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In this paper we introduce the concept of observability of nontrivial small solutions for neutral functional differential equations 
with a single point delay and prove a matrix type criterion. 
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I. Introduction 

We cons ider  the neutral  funct ional  d i f ferent ia l  equat ion  ( N F D E )  

= Aox( t )  + A , x ( t -  h) (1) 

with ou tpu t  

y ( t ) = C o x ( t ) + C , x ( t - h ) + C _ o J C ( t ) + C  1 ± ( t - h )  (2) 

w h e r e x ( t ) e  R " , y ( t ) e  R'" and A o, A~, A _ , ,  C o , C,, C_o, C_ ,  are real matr ices  of the app rop r i a t e  size. It 
is easy to see that  the N F D E  (1) admits  a unique solut ion x e  W , ' ; P ( [ - h ,  oo); R " )  for every initial 
cond i t ion  of the form 

x(~-) = ,p(~') ,  - h  ~ ~'~< O, 

where  ~ W I'p = w l ' p ( [ - h ,  0]; R") and 1 < p  < oo. 

Smal l  solutions 

We say that  x ( t ) ,  t >~ - h ,  is a small solution of (1) if 

lira e ~ ' x ( t )  = 0 
f ~ O O  

for every w >/0. This means  that  x ( t )  tends to zero more  rapidly  than any exponent ia l  or  equivalent ly  its 
Laplace  t ransform is an entire function.  An impor t an t  fact is that  every small  solut ion of (1) vanishes after  
a finite t ime T~< ( n -  1 ) h - a  where a >/0 is the exponent ia l  type of the entire funct ion d e t ( s l - A  0 -  
e - "hA e - "hA - - s  _~), s ~ C .  This has first been shown by Henry  [1] in the re tarded  case and later  on by 
K a p p e l  [2] for general  neutra l  systems. 

Observability of  nontrivial small solutions 

A small  solut ion of  (1) is said to be trivial if it vanishes for t >/0. We in t roduce  the following impor tan t  

concept .  
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Definition (observability of nontrivial small solutions). The nontrivial small solutions of system (1), (2) are 
said to be observable if every nontrivial small solution has a nonzero output for some t >/0. This means that 
the solutions of (1), (2) have the following property for any T>~ 0: 

( x ( t ) = 0  Vt>~ r ,y ( t )=O Vt>~O) = ( x ( t ) = 0  V t ~ 0 ) .  

Such a concept has previously not been considered in the literature on control systems with delays 
except in Salamon [1 1]. However, it has turned out to provide a crucial tool for the study of controllability 
and observability properties of neutral systems as well as for the derivation of matrix type criteria for 
completeness and F-completeness of eigenfunctions (Salamon [1 1]). In particular, the above property is 
precisely the 'gap' between final observability (i.e. y(t)= 0 implies x(t)= 0 Vt >1 T) and the stronger 
concept of observability in the sense 

( y ( t ) = 0  Vt>f0) = ( x ( t ) = 0  Vt>~0). 

The latter concept plays an important role in the control theory of functional differential systems (see e.g. 
Lee [4], Kwong [3], Lee-Olbrot  [5], Olbrot [8,9], Manitius [7]). However, a satisfactory characterization of 
this property has only recently been given by Manitius [7] for retarded systems with undelayed output 
variables. Our result below allows a generalization of his criterion to neutral systems with output delays. 
This generalization will not be worked out here since it needs a lot of state space theory and would lead too 
far for this paper. The interested reader is refered to Salamon [1 1]. 

Note that Olbrot [9] has a different concept of final observability namely that y ( t )  = 0 for 0 ~< t ~< T 
implies x(T)= 0. However, in the retarded case it has been shown in [9] that these two definitions coincide 
if T is sufficiently large. For neutral systems, this equivalence is a consequence of Salamon [1 1, Lemma 
IV.I.10]. Again in the case that T is sufficiently large, it has been shown in Salamon [1 1, Theorem IV.I.I 1] 
that final observability is equivalent to spectral observability and hence can be characterized by the matrix 
type condition 

XI - A o - e -  XJ'A i - )ke-XhA _ ] ] 
rank = n  V ) t ~ C .  l C O + e-XhCi + XC_ o + Xe-XhC_ 

(3) 

2. The main result 

Theorem. The nontrivial small solutions of system (1), (2) are observable if and only if 

Ao_?~l A I + x A _ I  

max rank Ai + ~ A - t  0 
x~c [ C O + XC_ o C~ + XC_ 

[ C~ +XC_~ 0 

:n+maxrankIA :] 
x~c [ C~ + XC " 

Proof. Let us introduce the matrices 

Ao_?~i AI+XA- t ]  
A ( X ) =  A t + X A  I 0 ' 

[C0+?~C_0 C ~ + X C _ , ]  
C ( X ) =  C,+XC_~ 0 

and define 

XeC ~k ' 
k = max rank [ A i + X A _ t ] 

x~c [ C j + X C  ~ J 

Then K is always less than or equal to n + k. 

