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Abstract. The Conley index of an isolated invariant set is defined only for flows;
we construct an analogue called the ‘shape index’ for discrete dynamical systems.
It is the shape of the one-point compactification of the unstable manifold of the
isolated invariant set in a certain topology which we call its ‘intrinsic’ topology (to
distinguish it from the ‘extrinsic’ topology which it inherits from the ambient space).
Like the Conley index, it is invariant under continuation. A key point is the
construction of a certain ‘index category’ associated with the isolated invariant set;
this construction works equally well for flows or discrete time systems, and its
properties imply the basic properties of both the Conley index and the shape index.

0. Introduction
The homotopy index developed over the years by C. C. Conley and his students
has been justly termed the Conley index. Although virtually all of Conley’s students
had some part in the development of the theory of this index, the version closest
to the one we present here first appeared in the thesis of Kurland (published as
[6]). Recent expositions appear in [1], [2], [9] and [11].

The basic theory of the Conley index may be summarized as follows:

(1) The Conley index of an isolated invariant set of a flow is independent of the
index pair used to define it. '
(2) The Conley index is invariant under continuation.

(Definitions will be given in the sequel.) We shall prove the following analogue
which works equally well for discrete time dynamical systems and flows:

(1) The intrinsic topology of the unstable manifold of an isolated invariant set
of a dynamical system is independent of the index pair used to define it.

{2) The shape of the one-point compactification of this unstable manifold is
invariant under continuation.

The main ingredient of the proof is the construction of maps
f;ia :N,/L,> Np/Lp

associated to pairs of index pairs (N,, L,) and (N, Lg) and non-negative times ¢,
and satisfying the identity

S t s+
[ =
B fﬁa ya °
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This determines a category which we call the index category of the invariant set.

The idea of the Conley index goes back to Morse and Smale. Morse showed that
the topology of the sublevel sets of a smooth function changed when the level moved
through a critical level and thereby proved his inequalities relating the Betti numbers
of the manifold and the indices of the critical points. Smale [10] defined certain
dynamical systems (axiom A and no cycles), showed they admitted ‘filtrations’
analogous to the filtration of a manifold by the sublevel sets of a Morse function
and thereby extended Morse theory from gradient dynamical systems to a vastly
more general class. The monograph [4] summarizes some of the fruits of this line
of thinking.

Conley and his students made the following two essential contributions to all
this. Firstly, they showed that the theory could be applied to any isolated invariant
set, not just hyperbolic ones. Secondly, they ‘localized’ the theory in the sense that
the index pair (N, L) need not consist of adjacent levels of a filtration, i.e. one need
not assume that orbits which leave a neighbourhood of the invariant set never return.
(Invariant sets which do have this property Conley termed ‘Morse sets’.) Conley
also suggested to us the idea that the analogue for discrete dynamical systems of
the cohomology index should be the direct limit.

1. Notation and terminology
Throughout M denotes a compact smooth manifold (although many of our argu-

ments work on a locally compact metric space). By a dynamical system on M we
mean a smooth homomorphism of groups

T->Diff (M):t>f
from the additive group T into the group Diff (M) of diffeomorphisms from M
onto itself. We consider two cases simultaneously: discrete time T =Z so that
feDiff (M) and f* denotes the tth iterate of f, and continuous time T =R so that
f is a flow. In the continuous time case the smoothness hypothesis means that the

evaluation map Rx M - M :(t, x)— f'(x) is smooth (C'). In the continuous time
case we call the vector field ve Z(M) defined by

v(x) =%f‘(x) e .M

0
the infinitesimal generator of f.
If Jo T and X = M, we write f’(X) where some authors write X - J:
(X)={f"(x):teJ, xe X}.
When x € M, define £ (x) = f({x}). In the discrete time case (T =Z), if J<R, the
notation is understood as if J were replaced by JnZ: f/(X)=f'"%(X); thus
fP(x) ={f*(x), f*(x)} when T=Z.
We denote by T the non-negative elements of T; thus R =[0,00) and Z*=Zn
R* =N, the natural numbers.
If (N, L) is a compact pairin M (i.e. if Lc N M and L and N are compact),
then we denote by N/L the space which results from N when the elements of L
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are identified to a point. More precisely,

N/L=N\Lu{x*},
where the topology is chosen so that the projection map N - N/L (which is the
identity on N\L and sends L to *) is continuous and restricts to a homeomorphism
from N\L onto N/L\{*}. We shall not distinguish between the subset N\L of M
and the subset N/L\{*} of N/L. Note that N/ is obtained from N by adjoining
a single (isolated) point: N/ = Nu{*}.

We denote by cl (V), int (V) and a(V) respectively the closure, interior and
(set-theoretic) boundary of a subset V of M. The reader should take care to
distinguish two similar notations with different meanings: N\L (set-theoretic
difference) and N/L (smash L to the base point). The notation

f~g
shall mean that the maps f and g are homotopic and [ X] denotes the homotopy
type of the space X, i.e.
[X]=[Y]

if and only if X and Y are homotopy equivalent.

2. An overview of shape theory

Shape theory was invented by Borsuk; our main reference is [7]. An older reference
explaining inverse and direct systems and their limits is [3]. The definitions (given
below) are arranged so that the following theorems are true.

THEOREM 2.1. Every compact metric space X is homeomorphic to an inverse limit of
polyhedra lim (P, p).

THEOREM 2.2. The inverse system of polyhedra converging to X is unique in the
Sollowing sense. If (P, p) and (Q, q) are inverse systems whose spaces are polyhedra
(or even homotopy polyhedra) and if lim (P, p) and lim (Q, q) are homeomorphic (or
even only homotopy equivalent), then the inverse systems (P, p) and (Q, q) are shape
equivalent.

