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1 Introduction

Let X be a compact oriented Riemann surface with area form w and fo, f1..., fa
be orientation and area preserving diffeomorphisms of ¥ such that

fno--0 fo=id.

Suppose that P — ¥ is a principal SO(3)-bundle with nonzero second Stiefel-
Whitney class and choose lifts
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to bundle automorphisms that also satisfy fn 0---0 fo = id. These lifts induce
symplectomorphisms qﬁfj : My — My on the moduli space of flat connections
on P. They also determine SO(3)-bundles @ i Yy, over mapping tori. There
are natural product structures

HF (Yy,, Q) @ HF(Yy,, Q) ® -+ @ HF(Yy,, Q) — Z (1)
in instanton Floer homology and
H]:;\sylﬂrlp(]\427 (bfo) ® HFsymp (ME, (bfl) R ® HFsymP (MZ, ¢f~n) N Z (2)

in symplectic Floer homology. Both were discovered by Donaldson. They are
well defined up to an overall sign. The homomorphism (1) can be interpreted
as a relative Donaldson invariant on a 4-manifold with boundary. In other
words, this product is obtained by counting anti-self-dual connections over a
4-dimensional cobordism with n + 1 cylindrical ends corresponding to Yy,. The
second homomorphism is obtained by counting pseudo-holomorphic sections of a



symplectic fibre bundle over the punctured sphere with fibre My and holonomies
¢ 7, around the n 4+ 1 punctures. The next theorem is the main result of this
paper. It can be viewed as an extension of the Atiyah-Floer conjecture to
product structures (cf. [1, 17]).

Theorem 1.1. The natural isomorphism HF (Y5, Qf) — HF¥™P( My, gbf) con-
structed in [6] intertwines the two product structures (1) and (2) (up to a sign,).

Corollary 1.2. The quantum cohomology ring of Ms, is isomorphic to the in-
stanton Floer homology ring of St x 3.

Proof. Theorem 1.1 with fo = f1 = f» = id and Theorem 5.1 in [16]. O

Remark 1.1. (i) The techniques of [4, 5, 6] suggest a general relation between
holomorphic curves in My, and anti-self-dual instantons on the 4-manifold S x X
for any compact Riemann surface S. The technique of proof is an adiabatic
limit argument where the metric on the fibre ¥ converges to zero. In this limit
the anti-self-dual instantons on the product S x ¥ degenerate to holomorphic
curves S — My. The proof of Theorem 1.1 is the analogue of this argument for
Riemann surfaces S with n + 1 cylindrical ends. Instead of holomorphic maps
S — My one obtains holomorphic sections of a fibre bundle W — S with fibres
My, and holonomies (;5];]_ at the n 4+ 1 cylindrical ends. The comparison theorem
for Floer homologies in [6] corresponds to the case of two cylindrical ends.

(ii) It is interesting to relate the results of this paper to the recent work of
Donaldson about symplectic Lefschetz fibration (cf. [2, 3]). He proved that
every symplectic manifold, after blowing up a suitable number of points, admits
the structure of a topological Lefschetz fibration

Y o— X

!
S2.

The projection 7 : X — S? has finitely many nondegenerate singular points
(with distinct singular values) near which 7 is holomorphic. Moreover, each
regular fibre of 7 is a symplectic submanifold of X. Thus the holonomy around
each singular value is a positive Dehn twist f;, and the composition of these
Dehn twists is the identity. Cutting out neighbourhoods of the singular fibres
one obtains a fibration X — S over the punctured sphere. Now the neighbour-
hoods of the singular fibres determine natural Floer homology classes

alf;) € HF(Y},.Q;)

and their product under (1) is the degree-0 Donaldson invariant of X.

(iii) In his recent thesis [11] Handfield discusses the relation between anti-self-
dual instantons on S x ¥ and holomorphic curves S — My for a closed Riemann
surface S. His work is based on the ideas developed in [4, 5, 6].

(iv) Corollary 1.2 was established independently by Munoz [14, 15] who com-
puted both ring structures separately, without using the natural isomorphism.



2 The punctured sphere
Fix an integer n > 2 and let

S =CP'\ {20,...,2n}

be the Riemann sphere with punctures at n + 1 distinct points zg, ..., z,. We
assume throughout that the points zy, . . ., z,, are ordered and in general position,
ie.

0=|z0| < |z1| <+ <|2zn-1| < |2n]| = 00.

It is convenient to use polar coordinates z = e*™. Let us fix lifts w; = s;+it; €
C of the points z;. Then

—00=85)< 81 << Sp-1 <8y = 0Q.
and S can be identified with the quotient S = U/ ~ of the open set
U={s+iteC|ifs=s;thent; <t<t;+1}

by the equivalence relation (s,t) ~ (s,t+1). It is convenient to choose a metric
on S in which the punctures become cylindrical ends. Hence let

A:C\{w; +ik|jke€Z, 0<j<n}—>R

be a smooth positive function such that A(s,t+1) = A(s, ¢) and, for some T' > 1
and every w = s+ it € U,

1, if|s|>T.

)

— . 3 _ | < —2nT .
ANw) = { 127w —wy|, if [w—wj| <e for some j,

Consider the volume form
dvolg = \?ds A dt

on S and note that the function ¢ — w; + €27 is an isometry from the half
cylinder Z = (—oo0, —T) x R/Z with the standard metric to the punctured ball
{weC|0< |w—w;j| <e 2T} with the metric A?(ds? + dt?).

3 Fibre bundles

Throughout we identify S' = R/Z. Let ¥ be a compact oriented Riemann
surface with volume form w. The mapping torus of a symplectomorphism f €
Diff (¥, w) is a fibre bundle

vy — 8!

with holonomy f. It is defined by Y; := R x ¥/ ~, where

(t+1,2)~ (t f(2)).



Let fo, f1,- -, fn € Diff(2,w) such that
frnofan—10---0 fo =id.
Then there is a natural fibre bundle

Y — X

|
S

over the punctured sphere with holonomy f; around the jth puncture. Thus
the restriction of the bundle to a circle around wj; is diffeomorphic to Yy,. To
construct the bundle explicitly it is convenient to introduce the maps

g;i =fjofj—10---0fo
for j=0,1,...,n—1. Then X :=U x ¥/ ~ under the equivalence relation
55 <8< Sj+1 = (s,t+1,2) ~ (s,t,9;(2)).

For j = 0,...,n there is a natural embedding ¢; : (=00, —=T') x Yy, — X, defined
by to(s,t,2) = [s,t, 2] and ¢, (8,t,2) = [—s,—t, 2] for j = 0,n and by

(.t 2) = [wj +e2CH0 £ R)], ik —1/4<t<k+3/4,
PODET (wy i+ €276 gimlo £ ik —3/4 <t <k+1/4,

for j =1,...,n— 1. These maps are well defined and satisfy
Li(s,t+1,2) =1(s,t, f;(2))

for 5 =0,...,n.

Let J(X) denote the space of complex structures on ¥ that are compatible
with the orientation given by w. A vertical complex structure on X is an
almost complex structure on the vertical tangent bundle. Explicitly, such a
complex structure can be represented by a smooth map U — J(X) : (s,t) —
J(s,t) that satisfies

55 <8< 8j+1 = J(s,t+1) = g;*J(s,1).

The pullback J; = ¢;*.J is a vertical complex structure on (—oo, —T') x Yy,. It
is given by

Ji(5,1) = (FiF) T(wj +e2mGH) if b —1/4 <t < k+3/4,
POV (5 gy T wy + i+ e SH0) ik —3/4 < t < k4 1/4,

for j = 1,...,n — 1 and it satisfies Jj(s,t + 1) = f;"J;(s,t). We assume
throughout that J;(s,t) is independent of the s-variable for —s sufficiently
large. Let *,,; denote the Hodge *-operator on X corresponding to the metric
w(-, J(s,t)-) and *;,s, the Hodge *-operator of the metric w(-,J;(s,t)-). Note
that * .0 = —a o J(s,t) for « € Q1 (2, gp).



4 Connections and gauge transformations

Let P — ¥ be a principal bundle with structure group G = SO(3) and nonzero
second Stiefel-Whitney class. Denote by g = Lie(G) = so(3) the Lie algebra
of G, by A(P) C Q'(P,g) the space of connection 1-forms on P, and by G(P)
the identity component in the group of gauge transformations (thought of as
equivariant maps from P to G). A lift f:P—=Poffe Diff (2, w) determines
a principal SO(3)-bundle

1

Yy
given by the mapping torus Qf =R x Q/ ~, where
(t+1,0) ~ (t, f(p)
Choose n + 1 such lifts fo, ..., fn of the maps fo, ..., f» such that
frno--ofo=id
and define §; = fj o--- o fo. Then there is a principal SO(3)-bundle
P = Q

!
X

defined as the quotient @) := U x P/ ~ under the equivalence relation
55 <8< Sj+1 = (s,t+1,p) ~ (s,t,G;(p)).
The embedding ¢; lifts to a bundle map Z; : (—o0, =T) X ij — @, given by

) ~ k )
55,4, p) = [wj+€2ﬂ'(s+zt)7jijk(p)], ifk—1/4<t<k+3/4,
[wj + i+ e+ g, Vo £ 7 (p)], it k—3/4<t<k+1/4,

for j =1,...,n— 1. A connection on @ is a 1-form

E=A+dds+Vdt

on U x P such that the functions A : U — A(P) and @,V : U — C*>°(Z,gp)
satisfy the periodicity conditions

A(s,t+1) = 9j TA(s, 1), (3)
(I)(S7t+1):®(57t)ogjv \P(S,t+1):\1/(57t)0§j7

for s; < s <sj41. For j =1,...,n —1 the pullback connection

EjZZj*EZAj-f—(I)de-F\I/jdt



on (—oo, =T) x ij is given by

A(S t)* (f ) (w,+e27r(s+it)) ifk—1/4<t<k+3/47
ACH (g; " fk) A(wj 4 i+ 26Ty if b —3/4 <t <k +1/4,

®,;(s,t) = 2me*™* (cos(27rt)<1>(wj + 27 () L gin(2mt) W (w; + 62”(”“))) ,

U,(s,t) = 2me?™ (cos(27rt)\ll(wj + 2™+ ) _ gin(2nt) B (w; + €2F(S+it)))

for —1/4 < t < 3/4. For general t these functions are determined by the
periodicity conditions ®;(s,t +1) = ®;(s,t) o f; and ¥;(s,t+ 1) = ¥;(s,t) o f;.
Let A(Q) denote the set of all connections E that satisfy (3).

A gauge transformation of ) is a smooth function u : U — G(P) that satisfies

55 < 5§ < Sjt+1 = u(s, t+1) =u(s,t) o g,.

The pullback gauge transformation u; = wo; : (—oo, =T) x ij — G is given
by

(5.1) = u(w; + 27+ o f ik —1/4 <t <k +3/4,
w(wj +i+ e T og to £ X itk —3/4 <t <k+1/4,

and satisfies uj(s,t + 1) = u;(s,t) o fj. Let G(Q) denote the group of gauge
transformations such that u;(s,t) = 1 for —s sufficiently large. This group acts

on A(Q) by

A— utdu+ v Au,
b — u 0,u+ u 1 du, U — u o+ u M.

The action of u; on Z; is given by the same formulae.

5 Anti-self-dual instantons
The curvature of Z = (A, ®, V) € A(Q) is the 2-form

F= = Fa+4(0s% — 0P+ [D,U])ds A dt
—(0sA—da®) A ds — (0:A — daT) A di.

Since

xFz = A 2% (0,9 — 0;® 4 [®,U]) + N2 (xF4)ds A dt
— (#5.0(OtA —daT)) A ds + (x5,4(0sA — da®)) A dt,
the connection = is anti-self-dual if and only if

(6514 — dA(I)) + *s,t(BtA — dA\I]) = 07 (4)
OV — P+ [®, U]+ N2xFy = 0.



Note that the Hodge *-operator on 1-forms depends on the complex structure
J(s,t) but is invariant under rescaling, while the Hodge *-operator on 2-forms
depends only on the volume form. Note also that =; = 7; *= satisfies the same
equations with A =1 and #*,; replaced by *;.s ;.

The Yang-Mills action of = is given by

1 [e%s)
am«a=1;[MQ&A—M@Ewuﬁmﬂmu;@)ww. (5)

If this action is finite then the connection has limits at the cylindrical ends. To
be more precise, we shall assume that the connection is in temporal gauge on
the cylindrical ends. This means that ®;(s,t) = 0 for —s sufficiently large. If
this holds, and the flat connections on @ 7, are nondegenerate for all j, then
there exist flat connections

aj = Aj(t) + U, (t)dt € AMQj)
such that

lim (A;(s,t)+ ¥,;(s,t)dt) = aj. (6)

§——0C0
The convergence is exponential and in the C°°-topology. Moreover,

lim 0;4;(s,t) =0, lim 0,¥;(s,t) =0.
§——00 S§——00
Warning: When referring to (6) below we shall always mean convergence in
the C'-norm together with uniform convergence of 9;A; and 9;¥; to zero and
with 9;@; = 0 for —s sufficiently large.

