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Abstract. A representation theorem for infinite-dimensional, linear control 
systems is proved in the context of strongly continuous semigroups in Hilbert 
spaces. The result allows for unbounded input and output operators and is 
used to derive necessary and sufficient conditions for the realizability in a 
Hilbert space of a time-invariant, causal input-output  operator J-. The rela- 
tion between input-output stability and stability of  the realization is discussed. 
In the case of  finite-dimensional input and output spaces the boundedness 
of  the output operator is related to the existence of  a convolution kernel 
representing the operator 3-. 

1. Introduction 

In this paper  we prove a representation theorem for infinite-dimensional, time- 
invariant, linear systems with continuous time. We show that a well-posed control 
system in the sense of Kalman [12] with square integrable inputs and outputs 
and a Hilbert space H as a state space can always be represented by a differential 
equation on H with unbounded input and output operators as described by the 
author in [22]. Using shift semigroups as in [9] and [11] this result allows us to 
prove that a causal, time-invariant, linear input -output  operator O- admits a 
realization in a Hilbert space if and only if it satisfies an exponential bound. 

The latter result extends the theory by Helton [ 11] who worked with a slightly 
more restricted class of  input-output  operators and the work by Yamamoto  [27] 
who did not assume the aforementioned exponential bound and arrived at a 
state-space description in a Frech6t space. Without attempting to give a complete 
overview over the literature on infinite-dimensional realization theory we mention 
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the papers [1]-[4], [6], [8]-[11], [13], [14], [17], and [23] including results on 
delay systems, systems over rings, and general infinite-dimensional systems in 
the context of semigroup theory. 

In a preliminary section we briefly review the state-space theory as developed 
in [22] and describe a few examples. The representation theorem is proved in 
Section 3. We then derive the realization theorem in Section 4. Moreover, in 
Section 5 we discuss the relationship between the smoothing properties of the 
Hankel operator and the boundedness of the input and output operators. 

The publication of this paper has been considerably delayed as the original 
manuscript reached the editor in I985. Meanwhile, part of the main result of this 
paper (Theorem 3.1) has been independently proved and extended by Weiss [24] 
and [25]. We also mention the recent work by Curtain [5] and by Ober and 
Montgomery-Smith [16] which is closely related to results presented here. 

2. State-Space Theory 

In this section we briefly review the functional analytic approach to' infinite- 
dimensional control systems with unbounded input and output operators 
developed in [22]. Let U, H, Y be Hilbert spaces and consider the linear 
differential equation 

dz 
m = A z  + Bu ,  z ( O )  = ~ ~ H ,  
dt 

y = C ( z  - ( I~I - A ) - t B u )  + G(  I~)u, 
(2.1) 

where A is the infinitesimal generator of a strongly continuous semigroup S(t)e 
L(H). We consider W = D(A) c H and V* = D(A*) c H* as Hilbert spaces with 
the respective graph norms so that 

W c  H c  V 

with continuous dense injections. Then S ( t )  defines a semigroup on all three 
spaces W, H, V, and A can be regarded as a bounded operator in L( W, H) 
L(H, V). We assume that B ~ L( U, V) and C e L( W, Y). The formula for the 
output in (2.1) is motivated by the fact that the weak solution 

I' 
z(t; ~, u) = S ( t ) ~  + S ( t  - s ) B u ( s )  ds (2.2) 

.0 

of (2.1) will in general not be in W unless B u ( t ) e H ,  whereas the expression 
z - ( t z I - A ) - l B u = ( i . d - A ) - l ( l ~ z - ~ )  will indeed be in W whenever u~ 
W2'2[0, T; U] and A ~  + Bu(O)e  H [18]. In the output equation we have chosen 
a particular value of ~ ~ tr(A). If for any other value A ~ tr(A) the operator 
G(A)~ L(U, Y) is defined by the identity 

G(A ) - G(/x) = (/z - A)C(AI - A)-I( i~I - A ) - ' B ,  (2.3) 
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then in (2.1) /x can be replaced by A without changing y. Moreover, a simple 
calculation shows that the analytic operator family G(A) thus defined describes 
the input-output  behavior of (2.1) in the frequency domain. Hence G(A) is to 
be understood as a generalization of the expression " C ( A I -  A) -t B" which does 
not make sense in general. If it does make sense (for example if B ~ L(U, H)  or 
C ~ L(H, Y)), then (2.3) follows immediately from the resolved identity for the 
operator A 

(AI - A)- '  - (/zI - A)- '  = (/z - X)(aI  - a ) - ' ( / ~ I  - A)- ' .  (2.4) 

System (2.1) is said to be well-posed if for every T >  0 there exists a constant 
c > 0 such that 

],z( T; 9, u),,~ + Ior ,]y(t; ~o, u)ll2y dt <- c( JIg,,~ + Ior ,,u( t),,~ dt) (2.5) 

for 9 e  H and u e W~'2[0, T; U] with Ag+Bu(O)e H where y(t; 9, u) denotes 
the output defined by the second equation in (2.1) with z(t)= z(t; 9, u) given 
by (2.2). 

