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The problem is that, in general, it may be exceedingly difficult, or
impossible, to find a closed-form solution to the linear, time-variable
state equation when 4, and 4, (or «) are functions of time. But to carry
our present idea a little further, we may discuss a fuzzy state-transition
matrix ®;(s, ¢,) such that

2 (1, 10) =[ Ao+ ad; )0, (1, 10)

and

@, (9, to)=1, the identity matrix.

The unique solution to (12) is given by X in terms of ®,(#,#,) in the
form

X(£)=2,(1, 1) X(0),
and the average solution of X(¢) in terms of the FEV is given by

FEV {X(1)} =FEV {&,(1, 15) X(0) }.

The average of a matrix can be defined as the average of its terms, and
thus the FEV of the matrix @,(#, #5) X(0) is nothing more than the FEV
of each term of the matrix. It should be noted that the practical
computation of FEV {@(, 74)X(0)} depends upon the monotonic prop-
erties of the elements involved in the matrix ®,(1, #;). It is also clear that
if @< 1, perturbation theory can be used in order to evaluate FEV {X(#)}.

IV. CONCLUSIONS

In this paper we investigate the applicability of fuzzy processes and
fuzzy statistics to the problem of modeling of fuzzy systems. The fuzzy
systems discussed in this paper are represented by fuzzy differential
equations. Our study will hopefully be one of the foundations that will
enable us to use fuzzy models in more productive applications. The aim
of this paper is to show how fuzzy set theory can be applied in an
imprecise modeling structure where some behavior of the system or some
data are not precisely known.

Clearly, both the merits and defects of our method originate mainly
from the fact that we have tried to cover problems usually considered as
belonging to disciplines which require a long list of @ priori assumptions
and/or expensive testing before some mathematical evaluations can be
performed.

We feel that our techniques can be easily applied to a sufficiently
complex class of problems.

We have investigated, throughout the preliminary course of this re-
search, a variety of additional applications of the framework developed
in this paper. These include the evaluation of fuzzy phenomena in
pattern recognition and classification, weather prediction and forecast
evaluation, hydrological forecasting, quality control, the evaluation of
eigenvalue spectrum for a particle in a fuzzy medium, and the topic of
the measurement problem in quantum mechanics. A paper discussing
these applications is under preparation.

Preliminary results of our investigations into these fields are very
promising, and it is our hope that future studies on the analytical
properties of fuzzy set theory and their applications will concentrate on
these and many other areas. This will enable better applications and a
clear understanding of the role of fuzzy statistics in many engineering
and scientific models.
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Observers and Duality Between Observation and
State Feedback for Time Delay Systems

D. SALAMON

Abstract—This paper deals with the problem of observer construction
for systems with general time-delays in state and output. The spectrum of
the infinitesimal generator of the observer semigroup is determined ex-
plicidy, and the observer equation is decomposed into a finite- and an
infinite-dimensional component.

For systems with delays appearing in the state variables only duality
results are obtained and the observer is described in the more concrete
form of a differential delay equation.

I. INTRODUCTION

In [2] Bhat and Koivo developed an observer theory for systems with a
single time delay in state. Their method is based on Hale’s spectral
decomposition [8, ch. 7] and they got the sufficient condition for the
existence of a stable observer that the reduced finite-dimensional system,
obtained by spectral projection, is observable. Moreover, in [3] they
derived an observability criterion for the reduced system in terms of the
original system parameters.

In this paper it is shown that a modified version of the observability
criterion in [3] holds for systems with general state- and output-delays.
For the same class of systems an observer theory is developed analo-
gously to that in [2] and the observer is described as an abstract
evolution equation in the Banach space X =C([—A,0); R"). The observer
semigroup T (t) is obtained by finite-dimensional perturbation of the
original semigroup 7(z) and does not directly correspond to a delay
equation. Hence, the results of Hale {8, ch. 7] are not directly applicable.