(4) 
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Necessity 

Suppose that K < n + k. Then we prove in three steps that there exists a nontrivial small solution of (1), 
(2) with zero output. 

Step 1. The exist polynomials 

/ / 

p ( ~ )  = ~ pjM,  q ( X )  = E q jM 
j = 0  j = 0  

in R"[~,] such that p ( X ) ~  0 and 

) ( P ( h ) I  ( P ( ~ ' ) )  = 0  A(X ~ q ( ) ~ ) ] = 0 ,  C(~,) q()k) ux c .  (5) 

Proof Let M(~,) and N(~.) be unimodular matrices of appropriate size such that 

a , ( , ~ )  0 . . .  0 

M(X) N ( X ) =  0 .. .  0 0 . . .  0 

0 ... 0 0 ... 0 

is in Smith-form. Then the last 2n - K columns 

pJ(X)) 
qJ(X)  ' j = K +  1 . . . . .  2n,  

of N(~,) satisfy (5). Now suppose that the polynomials pJ(~)  vanish identically. Then the q J( ~k ) are linearly 
independent (for every ~, ~ C) and satisfy [A t + ~A ~]qJ(h) = - 0 as well as [C~ + ~ C  L]qJ(~,) - 0. This 
implies that 

rank[AJ + ~ A _ , ]  maxx~c [ C I + X C _ ~  < ~ n - ( 2 n - K ) = K - n < k  

which is a contradiction. [] 

Step 2. Let us define pj = q j = 0 fo r j  ~ Z a n d j  ~ (0 . . . . .  l). Then the following equations hold for a l l j  ~ ~': 

AoPj+ t -- pj + Aiq/+ t + A _ lqj = O, 

Atpj+ j - A _ j p j = O ,  

Copj+ t + C-op j  + Ciqj+ ~ + C_ ~% = O, 

Cipj+l + C _ t p j = O .  

(6.]) 
(6.2) 
(6.3) 
(6.4) 

Proof These equations follow from (5) by comparison of the coefficients. In particular, the following 
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equation holds: 

O = [ A o - X I ] p ( X ) + [ A  I + XA_I]q(X) 
/ I 

= E (Aop:+A,qj)M+ E ( A - , q j - P j )  M+' 
j=0 j=o 

/ + 1  

= ~_. (Aop:-Pj- ,  +Aiqj+A_,q:_t)X'.  
j=o 

This proves (6.1). The equations (6.2-6.4) can be established analogously. 

Step 3. The function 

/~1 ( t :  
q/+ 1 -j j--~. + P/+ I - : - -  

j= l  

x(t )=  I+, ( t - h i :  
~] P/+ I - ,  j !  

j= l  

,0, 

j! - h ~ t < O ,  

O<~t<h, 

h <~ t < oo, 

[] 

defines a nontrivial small solution of (1), (2) with zero output.  

Proof First note that x(t) does not vanish identically for 0 ~< t ~< h since p ( h )  is a nonzero polynomial .  
Secondly, it is easy to see that x(t) is absolutely cont inuous for t > ~ - h .  Finally, it can be proved 
straightforwardly - by the use of (6) - that x(t) satisfies the N F D E  (I)  for almost every t >/0 and that the 
output  y ( t )  - given by (2) - vanishes for t >/0. We will only show that (1) holds for 0 < t < h. 

I+l ( t - h ) '  
, (  t ) = F_, p,-j  j! 

j=0 

I+1 th)~ / + ]  , 
= 2 (Aop ,+, - j+A,q ,+, - j+A- tq , - j ) ( t~  + • (A ,P,+, - ,+A- tP, - j )  ( t - 2 h )  

j=o • j=o )~ 

= A o x ( t ) + A , x ( t - h ) + A _ , i c ( t - h  ), 0 < t < h .  [] 

Sufficiency 

Suppose that K =  n + k and let x( t ) ,  t >/ - h ,  be a solution of (1), (2) such that x(t)= 0 for t >/h and 
y(t) = 0 for t >/0. Then we prove in four steps that x(t) = 0 for t >/0. 

Making use of this fact one can easily show by induction that the nontrivial small solutions of system 
(1), (2) are observable. 

