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1 Introduction

Let Σ be a compact oriented Riemann surface with area form ω and f0, f1 . . . , fn

be orientation and area preserving diffeomorphisms of Σ such that

fn ◦ · · · ◦ f0 = id.

Suppose that P → Σ is a principal SO(3)-bundle with nonzero second Stiefel-
Whitney class and choose lifts

P
f̃j

−→ P
↓ ↓

Σ
fj

−→ Σ

to bundle automorphisms that also satisfy f̃n ◦ · · · ◦ f̃0 = id. These lifts induce
symplectomorphisms φf̃j

: MΣ → MΣ on the moduli space of flat connections

on P . They also determine SO(3)-bundles Qf̃j
→ Yfj

over mapping tori. There

are natural product structures

HF(Yf0
, Qf̃0

) ⊗ HF(Yf1
, Qf̃1

) ⊗ · · · ⊗ HF(Yfn
, Qf̃n

) → Z (1)

in instanton Floer homology and

HFsymp(MΣ, φf̃0
) ⊗ HFsymp(MΣ, φf̃1

) ⊗ · · · ⊗ HFsymp(MΣ, φf̃n
) → Z (2)

in symplectic Floer homology. Both were discovered by Donaldson. They are
well defined up to an overall sign. The homomorphism (1) can be interpreted
as a relative Donaldson invariant on a 4-manifold with boundary. In other
words, this product is obtained by counting anti-self-dual connections over a
4-dimensional cobordism with n+ 1 cylindrical ends corresponding to Yfj

. The
second homomorphism is obtained by counting pseudo-holomorphic sections of a
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symplectic fibre bundle over the punctured sphere with fibreMΣ and holonomies
φf̃j

around the n + 1 punctures. The next theorem is the main result of this

paper. It can be viewed as an extension of the Atiyah-Floer conjecture to
product structures (cf. [1, 17]).

Theorem 1.1. The natural isomorphism HF(Yf , Qf̃ ) → HFsymp(MΣ, φf̃ ) con-
structed in [6] intertwines the two product structures (1) and (2) (up to a sign).

Corollary 1.2. The quantum cohomology ring of MΣ is isomorphic to the in-
stanton Floer homology ring of S1 × Σ.

Proof. Theorem 1.1 with f̃0 = f̃1 = f̃2 = id and Theorem 5.1 in [16].

Remark 1.1. (i) The techniques of [4, 5, 6] suggest a general relation between
holomorphic curves in MΣ and anti-self-dual instantons on the 4-manifold S×Σ
for any compact Riemann surface S. The technique of proof is an adiabatic
limit argument where the metric on the fibre Σ converges to zero. In this limit
the anti-self-dual instantons on the product S × Σ degenerate to holomorphic
curves S →MΣ. The proof of Theorem 1.1 is the analogue of this argument for
Riemann surfaces S with n + 1 cylindrical ends. Instead of holomorphic maps
S → MΣ one obtains holomorphic sections of a fibre bundle W → S with fibres
MΣ and holonomies φf̃j

at the n+ 1 cylindrical ends. The comparison theorem

for Floer homologies in [6] corresponds to the case of two cylindrical ends.

(ii) It is interesting to relate the results of this paper to the recent work of
Donaldson about symplectic Lefschetz fibration (cf. [2, 3]). He proved that
every symplectic manifold, after blowing up a suitable number of points, admits
the structure of a topological Lefschetz fibration

Σ ↪→ X
↓
S2.

The projection π : X → S2 has finitely many nondegenerate singular points
(with distinct singular values) near which π is holomorphic. Moreover, each
regular fibre of π is a symplectic submanifold of X . Thus the holonomy around
each singular value is a positive Dehn twist fj , and the composition of these
Dehn twists is the identity. Cutting out neighbourhoods of the singular fibres
one obtains a fibration X → S over the punctured sphere. Now the neighbour-
hoods of the singular fibres determine natural Floer homology classes

a(f̃j) ∈ HF(Yfj
, Qf̃j

)

and their product under (1) is the degree-0 Donaldson invariant of X .

(iii) In his recent thesis [11] Handfield discusses the relation between anti-self-
dual instantons on S×Σ and holomorphic curves S →MΣ for a closed Riemann
surface S. His work is based on the ideas developed in [4, 5, 6].

(iv) Corollary 1.2 was established independently by Munoz [14, 15] who com-
puted both ring structures separately, without using the natural isomorphism.
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2 The punctured sphere

Fix an integer n ≥ 2 and let

S = CP 1 \ {z0, . . . , zn}

be the Riemann sphere with punctures at n + 1 distinct points z0, . . . , zn. We
assume throughout that the points z0, . . . , zn are ordered and in general position,
i.e.

0 = |z0| < |z1| < · · · < |zn−1| < |zn| = ∞.

It is convenient to use polar coordinates z = e2πw. Let us fix lifts wj = sj +itj ∈
C of the points zj . Then

−∞ = s0 < s1 < · · · < sn−1 < sn = ∞.

and S can be identified with the quotient S = U/ ∼ of the open set

U = {s+ it ∈ C | if s = sj then tj < t < tj + 1}

by the equivalence relation (s, t) ∼ (s, t+1). It is convenient to choose a metric
on S in which the punctures become cylindrical ends. Hence let

λ : C \ {wj + ik | j, k ∈ Z, 0 ≤ j ≤ n} → R

be a smooth positive function such that λ(s, t+1) = λ(s, t) and, for some T > 1
and every w = s+ it ∈ U ,

λ(w) =

{
1/2π|w − wj |, if |w − wj | ≤ e−2πT for some j,

1, if |s| ≥ T.

Consider the volume form

dvolS = λ2ds ∧ dt

on S and note that the function ζ 7→ wj + e2πζ is an isometry from the half
cylinder Z = (−∞,−T )× R/Z with the standard metric to the punctured ball
{w ∈ C | 0 < |w − wj | < e−2πT } with the metric λ2(ds2 + dt2).

3 Fibre bundles

Throughout we identify S1 = R/Z. Let Σ be a compact oriented Riemann
surface with volume form ω. The mapping torus of a symplectomorphism f ∈
Diff(Σ, ω) is a fibre bundle

Yf → S1

with holonomy f . It is defined by Yf := R × Σ/ ∼, where

(t+ 1, z) ∼ (t, f(z)).
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Let f0, f1, . . . , fn ∈ Diff(Σ, ω) such that

fn ◦ fn−1 ◦ · · · ◦ f0 = id.

Then there is a natural fibre bundle

Σ ↪→ X
↓
S

over the punctured sphere with holonomy fj around the jth puncture. Thus
the restriction of the bundle to a circle around wj is diffeomorphic to Yfj

. To
construct the bundle explicitly it is convenient to introduce the maps

gj = fj ◦ fj−1 ◦ · · · ◦ f0

for j = 0, 1, . . . , n− 1. Then X := U × Σ/ ∼ under the equivalence relation

sj < s < sj+1 =⇒ (s, t+ 1, z) ∼ (s, t, gj(z)).

For j = 0, . . . , n there is a natural embedding ιj : (−∞,−T )×Yfj
↪→ X, defined

by ι0(s, t, z) = [s, t, z] and ιn(s, t, z) = [−s,−t, z] for j = 0, n and by

ιj(s, t, z) =

{
[wj + e2π(s+it), fj

k(z)], if k − 1/4 < t < k + 3/4,

[wj + i+ e2π(s+it), gj
−1 ◦ fj

k(z)], if k − 3/4 < t < k + 1/4,

for j = 1, . . . , n− 1. These maps are well defined and satisfy

ιj(s, t+ 1, z) = ιj(s, t, fj(z))

for j = 0, . . . , n.
Let J (Σ) denote the space of complex structures on Σ that are compatible

with the orientation given by ω. A vertical complex structure on X is an
almost complex structure on the vertical tangent bundle. Explicitly, such a
complex structure can be represented by a smooth map U → J (Σ) : (s, t) 7→
J(s, t) that satisfies

sj < s < sj+1 =⇒ J(s, t+ 1) = gj
∗J(s, t).

The pullback Jj = ιj
∗J is a vertical complex structure on (−∞,−T ) × Yfj

. It
is given by

Jj(s, t) =

{
(fj

k)∗J(wj + e2π(s+it)), if k − 1/4 < t < k + 3/4,

(fj
k)∗gj∗J(wj + i+ e2π(s+it)), if k − 3/4 < t < k + 1/4,

for j = 1, . . . , n − 1 and it satisfies Jj(s, t + 1) = fj
∗Jj(s, t). We assume

throughout that Jj(s, t) is independent of the s-variable for −s sufficiently
large. Let ∗s,t denote the Hodge ∗-operator on Σ corresponding to the metric
ω(·, J(s, t)·) and ∗j;s,t the Hodge ∗-operator of the metric ω(·, Jj(s, t)·). Note
that ∗s,tα = −α ◦ J(s, t) for α ∈ Ω1(Σ, gP ).
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4 Connections and gauge transformations

Let P → Σ be a principal bundle with structure group G = SO(3) and nonzero
second Stiefel-Whitney class. Denote by g = Lie(G) = so(3) the Lie algebra
of G, by A(P ) ⊂ Ω1(P, g) the space of connection 1-forms on P , and by G(P )
the identity component in the group of gauge transformations (thought of as
equivariant maps from P to G). A lift f̃ : P → P of f ∈ Diff(Σ, ω) determines
a principal SO(3)-bundle

P ↪→ Qf̃

↓
Yf

given by the mapping torus Qf̃ := R ×Q/ ∼, where

(t+ 1, p) ∼ (t, f̃(p)).

Choose n+ 1 such lifts f̃0, . . . , f̃n of the maps f0, . . . , fn such that

f̃n ◦ · · · ◦ f̃0 = id

and define g̃j = f̃j ◦ · · · ◦ f̃0. Then there is a principal SO(3)-bundle

P ↪→ Q
↓
X

defined as the quotient Q := U × P/ ∼ under the equivalence relation

sj < s < sj+1 =⇒ (s, t+ 1, p) ∼ (s, t, g̃j(p)).

The embedding ιj lifts to a bundle map ι̃j : (−∞,−T )×Qf̃j
→ Q, given by

ι̃j(s, t, p) =

{
[wj + e2π(s+it), f̃j

k
(p)], if k − 1/4 < t < k + 3/4,

[wj + i+ e2π(s+it), g̃j
−1 ◦ f̃j

k
(p)], if k − 3/4 < t < k + 1/4,

for j = 1, . . . , n− 1. A connection on Q is a 1-form

Ξ = A+ Φ ds+ Ψ dt

on U × P such that the functions A : U → A(P ) and Φ,Ψ : U → C∞(Σ, gP )
satisfy the periodicity conditions

A(s, t+ 1) = g̃j
∗A(s, t),

Φ(s, t+ 1) = Φ(s, t) ◦ g̃j , Ψ(s, t+ 1) = Ψ(s, t) ◦ g̃j ,
(3)

for sj < s < sj+1. For j = 1, . . . , n− 1 the pullback connection

Ξj = ι̃j
∗Ξ = Aj + Φj ds+ Ψj dt
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on (−∞,−T )×Qf̃j
is given by

Aj(s, t) =

{
(f̃j

k
)∗A(wj + e2π(s+it)), if k − 1/4 < t < k + 3/4,

(g̃j
−1 ◦ f̃j

k
)∗A(wj + i+ e2π(s+it)), if k − 3/4 < t < k + 1/4,

Φj(s, t) = 2πe2πs
(
cos(2πt)Φ(wj + e2π(s+it)) + sin(2πt)Ψ(wj + e2π(s+it))

)
,

Ψj(s, t) = 2πe2πs
(
cos(2πt)Ψ(wj + e2π(s+it)) − sin(2πt)Φ(wj + e2π(s+it))

)

for −1/4 < t < 3/4. For general t these functions are determined by the
periodicity conditions Φj(s, t+ 1) = Φj(s, t) ◦ f̃j and Ψj(s, t+ 1) = Ψj(s, t) ◦ f̃j .
Let A(Q) denote the set of all connections Ξ that satisfy (3).

A gauge transformation of Q is a smooth function u : U → G(P ) that satisfies

sj < s < sj+1 =⇒ u(s, t+ 1) = u(s, t) ◦ g̃j .

The pullback gauge transformation uj = u ◦ ι̃j : (−∞,−T ) ×Qf̃j
→ G is given

by

uj(s, t) =

{
u(wj + e2π(s+it)) ◦ f̃j

k
, if k − 1/4 < t < k + 3/4,

u(wj + i+ e2π(s+it)) ◦ g̃j
−1 ◦ f̃j

k
, if k − 3/4 < t < k + 1/4,

and satisfies uj(s, t + 1) = uj(s, t) ◦ f̃j . Let G(Q) denote the group of gauge
transformations such that uj(s, t) = 1l for −s sufficiently large. This group acts
on A(Q) by

A 7→ u−1du+ u−1Au,
Φ 7→ u−1∂su+ u−1Φu, Ψ 7→ u−1∂tu+ u−1Ψu.

The action of uj on Ξj is given by the same formulae.

5 Anti-self-dual instantons

The curvature of Ξ = (A,Φ,Ψ) ∈ A(Q) is the 2-form

FΞ = FA + (∂sΨ − ∂tΦ + [Φ,Ψ]) ds ∧ dt

− (∂sA− dAΦ) ∧ ds− (∂tA− dAΨ) ∧ dt.

Since

∗FΞ = λ−2 ∗ (∂sΨ − ∂tΦ + [Φ,Ψ]) + λ2(∗FA) ds ∧ dt

− (∗s,t(∂tA− dAΨ)) ∧ ds+ (∗s,t(∂sA− dAΦ)) ∧ dt,

the connection Ξ is anti-self-dual if and only if

(∂sA− dAΦ) + ∗s,t(∂tA− dAΨ) = 0,
∂sΨ − ∂tΦ + [Φ,Ψ] + λ2 ∗ FA = 0.

(4)
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Note that the Hodge ∗-operator on 1-forms depends on the complex structure
J(s, t) but is invariant under rescaling, while the Hodge ∗-operator on 2-forms
depends only on the volume form. Note also that Ξj = ι̃j

∗Ξ satisfies the same
equations with λ = 1 and ∗s,t replaced by ∗j;s,t.

The Yang-Mills action of Ξ is given by

YM(Ξ) =

∫ 1

0

∫ ∞

−∞

(
‖∂sA− dAΦ‖

2
L2(Σ,J) + λ2 ‖FA‖

2
L2(Σ)

)
dsdt. (5)

If this action is finite then the connection has limits at the cylindrical ends. To
be more precise, we shall assume that the connection is in temporal gauge on
the cylindrical ends. This means that Φj(s, t) = 0 for −s sufficiently large. If
this holds, and the flat connections on Qf̃j

are nondegenerate for all j, then

there exist flat connections

aj = Aj(t) + Ψj(t) dt ∈ Aflat(Qf̃j
)

such that

lim
s→−∞

(Aj(s, t) + Ψj(s, t) dt) = aj . (6)

The convergence is exponential and in the C∞-topology. Moreover,

lim
s→−∞

∂sAj(s, t) = 0, lim
s→−∞

∂sΨj(s, t) = 0.

Warning: When referring to (6) below we shall always mean convergence in
the C1-norm together with uniform convergence of ∂sAj and ∂sΨj to zero and
with ∂sΦj = 0 for −s sufficiently large.

In general, the flat connections on the mapping toriQf̃j
may occur in families

and, to obtain smooth moduli spaces, we must choose suitable perturbations.
The quantum product structure (1) can then be obtained by counting the solu-
tions of the perturbed instanton equations with prescribed limit connections.

6 Perturbations

Throughout this section let g denote the genus of Σ. For any loop γ : R/Z → P
denote by ργ : A(P ) → SU(2) the holonomy along γ. Thus ργ(A) = u(1) where
u : [0, 1] → SU(2) is the solution of the ordinary differential equation

u̇+A(γ̇)u = 0, u(0) = 1l.

The differential of ργ at A has the form

ργ(A)−1dργ(A)α = −

∫ 1

0

u(θ)−1α(γ̇(θ))u(θ) dθ

for α ∈ Ω1(Σ, gP ). Now fix a path of basepoints [−1, 1] → P : τ 7→ pτ and 2g
maps [−1, 1] × R/Z → P : (τ, θ) 7→ γj(τ, θ) such that the projections π ◦ γj are
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orientation preserving embeddings, generate the fundamental group of Σ, and
satisfy γj(τ, 0) = pτ . For τ ∈ [−1, 1] let

ρτ : A(P ) → SU(2)2g

denote the holonomy along the loops θ 7→ γj(τ, θ), j = 1, . . . , 2g. Choose a
smooth cutoff function β : (−1, 1) → R with compact support and mean value 1.
Then every smooth function h : SU(2)2g → R, that is invariant under conjugacy,
determines a Hamiltonian function

A(P ) → R : A 7→ H(A) =

∫ 1

−1

β(τ)h(ρτ (A)) dτ.

The partial derivative of h with respect to the jth coordinate uj can be repre-
sented by a function ηj : SU(2)2g → su(2) such that

∂h

∂uj
(u)ujξ = 〈ηj(u), ξ〉.

for u = (u1, . . . , u2g) ∈ SU(2)2g and ξ ∈ g. Consider the vector field

A(P ) → Ω1(gP ) : A 7→ v(A) =

2g∑

j=1

vj(A),

where vj(A) ∈ Ω1(Σ, gP ) is supported in π−1(imπ ◦ γj) and satisfies

γj
∗vj(A) = β(τ)uj (τ, θ)ηj(ρτ (A))uj(τ, θ)

−1dτ.

