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Abstract

Let f : ¥ — X be an orientation preserving diffeomorphism of a com-
pact oriented Riemann surface. This paper relates the Seiberg-Witten
invariants of the mapping torus Yy to the Lefschetz invariants of f.

1 Introduction

Let Y be a compact oriented smooth 3-manifold with nonzero first Betti number.
Two nonzero vector fields on Y are called homologous if they are homotopic
over the complement of a ball in Y. An Euler structure on Y is an equivalence
class of homologous vector fields (see Turaev [33]). Let £(Y") denote the space of
Euler structures on Y. If Y carries a Riemannian metric then an Euler structure
can also be defined as a cohomology class e € H?(SY;Z) on the unit sphere
bundle SY in TY which restricts to a positive generator on each fiber (with the
orientation given by the complex structure n — v x n). The correspondence
assigns to each unit vector field v : Y — SY the Euler structure

ey = PD(v,[Y]) € H*(SY;Z).

With the second description it follows that there is a free and transitive action
of H%(Y;7Z) on the space of Euler structures, given by

H*(Y;Z) x E(Y) = E(Y): (hye)— h-e=e+7"h.
Moreover there is a natural map
E(Y) — H*(Y;Z) : e — c(e)

which assigne to e = PD([v]) the Euler class of the normal bundle v-. These
maps are related by ¢(h - €) = ¢(e) + 2h. Turaev introduces a torsion invariant

T:EY)—-Z

which is a kind of refinement of the Reidemeister-Milnor torsion. In the case
b1(Y) = 1 this function depends on a choice of orientation of Hy(Y).



A unit vector field v : Y — SY also determines a spin® structure -y, on
Y (see Example 3.1 below). Turaev [33] observes that two such spin® struc-
tures 7, and 7,, are isomorphic if and only if the vector fields vy and v; are
homologous, and hence there is a natural bijection between £(Y") and the set
S¢(Y) of isomorphism classes of spin® structures on Y (see also [26]). Now the
Seiberg-Witten invariants of Y take the form of a function

SW:S(Y) — Z

As above, this function depends on a choice of orientation of H1(Y) whenever
b1(Y) = 1. In [33] Turaev conjectures that the Seiberg-Witten invariants and
the torsion invariants of Y should agree under the natural identification of £(Y")
with S¢(Y"). The purpose of this paper is to outline a proof of this conjecture
for mapping tori.!

Theorem 1.1. Let ¥ be a compact oriented Riemann surface and f : X — X
be an orientation preserving diffeomorphism. Denote by Y¢ the mapping torus
of f. Then

SW(Yy, ) =T (Y, ev)

for every nonzero vector field v on Y.

The horizontal vector field 9/0t determines a canonical Euler structure
er € £(Yy). Likewise, there is a canonical spin® structure v5 € S°(Yy) which
corresponds to e; under the isomorphism £(Yy) = S¢(Yy). Hence both £(Y7)
and S¢(Yy) can be naturally identified with H?(Yy;Z). A cohomology class in
H?(Yy;Z) can be represented as the first Chern class of a complex line bundle
over Yy. Every such line bundle is isomorphic to the mapping torus of a lift
f:E — E of f to a unitary bundle automorphism of a Hermitian line bundle

over X: }
7

F — F
! !
y L5

Let d = deg(E) := (c1(E), [X]) and denote by e, 7 € E(Yy) and ~, 7 € S°(Yy)
the Euler and spin® structures induced by f . Then the assertion of Theorem 1.1
can be restated in the form

SW(Yf, ’7d,f~) = T(Yf, ed7f~)

for every Hermitian line bundle £ — ¥ and every automorphism f F - F
that descends to f.

1While this paper was written the author received a message that Turaev had proved
the conjecture for general 3-manifolds [34]. Turaev’s proof is based on the work by Meng-
Taubes [20].



2 Lefschetz numbers

Let M be a compact smooth manifold and ¢ : M — M be a continuous map.
Denote by €2, the space of continuous paths z : R — M such that z(t + 1) =
¢(z(t)). For x € Q4 denote by [r] € mo(£24) the homotopy class of the path.
Two pairs (¢o, Po) and (¢1,P1) with P; € mo(2p,) are called conjugate if
there exists a homeomorphism v : M — M such that ¢, = ¥ ~! o ¢y 0 and
P1 = 1*Py. They are called homotopic if there exist a homotopy s +— ¢ from
@0 to ¢1 and a continuous map [0, 1] xR — M : (s,t) — x4(t) such that x5 € Qg
for all s and [zg] = Py, [x1] = P1. Every fixed point z = ¢(z) determines a
constant path in Q4. For P € mo(Qy) let Fix(4, P) denote the set of all fixed
points z € Fix(¢) with [z] = P. If ¢ is smooth then a fixed point = € Fix(¢) is
called nondegenerate if det(1 — d¢(z)) # 0. In this case the number

ind(z, ¢) = sign det(ll — d¢(z))

is called the fixed point index of z.

