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The problem is that, in  general, it may be ex-gly difficult, or 
impossible, to find  a  closed-form  solution to the  linear, timevariable 
state equation when A, and A,  (or a) are functions of time.  But to carry 
our present  idea  a little further, we may  discuss a fuzzy statetransition 
matrix @,(r, to )  such that 

d 
;i?@,('> t o ) = [ A o + ~ , l ( ~ ) @ , ( t ,  10)  

and 

@,( to,   to)  = I ,  the identity matrix. 

The unique  solution to (12) is given  by X in terms of @,(t, to)  in the 
form 

x(t)=sl,(t, 'O)X(O),  

and the  average solution of X(t) in terms of the FEV  is  given by 

FEV{X(t)}=FEV{@f(t,tO)X(0)}. 

The average of a  matrix can be defied as the average of 'its terms, and 
thus the  FEV of the matrix @,(t, to)X(0) is nothing more than the FEV 
of each  term of the  matrix. It should  be  noted  that  the practical 
computation of FEV (@,(t. t,)X(O)] depends upon the monotonic  prop- 
erties of the  elements  involved in  the matrix @,(t, to). It is also clear that 
if a<< 1, perturbation theory can be used in  order  to evaluate FEV{X(t)). 

IV. CONCLUSIONS 

In this paper we investigate  the  applicability of fuzzy processes and 
fuzzy  statistics to the  problem of modeling of  fuzzy systems. The fuzzy 
systems discussed in this paper  are represented  by fuzzy differential 
equations. Our study will hopefully be one of the foundations  that will 
enable us to use fuzzy models in more productive  applications. The aim 
of this paper is to show  how  fuzzy set theory can be  applied  in an 
imprecise  modeling structure where  some  behavior of the system or some 
data are  not precisely known 

Clearly, both the  merits and defects of our method  originate  mainly 
from  the fact  that we have  tried to cover  problems  usually  considered as 
belonging to disciplines  which  require a long list of (I priori assumptions 
and/or expensive testing before  some  mathematical  evaluations can be 
performed. 

We feel that our techniques can be  easily  applied to a sufficiently 
complex  class of problems. 

We have  investigated,  throughout the preliminary course of this r e  
search,  a  variety of additional applications of the  framework  developed 
in this paper. These include the evaluation of  fuzzy phenomena in 
pattern recognition and classification,  weather  prediction and forecast 
evaluation,  hydrological  forecasting,  quality  control,  the  evaluation of 
eigenvalue spectrum for a particle  in  a fuzzy  medium, and the  topic of 
the measurement  problem in quantum mechanics. A paper discussing 
these  applications is under  preparation. 

Preliminary results of our investigations into these  fields are very 
promising, and it  is our hope that  future studies on the analytical 
properties of fuzzy set  theory and their  applications will concentrate on 
these and many  other  areas. This will enable  better applications and a 
clear  understanding of the role of fuzzy statistics  in  many  engineering 
and scientific models. 
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Observers and Duality Between Observation and 
State  Feedback for Time  Delay Systems 

D. SALAMON 

AClstmc--This psper deals WW the problem of observer amimtlon 
f o r ~ w W g e ~ t i m e - d e l a y s i n s t a t e a n d o p t p l t . ' L b e s p e c t n m r o f  
thehfhitesimalgemratoroftheobserp.ersedgmupisdeterminedex- 
plidtly,andtheobswPerequationisdeeomposedMoaflnite-andan 
idhkdmdwal component. 

For system with delays sppearing in the state variables only duallly 
resultsareobCainedandtheobserverkdescribedinthemoreeonerete 
form of a differential delay epoatloa 

I. INTRODUCTION 

In 121 Bhat and Koivo  developed an observer  theory for systems  with a 
single  time  delay in state.  Their  method is based on Hale's  spectral 
decomposition 18, ch. 7] and they got the  sufficient condition  for the 
existence of a stable observer that the  reduced finitedimensional system, 
obtained by spectral  projection, is observable.  Moreover, in 131 they 
derived an observability  criterion for  the reduced system in  terms  of the 
original  system  parameters. 