In this paper Tx(¢) is studied in detail. In particular, the spectrum of its
infinitesimal generator is determined explicitly. The sufficient condition
in [2] for the existence of a stable observer is generalized and shown to
be necessary also. Based on the spectral decomposition of the original
system the observer is decomposed into a finite and an infinite-
dimensional part.

In the special case that there are no delays in the output mapping of
the system, it is shown that Ty (¢) is isomorphic to a semigroup which
corresponds to a delay equation. This representation leads to a more
concrete description of the observer. Moreover, in this situation duality
is investigated between the observer semigroup Ty (¢) and the state
feedback concept of Pandolfi [13).
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II. NOTATION AND PRELIMINARIES

Consider the following time-invariant linear system with general de-
lays in state and output:

x(£y=L(x,)+ Bu(t)
»(1)=T(x,) M

where uER’, xER", yER™, and
0
L = d
(9)=_ da(n)g(r)

I(9)= [° av(r)e(r)

for peX=C({—h,0]; R"). Here n(-) and y(-) are matrix-valued func-
tions of bounded variation from the interval [—#4,0] into R"”, respec-
tively, R”". If x(¢), > —#h is a solution of (1), then the function segment

x(7)=x(t+1), —h<7<0,

is the state of the system (1) at instant ¢. Let 7(z), >0, be the
Cy-semigroup on X which corresponds to the unforced motions of (1),
ie, T(:)e=x,, where x(¢) solves (1) with %(-)=0 and initial state
xp =9 EX. The infinitesimal generator A of T(¢) is given by

W A)={pEX|peC’, p(0)=L(¢)}
Ap=¢

(Hale [8, Section 7.1]). The semigroup approach leads to the representa-
tion of the solutions of (1) by the variation-of-constants formula

x,=T(:)¢+f(J’T(t—s)XoBu(s)¢s @

where X:[—h,0]->R"" is defined by X(7)=0 for 1 <0, Xo(0)=1, and
T(t)X, denotes the restriction X, of the fundamental solution of (1) to
the interval [z —#A, t] (see Hale [8, p. 146]).

The spectrum of A is given by the zeros of det A(A), where

A(A)=AI-L(e*)=AI- f_"he’\fdn(f). 3

A spectral decomposition of the state space X can be obtained through
the homogeneous formal adjoint equation of (1),

1) =L7(x)= [° dnT(n)x(1+).

The infinitesimal generator A* of the corresponding semigroup T*(¢),
t>0, is dual to 4 via the bilinear form

W @> =3 Oe@+ [° [4T(r-a)dn()e(o)do (@)

on X (Hale [8, Sections 7.3 and 7.4]).!

Now define Z=C(J—h,0};C?) and let D (4d)={pEZ|pEZ, ¢(0)=
L(p)} be the domain of 4 on Z. For any finite symmetric subset A of
o(A)=0(A*) let X,, respectively Z,, be the corresponding real respec-
tively complex, generalized eigenspace of 4. There exist complementary
subspaces X* and Z* such that

X=X,0X*, Z=Z,06Z%. ®)

If X, is defined analogously, then there exist bases {g;,"* -
and {(,,- - -, ¥y} of X such that @=[g,,--
eC(~h,0); R™V) satisfy

»pn} of Xy
sonland ¥={y¢;, -, dy]

¥, 2> =‘IlT(O)<I>(O)+f_ohfo‘lfr('r—a)d'q(‘r)@(o)do=l.

UThere is a slight difference in the notation. Hale describes the formal adjoint equation
as a backward equation in the state space C([0, 2};R"*). Correspondingly our bilinear
form results from [8, eq. (2.5) p. 169), by defining (1) =aT(— 1), —A<7<0.
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Now the projection P, of X onto X, along X can be described by
Poyp=0{¥,p>, pEX

where (¥, p)> denotes the column vector with components <{¢;, ¢,

j=1,---,N (Hale [8, Section 7.3]). Finally, there exists a real NXN

matrix 4, such that A@=04,.