The Lefschetz invariant assigns an integer to every pair (¢, P) where ¢ :
M — M is a continuous map and P € mo(€Qg). It is characterized by the
following axioms.

(Fixed point index) If ¢ is smooth and the fixed points in Fix(¢,P) are all
nondegenerate then

L(¢,P)= > ind(z,¢).

z€Fix(¢,P)

(Homotopy) Homotopic pairs have the same Lefschetz invariant.
(Naturality) Conjugate pairs have the same Lefschetz invariant.

(Trace formula) The Lefschetz number of ¢ is given by
L(¢):= Y L(¢,P)=> (—1)'trace(¢. : Hi(M) — H;(M)).

Pemo(Qge) %

(Zeta function) The zeta function of ¢ is given by

ik
Co(t) == exp (Z%Lw’“))
k—
dim M 1

— H det(1 — tH;(¢)) V"™ (1)

= Y t'I(5%).
d=0

Here ¢* denotes the k-th iterate of ¢ and S% : SYM — S¢M denotes the
homeomorphism of the d-fold symmetric product S¢M induced by ¢.



(Product formula) If the periodic points of ¢ are all nondegenerate then

Cqs(t):ﬁ [T (- ela,¢h)er)y-=@enmdeh,

k=1zeP(¢,k)/Zs

Here e(z, ¢*) = sign det(1+d¢* (x)) and P (¢, k) denotes the set of periodic
points of minimal period k.

The Lefschetz invariant is uniquely determined by the “homotopy” and “fized
point index” axioms. The “trace formula” is the Lefschetz fixed point theorem.
The “product formula” is due to Ionel-Parker [16] and also plays a crucial role
in the work of Hutchings—Lee [14, 15].

Proof of (1) and the product formula. The second equation in (1) follows from
the trace formula and the identity

1 Ak
det(1— A)™" =exp Z -
k>1
The third equation follows from the identities
L(S%¢) = Z(—l)Jtrace(AJHodd(¢))trace(SdﬂHev(¢)),
j=0

det(1— A) = Z(—l)jtrace(AjA), det(1 — A)~! = Z(—l)ktrace(SkA).
>0 5>0

To prove the product formula note that the indices of the iterated periodic
points are given by

ind(z, ¢*) = ind(z, ¢*)e(z, ¢*)* 1.

Let pT (¢, k) denote the sum of the fixed point indices of the periodic orbits in
P (¢, k)/Zy which satisfy e(x, ¢¥) = +1. Then

L") = 32 X (0 (6, kfm) + (217 (0, R /).

nlk
This implies
> > kt* kt"
tFL(¢F) = (o k) —— (P k)—— | .
St = Y (00 0
k=1 k=1
Divide by t, integrate, and exponentiate to obtain the product formula. O

Let us now return to the case of a diffeomorphism f : ¥ — ¥ of a Riemann
surface and a lift f : E — E to an automorphism of a line bundle of degree d.
For d > 2 such a lift determines a homotopy class P, 7 € mo(Qsay) (Lemma 7.1).
If d =1 then P, 7 denotes a union of connected components of Qga .



Theorem 2.1. Let ¥ be a compact oriented Riemann surface, E — ¥ be a
Hermitian line bundle of degree d, f : ¥ — ¥ be an orientation preserving
diffeomorphism and f : E — E be an automorphism that descends to f. Then

SW(va F)/dyf) = L(Sdfv ,Pdﬁf)'
The proof of Theorem 2.1 is outlined below. Full details will appear else-
where.
Theorem 2.1 implies Theorem 1.1. In [14, 15] Hutchings and Lee proved that
T(Yfa ed,f) = L(Sdfa Pd7f~)'

Their proof is based on a comparison between the topological torsion and the
torsion of the Morse complex of a closed 1-form «, twisted by a suitable Novikov
ring. The quotient is the zeta function given by counting the periodic solutions
of the gradient flow of a. In the case of mapping tori the proof can be thought
of as an interpolation between a representative of o without periodic solutions
(giving the torsion invariant) and one without critical points (giving the Lef-
schetz invariant). O

Corollary 2.2. Let ¥ be a compact oriented Riemann surface of genus g and
f:X — X be an orientation preserving diffeomorphism. Then

3 SW(Y 2 = t19¢ (),
vESe(Yy)

Proof. The characteristic class of the spin® structure v, 7 satisfies c(y, 7) - X =
2d + 2 — 2g. Hence the result follows from Theorem 2.1 and (1). O

Note that (f is a polynomial if and only if 1 is an eigenvalue of the auto-
morphism f*: HY(X) — H(X) or, equivalently, b (Yy) > 2.