In general, the flat connections on the mapping tori Q];j may occur in families
and, to obtain smooth moduli spaces, we must choose suitable perturbations.
The quantum product structure (1) can then be obtained by counting the solu-
tions of the perturbed instanton equations with prescribed limit connections.

6 Perturbations

Throughout this section let g denote the genus of ¥. For any loop v : R/Z — P
denote by p, : A(P) — SU(2) the holonomy along . Thus p,(A4) = u(1) where
w:[0,1] — SU(2) is the solution of the ordinary differential equation

U+ A(F)u =0, u(0) = 1.

The differential of p, at A has the form

1
(A o (A = = [ (o) Ma(3(0))u(0) a0

for a € QY(3,gp). Now fix a path of basepoints [~1,1] — P : 7 +— p, and 2g
maps [—1,1] x R/Z — P : (1,0) — ~;(7,6) such that the projections 7 o ~y; are



orientation preserving embeddings, generate the fundamental group of ¥, and
satisfy v;(7,0) = p,. For 7 € [-1,1] let

pr o A(P) — SU(2)%9
denote the holonomy along the loops 6 +— ~;(7,0), 7 = 1,...,2g. Choose a
smooth cutoff function 5 : (—1,1) — R with compact support and mean value 1.

Then every smooth function h : SU(2)29 — R, that is invariant under conjugacy,
determines a Hamiltonian function

1
AP)—=R: A~ H(A) = /_1 B(T)h(pr(A))dr.

The partial derivative of h with respect to the jth coordinate u; can be repre-
sented by a function n; : SU(2)%9 — su(2) such that

S—Z(U)uﬁ — (;(u). €).

for u = (uq,...,uss) € SU(2)% and £ € g. Consider the vector field
29
A(P) = Q' (gp) : A v(A) = Y v;(A),
j=1

where v;(A) € Q1(X, gp) is supported in 7~ (im 7 o ;) and satisfies

7505 (A) = B(r)u; (7, 0)n; (pr (A))yuy(7,0) " dr.

Here 6 — wu;(7,0) is the holonomy of A along the loop 6 — ~,(7,6). Direct
computation shows that

dH(A)a = / (v(A) A )

P

for A € A(P) and a € Q'(X, gp). This means that v is the Hamiltonian vector
field of H. Any such Hamiltonian function is invariant under G(P) and hence

H(u*A) = H(A), v(u*A) = v tv(A)u, dav(A) =0 (7)

for A € A(P) and u € G(P). The vector fields v that arise from the holonomy
are smooth with respect to the W*P-norm for all k and p.

Now let U x A(P) — R : (s,t,A) — H,(A) be a smooth family of such
Hamiltonian functions and U x A(P) — QY(Z,gp) : (s,t, A) — vs+(A) be the
corresponding family of Hamiltonian vector fields. Suppose that

H,1(A) = Hs141(95 " A), G5 "st(A) = vs141(95 T A)

for s; < s < sj11. Let K,; be another such family of Hamiltonian functions
with corresponding vector fields w; + and consider the perturbed anti-self-duality
equations

(6514 — dA(I) — Us7t(A)) + *s,t(ﬁtA — dA\I/ — ws7t(A)) = 07 (8)
OV — 0P+ [®, U]+ A2 xFy = 0.



The perturbed Yang-Mills action of a solution of (8) is given by

1 o)
YM(E H K) = /0 /W <|8SA —da® — v (D)2 + N ||FA|§2(E)).

If this action is finite then the limits (6) will exist in the case of a suitably
chosen perturbation. To be more precise, consider the pullback perturbations
under ;. They are given by

V)54 = 2me*™ (cos(27t)v + sin (27t )w),

W5 ¢ = 2me*™ (cos(2mt)w — sin (27t )v),
for j=1,...,n—1and —1/4 < t < 3/4, where v and w are evaluated at the

point w; +e27(s+t)  These functions extend to (=00, —=T) xR via the periodicity
conditions

Fi st (A) = vjsanr (F; T A), fj wisa(A) = wissenn (f; " A).

We shall assume throughout that v;,,; = 0 and wj,,; is independent of s for —s
sufficiently large. Call a; = A;(t) + ¥,(t) dt a perturbed flat connection for
the jth cylindrical end if

Ajt+1) = f A®),  t+1)=T(t) o fj. 9)

and

Fayi=0,  Aj(t) = da V() — wji—oo.(4;(1)) = 0. (10)
Condition (9) asserts that a; is a connection on Q];j . Denote the space of
solutions of (9) and (10) by

A(Qp K;) = {a; € AQp)| (10}

The gauge equivalence classes of such connections correspond naturally to the
fixed points of a Hamiltonian deformation of the symplectomorphism ¢ i

Ms, — My, (defined below) and the perturbation K; can be chosen such that
these fixed points are all nondegenerate (cf. [4, 5]). Under this assumption the
quotient space Aﬂat(ij,Kj)/g(ij) is a finite set and, for every solution =

of (8) with finite perturbed Yang-Mills energy, the limits (6) exists. Given n+ 1
perturbed flat connections

ajE.Aﬁat(ij,Kj), j:(),...,n,
we denote the moduli space of solutions of (8) with these limits by

Mo . ans H,K) = 125 A<é2()QI)<8>, (6))




7 Pseudoholomorphic sections

Consider the moduli space
My, = A™(P)/G(P).

This space is a smooth compact manifold of dimension 6¢(X) — 6, where g(X)
denotes the genus of 3. It carries a natural symplectic form, and every complex
structure J € J(¥) determines a complex structure on My, via the Hodge -
operator. Each lift f : P — P of a symplectomorphism of ¥ determines a

symplectomorphism
¢f : ME — MZ

given by ¢ #([A4]) = [f*A]. As above, choose n + 1 such lifts fo, ..., fn such that

fno~-~of0:id
and define §; = fj o--- o fo. Then there is a fibre bundle

ME — MX

|
S

over the punctured sphere with holonomy ¢ 7 around the jth puncture. It is
defined as the quotient Mx = U x My / ~ under the equivalence relation

sp<s<si1 = (s,t,[A]) ~ (s,t+1,[5"A].

The complex structure J : U — J(X) determines a vertical complex structure
on Mx. The (perturbed) holomorphic sections of Mx with respect to this
complex structure can be expressed as connections = € A(Q) that satisfy the
equations

(8SA— dA(I) —Us7t(A)) + *s)t(atA—dA\I] —’U}s)t(A)) = O,
Fy = 0. (11)
A
As in [4], the additional terms ® and ¥ are uniquely determined by the require-
ment that the 1-forms 9,4 — da® and 9;A — da¥ in Q(3, gp) are harmonic
with respect to A. The quantum product structure (2) in symplectic Floer
homology is obtained by counting the solutions Z € A(Q) of (11) that are in
temporal gauge near the cylindrical ends and satisfy (6). Given n+1 connections
a; € Aﬂat(ij , K;), denote by

Mo(ag,...,an; H K) = =€ A(ng()H)7 (6)}

the moduli space of gauge equivalence classes of pseudoholomorphic sections of
Mx with prescribed limiting data at the cylindrical ends. The task at hand is
to compare the solutions of (11) with those of (8).

10



A perturbation (H, K) is called regular if the perturbed flat connections
corresponding to the n + 1 cylindrical ends are all nondegenerate (see for ex-
ample [4]) and if the linearized operator Dy(Z) (defined in Section 9 below) is
surjective for all a; and every solution = of (11) and (6). The set of regular
perturbations will be denoted by HK,es. It was proved in [20] and [10] that
‘HKcg is of the second category in the sense of Baire in the space of all smooth
perturbations.

8 Adiabatic limits

The strategy for the proof of Theorem 1.1 is, precisely as in [6], to show that the
solutions of (4) degenerate to pseudoholomorphic sections in the limit where the
metric on the fibre converges to zero. More precisely, if we multiply the metric
on X by a factor €2 then the anti-self-duality equations for this metric take the
form

(8SA — dA(I) — Us7t(A)) + *s,t(ﬁtA — dA\I] — ’U}s)t(A)) = O, (12)
0.

D0 — 00 + [0, W] + e N2 x Fy =

The moduli space of solutions of these equations with given limit connections
a; will be denoted by

Ms(a07 s an; H, K) = {E < A(gzg?()12)’ (6)}

As before we consider only solutions that are in temporal gauge near the cylin-
drical ends. The Yang-Mills action for the e-dependent metric is given by

_ 1 e} )\2
YM.(E) _/O [ <||85A—d,4<1>—vsﬁt(A)Hiz(EyJ) + 5 ||FA|§2(E)). (13)

It depends on the a; but not on €.

Theorem 8.1. Suppose that the perturbed flat connections a; € Aﬁat(ij,Kj)

are nondenerate for j = 0,...,n. Then the moduli spaces Mo(ag, - ..,an; H, K)
and Mc(ag, ... ,an; H, K) have the same virtual dimensions.

Theorem 8.2. Let (H,K) € HK.g and suppose that the moduli space
Mo(ag, ..., an; H, K) has virtual dimension zero. Then, for e > 0 sufficiently
small, there is a natural orientation preserving bijection

7; : MO(CLO,...,CLH;H,K) HME(aOa"'aan;HaK)'

Theorem 1.1 is an immediate corollary of these results. Theorem 8.1 will be
proved in the next section. Theorem 8.2 then follows easily from the techniques
developed in [6] and we shall summarize the main points in Section 10.

11



9 Proof of the index formula

The proof of Theorem 8.1 rests on estimates for the differential operators that
arise from the linearized equations. To examine these operators in detail we
introduce some further notation. Denote by X the space of triples £ = («, ¢, ),
where a : U — QYZ,gp) and ¢,7 : U — Q°(U, gp) are smooth functions that
have compact support in S = U/ ~ and that, for s; < s < s;y1, satisfy the
periodicity conditions

Oé(S,t + 1) = gj *OA(S,t),
(s, +1)=9¢(s,t)og;,  YP(s,t+1)=1(s,t)0g;.

Such a triple can be identified with a 1-form £ = a+¢ds+ dt € Q1(X, gg) with
values in the Lie algebra bundle gg associated to Q). The self-duality operator

(14)

ON(X,gq) — Q¥ (X,90) ® Q°(X, 9q) : £ — DE = (dLE, dEE)
has the form
die = —ands+*gaNdt+ds A dt + A 2w,  dEE = —AT29,

where € = (&, b, z/NJ) is given by

& = Via—dagp—dvs(A)a + *,5 (Mo — dayp — dws 1 (A)a),
¢ Vet + Vith + A2 5 da #44
b = Vb —Vip+ A xdac

The L? and W' P-norms of the 1-form & = o + ¢ ds + ¥ dt are given by

1 0o
et = [ [ (2 H0lagm sy 227 1l + X7 [l

1 oo
It = [ [ (Plallney

+ AP HVSQHIZ,P(E T AZP HVtO‘Hip(z J)
+ X701, 0y + X 10105, )
+ X7 Vellh rz) T aF ||vsz/’||Lp(z)

+ AT Gl ) + AT G )
where V, = 95 + ®, V, = 0; + ¥, and
”‘b”wl p(2,J) ”‘b”ir’(z + ”dAQbHLp 2,J)

ledise s,y = oz, 0) + ldacllLosm) + dalere J)L

12



Thus the WhP-norm depends on a connection = = (A4, ®, ¥) which should be
chosen to be in temporal gauge near the cylindrical ends. We assume further
that the limits (6) exist. The LP-norm of the triple £ = D¢ is given by

1 [e’e)
L A B L L ey

For 1 < p < oo we denote by LP, WP and L? the completions of X with
respect to these norms. They are independent of the choice of the connection =.
Note that £ € L” if and only if A\71¢ e LP.