In this paper it is shown that a  modified  version of the  observability 
criterion  in [3] holds for systems  with  general state- and output-delays. 
For the  same  class of systems an observer  theory is developed analo- 
gously to that in [2] and the  observer is described as an  abstract 
evolution  equation in the Banach space X= Ca -h,O]; Rn). The observer 
semigoup TK(t) is obtained by  finitedimensional  perturbation of the 
original semigoup T ( t )  and does not direstly  correspond to a  delay 
equatim Hence, the results of Hale (8, ch. are not directly  applicable. 
In this paper TK(t )  is studied in detail. In particular, the spectrum of its 
infinitesimal  generator is determined  explicitly. The sufficient  condition 
in [2] for the  existence of a stable observer is generalized and shown to 
be necessary also.  Based on the  spectral decomposition of the original 
system the observer is decomposed into a  finite and  an  infinite 
dimensional part. 

In the special case that there are no delays in the output mapping of 
the system, it is shown that T,(t) is isomorphic to a semigroup which 
corresponds to a  delay  equation. This representation leads to a  more 
concrete  description of the observer.  Moreover, in this situation duality 
is investigated between the observer semigroup TK(t)  and the state 
feedback  concept of Pandolfi [13]. 
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II. NOTATION AM) PRELIMINARIES 

Consider the following timeinvariant linear system  with  general  de- 
lays in state and output: 

where UER', xER",yER",  and 

for cp~X=Ca-h,O]; R"). Here q(.) and y(-) are matrix-valued func- 
tions of bounded variation from the interval [-h,O] into R"", respec- 
tively, Rm". If x(r) ,  r > - h  is a s6lution of (I), then  the function segment 

x,(T)=x(~+T), - h < ~ < 0 ,  

is the state of the  system  (1) at instant t. Let T(r), r >  0,  be the 
q-semigroup on X  which corresponds to the unforced  motions of (l), 
i.e., T(t)cp=x,, where x ( t )  solves  (1)  with u(-)=O and initial state 
x. =VEX. The infinitesimal generator A of T(t )  is given  by 

V A ) =  {cpEXlcpEC', dO)=L(cp)}  

AT=+ 

(Hale [8, Section 7.1D. The semigroup approach l a d s  to the representa- 
tion of the solutions of (1) by the variation-ofanstants formula 

where  Xo:[-h,O]+R"" is defmed by XO(7)=O for T<O, Xo(0)=Z, and 
i T(t)Xo denotes the restriction X,  of the fundamental solution of (1) to 

the interval [r-h,r] (see Hale [8, p. 146D. 
The spectrum of A is given by the zeros of det A(A),  where 

A  spectral  decomposition of the state space X can be obtained through 
the homogeneous formal adjoint equation of (I), 

x ( t ) = L T ( X , ) = J o  d V T ( T ) X ( r + T ) .  
- h  

The infinitesimal generator A* of the corresponding  semigroup P(f) ,  
r>O,isdualtoAviathebilinearform 

(hcp) =Ic.=(o)cp(0)+J0 - h  J o v ( T - u ) d V ( T ) d u ) d u  T (4) 

on X  (Hale [8, Sections 73 and 7.4D.l 
Now defiie Z=Ca-L,O];C") and let Q z ( A ) = { c p ~ Z J + ~ Z , @ ( 0 ) =  

L(cp)} be the  domain of A on Z. For any finite symmetric  subset A of 
u(A)=u(A*) let X,, respectively Z,, be the corresponding real respec- 
tively  complex,  generalized  eigenspace of A. There exist  complementary 
subspaces XA and ZA such that 

X=xA@X", z=Zh@z". ( 5 )  

If X i  is defined  analogously,  then there exist  bases { cp,, . . , p N }  of X, 
 and(^,,... . ~ N }  ofX~suchthat@=[cp,, . . .   ,cpN]and\k=[~,, . . . ,~N] 
E C ~ - ~ , O ] ; R ~ N )  sat is fy  

(*,o)=YT(o)@(o)+JO -h J 0 ~ ' ( T - a ) d $ ( T ) @ ( a ) ~ u = z .  7 

as a backward equation in the state space CaO,h];R"*). Corrspondingly OUT bilinear 
'There is a slight difference in the notation. Hale dcscrii the formal adjoint equation 

formnsultsfrom[8.eq.(2.5)p. 1 6 9 b b y & ~ ~ : 7 ) - a r ( - ~ ) , - h < ; . r < 0 .  

