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STRUCTURE AND STABILITY OF FINITE DIMENSIONAL
APPROXIMATIONS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS*
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Abstract. This paper deals with the structural and stability properties of the averaging approximation
scheme for linear retarded functional differential equations. Both in the discrete- and in the continuous-time
case the structure of the approximating systems is shown to be analogous to the structure of the underlying
retarded equation. Moreover, it is shown that the approximating systems are exponentially stable in a
uniform sense if the original system is asymptotically stable.
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1. Introduction. The object of this paper is to present some new results on the
averaging approximation scheme for linear retarded functional differential equations
(RFDE).

The averaging approximation scheme has been invented and studied by several
Soviet authors in the early sixties (see e.g. Repin 18]; further references and a detailed
review can be found in Banks-Burns [2]). A general convergence proof, a stability
analysis and applications to optimal control problems have been presented for the first
time by Banks-Burns [1], [2]. Related discrete-time approximations have been con-
sidered by Delfour [6], Reber [17], Rosen [19]. Recently, Gibson [9] has used the
averaging scheme for approximating the solution of the algebraic Riccati equation
associated with a retarded system. However, there remained one open problem in the
convergence proof in [9] which has not yet been resolved. This is the question whether
the approximating systems are uniformly exponentially stable for sufficiently large N
if the underlying RFDE is stable. In [9] this has been stated as a conjecture without
proof. We show in 4.2 that this conjecture is in fact correct.

Another motivation for the present work comes from some recent developments
in the theory of retarded systems in the product space framework. One of these is the
introduction of so-called structural operators for the state space description of RFDE’s
which have made the linear theory much more elegant and efficient (see e.g. Bernier-
Manitius [3], Manitius [14], Delfour-Manitius [7]). They have led to a number of
new results in the control theory of RFDE’s, namely on problems like completeness
of eigenfunctions, controllability, observability, and the linear quadratic optimal control
problem. Another important development was an interpretation of the adjoint semi-
group in terms of the underlying RFDE. Extensions to neutral systems and further
references can be found in Salamon [20].

The problem has not yet been considered whether analogous results can be
developed for finite dimensional approximation of RFDE’s, in particular the averaging
approximation scheme. In this paper we fill this gap. It is shown that the approximating
systems satisfy analogous duality relations as the RFDE and certain structural matrices
are introduced which play an analogous role for the approx,imating systems as the
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structural operators do for the RFDE. Moreover, it is shown that these matrices actually
converge to the corresponding structural operators. These results have several important
consequences. For example, they lead to a uniform convergence result for the resolvent
operators and they are crucial for the proofs of the stability results in 4.2.

In the preliminary 2 we give a brief overview over some recent results in the
theory of linear retarded systems in the product space framework and describe the
averaging approximation scheme. Section 3 is devoted to the study of the structure of
the approximating systems which is shown to be analogous to the structure of the
underlying RFDE under several aspects. A number of convergence proofs is then given
in 4.1 and two stability results are proved in 4.2. In the appendix ( 6) we prove
two functional analytic results which are frequently needed in 4. In particular, we
give a quantitative estimate for the equivalence of LP-stability and exponential
stability for strongly continuous semigroups.

2. Linear retarded systems and averaging approximation.
2.1. Linear retarded systems. We consider the linear retarded functional differen-

tial equation

(2.1) 2(t) Lxt, >- O,

where x(t) R" and xt is defined by xt(z) x(t + z), -h -< z 0, h > 0. Correspondingly
L is a bounded linear functional from c c[_h, 0; R"] into " given by

I-h
where r(z) is an n x n-matrix valued function of bounded variation. Without loss of
generality we can assume that r is normalized which means that r(z)-O for ’>-
0, ?(z) (-h) for r<--h, and (z) is left continuous for -h < z<0. At some places
we will assume that L is given by

Ij:0 -h

where 0 ho<" < hq h and Aj E", j 0, , q,
L2[-h, 0; nn]. In this case /:E->R"" is clearly given by

as well as Aol(’)

r/(’) =-AoX(-oo,o)(Z)- L AjX(-oo,-h1(r)-- AoI(o’) do’,
j=l

where Xi denotes the characteristic function of the interval/.

It is well known that (2.1) admits a unique solution x(.)
Wig;c[0, oo for every initial condition of the form

(2.3) x(0)=t#, x(z)=61(z), -h-<z<0,

where b.= (b, b 1) m , x L2[-h, 0; "] =: M)-. This solution depends continuously on

b G m2. The fundamental solution of (2.1) will be denoted by X(t)mR"", t>--h, and
corresponds to the initial condition X(0)=/, X(z)=0, -h_-<z<0. It can also be
characterized by the Volterra integral equation

X( t) I- q(s- t)X(s) ds

and its Laplace transform is given by A(,)-1 where A(A)=AI-L(ea), h C, is the
characteristic matrix of (2.1).
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Proofs of these facts can be found e.g. in Hale [10] or Delfour-Manitius [7].

2.2. Semigroups and structural operators. In the theory of RFDE’s, as well as
other types of integral and functional differential equations, there are essentially two
ways of introducing the state of the system which are actually dual to each other. The
state of system (2.1) in the "classical" sense is the pair z(t)= (x(t), x,) M2 which
completely describes the past history of the solution. Its evolution determines the
strongly continuous semigroup S(t) of bounded linear operators on M2 defined by

S(t)b (x(t), x,) M2, b M2, _-> 0,

where x(t), >= -h, is the unique solution of (2.1) and (2.3). The infinitesimal generator
of S(t) is given by

domA={ M:14 W,2, = (0)},

Ab (L61,
where W1’- denotes the Sobolev space wl"[-h, 0, "]. In an analogous way we may
introduce the semigroup Sr(t) Lf(M-), t->0, with infinitesimal generator Ar corre-
sponding to the transposed RFDE

(2.4) (t) LTx,, >- O.