THEOREM 2.3. Let F be an algebraic functor as described below. Then any shape
equivalence between (P,p) and (Q,q) induces an isomorphism between
lim (F(P), F(p)) and lim (F(Q), F(q)), where lim denotes the inverse limit if the
Junctor F is covariant and the direct limit if it is contravariant.

Definition 2.4. We say that compact metric spaces X and Y have the same shape
and write

Sh(X)=Sh(Y)

if and only if there are inverse systems of polyhedra (P, p) and (Q, q) where X is
homeomorphic to lim (P, p), Y is homeomorphic to lim (Q, g), with (P, p) and
(Q, g) shape equivalent.

Theorems 2.1 and 2.2 assure that this definition is meaningful and theorem 2.3
says that the usual functors of algebraic topology (singular homology, singular
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cohomology, homotopy, etc.) extend in a natural (from the point of view of shape
theory) way from the category of homotopy polyhedra to the category of compact
metric spaces. For example, one way to express X as an inverse limit of polyhedra
is via the so-called Cech system [7, p 327] of nerves of open coverings of X. The
limit of the simplicial homology of the Cech system is precisely Cech homology

(usual definition), so that the extension of homology given by shape theory agrees
with Cech homology [7, p 122].

COROLLARY 2.5. Two homotopy polyhedra have the same shape if and only if they
have the same homotopy type.

CoROLLARY 2.6. Suppose (P, p) and (P, q) are inverse systems over the same directed
set having the same spaces but possibly different bonding morphisms. If p,,, is homotopic
10 q,p for all a, b with a < b, then the inverse limits have the same shape:

Sh (lim (P, p)) = Sh (lim (P, q)).

COROLLARY 2.7. If X =lim (P, p) is an inverse limit of homotopy polyhedra and each
bonding morphism p,, is a homotopy equivalence, then X has the same shape as each
of the approximating spaces: Sh (X)=Sh (P,) for all a.

Here are the relevant definitions. First, by theorem 7 (p 319) and theorem 8 (p
320) of [7], a compact topological space has the homotopy type of a compact
polyhedron if and only if it has the homotopy type of a compact CW-complex if

and only if it has the homotopy type of a compact ANR; we call such a space a
homotopy polyhedron.

By an inverse system over a directed set A we mean a pair (P, p), where P is a
function which assigns to each ac A a space P, and p is a function which assigns
toa, beAwitha<ba morphism p,, : P, > P, such that Pab°Poe=ps. forasb=e
and p,, =id, the identity map of P,. The spaces P, are called the spaces of the
system, while the morphisms p,, are called the bonding morphisms. Let (Q, q) be
another inverse system over a directed set B. An indexed family of morphisms

(£, ¢):(P,p)~>(Q,q)

consists of an order-preserving map ¢:B— A and a function f which assigns to
each be B a map Jo 1 Pypy=> Q,. The composition of two families (&) (f,¢)=
(h, ¢ o ¢) is defined by h.=g.° fi.). We call a family:

commuting iff for all b, cc B with b=< ¢ we have

Joo Pob)oe) = Goe © fos
ultimately commuting iff for all b,ce B with b=<c there exists ae€ A with
a=¢(b), ¢(c) and
f;: °pd>(b)a = qbc cﬂ. °p¢(c)a;
homotopy commuting iff for all b, ce B with b= ¢ we have

Jo °Pobys(c) ™ Goc ° Je;

ultimately homotopy commuting iff for all b, ce B with b=<c there exists ac A
with a= ¢ (b), ¢(c) and

Jo °Pebra~qbc° S ° Pocra-
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Given two families (f, ¢), (g, ¥): (P, p) > (Q, q), call them:
ultimately equal iff for all be B there exists ae A with a= ¢(b), y(b) and

Jo°Pobra= 86 °Povyas
ultimately homotopic iff for all be B there exists a € A with a= ¢(b), y(b) and

Jo°Powra~ 8 ° Pysya-

Two inverse systems (P, p) and (Q, q) are called shape equivalent if there exist
ultimately homotopy commuting families (f, ¢): (P, p)~> (Q, q) and (g, ¢):(Q, q) -
(P, p) such that the composition (g, ) © (f; ¢) is ultimately homotopic to the identity
family of (P, p) and the composition (f, ¢) ° (g, ¢) is ultimately homotopic to the
identity family of (Q, g); the family (f; @) is then called a shape equivalence.

By an algebraic functor we mean one defined on the homotopy category of
homotopy polyhedra into a category which admits inverse limits if the functor is
covariant and direct limits if the functor is contravariant. Any functor into the
category of groups is an example.

We have now defined all the terminology needed to understand the statements
of 2.1-2.7 (except perhaps that which can be found in [3]) and proceed to guide
the reader to the proofs. The reader is invited to test his/her understanding of the
definitions by showing that the Warsaw circle of [7] (p xiii and example 4 on p 67)
has the shape of the circle.

A proof of theorem 2.1 is given on p 61 of [7]. Theorem 2.2 comes from theorem
9 on p 65 and remark 2 on p 19. For theorem 3 see theorem 2 on p 122, remark 2
on p 124 and theorem 4 on p 128.

Corollary 2.5 is a triviality. Any space is the inverse limit of a trivial inverse
system having a directed set of one element, viz. the space itself. A shape equivalence
between two such trivial inverse systems is the same thing as a homotopy equivalence.
Corollary 2.6 is also a triviality; the identity map is a shape equivalence.