Now the projection PA of X onto X, along XA can be described  by 

pA(P=@(*, V), (pEX 

where (*,p) denotes the c o l u m n  vector  with  components (I)~,?), 
j -  1 , - - .  , N (Hale [S, Section  7.3D. Finally,  there  exists a real NXN 
matrix A, such that A@ = @Ak 

Now let x( t ) ,  r >  -h ,  solve (1) with initial state x o = c p ~ X .  Then the 
projection of x, into X, is given  by P A ~ , = @ x , ( r ) ,  where xl\ ( f )= 
(q, x,) E R N  satisfies 

x,(t)=A,x,(t)+*=(O)Btr(l) (6) 

x,(0)=<*9rp). 

The output corresponding to PAxf is  given  by 

The following  observability  result for the reduced finitedimensional 
system (6), (7) has been proved by Bhat and Koivo  [3] for systems with a 
single  time  delay  in state. Our proof shows that a  generalization of their 
criterion  holds for systems with  general  time  delays in state and output. 

Propmition I :  The vstem (6), (7) is obsercuble i f f  for ail A E A 

PruoJ We  show first  that-given AEA and yEC"-we have 
A(A)y=O  iff there  exists an x E C N  such that 

y=@(O)x,(hZ-A,)x=O. 

Necessity:  Let  A(A)y=O and cp(T)=exry, - h < ~ < 0 .  Then cpEker(AZ 
- A )  (Hale [8, p. 169D and thus cp~Z,, since AEA. It follows that 
cp=@x for some xECN. Hence,y=cp(O)=@(O)x and 

A@x=Acp=Acp=A@x=@A,x 

which  implies Ax=A,x. 
Sufficiency: Let Ax = A,x, y = @(O)x, and cp : =@x. Then 

Acp=h@x=@A,x=A@x=Acp 

and hence  y = cp(0) E kerA( A )  (Hale  [8,  p.  169D. 

observable iff for all AEA=u(A,) 
Now by the condition of Hautus the reduced system (6), (7) is 

We  show that this is equivalent to (8). 

y : = @(O)x it follows 
First let O # x E C N  with (AZ-A,)x=O and r@x=O. Then with 

@ ( ~ ) x = @ ( O ) e " ~ ' x = e ~ ~ @ ( O ) ~ = e " ~ y  

for - h < ~ < 0 .  Thus,y#O and 

Moreover, the first part of the proof  implies  A(A)y =O. 

there exists  some x E CN such that 
Conversely,  let OzyEC" such that A(A)y=O and T(e")y=O. Then 

Again we conclude @x = e"y and thus 

Clearly, x must be nonzero, sincey is. Q.E.D. 



IBE TRANSACTIONS ON A u T o M A n c  CONTROL, VOL AC-25, NO. 6, DECEMBER 1980 1189 

111. TIIE PERTURBED SJMGROUP 

In this section we study the G-semigroup T,(t), t>O, generated by 
the closed bear operator A ,  =A+'JCr, where KERN"' and X: Rm+X 
is the bounded linear operator given  by 

cJcy=@Ky, Y E P .  

T,(I) satisfies  the  following perturbation formula: 

T,(tlcp= T(t)cp+lo'T(t-s)'JCrT,(s)cpdr 

=T(t)cp+lolT,(t-s)'JCrr(s)rpdr (9) 

(see Curtain and Pritchard [4, Theorem 2.31D.2 The above  semigroup 
was introduced by Bhat and Koivo in [2] for the construction of an 
observer for systems  with  a  single  time  delay in state. 