3 Seiberg-Witten invariants

Fix a Riemannian metric on Y. A spin® structure on Y is a pair (W,~) where
W — Y is a Hermitian rank-2 bundle and v : TY — End(W) is a bundle
homomorphism which satisfies

Y()y(w) = (v x w) = (v, w)1
for v,w € T,Y. The characteristic class of v is defined by ¢(y) = c1(W) €
H*(Y;7Z).
Ezxample 3.1. A unit vector field v : ¥ — TY determines a spin® structure
(W, %) where W, = C @ vt and

o _ _i<na U>00+ <77’ 91>—|—i<’0 X 77701>
() ( 01 ) B ( (n,v)v x 01 — (Rebp)(n — (n,v)v) — (Imby)v X 7 )

for g € C, 01 € v+, and n € TY. The characteristic class of this structure is
() = cr(vh).



Let A(v) denote the space of connections on the square root det(W)/? of
the determinant bundle of W. Every connection A € A(7y) determines a spin®
connection V4 on W which is compatible with the Levi-Civita connection on
TY. The Seiberg-Witten equations on Y take the form

D,O0 =0, v(xFa + xn) = (00%),, (2)

for A € A(v) and © € C*°(Y,W). Here D4y : C°(Y,W) — C*>°(Y, W) denotes
the Dirac operator induced by V4, F4 € Q2(Y,iR) denotes the curvature form
of A, and (©0*)y € C>°(Y,End(W)) is defined by (©00*)yf = (0,0)0 — |©|24/2
for 0 € C*°(Y,W). The metric identifies TY with T*Y and so 7 induces a
bundle isomorphism between T*Y ® C and the bundle Endo(W) of traceless
endomorphisms of W. This isomorphism identifies the imaginary valued 1-forms
with the traceless Hermitian endomorphisms of W. The 2-form n € Q?(Y,iR)
represents a perturbation. Since d*y~1((©0*)) = ilm (D40, O) equation (2)
has no solutions unless 7 is closed.

Remark 3.2. (i) The solutions of (2) are the critical points of the Chern-Simons-
Dirac functional CSD,, : A(y) x C°(Y,W) — R given by

CSD,(A,0) = —% /Y(A — Ag) A (Fa + Fa, +2n) — %/Y Re (D40, ©)dvol.

(ii) Every solution (A, ©) of (2) with © # 0 satisfies
2< oyl — 2
sup [0 < sgp( Inl 2),

where s: Y — R denotes the scalar curvature [17]. This implies that the space
of gauge equivalence classes of solutions of (2) is compact.

(iii) The augmented Hessian of the Chern-Simons-Dirac functional is the self-
adjoint operator H4 e on the space Q°(Y,iR) & Q}(Y,iR) & C°°(Y, W) given
by

) d*a —ilm (O, §)
Haol| o | = dv+xda—~y71((00% +O0%)0)
0 —Dab —7(2)® — ¥O
If (A, ©) is a solution of (2) with © # 0 then
Y AY+ |22
HaoHao « = Ao + |®|2a — 2iIm <VA@, 0)
0 DaDad + |0]20 — 2V, .0

(see [26]). Hence every triple (¢, «,0) € ker H o satisfies ¢ = 0. It follows
that the kernel of the augmented Hessian agrees with the kernel of the actual
Hessian d*CSD, (A, ©) on the quotient Q! (Y, iR) x C=(Y,W)/{(d¢, —£O) | € €
QY iR)}.



A solution (A, ©) of (2) with © # 0 is called nondegenerate if H 4 o is bijec-
tive. In [9] Froyshov proved that for a generic closed perturbation 7 the solutions
of (2) are all nondegenerate, and hence form a finite set of gauge equivalence
classes (see also [26]). Perturbations with this property are called regular. Let
(A, ©) be a nondegenerate solution of (2). Then the index SV (A, ©) is defined
as the spectral flow of the operator family [—1,1] 3 s — H, where Hs = Ha so
for 0 <s<1and

ST d* 0
Hs = d *d+sm 0 , —-1<s<0.
0 0 Da

This operator is injective for s < 0. (See [23] for an exposition of the spec-
tral flow.) The index SV (A, ©) is well defined whenever the Hessian Ha o is
injective. It satisfies

utdu

211

VA, 00) = 1 (4,0) = |1 ()

for every gauge transformation u : Y — S!. This number is always even. The
Seiberg-Witten invariant of (Y,~) is defined by

SW(Y,7) = S (e (3)
[A,8]€Crit(CSDy,)

for every regular perturbation 7, where the sum runs over all gauge equivalence
classes of solutions of (2). If b1(Y) > 1 then the right hand side of (3) is
independent of 77 and the metric and depends only on the isomorphism class of
the spin® structure «y (see [26] for details).