For corollary 2.7 we must construct a shape equivalence between the inverse
system (P, p) over A and the trivial inverse system (Q, i) over {1}, where Q,=P,
and i,; =id, the identity map of P,. Let ¢: {1} > A be given by ¢«(1) =a and =: A~ {1}
be given by w(b)=1 for all b. Define (f,¢):(P,p)~>(Q,i) by fi=id and
(g m):(Q, i) (P, p) by 8, = Ps8ca, Where g.,: P, > P, is a homotopy inverse to Pac
and c¢=c(b) is any index larger than a and b. (The homotopy class of g, is
independent of the choice of ¢ as d=c implies p,.° g.q ~ Py © DPed © 8dc © 8ea ™
Poa © 84a-) Then (f 1) © (g, m) is the identity of (Q, i) (which is a commuting family)
while (g, 7)° (f,¢) =(g, a), where a: A> A is given by a(b)=a for all b. (g, a) is
an ultimately commuting family as b < d implies Py © €4 ~ Do © Pae ° ea = Pre © Gea ~
g for large e. To show that (g, a) is ultimately homotopic to the identity, we must
show that for every be A there exists de A with d=b and d=a=a(b) and
8b ° Pad ~ Pva; d = ¢ Works.

LEMMA 2.8. Suppose ® and ¥ are smooth real-valued functions on M, that 0 is a
regular value for both ® and ¥, and that ®~'(0) and ¥ '(0) intersect transversally.
Let

N =@7([0, 0)) n'¥™'([0, ©))
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and
L=Nn®7Y0).
(Thus N is a manifold with corners.) Then the space N/L is a homotopy polyhedron.

Proof. In standard references on Morse theory such as [8] or [5] it is proved that
on a manifold with a boundary one can always find a Morse function having the
boundary as a regular level and that one can use that Morse function to extend a
cellular decomposition of the boundary to the whole manifold. Using this fact, first
decompose ®7'(0) ~¥~'(0) (no boundary), then decompose N @& '(0) and N n
¥7'(0) (boundary is @7'(0) n¥'(0)), extend this decomposition to a ‘collar’ of
dN of form (®¥)'([0, £]) (product with an interval) and finally extend to N

(boundary is (®¥)7'(¢)). Now we have made N into a CW-complex with L a
subcomplex. Hence N/L is a CW-complex.

3. Isolated invariant sets and continuation

Fix a dynamical system f on M. Given any set V, denote by I(V, f) the maximal
invariant set inside of V:

IV,N)=N ().

teT

An isolating neighbourhood for S is a set V such that the maximal invariant set in
its closure is contained in its interior:

I(c1(V), f)cint (V);
an isolated invariant set for f is a set S of form
S=1I(c1(V),f)

for some isolating neighbourhood V (one then sa

ys that V is an isolating neighbour-
hood for (S, f)).

ProposiTION 3.1. Let V, and V, be isolating neighbourhoods for the same isolated
invariant set S of f. Then

M fiel (W) =int (V,)

“tes =1,
Sor sufficiently large t,.
Proof. Compactness.

CoRroOLLARY 3.2. For all dynamical systems g sufficiently near f (in the C° topology)
we have

I(Vl’g)__'I(VZ, g)'
CoRrOLLARY 3.3. The set of all dynamical systems having a given set V as an isolating

neighbourhood is open in the space of all dynamical systems on M (C° topology).

Let J =[0, 1] denote the unit interval. A continuation of isolated invariant sets on
M is a collection

{(S/\a.fA): A EJ}

of pairs inde:
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of pairs indexed by J such that the dynamical system F on M x I given by

F'(x,A)=(fi(x), 1)
(for te T, xe M, A € I) is smooth and the set 3= M x J defined by

S={(x,A): x€S,}

is an isolated invariant set for F; one calls this a continuation from (S,, fo) to (Sy, f1).
The relation ‘there is a continuation from (S,, fo) to (S;,f1) is an equivalence
relation on the space of all pairs (S, f) with S an isolated invariant set of f Let
W=_J, Vi x{A} be an isolating neighbourhood for (Z, F). Then V, is an isolating
neighbourhood for f, and

S/\ =I(Vx,f;\),

so each S, is an isolated invariant set for f,. Since each V, is also an isolating
neighbourhood for f, for u sufficiently near A, we have:

PROPOSITION 3.4. A continuation is ‘locally trivial’ in the sense that there is a covering
of ] by open intervals J, (j=1,2, ..., n) and a collection V; (j=1,2,..., n) of subsets
of M such that for X € J; we have that V; is an isolating neighbourhood for f, and
S, =I1(V;, f).
The role of continuations in the theory of dynamical systems is analogous to the
role of homotopies in topology. Of course, in applications one constructs the
continuation by constructing the isolating neighbourhood Wc M x L

4. The induced semidynamical system of a pair
Definition 4.1. Given a compact pair (N, L) in M and te T", define a map
f¥:N/L->N/L
by
. flx) if f1%9(x) = N\L.
fulx)= { * otherwise.
Note that if f%(x)=* for some ¢, then this continues to hold for all larger . Also
note that the family of maps {f,]} satisfies the semigroup property
fx=id, ¥ =fufx
for t, se T", where id denotes the idenfity map of N/L. We call t— f, the semi-
dynamical system induced by f on the space N/L.
THEOREM 4.2. Assume the continuous case: T =R. Then the evaluation map
R*XN/L-> N/L: (t x)~>fiu(x)
is continuous if and only if:
(i) L is positively invariant relative to N, i.e.
xelL  fl%%x)c N=>f1"(x)c L.
(ii) Ewvery orbit which exits N goes through L first:
xeN, flo(x)z N=>3r=0with /(%< N and f'(x)€ L.
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Proof. First we assume that (i) fails and show that S+ fails to be continuous at some
(2, *). Assume that xe L and f1%(x)c N but Sf'(x)2 L. On replacing x by SPo(x)
and t by 1 —so, where so=sup {s € [0, t]: f(x) e L}, we may assume without loss of
generality that f*(x)e N\L for 0<s=t. Let x,=f""(x) and #,=1— 1/n. Then
(., x,) converges to (1, *) in R* x N/L but f;;'(x,,) =f1(x)#*=fy(*); ie. f:,;'(x,,)
does not converge to fi(*).