Linearizing the equations (12) we obtain the e-dependent self-duality oper-

ator _
D. = D.(E): WH? — P,

given by ) o
DE& = 5 = (da ¢71/))7
a Viao —dagp — dvg 1 (A) o + *5, (Voo — dg9p — dws 1 (A) ),
¢ = Vedp+Vip+ (Me)® xdaxea, (15)
b = Vi —Vid+ (Me)? xdaa

Next we discuss the Cauchy-Riemann operator along the section S — M :
(s,t) — [A(s,t)]. The pullback vertical tangent bundle under this section is the
bundle Hy — S whose fibre over s + it is the space

H}4(s,t) = ker dA(s,t) M ker dA(s,t)*S,t
of harmonic 1-forms with respect to A(s,t) and *5:. Let
TA = TA(s,t) - L2(27T*E ® gP) - H114(s,t)

denote the L? orthogonal projection onto the harmonic part. We introduce the
subspaces

LP(Hy) CLP,  WYP(Hy) cWhe,  LUH4) cL’,
of those triples (o, ¢, 1) that satisfy ¢ =1 =0 and 74(a) = a. The operator
Dy = Dy() : W"P(Ha) — L' (Ha)
is given by

Doag = ma <V5040 — dvgt(A)ag + *5,: Ve — *s,tdws,t(A)Oéo)-

Note that &g = Doag can be interpreted as a (0, 1)-form @ A ds— 4 téo A dt on
S with values in the bundle H4 — S. The LP-norm of this 1-form is precisely
the norm of the space L”.
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Both operators D.(Z) and Dy(E) are Fredholm whenever the limit connec-
tions ag,...,a, of = are all nondegenerate. To examine the relation between
these operators it will be convenient to introduce the e-dependent norms

1 o)
L A B G A e L R

1 o)
6. = [ [ (el

+ePA>P [ Vs 0‘”?}(2 J) +ePA*TP ||Vt0‘||]zp ,J)
+ePA*P ||¢||W1 P(2,J) +ePA*TP ||7/}||W1 P(2,J)

+e2P AT QPHVQbHLp(g + PPN 2PHVS1/)|| Lr(

FENT Vgl ) + PN Vi, z>)

L B A )

Proposition 9.1. Fiz a connection Z = (A, ®,9) € A(Q) that is in temporal
gauge near the cylindrical ends and satisfies F'as,p) = 0 for all s and t. Suppose
that the limits (6) exist. Then, for every p > 2, there exist constants g > 0 and
¢ > 1 such that, for 0 <e <egg and £ € X,

€l e < e (= 1DeEl . + 7A@l ) (16)

¢ = ma©) e < 02 (IDeElgpc + Ima(©)l1r) (17)

Ima(D=§) = Doma(@)llzr < cllé = mal@llo e - (18)

Proof. Appendix D. (For p = 2 see [6, Lemmata 4.2 and 4.3].) O
Proof of Theorem 8.1. Choose an L2-orthonormal basis a1, ..., ar € WH2(Hy)

~2 ~2
of the kernel of Dy and an L -orthonormal basis £1,...,0;, € L (Ha) of the
cokernel of Dy. Define the operator

235 W2 @R - 12 @ RF
by

14
ﬁaé = ,Dag + Z )‘jﬁjv <a177TA(§)>7 ey <O‘k77TA(§)>

Jj=1
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for € = (&, M\1,..., M) € Wh2 @ RY. We prove that D, is injective. To see this,
note first that there is a constant ¢y > 1 such that

4
7A@l + > INI < o |Domal(€) + > NiB;
j=1

j:]. E2

for all € = (£, A1,..., ) € WH2 @ RE. Hence it follows from (18) and (17) with
p = 2 that

Ira(©llz + D 1Al
j=1

4
< oo ||ma(DE) + D N8| +collma(D=E) — Doma(€)llg>

Jj=1 T2
£
< o || DL+ D NB; +cocll§ = ma(E)llg 2.
J=1 6,2,5
4
< co|| Db+ 3N+ o (It + Ima(©)le)
J=1 5,2,8

¢ ¢
< co(1+ %) D€+ Y NiB; +eoc®e | lma(©)llez + Y 1Ml
J=1 0,2,e J=1
With coc?e < 1/2 we obtain
¢

Ira©)lle + Y Il < 3eo [ D€

Jj=1

‘6,2,8 '

Combining this inequality with (16) gives

l
o 2
1€l pe = o NENT0e + D A2
j=1
l
< el e + D ]
j=1
¢
< ¢ (E (22T ||7TA(§)||L2> +> 1Nl
j=1
l ¢
< ez D+ NB| A+ | Imal©llps + D N
g=1 6,2,6 j=1
< "Dl -

15



This shows that 235 is injective for € > 0 sufficiently small. To prove surjectivity
we examine the adjoint operator

D W2 iz.
It is defined by the identity
—1 -1
<)\ D8/§I7 §>0,2,E = <€/7 )‘ D5§>0)275

for £,&' € X. Direct computation shows that D.'¢’ = £ is given by

&' = Vi —dad — dug (A)d + x4 (Via' — datp — dw,(A)d),
¢ = N+ (Ve) xdak
W= Vi =N+ (Ve) xdad

where

Via = Vo + AN + a0 (JB,T), Via' = Vo + Ao\,

and

Vet = Vi) — AL ON) Y, Vi =V — AN
Similarly, the operator
Do’ WH2(Hy) — L (Ha)
is given by
Do’y =7a (%5040' — dvs ¢ (A)ao” + *57,5%,5040' — *s)tdw&t(A)ao’).
Note that there exists a constant ¢; > 0 such that

|05 | + [ATLON + A0 < e

Hence it follows from Proposition 9.1 that the adjoint operator D,’ satisfies the
same estimates as D.. Namely, for every p > 2, there exist constants g > 0
and ¢ > 1 such that, for 0 <e <eg and ¢ € X,

1€/l < € (2 1D-€ I + 7€) 1n )

€' = ma @)l e < 2 (D€ I5, + ITa@)ler)
[7a(D:"€") = Do'ma(€)|[zr < cll€ = mal€)llg e -

~ !/
Now it follows by the same arguments as above that the operator D, is injective.
This shows that D, is surjective. Hence

indexD, = k — ¢ = index Dy.

This proves the theorem. O
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The Fredholm index will be denoted by
wlag, ... ,an; Hy K) = index D, = index Dy.

This index depends only on the limit connections a; but not on the connec-
tion Z used to define it. It is the virtual dimension of the moduli spaces
Mo(ag,...,an; HyK) and M, (ag,...,an; H,K). As pointed out above, the
space H/C,eq of regular perturbations consists of those pairs (H, K) such that
the operator Dy(E) is surjective for all solutions Z of (11) and (6). This set
is a countable intersection of open and dense sets in the space of all smooth
perturbations (cf. [20, 10]). If (H, K) € HK,cg then Mg(ag, ... ,a,; H,K) is a
smooth orientable manifold of dimension

dim Mo(aq, ..., an; H, K) = p(ag, . ..,an; H, K).
If, moreover, u(ag,...,an; H,K) = 0, then there exists a constant 9 > 0 such

that M. (ag,...,an; H, K) is a zero-dimensional manifold for 0 < & < go.

Remark 9.1. The same argument as in the proof of Theorem 8.1 shows that if Dy
is injective then so is D for € > 0 sufficiently small, and similarly for surjectivity.
The argument also provides a uniform estimate for the left, respectively right,
inverse of D, (cf. [6]).

10 Proof of the main result

To restate Theorem 8.2 more precisely we shall need some notation. Fix a
reference connection R o R
E=A+2ds+ ¥dt € AQ)

such that the pullback connections on the cylindrical ends (—oo, —T) x @ 7,
satisfy (6) and R R
0:A; =0, ®; =0, 0:¥; =0

for —s sufficiently large. Then denote
AP (ag,. .. an) ={E+E]E € WHPL

Likewise, denote by G?P the completion of the group G(Q) (of gauge trans-
formations that are equal to 1 near the cylindrical ends) with respect to the
W!P-norm on u*=. Next define

Ay (ao, .. an; H, K) = {E € A (ao,...,an) | (11)}

and
AdP(ag,...,an; H,K) = {Z € A" (ag, ..., a,) | (12)} .
Thus, for € > 0,
A;xl’(ao,,,.,an;H,K)
Gg2»

M. (ag,...,an; H K) =



Theorem 10.1. Assume (H,K) € HKeg and p(ao, ... ,an; H,K) = 0. Then
there exist constants €9 > 0 and ¢ > 0 such that, for 0 < € < gq, there exists a
map

7. : Aé’p(ao,...,an;H,K) — ALP(ag, ..., a,; H, K)

that satisfies the following conditions.
(i) If Zo € Ay (a0, - . ., an; H, K) then E. = T.(Z) satisfies"

dz (5. — o) = 0, (19)

IZe — Eo||17p75 < ce2. (20)

Here the 1,p,e-norm is the one determined by Zg.

(ii) 7: is equivariant under the action of G*P, i.e.
To(u"Eo) = u"71(Z0)

for every 2y € A(l)’p(ao, oyan; HyK) and every u € G2P. The induced map of
the moduli spaces will also be denoted by 7.

(iii) 72 is injective.

(iv) 7c is surjective.

The first assertion of Theorem 10.1 is a refined version of the implicit func-
tion theorem and follows from a Newton type iteration argument. The details
are word by word the same as in the proof of Theorem 5.1 in [6] and will be
omitted. The next two assertions follow from standard arguments in gauge
theory, e.g. the gauge equivariance follows from the uniqueness part of the im-
plicit function theorem (Proposition 10.2 below), and injectivity follows from the
standard observation that the WP-norms of two gauge equivalent connections
control the W2P-norm of the gauge transformation by which they are related
(cf. Proposition 5.7 in [6] for the present context). The hardest part of the proof
of Theorem 10.1 is surjectivity. It relies on the following four propositions.

Proposition 10.2. Assume (H,K) € HK.cg and p(ag,...,an; H,K) = 0.
Then there exist constants § > 0 and €9 > 0 such that the following holds. If
2o € Aé’p(ao, conyan; HUK) and = € ALP(ag, . .. an; H, K) for some e € (0,e0)
and (19) is satisfied and

||E _ 50”17:075 < 551/2+2/P

then E = T (Zo).

Here dff : Q'(X,g9q) — Q°(X,gq) is the adjoint of the covariant differential dz :
QO(X, g0) — Q1(X, gg) with respect to the e-dependent L2-norm on 1-forms. In explicit
terms

dffe = — xda x50 0 — (e/X)2 Ve — (/N)2 Vi,
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Proposition 10.3. Assume (H,K) € HK.cg and p(ag,...,an; H,K) = 0.
Then there exist constants eg > 0 and § > 0 such that the following holds. If
2o € A(l)’p(ao, conyan; HUK) and = € ALP(ag, . .., an; H, K) for some ¢ € (0,e0)
and

HE_EOHLp,a < 561/2+2/p7 (21)

then there exists a u € G>P such that u*E = T.(Zo).

As pointed out above, Proposition 10.2 is the uniqueness part of the implicit
function theorem (compare with [6, Theorem 5.2]). Proposition 10.3 is an easy
consequence of Proposition 10.2. One can use the gauge freedom to achieve
condition (19) and has to show that this can be done without destroying the
estimate (21). (See [6, Section 6] for details.)

Proposition 10.4. Assume (H,K) € HK.cg and p(ao,...,an; H, K) = 0.
Then, for every constant co > 0, there exists a constant g > 0 such that the
following holds. If = € ALP(ag, ..., an; H,K) for some € € (0,¢¢) and

sup (572 [Fall oo sy + A" 106 A — dA‘I’”Loo(E,J)) < ¢ (22)
then there exists a connection Zg € Ay?(ao, ..., an; H, K) such that Z = T.(Zo).

The proof of this result relies on Proposition 10.3. The key idea is to project
the first component of Z = (A, ®, ¥) onto the moduli space My of flat connec-
tions and then prove estimates for the resulting section A’ of the bundle M.
One can show that, firstly, A’ is approximately holomorphic in the sense that
the complex anti-linear part of its differential is bounded by a constant times
€2. Secondly, one can control the WP norm of this section. Hence it can be
approximated by a pseudo-holomorphic section A” (Theorem 2.5 in [6]). A fur-
ther modification of A” (by a gauge transformation, pointwise for all s and t)

then gives rise to a connection Zg € Aé’p(ao, ..., an; H, K) such that
dA(s,t) *s,t (A(S7 t) - A0(87 t)) =0

for all s and t. This connection satisfies an estimate

IZ = Zolly 5,0 < e,

where ¢ is independent of Z. With ce'/2 < § it follows from Proposition 10.3
that = is gauge equivalent to 7. (Zg). The details are carried out in [6, Sections 7
and 8] and will not be reproduced here.

Proposition 10.5. Assume (H,K) € HK.cg and p(ag,...,an; H,K) = 0.
Then there exist constants co > 0 and g > 0 such that, for every e € (0,e9)
and every = € ALP(ag, ..., an; H, K),

sup (572 [Fall oo sy + A7 10:A = dA‘I’HLoo(z,J)) < ¢o.

s,t
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To prove this one argues by contradiction. If the result were false, then
bubbling would have to occur, and this would give rise to nonempty moduli
spaces of negative virtual dimension, contradicting the assumption (H,K) €
HKreg. For more details see [6, Section 9].

Proof of Theorem 10.1 (iv). Choose ¢y and & as in Proposition 10.5. Making
g smaller, if necessary, we may assume that Proposition 10.4 holds with these
constants. Now let = € ALP(ao,...,an; H,K) and suppose that 0 < & < &.
Then, by Proposition 10.5, = satisfies (22). Hence, by Proposition 10.4, = lies
in the image of 7;. Hence 7; is surjective for 0 < € < &g. O

Proof of Theorem 8.2. By Theorem 10.1, there is a natural bijection
7. : Mo(ag, ... an; H K) — M (ag,...,an; H K).

