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In this paper we introduce the concept of observability of nontrivial small solutions for neutral functional differential equations
with a single point delay and prove a matrix type criterion.
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1. Introduction

We consider the neutral functional differential equation (NFDE)
i(t1)=Ayx(t)+ A\ x(t —h)—A_,x(t—h) (N
with output
y(t)y=Cux{(1)+ Cix(t=h)+C_ox(1)+C_k(t—h) (2)

where x(+)ER", y(1)ER" and A, A,. A _,. G,. C,, C_,, C_, are real matrices of the appropriate size. It
is easy to see that the NFDE (1) admits a unique solution x € W7([—h, c0); R") for every initial
condition of the form

x(7)=9¢(7)., —h<71<0,
where p € W7 = W'?([—h,0]; R")and | <p < oo.

Small solutions

We say that x(1), t > —h, is a small solution of (1) if

lim e“'x(1)=0

{— o0
for every w > 0. This means that x(¢) tends to zero more rapidly than any exponential or equivalently its
Laplace transform is an entire function. An important fact is that every small solution of (1) vanishes after
a finite time T < (#n — 1)h — a where a > 0 is the exponential type of the entire function det(s/ — A4, —
e "4, —se "4 _,), s C. This has first been shown by Henry [1] in the retarded case and later on by
Kappel [2] for general neutral systems.

Observability of nontrivial small solutions

A small solution of (1) is said to be trivial if it vanishes for ¢ > 0. We introduce the following important
concept.
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Definition (observability of nontrivial small solutions). The nontrivial small solutions of system (1), (2) are
said to be observable if every nontrivial small solution has a nonzero output for some ¢ > 0. This means that
the solutions of (1), (2) have the following property for any 7 > 0:

(x(t)=0Vi=T,p(t)=0Vr=>0) = (x(1)=0Vr>0).

Such a concept has previously not been considered in the literature on control systems with delays
except in Salamon [11]. However, it has turned out to provide a crucial tool for the study of controllability
and observability properties of neutral systems as well as for the derivation of matrix type criteria for
completeness and F-completeness of eigenfunctions (Salamon [11]). In particular, the above property is
precisely the ‘gap’ between final observability (i.e. y(t)=0 implies x(+)=0 V¢ > T) and the stronger
concept of observability in the sense

(p()=0V:20) = (x(1)=0Vr>0).

The latter concept plays an important role in the control theory of functional differential systems (see e.g.
Lee [4], Kwong [3], Lee-Olbrot [5], Olbrot [8,9], Manitius [7]). However, a satisfactory characterization of
this property has only recently been given by Manitius [7] for retarded systems with undelayed output
variables. Our result below allows a generalization of his criterion to neutral systems with output delays.
This generalization will not be worked out here since it needs a lot of state space theory and would lead too
far for this paper. The interested reader is refered to Salamon [11].

Note that Olbrot [9] has a different concept of final observability namely that p(1)=0 for O<t<T
implies x(7') = 0. However, in the retarded case it has been shown in [9] that these two definitions coincide
if T is sufficiently large. For neutral systems, this equivalence is a consequence of Salamon [11, Lemma
IV.1.10]. Again in the case that T is sufficiently large, it has been shown in Salamon [11, Theorem IV.1.11]
that final observability is equivalent to spectral observability and hence can be characterized by the matrix
type condition

A —Ag—e M4, —re ™4 _,

rank A N
Co+e ™ MC,+AC_y+Are™MC_,

=n VAeC. (3)

2. The main result

Theorem. The nontrivial small solutions of system (1), (2) are observable if and only if

Ag— N A +NA_,

A 0 . JAra, .
oot c A, G +AC,, | T TTREER™  +aC (4)
C, +AC_, 0

Proof. Let us introduce the matrices

Ao — A1 A +AA_, Co+AC_, C,+AC_,
AN = A +AA_, 0 . )= C, +AC_, 0
and define
A(N) A +AA

s k = maxrank
AeC

K = maxrank
AeC

c(A) C,+AC_,
Then K is always less than or equal to n + k.
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Necessity

Suppose that K < n + k. Then we prove in three steps that there exists a nontrivial small solution of (1),
(2) with zero output.