Now let x(¢), t> —h, solve (1) with initial state xo =¢pEX. Then the
projection of x, into X, is given by Pyx,=®x,(7), where x,(2)=
(¥, x,> ERY satisfies

Ep(1)=Apxa() +¥T(©O) Bu(t) ©
x7(0)=<(¥,9>.

The output corresponding to P, x, is given by
Ial#)=TPyx, =T ®xp(?). Y]

The following observability result for the reduced finite-dimensional
system (6), (7) has been proved by Bhat and Koivo [3] for systems with a
single time delay in state. Our proof shows that a generalization of their
criterion holds for systems with general time delays in state and output.
Proposition 1: The system (6), (7) is observable iff for all AEA

an) 1
rank[ P(e)‘.)]—n. (8)

Proof: We show first that—given A€EA and yeC”—we have
A(A)y =0 iff there exists an x&C¥ such that
y=00)x,(AI—A4,)x=0.

Necessity: Let A(A)y=0 and ¢(7)=ey, ~h<t<0. Then pEker(A]
—A) (Hale [8, p. 169]) and thus ¢ Z,, since A€A. It follows that
¢==®x for some x&C¥. Hence, y =¢(0)=&(0)x and

ADx=Ap=Ap=APx=0A, x
which implies Ax=A4, x.
Sufficiency: Let Ax=A,x, y=®(0)x, and ¢:=&x. Then
Ap=Abx=0A4, x=APx=Ap
and hence y =¢(0) EkerA(A) (Hale [8, p. 169]).

Now by the condition of Hautus the reduced system (6), (7) is
observable iff for all \EA=0(4,)

ker[ AII‘—;A ] - (0}.

We show that this is equivalent to (8).
First let 0=xeC¥ with (AJ—-A,)x=0 and I'®dx=0. Then with
y:=®(0)x it follows

B(7)x=0(0)eWx=eM®(0)x =€y

for —h<7<0. Thus, y>=0 and
I'(e*)y=T®x=0.

Moreover, the first part of the proof implies A(A)y=0.
Conversely, let 052y €C™ such that A(A)y=0 and T'(e*)y=0. Then
there exists some x €C¥ such that

y=®(0)x,(AI—4,)x=0.
Again we conclude ®x=e*y and thus
T®x=C(e*)y=0

Clearly, x must be nonzero, since y is. Q.E.D.
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IIl. THE PERTURBED SEMIGROUP

In this section we study the Cy-semigroup Tx(?), ¢> 0, generated by
the closed linear operator Ay =4 +%T, where KERY" and K: R™-X
is the bounded linear operator given by

Hy=0Ky, YER™.
Tk (1) satisfies the following perturbation formula:
T (Do=T()o+ fo “T(t—s)KT T (s)p ds
=T()o+ j; T (t=5)KTT(5)p ds ©

(see Curtain and Pritchard [4, Theorem 2.31]).2 The above semigroup
was introduced by Bhat and Koivo in [2] for the construction of an
observer for systems with a single time delay in state.

Note that the semigroup Ty (#) does not directly arise from a delay
system of the form (1), because the infinitesimal generators of such
semigroups always map ¢ into ¢. In fact, Tx(¢) is not a translation
semigroup; for ¢ €X we have to treat z(t, 7)=(T(#)p)(7) as a function
of two variables (7> 0, —h<7<0). Nevertheless, Ti(¢) is related to a
differential delay equation if there are no delays in the output mapping,
i.e, I': X—R™ is given by

Tp=Co(0)=CPyp (10

where C is a real mXn matrix and P: X—>R” maps ¢ into ¢(0). In this
case some considerations analogous to those done by Bhat and Koivo [2,
Appendix] show that

2()=z(1,0)=PTx(t)p
satisfies the following hereditary differential equation:
z(t)=L(z,) +®(0)KCz(1)

+ f_"hdn(f) f @ (r—0)KCz(t+0) do. (11)

If, moreover, §: X—X is the linear operator defined by
0
(F9)(1)=9(7)+ [ ®(r=0)KCo(0)de

and S(¢) is the semigroup which corresponds to (11), then we have the
following result.
Theorem 1: If T is given by (10), then

T (£)=98(2)F .