If system (2.1) is well-posed, then for every 9 e H and every u e L2[0, T; U] 
equation (2.2) defines a weak solution of  (2.1) of  class zeC[O,T;H]m 
W~'2[0, T; V]. If in addition u e W"2[0, T; U] and A9 + Bu(O) ~ H, then z e 
C~[0, T; HI ,  y e WL2[0, T; Y], and 2(t; 9, u) = z(t; A9 + Bu(O), fO, )(t; 9, u) = 
y(t; A9 + Bu(O), f~) [22]. Moreover, a well-posed system defines (by continuous 
extension) a time-invariant, causal input-output operator 

J-: L12o¢[0, oo; U ] ~  Lt2o¢[0, co; y] ,  J-u(t) = y(t; O, u). 

In [5] Curtain proved that the extendability of the input-output operator to 
locally square integrable inputs and outputs (input-output well-posedness) is 
equivalent to 

sup HG(x ) l l uu . ,~<~  (2.6) 
R e A > ¢ o  

for any ~o > oJ0 where ~o0 = lim,.oo t -t logll s(t)ll denotes the exponential growth 
rate of the semigroup. Estimate (2.6) also follows from Plancherel's theorem and 
the next lemma. 

L e m m a  2.1. I f  system (2.1) is well-posed, then for every w > Wo there exists a 
constant c > 0 such that 

fo ( Io ) e-Z°~'lly(t;9, u)Jl~dt<-c 911~+ e-2°"llu(t)ll~dt, 

Illo io o S(t)Bu(- t )  c e2°"llu(-t)ll~ dt. 

Proof With T >  0 sufficiently large we have {JS(T)IJ < e '°7- and hence it follows 
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from (2.5) that 

fo '° e-Z"lly( t; ~, u)ll~- dt 

_< ~ e -2k'°r []y(t; S(kZ)~o, ~k~u)ll~- dt 
k = 0  

<--C ~ o e  - 2 ~  = S(T)II=~II~II~, + Ilu(t+kT)ll~at  

<- c,( il,pll~ + f?  e-2~'qlu( t)ll~ dt) 

for ~0 ~ W and u e WL2[0, 00; U] with compact support and A~o + Bu(O) ~ H. 
This proves the first assertion in Lemma 2.1 and the second follows by 
duality. [] 

For any interval ! c  R and any Hilbert space X we define the weighted 
function spaces 

L2[ l; X ] = { f  ~ L2oc[ l; X]; f e-2",[f( t)ll2x dt < oo}, 

df W~g~[ I ,X]= { f  ~ L~,[ I; X ] ; - ~  L~[ I; X]}.  

Then Lemma 2.1 allows us to introduce for to> COo the extended input-state 
operator ~ :  L~[-oo, 0; U]-~ H and the extended state-output operator ~: H-> 
L2[0, oo; y ]  by 

~u = f o  S(t)Bu(-t) dt, ~ ( t )  = CS(t)~. (2.7) 

Moreover, the Hankel operator of  system (2.1) is given by the composition 

2 oo L~[0, ~ '  = ~ :  L . , [ -  , 0; U] ~ oo; y ] .  

It follows from the above-mentioned properties of well-posed systems that if 
1,2 u ~ W,~ [-oo,  0; U] with u(0) = 0, then ~ u  e W = D(A) and A~u = ~ti. Likewise, 

~ W implies ~ ~ W~;2[0, oo; Y] and d ~ / d t  = ~A~. 
As an example consider the one-dimensional heat equation with Neumann 

boundary control and point observation in the derivative: 

Oz 02z 
0 < x  < ~-, t > 0 ,  Ot Ox 2" 

Oz Oz 
7 (0 ,  t) = O, --(or, t) = u(t), (2.8) 
Ox Ox 

Oz 
y(t) = ~xx (Xo, t). 
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This system is well-posed in the state space H = H~/Z[O, ¢r] of all functions 
~o ~ L2[0, ¢r] for which the norm 

I1~11~/~= ~ n 2 ~(x)cosnxdx 
n = l  q'/" \ d O 

is finite or equivalently 

~ dxdy<oo. 
\ x - y  / 

More precisely, system (2.8) can be represented in the form (2.1) with 

W = V* = ~ e H2[0, ~r]; 0¢(0) = (w) = 0, e H~/:[O, ¢r] 
ax 

and A¢ =a:~/ax 2, C~ = ~(Xo), B*~ = ~(¢r) for ~ e W. The transfer function is 
given by 

sinh(x/A'xo) 

G(A ) - sinh(4A'w) 

and satisfies the identity (2.3). It is bounded in Re A ~ 0 and actually converges 
to zero as Im A ~ co unless Xo = 7r. We point out that s = ½ is the only value of s 
for which this system is well-posed in the state space HS[0, ¢r]. A similar example 
was discussed by Curtain [5]. The proof  of  well-posedness in our case is analogous 
and is omitted. (See also [20].) 

Next we consider the one-dimensional wave equation 

O2z- 2O:z 0 < x < L ,  t > 0 ,  
Ot--- 5 -  c Bx-----i, 

z(0, t) =0 ,  ~x(L,t)=u(t) ,  (2.9) 

az 
y( t )  = ~ ( L ,  t). 

This system is well-posed and exactly controllable (in time T >  2L/c) in the state 
space 

z, ~ s H = {~, = (q,o, ~o') s HI[0,  L] x L2[0, L]; q,"(0) ; 0}. 

