

(iii) Let 0 < m < s < 2. Then there exists a constant ¢ > 0 such that every
Schwartz test function f € 7 (R™ C) satisfies the inequalities

"))

5,p .
Bq,2

1
p If

SN

b‘;;m’p S c ||f||b§72’
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Proof. Part (i) can be found in Triebel [39, Thm 1.7.3 & Thm 1.8.3]. Parts (ii)

and (iii) are due to Grigor’yan-Liu [I3] Thm 1.5]. The proof given below

follows the argument in [I3] for the standard Laplace operator on R™.
Assume 0 < s < 2 and k > s/2. We prove in seven steps that the norm

SR, C) = [0,00) : f = [ fll o + 1f 15 p.gir (14.4)
defined by (|14.2)) is equivalent to the norm
S (R*,C) = [0,00) : f= [ fllpo + IS

b
in (12.6). The first two steps establish the inequality || f bp < cllfllspg-
The heart of the proof is Step 3, which shows that ||f|[spq1 < |l fllsz% for

0 < s < 1, and hence proves part (i). Steps 4 and 5 show that the norms
in (14.4) are equivalent for any two values of k > s/2. The last two steps
establish part (ii).

Step 1. Define the function ® : R — R by
1 no|z|?\ _e ~ 12
d(r) = Sl |[*/4 D(E) = |12 €17

For t > 0 define ®,(z) := t "®(t"'x) so that ®,(¢) = B(t&). Then

= (o £l )" de)
g =2 ([~ (1) (145

for all f € LS(R",C) and all p,q,s such that p,q > 1 and 0 < s < 2.

By definition, we have

q)\/i - —tath == —tAKt7 &\)\/E = —tA/I\(t

o A Kt* . th 1/q
= ([ (LA D 1)
_ /Oo N@ve = £l )" dt "
0 ts/2 t
(o [ (1R fll e
_(2/0 ( . L) 7)

for all f € #(R™, C). This proves Step 1.

Hence
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Step 2. Let p,q>1 and 0 < s < 2. Then there exists a constant ¢ > 0 such
that

I/

oL <c Hf”s,p,q;l
for all f € Z(R",C).

The function ® satisfies the first condition in , however, it does not
satisfy the second condition in . To obtain a function that does, choose
a smooth function § : R” — R in the Schwartz space . (R") such that
B(x) = p(—=x) for all z € R™ and whose Fourier transform satisfies

-~ ~

supp(f) ={¢ e R"|1/2<[¢] <2},  p(§) >0 for1/2 <[¢] <2.
Then  is integrable. Define
¢ =[x .

Then the Fourier transform of ¢ is given by qg(f) = B({)@(f) and so ¢
satisfies ((13.1)) and ([13.2)), i.e. ¢ is a Triebel function. Moreover,

O = B x Dy

for all t > 0 and hence, by Young’s inequality,

160 % Fllpo = 180 % @ox fll o < 15l o 190 * fll o = 160 2o 19 % fll o -

This implies

(e * fllo \* dt\ < @ fll, \ dt)
() F) = ([ () F)

for all f € .(R",C). Since the norm on the left is equivalent to |- bz by

Theorem m, and the second factor on the right is 27%4|| f||s .41 by Step 1,
this proves Step 2.

Step 3. Letp>1,q>1, and 0 < s < 1. Then there exists a constant ¢ > 0
such that

||f||s,p,q;1 < CHf

s,p
bq,O

forall f € S (R",C).
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This is the argument in [I3, Section 3.1]. There is a constant ¢; = ¢;(n) >0
such that, for all £ > 0 and all z € R",

1 lz|> n = _a 2]\ 1y lely?
P _ < =14+ 8( T3 ) .
| t( )| (47T)n/2tn 4¢2 2 € - {n + t €
The last step uses the inequality %(1 - %)2 < % + %. Since ®; has mean

value zero, we have

@< f)a) = [ @b (Fla = 1)~ 1) dn
and hence

(@ @) < [ @I e) = fo =] dn
<7 <1+@) S0 () = o — )] dh

for all ¢ > 0 and all z € R". Choose a real number o > s. Then there is a
constant ¢, > 0 such that (14 7)2e~s(47)* < ¢y(1 4 )=o) for all r > 0.
Define c3 := ¢yco. Then it follows from (14.6]) that