Next we assume that (ii) fails and show that J» fails to be continuous at some
(s, x) with x& N\L. Assume that xe N and f1®(x)# N but that the requisite ¢
fails to exist. Let s=sup {te[0, ©): f1%)(x)= N} so that there is a sequence s,
converging to s with f*»(x) £ N; i.e. fir(x) = . Butas N is closed, f1*)(x)= N and
so by hypothesis there can be no te[0, s] with f'(x)e L; thus e N\L, i.e.
S3(x)=f°(x) # *. Thus f, is not continuous at (s, x)eR"X(N\L)<R*x(N/L) as
required.

Now assume (i) and (ii), but that £, is not continuous, i.e. that there is a sequence
{x,}= N/L converging to xe N (by compactness) and a sequence {t,} converging
to teR" with f;;'(x,,) not converging to f(x). We must derive a contradiction. We
distinguish two cases: fi(x)=+* and f(x) =f'(x)e N\L.

First consider the case f4(x) = . Then passing to a subsequence, we may assume
Sf#(x,)=f"(x,)e N\L and that f'(x)2 L (else we would have convergence). But
SFIO(x, )= N\L< N so f*(x)c N as N is closed. Since fi(x) = *, we must have
)AL &, which together with f*(x) & L contradicts (i).

Now consider the case fiyu(x)=f"(x)e N \L. Then passing to a subsequence and
using the continuity of f, we may assume that f ;;'(x,,) =x*forall nso fI%=)(x, )z N \L.
Either f1)(x,)2 N or f1%%)(x,) n L &, in either case choose s, €[0, t,] so that
Sf*(x,) € L (in the former case we use (ii)). The points f*+(x,) accumulate at a point
f’(x) € L, which contradicts the assumption that f,(x) = f*(x) € N\ L (for that would
require f'*}(x) = N\L). This completes the proof.

THEOREM 4.3. Assume the discrete case: T=17. Then S# is continuous if and only if:

(A0) Every xoe Lnf '(N\L) has a neighbourhood A, in M with f(A,n N\L) <
M\N. (This means that whenever x,€ L but f(x,) e N\L we have f.(x)==* for all
x € N\L sufficiently near x,.)

(BO) Every xoe (N\L)nf '((N)\L) has a neighbourhood B, in M with f(By

N\L)< N. (This means that whenever x,c N\L and fu(x,)=f(x,) € N\L then
Ju(x)=f(x) e N\L for all x sufficiently near Xo.)
Proof. Assume condition (A0) fails. We will show that J« is not continuous at *.
We have x, € L with f(x,) € N\ L, and no A, exists as in (A0); thus there is a sequence
X, € N\L converging to x, with f(x,)e N. Since L is closed and f(x0) e N\L, we
even have f(x,)e N\L. But then f,(x,)=f(x,) converges to f(x,) € N\ L while x,
converges to * in N\ L. Thus f, is not continuous.

Next assume condition (B0) fails for some x,€ N\ L. We will show that Jf# is not
continuous at x,. Then x,€ N\ L and f(x,) € N\ L, but since no B, exists as in (B0),
there is a sequence x, € N\L converging to x, with f(x,)g N. Then Ju(x,) =% does
not converge in N/L to fu(xo) = f(x,) € N\L so that f, is not continuous.

Now we assume (A
are four steps.
f» is continuous at
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Now we assume (A0) and (B0) and prove that f, is continuous on N/L. There

are four steps.
f is continuous at xo€ (N\L) A f7Y(L). For x near x,, f(x) is near f(x,) € L and

so f«(x) is near *,
f» is continuous at x,€ (N\L)nf~'(M\N) since fu(x) =+ for x near X,.
f« is continuous at xo€ (N\L) A~ f Y (N\L) since (B0) ensures that f.(x)=f(x)€

N\L for x near x,.
f« is continuous at *. We assume not, and derive a contradiction. There is a

sequence x,€ N\L converging to * in N /L with f(x,) converging to ye N\L.
Pass to a subsequence so that x, converges to xo€ L. Then f(x,) =fu(x,) converges
to f(xo) =y € N\ L. This contradicts the existence of A, as in (A0).

This completes the proof of theorem 4.3.

The analogues of the necessary and sufficient conditions of theorem 4.2 are only
sufficient in the discrete case. These conditions are positive invariance of L in N:
f(L)n N = L (which says that if xe L and f(x) e N then f(x)e€ L) and the exit set
property: Nnf “{(M\N)c L (which says that if f (x) is the first point for which
some forward orbit originating in N leaves N, then x ¢ L).

COROLLARY 4.4. Assume the discrete case: T =7Z. Assume
f(L)NNcL
and
Nnf '(M\N)c L.

Then f, is continuous.