Step 1. The exist polynomials

p(A)= ; N, g(A)=) gN

j=0

in R"[A] such that p(A)= 0 and

p(X)) (p(K))
A(A =0, C(A =0 vieC. 5
( )(q(x) Mo )
Proof. Let M(A) and N(A) be unimodular matrices of appropriate size such that
[ a,(7) 0 ... 0]
A(N) ag(A) 0 ... 0
M(A N(A)= K
(){C(}\) ) 0 ... 0 0 ... 0
D

is in Smith-form. Then the last 2n — K columns
(pf (A)
q’(X)

of N(A) satisfy (5). Now suppose that the polynomials p/(A) vanish identically. Then the g/(A) are linearly

independent (for every A € C) and satisfy [4, + A4 _,]¢g/(A)=0 as well as [C, + AC_,]¢’(A)=0. This
implies that

), J=K+1,...,2n,

A +AA_,

C,+AC_, <sn—-02n—-K)=K-n<k

max rank
AeC

which is a contradiction. DO

Step 2. Let us define p;=¢,=0forj € Z and j & (0,..., /). Then the following equations hold for all j € Z:

Aopjsr =P+ Aq, +Aq,=0, (6.1)
A pjsr—A_p;=0, (6.2)
CoPjs1 ¥ Copi+Cig, +C_1q,=0, (6.3)
CiptC_p=0. (6.4)

Proof. These equations follow from (5) by comparison of the coefficients. In particular, the following
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equation holds:

0=[A,—AI]p(A)+[A, +24_ ]q(N)

/ !
= Z (A0P1+A1q/)>"/+ Z (A—lqj’_P,))‘jH
/=0 j=0

I+1

= Z (AOP,_Pj—l +A1‘1]'+A—|q,—l)}"l~
j=0

This proves (6.1). The equations (6.2-6.4) can be established analogously. O
Step 3. The function

1+1 J
t/ (t—h)
El ‘1/+1—_/j_!+l’/+l—,/j—! . —h<i<0,
x(1)={( 1+ J
t—}
P/+|—,% O<rtr<h,
Jj=1 J:
0, h<t< oo,

defines a nontrivial small solution of (1), (2) with zero output.

Proof. First note that x(r) does not vanish identically for 0 << 4 since p(A) is a nonzero polynomial.
Secondly, it is easy to see that x(r) is absolutely continuous for 7> —h. Finally, it can be proved
straightforwardly — by the use of (6) — that x(t) satisfies the NFDE (1) for almost every 7 > 0 and that the
output y(¢) — given by (2) - vanishes for r > 0. We will only show that (1) holds for 0 < ¢ < A.

I+1 _ 7
()= P/—/(t-_h)
j=0

J!
I+1 oI+ /
(1—h) (1=2h)
= Z(A()P/Hﬁ+A1‘1/+|—/+A—|‘Z/—/) ! + Z(A1P1+|—_,+A—|P/—_,) 7
j=0 : j=0 '

=Agx(t)+Ax(t—h)+A_,x(t—h), O0<t<h. =]

Sufficiency

Suppose that K =n+ k and let x(¢), 1 > —h, be a solution of (1), (2) such that x(¢+)=0 for > h and
y(1)=0 for t > 0. Then we prove in four steps that x(7)=0 for ¢t > 0.

Making use of this fact one can easily show by induction that the nontrivial small solutions of system
(1), (2) are observable.