Remark 3.3. Care must be taken when b1(Y) = 1. In this case the right hand
side of (3) is not independent of n but may change when 7 passes through the
codimension-1 subspace for which there are solutions of (2) with © = 0. This is
the case whenever

[g} L (W) =0

(in deRham cohomology). To avoid this it is convenient to fix an orientation of
H'(Y) and, for each metric g on Y, denote by ay € 2'(Y) the unique harmonic
1-form which has norm 1 and represents the given orientation of H'(Y’). Then
we impose the condition

ey(gm) == [ D nay () fa) <0

y T

in the definition (3) of the Seiberg-Witten invariant.



4 Vortex equations

Let 3 be a compact oriented 2-manifold of genus g. Fix a volume form w €
0%(¥) and denote by J(X) the space of complex structures on ¥ that are
compatible with the orientation. Let £ — X be a Hermitian line bundle of
degree

d= <CI(E)u [ED

and denote by A(FE) the space of Hermitian connections on E. For every J €
J(X) there is a natural bijection from A(E) to the space of Cauchy-Riemann
operators on E. The Cauchy-Riemann operator associated to A € A(F) and
J € J(%) will be denoted by d; 4 : C°(2, E) — Q%' (%, E). When the complex
structure is understood from the context we shall drop the subscript J. The
vortex equations take the form

2

for A € A(E) and ©¢ € C*(X, E). Here 7 : ¥ — R is a smooth function such

that
/ Tw > 27d.
b))

The space of gauge equivalence classes of solutions of (4) will be denoted by

{(A,60) € A(E) x C*(%, E) | (4)}
Map(%, S1) '

5‘]1,4@0 =0, x4 +

M(J, 7') = Mgﬁd(J, 7') =

This space can be interpreted as a symplectic quotient as follows. The space
A(E) x C*(%, E) carries a symplectic form € given by

(. 00), (0, 6))) = /

ala + / Im (6, 0)))w (5)
3 )

and a compatible complex structure (a, 8y) — (xc,i6y). The gauge group G =
Map(X, S1) acts by Hamiltonian symplectomorphisms and it is a simple matter
to check that the moment map is given by

A(E) x C®(3,E) — C®(X) : (A, Oq) — *iFp + |0¢|*/2.
Now the space -
Xy ={(A,00)]0400 =0, ©g £ 0}

is a complex submanifold of A(E) x C*°(X, E) and is invariant under the action
of G. Hence the moduli space M(J, ) of solutions of (4) can be interpreted as
the Marsden-Weinstein quotient X /G (7).

Remark 4.1. The tangent space of My 4(J,7) at (A,Oq) consists of all pairs
(0o, 1) € C*(X, E) x QU1() that satisfy

_ - 1
(9]7,460—1—04160:0, dj aq —§<90,90>:O. (6)



Here oy is the (0,1)-part of an infinitesimal connection o € Q!(X,iR). Since
20*a%! = d*a — *ida (cf. [26, Corollary 3.28]) the second equation in (6) de-
composes into *ida + Re (g, 0p) = 0 and d*a — ilm (B¢, 6p) = 0. The first of
these equations is the infinitesimal version of the second equation in (4) and the
second is the local slice condition for the action of the gauge group. Now the
left hand sides of the equations (6) determine an operator D4 o, which satis-
fies Da.o, " Dao, = Ag + |O0|?/2 and hence is surjective. This shows that the
moduli space M(J, ) is smooth.

Remark 4.2. The Jacobian torus of E is the quotient
_AY(E) | AE)

Taexa(J) = T = S A“’(E)_{A| *iFA_iLd}.

Here the complexified gauge group G¢ = Map(X, C*) acts on A(E) by
wA=A+uou—utou.

With u = e~ 7 : ¥ — R we obtain u*A = A + xidf and *iFy.« 4 — %iFy = d*df.

Hence u*A € A¥(E) if and only if d*df = 2wd/Vol(X) — #iF4. This equation

has a unique solution f with mean value zero. Hence each complex gauge orbit

of A(E) intersects A“(E) in precisely one unitary gauge orbit.

Remark 4.3. The moduli space My, 4(J, T) can be identified with the GIT quo-

tient X;7/G¢ (see Garcia-Prada [11]). To see this let u = e~/ : ¥ — R. Then,
by Remark 4.2, i F\,« s — *iF4 = d*df and hence the pair (u*A,u=10) satisfies
the second equation in (4) if and only if

@ 2
d*df + le% =7 — xiF,.