@) <22 [ (1B ) - s - mjan

e [ @) )
= ot / Sy

e [ M@= h)
= csl /|h|<t dh

(14.6)

( + |h])rtor
S |f(x) = f(z —h)]

+ c5t™? / dh

’ ZZI si-t<ip<2ie  (t+ [h])"TOP
C

<@ [ \f@)  flo—n)ldh

|h\<t

C3
422 / F(x) — f(z — h)|dh

tn — 2(i—1)( n+ap) i 1t§|h|§2¢t| ( ) ( )|

<52 | 1#@ = rta=nlan,

1= 20t

~

where ¢4 1= 2",
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Now use Holder’s inequality to obtain

o] 1/p
Cy Vol(Byi) 1 »
(@ NN < 52 Stran (w(BM) /Bm'f ) dh)

=0

N 1 1/p
e (WB) f, 170 = st np dh>

3 ‘ 1/p
_ —ia(p—1) ﬂ - B .
_05;2 ! (Vol(BQit) /Bm\f(x) flz = h)| dh)

o —iap 1/p
< e ( Vo J,, - - h>rpdh) -

Here ¢5 := ¢4,Vol(By). The last step uses Holder’s inequality again and holds
with cg 1= c5(D> 0, 27P)P~/P = ¢5(1 — 27oP)=(P=1/P_ Integrate the pth
power of the last estimate over x € R". This gives

1/p
[0 % 10 < co (Z? i L — ) dh dw)
0 1 1/p
= e ALfllP, dh
@ (Z Vol(Byi) /Bm 18Tl )

and hence

[Py * flle (2t)~ /
ner = S g—ila=s)p \Z )
- Z Vol(Bsyi) J5

Now assume ¢ > p, raise both sides of equation ((14.7) to the power ¢, and
use Holders inequality with the exponent ¢/p > 1 and the dual exponent
q/(q — p). Then, since > ¢ 2742=*P < 0o, we have

/D
190+ /1l sy (270)7 y o\
(t—L) (ZQ VolB )/B 871z dh)
q/p
21 8
<c7zzm (%/ 1A, dh) .
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[ ARfIT dh) . (147)
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By Step 1 this implies

(e fllp T dt
Hf”s D:q; 1= 0 s t
0o . q/p
, > 21t) P dt
<9 21(048)10/ <—/ ALfllE, dh -
- C7 ; 0 <V01(Bta) B i H thL t
> oo ar gy
= 2¢7 Z 9—i(a=s)p / ( / ||Ahf|| ) n
=0 0

I(By
2¢; 0 q 1 iwr g
S Sl (S A, FIP. dh i
1—2—<a—s>p/0 s (Vol(Bt) B 12 Sz ) t

q
- (CS If bZ:('S) '

This proves the estimate in Step 3 for ¢ > p with ¢ = cs.

Now assume 1 < ¢ < p. Then (3%, a;)%? < 3%, a?/? for every sequence
of nonnegative real numbers a; > 0, by the triangle 1nequahty in /P/9. Hence
it follows from that

a/p
[Pe o+ fllpw ) * (2't)” SP/
2~ i(a—s)p A p dh
G Z wain [ 1,
(20t)- q/p
<y arilene —/ Anflt, dh | .
— GZ (VO].(B ) B || hf”LP )

2%t

This implies

oo H®t*fHLp 1 dt
1711 g = / (t_ 7
S a/p
j 2it) 5P gt
<9 q 271(0173) / ( / A » I dt
2 Ve [, 1l !

Vol(Byiy)
24 ~ 1 1 aIr gy
=% _ Anfllp, dn) =
1—2—<a—s>q/0 (Vol(Bt) 1201z > t
q
= (@ 17lg)"

Thus the estimate in Step 3 also holds for 1 < g < p with ¢ = ¢q.
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Step 4. Fiz real numbers s,p,q,k,m such that p,q>1 and 0 < s/2 < k
and m > 0. Then there exists a constant ¢ > 0 such that

||f||57p,q;k:+m/2 S c ||f||s,p,q;k (148)
for all f € S (R",C).