The duality relation between (2.1) and (2.4) can be described by means of an
alternative (dual) state concept which is due to Miller [15]. It can be motivated from
the fact that the solution of the RFDE (2.1) (t > 0) can be derived from the initial
function (t <-0) in two steps. First convert the initial function 4 into a forcing term
of suitable length which determines the future behaviour of the solution. Secondly
determine the solution which corresponds to this forcing term. The dual state concept
is obtained by regarding this forcing term as the initial state of the system rather than
the solution segment. To be more precise, we rewrite (2.1) as

I(2.5) 2(t)= dr(r)x(t+’)+fl(-t), x(0) =f

where the pair f= (f,f)e M is given by

(2.6) f 4,f(o) dr/(r)4(z- o’), -h<-o’<-0.
-h

Now the initial state of (2.5) is given byfe M. Correspondingly the state at time ->_ 0
is the pair w(t) (x(t), x) e M where x e L[-h, 0; "] denotes the forcing term of
the shifted equation (2.5) and is given by

(2.7) x’(r) dn(’)x(t+’-r)+fl(r-t), -h_-< r_-<0.

The evolution of this state (x(t), x)e M is described by the semigroup S*r(t) (see
e.g. Bernier-Manitius [3] or Salamon [20]).

Summarizing this situation, we have to deal with the following four semigroups"

S(t) ST(t)

s*( s* ).

The semigroups on the left correspond to the RFDE (2.1) and those on the right to
the transposed RFDE (2.4). On each side the upper semigroup describes the respective
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equation within the "classical" state concept (solution segments) and the one below
within the dual state concept (forcing terms). The diagonal relations are actually given
by functional analytic duality.

The relation between the two state concepts can be described by means of so-called
structural operators. These have been introduced by Bernier-Manitius [3], Manitius
[14], Delfour-Manitius [7] and have turned out to be a very elegant and efficient
concept in the control theory of RFDE’s. The operator F (M2) maps every b M2

into the corresponding initial state

Fc/) fe M2

of (2.5) which is given by (2.6). The operator G e f(M2) maps every forcing term

fe M2 into the corresponding solution segment

Gf=(x(h),Xh)eM2

of (2.5) at time h. Thus Gf can be explicitly described as

Gf] Gf]l(0),

[Gf](r)=X(h+’)f+ X(h+’-s)f(-s) ds, -h<_7-<_O.

Obviously, G is bijective as an operator from M2 into dom A and its inverse is given
by

[G-loci bl(-h),

G-lb]l(o-) q l(-cr-h) dr/(’) b r-o’-h), -h <_- o’<0,

for b dom A. A remarkable fact is that the adjoint operators F* and G* play the
same role for the transposed equation (2.4) as the operators F and G do for the
original equation (2.1). Moreover, the following result has been proved by Manitius
[14] and Delfour-Manitius [7].

THEOREM 2.1.
(i) S(h)= GF, S*r(h)= FG.
(ii) FS(t)= S*r(t)F, S(t)G= GS*r(t), t>=O.
(iii) If 49 dom A, then Feb dom A*r and A*rF4) FAcb.
(iv) Iff dom A’r, then GA*rf AGf.
We close this section with a concrete representation of the resolvent operator. For

this sake we introduce for any A C the operators E :C - M2 and Ta: M2 M by
defining

[Ex] x, [Ex]’() ex, x C,
[Txb]= 0, [Txb]l(’r) e(’-b’(cr) do’, beM2.

Then the following result has been proved in Manitius 13] and Delfour-Manitius [7].
PROPOSITION 2.2. Let det A(A) # 0. Then

(AI-A)-’ ExA(A)-IE*F+
(AI A’T)-’ FEA(A )-1E + T.

2.3. Averaging approximation. In this section we briefly describe an approximation
scheme for RFDE’s which has been studied by Repin [18], Banks-Burns [1], [2],
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Gibson [9] and many others. To this end we introduce for every N N the linear
subspace XN c M2 defined by

XN {6 6 M2[6(’r) z2 [", -J-’hn <-- "r < -J -N1 h, j=I,.-.,N}
and denote the corresponding orthogonal projection by p" M2- XN. This subspace
can be identified with 0 "(+1) by means of the embedding s’R"(s+l)- M2 which
associates with every z=(z,... ,z)TR"(v+) the pair

Nz]O ZO

j-1[z]’(z) zj,
J h <- <-h, j 1 N.
N N

On Rn(N+I) we will always consider the induced inner product

where

NW, Z, W
_
n(N+l)(z, W)N zTQ

(2.8) Q

(2.9)

On Rn(N+I)

(2.10)

where

The corresponding vector and matrix norms will be denoted by I1" I1 . The adjoint
operator zr ()*" M-- E"(v+) is then given by

N f-(j-1)h/N 1(,/.) dr, j= 1,..., N.[’6]o 6, [6] -h-_;/
Obviously, the operators u and ru satisfy

N N N N N
7r =id, 7r =p

we consider the differential equation

,v t) AUztV t), t>_0,

(2.11) AI=(QN)-IH, Hv

and

In an analogous way we define the matrix Aru (QI)-H where the Av are replaced
by (Air) T for j=0, 1,..., N. Then the adjoint matrix (ArU)* of A with respect to
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the inner product (.,.)N is given by

(2.13) (AT)*=(QN)-I(HT)r (HTN)T

We also consider the differential equation

(2.14) ffv (t) (Ar)*wN(t),
on "+). The following theorem has been proved in Banks-Burns [2]. and Gibson [9].