Here θ 7→ uj(τ, θ) is the holonomy of A along the loop θ 7→ γj(τ, θ). Direct
computation shows that

dH(A)α =

∫

Σ

〈v(A) ∧ α〉

for A ∈ A(P ) and α ∈ Ω1(Σ, gP ). This means that v is the Hamiltonian vector
field of H . Any such Hamiltonian function is invariant under G(P ) and hence

H(u∗A) = H(A), v(u∗A) = u−1v(A)u, dAv(A) = 0 (7)

for A ∈ A(P ) and u ∈ G(P ). The vector fields v that arise from the holonomy
are smooth with respect to the W k,p-norm for all k and p.

Now let U × A(P ) → R : (s, t, A) 7→ Hs,t(A) be a smooth family of such
Hamiltonian functions and U × A(P ) → Ω1(Σ, gP ) : (s, t, A) 7→ vs,t(A) be the
corresponding family of Hamiltonian vector fields. Suppose that

Hs,t(A) = Hs,t+1(g̃j
∗A), g̃j

∗vs,t(A) = vs,t+1(g̃j
∗A)

for sj < s < sj+1. Let Ks,t be another such family of Hamiltonian functions
with corresponding vector fields ws,t and consider the perturbed anti-self-duality
equations

(∂sA− dAΦ − vs,t(A)) + ∗s,t(∂tA− dAΨ − ws,t(A)) = 0,
∂sΨ − ∂tΦ + [Φ,Ψ] + λ2 ∗ FA = 0.

(8)
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The perturbed Yang-Mills action of a solution of (8) is given by

YM(Ξ;H,K) =

∫ 1

0

∫ ∞

−∞

(
‖∂sA− dAΦ − vs,t(A)‖

2
L2(Σ,J) + λ2 ‖FA‖

2
L2(Σ)

)
.

If this action is finite then the limits (6) will exist in the case of a suitably
chosen perturbation. To be more precise, consider the pullback perturbations
under ι̃j . They are given by

vj;s,t = 2πe2πs(cos(2πt)v + sin(2πt)w),

wj;s,t = 2πe2πs(cos(2πt)w − sin(2πt)v),

for j = 1, . . . , n − 1 and −1/4 < t < 3/4, where v and w are evaluated at the
point wj +e2π(s+it). These functions extend to (−∞,−T )×R via the periodicity
conditions

f̃j
∗
vj;s,t(A) = vj;s,t+1(f̃j

∗
A), f̃j

∗
wj;s,t(A) = wj;s,t+1(f̃j

∗
A).

We shall assume throughout that vj;s,t = 0 and wj;s,t is independent of s for −s
sufficiently large. Call aj = Aj(t) + Ψj(t) dt a perturbed flat connection for
the jth cylindrical end if

Aj(t+ 1) = f̃j
∗
A(t), Ψj(t+ 1) = Ψj(t) ◦ f̃j . (9)

and

FAj (t) = 0, Ȧj(t) − dAj(t)Ψj(t) − wj;−∞,t(Aj(t)) = 0. (10)

Condition (9) asserts that aj is a connection on Qf̃j
. Denote the space of

solutions of (9) and (10) by

Aflat(Qf̃j
,Kj) =

{
aj ∈ A(Qf̃j

) | (10)
}
.

The gauge equivalence classes of such connections correspond naturally to the
fixed points of a Hamiltonian deformation of the symplectomorphism φf̃j

:

MΣ → MΣ (defined below) and the perturbation Kj can be chosen such that
these fixed points are all nondegenerate (cf. [4, 5]). Under this assumption the
quotient space Aflat(Qf̃j

,Kj)/G(Qf̃j
) is a finite set and, for every solution Ξ

of (8) with finite perturbed Yang-Mills energy, the limits (6) exists. Given n+1
perturbed flat connections

aj ∈ Aflat(Qf̃j
,Kj), j = 0, . . . , n,

we denote the moduli space of solutions of (8) with these limits by

M1(a0, . . . , an;H,K) =
{Ξ ∈ A(Q) | (8), (6)}

G(Q)
.
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7 Pseudoholomorphic sections

Consider the moduli space

MΣ = Aflat(P )/G(P ).

This space is a smooth compact manifold of dimension 6g(Σ) − 6, where g(Σ)
denotes the genus of Σ. It carries a natural symplectic form, and every complex
structure J ∈ J (Σ) determines a complex structure on MΣ via the Hodge ∗-
operator. Each lift f̃ : P → P of a symplectomorphism of Σ determines a
symplectomorphism

φf̃ : MΣ →MΣ

given by φf̃ ([A]) = [f̃∗A]. As above, choose n+1 such lifts f̃0, . . . , f̃n such that

f̃n ◦ · · · ◦ f̃0 = id

and define g̃j = f̃j ◦ · · · ◦ f̃0. Then there is a fibre bundle

MΣ ↪→ MX

↓
S

over the punctured sphere with holonomy φf̃j
around the jth puncture. It is

defined as the quotient MX = U ×MΣ/ ∼ under the equivalence relation

sj < s < sj+1 =⇒ (s, t, [A]) ∼ (s, t+ 1, [g̃j
∗A]).

The complex structure J : U → J (Σ) determines a vertical complex structure
on MX . The (perturbed) holomorphic sections of MX with respect to this
complex structure can be expressed as connections Ξ ∈ A(Q) that satisfy the
equations

(∂sA− dAΦ − vs,t(A)) + ∗s,t(∂tA− dAΨ − ws,t(A)) = 0,
FA = 0.

(11)

As in [4], the additional terms Φ and Ψ are uniquely determined by the require-
ment that the 1-forms ∂sA − dAΦ and ∂tA − dAΨ in Ω1(Σ, gP ) are harmonic
with respect to A. The quantum product structure (2) in symplectic Floer
homology is obtained by counting the solutions Ξ ∈ A(Q) of (11) that are in
temporal gauge near the cylindrical ends and satisfy (6). Given n+1 connections
aj ∈ Aflat(Qf̃j

,Kj), denote by

M0(a0, . . . , an;H,K) =
{Ξ ∈ A(Q) | (11), (6)}

G(Q)

the moduli space of gauge equivalence classes of pseudoholomorphic sections of
MX with prescribed limiting data at the cylindrical ends. The task at hand is
to compare the solutions of (11) with those of (8).
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A perturbation (H,K) is called regular if the perturbed flat connections
corresponding to the n + 1 cylindrical ends are all nondegenerate (see for ex-
ample [4]) and if the linearized operator D0(Ξ) (defined in Section 9 below) is
surjective for all aj and every solution Ξ of (11) and (6). The set of regular
perturbations will be denoted by HKreg. It was proved in [20] and [10] that
HKreg is of the second category in the sense of Baire in the space of all smooth
perturbations.

8 Adiabatic limits

The strategy for the proof of Theorem 1.1 is, precisely as in [6], to show that the
solutions of (4) degenerate to pseudoholomorphic sections in the limit where the
metric on the fibre converges to zero. More precisely, if we multiply the metric
on Σ by a factor ε2 then the anti-self-duality equations for this metric take the
form

(∂sA− dAΦ − vs,t(A)) + ∗s,t(∂tA− dAΨ − ws,t(A)) = 0,
∂sΨ − ∂tΦ + [Φ,Ψ] + ε−2λ2 ∗ FA = 0.

(12)

The moduli space of solutions of these equations with given limit connections
aj will be denoted by

Mε(a0, . . . , an;H,K) =
{Ξ ∈ A(Q) | (12), (6)}

G(Q)
.

As before we consider only solutions that are in temporal gauge near the cylin-
drical ends. The Yang-Mills action for the ε-dependent metric is given by

YMε(Ξ) =

∫ 1

0

∫ ∞

−∞

(
‖∂sA− dAΦ − vs,t(A)‖

2
L2(Σ,J) +

λ2

ε2
‖FA‖

2
L2(Σ)

)
. (13)

It depends on the aj but not on ε.

Theorem 8.1. Suppose that the perturbed flat connections aj ∈ Aflat(Qf̃j
,Kj)

are nondenerate for j = 0, . . . , n. Then the moduli spaces M0(a0, . . . , an;H,K)
and Mε(a0, . . . , an;H,K) have the same virtual dimensions.

Theorem 8.2. Let (H,K) ∈ HKreg and suppose that the moduli space
M0(a0, . . . , an;H,K) has virtual dimension zero. Then, for ε > 0 sufficiently
small, there is a natural orientation preserving bijection

Tε : M0(a0, . . . , an;H,K) → Mε(a0, . . . , an;H,K).

Theorem 1.1 is an immediate corollary of these results. Theorem 8.1 will be
proved in the next section. Theorem 8.2 then follows easily from the techniques
developed in [6] and we shall summarize the main points in Section 10.
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9 Proof of the index formula

The proof of Theorem 8.1 rests on estimates for the differential operators that
arise from the linearized equations. To examine these operators in detail we
introduce some further notation. Denote by X the space of triples ξ = (α, φ, ψ),
where α : U → Ω1(Σ, gP ) and φ, ψ : U → Ω0(U, gP ) are smooth functions that
have compact support in S = U/ ∼ and that, for sj < s < sj+1, satisfy the
periodicity conditions

α(s, t+ 1) = g̃j
∗α(s, t),

φ(s, t+ 1) = φ(s, t) ◦ g̃j , ψ(s, t+ 1) = ψ(s, t) ◦ g̃j .
(14)

Such a triple can be identified with a 1-form ξ = α+φ ds+ψ dt ∈ Ω1(X, gQ) with
values in the Lie algebra bundle gQ associated to Q. The self-duality operator

Ω1(X, gQ) → Ω2,+(X, gQ) ⊕ Ω0(X, gQ) : ξ 7→ Dξ = (d+
Ξ ξ, d

∗
Ξξ)

has the form

d+
Ξ ξ = −α̃ ∧ ds+ ∗s,tα̃ ∧ dt+ ψ̃ ds ∧ dt+ λ−2ψ̃ω, d∗

Ξξ = −λ−2φ̃,

where ξ̃ = (α̃, φ̃, ψ̃) is given by

α̃ = ∇sα− dAφ− dvs,t(A)α + ∗s,t(∇tα− dAψ − dws,t(A)α),

φ̃ = ∇sφ+ ∇tψ + λ2 ∗ dA ∗s,t α,

ψ̃ = ∇sψ −∇tφ+ λ2 ∗ dAα.

The Lp and W1,p-norms of the 1-form ξ = α+ φ ds+ ψ dt are given by

‖ξ‖
p
Lp =

∫ 1

0

∫ ∞

−∞

(
λ2 ‖α‖

p
Lp(Σ,J) + λ2−p ‖φ‖

p
Lp(Σ) + λ2−p ‖ψ‖

p
Lp(Σ)

)

‖ξ‖p
W1,p =

∫ 1

0

∫ ∞

−∞

(
λ2 ‖α‖p

W 1,p(Σ,J)

+ λ2−p ‖∇sα‖
p
Lp(Σ,J) + λ2−p ‖∇tα‖

p
Lp(Σ,J)

+ λ2−p ‖φ‖
p
W 1,p(Σ,J) + λ2−p ‖ψ‖

p
W 1,p(Σ,J)

+ λ2−2p ‖∇sφ‖
p
Lp(Σ) + λ2−2p ‖∇sψ‖

p
Lp(Σ)

+ λ2−2p ‖∇tφ‖
p
Lp(Σ) + λ2−2p ‖∇tψ‖

p
Lp(Σ)

)
,

where ∇s = ∂s + Φ, ∇t = ∂t + Ψ, and

‖φ‖
p
W 1,p(Σ,J) = ‖φ‖

p
Lp(Σ) + ‖dAφ‖

p
Lp(Σ,J) ,

‖α‖
p
W 1,p(Σ,J) = ‖α‖

p
Lp(Σ,J) + ‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ) .
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Thus the W1,p-norm depends on a connection Ξ = (A,Φ,Ψ) which should be
chosen to be in temporal gauge near the cylindrical ends. We assume further
that the limits (6) exist. The Lp-norm of the triple ξ̃ ∼= Dξ is given by

‖ξ̃‖p
eL

p =

∫ 1

0

∫ ∞

−∞

(
λ2−p ‖α̃‖

p
Lp(Σ,J) + λ2−2p‖φ̃‖p

Lp(Σ) + λ2−2p‖ψ̃‖p
Lp(Σ)

)
.

For 1 < p < ∞ we denote by Lp, W1,p, and L̃p the completions of X with
respect to these norms. They are independent of the choice of the connection Ξ.

Note that ξ̃ ∈ L̃
p

if and only if λ−1ξ̃ ∈ Lp.
Linearizing the equations (12) we obtain the ε-dependent self-duality oper-

ator
Dε = Dε(Ξ) : W1,p → L̃p,

given by
Dεξ = ξ̃ = (α̃, φ̃, ψ̃),

α̃ = ∇sα− dAφ− dvs,t(A)α + ∗s,t(∇tα− dAψ − dws,t(A)α),

φ̃ = ∇sφ+ ∇tψ + (λ/ε)2 ∗ dA ∗s,t α, (15)

ψ̃ = ∇sψ −∇tφ+ (λ/ε)2 ∗ dAα.

Next we discuss the Cauchy-Riemann operator along the section S → M :
(s, t) 7→ [A(s, t)]. The pullback vertical tangent bundle under this section is the
bundle HA → S whose fibre over s+ it is the space

H1
A(s,t) = ker dA(s,t) ∩ ker dA(s,t)∗s,t

of harmonic 1-forms with respect to A(s, t) and ∗s,t. Let

πA = πA(s,t) : L2(Σ, T ∗Σ ⊗ gP ) → H1
A(s,t)

denote the L2 orthogonal projection onto the harmonic part. We introduce the
subspaces

Lp(HA) ⊂ Lp, W1,p(HA) ⊂ W1,p, L̃
p
(HA) ⊂ L̃

p
,

of those triples (α, φ, ψ) that satisfy φ = ψ = 0 and πA(α) = α. The operator

D0 = D0(Ξ) : W1,p(HA) → L̃
p
(HA)

is given by

D0α0 = πA

(
∇sα0 − dvs,t(A)α0 + ∗s,t∇tα0 − ∗s,tdws,t(A)α0

)
.

Note that α̃0 = D0α0 can be interpreted as a (0, 1)-form α̃0∧ ds−∗s,tα̃0∧ dt on
S with values in the bundle HA → S. The Lp-norm of this 1-form is precisely

the norm of the space L̃
p
.

13



Both operators Dε(Ξ) and D0(Ξ) are Fredholm whenever the limit connec-
tions a0, . . . , an of Ξ are all nondegenerate. To examine the relation between
these operators it will be convenient to introduce the ε-dependent norms

‖ξ‖
p
0,p,ε =

∫ 1

0

∫ ∞

−∞

(
λ2 ‖α‖

p
Lp(Σ,J) + εpλ2−p ‖φ‖

p
Lp(Σ) + εpλ2−p ‖ψ‖

p
Lp(Σ)

)
,

‖ξ‖
p
1,p,ε =

∫ 1

0

∫ ∞

−∞

(
λ2 ‖α‖

p
W 1,p(Σ,J)

+ εpλ2−p ‖∇sα‖
p
Lp(Σ,J) + εpλ2−p ‖∇tα‖

p
Lp(Σ,J)

+ εpλ2−p ‖φ‖
p
W 1,p(Σ,J) + εpλ2−p ‖ψ‖

p
W 1,p(Σ,J)

+ ε2pλ2−2p ‖∇sφ‖
p
Lp(Σ) + ε2pλ2−2p ‖∇sψ‖

p
Lp(Σ)

+ ε2pλ2−2p ‖∇tφ‖
p
Lp(Σ) + ε2pλ2−2p ‖∇tψ‖

p
Lp(Σ)

)
,

‖ξ̃‖p
e0,p,ε

=

∫ 1

0

∫ ∞

−∞

(
λ2−p‖α̃‖p

Lp(Σ,J) + εpλ2−2p‖φ̃‖p
Lp(Σ) + εpλ2−2p‖ψ̃‖p

Lp(Σ)

)
.

Proposition 9.1. Fix a connection Ξ = (A,Φ,Ψ) ∈ A(Q) that is in temporal
gauge near the cylindrical ends and satisfies FA(s,t) = 0 for all s and t. Suppose
that the limits (6) exist. Then, for every p ≥ 2, there exist constants ε0 > 0 and
c ≥ 1 such that, for 0 < ε < ε0 and ξ ∈ X ,

‖ξ‖1,p,ε ≤ c
(
ε ‖Dεξ‖e0,p,ε + ‖πA(ξ)‖Lp

)
, (16)

‖ξ − πA(ξ)‖1,p,ε ≤ cε
(
‖Dεξ‖e0,p,ε + ‖πA(ξ)‖Lp

)
, (17)

‖πA(Dεξ) −D0πA(ξ)‖eL
p ≤ c ‖ξ − πA(ξ)‖0,p,ε . (18)

Proof. Appendix D. (For p = 2 see [6, Lemmata 4.2 and 4.3].)