Proof: Let A be the infinitesimal generator of $(¢) and .pEGD(i).
Then v is continuously differentiable and
$(0)=L(T )+ BOKCY(0). (12)

Hence, p=T is also continuously differentiable and
P(r)=4(r)—®(7)KCY(0) + £ %®(r—0)KCy(a)do.
By (12) this implies
$(0)=¥(0) ~ B(OKCY(0)=L(T¥) = L(9)
and thus p€9(A4). Moreover, we have
Agp=¢+OKCp(0) =g+ BKCY(0) =T =T Ay.
Applying a general result of semigroup theory (Bernier and Manitius [1,

Lemma 5.3]), we obtain T (#)3=FS(¢) and hence the statement follows
from invertibility of F. Q.E.D.

2The second equality in (9) foll from interchanging the roles of T(z) and Tx (7).
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The previous theorem shows that z(¢)=PT(#)p=PS(¢)T ~l¢ in fact
satisfies (11) with initial condition zy =y=%F ~lgp, Moreover it follows
from Theorem 1 that the spectrum of 4 coincides with the spectrum of
A which is determined by the characteristic matrix function of (11):

Ax(A)=AA)—(eM, ®DKC. (13)

Corollary 1:
o(A+PKCP)={AeC|det Ax(A)=0}.

Now let us return to the general case that there are delays in the output
mapping also. In this situation it is more difficult to find a representation
of Tx(?) analogous to (11). The interested reader is referred to [14]. Here
we will restrict ourselves to prove some properties of Tx(¢).

1). The infinitesimal generator 4, has a compact resolvent operator,
since 4 has and since for AEp(Ax)Np(A4) the following resolvent
formula holds:

(AI—Ag) ' =(AI-A) [ 1+ KT (AT-4,)""].

2). T, (#) is a compact operator for ¢>h. This follows from the first
equation in (9), since T(¢) is compact for ¢ > h and the integral term is a
bounded operator whose range is contained in the finite-dimensional
subspace X,.

The first property implies that A4 has a pure point spectrum (see Hille
and Phillips [10, Theorem 5.142]) and from the second property it
follows that for every > h

o(Tx())\{0} CPo(Tx(¥))- (14)

The semigroup T, (¢) is said to be of exponential growth wy ER if for
every €>>0 there exists some M < oo such that for all 7> 0

1 T (Dl < Meloo+e
and if w, is the smallest number with this property. From semigroup
theory it is known that

wo= lim 1~ log| T (1)) > sup(ReANEo(4 )} (19

(see, e.g., Dunford and Schwartz [5, ch. VIII]). Now (14) allows us to
apply a result of Zabezyk [16, Lemma 1] and we have equality in (15).
Hence, we have proved the following.

Proposition 2: Let wER. Then the following statements are equivalent:

i) There exists an M < oo such that || T (1)l < Me®*.

i) ReA < w—¢ for every eigenvalue X of Ay and some €¢>0.

The above proposition shows the importance of determining the
spectrum of 4. This is done by the theorem below.

Theorem 2:

o(Ax)=(o(AN\A)Uo(A, +KT®).

Proof: First let A€o(A, + KT ®). Then there exists some nonzero
x€C¥ such that (4, + KT'®)x=Ax. Hence, ®x0 and

AgPx=APx+HTOx=B(Ayx+KT'dx)=APx

which implies A EPo(A ).