Its transfer function is given by 

sinh(AL/e) 
G(A) = c cosh(AL/c) 

and satisfies condition (2.6) for ~o > 0. 
As a third example we mention the linear retarded functional differential 

equation 

g(t)=L(x,)+B(u,),  y( t )=C(x,)+D(u,) ,  (2.10) 
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where x ( t ) ~  R", u ( t )e  R' ,  and y ( t ) ~ R  p. Here x, denotes the solution segment 
given by x t ( z ) = x ( t + z )  for - h < z < 0  and L, B, C, D are bounded linear 
functionals on the appropriate spaces of  continuous functions. This system can 
again be represented as a well-posed Cauchy problem (2.1) in the product space 

(x( t), x,, u,) ~ H = R" x L2[-h, 0; R n ] x L2[-h,  0; ~m] 

and in this case the transfer function is given by 

G(A ) = C ( ea')( h l  - L( ea') )-~ B( e ~') + D(  ea'). 

More details on the state-space representation of systems (2.9) and (2.10) can be 
found in [5] and [22] and the literature cited therein. 

The above examples illustrate the significance of  our state-space formulation 
since despite their well-posedness neither of  these systems can be formulated, 
e.g., in the framework developed by Lions [15] nor the one in [20]. This is due 
to the large degree of unboundedness in the input and output operators. We shall 
now prove that every well-posed, time-invariant, linear system in the sense of  
Kalman [12] can be represented in the form (2.1). 

3. A Representation Theorem 

A time-invariant, linear control system consists of three Hilbert spaces U, H, Y, 
and two continuous, linear maps 

H x L~odO, oo; U] -> C,o¢[0, oo; H] ,  

H x L~oc[O, co; U] -> L~o¢[O, oo; y ] ,  

which satisfy the following conditions: 

(i) 

(ii) 

(iii) 

(~o, u ) ~ z ( - ;  ,p, u), 

(q~, u)~-->y( • ; ~o, u), 

Initial condition: 

z(O; ~o, O) = ~o, V~o e H, Vu e L~o¢[O, co; U]. 

Causality: 

u ( t ) = 0 ,  Vt<_T ~ z ( t ;O,u)=O,  

Time invariance: 

z ( t+  s; ~, u )= z(t; z(s; ~, u), o's u), 

y( t + s; ~, u) = y(t; z(s; ~, u), o'su), 

V ~ H ,  Vu~L~oc[0, oo; U]. 

y(t; 0, u ) = 0 ,  Vt-- T. 

Here trs denotes the shift operator defined by tr~u(t)= u ( t + s )  for t+s>-O and 
o"2 u (t) = 0 for t + s < 0. The above definition is similar to the one given by Kalman 
et al. [12] and every well-posed semigroup control system of  the form (2.1) 
satisfies its requirements. The converse statement is formulated next. 

Theorem 3.1. Every time-invariant, linear control system can be represented in a 
unique way by operators A, B, C, G(A) via (2.1) and (2.2) with G(A) satisfying (2.3). 
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The remainder of this section is devoted to the proof  of this result. The main 
tool is the next lemma. 

Lemma 3.2. Let ~o ~ H be the initial state, let u ~ W1'2[0, T; U] be the input of a 
time-invariant linear control system, and assume that z = z( .  ; ~o, u) ~ C~[0, co, H].  
Then y( - ;  ~o, u ) s  W"2[0, T; Y] and )~(t; ~0, u ) = y ( t ;  ~(0), ti) for almost every 
te[O, T]. 

Proof Note that h-'(o'hu- u) converges to fi in L2[O, T; U]. Therefore the 
function 

y ( t+h;~o ,u ) -y ( t ;~o ,u )  ( z(h;~p,u)-~o - y  t; h " h 

converges to y(t; ~(0), fi) in L2[0, T; Y] as h ~ 0 .  [] 

Proof of Theorem 3.1. The operators S(t)  ~ L(H)  defined by S(t)~o = z(t; ~, O) 
for ~0 ~ H and t-> 0 form a strongly continuous semigroup and we define A to 
be its infinitesimal generator. As in Section 2 we regard W =  D ( A ) c  H and 
V*= D ( A * ) c  H* as Hilbert spaces with the respective graph norms so that 
W c H c V with continuous dense injections and S( t )~  L(V) ~ L(W) and A E 
L(W, H)  n L(H, V). 

If  ~o ~ D(A) then it follows from Lemma 3.2 with u ~ 0 that y ( .  ; ~o, 0) 
W"2[0, T; Y] with ))(t; ~o, 0) =y ( t ;  A~o, 0). In particular y(t; ~, 0) is continuous 
and its sup norm can be estimated by the W 1"2 norm (see, e.g., [26]) and thus 
by ([[ ~o JJ Ja + 11A~o 112,)'/2 = II ~ 11 w. It follows that the operator C: W ~ Y defined by 

c ~  =y(0 ;  ~, 0), ~ E w ,  

is bounded. 
In order to determine the input operator B ~ L( U, V) we define w(. ; 0) 

L~oc[0, T; U] for 4' ~ H by the identity 

or(W( T - s ;  4'), u(s))uds =(4', z( T; O, u))H, 

V T > 0 ,  V u e  L2[O, T; U]. (3.1) 