Proof of Theorem 8.1. Choose an L2-orthonormal basis α1, . . . , αk ∈ W1,2(HA)

of the kernel of D0 and an L̃
2
-orthonormal basis β1, . . . , β` ∈ L̃

2
(HA) of the

cokernel of D0. Define the operator

D̂ε : W1,2 ⊕ R
` → L̃2 ⊕ R

k

by

D̂εξ̂ :=


Dεξ +

∑̀

j=1

λjβj , 〈α1, πA(ξ)〉, . . . , 〈αk, πA(ξ)〉



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for ξ̂ = (ξ, λ1, . . . , λ`) ∈ W1,2 ⊕ R`. We prove that D̂ε is injective. To see this,
note first that there is a constant c0 ≥ 1 such that

‖πA(ξ)‖L2 +
∑

j=1

|λj | ≤ c0

∥∥∥∥∥∥
D0πA(ξ) +

∑̀

j=1

λjβj

∥∥∥∥∥∥
eL

2

for all ξ̂ = (ξ, λ1, . . . , λ`) ∈ W1,2 ⊕R`. Hence it follows from (18) and (17) with
p = 2 that

‖πA(ξ)‖L2 +
∑

j=1

|λj |

≤ c0

∥∥∥∥∥∥
πA(Dεξ) +

∑̀

j=1

λjβj

∥∥∥∥∥∥
eL

2

+ c0 ‖πA(Dεξ) −D0πA(ξ)‖eL
2

≤ c0

∥∥∥∥∥∥
Dεξ +

∑̀

j=1

λjβj

∥∥∥∥∥∥
e0,2,ε

+ c0c ‖ξ − πA(ξ)‖0,2,ε

≤ c0

∥∥∥∥∥∥
Dεξ +

∑̀

j=1

λjβj

∥∥∥∥∥∥
e0,2,ε

+ c0c
2ε

(
‖Dεξ‖e0,2,ε + ‖πA(ξ)‖L2

)

≤ c0(1 + c2ε)

∥∥∥∥∥∥
Dεξ +

∑̀

j=1

λjβj

∥∥∥∥∥∥
e0,2,ε

+ c0c
2ε


‖πA(ξ)‖L2 +

∑̀

j=1

|λj |


 .

With c0c
2ε ≤ 1/2 we obtain

‖πA(ξ)‖L2 +
∑̀

j=1

|λj | ≤ 3c0

∥∥∥D̂εξ̂
∥∥∥

e0,2,ε
.

Combining this inequality with (16) gives

‖ξ̂‖ 1,2,ε =

√√√√‖ξ‖
2
1,2,ε +

∑̀

j=1

λj
2

≤ ‖ξ‖1,2,ε +
∑̀

j=1

|λj |

≤ c
(
ε ‖Dεξ‖e0,2,ε + ‖πA(ξ)‖L2

)
+

∑̀

j=1

|λj |

≤ cε

∥∥∥∥∥∥
Dεξ +

∑̀

j=1

λjβj

∥∥∥∥∥∥
e0,2,ε

+ c′


‖πA(ξ)‖L2 +

∑̀

j=1

|λj |




≤ c′′ ‖D̂εξ̂‖e0,2,ε .
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This shows that D̂ε is injective for ε > 0 sufficiently small. To prove surjectivity
we examine the adjoint operator

Dε
′ : W1,2 → L̃

2
.

It is defined by the identity
〈
λ−1Dε

′ξ′, ξ
〉
0,2,ε

=
〈
ξ′, λ−1Dεξ

〉
0,2,ε

for ξ, ξ′ ∈ X . Direct computation shows that Dε
′ξ′ = ξ̃′ is given by

α̃′ = −∇̃sα
′ − dAφ

′ − dvs,t(A)α′ + ∗s,t(∇̃tα
′ − dAψ − dws,t(A)α′),

φ̃′ = −∇̃sφ
′ + ∇̃tψ

′ + (λ/ε)2 ∗ dA ∗s,t α
′,

ψ̃′ = −∇̃sψ
′ − ∇̃tφ

′ + (λ/ε)2 ∗ dAα
′,

where

∇̃sα
′ = ∇sα

′ + λ−1(∂sλ)α
′ + α′ ◦ (J∂sJ), ∇̃tα

′ = ∇sα
′ + λ−1(∂tλ)α

′,

and
∇̃sφ

′ = ∇sφ
′ − λ−1(∂sλ)φ

′, ∇̃tφ
′ = ∇tφ

′ − λ−1(∂tλ)φ
′.

Similarly, the operator

D0
′ : W1,2(HA) → L̃

2
(HA)

is given by

D0
′α0

′ = πA

(
∇̃sα0

′ − dvs,t(A)α0
′ + ∗s,t∇̃tα0

′ − ∗s,tdws,t(A)α0
′

)
.

Note that there exists a constant c1 > 0 such that

|∂sJ | + |λ−1∂sλ| + |λ−1∂tλ| ≤ c1λ.

Hence it follows from Proposition 9.1 that the adjoint operator Dε
′ satisfies the

same estimates as Dε. Namely, for every p ≥ 2, there exist constants ε0 > 0
and c ≥ 1 such that, for 0 < ε < ε0 and ξ′ ∈ X ,

‖ξ′‖1,p,ε ≤ c
(
ε
∥∥Dε

′ξ′
∥∥

e0,p,ε
+ ‖πA(ξ′)‖Lp

)
,

‖ξ′ − πA(ξ′)‖1,p,ε ≤ cε
(∥∥Dε

′ξ′
∥∥

e0,p,ε
+ ‖πA(ξ′)‖Lp

)
,

∥∥πA(Dε
′ξ′) −D0

′πA(ξ′)
∥∥

eL
p ≤ c ‖ξ′ − πA(ξ′)‖0,p,ε .

Now it follows by the same arguments as above that the operator D̂ε

′
is injective.

This shows that D̂ε is surjective. Hence

indexDε = k − ` = indexD0.

This proves the theorem.

16



The Fredholm index will be denoted by

µ(a0, . . . , an;H,K) = indexDε = indexD0.

This index depends only on the limit connections aj but not on the connec-
tion Ξ used to define it. It is the virtual dimension of the moduli spaces
M0(a0, . . . , an;H,K) and Mε(a0, . . . , an;H,K). As pointed out above, the
space HKreg of regular perturbations consists of those pairs (H,K) such that
the operator D0(Ξ) is surjective for all solutions Ξ of (11) and (6). This set
is a countable intersection of open and dense sets in the space of all smooth
perturbations (cf. [20, 10]). If (H,K) ∈ HKreg then M0(a0, . . . , an;H,K) is a
smooth orientable manifold of dimension

dimM0(a0, . . . , an;H,K) = µ(a0, . . . , an;H,K).

If, moreover, µ(a0, . . . , an;H,K) = 0, then there exists a constant ε0 > 0 such
that Mε(a0, . . . , an;H,K) is a zero-dimensional manifold for 0 < ε ≤ ε0.

Remark 9.1. The same argument as in the proof of Theorem 8.1 shows that if D0

is injective then so is Dε for ε > 0 sufficiently small, and similarly for surjectivity.
The argument also provides a uniform estimate for the left, respectively right,
inverse of Dε (cf. [6]).

10 Proof of the main result

To restate Theorem 8.2 more precisely we shall need some notation. Fix a
reference connection

Ξ̂ = Â+ Φ̂ ds+ Ψ̂dt ∈ A(Q)

such that the pullback connections on the cylindrical ends (−∞,−T ) × Qf̃j

satisfy (6) and
∂sÂj = 0, Φ̂j = 0, ∂sΨ̂j = 0

for −s sufficiently large. Then denote

A1,p(a0, . . . , an) = {Ξ̂ + ξ | ξ ∈ W1,p}.

Likewise, denote by G2,p the completion of the group G(Q) (of gauge trans-
formations that are equal to 1l near the cylindrical ends) with respect to the
W1,p-norm on u∗Ξ̂. Next define

A1,p
0 (a0, . . . , an;H,K) =

{
Ξ ∈ A1,p(a0, . . . , an) | (11)

}
,

and
A1,p

ε (a0, . . . , an;H,K) =
{
Ξ ∈ A1,p(a0, . . . , an) | (12)

}
.

Thus, for ε ≥ 0,

Mε(a0, . . . , an;H,K) ∼=
A1,p

ε (a0, . . . , an;H,K)

G2,p
.
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Theorem 10.1. Assume (H,K) ∈ HKreg and µ(a0, . . . , an;H,K) = 0. Then
there exist constants ε0 > 0 and c > 0 such that, for 0 < ε < ε0, there exists a
map

Tε : A1,p
0 (a0, . . . , an;H,K) → A1,p

ε (a0, . . . , an;H,K)

that satisfies the following conditions.

(i) If Ξ0 ∈ A1,p
0 (a0, . . . , an;H,K) then Ξε = Tε(Ξ0) satisfies1

d∗ε

Ξ0
(Ξε − Ξ0) = 0, (19)

‖Ξε − Ξ0‖1,p,ε ≤ cε2. (20)

Here the 1, p, ε-norm is the one determined by Ξ0.

(ii) Tε is equivariant under the action of G2,p, i.e.

Tε(u
∗Ξ0) = u∗Tε(Ξ0)

for every Ξ0 ∈ A1,p
0 (a0, . . . , an;H,K) and every u ∈ G2,p. The induced map of

the moduli spaces will also be denoted by Tε.

(iii) Tε is injective.

(iv) Tε is surjective.

The first assertion of Theorem 10.1 is a refined version of the implicit func-
tion theorem and follows from a Newton type iteration argument. The details
are word by word the same as in the proof of Theorem 5.1 in [6] and will be
omitted. The next two assertions follow from standard arguments in gauge
theory, e.g. the gauge equivariance follows from the uniqueness part of the im-
plicit function theorem (Proposition 10.2 below), and injectivity follows from the
standard observation that the W1,p-norms of two gauge equivalent connections
control the W2,p-norm of the gauge transformation by which they are related
(cf. Proposition 5.7 in [6] for the present context). The hardest part of the proof
of Theorem 10.1 is surjectivity. It relies on the following four propositions.

Proposition 10.2. Assume (H,K) ∈ HKreg and µ(a0, . . . , an;H,K) = 0.
Then there exist constants δ > 0 and ε0 > 0 such that the following holds. If
Ξ0 ∈ A1,p

0 (a0, . . . , an;H,K) and Ξ ∈ A1,p
ε (a0, . . . , an;H,K) for some ε ∈ (0, ε0)

and (19) is satisfied and

‖Ξ − Ξ0‖1,p,ε ≤ δε1/2+2/p

then Ξ = Tε(Ξ0).

1Here d∗ε
Ξ

: Ω1(X, gQ) → Ω0(X, gQ) is the adjoint of the covariant differential dΞ :
Ω0(X, gQ) → Ω1(X, gQ) with respect to the ε-dependent L2-norm on 1-forms. In explicit
terms

d∗ε
Ξ
ξ = − ∗ dA ∗s,t α− (ε/λ)2∇sφ− (ε/λ)2∇tψ.
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Proposition 10.3. Assume (H,K) ∈ HKreg and µ(a0, . . . , an;H,K) = 0.
Then there exist constants ε0 > 0 and δ > 0 such that the following holds. If
Ξ0 ∈ A1,p

0 (a0, . . . , an;H,K) and Ξ ∈ A1,p
ε (a0, . . . , an;H,K) for some ε ∈ (0, ε0)

and

‖Ξ − Ξ0‖1,p,ε ≤ δε1/2+2/p, (21)

then there exists a u ∈ G2,p such that u∗Ξ = Tε(Ξ0).

As pointed out above, Proposition 10.2 is the uniqueness part of the implicit
function theorem (compare with [6, Theorem 5.2]). Proposition 10.3 is an easy
consequence of Proposition 10.2. One can use the gauge freedom to achieve
condition (19) and has to show that this can be done without destroying the
estimate (21). (See [6, Section 6] for details.)

Proposition 10.4. Assume (H,K) ∈ HKreg and µ(a0, . . . , an;H,K) = 0.
Then, for every constant c0 > 0, there exists a constant ε0 > 0 such that the
following holds. If Ξ ∈ A1,p

ε (a0, . . . , an;H,K) for some ε ∈ (0, ε0) and

sup
s,t

(
ε−2 ‖FA‖L∞(Σ) + λ−1 ‖∂tA− dAΨ‖L∞(Σ,J)

)
≤ c0 (22)

then there exists a connection Ξ0 ∈ A1,p
0 (a0, . . . , an;H,K) such that Ξ = Tε(Ξ0).

The proof of this result relies on Proposition 10.3. The key idea is to project
the first component of Ξ = (A,Φ,Ψ) onto the moduli space MΣ of flat connec-
tions and then prove estimates for the resulting section A′ of the bundle M.
One can show that, firstly, A′ is approximately holomorphic in the sense that
the complex anti-linear part of its differential is bounded by a constant times
ε2. Secondly, one can control the W1,p norm of this section. Hence it can be
approximated by a pseudo-holomorphic section A′′ (Theorem 2.5 in [6]). A fur-
ther modification of A′′ (by a gauge transformation, pointwise for all s and t)
then gives rise to a connection Ξ0 ∈ A1,p

0 (a0, . . . , an;H,K) such that

dA(s,t) ∗s,t (A(s, t) −A0(s, t)) = 0

for all s and t. This connection satisfies an estimate

‖Ξ − Ξ0‖1,2,ε ≤ cε1+2/p,

where c is independent of Ξ. With cε1/2 ≤ δ it follows from Proposition 10.3
that Ξ is gauge equivalent to Tε(Ξ0). The details are carried out in [6, Sections 7
and 8] and will not be reproduced here.

Proposition 10.5. Assume (H,K) ∈ HKreg and µ(a0, . . . , an;H,K) = 0.
Then there exist constants c0 > 0 and ε0 > 0 such that, for every ε ∈ (0, ε0)
and every Ξ ∈ A1,p

ε (a0, . . . , an;H,K),

sup
s,t

(
ε−2 ‖FA‖L∞(Σ) + λ−1 ‖∂tA− dAΨ‖L∞(Σ,J)

)
≤ c0.
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To prove this one argues by contradiction. If the result were false, then
bubbling would have to occur, and this would give rise to nonempty moduli
spaces of negative virtual dimension, contradicting the assumption (H,K) ∈
HKreg. For more details see [6, Section 9].

Proof of Theorem 10.1 (iv). Choose c0 and ε0 as in Proposition 10.5. Making
ε0 smaller, if necessary, we may assume that Proposition 10.4 holds with these
constants. Now let Ξ ∈ A1,p

ε (a0, . . . , an;H,K) and suppose that 0 < ε < ε0.
Then, by Proposition 10.5, Ξ satisfies (22). Hence, by Proposition 10.4, Ξ lies
in the image of Tε. Hence Tε is surjective for 0 < ε < ε0.

Proof of Theorem 8.2. By Theorem 10.1, there is a natural bijection

Tε : M0(a0, . . . , an;H,K) → Mε(a0, . . . , an;H,K).

It remains to show that this bijection preserves orientations. To see this consider
the space

A1,p
Σ (a0, . . . , an) =

{
Ξ ∈ A1,p(a0, . . . , an;H,K) |FA(s,t) = 0 ∀ s, t

}
.

Since Aflat(P ) is connected and simply connected, this space is nonempty. For
every Ξ ∈ A1,p

Σ (a0, . . . , an), there are two Fredholm operators D0(Ξ) and Dε(Ξ)
for ε > 0. Their determinants give rise to two line bundles

L0 → A1,p
Σ (a0, . . . , an), Lε → A1,p

Σ (a0, . . . , an).

The argument in the proof of Theorem 8.1 establishes, for every Ξ, a natu-
ral identification of det(D0(Ξ)) with det(Dε(Ξ)) for sufficiently small ε > 0.
Hence the line bundles L0 and Lε are isomorphic along any given loop in
A1,p

Σ (a0, . . . , an) for ε sufficiently small. Since Lε extends to the affine space
A1,p(a0, . . . , an), it follows that both bundles are orientable and there is a nat-
ural bijection from the (two element) set Or0(a0, . . . , an) of orientations of L0

to the set Orε(a0, . . . , an) of orientations of Lε. Denote this bijection by

τε(a0, . . . , an) : Or0(a0, . . . , an) → Orε(a0, . . . , an). (23)

Now suppose that we are given a system of orientations

σ0(a0, . . . , an) ∈ Or0(a0, . . . , an), (24)

one for each (n + 1)-tuple of perturbed flat connections aj ∈ Aflat(Qf̃j
,Kj).

Suppose further that we are given n+1 systems of coherent orientations for the
n+ 1 (symplectic) Floer homologies:

σf̃j
(aj , bj) ∈ Orf̃j

(aj , bj)

(cf. Floer–Hofer [9]). The orientations (24) are called compatible with the coher-
ent orientations if all the Floer gluing maps are orientation preserving. Given
the coherent orientations of the Floer chain complexes, there exists a compatible
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collection of orientations (24) and such a collection is uniquely determined up
to an overall sign. The same holds with the subscript 0 replaced by ε > 0.