THEOREM 2.3. Let L: --> be given by (2.2). Then the following statements hold.
(i) For every M2 we have b limN_.oo pCb.
(ii) There exist constants M >= 1, w >= O, such that

ot e(A)*t < M ea’t

for every >= 0 and every N N.
(iii) For all 49 M2, f M2

S(t)4 lim n eart "a’Ndp,
N-oo

S*r(t)f lira , eA7)*’ 7rrqf
N-oo

and the limits are uniform on every compact interval [0, T].
Full discretization. A fairly general and extensive study of full discretization

methods for RFDE’s can be found in Reber [17] and Rosen [19]. Since the aim of
this work is to explore the special structure of the averaging approximation scheme
described above, we content ourselves with the consideration of a simple one step
Euler approximation for the ODE (2.10) which has also been studied by Delfour [6]
and Reber 17] for time varying systems.

Replacing the derivative in (2.10) by a difference quotient with step size h/N, we
get the difference equation

( h )(2.15) zkN+I I+-AN z, k-> 0,

in I n(N+l). Since

hAN(2.16) I+--
N

I 0

(2.18) z"=

by means of the identification

I 0

the n(N+ 1)-dimensional first order difference equation (2.15) is equivalent to the
n-dimensional (N + 1)st order difference equation

(2.17) (X4+l XkN) E N NAj Xk_j, k-->0,
j=0
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Equation (2.17) may be interpreted as a direct application of a 1-step difference
approach to the RFDE (2.1) with x approximating x(kh/N). Finally, note that this
simplification of the difference equation (2.15) is only possible because of the coin-
cidence of the step size h/N for the time-discretization with the mesh size of the
spatial discretization in the subspace XN c M2.

3. The structure of the approximating systems. It is the goal of this section to
analyse in detail the structure of the approximating systems (2.10), (2.14) and (2.15)
respectively (2.17). It is shown that there is a strict analogy to the structure of the
underlying RFDE (2.1) as it has been described in 2.2. In particular, there are certain
structural matrices Frq and Gs playing the same role for the approximating systems
as the operators F and G do for the RFDE (2.1).

3.1. The structural matrices. Starting from (2.17), we observe that there is another
way of transforming this (N+ 1)st order difference equation into an equivalent first
order equation. For this sake let us rewrite (2.17) as

(3.1)

k

x) 2 N N k >0,Aj Xk-j +fkN+l,
j=0

where Af := 0, ff := 0 for j > N and

f Xo
(3.2)

The forcing term

N

Aj Xk_l_j, k 1,"" ", N.
j=k

fN | E n(N+l)

may be considered as the initial state of (3.1) since it contains all the information
which is needed for determining the future behavior of its solution xv, k_>-0. Corre-
spondingly the state at instant k E N is given by wff e N "(+1) where

(3.3)
N XkNWk,O

k+l-1
N

Wk,! 2 AX+l-l-j+f+l, 1= 1,’’’, N.
j=l

Then it is easy to see that wv satisfies the first order difference equation

h ),)(3.4) wkN+I I +-(A wv, k >- 0,

since

h h
II +---Ao -As 0 I..

o !
oA

Note that (3.4) can be regarded as a one step Euler approximation for the ODE (2.14).
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We conclude that there are two state concepts for the difference equation (2.17),
namely (2.18) and (3.2-3), both of which lead to a first order difference equation in
R"(N+I), namely to (2.15) and (3.4). The relation between these two state concepts can
be described by certain structural matrices FN and GN. Before defining these matrices,
we introduce the concept of a fundamental solution for equation (3.1).

DEFINITION 3.1. The fundamental matrix of equation (3.1) is the sequence Xv e
"", k 0, defined by

k

(3.5) (X+ X’) Y. N NA Xk-, keN, X=I.
j=0

Remark 3.2 (i) By induction, it is easy to see that

k

(3.6) [(XkN+l_ Xq) y, XN N_A kr.
j=O

(ii) The solution of (3.1) is given by

, Xj fk-j, k >=0.(3.7) x Xrfo +-- j--o

Now we introduce the matrices

(3.8) FN

I 0 0

0 A A

and
0 0

(3.9) GN KNQN, KN

0

XN
N

0

Xff 0 0

Then it is easy to see thatfN FNzoN if Zo
u e ,(N+I) is defined by (2.18) andfN e R,(N+|)

is the forcing term of (3.1) defined by (3.2). Moreover, if x, k_-> 0, is the solution of
(3.1) and ze"N+a) is defined by (2.18), then it follows from Remark 3.2 that

z GNfN. Making use of these facts, one can easily establish the following result
which is strictly analogous to Theorem 2.1.

PROPOSITION 3.3.

__hAn G I+-(A)* FNGN.(i) I+
N

(ii) FNAN=(A)*F, ANGN GN(ANr )*.