It follows from the causality and time invariance that w(t; 4') is welt defined. 
Moreover, the following equation holds for every 4' ~ H and all t, s -> 0: 

w(t+ s; 4') = w(t; S*(s)4'). (3.2) 

This is a consequence of the identity 

fo r (w(t; S*(s)4'), u( t))u = (S*(s)4', z(T; O, u))n T dt 

=(4 ,  z( T + s; O, u. Xto.r])), 

= ( w ( r + s - t ;  ~), u( t ) )udt  

-- ( w ( t + s ;  4'), u(T-t))Hdr 
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(Here gt denotes the characteristic function of the interval L) If ~ ~ D(A*) then 
it follows from (3.2) and Lemrna 3.2 that w( -; O)e W1"2[0, T; U] with w(t; 0) = 
w(t; A*~b). This allows us to define the operator B e  L(U, V) by 

B*~ = w(0; ~), ~ e V*. (3.3) 

Now let u e L2[0, T; U] and 0 c  V* be given. Then we obtain from (3.1) to (3.3) 
that 

io So (~,, z ( r ;  0, u)) .  = ( w ( r - s ;  0), u(s))uds= (B*S*(T-  s)~, u(s))uds 

so that z( T; ~,, u) E H is given by (2.2) for every ~, e H and every u ~ L2[O, T; U]. 
In particular it follows that z( .  ; ~o, u) ~ Ct[O, T; H] whenever u s Win[0, T; U] 
and A~o + Bu(O) ~ H. 

For every Uo s U we have the identity 

A(AI  - A)  -t Buo + Buo = A ( A I -  A)  -~ Buo ~ H 

and this implies z ( . ;  ( A I - A ) - t B u o ,  Uo) e Cz[O, T; H] where Uo also denotes the 
constant function Uo(t)-Uo. Then Lemma 3.2 shows that 

y ( ' ;  ( A I - A ) - ~ B u o ,  Uo)~ W~'2[0, T; Y] 

with f ( t ;  ( A I - A ) - ~ B u o ,  Uo) = y ( t ;  A ( A I - A ) - t B u o ,  0). This allows us to define 
the bounded linear operator G(A) e L( U, Y) for A ~ tr(A) by 

G(A)uo=y(O; (AI -A ) -~Buo ,  Uo), Uo~ U. (3.4) 

Then the resolvent identity (2.4) implies the compatibility condition (2.3). It 
remains to be shown that y(t;  9, u) is indeed given by (2.1) provided that 
u ~ W~'2[0, T; U] and A~ + Bu(O)~ H. To this end we first observe that in the 
case u(0) = 0 we have y(0; 0, u) = y(e;  0, tr_~u) = 0 since y( .  ; 0, o'_~u) is con- 
tinuous (Lemma 3.2) and vanishes almost everywhere in the interval [0, e]. In 
the general case we make use of the fact that 

- ( tzI - A)- tBuo = ( lzI - A)-~( ix~ - A ~  - Buo) E W 

with Uo = u(0) and hence 

y(0, 9, u ) = y ( 0 ;  ~ - ( t z I - A ) - ~ B u o ,  O) 

+y(0;  ( i x I - A ) - ~ B u o ,  Uo)+y(0; 0, u -  Uo) 

= C(btI  - A)-~(Iz~ - 3 9  - Buo)+ G(tz)uo.  

This proves the output identity in (2.1) for t = 0. In general (2.1) follows from 
the time invariance of the control system. [] 

4. Realization 

We begin by introducing some notation. For any Hilbert space X let L2 ~oc[R; X]  
denote the space of locally square integrable functions R ~ X whose support is 
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bounded to the left. This space is self-dual via the pairing 

(~, ~ ) =  ~ ( tb(- t) ,  ~( t ) )x  dr. 

Moreover, note that via the same pairing the dual space of L2oc[0, oo; X]  is 
the space L2[-cc, 0; X]  of compactly supported, square integrable functions 
( - ~ ,  0] ~ X. For any interval I c R and any s E R we denote by (rs the shift 
operator acting on functions f :  I ~ X by o'sf(t) = f ( t  + s) for t + s E I and o ' j ( t )  = 
0 for t + s ~  L 

Let U and Y be Hilbert spaces. A continuous linear input-output operator 

8.: L~.,oo[R; V]-~ L~.,o°[R; Y] 

is called time invariant if o',8. = 8.o-, for every t E R and causal if 

u ( t ) = 0 ,  V t < - T  ~ 8.u( t )=0,  Vt-<T. 

These properties imply that the operator 8. is uniquely determined by its restriction 
to the interval [0, co) which we still denote by 

8.: L~o~[O, co; U] -> L~o~[O, ~ ;  Y]. 

The Hankel operator 

~ :  Lo:[-oo, 0; U] --> L~o¢[0, oo; V] 

associated to 8. is defined by first extending u to all of  R via u ( t ) = 0  for t>-0 
and then restricting y = 8.u to the interval [0, co). Of course, the Hankel operator 

only determines the input-output operator 8. up to an additive constant 
operator of  the form u ~-> Du with D E L( U, Y). 

A realization of  a time-invariant, causal input-output operator 8. is a well- 
posed semigroup control system of the form (2.1) whose input-output behavior 
is described by the given operator 8.. If  8- admits such a realization, then it 
follows from Lemma 2.1 and the time invariance that 8. is o-stable meaning that 
it extends to a bounded linear operator 

8.: L~[~; U]--> L~[R; Y] 

for some to E R. We shall prove that this condition is necessary and sufficient for 
the existence of a realization of the form (2.1). 