Now one can show as in [6, Proposition 10.3] that the maps (23) commute
with the Floer gluing maps. Hence the maps τε map any compatible collection
of orientations (for the symplectic Floer theory) to a compatible collection

σε(a0, . . . , an) ∈ Orε(a0, . . . , an) (25)

for the corresponding instanton theory.
Let us fix two such compatible collections of orientations, which are related

by τε. Then the sign ν0(Ξ0) of a solution Ξ0 ∈ A1,p
0 (a0, . . . , an;H,K) is de-

termined by comparing the natural orientation of det(D0(Ξ0)) ∼= R with the
orientation given by (24). Similarly for Ξε ∈ A1,p

ε (a0, . . . , an;H,K). But since
σε(a0, . . . , an) is the image of σ0(a0, . . . , an) under τε(a0, . . . , an), it follows that
the two orientations of det(D0(Ξ0)) agree if and only if the two orientations of
det(Dε(Ξ0)) agree. Since Ξε = Tε(Ξ0) is close to Ξ0 it follows that

νε(Tε(Ξ0)) = ν0(Ξ0)

for ε > 0 sufficiently small. Hence the map Tε : M0(a0, . . . , an;H,K) →
Mε(a0, . . . , an;H,K) is orientation preserving. This completes the proof of
Theorem 8.2

Proof of Theorem 1.1. The Floer homology groups HFsymp(φf̃ ) and HF(Qf̃ ) are
both derived from the chain complex

CF(f̃ , K) =
⊕

[a]∈Aflat(Q
f̃
,K)/G(Q

f̃
)

Za

for a regular perturbation K. Given n+ 1 automorphisms f̃0, . . . , f̃n such that
f̃n ◦ · · · ◦ f̃0 = id and a regular perturbation (H,K) ∈ HKreg, there are two
homomorphisms

ψ0, ψε : CF(f̃0,K0) ⊗ CF(f̃1,K1) ⊗ · · · ⊗ CF(f̃n,Kn) → Z

defined by

ψ0(a0, . . . , an) =
∑

[Ξ0]∈M0(a0,...,an;H,K)

ν0(Ξ0),

ψε(a0, . . . , an) =
∑

[Ξε]∈Mε(a0,...,an;H,K)

νε(Ξε),

whenever µ(a0, . . . , an;H,K) = 0 and ψ0(a0, . . . , an) = ψε(a0, . . . , an) = 0
whenever µ(a0, . . . , an;H,K) 6= 0. Here the definition of the signs ν0(Ξ0) and
νε(Ξε) requires the choice of two compatible collections of orientations (24)
and (25). Changing an overall sign, if necessary, we may assume that these
systems of orientations are related by the map (23). Under this assumption
Theorem 8.2 asserts that νε(Tε(Ξ0)) = ν0(Ξ0) for ε > 0 sufficiently small. Hence
ψ0 = ψε for ε > 0 sufficiently small. This proves that the product structures (1)
and (2) agree up to a sign.
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A Cauchy-Riemann operators in Hilbert space

Let V and H be separable Hilbert spaces and V ↪→ H be a compact linear
inclusion with a dense image. Throughout we identify H with its dual space H∗

via the Riesz representation theorem. Then the adjoint of the inclusion V ↪→ H
is an inclusion H ↪→ V ∗ which is again compact and has a dense image. Thus
there are two inclusions

V ⊂ H ⊂ V ∗

and we shall think of V as a subset of H and of H as a subset of V ∗. We assume
that

‖x‖H ≤ ‖x‖V

for every x ∈ V . Let L(H) denote the space of bounded linear operators on H
and L(V,H) the space of bounded linear operators from V → H . Denote by
P(H) the set of self-adjoint Hilbert space isomorphisms Q : H → H such that
QV = V and

0 < inf
06=x∈H

〈x,Qx〉H
‖x‖

2
H

≤ sup
06=x∈H

〈x,Qx〉H
‖x‖

2
H

<∞.

Every operator Q ∈ P(H) determines an inner product

〈x, y〉Q := 〈x,Qy〉H

such that the corresponding norm is equivalent to the standard norm on H . An
operator D ∈ L(V,H) is called Q-symmetric if, for all x, y ∈ V ,

〈Dx,Qy〉H = 〈x,QDy〉H .

Lemma A.1. Suppose D ∈ L(V,H) is Q-symmetric and let πD : H → H
denote the Q-orthogonal projection onto the kernel of D. Then the following
are equivalent.

(i) There exists a constant c0 > 0 such that, for every x ∈ V ,

‖x‖V ≤ c (‖Dx‖H + ‖x‖H) . (26)

Moreover, for every x ∈ H we have

x ∈ V ⇐⇒ sup
06=y∈V

|〈x,QDy〉H |

‖y‖H

<∞. (27)

(ii) There exists a constant c0 > 0 such that, for every x ∈ V ,

‖x‖V ≤ c0 (‖Dx‖H + ‖πD(x)‖H) . (28)

Moreover, if x ∈ H satisfies 〈x,QDy〉 = 0 for every y ∈ V , then x ∈ V .

(iii) D is a Fredholm operator of index zero.
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Proof. We prove that (i) implies (ii). Suppose, by contradiction, that (28) does
not hold. Then there exists a sequence xn ∈ H such that

‖xn‖V = 1, ‖Dxn‖H + ‖πD(xn)‖H ≤ 1/n.

Since the inclusion V ↪→ H is compact there exists a subsequence xnk
that

converges in H to a vector x. By (26), xnk
is a Cauchy sequence in V . Since V

is complete, we have x ∈ V and

lim
k→∞

‖xnk
− x‖V = 0.

Hence
‖x‖V = 1, Dx = 0, πD(x) = 0.

Such a vector cannot exist and this contradiction proves (28). The second
assertion in (ii) is an obvious consequence of (27).

We prove that (ii) implies (iii). By assumption, the composition of πD :
H → H with the inclusion V ↪→ H is a compact operator. Hence it follows from
standard arguments in functional analysis that every operator that satisfies (28)
has a finite dimensional kernel and a closed range (e.g. [19, Appendix A]). Now
the second assertion in (ii) shows that the Q-orthogonal complement of the
image of D agrees with the kernel of D. Hence the cokernel of D is finite
dimensional and has the same dimension as the kernel of D. This proves (iii).

We prove that (iii) implies (i). If D is Fredholm then the operator V →
H ⊕ kerD : x 7→ (Dx, πD(x)) is injective and has a closed range. Hence (28)
follows from the open mapping theorem. Hence D satisfies (26). To prove (27)
suppose first that D is bijective. Suppose that x ∈ H satisfies

sup
06=y∈V

|〈x,QDy〉H |

‖y‖H

<∞

and choose w ∈ H such that

〈x,QDy〉H = 〈w,Qy〉H

for y ∈ V . Denote
ξ := D−1w ∈ V.

Since D is Q-symmetric, we have

〈x− ξ,QDy〉H = 〈x,QDy〉H − 〈Dξ,Qy〉H = 〈x,QDy〉H − 〈w,Qy〉H = 0

for every y ∈ V . Since D is surjective, it follows that x = ξ ∈ V . This proves (i)
under the assumption thatD is bijective. In general, the kernel ofD is contained
in the Q-orthogonal complement of the image of D. Since D has index zero both
must be equal. Hence the identity on H is an isomorphism from the kernel of
D to a complement of the image. This implies that D+ ε1l : V → H is bijective
for ε > 0 sufficiently small. By what we have just proved, the operator D + ε1l
satisfies (27) and hence, so does D. This proves the lemma.
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Let S(V,H ;Q) denote the set of Q-symmetric operators D : V → H that
satisfy the equivalent conditions of Lemma A.1. This set is open (with respect to
the operator norm) in the Banach space of Q-symmetric operators in L(V,H).
Moreover, the inequality (28) is stable under small perturbations. Namely,
if D ∈ S(V,H ;Q) satisfies (28) then every operator D′ ∈ S(V,H ;Q) that is
sufficiently close to D in the operator norm satisfies (28) with c0 replaced by
2c0. (The proof is an exercise.) This shows that for every compact subset
K ⊂ S(V,H ;Q) there exists a constant c0 > 0 such that (28) holds for every
D ∈ K.

If Q ∈ P(H) then the restriction of Q to V will still be denoted by Q.
Its adjoint is an operator on V ∗ and is an extension of the original operator
under the inclusion H ↪→ V ∗. This extension will also be denoted by Q. If
D ∈ S(V,H ;Q), then the dual operator D∗ can be thought of as an operator
from H → V ∗. Since D is Q-symmetric, the operator Q−1D∗Q : H → V ∗ is an
extension of D : V → H . Let us denote this extension again by

D = Q−1D∗Q : H → V ∗.

Thus D can be thought of both as an operator from V → H and as an operator
from H → V ∗. The self-adjoint property (27) can then be expressed in the form
that x ∈ V if and only if x ∈ H and Dx ∈ H .

Now let Q, J : R
2 → L(H) and D : R

2 → L(V,H) be operator valued
functions that are continuously differentiable with respect to the strong operator
topology (and hence are continuous in the norm topology). In the remainder
of this section we assume that these functions satisfy Q(s, t) ∈ P(H), D(s, t) ∈
S(V,H ;Q(s, t)), and

J∗Q+QJ = 0, J2 = −1l, DJ + JD = 0 (29)

for all (s, t) ∈ R2. We also assume that there exist constants c0, c1, c2 ≥ 1 and
δ > 0 such that the operator D = D(s, t) satisfies (28) for every (s, t) ∈ R2 and

δ ‖x‖
2
H ≤ 〈x,Qx〉H ≤ δ−1 ‖x‖

2
H , (30)

‖Dx‖H + ‖(∂sD)x‖H + ‖(∂tD)x‖H ≤ c1 ‖x‖V , (31)

‖(∂sJ)x‖H + ‖(∂tJ)x‖H + ‖(∂sQ)x‖H + ‖(∂tQ)x‖H ≤ c2 ‖x‖H . (32)

for every x ∈ V and every (s, t) ∈ R2.

Proposition A.2. For every p ≥ 2 there exist constants c ≥ 1 and ε0 > 0
(depending only on δ, c0, c1, c2, and p) such that the following holds. If ξ ∈
Lp(R2, V ) ∩W 1,p(R2, H) and ξ̃ ∈ Lp(R2, H) satisfy

∂sξ(s, t) + J(εs, εt)∂tξ(s, t) +D(εs, εt)ξ(s, t) = ξ̃(s, t) (33)

for some ε ∈ (0, ε0) then
∫

R2

‖ξ‖
p
H ≤ c

∫

R2

(
‖ξ̃‖p

H + ‖πD(ξ)‖
p
H

)
. (34)
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Proof. Suppose, without loss of generality, that ξ : R2 → V is twice continuously
differentiable and has compact support. Then the function ξ̃ : R2 → H , given
by (33), is continuously differentiable and has compact support. It satisfies the
equation

∂s∂sξ + ∂t∂tξ −D2ξ = f, (35)

where f : R2 → V ∗ is given by

f = ∂sξ̃ − J∂tξ̃ −Dξ̃ + ε(∂tJ)∂sξ − ε(∂sJ)∂tξ + ε(∂t(JD) − ∂sD)ξ. (36)

Here J and D are evaluated at the point (εs, εt) ∈ R2. Take the inner product

with ‖ξ‖
p−2
Q Qξ and compute

∫

R2

‖ξ‖p−2
Q 〈Qξ, f〉V,V ∗ =

∫

R2

‖ξ‖p−2
Q

〈
Qξ,D2ξ − ∂s∂sξ − ∂t∂tξ

〉
V,V ∗

=

∫

R2

‖ξ‖p−2
Q

(
‖Dξ‖2

Q + ‖∂sξ‖
2
Q + ‖∂tξ‖

2
Q

)

+ ε

∫

R2

‖ξ‖
p−2
Q (〈(∂sQ)ξ, ∂sξ〉H + 〈(∂tQ)ξ, ∂tξ〉H)

+

∫

R2

(
∂s ‖ξ‖

p−2
Q

)
〈ξ, ∂sξ〉Q

+

∫

R2

(
∂t ‖ξ‖

p−2
Q

)
〈ξ, ∂tξ〉Q

=

∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

+ ε

∫

R2

‖ξ‖
p−2
Q (〈(∂sQ)ξ, ∂sξ〉H + 〈(∂tQ)ξ, ∂tξ〉H)

+ (p− 2)

∫

R2

‖ξ‖p−4
Q

(
〈ξ, ∂sξ〉

2
Q + 〈ξ, ∂tξ〉

2
Q

)

+
ε(p− 2)

2

∫

R2

‖ξ‖
p−4
Q 〈(∂sQ)ξ, ξ〉H 〈ξ, ∂sξ〉Q

+
ε(p− 2)

2

∫

R2

‖ξ‖
p−4
Q 〈(∂tQ)ξ, ξ〉H 〈ξ, ∂tξ〉Q .

Let c3 := (p− 1)c2/δ
2. Then, by (30) and (32),

∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

≤

∫

R2

‖ξ‖
p−2
Q 〈Qξ, f〉V,V ∗ + εc3

∫

R2

‖ξ‖
p−1
Q

(
‖∂sξ‖Q + ‖∂tξ‖Q

)
.

Since ‖x‖H ≤ ‖x‖V for every x ∈ V it follows from (28) and (30) that

‖ξ‖Q ≤ δ−1 ‖ξ‖V ≤ c0δ
−2

(
‖Dξ‖Q + ‖πD(ξ)‖Q

)
. (37)
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Let c4 := c0c3/δ
2. Then the last two inequalities show that

∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

≤

∫

R2

‖ξ‖
p−2
Q 〈Qξ, f〉V,V ∗

+ εc4

∫

R2

‖ξ‖
p−2
Q

(
‖∂sξ‖Q + ‖∂tξ‖Q

)(
‖Dξ‖Q + ‖πD(ξ)‖Q

)

≤

∫

R2

‖ξ‖
p−2
Q 〈Qξ, f〉V,V ∗ + ε2c4

2

∫

R2

‖πD(ξ)‖
2
Q

+ εc4

∫

R2

‖ξ‖p−2
Q

(
‖Dξ‖2

Q + ‖∂sξ‖
2
Q + ‖∂tξ‖

2
Q + ‖πD(ξ)‖2

Q

)
.

With εc4 ≤ 1/2 this gives
∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

≤ 2

∫

R2

‖ξ‖p−2
Q

(
〈Qξ, f〉V,V ∗ + ε2c4

2 ‖πD(ξ)‖2
Q

)
. (38)

Now recall from (36) that f = g + h, where g : R2 → V ∗ is given by

g = ∂sξ̃ − J∂tξ̃ −Dξ̃

and h : R2 → H is given by

h = ε

(
(∂tJ)∂sξ − (∂sJ)∂tξ + (∂tJ)Dξ + J(∂tD)ξ − (∂sD)ξ

)
.

Let c5 := (c2 + c0c1)/δ
2. Then, by (30), (31), (32), and (37),

‖h‖Q ≤ εc2δ
−2

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q

)
+ εc1δ

−1 ‖ξ‖V

≤ εc5

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q + ‖πD(ξ)‖Q

)
.

Hence, by (37),
∫

R2

‖ξ‖
p−2
Q 〈Qξ, h〉H

≤

∫

R2

‖ξ‖
p−1
Q ‖h‖Q

≤ εc5

∫

R2

‖ξ‖
p−1
Q

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q + ‖πD(ξ)‖Q

)

≤ εc0c5δ
−2

∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖Q + ‖πD(ξ)‖Q

)
·

·
(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q + ‖πD(ξ)‖Q

)

≤ 3εc0c5δ
−2

∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q + ‖πD(ξ)‖

2
Q

)
.
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Suppose that 3εc0c5δ
−2 ≤ 1/4 and let c6 := c4 + 3c0c5/δ

2. Then, inserting the
last inequality into (38), we obtain

∫

R2

‖ξ‖p−2
Q

(
‖Dξ‖2

Q + ‖∂sξ‖
2
Q + ‖∂tξ‖

2
Q

)

≤ 4

∫

R2

‖ξ‖
p−2
Q

(
〈Qξ, g〉V,V ∗ + εc6 ‖πD(ξ)‖

2
Q

)
. (39)

Now
∫

R2

‖ξ‖p−2
Q 〈Qξ, g〉V,V ∗ =

∫

R2

‖ξ‖p−2
Q 〈Qξ,−Dξ̃ + ∂sξ̃ − J∂tξ̃〉V,V ∗

=

∫

R2

‖ξ‖p−2
Q

(
−〈Dξ, ξ̃〉Q − 〈∂sξ, ξ̃〉Q + 〈∂tξ, Jξ̃〉Q

)

− ε

∫

R2

‖ξ‖
p−2
Q 〈(∂sQ)ξ, ξ̃〉H

+ ε

∫

R2

‖ξ‖
p−2
Q

(
〈(∂tQ)ξ, Jξ̃〉H + 〈ξ, (∂tJ)ξ̃〉Q

)

−

∫

R2

(
∂s ‖ξ‖

p−2
Q

)
〈ξ, ξ̃〉Q

+

∫

R2

(
∂t ‖ξ‖

p−2
Q

)
〈ξ, Jξ̃〉Q

=

∫

R2

‖ξ‖
p−2
Q

(
−〈Dξ, ξ̃〉Q − 〈∂sξ, ξ̃〉Q + 〈∂tξ, Jξ̃〉Q

)

− ε

∫

R2

‖ξ‖p−2
Q 〈(∂sQ)ξ, ξ̃〉H

+ ε

∫

R2

‖ξ‖p−2
Q

(
〈(∂tQ)ξ, Jξ̃〉H + 〈ξ, (∂tJ)ξ̃〉Q

)

− (p− 2)

∫

R2

‖ξ‖
p−4
Q 〈ξ, ∂sξ〉Q〈ξ, ξ̃〉Q

−
ε(p− 2)

2

∫

R2

‖ξ‖p−4
Q 〈(∂sQ)ξ, ξ〉H 〈ξ, ξ̃〉Q

+ (p− 2)

∫

R2

‖ξ‖p−4
Q 〈ξ, ∂tξ〉Q〈ξ, Jξ̃〉Q

+
ε(p− 2)

2

∫

R2

‖ξ‖
p−4
Q 〈(∂tQ)ξ, ξ〉H〈ξ, Jξ̃〉Q.

Let c7 := (p+ 1)c2/δ
2. Then, by (30) and (32),

∫

R2

‖ξ‖p−2
Q 〈Qξ, g〉V,V ∗

≤ (p− 1)

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖Q

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q

)

+ εc7

∫

R2

‖ξ‖
p−1
Q ‖ξ̃‖Q .
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Inserting this inequality into (39) and using (37) we obtain
∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

≤ 4(p− 1)

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖Q

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q

)

+ 4εc7

∫

R2

‖ξ‖
p−1
Q ‖ξ̃‖Q + 4εc6

∫

R2

‖ξ‖
p−2
Q ‖πD(ξ)‖

2
Q

≤ 4(p− 1)

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖Q

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q

)

+ 4εc0c7δ
−2

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖Q

(
‖Dξ‖Q + ‖πD(ξ)‖Q

)

+ 4εc6

∫

R2

‖ξ‖p−2
Q ‖πD(ξ)‖2

Q .