This is the easy direction of [13, Proposition 2.9], which asserts that, for
every fixed triple of real numbers s > 0 and p,q > 1, the norms for
different values of k > s/2 (not necessarily integers) are all equivalent. To
prove Step 2 we return to the notation

S(t)f =Ki* f

for the strongly continuous semigroup S(t) on LP(R"™, C) generated by the
Laplace operator A := A. Since the operator (—A4)™?2 commutes with S(t)
for all m and ¢, we have

L Ut
< [[(=tA)™25(¢/2) Hch It s/2) 1],
< 220 ||(—tA)*S(t/2) f||Lp,

where C := C(n,m,p) = sup,.oll(=tA)™25(t)|| sy < oo. This number
is finite because (—tA)™2S(t) is given by convolution with the function
Ky := (—tA)™2K,. Tts Fourier transform is Ky, ,(€) = (t|€]2)™/2e 1€ The
function K,,; belongs to the Schwartz space and hence is integrable. More-
over, K (€) = K1 (1Y2€) and so Ko, () = t /2K, 1 (t~/%2). This implies
that the L' norm of K, is independent of ¢ and therefore C'(n, m,p) < oo.
With this understood, we obtain

m 1/
171 _ [y, | ar) ™
s,p,g;k+m/2 T 0 £5/2 ;
1/
2m/20 / H tA kS Z5/2 fHLP “b !
0 ts/2 t
/
o2 h=5/2 / [(—(t/2)A)kS(t/2)f]],, q@ 1/q
0 (t/2)°? t

= ¢ ||st,p,q;k

with ¢ := 2k=5/22m/2C' This proves Step 4.

IN
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Step 5. Fix real numbers s,p,q,k,m such that p,q > 1, 0 < s < 2k, and
m > 0. Then there exists a constant ¢ > 0 such that

1 e < € (17110 + 17 g2 (14.9)

forall f € S (R",C).

This is the nontrivial part of [13, Prop 2.9]. Here is the argument in [13].
Choose an integer N > ¢ := k 4+ m/2. The proof is based on the identity

— 1 1 ! dA
=Y —(-ASf+—— | (AADYSN)f— 14.1
1=3 GArs et AT S (TR T)
for f € Z(R™,C) (sometimes called the Calderdn Reproduction Formula).
The last summand in ((14.10]) is the remainder term in the Taylor expansion
of the function ¢ — S(t)f at t = 1 and this proves equation ((14.10]) for all
f e W2Ne(R™ C). Replace f by (—tA)"S(t)f in (14.10) to obtaln

(~HAVS(OF = Y S-AF IS s
by [ AR 2 A s 2

Since supo||(—tA)*S(#)||ry < oo for all j > 0, this shows that there
exists a constant C' = C(n, N,p) > 0 such that

It S@f]| o < CE NI

/2 gky\N—t d\ (14.11)
+C/ t+/\k+NeH )\>f||LP7

for all f € #(R",C) and all ¢ > 0. Following [I3] we denote the two terms
on the right in (14.11]) by

Ji(t) = fll o s
/2 gk \N—t d\
Ta(t) 12/0 S\ I S,

Hence, with C; := (q(k — %))_1/(",

1 J q d 1/q 1 . 1/q
(/ ( ig)) f) =(/ t“’“‘2>‘1dt) 1l = Collfll - (14.12)
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Moreover, since k > s/2, we have

9] k—f/\N +35 d)\ t/\N—E—&-%—l 0 tk—%
—_— < ——— dA\ ——d\
X X (14.13)

:N—£+§+k— = G,

Hence, by Holder’s inequality,
0N /1/2 AN [[(AA)SAS| L, ar )
t3 S\ Jo o (A N)RENL A2 A

s _pas q
- Cq_l /1/2 tk—g)\N Z+2 H )\A @S )f”Lp @
= e % A

By Fubini’s Theorem, this implies

/1(J2())th
- . 1/2 tk——/\N +5 ‘( AA) ES fHLP d\ dt
1/2 1 k—S \N—0+3 AL (14.14)
gcg—lf (/t y 2dt)|! W2, dx
0 0

(t + A\)e+N—L + T A

V2 (A4S
q LP_
§02/0 — .