This is the Kazdan—Warner equation and, since the right hand side has posi-
tive mean value, it has a unique solution f : ¥ — R [26, Appendix D]. This
establishes the bijection

Ms a(J,7) = X5 )/G(T) =2 X;/G°.
There is a holomorphic projection
My q(J,7) — Jacs,qa(J)
given by [A, ©¢]¢ ~— [A]°. This is an embedding whenever dim ker 94 < 1 for
every A € A(E).

Remark 4.4. The complex quotient My 4(J,7) = X;/G° is the set of effective
divisors on ¥ and can be identified with the symmetric product

YX-ex X

Saq '
The projection Xy — S9¥ assigns to a pair (A4, Op) the set of zeros of ©g. Thus
every complex structure J € J(X) determines a smooth atlas on S¢¥. For

different choices of J the coordinate charts are not compatible but have only
Lipschitz continuous transition maps.

Ms a(J,7) =2 S8 =



5 The universal connection

The next theorem shows that the moduli spaces My 4(J, 7) can be identified
as symplectic manifolds, and that the symplectic structure depends only on the
mean value of 7.

Theorem 5.1. Let [0,1] — J(X) x C®°(X) : t — (Jy, 7¢) be a smooth function
such that [ 7w = 0 and choose [0,1] — Q' (X) : t — oy such that 7, +*do, = 0.
Then there is a symplectomorphism

V=Yg, 700 - M(Jo, T0) = M(J1,71)
defined by [A(0),00(0)] — [A(1),O0(1)], where
iA=Re(00,0,) —0, iOg= D5 O, (7)
and ©1 = O4(t) € Qg’tl (3, E) is the unique solution of the elliptic equation

|©|2

074054 01+ 5

1 .
0, = 5(aJ,Aeo) oJ+o%lO,. (8)

If Jo = J1, 19 = 11, and fol osds = 0 then v is Hamiltonian.

Choose 0y = *4dfy; where f; : ¥ — R is the unique function of mean value
zero which satisfies 7, = d**df;. The resulting symplectomorphisms ¢y, ;,} :
M(Jo,10) — M(J1,71) determine a universal Hamiltonian connection on
the fibre bundle over J(X) x C2°(X) with fibres M(J, 7). Here C°(X) denotes
the space of functions with fixed mean value m > 2nd.

Remark 5.1. Suppose that A(t), ©¢(t), and O4(t) satisfy
Z(A—d\lf) = Re <@0,®1> — 0, i(@o—F\IJ@o) = 5(]7,4*@1, (9)

and (8). Let [0,1] — G : t — wu(t) be a solution of the ordinary differential
equation © % + ¥ = 0. Then the functions

g =A+ uildu7 éo = uile)o, él = u’1®1

satisfy (7) and (8).

Ezercise 5.2. Suppose J; = J and 7, = 7. Let ¢y : M(J,7) — M(J,7) be
defined by the solutions of (7) and (8). If oy = dh; prove that the ¢, are
generated by the Hamiltonian functions Hy([A,©0]) = — [y, thiFa. In general,
prove that Flux({¢;}) € H*(M(J, 7)) is the cohomology class of the 1-form

1
T[Aygo]M(J,T)HRZ(04790)’—>/i0'/\0[7 0:/ o5 ds.
) 0

Prove that the flux is zero if and only if ¢ is exact.

10



To prove Theorem 5.1 it is useful to examine the spaces
XJ,G’ = {(A7®0) € A(E) X COO(X7 E) |5J,A+i090 = 07 60 5—'5 O}

for J € J(¥) and o € Q(X). Suitable Sobolev completions of these spaces are
Banach manifolds.

Lemma 5.2. For every J € ._7( ) and every a € QY(X) the space Xy, is a
complex submanifold of A(E) x C*°(X, E) with respect to the complex structure
(ar,00) — (xja,i6)).

Proof. The tangent space of X, at the point (4, Og) is the kernel of the oper-
ator Dy Atic.0, : 2, iR) x C®(Z, E) — QV1(X, E) given by
Dj Atio,00(a,00) = 07 aticbo + a1 6.

The identity (x7a)®! = ia®! shows that this operator is complex linear. Its
L2-adjoint Dy atic.o," : QUL E) — Q1(X,iR) x C*(X, E) is given by

Dy atio.o, 01 = (iTm (Qg,01), Oy atic 01).
Since (ilm (O, 01))%! = (O, 01)/2 we obtain

*
D Atie.0oDrAvie.o, 01 = 01 atio 0y atie 1+ = |90| 0.

It follows from elliptic regularity that D a1ic.0, is surjectlve and hence X, is
an infinite dimensional manifold. O

The required identification of the moduli spaces M(J, 7) arises from a sym-
plectic connection on the universal bundle

E= o)} x Xy — T(2) x QD).