Using the same argument as in the proof  of  Lemma 3.2 we can show that 
if u EL2~o~[R; U] is absolutely continuous with a locally square integrable 
derivative, then so is y = flu and moreover )~ = ffti. This shows that 

I 2 1 ,2  . u ~ W / j [ R ; U ]  ~ 8.uEW,~[R,Y] 

provided that 8. is to-stable. We conclude that for every ;t E C with Re )t > to 
there is a bounded linear operator G(A)E L( U, Y) defined by 

G(h )u  = (8.(eA'u))(0). (4.1) 

(Observe that G(h )u  = (8.(flea'u))(O) for any cutoff function/3: R--> [0, 1] with 
/3( t )= 1 for t-<0 a n d / 3 ( 0 = 0  for t>-e.) If  3- happens to be the input-output  
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operator of a well-posed semigroup control system, then the operator G(A) in 
(2.1) is indeed given by (4.1) (as formula (3.4) shows). We can also prove directly 
that the operator G(A) defined by (4.1) is the transfer function of 3-. More 
precisely, denoting by ~ the Laplace transform of u we obtain the following result. 

Proposition 4.1. I f  3- is to-stable and u ~ L2[R; U] has compact support, then 
y ~  3-u is given by fi(A) = G(A)~(A). 

Proof We only sketch the proof since the statement also follows from the 
realization theorem below. If 3-u is of class C '  for every compactly supported 
u e L2[R, U], then there exists a strongly continuous operator family K ( t ) ~  
L(U, Y) and a constant operator D e L( U, Y) such that 

f 'oo K ( t - s ) u ( s )  3-u(t) = ds+Du( t ) .  

In this case the result follows from the fact that G(A) is the Laplace transform 
of K. Now every time-invariant, causal input-output operator 3- can be approxi- 
mated by a sequence of operators 3-, = p, * 3- satisfying the above requirement. 
(Here p: R ~ R is a smooth function of mean value I vanishing outside the interval 
[0, 1] and p~(t)= p ( t / e ) / e . )  This proves Proposition 4.1. [] 

If 3- is to-stable and G(A ) is defined by (4.1), then it follows from Plancherel's 
theorem and Proposition 4.1 that 

sup IIG(X)IIL~u,y><~, (4.2) 
R e a > w  

Conversely, every real holomorphic operator-valued function G(A)~ L(U, Y) 
satisfying (4.2) defines an to-stable, time-invariant, causal input-output operator. 
Taking to = 0  and U =  Y=•  we have recovered the well-known fact that 
there is a one-to-one correspondence between time-invariant, causal operators 
L2(R)--, L2(R) and H ~. 

Let us now assume that A ~ L ( W , H ) n L ( H ,  V), B ~ L ( U ,  V), and C e  
L( W, Y)  satisfy the requirements of Section 2, namely that A is the generator of 
a semigroup S(t)  ~ L(H) with W =  D(A) and V* = D(A*) and that (2.7) defines 
bounded linear operators ~ :  L2[-oo, 0; U]-* H and ~: H ~ L~[0, ~ ;  Y]. 

Proposition 4.2. Suppose that 3- is to-stable, let G(A) be defined by (4.1) and let 
the operators A, B, C be given as above. Then G(A) satisfies the identity (2.3) /f  
and only i f  the Hankel operator ~ of  3- is given by ~ = ~ .  I f  these conditions are 
satisfied, then the associated system (2.1) defines a well.posed realization of  3-. 

Proof. If  ~ =  cg~ then G ( A ) u - G ( / ~ ) u  = ( ~ o ) ( 0 ) =  C~0 where 

~o = ~(eA'u - e~"u) = (AI - A)-~Bu - ( I~I - A)-~Bu ~ W 
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so that (2.3) follows from (2.4). Conversely, (2.3) implies that the operators A, 
B, C, and G(A) form a well-posed semigroup control system and Proposi- 
tion 4.1 shows that its input-output behavior is given by 8- which proves 
~ =  ~ .  [] 

The previous result suggests that we may regard a triple A, B, C with the 
above properties as a realization of the input-output  operator gr if they satisfy 
the identity (2.3) with G(A) given by (4.1). 

Theorem 4.3. Let to~ ~ R be given. Then a time-invariant, causal input-output 
operator ~- has a well-posed realization of the form (2.1) with a semigroup of 
exponential growth rate tOo= l imt.~ t -1 logllS(t)ll < tO, if and only if it is to-stable 

for some to < w 1. 