Note that the  semigroup TK(t)  does not directly arise from a delay 
system of the form (I), because the infinitesimal generators of such 
semigroups  always map cp into 6. In fact, T,(t) is not a translation 
semigroup; for VEX we have to treat z(t, T)=(T,(f)cp)(r) as a function 
of two variables ( I  > 0, - h < T G 0). Nevertheless, TK( t )  is related to a 
differential  delay equation if there are no delays in the output mapping, 
i.e., I': X+R" is given  by 

rcp = ccp (0) = C P ~  ( 10) 

where C is a real m x n  matrix and P :  X+R" maps cp into cp(0). In this 
case some  considerations  analogous to those done by Bhat and Koivo 12, 
Appendix] show that 

z( 1 )  =z( t.0) = PT,(  t)cp 

satisfies  the  following hereditary differential equation: 

i(t)=L(z,)+@(O)KCz(t) 

+ ~ ~ ~ ~ ( T ) ~ ~ @ ( T - u ) K c z ( t + u ) d u .  T (1  1) 

If, moreover, %X+X is the linear operator defined  by 

( T c p ) ( 7 ) = c p ( T ) + ~ o @ ( T - U ) K C c p ( U ) ~ ~  

and S(t) is the semigroup  which corresponds to (1 I), then we have the 
following  result. 

meorem I :  Ifr b @en by (IO), then 

T-(t)=5S(t)T-'. 

Proof: Let 2 be the infinitesimal generator of S(t) and $E$)($. 
Then $ is continuously  differentiable and 

~ ( o ) = L ( ~ $ ) + @ ( o ) K c $ ( o ) .  (12) 

Hence, cp=5$ is also continuously differentiable and 

6 ( T ) = ~ ( T ) - ~ ( T ) K c $ ( o ) + ~ o ~ ( T - u ) K c ~ ( o ) ~ u .  7 

By (12) this implies 

i (o )=~(o ) -cp (o )Kc~(o )=L(~$)=L(cp)  

A K c p = i + @ K c c p ( o ) = ~ + @ K c $ ( o ) = ~ ~ = 5 ~ $ .  

and thus cp€$)(A). Moreover, we have 

Applying  a  general  result  of  semigroup  theory (Bemier and Manitius [I, 
Lemma 5.3h we obtain TK(t)5=TS(I) and hence the statement follows 
from invertiiility of 5. Q.E.D. 

'The w n d  qualily in (9) foollows from interchanging the roles of T(t )  and T'(f). 

The previous  theorem  shows that z(t)=PT,(t)cp=PS(t)T in fact 
satisfies (11) with initial condition zo =$-T Moreover it follows 
fzom Theorem 1 that the spectrum of A ,  coincides  with the spectrum of 
A which is determined  by the characteristic matrix function of (1 1): 

A,(X)=A(h)-<e",@)KC. (13) . 

Corollmy 1: 

o(A+@KCP)={hECldetA,(X)=O}. 

Now let us return to the general case that there are delays in the output 
mapping also. In this situation it is more difficult to find a representation 
of T,(t) analogous to (1 1). The interested reader is  referred to [14]. Here 
we will restrict ourselves to prove some  properties of TK(t). 

1). The infinitesimal generator A ,  has a compact resolvent operator, 
since A has and since for XEp(A,)np(A) the following  resolvent 
formula  holds: 

(AZ-A,)-'=(XZ-A)-'[ Z+'JC~(AZ-A,)-']. 

2). T,(t) is a compact operator for t >  h. This follows from the first 
equation in (9), since T(t )  is compact for t z h and the integral term is a 
bounded operator whose range is contained in the finitedimensional 

The first property  implies that A ,  has a pure point spectrum (see W e  
and Phillips [lo, Theorem 5.14.21) and from the second property it 
follows that for every > h 

subspace x,. 

o(T,(t))\{O) C P G K ( t ) ) .  (14) 

The semigroup TK(t)  is said to be of exponential growth wo EBP if for 
every c>O there  exists  some M < m  such that for all t > O  

~ ~ ~ , ( t ) l l ~ M e ( ~ o + ' ) ~  

and if w, is the smallest  number  with this property. From semigroup 
theory it is known that 

wo= lim I - ' log~~TK(t)~~ >sup{RehlhEu(A,)} (15) 
f + r n  

(see, e.g., Dunford and Schwartz [5, ch. Vnm. Now (14) allows US to 
apply a result of Zabczyk [16, Lemma 11 and we have equality in (15). 
Hence, we have proved the following. 