Proof. Lnf '(N\L) is empty so condition (A0) holds vacuously. Also Nn
fTM\N)cL implies f(N)\N < f(L) which implies f(N\L)< N so that (N\L)n
fY(N\L)< B, and f(Bon N\L)< N with By=M\L. This proves condition (BO).

THEOREM 4.5. Assume the discrete case: T=1Z. Assume N < M is closed and
GN)NfTH(N)Nf(N)=2.
Define
Lo=f(N)n(3N)
and
Ly=cl(N\f7'(N)).
Then Ly L, and f,: N/ L- N/ L is continuous for any closed subset L of N satisfying
Lyc L< L.
Proof. Our hypothesis can be rewritten as
f(NYn(@N)= M\fT'(N),
so intersecting both sides with N gives Lo< L,. Clearly
f(L)nN<c L
so that for Lyc L< L, we have f(L)~ N < L whence Lnf Y (N\L)={, so condi-
tion (A0) holds vacuously.
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Condition (B0) also holds vacuously when L,< L. This is because N\Lc< N and
(ONN\L< (ON)\Ly=(@N)\f(N) < M\f(N) so that (N\L) Nf((6BN)\L)= N n
M\N =@, This completes the proof of theorem 4.5,

3. Index pairs

Definition 5.1. Let S be an isolated invariant set for a dynamical system fona
space M. An index pair for (S,f)isa compact pair (N, L) in M such that N\L is

an isolating neighbourhood for (S,f) and the semidynamical system S« on N/L
induced by f is continuous.

We remark that in view of theorem 4.2 this definition agrees with the standard
definition (see [1], [2], [9] and [11]) in the continuous case. Qur goal in this section
is to prove that any isolated invariant set admits an index pair. We shall in fact prove
somewhat more; namely that there exist index pairs which are stable (i.e. remain
index pairs) under suitable perturbations of the dynamical system f.

THEOREM 5.2. Let V be an isolating neighbourhood Jor (S, f). Then there exists a
Lyapunov function Jor (S, f) on V, i.e. a smooth Junction ®: V>R such that
() <P(x)  if fOx) V\S and 1> 0;

d(x)=0
Proof. We first consider the discrete time case: T=1Z. Note that in this case the
conclusion of the theorem may be more simply expressed as ®(x)=0if xe S and
D(f(x))<®(x) if X, f(x)e V\S.
Step 1. Choose x, ¢ (V\S) NfU(V); we will define ®,: VR such that ®,|S =0,
Do(f(x)) < ®y(x) for xe VAf~Y(Vv), and <I>o(f(xo))<<1)o(xo). By the definition of
isolating neighbourhood the orbit of x, must leave cl (V); choose g so that Sfixy) e

M\cl (V). Now choose a neighbourhood U of Xo 80 small that f9(U) ~ ¢l (V)=g;
ie.

for xe §.

(VYA U=,
Now choose a smooth function ¢: M > [0, 1] supported in U with @ (xo) # 0 so that
¢(f(x))=0
for x € cl (V). Define ®,: V>R by the formula
q-1 q
Po(x) =~ ; ¢(f (%)=~ {‘:1 d(f (%))

if g is positive and by

(x) = z $U)= 5 ()
if g is negative. Then
‘Do(f(x)) = q)o(x) - ¢(x),

which proves the desired inequalities. (Note that changing f outside cl ( V) could
change ®,. In the smooth case ¢ and hence P, may be chosen as smooth as )

Step 2. As M
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Step 2. As M is separable, we may find functions ®,: M >R as in step 1 so that
the open sets {x € M: ®,(f(x)) <®,(x)} cover (V\S)nf~'(V). We then define ®
by an infinite series

P(x) =1 cn®nlx),

where the coefficients ¢, are chosen positive and tending to zero so rapidly that the
series converges uniformly. (If it is desired that @ be of class C’, choose the
coefficients so that the derivatives of order <r converge uniformly as well.)

The continuous time case is quite similar. Step 2 is exactly the same; for step 1
we replace the sum by an integral:

®o(x)=—J_ o (f'(x)) dt.
As before we obtain an equation
O(f*(x)) =D(x) - L ¢(f'(x)) dt

when f%)(x) < V, which (as ¢ is non-negative) implies that ® is non-increasing
on orbit segments in V and strictly decreasing on the support of ¢. This completes
the proof of 5.2.

THEOREM 5.3. Assume the discrete time case: T =Z. Let V be an isolating neighbour-
hood for (S, f) so that S=I(V, f) the maximal invariant set in V. Then there exist a
neighbourhood % of f in Diff (M) (C° topology) and a compact pair (N, L) which is
an index pair for (I(V, g), g) for any g€ %. One can choose (N, L) so that N/L has
the homotopy type of a polyhedron.

Proof. Let ®: V>R be a Lyapunov function as in theorem 5.2. By proposition 3.1
we may shrink V if necessary and assume that ®o f and ® o f ! are both defined
on V. Choose £ >0 so small that

x€aV=D(x)<B(f ' (x))—2¢
and define N< V by
N={xeV:—e=®(x)=d(f'(x))=<¢e}.
As the inequalities defining N cannot hold for x €V, we have
INc @7 (=) U f(®7'(e));
we take
L=Nn®(—¢).
Then N ~® '(¢) =& and f(L) n N = so that there exists a neighbourhood ¥ of
f in Diff (M) with g(N)nf(® '(¢)) = and g(L)n N = for g€ ¥. Hence
(3N)ng(N)= L= N\g '(N)
for g € % From theorem 4.5 it follows that g, is continuous.