Now let A€o(4)\ A. Then A (AI—A) is a proper subset of Z (see
Hale [8, p. 168, Lemma 2.1]). We prove that R(AI—A,)CR(AI—A)
and hence A E0(Ay). Indeed, since AEA=a(A4,), we have

(M—A)B(AI-4,) =0,
Hence, for all pED(4)
(M —~Ag)p=(AI-A)p—BKT(p)
=(AI-A)[ p—B(AI-4,) 'KT(9) ],

and the desired inclusion follows.
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Finally, let A€a(Ay) and A¢o(A)\ A. Then there exists some non-
zero e E0z(A4) such that

®KT(p)=(AI-A)p

=O(AI-A\X¥, 9) +H(AI-A)I-Fy)e. (16)
It follows from (5) that (A7—A)(I—P,)e=0. Since A&€o(A)\A,AI-4
is one-to-one on Z* and thus (I—P,)p=0, ie, p=8{¥, ¢)>. Hence,
(¥, @) is nonzero and

KT®(¥, ) =KT(9)=(A~A4,X¥,9)

where the latter equality follows from (16) and the fact that (71— P, )p=0.
We conclude that A Eo( A4, + KT ®) and the theorem is proved. Q.E.D.

From finite-dimensional observer theory (see, e.g., Wonham [15, ch.
3D it is well known that the spectrum of 4, +KT'® can be placed
arbitrarily symmetric to the real axis by choice of K if the reduced
system (6), (7) is observable. Hence, if (8) holds for all A€ A, then for
every symmetric set A’ of N complex numbers there exists some real
N Xm matrix X such that

o(A+BKT)=(o(A)\A)UA’

(Proposition 1 and Theorem 2).
We close this section with a decomposition result for the perturbed

semigroup Tx(¢) with respect to (5).

Proposition 3:

i) (I= P)Tg(8)=T()(I— Py)=(I—P)T(t).

if) For 9EX the function z,(t)={¥, Tx(t)p> ERY satisfies the dif-
Serential equation

2p(1)=(Ap + KT ®)z,(£)+ KT(I-P\) T ()9
(0 =¥, 9>.

iif) T (t)®=DelAr+KTON,
Proof:
i) Since X, c(A4), we have (I—P,)pED(A) for every p=D(A4 )
= (A). Moreover,

(I-Py)Age=(I—Py)Ap=A(I-P)ep.

Hence, i) follows from Bernier and Manitius [1, Lemma 5.3] and the fact
that 7(¢) commutes with P,.
ii) Applying (9) we obtain

2\ =¥, T+ ['T(1=5) @K TTe(s)p ds
=T, 0>+ Lle‘ﬂ(’_’)KI‘TK(s)(p ds.

Hence, z,(¢) satisfies the differential equation
ia(1)=Apz () + KT T (D)o
=Apzp(1)+KTOE, T (Do) +KT(I-P )T (g
=(Ay +KT®)z,(1)+ KT (I— P, )T ().
iif) By i) we have (J— Py )T (#)®=0 and thus
T (1) D=P T (1)D=0(¥, T (1)P).

Now iii) follows from ii). QED

IV. DuaLTy

Within this section we consider the special case that there are no
delays in the output mapping, ie., I' is given by (10). Then the dual
system of (1) is described by

2()=LT(x,)+CTu(z)

y(£)=BTx(t). an
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For this system Pandolfi’s feedback concept via the feedback matrix K7
leads to the equation

*#()=LT(x,)+CTKx,, ®>T
=LT(x,)+ CTKT®T(0)x(1)

+CTKT f_°h i *0T(r—0)dnT(r)x(t+0)ds  (18)

(see [13]). Note that (18) results from (11) by transposition of matrices
and hence has the characteristic matrix function A% (A). Thus, it follows
from Corollary 1 and Theorem 2 that Pandolfi’s pole shifting result [13,
Theorem 2] also holds without the restrictive assumption that the new
eigenvalues are not contained in the spectrum of 4.

Now let T¢(¢) denote the semigroup corresponding to (18) and A} its
infinitesimal generator. Then we obtain the following duality results
between the perturbed semigroup Ty (¢) and Ty (¢) via the bilinearform
(4). These are analogous to Hale’s duality results for the original semi-
group T(¢) [8, Section 7.3].