Here the last inequality follows from ((14.13]) with dA/\ replaced by dt/t.

By (14.11)), (14.12]), and (14.14]) we have

1/
||f|| < > H tA kS fHLP dt ! || tA fHLP dt
s,p.qsk — 1 $sa/2 £s4/2 t
1/q
O\ dt
S (CO + 001) ||f||Lp + CCQ (/ (H ts/2 fHL ) ?)

for all f € #(R",C), where Cy := sup, ||(—tA)*S(t) }|£(Lp (Z)"9. This
proves the estimate (14.9) and Step 5.
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Step 6. We prove part (iii) of Theorem |14.1. Let p > 1, ¢ > 1, and
0 <m < s <2. Then there is a ¢ > 0 such that every f € ./ (R™, C) satisfies

< [|(=a)"2f

poomo < €[ Fllye

(14.15)

Let ¢ : R® — R be a Triebel function and define ¢(z) := t™"¢(t"'z) for
x € R" and t > 0. Define the functions 1,1, : R* — R by 12(5) = |§|m$(£)
and Y (z) = t7"Y(t7'z) for t > 0 and 2, € R", so ¢ is also a Triebel
function. Now let f € . (R" C) and g := (—A)™/?2f. Then g(§) = |£|mf( €)
for all £ € R™. Since 1;(£) = t™|¢[™,(€), this implies 1, f = t™,3, therefore
Yy x f =1t"¢y x g for all t > 0, and so

1 (b gl ) )
= () () F)
:(/ (wm ﬂb) _)”q
0 ts t

= [l

(=)™ f

S,P

for m < s < 2. Hence Step 6 follows from Theorem [13.5|
Step 7. We prove parts (i) and (ii) of Theorem[14.1]

Part (i) follows from Step 2 and Step 3. Moreover, the first inequality in
part (ii) follows from Step 2 and Step 4 for s/2 < k < 1 and from Step 2
and Step b for £ > 1. If 0 < s < 1 then the second inequality in part (ii)
follows from Step 3 and Step 5 for s/2 < k < 1 and from Step 3 and Step 4
for £ > 1. To prove the second inequality in part (ii) for 1 < s < 2, choose
m such that 0 < m < s <m+1 < 2. By Step 4 (in the case k > 1+ m/2)
and Step 5 (in the case k < 1+ m/2), there is a constant cg; > 0 such that

7 llpat < ess (1610 + 10 oms)

= cis (s + 12211 )
for all f € #(R",C) (see (I4.3)). Since 0 < s —m < 1, Step 3 implies
122 F || < s [[(=2)™2F

with ¢ > 1. By Step 6, ||[(—A)™/2f by < 06||f||bsp with ¢g > 1. Combine

these estimates to obtain || f||s p.gx < 07(||f||Lp + ||f||bsz>) forall f € .Z(R",C)
with ¢;7 := c3ey45¢6. This proves Step 7 and Theorem |1 - O

s—m,p
bq,2
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15 Proof of Theorem 1.2

Proof of Theorem[I.3. Take k =1 and s = 2 — 2/¢ in Theorem [14.1] Then

0 1/‘1
< ([ 18Nl @) <cl
’ 0

for f € L (R™,C) (with || f| g2z on the right replaced by I1f 1y »z when s < 1).
Since u; := Ky * f is the solutlon of the heat equation with uo f such that
u; € L? for all ¢, the estimate is equivalent to ((1.5)). O

1
~lIf B (15.1)

The next corollary restates the estimates of Theorem for p=q.

Corollary 15.1. Letn € N and p > 1.

(i) If 1 < p < 2 then there exists a constant ¢ > 1 such that every Schwartz
test function f € L (R™ C) satisfies the inequalities

|f(z) = fy)lP 1/p
(/Rn /]Rn |z — y|n+2p 2 dy dﬂﬁ)
1/p
< (/ IA(K, * f|%, dt) o)
0
|p 1/p
(/]Rn /Rn |CE — y|n+2p ) d da:) .