Proposition 2: Let w E W. Then the following  statements  are equivaht: 
i )  There exisb an M <  00 such that  IlT,(t)ll< Mewr. 
i i )  Reh < w - z for ewry eigemnalue h of A ,  and some c > 0. 
The above proposition shows the importance of determining the 

Theorem 2: 
spectrum of A,. This is done by the theorem below. 

o(A,)=(u(A)\A)Uo(A*+Kr@). 

h003 First  let hEu(A,+Kr@).  Then there exists some n o m 0  
x E C N  such that (A ,+Kr@)x=hx .  Hence, @x#O and 

A,@x=A@x+Rr@x=@(A,x+Kr@x)=h@x 

which  implies A E Po(&). 
Now let AEU(A)\A. Then %(hZ-A) is a proper subset of Z (see 

Hale [8, p. 168, Lemma 24). We prove that %(AZ-A,)c%(hI-A) 
and hence hEo(A,). Indeed, since hBA=u(A,), we  have 

(hZ-A)@(AZ-A,)-'=@. 

Hence, for all cp&lz(A) 

(Xz-A,)cp=(hz-A)cp-@Kr(cp) 

= ( A M ) [  cp-@(hZ-A,)-'Kr(cp)], 

and the desired  inclusion  follows. 
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It follows  from (5) that (XZ-A)(I-P,)cp=O. Since X@o(A)\A, AI-A 
is one-to-one on 2" and thus (I-P,)cp=O, i.e., cp=@(*,cp). Hence, 
(q, cp) is nonzero and 

Kr@<s,cp)=Kr(cp)=(Xz-A,)(\k,cp) 

where the latter equality  follows  from  (16) and the fact that (Z-P,)cp=O. 
We conclude that X Eo(A,  +KT@) and the theorem is proved.  Q.E.D. 

From finite-dimensional  observer  theory (see, e.g., Wonham [15, ch. 
3D it is well known that the spectrum of A ,  +Kr@ can be  placed 
arbitrarily symmetric to the real axis by choice of K if the reduced 
system (6), (7) is observable.  Hence, if (8) holds for all AEA, then  for 
every  symmetric  set A' of N complex numbers there exists some  real 
N X m  matrix K such that 

o(A+@Kr)=(o(A) \A)Un'  

(Proposition  1 and Theorem 2). 

semigroup T K ( f )  with respect to (5). 
We  close this section  with  a  decomposition  result for the perturbed 

Proposition 3: 

ii) For cpEX the function zA( t )= (9 ,TK( t ) cp )ERN sathfies the dif- 
i) ( I -PA)TK(f )=T(f ) (z -PA)=(z-P, )T(f ) .  

ferential equation 

iA(t)=(A,+Kr9)rA(t)+Kr(z-PA)TK,(r)cp 

z,(O)=<*,cp). 

TK(t)@=@e(AA+Krr)'. 
proof: 
i)  Since X, t q ( A ) ,  we  have Q-PA)cpEq(A) for every cp=Q(AK) 

=GD(A). Moreover, 

(I-P,)A,cp=(I-PA)Acp=A(Z-P,)cp. 

Hence, i )  follows  from  Bemier and Manitius [ 1,  Lemma  5.31 and the fact 
that T(t )  commutes with PA. 

ii) Applying (9) we obtain 

r a ( f ) = < Y , T ( t ) c p + s l T ( t - s ) @ K r T , ( ~ ) c p ~ )  

=eAA'(q,cp) +IreAA('-s)KrTK(s)cpdr. 
0 

Hence, z A ( t )  satisfies the differential equation 

rA(t)=A,z,(t)+KrT,(t)cp 

=A,rA(t)+Kr@(q,T,(t)cp)+Kr(l-PA)T,(r)cp 
= ( A , + K r 9 ) z , ( t ) + K r ( l - P A ) T K ( t ) c p .  

iii) By i) we  have (Z-PA)TK(t)@=O and thus 

TK( t )@=PAT, ( f )@=@(q ,T , ( f )@) .  