Suppose that εc0c7/δ
2 ≤ 1 and let c8 := 4c0c7/δ

2. Then
∫

R2

‖ξ‖
p−2
Q

(
‖Dξ‖

2
Q + ‖∂sξ‖

2
Q + ‖∂tξ‖

2
Q

)

≤ 4p

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖Q

(
‖Dξ‖Q + ‖∂sξ‖Q + ‖∂tξ‖Q

)

+
c8
2

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖2

Q +
8εc6 + ε2c8

2

∫

R2

‖ξ‖
p−2
Q ‖πD(ξ)‖

2
Q

≤
1

2

∫

R2

‖ξ‖p−2
Q

(
‖Dξ‖2

Q + ‖∂sξ‖
2
Q + ‖∂tξ‖

2
Q

)

+
c8 + 48p2

2

∫

R2

‖ξ‖
p−2
Q ‖ξ̃‖2

Q +
8εc6 + ε2c8

2

∫

R2

‖ξ‖
p−2
Q ‖πD(ξ)‖

2
Q

Let c9 := max{c8 + 48p2, 8c6 + 4}. Since εc8 ≤ 4, we obtain
∫

R2

‖ξ‖
p−2
Q ‖Dξ‖

2
Q ≤ c9

∫

R2

‖ξ‖
p−2
Q

(
‖ξ̃‖2

Q + ε ‖πD(ξ)‖
2
Q

)
. (40)

Let c10 := 2(c0/δ
2)2(c9 + 1). Then, by (37) and (40),

∫

R2

‖ξ‖p
Q ≤ 2(c0δ

−2)2
∫

R2

‖ξ‖p−2
Q

(
‖Dξ‖2

Q + ‖πD(ξ)‖2
Q

)

≤ c10

∫

R2

‖ξ‖p−2
Q

(
‖ξ̃‖2

Q + ‖πD(ξ)‖2
Q

)
.

By Hölder’s inequality,
∫

R2 ‖ξ‖
p−2
Q ‖ξ̃‖2

Q ≤ (
∫

R2 ‖ξ‖
p
Q)1−2/p(

∫
R2 ‖ξ̃‖

p
Q)2/p. Hence

(∫

R2

‖ξ‖p
Q

)2/p

≤ c10

((∫

R2

‖ξ̃‖p
Q

)2/p

+

(∫

R2

‖πD(ξ)‖p
Q

)2/p)
.

This proves the proposition.
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Proposition A.3. Assume Q, J , and D are independent of s and t and satisfy
Q ∈ P(H), D ∈ S(V,H ;Q), and (29). Suppose that ξ ∈ C2(R2, H)∩C1(R2, V )
is a compactly supported function such that

∂sξ + J∂tξ +Dξ = 0.

Then ξ = 0.

Proof. The function ξ satisfies equation (35) with f = 0. Denote by ∆ :=
∂s

2 + ∂t
2 the positive definite Laplacian. Then

∆ ‖ξ‖
2
Q = 2 ‖∂sξ‖

2
Q + 2 ‖∂tξ‖

2
Q + 2 〈ξ, ∂s∂sξ + ∂t∂tξ〉Q

= 2 ‖∂sξ‖
2
Q + 2 ‖∂tξ‖

2
Q + 2

〈
ξ,D2ξ

〉
Q

= 2 ‖∂sξ‖
2
Q + 2 ‖∂tξ‖

2
Q + 2 ‖Dξ‖2

Q

≥ 0

Since the function R
2 → R : (s, t) 7→ ‖ξ(s, t)‖

2
Q has compact support the integral

of ∆ ‖ξ‖2
Q over R2 is zero. Hence ξ is constant, and hence ξ ≡ 0.

B Estimates on a Riemann surface

In this section we collect some standard estimates for connections over Riemann
surfaces. We include the proofs for the sake of completeness. Let Σ be a compact
oriented Riemann surface with volume form ω. Denote by J (Σ) the space of
complex structures on Σ compatible with the orientation. Let P → Σ be a
principal SO(3)-bundle with nonzero second Stiefel-Whitney class. Let A(P ) ⊂
Ω1(Σ, gP ) denote the space of connection 1-forms on P , Aflat(P ) ⊂ A(P ) the
submanifold of flat connections, and G(P ) ⊂ Map(P,G) the identity component
of the gauge group.

Lemma B.1. Fix a complex structure J0 ∈ J (Σ) and a connection A0 ∈
A(P ). Then, for every C > 0 and every p > 1, there exists a constant
c = c(C, p, J0, A0) ≥ 1 such that, if J ∈ J (Σ) and A ∈ A(P ) satisfy

‖J‖C1(Σ,J0)
+ ‖A−A0‖L∞(Σ,J0) ≤ C (41)

then, for every α ∈ Ω1(Σ, gP ),

c−1 ‖α‖
p
Lp(Σ,J0)

≤ ‖α‖
p
Lp(Σ,J) ≤ c ‖α‖

p
Lp(Σ,J0) , (42)

‖∇A0
α‖

p
Lp(Σ,J0) ≤ c

(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ) + ‖α‖

p
Lp(Σ,J)

)
. (43)

Here ∇A0
denotes the covariant derivative with respect to the connection on

T ∗Σ ⊗ gP determined by A0 and the metric ω(·, J0·).
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Proof. For a fixed complex structure J = J1 the estimate (42) is obvious and it
holds with a uniform constant c in some C0-neighbourhood of J1. By the Arzéla-
Ascoli theorem, we can cover the set of all J ∈ J (Σ) with ‖J‖C1(Σ,J0) ≤ C by

finitely many such neighbourhoods, and this proves (42).
We prove (43). For A = A0 and a fixed complex structure J = J1 this

follows from the Calderon-Zygmund inequality. Now, for every J1 ∈ J (Σ) there
exists a constant c1 > 0 such that, for every α ∈ Ω1(Σ, gP ),

‖dA0
(α ◦ J) − dA0

(α ◦ J1)‖Lp(Σ) ≤ c1 ‖J − J1‖C1(Σ,J0)
‖α‖Lp(Σ,J0)

+ c1 ‖J − J1‖L∞(Σ,J0)
‖∇A0

α‖Lp(Σ,J0) .

Hence there exist constants δ = δ(J1) > 0 and c2 = c2(J1) > 0 such that, if
‖J − J1‖L∞(Σ,J0)

< δ then

‖∇A0
α‖Lp(Σ,J0)

≤ c2

(
‖dA0

α‖Lp(Σ) + ‖dA0
(α ◦ J)‖Lp(Σ)

)

+ c2

(
1 + ‖J − J1‖C1(Σ,J0)

)
‖α‖Lp(Σ,J0)

.

By the Arzéla-Ascoli theorem, we can cover the set of all J ∈ J (Σ) with
‖J‖C1(Σ,J0)

≤ C by finitely many such δ-neighbourhoods. This proves (43)

for A = A0. Since dAα − dA0
α = [(A − A0) ∧ α] the estimate (43) holds, with

a larger constant c, for every pair (A, J) that satisfies (41). This proves the
lemma.

Lemma B.2. Fix a complex structure J0 ∈ J (Σ) and a connection A0 ∈
A(P ). Then, for every δ > 0, C > 0, and p ≥ 2, there exists a constant
c = c(δ, C, p, J0, A0) ≥ 1 such that, if J ∈ J (Σ) and A ∈ A(P ) satisfy (41)
then, for every φ ∈ Ω0(Σ, gP ) and every α ∈ Ω1(Σ, gP ),

‖φ‖p
Lp(Σ) ≤ δ ‖dAφ‖

p
Lp(Σ,J) + c ‖φ‖p

L2(Σ) , (44)

‖α‖
p
Lp(Σ,J) ≤ δ

(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ)

)
+ c ‖α‖

p
L2(Σ,J) . (45)

Proof. For p = 2 there is nothing to prove. For p > 2 this is a standard estimate
in partial differential equations. For the sake of completeness we give a proof.
We show first that, if u : R2 → R is continuously differentiable, then

|u(x)| ≤
ε1−2/p

(2π)1/p

(
p− 1

p− 2

)1−1/p

‖∇u‖Lp(Bε) +
2

πε2
‖u‖L1(Bε) , (46)

where
Bε =

{
y ∈ R

2 | |y − x| < ε
}
.
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To see this observe that, for |ξ| = 1 and 0 < t ≤ ε,

|u(x)| ≤ |u(x+ tξ)| +

∫ ε

0

|∇u(x+ sξ)| ds

≤ |u(x+ tξ)| +

(∫ ε

0

s−1/(p−1) ds

)1−1/p (∫ ε

0

|∇u(x+ sξ)|
p
s ds

)1/p

= |u(x+ tξ)| + ε1−2/p

(
p− 1

p− 2

)1−1/p (∫ ε

0

|∇u(x+ sξ)|p s ds

)1/p

.

Here the second estimate follows from Hölder’s inequality. Now integrate over
ξ ∈ S1 and use Hölder’s inequality again to obtain

|u(x)| ≤
1

2π

∫ 2π

0

|u(x+ teiθ)| dθ +
ε1−2/p

(2π)1/p

(
p− 1

p− 2

)1−1/p

‖∇u‖Lp(Bε) .

Now integrate over the interval ε/2 ≤ t ≤ ε to obtain (46). It follows from (46)
that there exists a constant c0 > 0 such that

‖φ‖Lp(Σ) ≤ ε1−2/p ‖dA0
φ‖Lp(Σ,J0)

+ c0ε
−1 ‖φ‖L2(Σ) , (47)

‖α‖Lp(Σ,J0)
≤ ε1−2/p ‖∇A0

α‖Lp(Σ,J0) + c0ε
−1 ‖α‖L2(Σ) (48)

for φ ∈ Ω0(Σ, gP ), α ∈ Ω1(Σ, gP ), and 0 < ε ≤ 1. Now (45) follows from (48)
and (43) if ε > 0 is chosen sufficiently small. To prove (44) note that, by
Lemma B.1,

‖dA0
φ‖Lp(Σ,J0)

≤ c ‖dA0
φ‖Lp(Σ,J) ≤ c ‖dAφ‖Lp(Σ,J) + c′ ‖φ‖Lp(Σ)

Combining this with (47) gives (44) provided that ε > 0 is chosen sufficiently
small. This proves the lemma.

Lemma B.3. Fix a complex structure J0 ∈ J (Σ). Then, for every C > 0 and
every p ≥ 2, there exists a constant c = c(C, p, J0) ≥ 1 such that, if J ∈ J (Σ)
satisfies

‖J‖C1(Σ,J0)
≤ C, (49)

and A ∈ Aflat(P ) then, for every φ ∈ Ω0(Σ, gP ) and every α ∈ Ω1(Σ, gP ),

‖φ‖p
Lp(Σ) ≤ c ‖dAφ‖

p
Lp(Σ,J) , (50)

‖α‖
p
Lp(Σ,J) ≤ c

(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ) + ‖πA(α)‖

p
Lp(Σ,J)

)
. (51)
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Proof. We prove (50). If A1 ∈ Aflat(P ) then dA1
: Ω0(Σ, gP ) → Ω1(Σ, gP ) is

injective. Hence there exists a constant c = c(A1) > 0 such that (50) holds for
A = A1 and J = J0. Hence

‖φ‖Lp(Σ) ≤ c
(
‖dAφ‖Lp(Σ,J0) + ‖A−A1‖L∞(Σ,J0)

‖φ‖Lp(Σ)

)

This shows that (50) holds, with J = J0 and a uniform constant c, in some
C0-neighbourhood of A1. Cover the set

Aflat
C (P ) =

{
Aflat(P ) | ‖A−A0‖C2(Σ,J0)

≤ C
}

by finitely many such neighbourhoods to obtain (50) with J = J0 for some
constant c > 0, every A ∈ Aflat

C (P ), and every φ ∈ Ω0(Σ, gp). Now use (42)
to obtain (50) for any A ∈ Aflat

C (P ) and any J ∈ J (Σ) that satisfies (49). If
C is sufficiently large then every flat connection is gauge equivalent to one in
Aflat

C (P ) and this proves (50).
Next we prove (51) for p = 2. Write

α = πA(α) + dAζ − (dAη) ◦ J

for η, ζ ∈ Ω0(Σ, gP ). Since the three terms on the right are pairwise L2-
orthogonal, with respect to the metric determined by J , we have

‖α‖
2
L2(Σ,J) = ‖dAζ‖

2
L2(Σ,J) + ‖dAη‖

2
L2(Σ,J) + ‖πA(α)‖

2
L2(Σ,J) .

Since A is flat, we have
dA

∗J dAη = − ∗ dAα.

Taking the L2-inner product with η and using the Cauchy-Schwarz inequality,
we obtain

‖dAη‖
2
L2(Σ,J) ≤ ‖η‖L2(Σ) ‖dAα‖L2(Σ) ≤ c ‖dAη‖L2(Σ,J) ‖dAα‖L2(Σ) .

The last inequality follows from (50) with p = 2. Hence

‖dAη‖L2(Σ,J) ≤ c ‖dAα‖L2(Σ) , ‖dAζ‖L2(Σ,J) ≤ c ‖dA(α ◦ J)‖L2(Σ) .

This proves (51) for p = 2. If A ∈ Aflat
C (P ) then (51) for general p follows from

the case p = 2 and (45). Since there exists a constant C > 0 such that every flat
connection is gauge equivalent to one in Aflat

C (P ), this proves the lemma.

Lemma B.4. Fix a complex structure J0 ∈ J (Σ). Then, for every C > 0 and
every p ≥ 2, there exists a constant c = c(C, p, J0) ≥ 1 such that, if J ∈ J (Σ)
satisfies (49) and A ∈ Aflat(P ) then, for every φ ∈ Ω0(Σ, gP ) and every α ∈
Ω1(Σ, gP ),

‖dAφ‖
p
Lp(Σ,J) ≤ c

(
‖α‖

p
Lp(Σ,J) + ‖dA((dAφ) ◦ J + α)‖

p
Lp(Σ)

)
. (52)
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Proof. By (42) in Lemma B.1, it suffices to prove the inequality

‖dAφ‖Lp(Σ,J0)
≤ c

(
‖α‖Lp(Σ,J0)

+ ‖dA((dAφ) ◦ J + α)‖Lp(Σ)

)
(53)

instead of (52). Let

ψ := ∗dA((dAφ) ◦ J + α) ∈ Ω0(Σ, gP ).

Then
dA

∗J dAφ = ψ − ∗dAα.

For p = 2 the estimate follows by taking the inner product with φ and using (50).
The general case can be reduced to p = 2 via the Calderon-Zygmund inequality
and (44). Hence, for every pair (J,A), there exists a constant c = c(J,A) ≥ 1
such that (53) holds for every φ ∈ Ω0(Σ, gP ) and every α ∈ Ω1(Σ, gP ). We
prove that the constant can be chosen independent of A. To see this note that

dA((dAφ) ◦ J) − dA1
((dA1

φ) ◦ J)

= [(A−A1) ∧ ((dAφ) ◦ J)] + [(A−A1) ◦ J ∧ [(A−A1), φ]]

+ [dA1
((A −A1) ◦ J), φ] − [(A−A1) ◦ J ∧ dAφ].

Let c1 = c(J,A1) and use (53) with A = A1 to obtain

‖dAφ‖Lp(Σ,J0)

≤ ‖A−A1‖L∞(Σ,J0)
‖φ‖Lp(Σ)

+ c1

(
‖α‖Lp(Σ,J0)

+ ‖dA1
((dA1

φ) ◦ J + α)‖Lp(Σ)

)

≤ c1

(
1 + ‖A−A1‖L∞(Σ,J0)

)
‖α‖Lp(Σ,J0)

+ c1 ‖dA((dAφ) ◦ J + α)‖Lp(Σ)

+ c2

(
‖A−A1‖

2
L∞(Σ,J0) + ‖A−A1‖C1(Σ,J0)

)
‖dAφ‖Lp(Σ,J0)

.

Here we have used the inequality ‖φ‖Lp(Σ) ≤ c ‖dAφ‖Lp(Σ,J0)
. It follows that

every flat connection A1 has a C1-neighbourhood in which (53) holds with c =
2c1(J,A1). By the Arzéla-Ascoli theorem, cover the set Aflat

C (P ) by finitely many
such neighbourhoods. Since (53) is gauge invariant, and every flat connection is
gauge equivalent to one in Aflat

C (P ), there exists, for every J ∈ J (Σ), a constant
c3 = c3(J) > 0 such that (53) holds with c = c3(J) for every flat connection A.
Now apply (53) with J = J1 to the pair (φ, α+ (dAφ) ◦ (J − J1)) to obtain

‖dAφ‖Lp(Σ,J0)
≤ c3(J1)

(
‖α‖Lp(Σ,J0) + ‖dA((dAφ) ◦ J + α)‖Lp(Σ)

)

+ c3(J1) ‖J − J1‖L∞(Σ,J0)
‖dAφ‖Lp(Σ,J0)

.