(ii) If p > 2 then there exists a constant ¢ > 1 such that every Schwartz test
function f € (R", C) satisfies the inequalities

([ [ T I gy 00)
< ([ 1o s, ) ” (15.3)
(anm ([ [ BTt dydx)l/p> |

Proof. 1f 0 < s < 1 then, by Lemma the norm ||-||ysr in (12.11)) dif-

fers from the norm ||- ||bs p in (12.4) by a constant factor and so is equivalent

pes i 6) by Theorem [12.1] Hence part (i) follows from

to the norm |||,
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Theorem-withp— gand 0 < s =2—2/p < 1. If 1 < s < 2 then,
by Lemma and Theorems |12 1| and [13.7, the norm f +— ||V f]lws-1p
n (12.11)) i . Hence part (ii) follows from Theo-

rem|l.2lwithp=qgand 1 <s=2— 2/p < 2. This proves Corollary O

We remark that for p = ¢ = 2 the energy identity asserts that

1 00 ) 1/2
3191 = ([T IAGE DI ) = flgare (050
0

Thus ||+||1.2,2.1 is the norm of the homogeneous Sobolev space w!?(R", C).
The next corollary restates the estimates of Theorem in general.

Corollary 15.2. Letn € N and p,q > 1.

(1) If 1 < g < 2 then there exists a constant ¢ > 1 such that every Schwartz
test function f € L (R™ C) satisfies the inequalities

%</ (/n/ xﬁ;@ 2/q)< )|pdhdx)q/p %) 1/q
< (f v s, )”"
</ (/n/ xr_;hQ 2/q)( )‘pdhdx)q/p g) 1/q

(ii) Assume q¢ > 2 and choose m such that 0 < m <2—2/g<m+1<2.

Then there exists a constant ¢ > 1 such that every Schwartz test function
f e L (R C) satisfies the inequalities

L[ ([ et o ) )

/g
s(/|MMwmmw) < el +
0

([ (L Moot Garemar gy )

When q > 2 and m = 1, the function (—A)™2f can be replaced by V f.

132



Proof. This is just a restatement of Theorem in more explicit terms.
Part (i) uses the equivalence of the norms [|-||y:z and ||-[|;z# established in

Theorem m Part (i) uses the fact that the norm ||-|| b in (12.6) is equiv-
alent to the norm f +— [[(—=A)™2f|,s~m» by Step 6 in the proof of Theo-
rem [14.1] The last assertion follows fr(é)m Theorem [13.7] O
Remark 15.3. The assertions of Corollary [I3.9) about the inhomogeneous
Besov spaces Bay?(R™, C) can also be derived from Theorems u 1.2 and 2.1} .
(See also Lemma [12.9] for the weaker inclusions relating the Besov spaces
B}?(R",C) and BLP(R",C) to W'P(R",C).) Here are the details.

(i) Let n € N and p < 2. By Theorem [1.2 with ¢ = 2 and s =2 — 2/q = 1,
there exists a constant ¢ > 0 such that

1 00 , 1/2
el < ([T 180 R ) <

for all f € C§°(R™, C). Here the second inequality follows from Corollary [2.6]
Hence w'?(R", C) C by?(R™,C) and WP(R™,C) c B,”(R",C) for p < 2 and
the inclusions are bounded linear operators.

(ii) Let n € Nand p > 2. Let f € C5°(R") and define u(t,z) := (K * f)(x)
for t > 0 and x € R™. Then the proof of Theorem shows that

(15.5)

d1 _ -
o | == =1 [ " Vuf = ~(p - 1) ull 7 Va7 -
tp Jrn R"
The last step follows from Holders inequality. This implies
2 1 d1 9
S p — P —(p—1)|V p
dt 2 HutHL || th =) dt HutHL - (p ) H U’HL

Integrate this inequality to obtain ||f|3, < (2p — 2) I Vw3, dt. Now
replace f by 0;f fori =1,...,n. Then, by the Calderén—Zygmund inequality
in Corollary [6.2]

00 1/2
2
19 e <en ([ 10wl @) <l
0

for all f € Cg°(R™, C) with suitable constants ¢; > 0 and ¢ > 0, dependng
only on n and p. Here the last step follows from Theorem with ¢ = 2
and s = 2 — 2/q = 1. Hence ByP(R",C) c WHP(R",C) for p > 2 and the
inclusion is a bounded linear operator.

(iii) It follows from (i) and (ii) that By*(R™,C) = WH2(R", C).
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