Theorem 3:

i) For all YED(Ay) and pED(A)=D(4)

{Axl, @) =Y, Agp).
it) For all o, yEX and all t 50
T, o> =, Tx () o).

Proof:
i) Note that y ED(Ay) iff ¢ is continuously differentiable and

W0 =LT($) + CTK Ty, ®)T.
Hence, for Y EDN(A}) and pED(A) we have

x4, 9> =4 Q9@+ [° [*§7(r—0) dn(r)e(s) do
=[LT()+CTK Y. 27 0(0)

- [* {Wre-a) an(nye()ez- [4T(r-0) dn(r)é(o) do
=4 @DKCPO)+TO)L(9)

+[° [W(r=0)dn(r)é(0) o

=47(0)[9(0) +@(0)KCo(0)]
+ f_o,,f,O‘PT(T—O) dn(r)[@(0)+®(0)KCp(0)] do
={y, Agp).

ii) First let y €D(A%) and pED(A4). Then by i) we have

d
2 TR =), T (s) 9>
=—(ARTE(1—35), T (s) @) +TR(1— )Y, A T (s)p)
=0
for 0 <5<t and hence ii) holds in this case. Since 4 and A% are densely
defined, the statement follows. Q.E.D.
V. THE DYNAMIC OBSERVER

The representation (2) of the solutions of (1) leads to the following
description of the observer as an abstract evolution equation in the state
space X

t
z(t,-)= Tx(t)¢+fo T (t=s) X Bu(s)—Ky(s)]ds  (19)
(compare Bhat and Koivo [2] or Gressang and Lamont [7]). We have to
be careful in the interpretation of the integral term in (19) because X, is
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not continuous. First, Tx(£) X, has to be defined explicitly. Motivated by
(9) this is done as follows:

T () Xo: =T (1) Xo + fo ‘T (1= 5)YKTT(s) Xy ds (20)

where

TT(£)X,=TX,= fm‘;{_t XD ER™

is measurable and bounded on [0, #] and continuous for 7 > . With this
definition Ty (r)Xy—as a function from [—4,0] into R"”—is not con-
tinuous if r<A. Hence, the first integral in (19) has to be taken in
L®([—#h,0); R™) instead of X or must be interpreted pointwise. Both
possibilities lead to the same value of the integral which is in fact in X.

Now let u(s) in (19) coincide with the input of (1), respectively (2),
and let y(s)=T(x,). Then for the error e(t,-)=z(?, )—x, of the ob-
server one obtains, by the use of (20),

e(t, ) =T (W + fo ‘[T(t—s)xo

+ fo T (t—s—0)KTT(0) X, do] Bu(s)ds

- fo ’TK(:—s)ﬂcr[ T(s)p+ fo 'T(s—o)XOBu(a)do] ds
—T()g- fo "T(t—5)XoBu(s) ds
=Te(W—T(W)g~ [ Te(1-)ATT(s)p ds
+ fo ! f, T (t=0)KTT(0—5) Xy Bu(s) dods
_ fo‘ fo *Te(t=$)KTT(s—0) Xy Bu(o) do ds

and hence by Fubini’s theorem and (9)
e(t, ) =Tx(tX¥—9). (€3]

Definition 1: Let w<0. Then the observer (19) for the system (1) [re-
spectively, (2)] is said to be w-stable if for all initial states p, Y €EX and any
admissable control u(-) the error e(t,-)=2z(t, -)—x, of the observer goes to
zero with exponential decay rate w, i.e.,

lim e ~%‘[le(#, )| =0.
=0

Remark: By (21) and Proposition 2 the observer (19) is w—stable if
and only if ReA< w for all A€ a(Ag).2

Remark: In [11] Olbrot calls the system (1) w-detectable, if y(-)=0
implies lim e ~“'x(t)=0. Moreover, he shows that equivalently (8)
holds for all A€o(4) with ReA > w.

Summarizing our results we get the following.