(iii) FN C
ANt e(A)*tFN, cANtGN GN e(A)*t > O.
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(iv)

(GU)-

N N

N N

0 Ao

Proof Let xe", k>--N, be a solution of (2.17), let zeR"(s+l), k>0= be
defined by (2.18) and fs e ,(S+l) by (3.2). Then fs= FSzo and z satisfies (2.15)
for k >= 0. Furthermore Xk, k >- 0, satisfies (3.1) and therefore z GSf. This implies

h AS)
s

vfvI +-- Zo zl G GrVFlVzo.N

Thus we have proved the first equation in statement (i). Now let w ,(s+l), k->0,
be defined by (3.3). Then w =fs and it follows from (3.2) that wv FSz for every
k_>-0. Since w satisfies (3.4), we conclude that

I+-(AN)* FSzoN= I+(A)* wy=w=FSz=Fs I+ A Zo

is proves the first equation in statement (ii).
In order to establish the second equations in (i) and (ii), letf (s+ be given,

let x", k0, be the unique solution of (3.1) and let zff (S+l, k N, and
w"(+, k0, be defined by (2.18) and (3.3), respectively. Then the sequence
x+, 0, satisfies the equation

X+I) mj Xk+l_ Wk,l+lxk++ />0,
j=0

and hence it follows from Remark 3.2 (ii) that z+= GSw for k 0. Fuhermore
wY =f and w Fz7 for k N. Since w7 satisfies (3.4) for k 0 and z7 satisfies
(2.15) for k N, we conclude that

and

h
fs +hAs zN I+--As GGs I+-(a’)* GNwls= NN+I I

N N

Thus we have proved the statements (i) and (ii). Statement (iii) is an immediate
consequence of (ii).

Finally, let (GS)- be defined as in (iv) and let Ks be defined by (3.9). Then it
follows from (3.5) that (GS)-IKS=(QN)-1 and hence GS=KSQs. This proves
statement (iv). [3

Proposition 3.3 shows that, for any solution zS(t) of (2.10), the function wS(t)=
FSzS(t) satisfies (2.14) and, conversely, for any solution wS(t) of (2.14), the function
zs (t) GSws (t) satisfies (2.10).
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3.2. Spectral theory. In this section we give a brief overview over some spectral
properties of An and (A)* which are analogous to well-known results in the theory
of RFDEs. In particular, we will see that the rational complex n n-matrix valued
function

(3.10) As(A)=AI-L(A)’L(A)=j’oAr/.= N+Ah
A --,

plays precisely the same role for the approximating systems as the characteristic matrix
A(A) does for the underlying RFDE (2.1). Moreover, we introduce the matrices

N(3.11) E

N
N+Ah

cn(N+I)Xn

and

h
(3.12) T=

0 0 0

N
0 I 0 0

N+Ah

0
N+Ah

I
N+Ah

I

cn(N+I)n(N+I)

for Z C, X -N/h.
LEMMA3.4. LetA C,A -N/h, andz, w6C"(u+l) begiven. Then (AI-AN)z w

if and only if

(3.13)

and

(3.14)

z= EN zo+ Tw

AN (A)Zo (E)TQNFNw.

Proof Clearly (hi AN)z w if and only if (AQN HN)z QNw or equivalently

(3.15)

N
(3.16) Zj= N+ hh

N

XZo- E ATz Wo,
j=0

Wj-’Zj_ j=l,’" ",N.

Equation (3.16) is equivalent to

zj= N+Ah Zo+- N+hh w+_,,,
’=1

j=l,’’ .,N,
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and hence to (3.13). If this is satisfied, then (3.15) is equivalent to

Au (h)Zo hZo Aozo
j=l v----1 +Xh

Wo+- 2
v=l

E)rQNFUw. [3

Note that the above lemma is strictly analogous to a well-known result in the theory
of RFDEs (see e.g. Hale [10], Delfour-Manitius [7]). It has several important con-
sequences which are summarized in the proposition below and can be proved straight-
forwardly. Statement (i) can be found in Banks-Burns [2]. Statement (iv) is the analogon
of Proposition 2.2.

PROPOSITION 3.5.
(i) Let A C, A #-N/h; then A r(A1) if and only if detAU(A)=0.
(ii) A S/h tr(AN) if and only if detA 0.
(iii) r((AT)*)= r(AT)= (A).
(iv) If A # N/ h and det A (A) # 0, then

(AI_AN)-I EN N --1 N rQNFN N,xA (A) (Ea) +Ta,

(AI- (A)*)-I FNEA(A)-’(EN )TQN +(Tf) T.
Remark 3.6. A solution x(t) of the RFDE (2.1) is said to be small if it vanishes

after some finite time T (Henry 11]). If L: cg_ n is given by (2.2) and if Ao(" 0,
then there exist nonzero small solutions of (2.1) if and only if det Aq--0 (Manitius
[14]). Now note that for sufficiently large N this means that detA=0 and hence
-N/h tr(A) (Proposition 3.5 (ii)). This indicates that the generalized eigenmodes
of (2.10) respectively (2.14) corresponding to the eigenvalue A =-N/h play the role
of the small solutions in the approximating systems. Moreover, note that the solutions
of the difference equation (2.15) starting with generalized eigenvectors of AN corre-
sponding to A =-N/h are precisely those solutions which vanish after a finite time.

4. Convergence and stability. Having introduced a number of operators for the
approximating systems which are analogous to well-known operators in the theory of
RFDEs, we may pose the question, if--and in what sensewthese operators converge.
This problem will be considered in the next section.