From S < int (V) ~ ®~'(0) we obtain S int (N)< V. From S < int (N) we obtain
Scint (f"'(N)) so that S N\Lc V. Thus N\L is an isolating neighbourhood for
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D (g)
d\ (e

D7(~e)

/
,
Ao

(8, )=V, 1), f). By proposition 3.1 we have that N\L is an isolating neighbour-
hood for (I(V, g), g)forg sufficiently near £ We note that we can also choose ¢
so that ~¢ is a regular value of ® and ¢ is a regular value of ¥ =@ o £ (Sard’s
theorem [5]) and then perturb ® and ¥ so that ®7'(—¢) and ¥~'(¢) are transverse.

Then by lemma 2.8 N /L is a homotopy polyhedron. This completes the proof of
theorem 5.3.

Example. A good example to keep in mind is the following. Take M =R? with
Sf(% y)=(2"%,27"'y). Take V= [-1,11x[-1,1] an isolating neighbourhood for the
hyperbolic fixed point § ={(0, 0)}. Take the Lyapunov function D(x,y)=y*-x%
Then N is bounded by two hyperbolas with four points of intersection (inside V
if £ is small enough) and L is a portion of one of them. This same example illustrates
both the discrete time case and the continuous time case which follows.
THEOREM 5.4. Assume the continuous timecase: T=R. Let Vbean isolating neighbour-
hood for (S, f) so that S=1 (V. f) the maximal invariant set inV. Let ve (M) be
the infinitesimal generator of f. Then there exist a neighbourhood % of v in Z(M)
(C° topology) and a compact pair (N, L) which is an index pair for (I(V, g), g) for
any flow g whose generator w lies in F. One can choose (N, L) so that N/L has the
homotopy type of a polyhedron.
Proof. As in the discrete case we take

N={xeV:-e=0(x)<d(f(x))=¢},
where @ is a Lyapunov function defined on a neighbourhood of the closure of

V,8>0 is small enough that fT->1(x) lies in the domain of @ for xe V,and ¢ >0
is small enough so that

aNc ¢>_‘(—s)uf8(¢>_l(s)).
Choose a neighbourhood % of vin Z(M) so that
dd(x)w(x) <0, d(@of°)(x)w(x)<0
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constructed above, xe V\S.) We take

L=®""(—¢)nN.
Choose we F and let g denote the flow generated by w. If xe L, then g'(x)g N
for small positive ¢; while if x € (N)\L, then g'(x)€int (N) for small positive t.
Thus (N, L) satisfies the conditions of theorem 4.2 and so is an index pair as required.
We show N/L is a homotopy polyhedron as before.

We remark that theorem 5.4 cannot possibly hold if one requires only that the
flow g be close to f in the C° sense (as opposed to their generators being close).
The reason is that the condition that L be positively invariant relative to N can
always be violated by a small perturbation of the flow.

CoROLLARY 5.5. Let {(S,, f,): A € J} be a continuation of isolated invariant sets. Then
there is a covering J; (j=1,2,...,n) of the unit interval J and pairs (N, L;)
(j=1,2,...,n) such that (N;, L;) is an index pair for (S,, f,) for A € J,.

6. The index category
In this section we fix an isolated invariant set S for a dynamical system f on M
and choose an indexing {(N,, L,)}. of all the index pairs for (S, f).

Definition 6.1. Let (N,, L,) and (N, Lg) be index pairs for (S, f) and te T". The
morphism from N,/ L, to N/ Lg induced by the dynamical system f at time t is the map
f;Ba : Na/Lnt -> Nﬁ/L,B

defined by
) (%) ifxe Clg,
fret)={ s

* otherwise,
where the set C,; is the subset of N,\L, defined by
el PO ML an
SU(x) & N\ L.
When o = 8 we abbreviate f}, to f4:
fa=fea:No/Lo> N,/ L,.
LEMMA 6.2. There is a function which assigns to each pair (e, B) of index pairs for
(S, f) a number t,5 having the following properties:
toe =0, lag = lgas loy = lyg+ 15,
t=1,5/3,  fIUx)< No\ L= (x) = Np\ L.
Proof. To define t,4, note that by proposition 3.1 we have
f ) (x)e N.\L,=x e Np\Lg
and
fI7 (%) = Nj\Ly=>x € N,\L,

for sufficiently large 1=0; we denote by u,p the infimum of all such ¢ and take
lap =3U,p if a# B with t,,=0. To show ,,=< lag T+ 1g,, it suffices to show u,, <
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Yaa * Ug,. For this we must shovw thatif r>y o~ Ugy and f1**)(x) < N\L,, then
Jlavorsboisyy o N,\L,. This follows ag S0 (%) < Ne\L, implies fla+ub- x) e
Ns\Lg which implies f[“’”"""”(x) < N,\L,. This proves the lemma,

(ii) The morphisms f' Jorm the semidynamicql System on N, /L, induced by the

Sa =f:#:Na/La—>Na/La'
(iii) If 1> lag and s>ty then s+ 1~ t.y and

Definition 6.4. These conditions say that there js 5 category whose objects are the
Spaces N,/L,, where (N,, L) is n index pair for (S,f), and whose morphisms
are the morphisms Sfea: N, /L, > N3/ Lg induced by the dynamica] system f at timeg
1>1,5. We call this Category the index category of (S, f). It contains as morphisms

Case 2. S(x) e Ls. Then S!(x) is near Lg for x near X0, SO f,(x) is near % for such
x.