J,o

Think of £ as a submanifold of the space J () x Q! (2) x A(E) x C*° (X, E). The
formula (5) defines a closed 2-form on € which restricts to the given symplectic
form on each fibre. Hence it determines a symplectic connection on £, where the
horizontal subspace at (J, 0, A,0q) is the Q-complement of the vertical space
T(a,00)Xs. We call this the universal symplectic connection on £. The
next proposition gives an explicit formula for this connection.

Proposition 5.3. A smooth path [0,1] — &£ : t — (J(t),0(t), B(t),O0(t)) is
horizontal with respect to the universal connection on £ if and only if

’LA:RG <@0,®1>, i@o = 5J1A+1;g*®1, (10)
2
1 .
07 Atio 07, Atio O1 + | 20| O; = 5(8J,A+ia®0) oJ+¢%10,. (11)
Every horizontal path satisfies
d |90/
pr (*ZFA + — 5 =0. (12)

11



Proof. A path t — (J(t),0(t), A(t),O(¢)) in € is horizontal with respect to the
universal connection if and only if

(*JA, i@o) 1 ker Dy Atio,00
for every t. By the proof of Lemma 5.2, this holds if and only if
(*JA, i@o) €imDy atio,0 -
The formula for this operator in the proof of Lemma 5.2 shows that this means
xjA=iIm (09,01),  iOg= 0ja+4ic O1

for some ©1 € Q%Y(X, E). Since *;Im (g, 01) = Im (0g,i0;) = Re (Og, 01),
this is equivalent to (10). Since (4, ©g) € X, for every ¢ we obtain

d -
0 = 29,4010
77 07.4+i5 00
= 5‘]1A+m®0 + Ao’l@o + ié’o’l@o + %(dAJria@O) o J
5 = * |O/? i C 01
= —i0j Atioc 0J Avic O1 — 1 5 0+ 5(3,J,A+ia®o) oJ+ic" Og

Hence O, is given by (11).
Conversely, suppose that the path t — (J(t),0(t), A(t), ©(t)) satisfies (10)
and (11) as well as (A(0),0¢(0)) € Xj(0),0(0)- Then the same argument as above

shows that
d = - .
EaJ,A-Q—iU@O = 5(3J,A+w@0) oJ

and hence 0 7, A+ic©0 = 0 for all t. We prove directly that the path is horizontal.
If 07 atiobo + a®1Og = 0 then, since x;A = iRe (109, 01),

Q((A, 60), (@, 00)) = /E(Re<*JA,a>+Re<i®0,90>)w
= /E(Re(iRe(i@o,@1>,a>+Re((§})A+w@1,90>)w

= / Re (01,07 41i000 + a1 0g) w
5
= 0.

To prove (12) note that d*(©g, ©1) = (O, 5J7A+7;U*®1>_<5J)A+ig®07 ©1). Using
*xidA = d* xjiA = d*Re (00,101) we obtain

d [ . EHE o .
— | *iF4 + = xidA + Re <®0, ®0>
dt 2
= d"Re(00,i01) — Re (00,i0s,44is ©1)
= —Re(9;4+4i000,i101)
= 0.
This proves the proposition. o
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Proof of Theorem 5.1. Define A’(t) € A(E) and o’(t) € Q'(X, E) by

A'(t) = A(t) —io'(t), a(t) = /0 o ds.

Then the map X;u) — Xj),0q) @ (A(t),O0(t)) = (A'(t),O0(t)) is a Kahler
isomorphism. Now equations (7) and (8) show that

iA' = iA+ 0 =Re(0,0), i©0 = 94 1= Dja+i0 ©1
and ©; satisfies (11) with A and o replaced by A’ and ¢’. Hence, by Propo-
sition 5.3, the map Xj(0).0/0) — Xs1).0r(1)  (4'(0),00(0)) — (A’(1),00(1))
defines a symplectomorphism which is Hamiltonian if the loop is closed (cf.

McDuff-Salamon [19, Chapter 6]). Now use the identification of X ;¢ o+ () with
Xj(t) to deduce that there is a well defined symplectorphism

X0y~ 50y + (A(0), 0(0)) — (A(1), Og(1))

that is Hamiltonian whenever J(0) = J(1) and ¢’'(0) = ¢’(1). Since

d (. 90*) _
§<*ZF‘4’+ 2 |~

we have
d . Qo d , d
T (Tt e %) = a(n +xid(A' — A)) = Eﬁ + xdoy = 0,

and hence the symplectomorphism ¢ maps the solutions of (4) with (J,7) =
(Jo,70) to those with (J,7) = (Jy,71). Let ¢ : M(Jo,70) — M(J1,71) denote
the symplectomorphism induced by . If J(0) = J(1) and fol osds = 0 then
0’(0) = ¢’(1) = 0. In this case 1 is a Hamiltonian symplectomorphism and
hence, so is 1. This proves the theorem. o