4.1. Convergence. We begin with some preliminary facts.
Remark 4.1. (i) It is easy to see that the function r/’R- Rnn defined by

k+l kh
lim r/(), -h<r<-, k,7")

o-’-kh/ N N N

satisfies the inequality

(4.1)
h

N(ii) For every A e C, A # -N/h, let us define the function e "[-h, 0]- C by

e(’r)=(NN+Ah)J’ -Jh<r<-J-lh’N N
j=O,...,N.
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Then it is well known that the limit

(4.2) lim sup ex*- e(r)l 0
Noo -h =<r--<0

exists uniformly on bounded subsets of the complex plane.
The following convergence result for AN (h) has been shown by Banks and Burns

[2]. For completeness, we present an alternative and simplified proof.
LEMMA 4.2. (i) AN (h) converges to A(A) uniformly on every bounded subset of the

complex plane.
(ii) For every a >- 0 there exists a constant ca > 0 such that [L’v (X)l <- c for every

with N > ah and every h C with Re h ->-a.
Proof. Note that

L(e) e"" dn(r)=-r(-h) e-"h
-h

and, by (3.10) and (2.12),

o

h rl(r) ear dr
-h

r (-h)
N+lh -A--= -h N+hh

=-n(-h) e(-h)-h n ea (r) dr.
-h

us statement (i) follows immediately from Remark 4.1. Statement (ii) follows from
(3.10) with c=VAR(n)sup{(N/(N-ah))lN>h}<m.

For the next result we need the space

M=" x L[-h, 0;

endowed with the norm I111= max {11, IIlll} for e M.
THEOREM 4.3. e limits

N N N

N+m N+m

exist uniformly on bounded subsets of the complex plane.
Proo The statement on Ea is an immediate consequence of Remark 4.1 (ii), since

E Ma x=(x, ea (.)x)e for xeC NeN and h eC, h -N/h.
In order to prove the second pa of the theorem, let us first define e(h, r) e M2 by

e(X ,)= 0, e(a, ,),() {0,
for h e C and -h N r N 0. Then

[TapS6](r)=(e(h, r), p6}=(pSe(h, r),

for all e M=, h e C, N eN and r e[-h,O]. Moreover, the closure of the set

{e(A, r)llalc, -hrO} in M2 is compact and thus p converges uniformly on
this set. Hence Taps converges to Tx in (M2, M) uniformly on bounded subsets
of the complex plane.

Secondly, note that

h ( N ) I Sell( ,h )eT()[ ---- d
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and hence

TpN4,] (’r)- NTrrN41](’r)

do"

for -jh/N <- 7" < -(j 1 )h/N, j 1,. , N. Thus the statement of the theorem follows
from Remark 4.1 (ii) together with the fact that the set

{[ T61’I I,xl<_- , 6 M=, I1<> < 1}

is equicontinuous for c <
THEOREM 4.4. For every b M2

Fb lim rNFNTrVb.

Proofi We prove this result in 3 steps. The first step is a formula for the operators
rNF and FTr.

Step 1. [7rNFb]o [FVzrnb]o o and for j 1,. ., N
n ,-h [ r)- (r-h/N)] dz,

[FTrNb] - r#
J ) ,(’----h [b 7")-c (r-h/N)] d’.

Proofi Let us define 1(7"):--0 for t[-h,O]. Then

Nr --(j-1)hlN IO dn(.),’(--o-) do-

SI "r+jh N

tin(r) 4,’(o1 do"
d’r+(j-1)h/ N

N f -h+jh/N

----ff n(-h) (O-) do"
d-h+(j-1)h/N

’O r--h (’r)-dp 7"- dr
h d-h+jh/N
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since r/(r)= r/(-h) for r<--h, and

N

[FNTrN&]j E AY[TrNb]-j+I
r,=j

_J

’0 r h -’0 r- h qb r) dr
h h N --=---ff r# r---h 6 r)- r- dr

for j 1,. ., N. In the last but one equation we have used the fact that

N J lh =’r# r---h for r<r/ r
N N

This proves step 1.
Step 2, F< <-- max { 1, VAR (r)}, ’st’N N.
Proof. By the well-known convolution inequality, we have

N N

j=l j=l

N

Z ANZv-j+l
v=j

--< IAFI E Iz.s -<{VAR(r#)I E Iz..,I
=1 j=l j=l

and hence

h
E I[F%]sFNz % zol +W:,

N

-<-Izol+[VAR(n)]- E Izsl--<[max{1, VAR
j=l

for z n(N+l) and N e. This proves step 2.
Step 3. Fb limN_, NFNTrVb,
Proof. Let us first assume that b is continuously differentiable and that b 1(0) -0.

Moreover let us define bl(r) =0 for z>0. Then it follows from step 1 and (4.1) that

I[ ,,,-’VF,, ] F6I.

rl r- -rl r- -ff[61(r)-qbl(r-hlN)] dr

-h -h+h/N-’r= h/ N ’-h/N

h
--<-- VAR (’o)11 <7,’11
N
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and hence

h [ I["F@]s-[F""@]sI]’/:--< IIF PNFb +-
h2

For any b M2 the statement follows from the Banach-Steinhaus theorem and step
2. This proves the theorem. [3

Combining the above convergence results with the concrete representation of the
resolvent operators given in Proposition 2.2 and Proposition 3.5, we obtain the following
result. The proof is a straightforward application of Lemma 6.1 and will be omitted.

COROLLARY 4.5. The limits

lim
Noo

lim II(,XI- A*)-’ N(,XI-(AN )*)-IrV II(4) O
N->o

exist uniformly on those bounded subsets ofthe complexplane which are uniformly bounded
away from the zeros of det A(A).