Case 3. f[°'2’/3](x0) S Ne, f1% Y x ) e N, fl(x,) e N\ L, but S (xo) € L, for some
s€[t/3, t]. Take the largest such s; then by condition (A0) of thet_)rem 4.3 we obtain
that f**!(x) ¢ N; if x is near Yo and f*(x) e N\ Lg, so that £, (x) = * for X near x,,

Case 4. f[°’2’/3’(x0) < Ne, f1% 0 (x) N\ L; and S (xo0)e L, for some s € [0, 2¢/3],
Suppose that s is the largest integer with this Property. We obtain from lemma 6.2
and 1>r,; that s<y— l.z/3 and S x) e NAL,. Hence jt follows from condition
(A0) of theorem 4.3 that S x) e N, if x is near Xoand f*(x)e N \L,. Since L.3/3
is an integer, we obtain s+ 1< !~1.5/3 and it follows again from lemma 6.2 that
xXg C,',B if xe N.\L, is near Xo. Hence Soa(x) =% for x near Xp.

Case 5. /5‘3;2‘/31(x0)cNa\L,, and f,g:,”"](xo)cNB\LB. It follows from lemma ¢ 5
that f*(x,) e NAL, for0<gs< !~ t.s/3.By condition (B0) of theorem 4.3 this implies
that f‘(x)eNa\La for Ossst—ta3/3 for x near Xy. Now it follows again from
lemma 6.2 that [ (x)e NB\Lﬁ for leg/3<s<t for X near x,. We conclude that a
neighbourhood of Xo in N\ L, is contained in C.s, so that the continuity of S b
at x, follows from the continuity of £,
This completes the proof of (i),

Assertion (ji) is obvious: the condition x e Ceo means that f“"’](x) S N\L,, so
that £, =fy.

To prove (iii) we must show that x ¢ C.t'if and onlyif xe C.s and Sf(x)e Cs,.

Assume x ¢ C.s and S(x)e Cs,. Reason ag follows:

f[°'2'/3](x)c Na\La, f[t/3.t](x)c NB\LB (1)
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(as x€ Clg) and
f[r,r+2s/3](x) - NB\LBa f[l+s/3,t+s](x) c N-y\Lw (2)
(as f'(x)€ Cp,). Combining gives
fUre2)x) € N\ L,

so (as s> tg, and t> t,p)
f[l/3+s/3,t+s/3](x) - N-y\L-y, f[2(/3,2r/3+2s/3](x) P Na\La~

Combining gives
f[(1+s)/3,r+s](x) - Ny\Ly, f[0,2(1+s)/3](x) - Na\La- (3)

Therefore xe C3y'.
Conversely assume X € C:t', ie. (3). Then (as s> tg, and t> t,g)
f[t/3+2s/3,l+2s/3](x) - NB\LB, f[r/3,r/3+2:/3](x) c Np\Lﬁ,
i.e.
f[r/3,t+25/3](x) c Nﬁ\Lﬁ
which (together with (3)) gives (1) and (2). Therefore x € Cl.pand f'(x)€ Cp,. This
completes the proof of (iii) and thus of theorem 6.3.

7. The unstable manifold
In this section time is either continuous or discrete. Let S be an isolated invariant

set for a dynamical system f on M.
Definition 7.1. The unstable manifold W*U(S, f) of the invariant set S is the set of all
points of M whose orbit tends to S in backwards time:

WS, f)={xe M lim a0, 9 -},

where d denotes any metric giving the topology of M.

PropOSITION 7.2. If V is an isolating neighbourhood for (S, f), then xe W*(S, f) if
and only if f '(x) € V for all sufficiently large t; i.e
we(s, N=U M f(V).

16>0 1>1o
Fix an index pair (N,, L, ) for (S, f). We will define an inverse system (N,./ L., fa)
indexed by T". All the spaces are the same:
(Na/La)s=Na/La
for se T*. The bonding maps are the elements of the semigroup
foi(Na/La) s+ (Na/ La)s
induced by f. We denote by W7 the inverse limit
W% =lim (N,/ Lo, f)-
A point £€ W7 is a map ¢: T > N,/ L, satisfying
£(s) = fa(é(1+5))

for t,se T*. The base point of W? is the constant map whose value is the base
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point e N, / L.; we denote by W, the complement of the base point:
Wa = WZ\{}.

Thus a typical point (e W, is a map ¢: TV N./L, either of form
) =1""(x)
for all te T and some x€ N\ L, or of form

* ift<g,

S (x)e NA\L, ifr<y

(é)e T* and some x =
for some ¢, then this continues to hold for aj |

§(t)={

forall te T* some 7 = r

arger t.) Define
W, > M

by
ta(€) =1"(&(1)).

choice of > T(£)).
system

oo Wi w*
W, M intertwines 0, and f:

(The result is independent of the
Note that there is a dynamical

(te T) so that o
Loo,=fo,,
Indeed o, is the (two-sided) shift; it is defined by
oa(€)(s) = £(s~1)
for large s (this determines it for aj s).
THEOREM 7.3. The map «, is a continuoys injection whose image is the unstaple

manifold W*(s, f) of the isolated invariant set §:

(W) = WH(s, 1).
) is another index pair for (S, ), then the bijective map

LEIOLQ:W‘,»‘VB

If (Nﬁ’ LB

is a homeomorphism,

Definition 7.4. Thus the topology on WH(S, ) which makes ¢, a homeomorphism
is independent of the choice of the index pair (N,, L,); it is called the intrinsic
topology on WH(S, f). The topology which WE(S, f) inherits as a subset of M will

be called the extrinsic topology on WH(S, £). We denote by W*(S, f) the one-point
compactification of WU(S, f) in its intrinsic topology, so by definition ¢, extends to
a homeomorphism (denoted by the same symbol)

byt W2 W*(s, f).