Theorem 4: Let w<0 and A={AEo(A)|ReX>w). Then the following
statements are equivalent.

i) There exists an w-stable observer of the form (19).

ii) There exists a bounded linear operator K.: R™ —X such that ReA<w
Jor all A\€o(A+XKT).

iii) Equation (8) holds for all \EA.

iv) System (1) is w-detectable.

©) System (6), (7) is observable.

Proof: *“i)=ii)” and “ii)e3iv)” follow from the above remarks,
“fif)}e>v)” has been proved in Proposition 1 and the implication “v)=sii)”
is a consequence of Theorem 2. Hence, it remains to show that ii) implies
iii). Suppose that there exists some AEA and some nonzero y €C” such
that

A(A)y=0,T(e)y=0.
*Note that by Theorem 2 the spectrum of A« is cither finite or consists of a sequence of

eigenvalues with real parts tending to — oo, Hence ii) in Proposition 2 is equivalent to
ReX<w for all A€o(d).
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Then p=e*-y € ker(AI—4) (Hale [8, p. 169]) and I'(¢)=0. Hence, for
every linear H:C™ —Z we have

(A+%T)p=Agp

which implies AEo(4 +XKT). QE.D.

So far the observer has only been described as an abstract evolution
equation in the Banach space X. It will be helpful for the treatment of
this equation to study the decomposition which is obtained by projecting
its solutions to the subspaces X, and X. For this sake let z(z, ) be
given by (19). Then it follows easily from Proposition 3ii) that P z(z, -) =
®z,(t) where z,(£)=<V¥, z(¢, *)> ERY satisfies the differential equation

Z5(£)=(A5 +KT®)z,(£)~ Ky(1) + ¥7(0) Bu(t) + KT (22 (1))
25(0)=<¥,¥).

Here zA(ty=(I-P,)z(t,-)EX?* denotes the second infinite dimen-
sional component of the observer, By Proposition 3i) z(z) is given by

@)

ZA()=T()I-P )Y+ fo "T(t—s)(I—Py) X, Bu(s) ds

=(I-Fy)w, 23)
where w(z), t> —h is the solution of the original system equation (1)
with initial condition wy =1:

w(t)=L(w)+Bu(t)
w(r)=v(7),

Note that in its essential part the finite-dimensjonal component (22) of
the observer is just the observer equation corresponding to the reduced
system (6), (7) with an additional term KT(z*(¢)) resulting from the
second component (23). Moreover, this second component is nothing
else than the projection of the original system (1) on the complementary
subspace X4. On this subspace the system (1) is stable with exponential
decay rate w< 0, if A={AEo(4)|Re] >} (see Hale [8, Section 7.4]).
Pandolfi’s control law for the system (1) is of the form

u(1)=F¥,x,>

—-h<r<0.

24

where F is a stabilizing matrix for the reduced system (6) (see [13)]).
Hence, in the closed loop—which means that x, in (24) is replaced by
the state z(7, -) of the observer (19) —the above decomposition (22), (23)
of the observer has the advantage that z,(#)={¥,z(t,-)) is already
computed and can be used directly for the calculation of the input
u(t)=Fz,(t) of (1). Since in this situation we only have to observe the
“unstable part” (¥,x,> of the system (1), there arises the question
under which conditions the infinite-dimensional part (23) of the (full-
order) observer (19) can be omitted. This is only possible, if the output
ya(t)=TP{¥, x,> of the reduced finite-dimensional system (6), (7) can
be calculated from the output y(f)=T'(x,) of the original system, i.e., if
there exists some real mXm matrix D such that

DI (@)=T¥({¥,¢>, PEX. (25)
If such matrix D exists, then the system
Zp(1)=(Ap + KT ®)z,(2)— KDy(t)+¥T(0) Bu(t) (26)

is a detector for the finite-dimensional component (¥, x,> of the system
(1). Indeed it is easy to see that the error e,(¢)=z,(#)—<¥, x,) satisfies
the differential equation

en(£)=(A, +KTd)ey(1).