THEOREM 4.6.

lim G NGNor e(:,% 0.
Ncx3

Proof. We establish this result in three steps.
Step 1. Let X]V,j>_-0, be given by (3.5) and let us define

xN(t):= Xf, < <j+lJ h=t h,
N N

j=0, 1, 2, .
Then X(t) converges to X(t) uniformly on every compact interval [0, T].

Proof. For every k

k-1

Xff=I+ f_., IX N+-X
v=0

I+ Av_jX
N =0 j=0

h k-1 k-1

Av_jX--I+--j= v=j

h X=I
Nj=o N

I- rl s- XN(s) ds
dO
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and hence for kh/ N <- < (k + 1)h/N

X(t)-XN(t)= X(t)-x(k-hN)

+ n s--- IX(s)- X(s)] ds.
dO

Thus the desired convergence result follows from Gronwall’s lemma.
Step 2. Let z ,(N+I) and j (1,. , N}. Then

[Gz]=X(h)zo+ X(s)[rz](s-h) ds,

[aNz]l(’)=X(h+’r)zo+ X(s)[Nz] s-h+ ds,

j-1-hr< -h.
N N

Proof. If -jh/N <= " < -(j 1) h/ N, then

h N-j-1

+ Z x[Oz](") X_Zo ZN--,
/=0

=XS(h+r)Zo+ Z X(s)[rz] s-h+ as
1=o dlh N

X(h+)o+ X(s)[%] s-h+ ds.

In the case j 0 this equation leads to the desired expression for [ONx].
Stop 3. lim G G (:,) 0.
Proofi First note that the functions O %f M:, []f[[ 1, are equicontinuous

since the canonical embedding of W’ into is a compact operator.
Now let zR(+). Then, by step 2,

[Gz-Gz]=[X(h)-X(h)]zo+ [X(s)-X(s)][](s-h) ds

and for -jh/NNr<-(j-1)h/N,j=l,..

+ [X(s-X(s][] s+-h as.

By step 1 and the equicontinuity mentioned above, this implies

lim a O ((+",) O.
N

Moreover, note that the operator G: M:M is compact. So is the extended adjoint
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operator G*" (M)* M2. By Lemma 6.1, this implies

lim G GpN Z(M2,M) lo G* pNG. :e((M).,2) O.

Hence the statement of the theorem follows from the inequality

Letf M2 be given and let x(t), 0, be the corresponding solution of (2.5). Moreover,
let x (t), 0, be defined by

k k+lxN(t)=xff --ht< h, kO,
N N

where xff, k 0, is the unique solution of (3.1) corresponding to fN Nf,N+I).
Then the previous theorem shows that

lim sup Ix(t) xN t)[ 0
N- [0,T]

and moreover that this convergence is uniform for bounded f M2. This has also been
proved by Reber [17, Thm. 7.5] under the condition that L: -" is given by (2.2).

Let us now introduce the operator families SN (t) (M2), S*(t) (M2), 0,
by

N* N Nh S(= + g* ,S() I+
N

(4.3)
k k+l
h N t< h, k=0, 1, 2, .
N N

Then the following result is a direct consequence of Theorem 4.4 and Theorem 4.6
together with the factorization results (Theorem 2.1 (i) and Proposition 3.3 (i)).

COROLLARY 4.7. (i) For all ck M2, f M2

S(t)dp= lim SN(t), S*(t)f= lim S*(’)f
N-.-c Noo

and the convergence is uniform on every compact interval [0, T].
(ii) For every k t

lim IlS(kh)- SN (kh)ll:e(M:,Moo) INirnoo IlS*(kh)- S*(kh)lle(M) =0.
N

Proof It only remains to notemfor the proof of statement (ii)--that, by Lemma 6.1,

lim IIS(h)-
lim

Statement (ii) ofthe above result is apparently new. The strong convergence of statement
(i) has been stated without proof by Delfour [6]. The strong convergence of S(t)
has been shown by Reber [17] and Rosen [19].

4.2. Uniform stability. It is a simple consequence of Corollary 4.7 that the discrete
time systems (2.15) and (3.4) are stable in a uniform sense if the underlying RFDE
(2.1) is exponentially stable. More precisely, we have the following result.

THEOREM 4.8. Let to < O and suppose that detA(A)0 for every A C with
Re A => to. Then there exist an No N and a constant 3/> 0 such that for every N >-_ No

I +---AN <-- T ea’kh/N"
N
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Proof. It follows from a well-known result in semigroup theory that there exists
a k0 such that IIS(koh)ll :e(M2) < e’kh" By Corollary 4.7 (ii), this implies the existence
of an No such that

I+ A < e’oS N > No.
N

Moreover, it follows from Corollary 4.7 (i), that

N
l=O,...,koN-1, NN.<oe.

We conclude that the following inequality holds for N>= No and k ukoN+ with
vNand l{0,...,koN-1}

I+N N I+-AN I+ AN
N N

<: "Y ewkoh e,ovkoh <_ 3 ew(vko+U N)h , ewkh/N.

It follows easily fromLemma 4.2 that the stability of the RFDE (2.1) also implies
the stability of the approximating continuous-time systems (2.10) and (2.14) if N is
sufficiently large (the precise arguments are given in the proof of Theorem 4.9 below).
However, a uniform estimate in the spirit of Theorem 4.8 has not yet been proved in
the literature on these approximation schemes. It has been stated as a conjecture by
Gibson [9] and provides--in that paperma crucial step in the convergence proof for
the solutions of the algebraic Riccati equation. Repin [18] also claims the uniform
stability of the approximating systems (2.10), however, his arguments are extremely
unclear and it seems almost impossible to convert them into a rigorous proof. The
following theorem closes this important gap in the approximation theory of RFDE’s
and may be considered as the main result of this paper.