We construct two state-space systems in the sense of Section 3 whose 
input-output  behavior is described by 5 r. The statement of Theorem 4.3 then 
follows from Lemma 2.1 and Theorem 3.1. We first choose the state space 
Hu = L~[-oo, 0; U] and define 

= ~ u ( t + s ) ,  - t < s < O ,  
zu(t ;  ~, u)(s) [~p(t+s),  s < - t ,  (4.3) 

yu(t;  ~, u) = ( ~ ) ( t )  + (Sru)(t), 

for ¢ ~ Hu and u ~ L~:oc[0, co; U]. This system satisfies Yu( ' ;  O, u) = J'u and we 
easily check that it is time invariant and causal. An alternative system in the state 
space Hy = L~[0, co; y ]  is given by 

Zy(t; ~b, u) = o'tO+o't~'(u. Xto.d), yy( t ;  O, u) = O(t)+(Sru)(t),  (4.4) 

for 0 ~ Hy and u ~ L~o¢[0, co; U] and has the same input-output  behavior. (Here 
Xt denotes the characteristic function of the interval I.) We also point out that 
the Hankel operator defines a state-space homomorphism between systems (4.3) 
and (4.4) meaning that 

zy(t; ~ ,  u) = ~zu( t ;  ~o, u), yy(t;  ~p ,  u) = yu(t;  ~o, u). (4.5) 

More explicitly, the semigroup control system associated to system (4.3) via 
Theorem 3.1 is described by the following spaces and operators: 

2 O0 Hu = L,o[- , O; U], 

w~ = {~ ~ w ~ [ - ~ ,  o; u]; ~(o) = o}, 

A u ~  = (o, 

Su(  t )~o = cr,~o, 

cu~ = ( ~ e ~ ) ( o ) ,  

n *  = t~[0, ~ ;  u] ,  

V* = W'd~[0, co; U], 

A * * = d ,  

s * ( t ) ¢  = ~,~o, 

B *  O = q,(o). 

We denote this system by Ev.  Likewise, system (4.4) is represented by the spaces 
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and operators 

H r  = L~[0, co; y] ,  

W y  = W~2[0, 00; y] ,  

Ay~0=¢, 

Sy(  t )O = cr, O, 

C v ~  = q,( O ), 

H * y -  2 - L,o[-oo,  0, Y],  

12 V* = {~b e W z  [ - c o ,  0; Y]; ~(0)  = 0}, 

A*~o = ~b, 

S*  ( t )~o = trAo, 

B * ~  = ( ~ e ~ ) ( 0 ) ,  

and this system is denoted by ~y. In both cases the operator G(A) is given by 
(4.1) and we can check directly that (2.3) is satisfied. We also point out that 

[ I s u ( t ) l l  = I l s y ( t ) l l  = e ° ' '  

and that in the case to =0  the semigroups Sy( t )  and S*( t )  are strongly stable 
whereas S*( t )  and Su(t )  are not strongly stable. 

In order to construct the realization E u it suffices to assume that the Hankel 
operator W extends to a continuous operator from L~[-cc, 0; U] to L2o¢[0, co; y ]  
and likewise the realization ~:y can be constructed if W maps Lo~[-co, 0; U] 
continuously into L~[0, oo; Y]. In both cases Lemma 2.1 shows that ~" is 
(to + e)-stable for every e > 0. 

I f  ~- is to-stable then the arguments preceding equation (4.t) show that 

~ L ( H u ,  H v ) n L ( W v ,  W y ) n L ( V v ,  Vy) 

and it follows from the identity (4.5) or by direct verification that the following 
diagram commutes: 

Su(t) 
Vu D Hu ~ Hu ~ Wu 

U ~ N ~ y 

Vy ~ Hy ~ Hv ~ Wy Cr 
Sv(t) 

Note that the role of the Hankel operator in this context is quite analogous 
to the role of the structural operator F in the theory of retarded functional 
differential equations with the output playing the role of the forcing function 
and the input the role of the initial function [7], [19], and [21]. 

Now suppose that the input-output operator g" is realized by a third semi- 
group control system E = (A, B, C, G(A)) of the form (2.1) where A generates a 
semigroup S(t)  E L(H) of exponential type too < to. Then the operators 

~ L(Hu,  H)  c~ L( Wu, W) n L( Vu, V), 

c ~  L(H, H r ) n  L(W, Wy) n L(V, Vv) 
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defined by (2.7) are state-space homomorphisms E u -* E and ~ ~ E y so that there 
is a commuting diagram as follows: 

Su(t) 
Vu ~ Hu ~-- Hu ~ Wu 

B 
y 

88 

s(t) 

88 

U V ~ H .~ H m W y 

Vv ~ Hv ~ Hy  ~ IVy 

C 

Let q / ~  Lo2[-oo, 0; U] and ~ ,-" L2o¢[0, oo, y ]  be complete topological vector 
spaces such that 88 extends to a continuous linear operator from 08 into H and 
c8 maps H continuously into ~. Then system (2.1) is called exactly 08-controllable 
if 8808 = H and continuously ~Y-observable if  (¢ is injective and has a closed range 
in °2/. It is called observable if the unobservable subspace 

N = { ~ H ; y ( t ;  ~, 0) = 0, Vt->0} 

is zero (i.e., c8 is injective) and approximately controllable if the reachable subspace 

={z (T ;  0, u); T > 0 ,  u ~ L~oc[0, oo; U]} 

is dense in H (i.e., 88 has a dense range). Every semigroup control system 
E = (A, B, C, G(A)) can be made approximately controllable and observable by 
restricting the statespace to c l (~)  c H and then factorizing through the subspace 
N n  c l (~) .  