It remains to show that this bijection preserves orientations. To see this consider
the space

Alz’p(ao,...,an) = {E € AY?(ag, ..., an; H,K) | Fa(s,py =0V's, t}.

Since Afl#t(P) is connected and simply connected, this space is nonempty. For
every Z € AsP(ag, . .., ay), there are two Fredholm operators Do(Z) and D, ()
for € > 0. Their determinants give rise to two line bundles

Lo — AxP(ag, ... an), Lo — AP(ag,. .., an).

The argument in the proof of Theorem 8.1 establishes, for every =, a natu-
ral identification of det(Dy(E)) with det(D.(E)) for sufficiently small € > 0.
Hence the line bundles £y and L. are isomorphic along any given loop in
Alz’p(ao, ...,ay) for ¢ sufficiently small. Since L. extends to the affine space
AP (ag, ..., ay), it follows that both bundles are orientable and there is a nat-
ural bijection from the (two element) set Org(aq, ..., a,) of orientations of Lo
to the set Orc(ag,...,a,) of orientations of L.. Denote this bijection by

Te(ag,...,an) : Org(ag,...,a,) — Orc(ag, ..., an). (23)
Now suppose that we are given a system of orientations
oo(ag,...,an) € Org(ag, ..., an), (24)

one for each (n + 1)-tuple of perturbed flat connections a; € A% (Q fj,Kj).
Suppose further that we are given n+ 1 systems of coherent orientations for the
n + 1 (symplectic) Floer homologies:

o (a;,b;) € Orj (a;,b;)

(cf. Floer—Hofer [9]). The orientations (24) are called compatible with the coher-
ent orientations if all the Floer gluing maps are orientation preserving. Given
the coherent orientations of the Floer chain complexes, there exists a compatible

20



collection of orientations (24) and such a collection is uniquely determined up
to an overall sign. The same holds with the subscript 0 replaced by ¢ > 0.

Now one can show as in [6, Proposition 10.3] that the maps (23) commute
with the Floer gluing maps. Hence the maps 7. map any compatible collection
of orientations (for the symplectic Floer theory) to a compatible collection

o:(ag,...,an) € Orc(ag, ..., an) (25)

for the corresponding instanton theory.

Let us fix two such compatible collections of orientations, which are related
by 7.. Then the sign 19(Zo) of a solution Zo € AyP(ao,...,an; H, K) is de-
termined by comparing the natural orientation of det(Dg(Zp)) = R with the
orientation given by (24). Similarly for 2. € AlP(ao,...,a,; H, K). But since
oe(ag, ..., a,) is the image of og(ag, . . ., a,) under 7-(ag, . . ., a,), it follows that
the two orientations of det(Dy(Zy)) agree if and only if the two orientations of
det(D.(Zp)) agree. Since Z. = T.(Zp) is close to Zy it follows that

ve(T(Z0)) = v0(Z0)

for ¢ > 0 sufficiently small. Hence the map 7; : Moy(ao,...,an; H,K) —
Mc(ag,...,an; H, K) is orientation preserving. This completes the proof of
Theorem 8.2 o

Proof of Theorem 1.1. The Floer homology groups HF*¥™P (¢ 7;) and HF(Q f~) are
both derived from the chain complex '

CF(f,K) = S5 Za

la] AR (Q,K)/G(Q5)

for a regular perturbation K. Given n + 1 automorphisms fo, ey fn such that
frno---o fo =id and a regular perturbation (H, K) € HK,eg, there are two
homomorphisms

Yo, : CF(fo, Ko) @ CF(f1, K1) @ - -~ @ CF(fn, K») — Z

defined by
"/]0(@07'--7an) = Z I/Q(Eo),

[Eo]eMo(ao,...,an;H,K)

Vel(ao, . .., an) = > ve(2.),

[EE]EME(GOrnxan?HvK)

whenever p(ag,...,an; H,K) = 0 and v¥o(ag,...,an) = ¥e(ag,...,a,) = 0
whenever p(ag,...,an; H, K) # 0. Here the definition of the signs vo(Zy) and
Ve(E:) requires the choice of two compatible collections of orientations (24)
and (25). Changing an overall sign, if necessary, we may assume that these
systems of orientations are related by the map (23). Under this assumption
Theorem 8.2 asserts that v.(7:(Z9)) = vo(Ep) for € > 0 sufficiently small. Hence
o = 1. for € > 0 sufficiently small. This proves that the product structures (1)
and (2) agree up to a sign. O
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A Cauchy-Riemann operators in Hilbert space

Let V and H be separable Hilbert spaces and V — H be a compact linear
inclusion with a dense image. Throughout we identify H with its dual space H*
via the Riesz representation theorem. Then the adjoint of the inclusion V — H
is an inclusion H «— V* which is again compact and has a dense image. Thus
there are two inclusions

VcHCV?

and we shall think of V' as a subset of H and of H as a subset of V*. We assume
that

2l g < llzlly

for every x € V. Let L(H) denote the space of bounded linear operators on H
and L(V, H) the space of bounded linear operators from V' — H. Denote by
P(H) the set of self-adjoint Hilbert space isomorphisms @ : H — H such that
QV =V and

(0.Qu)y _ - @.Qa)y

! 7 = 2
0zeel x|y orecm |zl
Every operator Q € P(H) determines an inner product
<(E, y>Q = <x7 Qy>H

such that the corresponding norm is equivalent to the standard norm on H. An
operator D € L(V, H) is called Q-symmetric if, for all z,y € V,

<D$7 Qy>H = <5Cv QD?J>H .

Lemma A.1. Suppose D € L(V,H) is Q-symmetric and let 71p : H — H
denote the Q-orthogonal projection onto the kernel of D. Then the following
are equivalent.

(i) There exists a constant co > 0 such that, for every xz € V,
llly < (D]l + 12l ) - (26)

Moreover, for every x € H we have

D
rzeV = sup 7“%@ y>H|

< 0. (27)
0£yeV HZJHH

(ii) There exists a constant co > 0 such that, for every x € V,
lzlly < co (D2l g + 7D (@)l ) - (28)
Moreover, if x € H satisfies (x,QDy) =0 for every y € V, then x € V.

(iii) D is a Fredholm operator of index zero.
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Proof. We prove that (i) implies (ii). Suppose, by contradiction, that (28) does
not hold. Then there exists a sequence z,, € H such that

Hxn”\/ =1, ||D1'HHH + ||7TD(IH)||H <1/n.

Since the inclusion V' — H is compact there exists a subsequence z,, that
converges in H to a vector z. By (26), z,, is a Cauchy sequence in V. Since V
is complete, we have z € V and

lim ||z, — 2, =0.
k—oo

Hence
llz|l,, =1, Dx =0, mp(xz) =0.

Such a vector cannot exist and this contradiction proves (28). The second
assertion in (ii) is an obvious consequence of (27).

We prove that (ii) implies (iii). By assumption, the composition of 7p :
H — H with the inclusion V' — H is a compact operator. Hence it follows from
standard arguments in functional analysis that every operator that satisfies (28)
has a finite dimensional kernel and a closed range (e.g. [19, Appendix A]). Now
the second assertion in (ii) shows that the @Q-orthogonal complement of the
image of D agrees with the kernel of D. Hence the cokernel of D is finite
dimensional and has the same dimension as the kernel of D. This proves (iii).

We prove that (iii) implies (i). If D is Fredholm then the operator V —
HokerD : z — (Dx,wp(x)) is injective and has a closed range. Hence (28)
follows from the open mapping theorem. Hence D satisfies (26). To prove (27)
suppose first that D is bijective. Suppose that z € H satisfies

ap L2:QD0) |

<0
0£yeV ”y”H

and choose w € H such that

<5L‘, QDy>H = <’U}, Qy>H

for y € V. Denote
=D lweV.

Since D is Q-symmetric, we have

<5C - §uQDy>H = <x7QDy>H - <D€7QQ>H = (w,QDy)H - (w,Qy>H =0

for every y € V. Since D is surjective, it follows that x = £ € V. This proves (i)
under the assumption that D is bijective. In general, the kernel of D is contained
in the @-orthogonal complement of the image of D. Since D has index zero both
must be equal. Hence the identity on H is an isomorphism from the kernel of
D to a complement of the image. This implies that D +¢1l: V — H is bijective
for € > 0 sufficiently small. By what we have just proved, the operator D + €1
satisfies (27) and hence, so does D. This proves the lemma. O
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Let S(V, H; Q) denote the set of Q-symmetric operators D : V' — H that
satisfy the equivalent conditions of Lemma A.1. This set is open (with respect to
the operator norm) in the Banach space of Q-symmetric operators in L(V, H).
Moreover, the inequality (28) is stable under small perturbations. Namely,
if D € S(V,H;Q) satisfies (28) then every operator D' € S(V, H; Q) that is
sufficiently close to D in the operator norm satisfies (28) with ¢y replaced by
2¢p. (The proof is an exercise.) This shows that for every compact subset
K Cc 8(V,H;Q) there exists a constant ¢g > 0 such that (28) holds for every
Dek.

If Q@ € P(H) then the restriction of @ to V will still be denoted by Q.
Its adjoint is an operator on V* and is an extension of the original operator
under the inclusion H — V*. This extension will also be denoted by Q. If
D € §(V,H;Q), then the dual operator D* can be thought of as an operator
from H — V*. Since D is Q-symmetric, the operator Q 'D*Q : H — V* is an
extension of D : V' — H. Let us denote this extension again by

D=Q 'D*Q:H—V*.

Thus D can be thought of both as an operator from V' — H and as an operator
from H — V*. The self-adjoint property (27) can then be expressed in the form
that x € V if and only if x € H and Dz € H.

Now let Q,J : R? — L(H) and D : R? — L(V,H) be operator valued
functions that are continuously differentiable with respect to the strong operator
topology (and hence are continuous in the norm topology). In the remainder
of this section we assume that these functions satisfy Q(s,t) € P(H), D(s,t) €
S(V,H;Q(s,t)), and

J'Q+QJ =0, J? =1, DJ+JD =0 (29)

for all (s,t) € R%. We also assume that there exist constants cg,c1,c > 1 and
§ > 0 such that the operator D = D(s, t) satisfies (28) for every (s,t) € R? and

S|zl < (2, Qa)y < 57" iz, (30)
1Dz g + [0s D)zl + [0 D)zl < er[[zly (31)
10Nzl g + 1O D) ]| g + 1105 Q)| g + (0 @) x| < ez [l - (32)

for every x € V and every (s,t) € R?.

Proposition A.2. For every p > 2 there exist constants ¢ > 1 and g9 > 0
(depending only on 0, co, c1, ca, and p) such that the following holds. If § €
LP(R%,V)NWLP(R2, H) and £ € LP(R?, H) satisfy

D5&(s,t) + J(es, )0, (s, t) + D(es, et)E(s, t) = £(s, 1) (33)

for some € € (0,e9) then

[ <e [ (18 + imo@it) (34
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Proof. Suppose, without loss of generality, that & : R? — V is twice continuously
differentiable and has compact support. Then the function 5 :R2 — H, given
by (33), is continuously differentiable and has compact support. It satisfies the
equation

85855 + atatf - D2€ = f7 (35)
where f : R2 — V* is given by
[ = 0,6 — JOE — DE + £(01J)0s€ — £(85J)0E +e(0y(JD) — 8, D)E. (36)

Here J and D are evaluated at the point (es,et) € R?. Take the inner product
with ||§||€272 Q¢ and compute

L1l @e v = [ €15 Qe D~ 0.0 - 01016),.

| Vel (1060 + Nowel + lovel?)
ve [ 15 (@08 + (0. 0)s)
+ [ (01615?) .00
+ [ (@e15) o
= [ 1€ (10613 + lo.c1y + 1ai1?)
ve [ 16 (0,006 0.6 + (RS- 06)s)
+o=2) [ 1615 (€080 + (€.0e)3)
+X22 [ el (0,006 l6.0:0)g
+ X el (0Q)6. 0 (60160
Let c3 := (p — 1)ca/6%. Then, by (30) and (32),
/R Nl (I1Dgls + 19.€015 + ol )
< [ Vel Qe v +eca [ 1615 (106l + l0:¢lg)-

Since ||z ; < [|x[,, for every x € V it follows from (28) and (30) that

léllg <57 lilly < o2 (IDEllg + Imn(©)lg) - (37)
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Let ¢4 := coc3/ 62. Then the last two inequalities show that
| Vel (1060 + o6l + loweiz)
< [ 16157 Qe v
+ees / 112 (10l + 19:€lg) (D¢l + Ip(©)llg)
< [ V6152 QE Py +22e? [ Imp(©l
- / 11z (Il + 10,805 + 1€l + Imp ()15 -
With ecy < 1/2 this gives
r=2 (1 Del2 0, 2 EWILE:
/R 1l (ID€NG, + lovel + 12:€13,)
<2 [ 11 (Q€ vy + e lmp 1) 69