THEOREM 4.9. Let L: c ._> RN be givenby (2.2) and let the RFDE (2.1) be exponen-
tially stable. Then the approximating systems (2.10) and (2.14) are uniformly exponentially
stablefor sufficiently large N. This means that there exists an No and constants e > O,
3’ >-- 1 such that

Ile’ll, e(A)*’ll __< , e-t

for every >= 0 and every N >-No.
Proof. First note that the statement on (A)* follows from that on An. Secondly,

it follows from Theorem 6.2 and the exponential estimates in Theorem 2.3. (ii) that it
is enough to show that there exists an No N and a constant c > 0 such that

ANt
Z 2

for every z e R,s/l) and every N => No. We will prove this in 5 steps.
Step 1. There exists an No e such that det As (A) # 0 for every A e C with Re A -> 0

and every N -> No.
Proof. By Lemma 4.2.(ii), the complex function det As (A) cannot have a zero in

the closed right halfplane outside the disc of radius VAR(r/) centered at the origin.
Inside this disc the nonexistence of unstable eigenvalues of As follows from Lemma
4.2.(i) if N is sufficiently largel
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Step 2. For N E N let us introduce the matrix

-1

an N 1

1 -1

E NN.

Then there exist constant eo> 0, 5’02 1 such that

[aNt]NN/O -et Vt>--O, VNEN.

Proof. First of all it is easy to see that xaNx <= 0 for every x RN and every N N.
Hence it follows from a well-known result in semigroup theory that

(4.4) [eaSt[NN =< 1 V > O, VN E N,

where I" INN denotes the operator norm on RNN which corresponds to the Euclidean
norm on RN. Moreover

eaNt e-Nt/h

Nt/ h
1!

1

Nt/h
1!

(St/h)N-1

(N-l)!

and hence

(Nt/h)k

k!
N--1 ".

e-Nt/h E 0 ..
k=-O

0 0

k=O

e--Nt/h

for every >-0 and every N e N. Since

k e-Nt/h dt= k!(h/N)k+l

this implies

(Nt/h)k

k!

le’], at<= E h.
k=0

Together with (4.4) this estimate proves the statement of step 2 (Theorem 6.2, p- 1).
More precisely, eo> 0 may be chosen to be any constant less than 1/h.

Step 3. For every z E[n(N+I) and every N e N

r, =ll 
80
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Proof. First note that

(AIN_ aN)_ h

N
N+Ah

N
N+Ah

and hence

(4.5) T AIN aN)_ (R) I,

NOW let z ,(N+) be given. Then, by step 2, the function

.(t)=[eaN’(R)I,] e t>--O,
ZN

is square integrable on the interval [0, ) and its Fourier transform

1 f it 1
_

(i)=-o e- if(t) dt=[(iI-a @I](0)

satisfies IIll=t_,:.a: IIll=to,:,a. Hence it follows from (4.5) and step 2 that

This proves step 3.
Step 4. There exists a constant c > 0 such that the following inequality holds for

every z W’(N+) and every N -> No

f ’l(iool-aN)-1zl[ dw <=27rc2[[zl’

Proof Recall that

(itoI AN)-1 E N N -1 N ToNFN Nio,) + Ii,oA (ito) (E wTia,,

(Proposition 3.5). By step 3, it remains to establish the desired inequality for the first
term on the right-hand side of this equation. Moreover, it follows from Theorem 4.4
that the operators FN are uniformly bounded and it is easy to see that the operators
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N TQNEN and (E)*- (E) are uniformly bounded on the imaginary axis. Thus it
remains to prove the desired estimate for the term AN(ito)-. But for Itol> VAR (/) it
follows from Lemma 4.2 (ii) that

1
la(i)-l: E (im)-k-lLN(i) k <

:o [l-VAR ()"
This inequality, together with Lemma 4.2 (i) shows that

sup = do<.
NNo

This proves step 4.
Step 5. For every z ,(N+ and every N N0

o lleA’zll dt

Proo Let ze"(N+) and z(t)=eAz for t0 and NNo. Then z(t) is square
integrable on (0, ) and its Fourier transform is given by (io) (2)-1/(iI AN)-1.
By the Fourier-Plancherel theorem and step 4, we obtain

[leAStz[[% dt= (2)-1 II(iI-e)-zll% dc=llzll.

This proves step 5 and the statement of the theorem.
Remark 4.10. The uniform exponential decay rate -e for the approximating

systems (2.10), (2.14) which has been found in the proof of Theorem 4.9 is always
larger than -1/h. The question remains open if one can find a uniform exponential
bound for the approximating systems with the exponential decay rate Wo+ e where
o=sup {Re A ]det A(A)=0} and e >0 can be chosen arbitrarily small. It is also an
open problem if the operators tNet converge to the (compact) operators S(t)
(M2) in the uniform operator topology if h. If this could be shown, then the
solution to the uniform stability problem mentioned above would be an immediate
consequence.