Step 1. The complex functions

£(0) = ["eMx(r)dr, E(M) = [FeMe(r—m)ar, rec.
0 0

satisfy the equation

Ag— A A +AA_, A_x(=h)-x(0)
A +AA_, 0 2N A_,x(0) _ (7
Co+AC_y, C,+AC_, (é(;\))_ C_ox(0)+C_,x(—h) - )

C,+AC_, 0 C_,x(0)
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Proof. For every A € C we have

[4, +AA,,]f(>\)=f"e-*'A,x(r) dz+f">\e-xA_lx(z) di
0 0
=fhe""(A,x(1)+A_,Jt(1)) di+A_,x(0)

—f Mx(r+h)—Agx(r+h))dt+ A_,x(0)
=A_,x(0),
[Ay = AI]&(A)+[A4, +X4_,]#(N)

=fhe_’“(A(,x(1)+A,x(r—h)) dl+/.h}\e_>"(A_lx(t—h)—x(l)) ds
0 0

(A +aa ] [Mex (- ) di
/he_)" (Agx(0)+A,x(1=h)+A_ (1= h)—i(1)) dr
0

—e M4 _x(0)+A_,x(—=h)—x(0)+[A, +AA_ Je ME(N)
=A_,x(—h)—x(0).
The remaining equations in (7) can be proved analogously. O

Step 2. There exist matrices A4,(A)€ R"**[A] and C(A)€ R"**[A] such that

Ay - Al A,(N)

‘ A +AA_, 0 N ()
e M qere, oyt TTE

| G +AC_, 0
maxrank’Al()\) =k (9)
Aec | Ci(X)

and for almost every A € C

A+rd_ ] A, (N) (10)

range C,+AC_, = range |

Proof. By assumption the rank of the matrix [£{3")] is equal to n + k for some A, € C. Hence this matrix
has n + k linearly independent columns. Precisely & of these are contained in the right (21 + 2m) X n-block
of this matrix which is given by
A +A A,
0
C,+A,C_,
0

Now let the matrices A,(A), C,(\) consist of the corresponding columns of 4, +AA |, C; +AC_,. Then
A,(A) and C,(A) have the desired properties. 0O

Step 3. There exists a rational matrix T(A)€ R**"(X) such that
A +AA_ =4, (MT(X),  C,+AC_, = C(A)T(A) (1)
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for almost every A € C.

Proof. By (9), there exist matrices A, € R"<("*" =% and C, € R”>"*"~*) such that

A(X) A
A A (12)
() G
Now let T(A) € R¥*"(X), R(A\) € R"*m~%Xn(X) be defined by
[T | _[4N) A7 A+ A4
RN [N 6] [G+Aac, |
Then
[A4,(N) A, A +AA_,
T(A)+ R(A)= .
EXES ) R oY AR R Yl
By (10), this implies
AZ AI()‘) [AZ]
range R(A) Crange Nrange
g[cl] ( ) & CI(A) 8 G

for almost every A € C. Hence it follows from (12) that A,R(A)=0and C,R(A)=0. O
Step 4. x(¢)=0 fort > 0.

Proof. By (8), there exist unimodular matrices M(X), N(X) of appropriate size such that

a,(>\)
Ay — AT A(N) .
A +AA_, 0 a,, ()
M()) N(\)= nek
Co+AC_y, Ci(A) 0 ... 0
C,+AC_, 0 : :
| 0 ... O |

is in Smith-form where all the a;(A) are nonzero polynomials. Now let M(\) consist of the upper n+ k
rows of M(A). Then we have

[ a(0)”" T A=A A4,(N)

N(A) . oo At 0,
: Co+AC_, C,(A)| ™~
an+k(A)_|_ C|+)\C_l O

By (7) and (11), this implies
o (A)7

N(A) M(A)x=(T(§§;2A))
an+k(>\)—l_

Now recall that by definition £(A) is an entire function which is square integrable on the imaginary axis.
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Moreover, the left-hand side of the above equation shows that £(A) is a rational function and thus of
exponential growth zero. This means that for any & > 0 there exists an M > 0 such that |£())| < Me®™ for
every A € C. Hence it follows from a theorem of Paley and Wiener (see e.g. Rudin [10, Theorem 19.3]) that
x(t) vanishes for r > 0. O

Remarks. (i) The criterion of the previous theorem can be generalized to systems with commensurable
delays, but we will not do this here. In a more general situation the derivation of an analogous result seems
to be a hard problem.