é(1)e N,. (This because if fo(x)==x

im
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the
tha
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Now we proceed to the details. Since L (€)=f'(&(1)) for large ¢, it follows
immediately that ¢, is continuous and injective. Since f~'(s,(£)) = £(t) e N\ L, for
large ¢, it follows by proposition 7.2 that ta(€) € WH(S, f). Conversely, if x € W¥(S, f),
then £€ W, defined by £(1)=f “(x) for large ¢ maps to x under t,. This shows
that ¢, is a continuous bijection.

We shall describe the map t5' © ¢, in another way, using the index category, which
makes its continuity obvious. Given g, te T" with ¢ sufficiently large, we have the
morphism

fiaa : (Na/La)q+r" (NB/LB)q~
By theorem 6.3
oo =15 foa,
i.e. we have a morphism of inverse systems and hence an induced map on the inverse
limits:
tga: W =1lim (N, /L., f.)~> W% =lim (Ng/Lg, f3).
(The definition is independent of the choice of ¢>1,,.) By theorem 6.3 again
Lya = byp ° tge ANd 1o, =id so that 15, is a homeomorphism with inverse lag-

All that remains is to check that ts, = 3" «,. For that choose ¢£e W7 and put
N=tg" o (&). Then w(n) =1, (&) =f"(n(r) =f"(£(r)) for large r and in particular
n(r)=£&(r)e (N,\L,) n( N\Lg) for all sufficiently large r. Then clearly
Soal&(r+1)) = n(r) for fixed t> t.p and large enough r, i.e. tga(£) = m. This proves
theorem 7.3.

If S is a hyperbolic fixed point for J/, then it is an isolated invariant set and
WH(S, f) in its intrinsic topology is homeomorphic to Euclidean space so W*(S, f)
is homeomorphic to a sphere. If, however, the stable and unstable manifolds of §
intersect transversally, as in the Smale horseshoe, then W*(S, f) will not be embedded
and so the intrinsic and extrinsic topologies will not be the same.

ProOPOSITION 7.5. If (S, f) admits an index pair (N, L) with both N and L positively
invariant by f (i.e. f'(N)< N and f'(L) < L for t€ T"), then the intrinsic topology
and the extrinsic topology on W*U(S, f) agree.

Proof. Let W*=1im (N/L, f) and W = W*\{#}. We must show that the continuous
bijection ¢: W WY(S, f) is a homeomorphism. Choose a sequence &,€ W with
X, =(£,) converging to a point x = «(€) € WU(S, f); we must have that &q converges
to & Applying a suitable shift o', we may assume without loss of generality that
x€int (N\L) so that x = £(0). For n sufficiently large we have x, int (N\L) as
well; it suffices to show x, = £,(0). (If £,(0) # *, then &,(t)=f""(£,(0) e N\L for
all ¢ so that the convergence of ¢, to £ is assured by the continuity of f~") Now
for large t we have x, = f'(£,(1)) (by the definition of ¢)and £,(t)e N\L (as ¢ W).
Since £,(0) = f4(£,(1)) for all t, the only way we can have x, # £,(0) is if £,(0) = *,
and this means that for some se T* we have S7°(x,)2 N\L. But we cannot have
S7(x,)¢ N as N is positively invariant and f~'(x,)e N\L for large ¢, and we
cannot have f~*(x,)e L for then (since L is positively invariant) we would have
X, € L contradicting x, €int (N\ L). This completes the proof.
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8. The homotopy ( Conley) index
In this section we consider only the continuoyg time cage: T=R.

THEOREM 8.1. Let § pe an isolateqd invarign; set for the Sow £ on M and Jg; (N,, L,)
and (N,, Ly) e index pqirg Jor (8, f). Then the spaceg N,/L, ang N/ L; are
homotopy equivalent:

[N./L,] =[Ng/L).

Proof. For ¢~ .z the map f,’,a:Na/L,, >Ng/Ly is 5 homotopy €quivalence with
homotopy inversef[,B. This is becausef,’go, °fis =f3 and ., °Soa = f2, and f7' ang
S are homotopic to the identity (the homotopy S £ with O=s5<p; Connects the
identity ¢ S,

Definition 8.2, The common homotopy type is called the homotopy index or the
Conley indey of (S, f) and is denoted by h(s, 1). Thus

for any index pair (N, L) for (S, 1).

THEOREM 83. The homotopy index is g Continuation invariant; Le. if (S,, 5o) is a
Continuation of (S,,f,), then h(So,fO) =h(S, > S1).

9. The shape index
Definition 9.1. The shape of the topologica] Space W*(s S) is called the shape index -
eénoted by (S, 1):

(S,, Jo) is a continyatiop, of (S, 1), then

Remary, 9.3. Assume the continyoyg time case: T=R Then the shape indeyx and
the homotopy index contain the Same information. More Precisely:
(i) 1f (N, L) is an index pajr for (S, 1), then N/L ang W*(S,f) have the same

(ii) Two isolated invariant Sets have the Same shape index if and only if they
have the same homotopy index:
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Of course, this does not mean that h(S, f)=[ W*(S, f)] in general, although this
is true in simple examples. The illuminating example is a flow having the Warsaw
circle S as an attractor with an isolating neighbourhood an annulus N on which
the flow points in. Then L= and W*(S, f) = S in this case. This invariant set can
be continued to an ordinary circle through flows, all of which point into the annulus
(thus providing a proof that the Warsaw circle has the shape of a circle). But the
Warsaw circle and the circle are not homotopy equivalent (that is the whole point)
as the former has a trivial fundamental group.
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