Step 1. The complex functions 

.~(h)= fohe-a'x(t)dt, 7c(h 

satisfy the equation 

A o - X l  A I + X A _ l  

A~ + X A _ ~  0 

Co + ~C_o C~ + ?~C_ t 

Ct + ?~C ~ 0 

= fo2he-X'x(t  - h ) d t .  heC, 

~ ( x ) )  = 
x(X) 

A _ , x ( - h ) - x ( O )  

A_,x(O) 

C_ox(O) + C_,x( -h)  
C_tx(O) 

=:  x. (7) 
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Proof For every X ~ C we have 

_ rh x, fohXe-X'A_ix(t) dt [ A , + X A  , ] .~ (X l=Joe-  A,x(t ldt+ 

= fo/'e-X'( A ,x (  t ) + A _ ,k( t ) ) dt + A ,x(O) 

=fohe-a'(k(t+h)-Aox(t+h)) dt+A ,x(O) 

=A_,x(0), 
[A o - ~./].~(X) + [A, + XA_,] .~(X) 

=fo  Lh~e X ' ( A _ , x ( t - h  - x ( t ) ) d t  he-X'(Aox(t)+A,x(t-h)) d t +  - 

: 2 h  - a t  
+ [A, +XA_,]Jh e x ( t - h )  dt 

= e-X'(Aox(t)+A,x(t-h)+A ,.~(t-h/-.~(t))dt 
--e-XhA_,x(0) + A _ , x ( - h ) -  x(0) + [A, + A.A_,]e-Xh.f(X) 

= A _ , x ( - h ) - x ( O ) .  

The remaining equations in (7) can be proved analogously. [] 

Step 2. There exist matrices AI(X)~ R"×k[X] and C~(X)~ ~ .... k[X] such that 

A o - X I  
Al + X A _ I  

max rank 
x~c Co + XC_o 

C~ +XC ~ 

A,(X)] 
max rank = k 
x~c C,(X) 

and for almost every ~. ~ C 

A,(X) 
0 

= n + k ,  
c,(x) 

0 

[A+ A ] 
range C I + X C  i = range  Ct(A-) " 

July 1983 

( 8 )  

(9) 

(10) 

Proof By assumption the rank of the matrix rA(X")l is equal to n + k for some k .  ~ C. Hence this matrix tC(~o)J 
has n + k linearly independent columns. Precisely k of these are contained in the right (2n + 2m) x n-block 
of this matrix which is given by 

Ai +XoA_l  

0 
C~ + X 0 C  i 

0 

Now let the matricesAl(X), CI(X) consist of the corresponding columns ofA I +XA i, CI + ~ C - I -  Then 
AI(X ) and Cl(~. ) have the desired properties. [] 

Step 3. There exists a rational matrix T(~.)E [~k×"(X) such that 

A , + ~ A _ t = A , ( X ) T ( ~ ) ,  C , + ~ . C _ , = C , ( X ) T ( X )  (11) 
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for almost every X ~ C. 

Proof By (9), there'exist matrices A 2 ~ R "x("+''-k) and C 2 E R ' 'x( '+' '-k) such that 

det A~(X) ~ 0. 
c,(x) c2 

Now let T(X)~ Rk×"()~), R(X)~ R("+"-klx"(X) be defined by 

[ [ A2][+ T(X) ]=  A,()~) - '  At XA_,] 
R(A)] C,(X) C2 C,+XC_, ]" 

Then 

A,(X 
C,(~ ]T(X) 

By (10), this implies 

A2 
range[ C2 ] R()~) 

for almost every X 

+xc:, j' 

c ran e[A n ran e[ :] 
C. Hence it follows from (12) that A2R(~. ) = 0 and C2R(X)=-O. [] 

(12) 

Step 4. x ( t ) = 0  fort>~0. 

Proof By (8), there exist unimodular matrices M(X), N(X) of appropriate size such that 

Ao_X I AI(X) 
I Aj + XA_~ 0 

M(X) I Co+XC o C,(X) 
Lc,+xc:, o 

N(X)= 

,~,(x) 

,~,,+k(x) 
. . .  0 

... 0 

is in Smith-form where all the aj(X) are nonzero polynomials. Now let ~/(X) consist of the upper n + k 
rows of M(X). Then we have 

N(X)[ a'(X 

-i 

] ..I / A  t + ~ A _  I 

M(X)/Co+XC o 

By (7) and (11), this implies 

N(X) I 

~,(X) -~ 

,~.+,(X)-' 
Xt(X)X=(T(X)x(X)) 

Now recall that by definition 2(X) is an entire function which is square integrable on the imaginary axis. 
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Moreover,  the left..hand side of  the above equation shows that .~(X) is a rational function and thus of 
exponential  growth zero. This means that for any e > 0 there exists an M > 0 such that I~(h)[ ~< Me EIxl for 
every )t E C. Hence it follows from a theorem of Paley and Wiener (see e.g. Rudin [10, Theorem 19.3]) that 
x ( t )  vanishes for t >/0. [] 

Remarks.  (i) The criterion of the previous theorem can be generalized to systems with commensurable  
delays, but we will not  do  this here. In a more general situation the derivation of an analogous result seems 
to be a hard problem. 