The realization Eu is exactly 08-controllable with 08 = Hu = L2[-co,  0; U] 
and we denote by Eu the system obtained by factorizing the state space Hu 
through the unobservable subspace Nu = k e r  ~. If E = ( A ,  B, C, G(h.)) is any 
other realization of 9- which is exactly 08-controllable and observable, then the 
associated operator 88:°8 ~ H is onto and c8 is injective so that ker ~ = ker ~888 = 
Nu. It follows that 88 induces a state-space isomorphism H u / N u - ~  H between 
Eu and 5;. Likewise, any realization E of 8" of  the form (2.1) which is approxi- 
mately controllable and continuously ~-observable with ~ = L~[0, oo; y ]  is 
isomorphic to the restriction ,~z of system Ey  to the closure of the reachable 
subspace ~ r  = ~(L2o[ -°° ,  0; U]). System (2.9) in Section 2 is indeed exactly 
controllable and continuously observable in finite time and its Hankel operator 
has a closed range. Therefore both shift-realizations ,Eu and ¢~r of  its transfer 
function are isomorphic to the given state-space system for any choice of to > 0. 
In this respect system (2.9) is quite exceptional. System (2.8) for example is 
neither exactly controllable nor continuously observable. 

The above procedure of constructing a state-space isomorphism is, of course, 
well known. In particular, the concept of  continuous ad/-observability was used 
in [27] with ~ = L2oc[0, oo]. 
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We point out that system ~ r- will in general not be continuously V-observable 
with ~ 2 = L~,+~[0, co, Y] for any e > 0. In order for the concept of  ~-observabil i ty 
to be independent of  ~ with Lo2[0, oo; Y] c ~ c L2o¢[0, co; y ]  we need system 5~g 
to be continuously L2-observable in finite time meaning that the operator  

H ~ p - > y ( . ;  ~,0)~  L2[0, T; Y] 

is injective and has a closed range for some T >  0. The existence of  a realization 
of  f l  with this property requires that there exist constants T >  0, M-> 1, co > 0 
such that for every t -> 0 and every ~p e L2[-oo, 0; U] 

II~e~(t + s)ll = as <_ M e  ~'' IlYe~(s)ll ~ ds. (4.6) 

This condition is also sufficient, as was shown in [27], for the case U = Y = R. 

Example 4.4. Let a ,  > 0 be a summable sequence such that 

[ J 
O / 0  • . . O[ n 

rank • .." • =. n + 1, '¢n ~ I~, (4.7) 

O~ n • . • O / 2 n  

and consider the input-output  operator f l  on L2(R) defined by 

f l u ( t ) =  ~ etnu( t -n) .  (4.8) 
n = 0  

(This operator is co-stable with co=0.) Then for any T > 0  and any output 
~ L2[0, T] there exists a (unique) input ~p s L2[ - T, 0] such that ~eq~(t)= ~b(t) 

for 0 -  < t - T .  This shows that there is no inequality of  the form (4.6) for the 
Hankel operator ~ associated to (4.8). Therefore the realization constructed by 
Yamamoto  [27] does not have a Hilbert space as a state space in contrast to our 
result (Theorem 4.3). This is a consequence of  his concept of continuous observa- 
bility in the output space ~ = L~o¢[0, co]. In other words, the state space of the 
realization is chosen to be the closure of  range Yf in L~o¢[0, co; y ]  rather than 
L2[0, co] and is therefore not a Hilbert space. The construction in [27] leads to 
a Hilbert space if and only if (4.6) is satisfied. 

5. Continuity and Boundedness 

For a well-posed semigroup control system E = (A, B, C, G(A)) of  the form (2.1) 
there is an obvious relationship between the smoothing properties of  the operator 
c~: H --> L~oc[0, oo; y ]  defined by (2.7) and the boundedness of  the output  operator 
C s L( W, Y). We first observe that C extends to a bounded linear operator  H--> Y 
if and only if c~ is a continuous operator H--> Czo¢[0, co; Y] and C e L( V, Y) if 
and only if g' maps H into C~o¢[0, oo; y] .  Furthermore, C ~ L(H, Y) satisfies an 
estimate 

for llCS(t)~ll~ cll~ll~,  ~ ~ H, (5.1) d t  < _ 
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for some constants T > 0 ,  c > 0  if and only if c¢ is a continuous operator H--> 
W~o~[0, o0; y] .  If  ~- is an to-stable, time-invariant, causal input-output operator, 
then the operator ~ts: Hu --> L2oc[0, co; y ]  associated as above to the realization 
~;t~ in the state space Hu = L~[-oo, 0; U] agrees with the Hanke! operator ~o. 
Thus we have proved the following result. 

Proposition 5.1. The Hankel operator ~ maps L~[-oo, 0; U] continuously into 
CIoc[0, ~ ;  Y] (respectively C~oc[0, c~; y])  for  every to < to1 i f  and only i f  ~ admits 
a well-posed realization ~ = (A, B, C, G(A)) of  the form (2.1) such that 

lim t- '  logllS(t)ll < to, (5.2) 
t ~ o o  

and C e L(H, Y)  (respectively C e L( V, Y)) .  Moreover, ~ is a continuous linear 
operator L 2 [-oo, 0; U ] ~  W~'2[0, oo; y ]  for  every to < to, i f  and only i f  ~" admits a 
realization E such that (5.2) holds and C e L(H, Y)  satisfies (5.1). 