6 Symmetric products

The rational cohomology of the symmetric product is well understood and can
be computed in terms of symmetric differential forms on 4. For j < d one
obtains

H(SIS) 2 NoN 2.

where A7/ = AJH'(X). Hence

1) =Sy (Y) = (72

Jj=0
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This description of the cohomology is functorial with respect to the action of
the mapping class group of X. Hence

d

L(SUf) = (=1)(d+1 — j)trace(A/ f*)

Jj=0

where S¢f denotes the induced map on S% and f* denotes the induced endo-
morphism of H'(X).

For d = deg(E) > 2g—2 the Riemann—Roch theorem asserts that the space of
holomorphic 1-forms with values in any holomorphic line bundle E of degree d is
zero. Hence the space H°(3, E) of holomorphic sections has complex dimension
d+1—g. It follows that S?Y is a fiber bundle over the Jacobian with fiber
PH(X, E) = CP49:

CP?79 «— §9% — Jacs 4.

In particular, this shows that the first Chern class ¢; = ¢;(T'SY) evaluates on
the positive generator A € m3(99Y) by

ci(A)=d+1—-g
whenever d > 2¢g — 1. (This continues to hold for all d > 2.)

Proposition 6.1. The space
Ms,a = Msa(J,7) = {(A,60) € A(E) x C*(3, E) | (4)}
s connected. If d > 2 then ﬂz)d is simply connected and
T (Msq) =7m0(G) = 729,
Ifd =1 then Mx1 2% and 771(./(\/1/2,1/51) is the Torelli group.

Proof. We prove that ﬂz,d is connected. To see this note that there is a
fibration

g — /\N/lx,d — Msx 4. (13)

Fix a point (A,0q) € ./\N/lg,d such that ©¢ has d distinct zeros. Since My 4
is connected it suffices to prove that, for every u € G, the points (A4,O¢) and
(u*A,u='0g) can be connected by a path in .//\\/l/gﬁd. Moreover, it suffices to
consider one gauge transformation from each of 2¢g components that generate
70(G). Choose a circle C C ¥ that contains precisely one zero of ©¢ and choose
a gauge transformation u : ¥ — S' such that u = 1 in the complement of a
small neighbourhood of C and

14



Then the required path from (4, Og) to (u*A,u~160g) can be obtained by sliding
the zero of ©g once around C. This shows that My 4 is connected.
We prove that, for d > 2,

71 (S9Y) = Hy(X;Z) = 7%,

(This is well known and the first identity extends to symmetric products of any
compact manifold. We include a proof for the sake of completeness.) Fix a base
point ¢ € ¥ and note that every loop in SY has the form [y, ...,7q4] : St — S9%
for d based loops v; : S* — X. Moreover,

[Viy--syd] ~ e, e, v1 e Yl

Since the ordering of the v; is immaterial it follows that m;(S9Y%) is abelian.
If v : S — ¥ is not homologous to zero then there is a cohomology class
a € HY(X;Z) such that («,[y]) = 1. This gives rise to a cohomology class on
S9% which pairs nontrivially with [c, ..., c,v]. Hence m;(S%) = Hy(%;Z).

We prove that, for d > 2, there exists a pair (J, A) € J(X) x A(E) such that

dim® ker 5.4 > 2.

(This is also well known.) Think of CP?! as the space of complex lines in C? and
denote by H — CP! the tautological bundle whose fibre over a line £ € CP! is
the dual space ¢* = Hom(¢, C). Then a holomorphic section of H has the form
s() = ¢|¢ where ¢ € Hom(C?,C). This space has evidently dimension 2. Now
choose a branched covering u : ¥ — CP?! of degree d > 2. Then the pullback
bundle £ = u*H — 3 has degree d. Choose A € A(E) to be the pullback of the
tautological connection on H and J € J(X) to be the pullback of the standard
complex structure on CP!. Then the kernel of 0 7,4 has dimension at least 2.

Suppose that d > 2. We prove that .//\/lv,]yd is simply connected for every J
and every 7. By Theorem 5.1 it suffices to prove this for some J. Consider the
homotopy exact sequence of the fibration (13). It has the form

m1(G) — m(Msz.q) — m(Ms 4) — m0(G) — 0. (14)

We have proved that 7 (Msx ) = Z2?9 whenever d > 2. Since mo(G) = Z29
and the homomorphism 7 (Msg q) — 7(G) is surjective it follows that this
homomorphism is injective. Hence the homomorphism (ﬂz,d) — T (/\/lgd)
is zero. Now 71 (G) = Z and the image of the homomorphism 7 (G) — m (.//\/lvgyd)
is generated by the loop

St — ./T/l/g,d((], 7) e (A,e"0y).