Hence (53) holds with c = 2c3(J1) whenever c3(J1) ‖J − J1‖L∞(Σ,J0) ≤ 1/2. By

the Arzéla-Ascoli theorem, cover the set of all J ∈ J (Σ) that satisfy (49) by
finitely many such neighbourhoods. This proves the lemma.
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C An L
p estimate

Throughout we fix a principal G-bundle P → Σ over a compact oriented Rie-
mann surface Σ, a smooth reference connection A0 ∈ A(P ), a volume form
dvolΣ compatible with the orientation, and a complex structure J0 ∈ J (Σ)
compatible with the orientation. We introduce the spaces

X := Ω1(Σ, gP ) ⊕ Ω0(Σ, gP ) ⊕ Ω0(Σ, gP ), X := C∞
0

(
R

2,X
)
.

Thus the elements of X are triples ξ = (α, φ, ψ), where φ, ψ : R2 → Ω0(Σ, gP )
and α : R2 → Ω1(Σ, gP ) are smooth functions with compact support. For a real
number λ > 0, a complex structure J ∈ J (Σ), and a connection A ∈ A(P ) we
introduce the operators

D = Dλ,J,A : X → X, J = JJ : X → X, Q = Qλ,J : X → X

by

D =




0 −dA − ∗J dA

λ2 ∗ dA∗J 0 0
λ2 ∗ dA 0 0


 ,

J =




∗J 0 0
0 0 1
0 −1 0


 ,

Q =




− ∗0 ∗J 0 0
0 λ−2 0
0 0 λ−2


 ,

where ∗J denotes the Hodge ∗-operator on Ω1(Σ, gP ) induced by J and we
abbreviate ∗0 := ∗J0

. These operators satisfy the conditions

JD + DJ = 0, QJ + J∗Q = 0, QD−D∗Q = 0,

where J∗ and D∗ denote the formal adjoint operators with respect to the inner
product on X determined by ω and J0. If A is flat then the kernel of the operator
D = Dλ,A,J consists of all triples ξ = (α, φ, ψ) ∈ X such that φ = ψ = 0 and
α = πA(α), i.e. α is harmonic with respect to A and ∗J .

Lemma C.1. Fix a real number p ≥ 2, a complex structure J0 ∈ J (Σ), and a
reference connection A0 ∈ A(P ). Then for every constant C > 0 there exists
a constant c1 = c1(C, p, J0, A0) > 0 such that the following holds. If λ > 0,
J ∈ J (Σ), and A ∈ Aflat(P ) satisfy

λ+ 1/λ+ ‖J‖C1(Σ,J0)
+ ‖A−A0‖L∞(Σ,J0)

≤ C (54)

then, for every ξ = (α, φ, ψ) ∈ X, we have

‖ξ‖p
W 1,p(Σ,J0)

≤ c1

(
‖Dλ,J,Aξ‖

p
Lp(Σ,J) + ‖πA(α)‖p

Lp(Σ,J)

)
. (55)
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Proof. Let c = c(C, p, J0, A0) be the maximum of the constants in Lemmata B.1,
B.3, and B.4. Then

‖ξ‖p
W 1,p(Σ,J0)

= ‖α‖p
Lp(Σ,J0)

+ ‖φ‖p
Lp(Σ) + ‖ψ‖p

Lp(Σ)

+ ‖∇A0
α‖p

Lp(Σ,J0) + ‖dA0
φ‖p

Lp(Σ,J0)
+ ‖dA0

ψ‖p
Lp(Σ,J0)

≤ c ‖α‖
p
Lp(Σ,J) + (1 + (2C)p)

(
‖φ‖

p
Lp(Σ) + ‖ψ‖

p
Lp(Σ)

)

+ ‖∇A0
α‖

p
Lp(Σ,J0) + 2p

(
‖dAφ‖

p
Lp(Σ,J0)

+ ‖dAψ‖
p
Lp(Σ,J0)

)
.

The last inequality follows from Lemma B.1, the triangle inequality, and the
fact that ‖A−A0‖L∞(Σ,J0)

≤ C. By Lemma B.1, we obtain

‖ξ‖p
W 1,p(Σ,J0) ≤ 2c ‖α‖p

Lp(Σ,J) + (1 + (2C)p)
(
‖φ‖p

Lp(Σ) + ‖ψ‖p
Lp(Σ)

)

+ c
(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ)

)

+ 2pc
(
‖dAφ‖

p
Lp(Σ,J) + ‖dAψ‖

p
Lp(Σ,J)

)
.

Now it follows from Lemma B.3 that

‖ξ‖
p
W 1,p(Σ,J0)

≤ (2c2 + c)
(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ)

)

+ 2c2 ‖πA(α)‖
p
Lp(Σ,J)

+ c(2p + 1 + (2C)p)
(
‖dAφ‖

p
Lp(Σ,J) + ‖dAψ‖

p
Lp(Σ,J)

)
.

By Lemma B.4, with α := dAψ − ∗dAφ, we have

‖dAφ‖
p
Lp(Σ,J) ≤ c ‖dAφ+ ∗dAψ‖

p
Lp(Σ,J) .

Similarly
‖dAψ‖

p
Lp(Σ,J) ≤ c ‖dAφ+ ∗dAψ‖

p
Lp(Σ,J) .

Hence

‖ξ‖
p
W 1,p(Σ,J0)

≤ (2c2 + c)
(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖

p
Lp(Σ)

)

+ 2c2 ‖πA(α)‖
p
Lp(Σ,J)

+ 2c2(2p + 1 + (2C)p) ‖dAφ+ ∗dAψ‖
p
Lp(Σ,J)

≤ c1

(∥∥λ2dAα
∥∥p

Lp(Σ)
+

∥∥λ2dA(α ◦ J)
∥∥p

Lp(Σ)

)

+ c1

(
‖dAφ+ ∗dAψ‖

p
Lp(Σ,J) + ‖πA(α)‖

p
Lp(Σ,J)

)

= c1

(
‖Dλ,J,Aξ‖

p
Lp(Σ,J) + ‖πA(α)‖p

Lp(Σ,J)

)

This proves the lemma.
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Now let

λ : R
2 → (0,∞), J : R

2 → J (Σ), A : R
2 → A(P )

be smooth functions. Given such functions we denote by D(s, t), J(s, t), and
Q(s, t) the operators on X determined as above by λ(s, t), J(s, t), and A(s, t)
for (s, t) ∈ R. Consider the operator2

Dε := Dε
λ,J,A := ∂s + J(εs, εt)∂t + D(εs, εt) : X → X .

Thus two triples ξ = (α, φ, ψ) ∈ X and ξ̃ = (α̃, φ̃, ψ̃) ∈ X satisfy Dεξ = ξ̃ if and
only if

α̃ = ∂sα− dA(εs,εt)φ+ ∗εs,εt(∂tα− dA(εs,εt)ψ),

φ̃ = ∂sφ+ ∂tψ + λ(εs, εt)2 ∗ dA(εs,εt) ∗εs,εt α,

ψ̃ = ∂sψ − ∂tφ+ λ(εs, εt)2 ∗ dA(εs,εt)α.

(56)

Here ∗s,t := ∗J(s,t) : Ω1(Σ, gP ) → Ω1(Σ, gP ). In the following we assume that
A(s, t) is flat for all (s, t) ∈ R2. We shall also assume that

sup
s,t

(|λ(s, t)| + |1/λ(s, t)| + |∂sλ(s, t)| + |∂tλ(s, t)|) <∞, (57)

sup
s,t

(
‖J(s, t)‖C2(Σ) + ‖∂sJ(s, t)‖C1(Σ) + ‖∂tJ(s, t)‖C1(Σ)

)
<∞, (58)

sup
s,t

(
‖A(s, t) −A0‖C1(Σ) + ‖∂sA(s, t)‖L∞(Σ) + ‖∂sA(s, t)‖L∞(Σ)

)
<∞. (59)

Here all norms are understood with respect to the metric induced by J0.

Proposition C.2. Fix a real number p ≥ 2. Let λ : R2 → (0,∞), J : R2 →
J (Σ), and A : R2 → Aflat(P ) be continuously differentiable functions that sat-
isfy (57), (58), and (59). Then there exist positive constants ε0 and c2 such
that, for every ξ ∈ X and every ε ∈ (0, ε0), we have

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J) + ‖Dξ‖

p
Lp(Σ,J)

)

≤ c2

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + εp ‖πA(α)‖

p
Lp(Σ,J)

)
. (60)

Here we abbreviate D = D(εs, εt), denote by

πA(εs,εt) : Ω1(Σ, gP ) → H1
A(εs,εt)

the L2-orthogonal projection with respect to the metric induced by J(εs, εt), and
denote by ‖·‖Lp(Σ,J) the Lp-norm with respect to the same metric.

2Warning: The operator Dε in this section should not be confused with the operator Dε

introduced in Section 9. In the case λ ≡ 1 the two operators are related by rescaling on R
2

with a factor ε (see Step 1 in the proof of Lemma D.1).
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Remark C.1. The constant c2 in (60) does not depend on the support of ξ. This
is consistant with the observation that, in the Calderon-Zygmund inequality, the
Lp-norms of the first derivatives of a compactly supported function u : C → C

can be estimated by the Lp-norm of ∂̄u with a constant that does not depend
on the support of u. This is also consistent with the presence of the factor ε on
the right hand side of (60). Taking the limit ε→ 0 we obtain the estimate

‖∂sξ‖Lp + ‖∂tξ‖Lp + ‖Dξ‖Lp ≤ c ‖∂sξ + J∂tξ + Dξ‖Lp

whenever λ, J , and A are independent of s and t. In contrast, the inequality

‖ξ‖Lp ≤ cr ‖∂sξ + J∂tξ + Dξ‖Lp

only holds with a constant that depends on the size of the support of ξ, i.e. it
holds for every ξ ∈ X with support in Br×Σ. Hence, if we replace the Lp norms
of ∂sξ and ∂tξ on the left hand side of (60) by the Lp-norm of ξ itself, then we
must remove the factor ε on the right.

The strategy of the proof of Proposition C.2 is as follows. We first show how
to apply Proposition A.2 to the present case to obtain the inequality

∫

R2

‖ξ‖
p
L2(Σ) ≤ c

∫

R2

(
‖Dεξ‖

p
L2(Σ) + ‖πA(α)‖

p
L2(Σ)

)
.

(see Lemma C.3). Here we use the Lp norm for functions on R2 with values in
L2(Σ). This norm is weaker than the Lp-norm on R2 ×Σ and stronger than the
L2-norm on R2 ×Σ. We shall use this inequality in the case πA(α) = 0 in order
to delete lower order terms on the right hand sides of the estimates.

The second step is to establish the estimate (60) with ε = 0 in the case where
λ, J , and A are independent of s and t (Lemma C.4). The proof in this case
is based on the Calderon-Zygmund inequality. This gives rise to an additional
lower order term on the right hand side of the estimate. This lower order term
can be cancelled, by the first step of the proof, when πA(α) = 0, and it is not
present in the case α = πA(α). The result can therefore be proved by using the
Hodge decomposition on Σ.

The third step of the proof (Lemma C.5) is to establish the estimate (60) in
the case where ξ = (α, φ, ψ) ∈ X satisfies

πA(εs,εt)(α(s, t)) = 0.

Here we must assume that ε > 0 is sufficiently small. The idea of the proof is
to first establish the estimate for every ξ with support in a ball of radius one.
Here we use the fact that the variations of λ, J , and A are small on such a ball,
whenever ε is sufficiently small. Next one can use cutoff functions to obtain an
estimate of the form

∫

R2

(
‖∂sξ‖

p
Lp(Σ) + ‖∂tξ‖

p
Lp(Σ)

)
≤ c

∫

R2

(
‖Dεξ‖

p
Lp(Σ) + ‖ξ‖

p
Lp(Σ)

)
.
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To remove the additional term ‖ξ‖Lp on the right we need an inequality of the
form

‖ξ‖Lp(Σ) ≤ δ ‖Dξ‖Lp(Σ) + cδ ‖ξ‖L2(Σ)

for all (s, t) ∈ R2, where δ > 0 can be chosen arbitrarily small. With this
established, one can use the first step with πA(α) = 0 to complete the third
step.

The fourth step of the proof (Lemma C.6) is to establish the estimate
∫

R2

(
‖∂sξ‖

p
Lp(Σ) + ‖∂tξ‖

p
Lp(Σ)

)
≤ c

∫

R2

(
‖Dεξ‖p

Lp(Σ) + εp ‖ξ‖p
Lp(Σ)

)

for all ξ ∈ X . Here the idea is again to use the Hodge decomposition to express
ξ = (α, φ, ψ) as a sum of the harmonic part ξ0 and the nonharmonic part ξ1:

ξ = ξ0 + ξ1, ξ0 := (πA(α), 0, 0), ξ1 := (α− πA(α), φ, ψ).

The harmonic part α0 := πA(α) satisfies the identity

∆α0 = ∂s(α̃0 − εα0 ◦ ∂tJ) + ∂t(α̃0 ◦ J + εα0 ◦ ∂sJ),

where ∆ = ∂s∂s + ∂t∂t is the Laplace operator on R2 and

α̃0 := ∂sα0 − (∂tα0) ◦ J.

Hence the estimate for ξ0 follows from the Calderon-Zygmund inequality for
the Laplace operator, and for ξ1 it has already been established in the third
step. The estimate for ξ = ξ0 + ξ1 then follows from the fact that Lp-norm
of the harmonic part of Dεξ1 is controlled by ε times the Lp-norm of ξ1, and
likewise, the Lp-norm of the nonharmonic part of Dεξ0 is controlled by ε times
the Lp-norm of ξ0.

The final step in the proof of Proposition C.2 is to replace the term ‖ξ‖Lp

on the right by the term ‖πA(α)‖Lp .

Lemma C.3. Fix a real number p ≥ 2. Suppose λ, J , and A satisfy (57), (58),
and (59). Then there exist positive constants ε0 and c3 such that, for every
ξ ∈ X and every ε ∈ (0, ε0), we have

∫

R2

‖ξ‖
p
L2(Σ,J) ≤ c3

∫

R2

(
‖Dεξ‖

p
L2(Σ,J) + ‖πA(α)‖

p
L2(Σ,J)

)
.

Proof. Consider the Hilbert spaces

H = L2(Σ, T ∗Σ ⊗ gP ) ⊕ L2(Σ,⊗gP ) ⊕ L2(Σ,⊗gP ),

V = W 1,2(Σ, T ∗Σ ⊗ gP ) ⊕ W1,2(Σ,⊗gP ) ⊕ W1,2(Σ,⊗gP ).

These are two completions of X and we consider the inner product on H that
is determined by the reference metric 〈·, ·〉 = dvolΣ(·, J0·). Then the operators
Q(s, t),J(s, t) ∈ L(H) and D(s, t) ∈ L(V,H) satisfy the requirements of Propo-
sition A.2. Explicitly, the conditions (57), (58), and (59) guarantee that Q,
J, and D satisfy (28), (30), (31), and (32). Hence the assertion follows from
Proposition A.2.
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Lemma C.4. Fix a real number p ≥ 2, a complex structure J0 ∈ J (Σ), and a
reference connection A0 ∈ A(P ). Then for every constant C > 0 there exists
a constant c4 = c4(C, p, J0, A0) > 0 such that the following holds. If λ > 0,
J ∈ J (Σ), and A ∈ Aflat(P ) satisfy (54) then, for every ξ ∈ X , we have

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
≤ c4

∫

R2

‖∂sξ + J∂tξ + Dξ‖
p
Lp(Σ,J) . (61)

Proof. The proof consists of seven steps. Whenever we refer to continuous
dependence on J and A, it is to be understood with respect to the C1-topology
on J (Σ) and the C0-topology on A(P ).

Step 1 The lemma holds whenever φ(s, t) = ψ(s, t) = 0 and α0(s, t) = α(s, t)
is harmonic with respect to A for all s and t.

In this case

∂sξ + J∂tξ + Dξ = ∂sξ + J∂tξ = (∂sα0 + ∗∂tα0, 0, 0),

The Calderon-Zygmund inequality asserts that there is a constant cCZ(p) > 0
such that, for every smooth function

α0 : R
2 → kerdA ∩ ker d∗A

with compact support, we have

∫

R2

(
‖∂sα0‖

p
L2(Σ,J) + ‖∂tα0‖

p
L2(Σ,J)

)
≤ cCZ(p)

∫

R2

‖∂sα0 + ∗∂tα0‖
p
L2(Σ,J) .

The constant cCZ(p) depends only on p > 1. Now, by Lemma B.2, there exists
a constant c = c(C, p, J0, A0) such that, for every pair (J,A) ∈ J (Σ) × A(P )
that satisfies (54) and every α0 ∈ Ω1(Σ, gP ) that satisfies

dAα0 = dA(α0 ◦ J) = 0,

we have
c−1 ‖α0‖

p
L2(Σ,J) ≤ ‖α0‖

p
Lp(Σ,J) ≤ c ‖α0‖

p
L2(Σ,J) .

Combining these two inequalities we obtain

∫

R2

(
‖∂sα0‖

p
Lp(Σ,J) + ‖∂tα0‖

p
Lp(Σ,J)

)
≤ c2cCZ(p)

∫

R2

‖∂sα0 + ∗∂tα0‖
p
Lp(Σ,J) .

This proves Step 1.

Step 2 There exists a constant c = c(C, p, J0, A0) > 0, such that, for all λ, J ,
and A that satisfy (54) and all ξ ∈ X , we have

‖ξ‖
p
W 1,p(R2×Σ) ≤ c

(
‖∂sξ + J∂tξ + Dξ‖

p
Lp(R2×Σ) + ‖ξ‖

p
Lp(R2×Σ)

)
.
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The Calderon-Zygmund inequality implies a standard Lp-estimate for the self-
duality operator. Namely, there is a constant c′ = c′(λ, J,A), depending con-
tinuously on λ, J , and A, such that, for every ξ ∈ X and every integer vector
k ∈ Z2, we have

‖ξ‖
p
W 1,p(B1(k)×Σ) ≤ c′

(
‖∂sξ + J∂tξ + Dξ‖

p
Lp(B2(k)×Σ) + ‖ξ‖

p
Lp(B2(k)×Σ)

)
.