Now iiii follows from ii). QE.D 

IV. DUALITY 

Within this section we consider the special  case that there are no 
delays in the output mapping, Le., is given  by (IO). Then the dual 
system of (1) is described by 

i ( t )=L=(X, )+C=U( t )  

y ( t ) = B = X ( t ) .  (17) 

i(f)=L=(X')+c=K=(X,,@)= 

=L=( XI) + c=K=@=(o)x( t )  

+CTKT[-O I 0 @ ' ( T - U ) d 9 ' ( T ) X ( f + U ) d U  (18) 
h . r  

(see  [13D. Note that (18) results from (11) by transposition of matrices 
and hence has the characteristic matrix function A;@). Thus, it follows 
from Corollary 1 and Theorem 2 that Pandolfi's  pole shifting result [13, 
Theorem 21 also holds  without  the  restrictive  assumption that the new 
eigenvalues are not contained in the spectrum of A .  

Now let T i ( t )  denote the semigroup  corresponding to (18) and A> its 
infinitesimal  generator. Then we obtain the following duality results 
between the perturbed  semigroup TK( t )  and Ti ( t )  via the  bilinearform 
(4). These are analogous to Hale's duality results  for the original semi- 
group T(z) [8,  Section 7.31. 

Theorem 3: 
i) For d i#@D(A>)  undcpEQ(AK)=Q(A) 

<A>#,cp)=(#,AKcp).  

ii) For all cp, # E X  and all t > 0 

(TK(f)#.,cp)=(#,TR(t)cp>. 

proof: 
i) Note that # E q ( A > )  iff # is continuously differentiable and 

1c(o)=L=(#)+c=K=(#,@)=. 

Hence, for # E Q ( A > )  and c p € q ( A )  we have 

v. TIE DYNmc OBSERVER 

The representation (2) of the solutions of  (1) leads to the following 
description of the  observer as an abstract evolution equation in the state 
space X 

(compare  Bhat and Koivo [2] or Gressang and Lamont [n. We  have to 
be careful in the interpretation of the integral  term in (19) because X, is 



I E R  TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-25, NO. 6, DECEMBER 1980  1191 

not continuous. First, TK(t)Xo has to  be defined explicitly.  Motivated  by 
(9) this is done as follows: 

where 

is measurable  and  bounded on [0, h ]  and continuous for t > h.  With this 
definition T'(t)XO-as a  function from [-h,O] into R""-is not con- 
tinuous if t < h.  Hence,  the f i i  integral in (19) has  to  be taken  in 
Lma-h,O]; R") instead of X or must be interpreted pointwise. Both 
possibilities  lead to the same  value of the  integral which is in fact  in X. 

Now  let u(s)  in (19) coincide  with  the input of (I),  respectively  (2), 
and let y ( s )=r (x , ) .  Then for the error e ( t , . )=z ( t , . ) -x ,  of the ob- 
server one obtains, by the use  of (20), 

and hence  by  Fubini's  theorem and (9) 

e( t , - )=T,(O(+--cp) .  (2 1) 

D&nition I :  Let w < 0. Then the  obseruer (19) for the system ( I )  [re- 
spectie&, (2)] is said to be o-stable if for ali initial states p ,  + E X  and any 
h i s s a b l e  control u ( * )  the error e ( t ,   - )=z( t ,   * ) -x ,  of  the obsenwrgoes  to 
zero  with  exponential deuy rate w ,  i .e, 

Remark: By  (2  1) and Proposition  2 the observer  (19) is w - stable if 
and only if Reh<w for all ~ E u ( A , ) . ~  

Remark: In [l l]  Olbrot calls the  system  (1) detectable ,   i fy( . )=O 
implies lim e-Wfx(t)=O. Moreover,  he shows that equivalently (8) 
holds fo:xhEo(A) with Reh a w. 