Now let us return to the special case of a system with delays appearing
only in the state variable which means that T is given by (10). Then (11)
leads to another more concrete concept of the observer, described by a
differential delay equation

2(8)=L(z,)+Bu()+®(0)K[Cz(¢) —y(2)}]

+f_ohdn(r)ffod’(f—a)K[Cz(t+a)—y(t+a)] do. (27)
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In fact, if x(¢) is a solution of (1) and z(¢) a corresponding solution of
(27), then the error e(#)=2z(t)— x(¢) of this observer satisfies (11). Hence
by Corollary 1 (27) is an w-stable observer if and only if (19) is. The
relation between both descriptions of the observer is analyzed precisely
in the more general setting of the author’s paper [14]. In particular, it can
be shown that z(£,0) satisfies (27) if z(¢,-) is defined by (19). This
follows also from solving the partial differential equation

Btz(t 1')— z(t )+ ®(7)K[Cz(¢,0) —y(2)}+ Xo(7)Bu()’

(1,0 =L(a(1,)) 28)

which is associated formally with the observer equation (19). Finally
note that, in the special case of a single time delay in the state variable,
(27) coincides with the final description of the observer obtained by Bhat
and Koivo [2, eq. (20)}.

Example 1: Consider the differential delay system

x(8)=—x (1—1) +x5(¢)
iy()= [° m(r+)dr
PD)=x,(1)
which can be written in the form (1), (10) with

R R N R T ) R

Cc=[1 o]

Equation (29) is not in the class of delay systems for which observer
concepts have been developed yet in the literature [2], [6], [9], [12). The
characteristic matrix function

29

Ate™> -1
AM)= 1—¢—
0 A— X
of (29) has a single root A, =0.714556- - - of multiplicity 1 in the closed

right complex half-plane. Now define ag:=Ay+e " and let py <0 be
the new preassigned eigenvalue, Then we have

2@=[ & |- 4n =20, COO=1, K=t =0,
Hence, in this case the observer equation (27) is given by

) =L+ (a2 dy [0 -7(0)]

0 _e—kq(l +0)
+(ro—o) [ aghs (1 _e-hiaro) [[AIF)~y(r+a)] do.

(30)
By Theorem 2 and Corollary 1 the observer (30) has the same spectrum

as (29) except A, which is replaced by p. This follows also directly from
the fact that the characteristic matrix function

A“(ao-x—e-h) -1

- A 1—e? 1-e
"01\ o ) A

J\+e"‘+“°

Ag(A)=

of (30) satisfies
det A (R)-(A—Ag)=det A(A)-(A—pg).
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Determination of Generic Dimensions of
Controllable Subspaces and Its Application

SHIGEYUKI HOSOE

Abstract— The controllable subspace and its dimension of s structured
linear system vary as a function of the free parameters. However, the
dimension is stable in the sense that it takes, for almost any system
parameters, some maximal constant which is the generic rank of the
controllability matrix. In this paper, this maximal constant is called the
generic dimension of the controllable subspace. Two simple methods for
determining generic dimensions of controllable subspaces are derived. As
an application, the results are applied to the determination of system types
of linear multivariable unity feedback systems.

1. INTRODUCTION

Since Lin introduced the concept of structural controllability [1], there
appeared many papers on the subject extending Lin’s single-input results
to the multiinput case or giving more elegant proofs to the structural
controllability theorems [2]-[5]. At this point, however, considerations in
these researches are mainly directed to determining whether or not a
given system is structurally controllable. In order for the concept to be
utilized in synthesis, e.g,, robust synthesis of linear feedback systems,
more work is needed.

This paper aims at extending some of the previous results to include
the case where a system is structurally uncontrollable. In such a case, the
controllable subspace and its dimension vary as a function of the system
parameters. The dimension, however, is stable in the sense that it takes,
for almost any system parameters, its maximal constant value which
equals the generic rank of the controllability matrix. In this paper, this
maximal constant value is called the generic dimension of the controlla-
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