Now take the sum over all k ∈ Z2 to obtain the required inequality with c = 16c′.

Step 3 There exists a constant c = c(C, p, J0, A0) > 0, such that, for all λ, J ,
and A that satisfy (54) and all ξ ∈ X , we have

‖ξ‖p
W 1,p(R2×Σ) ≤ c

(
‖∂sξ + J∂tξ + Dξ‖p

Lp(R2×Σ) +

∫

R2

‖ξ‖p
L2(Σ)

)
.

Step 3 follows from Step 2 and Lemma B.2.

Step 4 There exists a constant c = c(C, p, J0, A0) > 0, such that, for all λ, J ,
and A that satisfy (54) and all ξ ∈ X , that satisfy

α(s, t) ∈ im dA ⊕ im d∗A

for (s, t) ∈ R2, we have

∫

R2

‖ξ‖p
L2(Σ,J) ≤ c

∫

R2

‖∂sξ + J∂tξ + Dξ‖p
L2(Σ,J) .

Since A is flat, there exists a constant c0 = c0(J,A), depending continuously on
J and A, such that

‖α‖
2
W 1,2(Σ,J) ≤ c0

(
‖dAα‖

2
L2(Σ) + ‖dA(α ◦ J)‖

2
L2(Σ)

)

for every α ∈ im dA ⊕ im d∗A and

‖φ‖2
W 1,2(Σ) + ‖ψ‖2

W 1,2(Σ) ≤ c0 ‖dAφ+ ∗dAψ‖
2
L2(Σ,J)

for all φ, ψ ∈ Ω0(Σ, gP ) (see Lemmata B.3 and B.4). Hence Step 4 follows from
Lemma C.3.

Step 5 There exists a constant c = c(C, p, J0, A0) > 0, such that, for all λ, J ,
and A that satisfy (54) and all ξ ∈ X , that satisfy

α(s, t) ∈ im dA ⊕ im d∗A

for (s, t) ∈ R2, we have

‖ξ‖p
W 1,p(R2×Σ) ≤ c ‖∂sξ + J∂tξ + Dξ‖p

Lp(R2×Σ)
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Step 5 follows from Steps 3 and 4 and the fact that, for ξ̃ ∈ X and p ≥ 2, we
have ‖ξ̃‖L2(Σ) ≤ Vol(Σ)(p−2)/2p‖ξ̃‖Lp(Σ).

Step 6 There exists a constant c = c(C, p, J0, A0) > 0, such that, for every pair
(J,A) ∈ J (Σ) ×Aflat(P ) that satisfies (54) and every α ∈ Ω1(Σ, gP ), we have

‖πA(α)‖Lp(Σ,J) ≤ c ‖α‖Lp(Σ,J) .

Write
α =: πA(α) + dAη + ∗dAζ.

Then
d∗AdAη = d∗Aα, d∗AdAζ = − ∗ dAα.

Hence, by Lemma B.4, there is an inequality

‖dAη‖Lp(Σ,J) + ‖dAζ‖Lp(Σ,J) ≤ c′ ‖α‖Lp(Σ,J) ,

where the constant c′ = c′(J) is independent of A and depends continuously on
J . This implies Step 6 with c = 2c′ + 1.

Step 7 We prove the lemma.

Write ξ = ξ0 + ξ1, where

ξ0 = (α0, 0, 0), ξ1 = (α1, φ, ψ),

and
α0(s, t) ∈ ker dA ∩ ker d∗A, α1(s, t) ∈ im dA ⊕ im d∗A.

Thus α0(s, t) = πA(α(s, t)) is the harmonic part of α(s, t). Let c = c(C, p, J0, A0)
be the maximum of the constants in Steps 1 and 5. Then

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ 2p

∫

R2

(
‖∂sξ0‖

p
Lp(Σ,J) + ‖∂tξ0‖

p
Lp(Σ,J)

)

+ 2p

∫

R2

(
‖∂sξ1‖

p
Lp(Σ,J) + ‖∂tξ1‖

p
Lp(Σ,J)

)

≤ 2pc

∫

R2

‖∂sξ0 + J∂tξ0‖
p
Lp(Σ,J)

+ 2pc

∫

R2

‖∂sξ1 + J∂tξ1 + Dξ‖
p
Lp(Σ,J)

≤ 2pcc′′
∫

R2

‖∂sξ + J∂tξ + Dξ‖p
Lp(Σ,J) .

The penultimate inequality follows from Steps 1 and 5. The last inequality
follows from Step 6. This proves the lemma with a constant that depends
continuously on λ, J , and A. Since the inequality is gauge invariant and the
moduli space of flat connections on P is compact, the constant can be chosen
independent of A.
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Lemma C.5. Fix a real number p ≥ 2. Suppose that λ, J , and A satisfy (57),
(58), and (59). Suppose further that A(s, t) is flat for all s and t. Then there
exist constants ε0 > 0 and c5 > 0 such that, for every ε ∈ (0, ε0) and every
ξ = (α, φ, ψ) ∈ X that satisfies

πA(εs,εt)(α(s, t)) = 0

for (s, t) ∈ R2, we have

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
≤ c5

∫

R2

‖Dεξ‖p
Lp(Σ,J) . (62)

Proof. Throughout the proof we use the notation z = (s, t) ∈ R2.

Step 1 There exists a constant c > 0 such that

‖ξ(z)‖
p
W 1,p(Σ,J0)

≤ c1 ‖D(εz)ξ(z)‖
p
Lp(Σ,J(εz))

for all z ∈ R2, ε > 0, and ξ ∈ X such that πA(εz)(α(z)) = 0.

Denote

C := sup
z∈R2

(
λ(z) + 1/λ(z) + ‖J(z)‖C1(Σ,J0)

+ ‖A(z) −A0‖L∞(Σ,J0)

)
.

By (57), (58), and (59) we have C <∞. Hence Step 1 follows from Lemma C.1
with c = c1(C, p, J0, A0).

Step 2 There exists a constant c2 > 0 such that

‖(Dεξ)(z) − ∂sξ(z) − J(εz1)∂tξ(z) −D(εz1)ξ(z)‖
p
Lp(Σ,J(εz))

≤ c2|z − z1|
pεp‖ξ(z)‖p

W 1,p(Σ,J0)
.

for all ξ ∈ X , z, z1 ∈ R2, and ε > 0.

Abbreviate λ1 := λ(εz1), J1 := J(εz1), A1 := A(εz1), D1 := Dλ1,J1,A1
, J1 :=

JJ1
, and

ξ̃ := (α̃, φ̃, ψ̃) := Dεξ, ξ̃1 := (α̃1, φ̃1, ψ̃1) := ∂sξ + J1∂tξ + D1ξ.

Then

α̃− α̃1 = [A1 −A, φ] + [(A−A1) ◦ J1, ψ] + (∂tα− dAψ) ◦ (J1 − J),

φ̃− φ̃1 = (λ1
2 − λ2) ∗ dA1

(α ◦ J1) + λ2 ∗ [(A1 −A) ∧ (α ◦ J)],

+λ2 ∗ dA1
(α ◦ (J1 − J)) (63)

ψ̃ − ψ̃1 = (λ1
2 − λ2) ∗ dA1

α+ λ2 ∗ [(A1 −A) ∧ α].

Since A = A(εz), J = J(εz), and λ = λ(εz), the assertion follows from (57),
(58), and (59).
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Step 3 There exist positive constants ε0 and c3 such that

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
≤ c3

∫

R2

‖Dεξ‖
p
Lp(Σ,J) .

for every ε > 0 and every ξ ∈ X with support in a ball of radius ε0/ε that
satisfies πA(εz)(α(z)) = 0 for every z ∈ R2.

By Step 1, we have

‖ξ(z)‖p
W 1,p(Σ,J0)

≤ c1 ‖D(εz)ξ(z)‖p
Lp(Σ,J(εz))

≤ 3pc1

(
‖∂sξ(z)‖

p
Lp(Σ,J(εz)) + ‖∂tξ(z)‖

p
Lp(Σ,J(εz))

)

+ 3pc1 ‖(D
εξ)(z)‖

p
Lp(Σ,J(εz))

for all ξ ∈ X , z ∈ R2, and ε > 0. Using Lemma B.1, Lemma C.4, and Step 2, we
obtain the following estimate for every ξ ∈ X with support in a ball of radius r.
We denote by z1 ∈ R2 the center of the ball and abbreviate J1 := J(εz1),
A1 := A(εz1), J = J(εz), A = A(εz). Then

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ c

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J1)

+ ‖∂tξ‖
p
Lp(Σ,J1)

)

≤ cc4

∫

R2

‖∂sξ + J1∂tξ + D1ξ‖
p
Lp(Σ,J1)

≤ c2c4

∫

R2

‖∂sξ + J1∂tξ + D1ξ‖
p
Lp(Σ,J)

≤ 2pc2c4

∫

R2

(
‖Dεξ‖p

Lp(Σ,J) + ‖Dεξ − ∂sξ − J1∂tξ −D1ξ‖
p
Lp(Σ,J)

)

≤ 2pc2c4

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + c2(rε)

p ‖ξ‖
p
W 1,p(Σ,J0)

)

≤ 2pc2c4(1 + 3pc1c2(rε)
p)

∫

R2

‖Dεξ‖
p
Lp(Σ,J)

+ (6rε)pc2c1c2c4

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
.

This proves Step 3 with (6ε0)
pc2c1c2c4 = 1/2 and c3 = 2p+1c2c4 + 1.

Step 4 We prove the lemma.

Let ρ : R2 → [0, 1] be a smooth cutoff function, supported in the open ball of
radius one centered at zero, such that

∑

k∈Z2

ρ(k + z) = 1
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for every z ∈ R2. For i = (i0, i1) ∈ Z2 with i0, i1 ∈ {0, 1} denote

ξi := ρiξ, ρi(z) :=
∑

k∈Z2

ρ(i+ 2k + z).

Then, by Step 3, we have
∫

R2

(
‖∂sξi‖

p
Lp(Σ,J) + ‖∂tξi‖

p
Lp(Σ,J)

)
≤ c3

∫

R2

‖Dεξi‖
p
Lp(Σ,J) .

whenever ε ≤ ε0. Take the sum of these four functions to obtain
∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ 4pc3
∑

i

∫

R2

‖Dεξi‖
p
Lp(Σ,J)

= 4pc3
∑

i

∫

R2

‖ρiD
εξ + (∂sρi)ξ + (∂tρi)Jξ‖

p
Lp(Σ,J)

≤ 12pc3
∑

i

∫

R2

(
‖ρiD

εξ‖p
Lp(Σ,J) + (|∂sρi|

p + |∂tρi|
p) ‖ξ‖p

Lp(Σ,J)

)

≤ c′
∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + ‖ξ‖

p
Lp(Σ,J)

)
,

where c′ := 4(12‖ρ‖C1)pc3. Now it follows from Lemma B.2 and Step 1 that,
for every δ > 0 there exists a constant cδ > 0 such that, for every z ∈ R2 and
every ε > 0, we have

‖ξ(z)‖
p
Lp(Σ,J(εz)) ≤ δ ‖D(εz)ξ(z)‖

p
Lp(Σ,J(εz)) + cδ ‖ξ(z)‖

p
L2(Σ,J(εz)) .

Hence ∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ c′
∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + δ ‖Dξ‖

p
Lp(Σ,J) + cδ ‖ξ‖

p
L2(Σ,J)

)

≤ c′(1 + 3pδ)

∫

R2

‖Dεξ‖
p
Lp(Σ,J) + cδc

′

∫

R2

‖ξ‖
p
L2(Σ,J)

+ 3pc′δ

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
.

If 3pc′δ ≤ 1/2 we obtain
∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ (2c′ + 1)

∫

R2

‖Dεξ‖
p
Lp(Σ,J) + 2cδc

′

∫

R2

‖ξ‖
p
L2(Σ,J)

≤ c′′
∫

R2

‖Dεξ‖
p
Lp(Σ,J) .

The last inequality follows from Lemma C.3.
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Lemma C.6. Fix a real number p ≥ 2. Suppose that λ, J , and A satisfy (57),
(58), and (59). Suppose further that A(s, t) is flat for all s and t. Then there
exist constants ε0 > 0 and c4 > 0 such, for every ξ ∈ X and every ε ∈ (0, ε0),
we have

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)
≤ c6

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + εp ‖ξ‖

p
Lp(Σ,J)

)
.

(64)

Proof. Given ξ = (α, φ, ψ) ∈ X and ε > 0 we write

ξ = ξ0 + ξ1, ξ0 = (α0, 0, 0), ξ1 = (α1, φ, ψ),

where α0(z) := πA(εz)(α(z)) for z ∈ R2. Then, by Lemma C.5,

∫

R2

(
‖∂sξ1‖

p
Lp(Σ,J) + ‖∂tξ1‖

p
Lp(Σ,J)

)
≤ c5

∫

R2

‖Dεξ1‖
p
Lp(Σ,J) . (65)

Moreover, D(εz)ξ0(z) = 0 and hence Dεξ0 = (α̃0, 0, 0), where

α̃0(z) := ∂sα0(z) − (∂tα0(z)) ◦ J(εz),

α̃0(z) ◦ J(εz) = ∂tα0(z) + (∂sα0(z)) ◦ J(εz).

Denote by ∆ := ∂s
2 + ∂t

2 the Laplace operator on R2. Then

∆α0 = ∂sβ + ∂tγ

where the functions β, γ : R2 → Ω1(Σ, gP ) are defined by

β(z) := α̃0(z) − εα0(z) ◦ ∂tJ(εz),

γ(z) := α̃0(z) ◦ J(εz) + εα0(z) ◦ ∂sJ(εz).

Hence it follows from the Calderon-Zygmund inequality for functions with values
in a Hilbert space that

∫

R2

(
‖∂sα0‖

p
L2(Σ) + ‖∂tα0‖

p
L2(Σ)

)
≤ cCZ

∫

R2

(
‖β‖p

L2(Σ) + ‖γ‖p
L2(Σ)

)

≤ c′
∫

R2

(
‖α̃0‖

p
L2(Σ) + εp ‖α0‖

p
L2(Σ)

)
.

Now consider the identities

dA(∂sα0) = −ε[∂sA ∧ α0],

dA((∂sα0) ◦ J) = −ε[∂sA ∧ (α0 ◦ J)] − εdA(α0 ◦ ∂sJ).

Similar identities hold for ∂tα0. Hence, by Lemmata B.1 and B.2, we have
∫

R2

(
‖∂sα0‖

p
Lp(Σ,J) + ‖∂tα0‖

p
Lp(Σ,J)

)

≤ c′′
∫

R2

(
‖∂sα0‖

p
L2(Σ,J) + ‖∂tα0‖

p
L2(Σ,J) + εp ‖α0‖

p
Lp(Σ,J)

)
.
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Combining this with the previous inequality gives

∫

R2

(
‖∂sα0‖

p
Lp(Σ,J) + ‖∂tα0‖

p
Lp(Σ,J)

)

≤ c′′′
∫

R2

(
‖α̃0‖

p
Lp(Σ,J) + εp ‖α0‖

p
Lp(Σ,J)

)
.

This inequality can be written in the form

∫

R2

(
‖∂sξ0‖

p
Lp(Σ,J) + ‖∂tξ0‖

p
Lp(Σ,J)

)

≤ c′′′
∫

R2

(
‖Dεξ0‖

p
Lp(Σ,J) + εp ‖ξ0‖

p
Lp(Σ,J)

)
. (66)

Now it follows from the definitions that

dAα̃0 = ε
(
−[∂sA ∧ α0] + [∂tA ∧ (α0 ◦ J)] + dA(α0 ◦ ∂tJ)

)

dA(α̃0 ◦ J) = ε
(
−[∂tA ∧ α0] − [∂sA ∧ (α0 ◦ J)] − dA(α0 ◦ ∂sJ)

)
.

Hence, by Lemmata B.3 and B.4, there exists a constant C0 > 0 such that

‖α̃0 − πA(α̃0)‖
p
Lp(Σ,J) ≤ C0ε

p ‖α0‖
p
Lp(Σ,J) (67)

for every z ∈ R
2. Hence the nonharmonic part of α̃0 is bounded by ε times

α0. Likewise, the harmonic part of α̃1, the first component of ξ̃1 := Dεξ1, is
bounded by ε times α1. To see this write

α1 =: dAη − (dAζ) ◦ J,

where η, ζ : R2 → Ω0(Σ, gP ) and note that

πA(α̃1) = πA(∂sα1 + (∂tα1) ◦ J).