5. Conclusions. The present paper studies in detail ceain finite dimensional
approximations for linear retarded systems, namely the averaging approximation
scheme, both a continuous and a discrete time version as well as the relation between
these two. It turns out that these finite dimensional approximations show--under
several aspectsprecisely the same structure as the underlying RFDE. In paicular,
the duality relations are of the same type and there are ceain structural operators
which play an impoant role for the description of the approximating systems and
are analogous to those which have recently been introduced by Bernier-Manitius [3],
Manitius [14], Delfour-Manitius [7] for the study of RFDE’s. Moreover, it is shown
that these operators actually converge to the corresponding operators in the theory of
retarded systems. One of these convergence results, namely Theorem 4.6, is only a
slight extension of a corresponding result by Reber [17, Thm. 7.5].
Based on this detailed analysis of the structure of the approximating systems, it is

shown that both the discrete- and the continuous-time approximations are stable in a
uniform sense if the underlying RFDE is asymptotically stable. Such a result is by no
means obvious and not all approximation schemes have this propey. For example,
it is shown in Kappel-Salamon 12] that spline approximations for RFDE’s can never
have the propeyofuniform stability. Neveheless, the uniform stability result provides
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a crucial step in the convergence proof of Gibson [9] for the solutions of the algebraic
Riccati equation. Moreover, the structural matrix Fv introduced in this paper allows
a factorization of the approximate Riccati operator in precisely the same manner as
it is shown in Kappel-Salamon [12] for the spline approximation scheme. Finally, it
seems likely that the uniform stability results of this paper have some implications for
the construction of finite dimensional compensators for RFDE’s. This is a research
problem for future investigations.

6. Appendix. In this section we formulate and prove two general functional
analytic results which are needed frequently in 4.

LEMMA 6.1. Let A be an arbitrary set and let X, Y, Z be Banach spaces. Moreover,
let K. (X, Y), Ta(Y,Z), T(Y,Z), aA, kN, be bounded, linear
operators with the properties

(i) cl {Kaxla A, x X, Ilxll <= 1} c y is compact,
(ii) Tay limk_. Tyfor all y Y uniformly in. a A.

Then TK tends to TaKa .(X, Z) in the uniform operator topology as k tends to
infinity and this convergence is uniform in a A.

Proof. Note that for every e >0 there exist finitely many x,..., xn X and
a,. ., a, A such that for every a A and every xY with Ilxll <_- 1 there is a
j{1,..., n} such that IIKax-KaJxjll<=e. Hence the desired uniform convergence
result follows from the inequality

IITKx-TKxlI[IITII+IITII]IIKx-K%x]I/]ITK%x- TK%xII. E3

The next result is a quantitative estimate for the equivalence of LP-stability and
exponential stability for strongly continuous semigroups. This equivalence has been
proved--for the case p 2nby several authors, see for example Datko [5], Curtain-
Pritchard [4], Przyluski [16]. But none of these give the desired quantitative estimate
which is essential for the proof of uniform stability in Theorem 4.9. Again in the case
p =2 such a quantitative estimate can be found without proof in Gibson [8]. We
mention that some of the ideas in the proof of the theorem below are taken from
Przyluski [16, Prop. 9] and Zabczyk [21, Thm. 5.1].

THEOREM 6.2. Let S( t), >-_ O, be a strongly continuous semigroup ofbounded, linear
operators on a Banach space X satisfying the exponential bound

(6.1) IlS(t)lle(x) <=Me"t, t-->O,

for some constants M >- 1, to >- O. Moreover, let 1 <- p < oo and suppose that there exists
a constant c > 0 such that

(6.2) Ils(t)xll’dtc’Ilxll’, xx.

Then, for every

(6.3)
pcPMp’

there exists a y y(a, to, M, c, p)>_- 1 such that

(6.4) [[S(t)[[e(x) <= y e at, >-O.

Remark 6.3. If -1/pcPMp < a < 0, then there exists a unique T> 0 satisfying

e-apT-- 1 + cPMp ePT
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or equivalently

1 cPMp e
(6.5) ct =log

pT T -F" cPMp e’Pr"
The proof of Theorem 6.2 shows that in this case 3’ 3’(a, to, M, c, p) 1 can be chosen
as

T+ cPMp ewPT]2/P
(6.6) T T1/pc

Proof of eorem 6.2. Let T> 0 be given and let us define

T
(6.7} e e( T)

T+ cPMp ep
> O.

Then it follows from (6.1) and (6.2) that

l forE IJS(T)xI[p= E IlS(kT)xllp dt
k=0 k=O

Ilxll+ IlS(T-t)l[P[lS((k-1)T+t)xll"dr
k=l

Ilxll p+ sup IIS(t)ll p IIS(t)xll dt
[o,r]

+ Ilxll

for every x e X. This implies that

E IIS(r)+lxll= E IlS(r)xll-llxll(1 -) E IlS(T)xll
k=0 k =0 k =0

and hence

IIs(rxll Ils(r+xll

(I- e)Ip E IIS(T)xll
k=0

( )-’IIII
for every x X and every m . Now let mT+ 0 with m and 0 ? < T. Then
we conclude that

s() s )II s(T)
MeT-’/( )11II

() (,og(1-e)())Mere-’lpexp log(l-e) exp -1 IIxllp

pT I



where

and
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1
a a(T) =-log

cPMp epT

T+ cPMp e’pT
<0

y=y(T)=Me,OT[1]I/p_[T+cPMPeO’pT]2/p

e(1- e) T1/pc

(compare (6.5) and (6.6)). Thus the statement of the theorem follows from the fact
that a(T) is strictly increasing for T> 0 and satisfies

1
lim a(T)
T--)O pcPMp"
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