Now recall from (36) that f = g + h, where g : R? — V* is given by
g =06~ Ja& - DE
and h: R? — H is given by

h=e ((atj)asg — (8,)0€ + (8,J)DE + J(D,D)E — (aSD)g) .
Let c5 := (ca2 + coc1)/62. Then, by (30), (31), (32), and (37),
g < ccas (1DE]g + 10:Ellq + 10l ) + 5 el

< ees (IDglg + 10:€lg + 10:€lg + Imp(©)llg) -
Hence, by (37),

[ 1€l @
p=1l g
< [ 1el el
pot s O, m
<car [ 1ty (D€l + 10:€l + 196l + Imp(©)lo)
c50 2 p-2 T .
<cass™ [ 16l (IDlg + Imp(©)lo)
- (ID€lg + 19:€llg + 10:€llq + I (€l )

< secoesd™? [ 615 (IDENG + 10:€15 + 10:61% + 1w (O13)-
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Suppose that 3ecocsd~2 < 1/4 and let cg := ¢4 + 3coes/d%. Then, inserting the
last inequality into (38), we obtain

| Vel (1060 + 1ouel + lovela)

< 4/]1%2 el (<Q£79>V,V* +eco ||7rD(§)||2Q) S 39)

Now

L1605 Qe = [ 61 Q€ ~DE+ 0.8 = Td)vy-
= [ 1€l (-8 — 0.6.800 + 018, 7o)
—e [ 16 (0.8
ve [ 115 (@6 I8 + (. (0:)6)0)
- [ (0:1615) t6. 8o
+ [ (2615 € 7800
= [ 1615 (-8 — 0.6.800 + 018, 7o)
—e [ 16 (0.8
ve [ 16 (0@, 7om + (6.(00)éh0)
~-2) [ €l 60,80l He
-2 [ el 0.0 On e b
+0=2) [ 1615 (€000 (€ 7)o
S22 [ el (@@ On e T
Let ¢7 := (p+ 1)cz/6%. Then, by (30) and (32),
| 1€l @e.avr-
<(p-1) / 11572 1611 (D€l + 0.8l + 1ol

+ec 2 EN o -
JRGEEE
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Inserting this inequality into (39) and using (37) we obtain
€% (D& + 195615 + 19113, )
e 1o Q Q Q
<4(p-1) / €l 1 (IDElg + 1081l + 1orcl)
vazer [l 18l + dec [ €I Imp 1
<4(p-1) / €l 11 (IDElg + 1081l + 1orcl)
+decoerd? / €572 1€l (1€l + Imp()l)
+azas [ 1 Imo (@)
Suppose that ecoer/62 < 1 and let cg := 4cger /6. Then
Il (11Dl + 10:€ 1 + 10:€113,)
o 1010 Q ssllQ tsllQ
< 4p / 11572 1€l (D€l + 19:€llg + 1l )
cs p—2 2 36ce +e3cs p—2 2
+ 5 [ 1615 1805 + =2 el il
<5 [ e (10el + lo.el + oI,
=3 [, Sle Q Q Q
cg + 48p? p—2 e | 8eCe + E2cs p—2 9
e I e R N P EAGT
Let cg := max{cg + 48p?,8¢cs + 4}. Since ecg < 4, we obtain
16l 10t <o [l (161 +<Imp(©13) . @0
Let c10 := 2(co/62)?(co + 1). Then, by (37) and (40),
el < 2s2 [ el (1060 + Imo(@)1)
cuo [ 1615 (1605 + Imo(©)13)
By Hélder’s inequality, [z. €15 211€1% < (Jpe I€15) 2P (fpe I€]6)?/P. Hence

(/. ||s||g)2/p <l ([ ||£||g)2/p (/. ||wD<s>||g)2/p).

This proves the proposition. o

IN
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Proposition A.3. Assume Q, J, and D are independent of s and t and satisfy
Q€ P(H), DeS(V,H;Q), and (29). Suppose that ¢ € C*(R%, H)NC*(R2,V)

is a compactly supported function such that
0s& + JO:£ + DE = 0.
Then & = 0.

Proof. The function & satisfies equation (35) with f = 0. Denote by A :=
9,2 + 8,2 the positive definite Laplacian. Then

All¢llg 210:81IG + 2 19:€11G, + 2 (6, 05058 + 0:0:8)
21|0,€l1G + 2 19:€ 116 + 2 (6, D),

21015 + 210415 + 2 IDENG,
> 0

Since the function R? — R : (s,t) — [|&(s, t)||2Q has compact support the integral
of A ||§||z2 over R? is zero. Hence £ is constant, and hence & = 0. O

B Estimates on a Riemann surface

In this section we collect some standard estimates for connections over Riemann
surfaces. We include the proofs for the sake of completeness. Let 3 be a compact
oriented Riemann surface with volume form w. Denote by J(X) the space of
complex structures on ¥ compatible with the orientation. Let P — ¥ be a
principal SO(3)-bundle with nonzero second Stiefel-Whitney class. Let A(P) C
Q(2, gp) denote the space of connection 1-forms on P, Afat(P) c A(P) the
submanifold of flat connections, and G(P) C Map(P, G) the identity component
of the gauge group.

Lemma B.1. Fiz a complex structure Jo € J(X) and a connection Ay €
A(P). Then, for every C > 0 and every p > 1, there exists a constant
c=c(C,p,Jo,Ao) > 1 such that, if J € J(X) and A € A(P) satisfy

17 los 500y + 14 = Aol g0y < C (41)
then, for every o € QY (X, gp),

¢! ”O‘Hip(z,Jo) < ||a||1£p(z,J) < c”a"][),P(E,JO) ) (42)

1N 5310y < € (Idaal sy + Idater o D)8 sy + lallfos ) ) - (43)

Here Vy, denotes the covariant derivative with respect to the connection on
T*Y @ gp determined by Ao and the metric w(-, Jo-).
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Proof. For a fixed complex structure J = J; the estimate (42) is obvious and it
holds with a uniform constant ¢ in some C%-neighbourhood of J;. By the Arzéla-
Ascoli theorem, we can cover the set of all J € J(X) with [|J|c1(s ) < € by
finitely many such neighbourhoods, and this proves (42).

We prove (43). For A = Ap and a fixed complex structure J = J; this
follows from the Calderon-Zygmund inequality. Now, for every J; € J(X) there
exists a constant ¢; > 0 such that, for every a € QY(%, gp),

[dag(ao ) —dag(@o )y < alld = Dillois, g el e, g0
+e||J - JlHLoo(g,Jo) HVAOQHLP(E,JQ) :

Hence there exist constants § = 6(J1) > 0 and ¢z = c2(J1) > 0 such that, if

IVagellpogs gy = 2 (”dAoa”Lp(z) +ldag (o ‘])”LP(E))
+co (1 + ||J — J1||01(Z7J0)) HO‘”LP(Z,JO) :

By the Arzéla-Ascoli theorem, we can cover the set of all J € J(X) with
[/llc1(s,57) < C by finitely many such d-neighbourhoods. This proves (43)
for A = Ap. Since dpa —dg,a = [(A — Ap) A a] the estimate (43) holds, with
a larger constant ¢, for every pair (A, J) that satisfies (41). This proves the
lemma. (|

Lemma B.2. Fiz a complezx structure Jo € J(X) and a connection Ay €
A(P). Then, for every § > 0, C > 0, and p > 2, there exists a constant
¢ = c(8,C,p, Jo, Ao) > 1 such that, if J € J(X) and A € A(P) satisfy (41)
then, for every ¢ € Q°(X,gp) and every o € Q1 (X, gp),

1612 s < S11dAl 70y + €l (44)

lel s, <6 (Idaalfugs, + Idal@e Do ) +clalbamyy - (45)

Proof. For p = 2 there is nothing to prove. For p > 2 this is a standard estimate
in partial differential equations. For the sake of completeness we give a proof.
We show first that, if u : R? — R is continuously differentiable, then

c1-2/p p—1 1-1/p 9
@) < G (B25) Tl + g lullsgsy s (0)

where
B.={yeR?||ly—z|<c}.
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To see this observe that, for |{| =1 and 0 <t <,

@) < fule+e)l+ | Ve + s6)] ds

e 1-1/p = 1/p
lu(x + t&)| + (/ s~/ ds) (/ |Vu(x+s§)|psds)
0 0

ulx 1-2/ p__1>1_1/p< : wlz + &P S)l/p
a9+ (E20) ([ 1vate s sgrsas)

Here the second estimate follows from Holder’s inequality. Now integrate over
¢ € St and use Holder’s inequality again to obtain

IN

1 2m ; 81—2/1) p— 1 1-1/p
lu(z)| < E/o lu(z + te'?)] do + @nie (m) IVull1op.y -

Now integrate over the interval /2 <t < e to obtain (46). It follows from (46)
that there exists a constant ¢y > 0 such that

||¢||Lp(z) < el ||dAo¢||Lp(E,J0) +ecoe! ||¢||L2(Z) 5 (47)

||04||Lp(2,J0) <el e ||VA004||LP(2,JO) +eoe! ||a||L2(E) (48)

for ¢ € Q°(Z,gp), a € QY(Z,gp), and 0 < ¢ < 1. Now (45) follows from (48)
and (43) if € > 0 is chosen sufficiently small. To prove (44) note that, by
Lemma B.1,

”dAo(b”Lp(zJo) <c ||dA0¢||LP(Z7J) sc ”dAQbHLp(E,J) +c ||¢||Lp(z)

Combining this with (47) gives (44) provided that ¢ > 0 is chosen sufficiently
small. This proves the lemma. O

Lemma B.3. Fiz a complex structure Jo € J(X). Then, for every C >0 and
every p > 2, there exists a constant ¢ = ¢(C,p, Jo) > 1 such that, if J € J(X)
satisfies

1l sy < C- (49)
and A € AY(P) then, for every ¢ € Q°(X, gp) and every a € Q1 (2, gp),

1612 153 < € lldadl s, (50)

Il s,y < € (ldaallfos) + da@e N, + Ira@lhs.p) - (G

31



Proof. We prove (50). If A; € A"(P) then da, : Q°(3,gp) — QY(Z, gp) is
injective. Hence there exists a constant ¢ = ¢(A41) > 0 such that (50) holds for
A=A, and J = Jy. Hence

16020y < € (14aB) Las,s0) + 14 = Al 5,00) 1€l s )

This shows that (50) holds, with J = Jy and a uniform constant ¢, in some
C®-neighbourhood of A;. Cover the set

Al () = LAM(P) | 1A = Aollas, 1y < C

by finitely many such neighbourhoods to obtain (50) with J = Jy for some
constant ¢ > 0, every A € A1(P), and every ¢ € Q°(%,g,). Now use (42)
to obtain (50) for any A € A12*(P) and any J € J(X) that satisfies (49). If
C is sufficiently large then every flat connection is gauge equivalent to one in
Alat(P) and this proves (50).

Next we prove (51) for p = 2. Write

Oz:TrA(OL)—FdAC—(dA’r])OJ

for n,( € QY,gp). Since the three terms on the right are pairwise L>-
orthogonal, with respect to the metric determined by J, we have

2 2 2 2
ledlzes, gy = 1daClizees gy + [danllzzs 5y + I7ale)l 2 g -

Since A is flat, we have
dA*JdAn = — %k dAa.

Taking the L?-inner product with n and using the Cauchy-Schwarz inequality,
we obtain

2
danllzzcs, gy < I0llp2es) ldaall sy < clldanll s g ldac 2 -
The last inequality follows from (50) with p = 2. Hence
||dA77||L2(z,J) <c ||dAa||L2(z) ) ||dAC||L2(z,J) <clda(ao J)HL?(E) :

This proves (51) for p = 2. If A € A%2*(P) then (51) for general p follows from
the case p = 2 and (45). Since there exists a constant C' > 0 such that every flat
connection is gauge equivalent to one in Aﬂcat(P), this proves the lemma. O

Lemma B.4. Fiz a complex structure Jy € J(X). Then, for every C > 0 and
every p > 2, there exists a constant ¢ = ¢(C,p, Jo) > 1 such that, if J € J(X)
satisfies (49) and A € A" (P) then, for every ¢ € QO(Z,gp) and every o €
o (Za gP),

10adl s,y < € (lallngs gy + Ida((dad) o T+ )Eny) - (52)
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Proof. By (42) in Lemma B.1, it suffices to prove the inequality

1446 2o a0y < € (Il om0y + 14a((d46) 0 T + @) Lags))  (53)
instead of (52). Let
Y= xda((dag) o J +a) € QT gp).
Then

dA*JdA(b = 1/) — *dAa.