(ii) For retarded systems with undelayed output  variables (i.e. A_  ~ = 0 and C 0 = C~ = C_ t ) =  O) the 
criterion of  the theorem above reduces to 

A o -  )tI A t 
rank A I 0 = n + r a n k A  I (13) 

L Co 0 

for some )t ~ C. This is precisely the transposed version of  a necessary condit ion for F-controllabili ty which 
has been derived by Manitius [7]. 

(iii) System (1) has only trivial small solutions iff 

[ A o - X I  At + X A - t ]  
m a x r a n k  = n + m a x r a n k [ A ,  + h A  t]. (14) 
x~c [ A I +hA_  t 0 x~c  - 

This follows from the theorem above in the case C O = C t = C_ 0 = C_ ~ = 0. 
(iv) Note  that (14) is a generalization of the necessary and sufficient condit ion for F-completeness which 

has been derived by Manitius [6] in the retarded case (A _ t = 0). 

Examples. (i) The scalar n-th order differential-difference equation 

n - - I  

z ' " ' ( t ) =  E ajz'J)(t) + ~ f l j z ' J ' ( t -h )  (15) 
j=0 j=o 

can be rewritten as an n-dimensional system of the form (1). It is easy to see that the corresponding 
matrices A o, A~, A _ ~ satisfy condit ion (14). Hence the solutions of  (15) have the property 

( z ( t )=o  v t> l r )  = ( z ( t )=o  vt o). 

(ii) The two-dimensional system 

~ ( t ) = x , ( t - h ) - ~ 2 ( t - h ) ,  ic2( t )=x,( t ) ,  (16) 

is described by the matrices 

0] 
These matrices do not  satisfy (14) since 

)t 0 1 - X  

rank - 1  X 0 0 = 2  V X ~ C .  
1 - k  0 0 
0 0 0 0 

Hence system (16) has nontrivial small solutions. These are not observable through the output  

y( t )  = x , ( t ) - J c 2 ( t  ). (17) 
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o 1 x 

Fig. 1 

However, they are observable if the output is given by 

y( t )  = x , ( t -  h ) - . i ' 2 ( t -  h).  

(iii) For the transposed system 

k l ( t ) = x , ( t - h ) + x 2 ( t ) ,  k 2 ( t ) =  - S c t ( / - h  ), 

condition (14) fails too. The nontrivial small solutions of (19) are observable through the output 

y( t ) = c,x,( t ) + c2x2( t ) 

whenever c 2 * 0. In fact, in this case we have 

X - 1  1 0 
0 X - X  0 

rank 1 0 0 0 = 3  V X ~ C .  
- X  0 0 0 

c~ c 2 0 0 

(iv) The lossless transmission line shown in Figure 1 can be described by the hyperbolic P D E  

3U 3L 31 3U 
3x L 3t ' 3x C 3t " 

with boundary conditions 

(18) 

(19) 

(20) 

(21) 

98 

U ( t , O ) = U o ( t ) - R o l ( t , O  ), U(t, 1 ) = U , ( t ) + R t l ( t ,  1), (22.1) 

U o ( t ) =  -Lo'Io(t ), Ut ( t )=L, ' l , ( t ) ,  (22.2) 

I ( t , O ) - I o ( t ) =  -Co~Jo(t ), I(t ,  l ) - I , ( t ) = C , t J , ( t ) .  (22.3) 

Integrating the P D E  (21)  we obtain 

x , ( t ) =  v/-C U(t, O) + v/-L l( t ,  O)=TtC U(t + h, 1) + ~/Ll(t + h, 1), 

x2(t)=~/C U(t, l ) - v ~ I ( t ,  1 ) = f C  U(t + h, O ) - v ~ l ( t  + h, O), 

where h = c¢'CL. Now let us introduce the variables x j ( t ) =  2~/L 10(t), x4(t)  = 2V~ 1,(t). Then the boundary 
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conditions (22) lead to an N F D E  of the form (1). The corresponding matrices are given by 

where 

- - a  o 0 

0 --0¢ I 
A o =  

--H2 0 

0 a 3 

a 0 0 

0 --O/I 

0 0 

0 0 

Al= 

0 a 0 0 0 

a t 0 0 0 

0 a20t 4 0 0 

- a 3 a  5 0 0 0 

¢~ 1 Ro¢- (+  CL R o ~  - (L 
ol 2 ~. Co RoVtC + v I t  ' °12 - Lo l ~  °14 Roy[- ~ + ~/ t  ' 

( 6  1 R,¢-C + ¢~ R , ~  - CL 
a l -  Cj RIvCC + v/-L ' a3= LI~/C ' a s -  R j v ~  + v~ " 

l 0 40 1 a 5 0 0 
A _ , =  0 0 0 ' 

0 0 0 

In general, these matrices satisfy condition (14) and hence the corresponding neutral system has only trivial 
small solutions. 
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