The obvious dual result relates the smoothing properties of the Hankel operator 
~ *  to the boundedness of the input operator B e L(U, V). In particular ~ *  is 
a continuous linear operator L~[-oo, 0; U]--> W~;2[0, ~ ;  Y] for every to < to, if 
and only if ~- admits a realization E such that (5.2) holds and B e L(U, H) is 
well posed in the state space W meaning 

IIo Ir S( T - s ) B u ( s )  ds <--cllullL2tO.r.u]. 
W 

In connection with Proposition 5.1 this shows that YgeL(L2[-oo, 0; U], 
W~2[0, oo; y])  for every to < to~ if and only if ~ *  has the same property. 

In the case of finite-dimensional input and output spaces the input-output 
operator ~- can be represented as a convolution operator 

~-u(t)= I t K ( t - s ) u ( s ) d s + D u ( t )  (5.3) 
J -  oc 

if one of the conditions in Proposition 5.1 is satisfied. More precisely, we prove 
the following theorem, the second statement of which is a modified version of a 
result due to Yamamoto [27]. 

Theorem 5.2. 

(i) 

(ii) 

I f  U = R"  and Y = R p then the following statements hold: 

J -admi t s  a well-posed realization E = ( A , B ,  C, G(A)) with either B e  
L (U ,H )  or C e L ( H ,  Y) if  and only i f  J" is given by (5.3) with K e  

2 R p×" ] for R. L~,[O, oo; some to e 
J- admits a well-posed realization ~ = ( A, B, C, G(A)) with either B e  
L(U,W)  or C e L( V, Y)  i f  and only i f  ~" is given by (5.3) with K e 
W~;2[0, oo; R p×m ] for some to e R. 

Proof. By Proposition 5.1 the input-output operator J- admits a well-posed 
realization E = ( A ,  B, C, G(A)) with C e L ( H ,  Y)  if and only if the Hankel 
operator ~ is continuous from L~[-oo, 0; R"]  into C,o¢[0, oo; R p] for some to e ~. 
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It follows from the Riesz representation theorem and the time invariance that 
2 this is equivalent to the existence of  a kernel K e L=[0, co; R p×m] such that 

~o(t) = I ~  K(t-s)~(s) ds, t> O. (5.4) 

It remains to be shown that ~- is given by (5.3) whenever ~ is given by (5.4). 
Consider therefore the input-output operator if '  defined by (5.3) with D = 0 and 
let G'(;t) be the associated transfer function defined by (4.1). Then 9" and ~-' 
have the same Hankel operator ~ and hence Proposition 4.2 shows that Y.'= 
(A, B, C, G'(A )) is a realization of  ~ '  whenever • = (A, B, C, G(A )) is a realization 
of ~. It then follows from (2.3) that D = G ( A ) -  G'(A)~ R p×m is independent of 
h and hence ~- is given by (5.3). 

We also point out that if B e L( U, H)  in (2.1) then ~ is given by (5.4) with 
K(t)u = y(t; Bu, 0) for u ~ R m and Lemma 2.1 implies that K e L~[0, co; RP×r']. 

If  ~r is given by (5.3) with K ~ W~;2[0, co; RP×m], then it follows from (5.4) 
2 CO that ~, = ~'~o ~ C~o¢[0, co; Y] for every q~ e L , , [ -  , 0; R m ] and ~ = /~  * 9. Hence 

Proposition 5.1 shows that ~" admits a realization Z =  (A, B, C, G(A)) with C~  
L(V, Y). Conversely, suppose that ~ maps L2[-oo,  0; R r~] continuously into 
C~od0, co; Y]. Then J" is given by (5.3) for some matrix D e  R p×" and some 
function K e L~[0, oo;RP×m]. Furthermore, it follows again from the Riesz 
representation theorem and time invariance that 

d ~p(t)= ~ L(t-s)~(s) ds 

for some function L~ L2[0, co; RP×'].  We conclude that 

I2o~(K(T-s ) -K( -s ) - I :L( t - s )d t )~(s )ds  

fo rd = ~ r ~ ( T ) -  ~ ( 0 ) -  ~ ( t )  dt=O 

for all compactly supported ~ L 2 [ - o o ,  0 ;R m] and hence K is absolutely 
continuous with dK/dt = L. This proves Theorem 5.2. [] 

We have characterized those time-invariant, causal input-output  operators 
~r which admit a well-posed realization E = ( A ,  B, C, G(A)) of the form (2.1) 
with either B ~ L(U, H)  or C ~ L(H, Y). It seems to be a much more subtle 
problem to find necessary and sufficient conditions under which there exists a 
realization with both B ~ L( U, H)  and C e L(H, Y). A necessary condition is, of  
course, that sr can be represented in the form (5.3) with K(t) = CS(t)B strongly 
continuous and satisfying an exponential bound. A sufficient condition is K 

12 W/g [0, oo; R p×=] for some to ~ R where U = R"  and Y = R p (Theorem 5.2). We 
finally point out that if U = R m, Y = R p, and ~ is given by (5.3) with K locally 
of bounded variation and 

Var K -< M e'°' 
Co, z] 
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t h e n  the re  exists  a r ea l i za t ion  Y~= (A,  B, C, G ( A ) )  wi th  C ~  L ( H ,  Y) sa t i s fy ing  
(5.1) ( P r o p o s i t i o n  5.1). 
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