For p = 2 the estimate follows by taking the inner product with ¢ and using (50).
The general case can be reduced to p = 2 via the Calderon-Zygmund inequality
and (44). Hence, for every pair (J, A), there exists a constant ¢ = ¢(J, 4) > 1
such that (53) holds for every ¢ € Q°(X,gp) and every a € Q1(X,gp). We
prove that the constant can be chosen independent of A. To see this note that

da((dag) o J) —da,((da,¢) 0 J)
=[(A—A) A ((dag) o )]+ [(A— A1) o J A [(A— A1), ¢]]
+[da, (A= A1) o J), 9] — [(A— A1) o J Adad).

Let ¢; = ¢(J, A1) and use (53) with A = A; to obtain
||dA¢||Lp(2,Jo)
<|A- AlHLw(E,JO) ||¢||LP(Z)
1 (lall s + 1, ((da,6) 0 T + ) o))
<a (1 +A- A1||L°°(E,Jg)) ||a||LP(E,J0) +c1l|da((dad) o J + a)"LP(E)

2 (4= Al w500y + 14 = Atll s, ) 14400 Lo, ) -

Here we have used the inequality [[¢|| .5y < clldadlzos, ) - It follows that

every flat connection A; has a C*-neighbourhood in which (53) holds with ¢ =
2¢1(J, A1). By the Arzéla-Ascoli theorem, cover the set A1 (P) by finitely many
such neighbourhoods. Since (53) is gauge invariant, and every flat connection is
gauge equivalent to one in A2 (P), there exists, for every J € J(X), a constant
cs = c3(J) > 0 such that (53) holds with ¢ = ¢3(J) for every flat connection A.
Now apply (53) with J = J; to the pair (¢, + (da¢) o (J — J1)) to obtain

ldadlioisry < ) (ol + I1da((dad) o T +0)| o))
+es(J) 1] = Nl oo (s, 50) 1440 Lo 5,54 -

Hence (53) holds with ¢ = 2¢3(J1) whenever c3(J1) |J = Ji|| poo (s ) < 1/2. By
the Arzéla-Ascoli theorem, cover the set of all J € J(X) that satisfy (49) by
finitely many such neighbourhoods. This proves the lemma. O
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C An [P estimate

Throughout we fix a principal G-bundle P — ¥ over a compact oriented Rie-
mann surface X, a smooth reference connection Ay € A(P), a volume form
dvoly;, compatible with the orientation, and a complex structure Jo € J(X)
compatible with the orientation. We introduce the spaces

X :=0Q'(2,gp) © Q(S,0p) © (S,0p), X :=C° (R?X).

Thus the elements of X are triples £ = (a, ¢, 1), where ¢,v : R? — Q°(3, gp)
and a : R? — Q1(X, gp) are smooth functions with compact support. For a real
number A > 0, a complex structure J € J(X), and a connection A € A(P) we
introduce the operators

D=D)j4a: X=X, J=J;: X=X, Q=Q,,;: X—-X

by
0 —dA —*JdA
D= Mxdyx; 0 0 ,
)\Q*dA 0 0
*J 0 0
J= 0 0 1 ,
0 -1 0
— xg *J 0 0
Q= 0 A2 0 ,
0 0 A2

where #; denotes the Hodge *-operator on Q!(¥,gp) induced by J and we
abbreviate %o := *,. These operators satisfy the conditions

JD+DJ =0, QJ+J'Q=0, QD -D"Q =0,

where J* and D* denote the formal adjoint operators with respect to the inner
product on X determined by w and Jy. If A is flat then the kernel of the operator
D = D, 4, consists of all triples £ = («, ¢,1) € X such that ¢ =1 = 0 and
a =ma(a), i.e. o is harmonic with respect to A and * .

Lemma C.1. Fiz a real number p > 2, a complex structure Jy € J(X), and a
reference connection Ay € A(P). Then for every constant C' > 0 there exists
a constant ¢; = ¢1(C,p, Jo, Ag) > 0 such that the following holds. If X > 0,
J € J(X), and A € AMY(P) satisfy

A+ 1A+l eris,g0) T 1A = Aol poe (s, 0 < C (54)

then, for every & = (o, ¢,v) € X, we have

€0 5,00) < €1 (IDA2AE N w5 ) + Ima(@) ) - (55)
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Proof. Let ¢ = ¢(C, p, Jo, Ap) be the maximum of the constants in Lemmata B.1,
B.3, and B.4. Then

1€y = Noloss 1910 + 10112
+ 140l 5+ I1dto Bl 5500y + 1ol s

s + 1+ @OP) (18180, + 1910 s))

1900 50y + 27 (144015 + a5 ) -

IN

The last inequality follows from Lemma B.1, the triangle inequality, and the
fact that || A — Aol (s s,y < C. By Lemma B.1, we obtain

1€ 1m0y S 2¢llalns ) + 0+ ) (615005 + 111505,

o

+2¢ (14a0l 0 s, + 144 o s ) ) -

[daal sy + ldatao I)Eus))

Now it follows from Lemma B.3 that

1€ n sy < @262+ 0) (Idaall sy + Idateo D)2, )
+2¢ | wa(@)|f s
e+ 14 20P) (a9l 5,0y + 1dat s, ) -
By Lemma B.4, with a := d4v — *d4¢, we have

||dA¢||1[),:D(E)J) <c ||dA¢ + *dA¢||Lp ,J) "

Similarly
lda¥ll7os, gy < clldad + +dao 7o, 5 -
Hence
||§||€V1,p(z,J(,) < (2 +0) (HdAOéHip(z) +[lda(ao J)Hip(z))
2 mae) s
+22(2° + 14 (20)) [|dad + *da|| Lo (s )
< o (HvdAaHZP(E + || X2da(ao J)Hip(z))
1 (ldad + < datlll s, gy + 7A@ (s, )
= o1 (IDx A€l s,y + Ima(@)0ss ) )
This proves the lemma. O
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Now let
A:R? = (0,00), J:RZ=J(X), A:R?— AP)

be smooth functions. Given such functions we denote by D(s,t), J(s,t), and
Q(s,t) the operators on X determined as above by A(s,t), J(s,t), and A(s,?)
for (s,t) € R. Consider the operator?

D :=D5 ja:=0s+ J(es,et)0; + Dles,et) : X — X.

Thus two triples £ = (a, ¢,¢) € X and € = (&, ¢, 1) € X satisfy D¢ = £ if and
only if

= Os,a— dA(as,at)(b + *es et (ata - dA(Es,Et)¢)a
85¢ =+ a“/) + /\(557 €t)2 * dA(as,at) *eset O, (56)
Osth — 01+ Aes, et)? * daes ey

ASHESERel
Il

Here w44 1= % (50 : Q'(Z,9p) — Q'(Z,gp). In the following we assume that
A(s,t) is flat for all (s,t) € R2. We shall also assume that

sup (|JA(s, t)| + [1/A(s, t)| + [0sA(s, t)| + |0eA(s,1)]) < o0, (57)
s,t
sup (17 Dllcagsy + 107 Dl sy + 1005, lengsy) < oo (69

SUF (||A(s,t) - AO”cl(z) + ||8SA(S7t)||L°°(E) + ||8SA(8at)||L°°(E)) <oo. (59)

Here all norms are understood with respect to the metric induced by Jp.

Proposition C.2. Fiz a real number p > 2. Let A\ : R? — (0,00), J : R? —
J(X), and A : R? — A"(P) be continuously differentiable functions that sat-
isfy (57), (58), and (59). Then there exist positive constants eo and co such
that, for every & € X and every e € (0,e¢), we have

L (10600 + 10802, + IDEE s, 1)

<o [ (1060w + e Ima@ls ) (60)

Here we abbreviate D = D(es, et), denote by
T A(es,et) + o (27 gP) - Hi&(ss,st)

the L2-orthogonal projection with respect to the metric induced by J(es,et), and
denote by ||| 1o(x 7y the LP-norm with respect to the same metric.

2Warning: The operator D¢ in this section should not be confused with the operator D.
introduced in Section 9. In the case A = 1 the two operators are related by rescaling on R2
with a factor € (see Step 1 in the proof of Lemma D.1).
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Remark C.1. The constant ¢z in (60) does not depend on the support of £. This
is consistant with the observation that, in the Calderon-Zygmund inequality, the
LP-norms of the first derivatives of a compactly supported function u : C — C
can be estimated by the LP-norm of du with a constant that does not depend
on the support of u. This is also consistent with the presence of the factor € on
the right hand side of (60). Taking the limit £ — 0 we obtain the estimate

101l Lo + 10:€ll Lo + [IDENl Lo < ¢ [|05€ + I:E + DYl 1
whenever A, J, and A are independent of s and ¢. In contrast, the inequality

1€ll» < cr 11058 + IO + DE]| s

only holds with a constant that depends on the size of the support of £, i.e. it
holds for every £ € X with support in B, x ¥. Hence, if we replace the L? norms
of 95¢ and 9:§ on the left hand side of (60) by the LP-norm of ¢ itself, then we
must remove the factor € on the right.

The strategy of the proof of Proposition C.2 is as follows. We first show how
to apply Proposition A.2 to the present case to obtain the inequality

L6l < e [ (D6 + Ima(@lam,)

(see Lemma C.3). Here we use the LP norm for functions on R? with values in
L?(X). This norm is weaker than the LP-norm on R? x ¥ and stronger than the
L?-norm on R? x X. We shall use this inequality in the case 74 (a) = 0 in order
to delete lower order terms on the right hand sides of the estimates.

The second step is to establish the estimate (60) with € = 0 in the case where
A, J, and A are independent of s and ¢ (Lemma C.4). The proof in this case
is based on the Calderon-Zygmund inequality. This gives rise to an additional
lower order term on the right hand side of the estimate. This lower order term
can be cancelled, by the first step of the proof, when 74(a) = 0, and it is not
present in the case & = w4 (). The result can therefore be proved by using the
Hodge decomposition on X.

The third step of the proof (Lemma C.5) is to establish the estimate (60) in
the case where £ = (a, ¢, 1) € X satisfies

T A(es,et) (0&(57 t)) =0.

Here we must assume that € > 0 is sufficiently small. The idea of the proof is
to first establish the estimate for every & with support in a ball of radius one.
Here we use the fact that the variations of A\, J, and A are small on such a ball,
whenever ¢ is sufficiently small. Next one can use cutoff functions to obtain an
estimate of the form

p p < £ p p
L, (10610 + 10€00s)) < ¢ [ (ID%€0 sy + 1))
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To remove the additional term [|£]|,, on the right we need an inequality of the
form

||§||Lp(z) <46 ||D§||Lp(z) t+¢s Hf”m(z)

for all (s,t) € R% where § > 0 can be chosen arbitrarily small. With this
established, one can use the first step with m4(«) = 0 to complete the third
step.

The fourth step of the proof (Lemma C.6) is to establish the estimate

L (106 + 10:€0sy) < [ (ID%€0 ) + 27 €1

for all £ € X. Here the idea is again to use the Hodge decomposition to express
& = (o, ¢,1) as a sum of the harmonic part £, and the nonharmonic part &;:

§=%+&, &= (ma(a),0,0), & :=(a—7a(a) ¢,¢).
The harmonic part ag := 74(c) satisfies the identity
Acag = 0s(ap — eag 0 O J) + O(Gip o J + eag 0 g J ),
where A = 9,0, + 0,0, is the Laplace operator on R? and
G = Osa0 — (Orag) o J.

Hence the estimate for & follows from the Calderon-Zygmund inequality for
the Laplace operator, and for & it has already been established in the third
step. The estimate for £ = £y + & then follows from the fact that LP-norm
of the harmonic part of D& is controlled by e times the LP-norm of &, and
likewise, the LP-norm of the nonharmonic part of D=, is controlled by & times
the LP-norm of &g.

The final step in the proof of Proposition C.2 is to replace the term ||£||,,
on the right by the term ||ma ()|,

Lemma C.3. Fiz a real number p > 2. Suppose A\, J, and A satisfy (57), (58),
and (59). Then there exist positive constants €9 and cs such that, for every
&€ X and every € € (0,20), we have

[ el <es [ (10600 + Ima@ s, )
R2 R2
Proof. Consider the Hilbert spaces

H=L*Z,T"S®gp) ® L*(Z, @gp) & L*(%, @gp),

V=W TS2gp) ® WH(Z, @gp) @ W-(Z, @gp).

These are two completions of X and we consider the inner product on H that
is determined by the reference metric (-,-) = dvols(, Jo-). Then the operators
Q(s,t),J(s,t) € L(H) and D(s,t) € L(V, H) satisty the requirements of Propo-
sition A.2. Explicitly, the conditions (57), (58), and (59) guarantee that Q,
J, and D satisfy (28), (30), (31), and (32). Hence the assertion follows from
Proposition A.2. O
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Lemma C.4. Fiz a real number p > 2, a complex structure Jo € J(X), and a
reference connection Ag € A(P). Then for every constant C > 0 there exists
a constant ¢y = c4(C,p, Jo, Ag) > 0 such that the following holds. If A > 0,
J € J(%), and A € A"Y(P) satisfy (54) then, for every & € X, we have

/ (Ha 5” P(%,J) + Hatg”[,p by J) S C4 /R2 Hasg +JOE + Dg”ip(z)]) : (61)

Proof. The proof consists of seven steps. Whenever we refer to continuous
dependence on J and A, it is to be understood with respect to the C'-topology
on J(¥) and the C°-topology on A(P).