Since A = A(εz) and J = J(εz), we obtain

πA(∂sα1) = ε πA

(
[∂sA, η] − [(∂sA) ◦ J, ζ] − (dAζ) ◦ ∂sJ

)

and similarly for ∂tα1. Hence, by Lemmata B.3 and B.4, there exists a constant
C1 > 0 such that

‖πA(α̃1)‖
p
Lp(Σ,J) ≤ C1ε

p ‖α1‖
p
Lp(Σ,J) (68)

for every z ∈ R2. Denote α̃ := α̃0 + α̃1. Then

α̃0 = πA(α̃) − πA(α̃1) + (α̃0 − πA(α̃0))

and
α̃1 = (α̃ − πA(α̃)) − (α̃0 − πA(α̃0)) + πA(α̃1).
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Hence, by (67) and (68), we have

‖α̃0‖
p
Lp(Σ,J) + ‖α̃1‖

p
Lp(Σ,J)

≤ 3p
(
‖πA(α̃)‖

p
Lp(Σ,J) + ‖πA(α̃1)‖

p
Lp(Σ,J) + ‖α̃0 − πA(α̃0)‖

p
Lp(Σ,J)

)

+ 3p
(
‖α̃− πA(α̃)‖p

Lp(Σ,J) + ‖α̃0 − πA(α̃0)‖
p
Lp(Σ,J) + ‖πA(α̃1)‖

p
Lp(Σ,J)

)

≤ 3p
(
‖πA(α̃)‖

p
Lp(Σ,J) + ‖α̃− πA(α̃)‖

p
Lp(Σ,J)

)

+ 2(3ε)p
(
C0 ‖α0‖

p
Lp(Σ,J) + C1 ‖α1‖

p
Lp(Σ,J)

)

≤ c
(
‖α̃‖p

Lp(Σ,J) + εp ‖α‖p
Lp(Σ,J)

)
.

The last inequality uses Lemma B.4 and the constant c is independent of z ∈ R2.
It follows that

‖Dεξ0‖
p
Lp(Σ,J) + ‖Dεξ1‖

p
Lp(Σ,J) ≤ c

(
‖Dεξ‖p

Lp(Σ,J) + εp ‖ξ‖p
Lp(Σ,J)

)

for every z ∈ R2. Hence the assertion follows from (65) and (66).

Proof of Proposition C.2. Let c6 be the constant of Lemma C.6, denote

C := sup
z∈R2

(
λ(z) + 1/λ(z) + ‖J(z)‖C1(Σ,J0)

+ ‖A(z) −A0‖L∞(Σ,J0)

)
,

and let c1 = c1(C, p, J0, A0) be the constant of Lemma C.1. Then, by (64), we
have

∫

R2

‖Dξ‖
p
Lp(Σ,J) =

∫

R2

‖Dεξ − ∂sξ − ∂tξ‖
p
Lp(Σ,J)

≤ 3p

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + ‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J)

)

≤ 3p(c6 + 1)

∫

R2

(
‖Dεξ‖p

Lp(Σ,J) + εp ‖ξ‖p
Lp(Σ,J)

)
.

Moreover, by Lemmata B.1 and C.1, we have

‖ξ‖
p
Lp(Σ,J) ≤ c ‖ξ‖

p
Lp(Σ,J0)

≤ cc1

(
‖Dξ‖

p
Lp(Σ,J) + ‖πA(α)‖

p
Lp(Σ,J)

)

for every (s, t) ∈ R2. Now let c7 := c6 + 3p(c6 + 1). Then, combining the last
two inequalities with (64), we obtain

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J) + ‖Dξ‖p

Lp(Σ,J)

)

≤ c7

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + εp ‖ξ‖

p
Lp(Σ,J)

)

≤ c7

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + εpcc1 ‖Dξ‖

p
Lp(Σ,J) + εpcc1 ‖πA(α)‖

p
Lp(Σ,J)

)
.
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If εpcc1c7 ≤ 1/2 then

∫

R2

(
‖∂sξ‖

p
Lp(Σ,J) + ‖∂tξ‖

p
Lp(Σ,J) + ‖Dξ‖

p
Lp(Σ,J)

)

≤ 2c7

∫

R2

(
‖Dεξ‖

p
Lp(Σ,J) + εpcc1 ‖πA(α)‖

p
Lp(Σ,J)

)
.

This proves the proposition.

D Proof of Proposition 9.1

Let us return to the notation of Sections 3, 4, and 5. Fix a perturbation H,K
as in Section 6 and n+ 1 perturbed flat connections aj ∈ Aflat(Qf̃j

,Kj). Let

Ξ = (A,Φ,Ψ) ∈ A(Q)

be a connection that is in temporal gauge near the cylindrical ends and satis-
fies (6) and FA(s,t) = 0 for all s and t. Let Dε = Dε(Ξ) : W1,p → L̃p be the

operator introduced in Section 9. Recall from (15) that ξ̃ = Dεξ if and only if

α̃ = ∇sα− dAφ− dvs,t(A)α + ∗s,t(∇tα− dAψ − dws,t(A)α),

φ̃ = ∇sφ+ ∇tψ + (λ/ε)2 ∗ dA ∗s,t α,

ψ̃ = ∇sψ −∇tφ+ (λ/ε)2 ∗ dAα.

Lemma D.1. For every Ξ as above and every p ≥ 2 there exist constants c > 0
and ε0 > 0 such that the following holds. If ξ = (α, φ, ψ) ∈ W1,p and ε ∈ (0, ε0)
then

∫ 1

0

∫ ∞

−∞

λ2
(
‖dAα‖

p
Lp(Σ) + ‖dA(α ◦ J)‖p

Lp(Σ)

)

+

∫ 1

0

∫ ∞

−∞

εpλ2−p
(
‖∇sα‖

p
Lp(Σ,J) + ‖∇tα‖

p
Lp(Σ,J)

)

+

∫ 1

0

∫ ∞

−∞

εpλ2−p
(
‖dAφ‖

p
Lp(Σ,J) + ‖dAψ‖

p
Lp(Σ,J)

)

+

∫ 1

0

∫ ∞

−∞

ε2pλ2−2p
(
‖∇sφ‖

p
Lp(Σ) + ‖∇tφ‖

p
Lp(Σ)

)
(69)

+

∫ 1

0

∫ ∞

−∞

ε2pλ2−2p
(
‖∇sψ‖

p
Lp(Σ) + ‖∇tψ‖

p
Lp(Σ)

)

≤ c

∫ 1

0

∫ ∞

−∞

(
εpλ2 ‖πA(α)‖

p
Lp(Σ,J)

+ εpλ2−p ‖α̃‖
p
Lp(Σ,J) + ε2pλ2−2p‖φ̃‖p

Lp(Σ) + ε2pλ2−2p‖ψ̃‖p
Lp(Σ)

)
.

where ξ̃ = (α̃, φ̃, ψ̃) ∈ L̃p is given by ξ̃ = Dεξ.
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Proof. The proof consists of six steps. The first two steps are proved by direct
calculation.

Step 1 Assume v = w = 0. Define

Ξ′ = (A′,Φ′,Ψ′), ξ′ = (α′, φ′, ψ′), ξ̃′ = (α̃′, φ̃′, ψ̃′),

by

A′(s, t) = A(εs, εt), Φ′(s, t) = εΦ(εs, εt), Ψ′(s, t) = εΨ(εs, εt),

α′(s, t) = α(εs, εt), φ′(s, t) = εφ(εs, εt), ψ′(s, t) = εψ(εs, εt),

α̃′(s, t) = εα(εs, εt), φ̃′(s, t) = ε2φ(εs, εt), ψ̃′(s, t) = ε2ψ(εs, εt),

Denote

λ′(s, t) = λ(εs, εt), ∇s
′ = ∂s + Φ′, ∇t

′ = ∂t + Ψ′.

Then ξ̃ = Dεξ if and only if

α̃′ = ∇s
′α′ − dA′φ′ + ∗εs,εt(∇t

′α′ − dA′ψ′),

φ̃′ = ∇s
′φ′ + ∇t

′ψ′ + (λ′)2 ∗ dA′ ∗εs,εt α
′, (70)

ψ̃′ = ∇s
′ψ′ −∇t

′φ′ + (λ′)2 ∗ dA′α′.

Step 2 Let Ξ′, ξ′, and ξ̃′ be as in Step 1, and denote J ′(s, t) = J(εs, εt).
Then (69) is equivalent to

∫ 1/ε

0

∫ ∞

−∞

λ′
2
(
‖dA′α′‖

p
Lp(Σ) + ‖dA′(α′ ◦ J ′)‖

p
Lp(Σ)

)

+

∫ 1/ε

0

∫ ∞

−∞

λ′
2−p

(∥∥∇s
′α′

∥∥p

Lp(Σ,J′)
+

∥∥∇t
′α′

∥∥p

Lp(Σ,J′)

)

+

∫ 1/ε

0

∫ ∞

−∞

λ′
2−p

(
‖dA′φ′‖

p
Lp(Σ,J′) + ‖dA′ψ′‖

p
Lp(Σ,J′)

)

+

∫ 1/ε

0

∫ ∞

−∞

λ′
2−2p

(∥∥∇s
′φ′

∥∥p

Lp(Σ)
+

∥∥∇t
′φ′

∥∥p

Lp(Σ)

)
(71)

+

∫ 1/ε

0

∫ ∞

−∞

λ′
2−2p

(∥∥∇s
′ψ′

∥∥p

Lp(Σ)
+

∥∥∇t
′ψ′

∥∥p

Lp(Σ)

)

≤ c

∫ 1/ε

0

∫ ∞

−∞

(
εpλ′

2
‖πA′(α′)‖

p
Lp(Σ,J′)

+ λ′
2−p

‖α̃′‖
p
Lp(Σ,J′) + λ′

2−2p
‖φ̃′‖p

Lp(Σ) + λ′
2−2p

‖ψ̃′‖p
Lp(Σ)

)
.
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Step 3 Assume v = w = 0 and Φ = Ψ = 0. Fix an integer j ∈ {0, . . . , n} and
denote by

Qj = ιj((−∞,−T ) ×Qf̃j
) ⊂ Q

the jth cylindrical end. Then there exist constants c > 0 and ε0 > 0 such that
every ξ ∈ W1,p that vanishes oustside Qj satisfies (69) for 0 < ε < ε0.

Suppose, without loss of generality, that j = 0. Hence assume that ξ(s, t) = 0
for s ≥ −T and recall that λ(s, t) = 1 for s ≤ −T . Choose a cutoff function
β : R → [0, 1] such that

β(t) =

{
1, for |t| ≤ δ,
0, for |t| ≥ 1/2− δ,

β(−t) = β(t),

and
0 ≤ t ≤ 1/2 =⇒ β(t) + β(t− 1/2) = 1.

Consider the functions

ξ0(s, t) = β(t)ξ(s, t), ξ1(s, t) = β(t− 1/2)ξ(s, t).

Both functions have compact support. By Step 1, the rescaled function ξ ′0
satisfies

β(εt)α̃′ + εβ̇(εt) ∗εs,εt α
′ = ∇s

′α′
0 − dA′φ′0 + ∗εs,εt(∇t

′α′
0 − dA′ψ′

0),

β(εt)φ̃′ + εβ̇(εt)ψ′ = ∇s
′φ′0 + ∇t

′ψ′
0 + ∗dA′ ∗εs,εt α

′
0,

β(εt)ψ̃′ − εβ̇(εt)φ′ = ∇s
′ψ′

0 −∇t
′φ′0 + ∗dA′α′

0.

and similarly for ξ′1. Now apply Proposition C.2 to ξ′0 and ξ′1 to obtain that
ξ′ satisfies (71) for ε > 0 sufficiently small. This proves Step 3 for j = 0. For
general j apply the same argument to the pullback 1-form ξj = ι̃j

∗ξ on Qj .
This shows that ξj satisfies (71) with λ = 1. Step 3 then follows by expressing
this estimate in terms of ξ.

Step 4 Assume v = w = 0 and Φ = Ψ = 0. Let B = {s+ it ∈ C | s2 + t2 ≤ 1}
and ι : B ↪→ S be a holomorphic embedding. Then there exist constants c > 0
and ε0 > 0 such that every ξ ∈ W1,p with support in ι(B) satisfies (69) for
0 < ε < ε0.

Trivialize the bundle X over B to obtain an embedding

ι : B × Σ → X.

Then trivialize the bundle Q over the image of ι to obtain an embedding

ι̃ : B × P → Q.

By Step 1, the rescaled pullback 1-form (ι̃ ∗ξ)′ satisfies (70). Hence, by Propo-
sition C.2, it satisfies (71). Hence, by Step 2, it satisfies (69).
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Step 5 Assume v = w = 0 and Φ = Ψ = 0. Then there exist constants c > 0
and ε0 > 0 such that every ξ ∈ W1,p with compact support in X satisfies (69)
for 0 < ε < ε0.

Cover S by finitely many open sets Uν each of which is either a cylindrical end
or is contained in the holomorphic image of a ball B. Choose a partition of
unity ρν : S → [0, 1] subordinate to the cover, and apply Steps 3 and 4 to the
functions (ρν ◦ π)ξ. Then the error terms in the estimate (69) arising from the
cutoff functions ρν = ρν(s, t) are arbitrarily small as ε tends to zero. They
can be dominated by positive terms on the left hand side of the inequality, and
hence ξ satisfies (69).

Step 6 We prove the lemma.

By Lemma B.3, there exists a constant c0 > 0 such that, for every (s, t) ∈ R2,
every φ ∈ Ω0(Σ, gP ), and every α ∈ Ω1(Σ, gP ),

‖φ‖W 1,p(Σ) ≤ c0 ‖dAφ‖Lp(Σ,J) ,

‖α‖Lp(Σ,J) ≤ c0

(
‖dAα‖Lp(Σ) + ‖dA(α ◦ J)‖Lp(Σ) + ‖πA(α)‖Lp(Σ,J)

)
.

Moreover, the limit condition (6) implies that there exists a constant c1 > 0
such that, for every (s, t) ∈ R2 and every α ∈ Ω1(Σ, gP ),

‖Φ‖L∞(Σ) + ‖Ψ‖L∞(Σ) ≤ c1λ,

‖dvs,t(A)α‖Lp(Σ,J) + ‖dws,t(A)α‖Lp(Σ,J) ≤ c1λ ‖α‖Lp(Σ,J) . (72)

Hence the error terms in (69) arising from nonzero terms v, w, Φ, or Ψ can be
controlled by larger positive terms on the left hand side provided that ε > 0
sufficiently small. This proves the lemma.

Proof of Proposition 9.1. The inequality (16) follows directly from Lemma D.1
and Lemma B.3. To prove (17) write

α = πA(α) + dAζ − (dAη) ◦ J

for η, ζ ∈ Ω0(Σ, gP ) and abbreviate

Bs = ∂sA− dAΦ, Bt = ∂tA− dAΨ, B = Bs −Bt ◦ J.

By (6), there exists a constant c1 > 0 such that, for every (s, t) ∈ R
2,

‖Bs‖L∞(Σ,J) + ‖Bt‖L∞(Σ,J) ≤ c1λ. (73)

Moreover,

dA ∗s,t dAη = dA(α− πA(α)), dA ∗s,t dAζ = dA ∗s,t (α − πA(α)).
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Hence, by Lemma B.4, there exists a constant c2 > 0 such that, for all (s, t) ∈
R2,

‖dAη‖Lp(Σ,J) + ‖dAζ‖Lp(Σ,J) ≤ c2 ‖(α− πA(α))‖Lp(Σ,J) . (74)

Moreover,

∇s(α− πA(α)) = ∇s(dAζ − (dAη) ◦ J)

= dA∇sζ − (dA∇sη) ◦ J (75)

+ [Bs, ζ] − [Bs ◦ J, η] − (dAη) ◦ ∂sJ,

and similarly for ∇t(α − πA(α)). Hence

dA ∗s,t dA∇sη = dA∇sα+ [Bs ∧ πA(α)]

− dA ([Bs, ζ] + [∗s,tBs, η] − (dAη) ◦ ∂sJ) ,

dA ∗s,t dA∇sζ = dA ∗s,t ∇sα+ [Bs ∧ ∗s,tπA(α)]

− dA ([∗s,tBs, ζ] − [Bs, η] − (dAη) ◦ J∂sJ − πA(α) ◦ ∂sJ) .

Hence, by Lemma B.4, Lemma B.3, (73), and (74), there exists a constant c3 > 0
such that, for all (s, t) ∈ R2,

‖dA∇sη‖Lp(Σ,J) + ‖dA∇sζ‖Lp(Σ,J) ≤ c3

(
‖∇sα‖Lp(Σ,J) + λ ‖α‖Lp(Σ,J)

)
.

By (74) and (75), this implies

‖∇s(α− πA(α))‖Lp(Σ,J) ≤ c4

(
‖∇sα‖Lp(Σ,J) + λ ‖α‖Lp(Σ,J)

)
.

A similar inequality holds for ∇t(α−πA(α)). Hence (17) follows from Lemma D.1
and Lemma B.3.

To prove (18) note that

πA(Dεξ) −D0πA(ξ) = πA(θ0 − θ1), (76)

where
θ0 = ∇s(α − πA(α)) + ∗s,t∇t(α− πA(α)),

θ1 = dvs,t(A)(α − πA(α)) + ∗s,tdws,t(α− πA(α)).

By (75),

πA(θ0) = πA(∇s(α− πA(α)) − (∇t(α− πA(α))) ◦ J)

= πA ([B, ζ] − [B ◦ J, η] − (dAη) ◦ (∂sJ + J∂tJ)) .
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Hence, by (72), (73), (74), (76), and Lemma B.3,

‖πA(Dεξ) −D0πA(ξ)‖
p
eLp

≤ ‖πA(θ0)‖
p
eLp

+ ‖πA(θ1)‖
p
eLp

=

∫ 1

0

∫ ∞

−∞

λ2−p
(
‖πA(θ0)‖

p
Lp(Σ,J) + ‖πA(θ1)‖

p
Lp(Σ,J)

)

≤ c5

∫ 1

0

∫ ∞

−∞

λ2
(
‖dAζ‖

p
Lp(Σ,J) + ‖dAη‖

p
Lp(Σ,J) + ‖α− πA(α)‖

p
Lp(Σ,J)

)

≤ c6

∫ 1

0

∫ ∞

−∞

λ2 ‖α− πA(α)‖p
Lp(Σ,J)

≤ c6 ‖ξ − πA(ξ)‖
p
0,p,ε .

This proves the proposition.
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