Summarizing our results we get the following. 
Theorem 4: Let w< 0 and A =  {hEa(A)I Reh > a}. Then the  following 

i )  There exists an estable obseroer of the form (19). 
i i)  There exists a bounded linear  operator X: R +X such that Reh < w 

iii) E w e o n  (8) hoh3 for all X€ A. 
io) @stem ( I )  is w-detectable. 
u) system (6), (7) is obsemble. 

statements  are e q w d e n t .  

for all AEo(A +W). 

Proof: "i)eii)"  and "iiiiiv)" follow  from  the  above  remarks, 
"iiiiv)" has been proved  in  Proposition  1 and the  implication "v)+ii)" 
is a consequence of Theorem  2.  Hence, it remains to show that ii) implies 
iii). Suppose that there  exists  some h E A and some nonzero y E C" such 
that 

A( h ) y  =0, r( e X . ) y  = 0. 

eigenvaJucs  with  real parts tcnding to - 00. Hence iii in Roposition 2 is equivalent (0 

3Note that by Theorem 2 the spcctnrm of A x  is either f~te or mnsisu of a sequcace of 

Reh<o for all h€u((AK). 

Then p=eh-yE ker(h2-A) (Hale [S, p.  169D and T(cp)=O. Hence, for 
every linear X:Cm+Z we have 

( A + x ~ ) ~ = A ~  

which  implies AEu(A +XI'). Q.E.D. 
So f a r  the observer has only  been  described as an abstract evolution 

equation in the  Banach space X. It will be helpful for the treatment of 
this equation to study the decomposition which is obtained  by  projecting 
its solutions to the  subspaces X, and X,. For this sake let z ( t ,  .) be 
given by (19). Then  it  follows  easily from Proposition 3 4  that PAz(t, .)= 
@z,(t) where z , ( t )=(* ,z ( t , . ) )  E R N  satisfies  the  differential  equation 

z,(t)=(A,+Kr@)z,(t)-Ky(t)+Y=(o)Bu(t)+Kr(z~(t)) 

z.4(0)= (Y9 +). (22) 

Here z A ( t ) = ( z - P A ) z ( t , ' ) € X A  denotes the  second  infinite  dimen- 
sional  component of the  observer. By Proposition 3i) z"(t)  is given by 

zA(t)=T(t)(l-PA)++l'T(f-S)(Z-PA)XOBU(S)dr 

=(Z-P*)w, (3) 

where w( t ) ,   t>   -h  is the solution of the original system equation (1) 
with  initial condition wo =#: 

w(t )=L(w,)+Bu( t )  

w ( T ) = + ( T ) ,  - h < r < O .  

Note  that  in its essential part the  finite-dimensional  component (22) of 
the  observer is just  the observer equation corresponding to the  reduced 
system (q, (7) with an additional term K r ( z A ( t ) )  resulting from  the 
second  component (23). Moreover, this second  component is nothing 
else than the  projection of the original system  (1) on the  complementary 
subspace X,. On this subspace  the  system (1) is stable with  exponential 
decay rate o < 0, if A = (A Ea(A)IReh > a} (see Hale [8, Section 7.4D. 

Pandolfi's control  law for the  system  (1) is of the  form 

u(t)=F(*, X f )  (24 

where F is a stabilizing matrix for  the reduced  system (6) (see [13D. 
Hence, in  the closed  loop-which  means that x, in (24) is replaced  by 
the state z ( t ,  e )  of the  observer (19) -the  above  decomposition (22), (23) 
of the  observer has the advantage that zA( t )=<Y,z ( t ,  e)) is already 
computed and can be used directly for  the calculation of the  input 
u(t)=Fz,(t) of  (1). Since in this situation we only  have to observe the 
"unstable  part" ( * , x , )  of the system (I), there arises the question 
under  which conditions the  infintedimensional part (23) of the (full- 
order)  observer  (19) can be omitted. This is only  possible, if the  output 
y , ( t ) = r @ ( Y , x , )  of the  reduced finitedimensional system (6), (7) can 
be calculated  from  the outputy( t )=r(x , )  of the original system, i.e., if 
there  exists  some real m x m  matrix D such that 