Step 1 The lemma holds whenever ¢(s,t) = (s, t) = 0 and ao(s,t) = a(s,t)
is harmonic with respect to A for all s and t.

In this case
0s€ + IO + DE = 9:€ + JO€ = (Osavp + *0raxp, 0, 0),

The Calderon-Zygmund inequality asserts that there is a constant ccz(p) > 0
such that, for every smooth function

ap : R? = kerdy N ker d’

with compact support, we have

/Rz (||3s040||122(2,,1) + ||3t040|\]22(2,J)) < ccz(p) /R2 10500 + *0ra0|l72 (s ) -

The constant ccz(p) depends only on p > 1. Now, by Lemma B.2, there exists
a constant ¢ = ¢(C,p, Jo, Ag) such that, for every pair (J,A) € J(2) x A(P)
that satisfies (54) and every o € Q'(X, gp) that satisfies

dacg = da(agoJ) =0,

we have
HOZOHL2 s,J) < ||0‘0||Lp ,J) < C||0<0||L2(2 J) -

Combining these two inequalities we obtain

/ (HasaoH;zp(x,J) + ||8ta0H;ZP(E”])> < CQCCZ(p)/ ||550¢0 + *6,5&0”:2;)(27” .
R2 R2

This proves Step 1.

Step 2 There exists a constant ¢ = ¢(C, p, Jy, Ag) > 0, such that, for all X, J,
and A that satisfy (54) and all £ € X, we have

Hf”wl P(R2x3) <c (HB £+ IO+ D§||Lp (RZxX) + ||£||LP R2><E))
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The Calderon-Zygmund inequality implies a standard LP-estimate for the self-
duality operator. Namely, there is a constant ¢’ = ¢/(A, J, A), depending con-
tinuously on A, J, and A, such that, for every £ € X and every integer vector
k € Z2, we have

1€1T 10 (B 1y x5y < € (||3s§ + 306+ DEN Lo (5,0 <3 T ||£||Z£p(Bg(k)><E)) :

Now take the sum over all k € Z? to obtain the required inequality with ¢ = 16¢’.

Step 3 There exists a constant ¢ = ¢(C, p, Jy, Ag) > 0, such that, for all X, J,
and A that satisfy (54) and all £ € X, we have

||§||§VLP(R2><E) S c (Hasg + Jatg + Dg”i?(R?xg) + /]1&2 ||§||Z£2(E)> .

Step 3 follows from Step 2 and Lemma B.2.

Step 4 There exists a constant ¢ = ¢(C,p, Jo, Ag) > 0, such that, for all X, J,
and A that satisfy (54) and all £ € X, that satisfy

a(s,t) € imda @ imdy

for (s,t) € R?, we have
/ €172,y < c/ 1056 + J0E + D725 5 -
R2 R2

Since A is flat, there exists a constant cg = ¢o(J, A), depending continuously on
J and A, such that

lelviam.sy < o (Ildaalags) + ldateo I)I}as))
for every o € imd4 ®imd} and
16117120y + 101520y < €0 ldad + xdatd| 72 )

for all ¢,9 € Q°(X, gp) (see Lemmata B.3 and B.4). Hence Step 4 follows from
Lemma C.3.

Step 5 There exists a constant ¢ = ¢(C,p, Jo, Ag) > 0, such that, for all X, J,
and A that satisfy (54) and all £ € X, that satisfy

a(s,t) € imdy @ imdY
for (s,t) € R?, we have

€110 (2 xsy < €105 + JOE + DENT 0 (m2wy
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Step 5 follows from Steps 3 and 4 and the fact that, for e Xandp>2 we
have [[£]|2(s) < VOI(Z) =272 ||¢]| Lo .

Step 6 There exists a constant ¢ = ¢(C, p, Jo, Ag) > 0, such that, for every pair
(J,A) € () x A2t(P) that satisfies (54) and every a € Q' (%, gp), we have
||7TA(a)||LP(E,J) < C||04||Lp(2,,1) :

Write
a=:ma(a)+ dan+ xdaC.

Then
d*AdAn = dZOz, dZdAC = — %k dAa.

Hence, by Lemma B.4, there is an inequality
||dA77||Lp(2,J) + ||dA<||Lp(2,J) <c ||0<||Lp(2,,1) )

where the constant ¢/ = ¢/(J) is independent of A and depends continuously on
J. This implies Step 6 with ¢ = 2¢’ + 1.

Step 7 We prove the lemma.
Write € = &y + &1, where

60 = (0[070,0)7 gl = (O‘17¢7¢)a

and
ap(s,t) € ker dg Nker d¥, a1(s,t) € imdg @ imdy.

Thus ag(s,t) = ma(a(s,t)) is the harmonic part of a(s, t). Let ¢ = ¢(C, p, Jo, Ao)
be the maximum of the constants in Steps 1 and 5. Then

L, (1068 ) + 106021 ,)
< [ (1060l sqs,y + 100 s, )
+2”/ (Ha §1||Lp w0 T ||8t§1H1[),P(E,J)>
< 2pc/ (1050 +J5t§0||m £,J)
+2pc/ |0s&1 + J0u&1 + Dg”i?(i},])

< 2Pcec” / ||3§+Jat§+D§”Lsz)

The penultimate inequality follows from Steps 1 and 5. The last inequality
follows from Step 6. This proves the lemma with a constant that depends
continuously on A, J, and A. Since the inequality is gauge invariant and the
moduli space of flat connections on P is compact, the constant can be chosen
independent of A. O
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Lemma C.5. Fiz a real number p > 2. Suppose that \, J, and A satisfy (57),
(58), and (59). Suppose further that A(s,t) is flat for all s and t. Then there
exist constants g > 0 and c¢5 > 0 such that, for every e € (0,e9) and every
¢ = (a,¢,0) € X that satisfies

T A(es,et) (04(87 t)) =0

for (s,t) € R?, we have

L (060 1080 ) 5 [ 1D6 - (62)

Proof. Throughout the proof we use the notation z = (s,t) € R%.
Step 1 There ezists a constant ¢ > 0 such that

||§(Z)||€I/1~P(E,JO) <a ||D(EZ)£(Z)H1[7,P(Z7J(EZ))

for all z € R?, & >0, and £ € X such that (.. (a(z)) = 0.

Denote

€ 1= sup (M) +1/ME) + 1 lorgs.a + 14(E) =~ Aol (s.a)-

By (57), (58), and (59) we have C' < co. Hence Step 1 follows from Lemma C.1
with ¢ = C1 (C,p, Jo, Ao)

Step 2 There ezists a constant co > 0 such that
1(D°€)(2) — 0,6 (2) — 322008 (=) — D(E)EEN 53 500my
< oz — z1[Pe”(|€(2)

||W1VP(E),]0)'

forall€ € X, z,21 €R?, and € > 0.
Abbreviate A; 1= A(ez1), J1 := J(ez1), A1 := A(ez1), D1 := Dy, gy 4., J1 =
JJI, and

§:=(a,0,0) =D, & = (a1,¢1,%1) = 06 + J19,6 + D1 &

Then
a—a = [A1—A ¢+ [(A—Ar)oJi, ]+ (O — da®y) o (J1 = J),
b—d1 = (M2=A)xda, (o) + A x[(A1 — A) A (a0 J)],
+ A% s dy, (o (J; =) (63)
b= = ME=A)sda,a+ A2 [(A - A) Adl.

Since A = A(ez), J = J(ez), and A = A(ez), the assertion follows from (57),
(58), and (59).
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Step 3 There exist positive constants €y and cs such that

L (10600s. 0y 10800 5.0) < o [ 1P€0Ews-

for every ¢ > 0 and every & € X with support in a ball of radius eo/c that
satisfies ™.y (a(z)) = 0 for every z € R?.

By Step 1, we have

A

1€ inssy < e IDEDE s

3Pcy (Hé‘sé( )HLP(E J(e2)) + ||8t€(z)||;zp(2,,](az)))
+3pcl ||(,D8 )(Z)”LP(E,J(sz))

IN

forall ¢ € X, 2 € R2, and ¢ > 0. Using Lemma B.1, Lemma C.4, and Step 2, we
obtain the following estimate for every £ € & with support in a ball of radius r.
We denote by z; € R2? the center of the ball and abbreviate J; := J(ez1),
Ay = Alezy), J = J(ez), A= A(ez). Then

/ (||a sy + ||8t§||Lp<g,J>)
< c/ (||5~S§|| R [19 e )
< cc4/ 1046 + 3100 + Dt % s
< ey /R2 10:€ + J10.€ + le”iP(E,J)
< 2”c204/ (”pagn o) TIDE = 05§ — J10: — D1§||Lp(z,J)>
<wéer [ (ID€W s, ) + 2o 1€l a0
< 22¢%cy(1 4 3Pcico(re)P) /R2 ||D€§||ip(z,J)
+ (6r5)”czclczc4/ (Ha oy T 10€1 L0 (s J))

This proves Step 3 with (6g0)Pc?cicacs = 1/2 and c3 = 2PF1c2ey + 1.
Step 4 We prove the lemma.

Let p : RZ — [0,1] be a smooth cutoff function, supported in the open ball of
radius one centered at zero, such that

Zp(k+z):1

kez?

43



for every z € R2. For i = (ig,41) € Z? with ig,4; € {0,1} denote

&i == pi, pi(z) == Z p(i + 2k + 2).

kez?

Then, by Step 3, we have

L 10600 ) 1060w 0) < o [ 106 -

whenever ¢ < g¢. Take the sum of these four functions to obtain

L (10:€0 s,y + 106€ 5 s,)
<veS [ D6l

=4Pc3 Z/ |0 D€ + (0spi)€ + (3tpi)J§||ip(z,J)
i JR?
<126 [ (16Dl s + (008 + 10 1€ s, )

< [ (1060 + 1Ercs. )

where ¢ := 4(12]|p||c1)Pe3. Now it follows from Lemma B.2 and Step 1 that,
for every 6 > 0 there exists a constant cs > 0 such that, for every z € R? and
every € > 0, we have

H5(2)||IZ,P(Z7J(EZ)) <é ||D(€Z)€(z)||zl)ﬂ)(27j(az)) +¢s Hg(z)HI[),?(E,J(az)) :
Hence

/R (108120 5 + 10680 s, )
< [ (1€ + 5 IDE s,y + 5 )
<C+38) [ 1D +eod [ Wlle
R2

+3°¢8 /R? 10s&00(s.5) + 1061105, )

If 37¢'§ < 1/2 we obtain
/ (1905, + 10615 5,
2+ 1) [ D% sy + 268 [ 1€0Eas,
< [ 1Dl

The last inequality follows from Lemma C.3. O
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Lemma C.6. Fiz a real number p > 2. Suppose that X\, J, and A satisfy (57),
(58), and (59). Suppose further that A(s,t) is flat for all s and t. Then there
exist constants eg > 0 and ¢4 > 0 such, for every £ € X and every € € (0,¢eq),
we have

/ (10€ 12 5, + 106E 12 5,)) < s / (1612 5.+ el s, ) -

(64)
Proof. Given £ = (o, ¢,%) € X and € > 0 we write
€:§0+§15 50: (OZ(),0,0), 51 = (0417@571/))7
where ag(2) := Ta(ez)(a(z)) for z € R?. Then, by Lemma C.5,
/]R2 (Hasgl”ip(g“]) + ||at§1||12p(2“1)> <5 /]R2 ”DE&HZ[)‘p(gJ)- (65)
Moreover, D(e2)¢p(z) = 0 and hence D¢y = (&o, 0,0), where
ao(z) = 0Osap(z) — (Oran(2)) o J(e2),
aop(z)o J(ez) = 0Orap(2) + (Osa0(2)) o J(e2).

Denote by A := 9,2 + 8, the Laplace operator on R2. Then
Aag = 058+ Oy
where the functions 3,7 : R? — QY (X, gp) are defined by

B(z) = ao(z) —eap(z) o OrJ(e2),
v(z) = ao(z) o J(ez) +eap(z) o OsJ(e2).

Hence it follows from the Calderon-Zygmund inequality for functions with values
in a Hilbert space that

L, (1000l + W0r00laey) < coz [ (181Em) + Il
< ¢ [ (lolae + < ool
Now consider the identities
dA(asao) = —8[(9514 A Oé()],
da((Osap)oJ) = —€l0sAN (agoJ)] —edalagodsJ).