(ii) For retarded systems with undelayed output variables (i.e. A_, =0 and C_,=C,=C_,)=0) the
criterion of the theorem above reduces to

Ao - M A,
rank| A4, 0 | =n+ rank 4, (13)
G, 0

for some A € C. This is precisely the transposed version of a necessary condition for F-controllability which
has been derived by Manitius [7].
(ii1) System (1) has only trivial small solutions iff

g AoTA A K[A, + A _,] (14)
max ran A +MA 0 = n + maxrank( 4, 1l

This follows from the theorem above in the case G;=C,=C_,=C_, =0.
(iv) Note that (14) is a generalization of the necessary and sufficient condition for F-completeness which
has been derived by Manitius [6] in the retarded case (4_, = 0).

Examples. (1) The scalar n-th order differential-difference equation

n—1

(1) = T a0+ 3 B e h) (15)
=0 j=0
can be rewritten as an n-dimensional system of the form (1). It is easy to see that the corresponding
matrices Ay, A,, A _, satisfy condition (14). Hence the solutions of (15) have the property
(z(1)=0Ve>T) = (z(t)=0 Vt>0).
(i) The two-dimensional system
x()=x(t=h)=3,(t —h), &,(1)=x/(1), (16)
is described by the matrices
e T T O A )

These matrices do not satisfy (14) since

A 0 1 =A
-1 A O 0l_
rank 1 -\ 0 0 =2 VAEeC.
0 0 0 0

Hence system (16) has nontrivial small solutions. These are not observable through the output
y(t)=x,(1) = x,(1). (17)
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I(t,x)

-
=P

Ro R4

Ult,x) Us (t)

LO L1 C1

Ios(t I4(t)

Fig. |

However, they are observable if the output is given by
y()=x(t—h)—i,(1 = h). (18)
(1) For the transposed system
B ()=x(t—h)+x,(t), x,(t)=—x(1—h), (19)
condition (14) fails too. The nontrivial small solutions of (19) are observable through the output
y(t)=c,x,(t)+csx,(1) (20)

whenever ¢, = 0. In fact, in this case we have

A =1 1 0
0 A -x 0
rank 1 0 0 0|=3 vAaeC.
-A 0 0 0
< Cy 0 O

with boundary conditions

U(t,0)=Uy(t) = RoI(1,0),  U(t,1)=U (1) +R,I(1,1), (22.1)
Up(1) = = Lodo(1), Ui(1)=L,1,(1), (22.2)
I(t,0)—Iy(t)= =Cliy (1),  I(t,1)=1,(1)=CU\r1). (22.3)

Integrating the PDE (21) we obtain

x (t)y=VCU(t,0) +VLI(t,0)=YCU(t+h, 1) +VLI(t+h. 1),
x,(1)=VCU(t, 1) =VLI(1,1)=VCU(t + h,0)—VLI{t+h,0),

where h = YCL . Now let us introduce the variables x,(6)= 2L I(1), x ()= 2L I,(t). Then the boundary
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conditions (22) lead to an NFDE of the form (1). The corresponding matrices are given by

—Qy 0 gy O O Qg 0 0 0 a, 0 0
0 -a 0 —a a 0 0 0
A, = 1 H, A, = 1 ’ A, =|% 0 0 0 ’
—a, 0 0 0 0 aa, 0 O 0O 0 0 O
0 a; O 0 —azs O 0 0 o 0 o0 o
where

\/; 1 =R0\/—C_‘+\/Z _Ro\/—E_\/z

O, = =, « o _—
Gy RyC +VL : Lo/C * RWC +VL
\/E 1 _Rl\/E+‘/Z R]\/—C:_\/z

a, = —_— Y, a, = . a —_— Y .
' C RYC+VL ? Ly/C > RYC +VL

In general, these matrices satisfy condition (14) and hence the corresponding neutral system has only trivial
small solutions.
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