D r ( c p ) = r c p ( y , p ) ,   EX. (25) 

If such matrix D exists, then  the  system 

zd(t)=(Aa+Kr@)z,(t)-Kqy(t)+yT(0)Bu(t) (26) 

is a detector for  the  finite-dimensional  component ( Y ,   x , )  of the  system 
(1). Indeed it is easy to see that the error e,(t)=z,(t)-(*, x f )  satisfies 
the  differential equation 

i , ,n(t)=(A,+Kr@)e,(t). 

Now  let us return to  the special case of a  system  with  delays  appearing 
only in the state variable which means that r is  given  by  (10). Then (11) 
leads to another more concrete concept of the observer,  described  by a 
differential  delay  equation 

i(t)=L(z,)+Bu(t)+@(O)K[Cz(t)-y(t)] 

+/' -h  d T ( T ) ~ o ~ ( T - f f ) K [ c ~ ( t + f f ) - - Y ( t + U ) ] d U .  I (27) 
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In fact, if x ( t )  is a solution of  (1) and z ( t )  a corresponding solution of 
(29, then the error e( t )  = z( t ) -x (  t )  of this observer satisfies (1 1). Hence 
by  Corollary  1 (27) is an o-stable  observer if and only if (19) is. The 
relation between both descriptions of the observer is analyzed precisely 
in the more general setting of the author's paper [ 141. In particular, it can 
be shown that z(t,O) satisfies (27) if z(t ,  -) is defined  by (19). This 
follows also from  solving  the partial differential equation 

~ ~ Z ( ' , T ) = - Z ( ' , T ) + ~ ( T ) K [ C Z ( ~ , ~ ) - Y ( ~ ) ] + ~ O ( T ) ~ ~ ( ~ ) '  a a 
aT 

which is associated  formally  with the observer equation (19). Finally 
note that, in the special case of a  single time delay in the state variable, 
(27)  coincides  with the final description of the observer obtained by  Bhat 
and Koivo [2, eq. (20)]. 

Example I :  Consider the differential  delay  system 

Xl(t)=-xl(t-1)+X2(t) 

- k 2 ( r ) = 1 ° X 2 ( f + T ) d T  -1 (29) 

y ( t ) = x , ( t )  

which can be written in the form (l), (10)  with 

C=[1 01. 

Equation (29) is not in  the class of delay  systems for which  observer 
concepts have been developed  yet in the literature [2], [a [9l,  [12]. The 
characteristic matrix function 

A+e-' 
A( A) = [ 0 A-- A 

of (29) has a  single root A, =0.714556. - of multiplicity  1 in the closed 
right complex  half-plane. Now define ao: =Ao +e-', and let po < 0 be 
the new preassigned  eigenvalue. Then we have 

Hence, in this case the observer equation (27) is given  by 

By Theorem  2 and Corollary 1 the  observer (30) has the same spectrum 
as (29)  except A, which is replaced by p,. This follows also directly from 
the fact that the characteristic matrix function 

of (30) satisfies 
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I. INTRODUCTION 

Since Lin introduced the concept of structural controllability [ 11, there 
appeared many  papers on the subject extending Lin's single-input  results 
to the multiinput case or giving more elegant  proofs to the structural 
controllability  theorems [2]-[5]. At this point,  however, considerations in 
these researches are mainly directed to determining  whether or not a 
given  system is structurally controllable. In order for the concept to be 
utilized in synthesis,  e.g., robust synthesis of linear feedback  systems, 
more  work is needed. 

This paper aims at extending some of the  previous  results to include 
the case where  a  system is structurally uncontrollable. In such  a case, the 
controllable subspace and its dimension vary as a function of the system 
parameters. The dimension, however, is stable in the sense that it takes, 
for almost any system parameters, its maximal c o n s t a n t  value  which 
equals the generic rank of the controllability matrix. In this paper, this 
maximal constant value is called the generic  dimension of the controlla- 
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