Similar identities hold for d;cg. Hence, by Lemmata B.1 and B.2, we have

[, (10000 s 1) + 1000l s,

< / (19501122 5,y + 10k0l 25,5y + 7 ool ) -
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Combining this with the previous inequality gives

1, (10.00ltqs ) + 1000l )
< [ (10l + loollags, )

This inequality can be written in the form

(N0sol% s, + 1900l s, )
RQ
< / (1060l 5,5y + 2 6ol ) - (66)

Now it follows from the definitions that

dady = E(—[aSA/\Oéo]—F[atA/\(OLOOJ)]—FdA(OZOOatJ))
da(@ooJ) = &(—[0ANag] —[0sAN (a0 J)] —dalag 0 dsJ)).

Hence, by Lemmata B.3 and B.4, there exists a constant Cy > 0 such that
o — 7 (@125 < Coc® ool s (67)

for every z € R2. Hence the nonharmonic part of &g is bounded by ¢ times
ap. Likewise, the harmonic part of &7, the first component of & := D&y, is
bounded by € times 1. To see this write

ar =:dan — (dag) o J,
where 7,( : R? — Q°(X, gp) and note that
ma(dr) = ma(0sar + (Oraq) o J).
Since A = A(ez) and J = J(ez), we obtain
ma(0san) = ema([0sA, 1) — [(954) o J, (] = (daC) 0 8 J)

and similarly for 0;cr;. Hence, by Lemmata B.3 and B.4, there exists a constant
C1 > 0 such that

||7TA(d1)||1[),P(E,J) < Che? ||a1||1£p(z,J) (68)
for every z € R%2. Denote & := &g + ;. Then
Qg = WA(d) — ﬂ'A(dl) + (5[0 — 7TA(5[0))

and

&1 = (& — 1a(@)) — (G0 — 1 (G0)) + 7a(G1).
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Hence, by (67) and (68), we have
laoll%, gy + 11120 s 0,
<3 (Ima(@ ) + 17AG)IR 5,0 + G0 = 7a(E0) (55,0 )
+37 (116 = 74 (@5, + 150 = 7a(@0) 555, 5) + 174G 25,
<3 (Ima(@) ) + 16 = 7A@ 0(55.0))
+2(3)" (Co ol s,y + Cr ol s, 1))
¢ (1612 5,y + € Nlallfogss ) ) -

The last inequality uses Lemma B.4 and the constant c is independent of z € R2.
It follows that

160153y + ID€ IR 5,0 < € (ID°€NE 5y + €7 e s, ) )

for every z € R2. Hence the assertion follows from (65) and (66). O

Proof of Proposition C.2. Let cg be the constant of Lemma C.6, denote

€= sup (M) + UAG) + 1E)ler 5,00+ 14E) ~ Aol )
z€ER?

and let ¢; = ¢1(C, p, Jo, Ap) be the constant of Lemma C.1. Then, by (64), we
have

LDt = [ IDe- 06— 0l
P [ (1€ + 10:E sy + 100 s, )

eo+ ) [ (ID€ W)+ ez )
R2

IN

IN

Moreover, by Lemmata B.1 and C.1, we have

||§||ip(2 J) < C||§||Lp 2,Jo) < ey (||D§|| P(2,J) + ||7TA( )||;ZP(E7J))

for every (s,t) € R%. Now let ¢ := cg + 3P(cg + 1). Then, combining the last
two inequalities with (64), we obtain

L 106100y + 1080, + D€ s,)
<er / (I T

< / (D612 5, + Pt IDENR s, gy + e ma(@) s ) -
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If ePecier < 1/2 then

L 106100+ 100€0 s, 1)+ D€ s,)

<20 [ (Do) + s Imal@ogs, )

This proves the proposition. o

D Proof of Proposition 9.1

Let us return to the notation of Sections 3, 4, and 5. Fix a perturbation H K
as in Section 6 and n + 1 perturbed flat connections a; € Afat (Qf ,K;). Let

E=(4,9,9) c AQ)

be a connection that is in temporal gauge near the cylindrical ends and satis-
fies (6) and Fys4) = 0 for all s and ¢. Let D. = D.(E) : Wh? — LP be the
operator introduced in Section 9. Recall from (15) that £ = D.£ if and only if

& = Via—daop—dvs(A)a+ x5 (Via — dayy — dws 1 (A)a),
¢ = Vip+ Vi + (Vo) xda s a,
b = Vi —Vip+ (A e)? xdaa.

Lemma D.1. For every = as above and every p > 2 there exist constants ¢ > 0
and g9 > 0 such that the following holds. If € = (o, ¢,v) € WP and e € (0,¢0)
then

1 00
| (1aolm, + Iata o D)
1 00
[ e (19l + 1ol )
1 o)
[ (10atls ) + 10 s )
[ (190l + 190l (69)

" / | T (Sl + [V

1 o)
<c[ [ (R Ima@l,

+ ePAPTP HaHLp =0 T 2P A2 2p||¢|| rm) T A2 2p||1/’||Lp(z)> :

where £ = (&, $,) € L is given by £ = D.E.
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Proof. The proof consists of six steps. The first two steps are proved by direct
calculation.

Step 1 Assume v =w = 0. Define

2= (A ), €= ¢.), =41,

by
Al(s,t) = A(es, et), ®'(s,t) =eP(es,et), U'(s,t)=e¥(es,et),
o' (s,t) = afes,et), ¢ (s,t) =eg(es,et), P'(s,t) = e(es,et),
& (s,t) = ca(es,et),  @(s,t) = 2Ples,et), ' (s,1) = *(es, et),
Denote

N (s,t) = A(es, et), V, =0, + %, vV, =0,+ V.

Then € = D.E if and only if

~

o = Vs /O/ - dA’QbI + *es,et (Vt /O/ - dA’1/}I)7
Qg/ Vs /¢/ _|_ thwl + ()\/)2 * dA/ *ss,st O/, (70)
o= VY -+ (V) xdad

Step 2 Let =/, &, and & be as in Step 1, and denote J'(s,t) = J(es,et).
Then (69) is equivalent to

1/e poo
2
/ / N ||dA,a’||§p(E)+||dA,(a'oJ’)||§p(E))
210
L (19 gy + 19 s 0)
1/e poo 9
[N (Mt Wy + 144 s, )

3

e oo 12—2p 1 r||P 1 r||P
[ (19 sy + 190 ) ™)
1/e poo _
A S (G e -y

1/e 9
J A I G LT s

2— ~ 2—2 2—2
R O e 1 [ e 4 [

=)
8

+

IN
o
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Step 3 Assumev =w =0 and ® =V = 0. Fix an integer j € {0,...,n} and
denote by
Qj = tj((—00,=T) x Qf) C Q

the jth cylindrical end. Then there exist constants ¢ > 0 and €9 > 0 such that
every & € WP that vanishes oustside Q; satisfies (69) for 0 < e < &g.

Suppose, without loss of generality, that 7 = 0. Hence assume that £(s,t) =0
for s > —T and recall that A\(s,t) = 1 for s < —T. Choose a cutoff function
B : R — [0,1] such that

s00={ o ok Sta_s 0=,

and
0<t<1/2 — B)+p(t—1/2)=1.

Consider the functions

gO(SJt) :5(t)£(87t)> gl(SJt) :5(t_ 1/2)§(S,t).

Both functions have compact support. By Step 1, the rescaled function &
satisfies

ﬂ({;‘t)dl + EB(Et) *es,et o = Vs /046 - dA’¢6 + *ss,st(vt I046 - dA"/J(/)),
Blet)d +eblety)’ = V"¢ + Vi v+ *dar keser A,
Blet)d! —eblet)y’ = Vv — V¢ + rdarc,
and similarly for £. Now apply Proposition C.2 to &) and &] to obtain that
¢ satisfies (71) for € > 0 sufficiently small. This proves Step 3 for j = 0. For
general j apply the same argument to the pullback 1-form &; = i; *¢ on Q.

This shows that §; satisfies (71) with A = 1. Step 3 then follows by expressing
this estimate in terms of &.

Step 4 Assumev=w=0and ® =V =0. Let B={s+it € C|s?+t> <1}
and v : B — S be a holomorphic embedding. Then there exist constants ¢ > 0
and €9 > 0 such that every & € WP with support in «(B) satisfies (69) for
0<e<ep.

Trivialize the bundle X over B to obtain an embedding
t:BxY¥—X.

Then trivialize the bundle @ over the image of ¢ to obtain an embedding
I:BxP—Q.

By Step 1, the rescaled pullback 1-form (Z*¢)’ satisfies (70). Hence, by Propo-

sition C.2, it satisfies (71). Hence, by Step 2, it satisfies (69).
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Step 5 Assume v =w =0 and ® = V¥ = 0. Then there exist constants ¢ > 0
and g9 > 0 such that every & € WYP with compact support in X satisfies (69)
for 0 <e<eg.

Cover S by finitely many open sets U,, each of which is either a cylindrical end
or is contained in the holomorphic image of a ball B. Choose a partition of
unity p, : S — [0,1] subordinate to the cover, and apply Steps 3 and 4 to the
functions (p, o 7)§. Then the error terms in the estimate (69) arising from the
cutoff functions p, = p,(s,t) are arbitrarily small as € tends to zero. They
can be dominated by positive terms on the left hand side of the inequality, and
hence ¢ satisfies (69).

Step 6 We prove the lemma.

By Lemma B.3, there exists a constant ¢y > 0 such that, for every (s,t) € R?,
every ¢ € Q°(3,gp), and every a € Q1(X, gp),

H¢||W1,p(2) < ¢ ||dA¢||Lp(2,J) ’

Ha||Lp(2,J) <c¢o (HdAa”LP(Z) +[lda(ao J)HLP(E) + ||7TA(a)||LP(E,J)> :

Moreover, the limit condition (6) implies that there exists a constant ¢; > 0
such that, for every (s,t) € R? and every a € Q'(%, gp),

Hq)”LOO(E) + ||‘1’||Loo(z) <A,

HdUs,t(A)aHLp(zJ) + Hdws,t(A)O‘HLp(zJ) < Cl)‘ HO‘HLP(E,J) : (72)

Hence the error terms in (69) arising from nonzero terms v, w, ®, or ¥ can be
controlled by larger positive terms on the left hand side provided that € > 0
sufficiently small. This proves the lemma. O

Proof of Proposition 9.1. The inequality (16) follows directly from Lemma D.1
and Lemma B.3. To prove (17) write

a=ma(a)+da¢— (dan)oJ
for n,¢ € Q°(X, gp) and abbreviate
By = 8,A —da®, B,=8,A—d,¥, B=Bs—Biol
By (6), there exists a constant ¢; > 0 such that, for every (s,t) € R?,
1Bsll oo, gy + 1 Bell oo 5,5y < 1A (73)
Moreover,

da *spdan =da(a —ma(a)), da ks daC =da *st (@ —ma(a)).
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Hence, by Lemma B.4, there exists a constant ¢a > 0 such that, for all (s, t) €
R2?,

||dA77||Lp(2,J) + ||dAC||LP(E,J) <ell(a- WA(O‘))HLP(E,J) : (74)
Moreover,
Vila —ma(@)) = Vi(daC —(dan)oJ)
= daVi(— (daVisn) o J (75)

+ [Bsa C] - [BS o J, 77] - (dAW) o 85‘]7
and similarly for Vi(ao — w4 (). Hence
da #5:daVen = daVia+ [Bs Ama(a)]
—da ([Bs, (] + [*s,tBs,n] — (dan) 0 9sJ) ,
dA *s,t dAvsC = dA *s.t vsa + [Bs A *s,tﬂ-A(a)]
—da ([*stBs, (] — [Bs,n] — (dan) o JOsJ — ma(a) 0 0sJ) .

Hence, by Lemma B.4, Lemma B.3, (73), and (74), there exists a constant c¢3 > 0
such that, for all (s,t) € R?,

||dAVs77||Lp(2,J) + ||dAVS<||LP(E,J) <c3 (||v5a||LP(27J) + A ||O[||LP(E7J)> .
By (74) and (75), this implies
| Vs (r — 7TA(OZ))”LP(X,J) <a (||V50‘||LP(2,J) +A ||a||LP(2,J)) :
A similar inequality holds for V,(a—m4 (). Hence (17) follows from Lemma D.1

and Lemma B.3.
To prove (18) note that

Ta(De€) — Doma(§) = ma(bo — 01), (76)
where
0o = Vs(a — ma(a)) + %5t Vi (a — ma (),
01 = dvs 1 (A) (o — ma(@)) + #5 1dws 1 (a0 — TA ().
By (75),

ma(bo) = ma(Vs(a —ma(@)) = (Vi(a = ma(a))) o J)
= 7a([B,{] = [BoJn] = (dan) o (0s] + JO,J)) .
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Hence, by (72), (73), (74), (76), and Lemma B.3,

[7a(D:£) — Doma (|7,
< lma(@o)lZ, + a1z,

1 0o
=[] (a0l + a0l )

1 e’}
o [ (1aE iy + I s+ o= 7a () s, )

1 [e’e)
o [ [ Rlama@le,

S Ce ||§ - 7TA(§)||g,p,s :

IN

IN

A

This proves the proposition. O
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