We have proved that, for d > 2, there exists a complex structure J € J(X)
and a connection A € A(E) such that dim® ker ;4 > 2. For this choice
the aforementioned loop is obviously contractible. Hence the homomorphism
m(G) — m(Myx q) is zero for some J and, by Theorem 5.1 it is zero for every

J. Hence the exact sequence (14) shows that .//\/lvgyd is simply connected. O
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7 Symplectic fixed points

Theorem 5.1 shows how to construct a homomorphism of symplectic mapping
class groups

Diff (¥, w)/Ham(X, w) — Diff(M(J, 7), Q) /Ham(M(J, 1), Q).

Here Diff (X, w) denotes the group of orientation and area preserving diffeomor-
phisms of ¥ and Ham(3, w) denotes the subgroup of Hamiltonian symplectomor-
phisms. Let f € Diff (¥, w) and choose a lift f of f to a unitary automorpohism
of E. Any two such lifts f, /' : E — E are related by

f'=m()o f=fom(uof)

for some u € G, where m(u) : E — E denotes the obvious action of u. Let
R — J(X2) : ¢t — J; be a smooth family of complex structures such that

Jig1 = "I

Denote by ¢, : M(Jp,7) — M(J;, 7) the symplectomorphisms induced by the
solutions of (7) and (8) with 7 = 7 and oy = 0. Then the symplectomorphism

baf = ba (s =1 o i M(Jo, ) = M(Jo, 7)

is independent of the choice of the lift f and, by Theorem 5.1, its Hamiltonian
isotopy class is independent of the path {J;}.

We examine the components of the path space (24, .. Denote by ﬁd,f the
space of all smooth paths R — A(E) x C*®(%, E) : t — (A(t), O9(t)) that satisfy
[A(t),O0(t)] € M(Jy,T) and the periodicity condition

At +1) = fFA(), Oo(t +1) = f*Oq(t).
The group G of gauge transformations R — G : ¢ — w(t) that satisfy
u(t+t)=u(t)o f
acts on this space and the quotient will be denoted by
Pyj= ﬁd,f/gf'

This space can be naturally identified with a subset of (24, , via the map that
assigns to every path ¢ — [A(t),©o(t)] in P, 7 the path v : R — M(Jo, 7) given
by v(t) = ¥~ '([A(t), ©0(t)]). Evidently the set Qg, , is the union of the sets
P, j over all unitary lifts of f. The next lemma shows that each set P, jisa
component of {0y, . and that

H(S:Z)

WO(QQMJ) = im(]l _ f*)

This identification is not canonical.
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Lemma 7.1. Suppose that d > 2. Then, for every unitary lift f : E — E of
f, the space P, j is a connected component of Qg, ;. Two such lifts f and f’
determine the same component if and only if there exists a w € G such that

f''=fom(u) and

{“;ZU] cim(l— f*) c H(S;Z). (15)

Proof. By Proposition 6.1, the space of all solutions of the vortex equations (4)
is simply connected. Hence P, 7 is connected and hence, so is P, 7 Now let f

and f' be two unitary lifts of f. Then the following are equivalent.
(i) Pd,f = Pd,f/'

(ii) /Pd,f‘ n Pd,f’ # @

(iii) There exists a u € G that satisfies f = f o m(u) and (15)

We prove that (iii) implies (i). Suppose that u : ¥ — S! satisfies (15) and
choose a closed 1-form o € Q(X) with integer periods such that the 1-form
u™tdu/2mi — o + f*o is exact. Choose v : ¥ — S' such that v='dv/27i = o.
Then (vo f)u: ¥ — St is homotopic to v. Hence there exists a path R — G :
t — v(t) such that v(0) = v and

o(t+1) = (v(t) o fu.
Let t — (A(t),©0(t)) be a path in ﬁd,f and denote
A(t) = o) A(t),  O(t) =v(t)'O0(t), = Fom(u).
Then

Alt+1) = v(t+1)"At+1)
N 10
= u(v(t) o f)"fTA()
= u"frut)*A(%)
= fTA®).
A similar identity holds with A(¢) replaced by ©¢(t). This shows that the path
t— (A'(t),0p(t)) lies in P, 7. Thus we have proved that there is a bijection

Paj = Paj: {AW®), Oo(h)}e = {0(t) A1), v(t) "' Oo(t)}
This proves (i). That (i) implies (i) is obvious since P, 7 # 0. That (i)

implies (iii) follows by reversing the arguments in the proof that (iii) implies (i).
This step is left as an exercise to the reader. O
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A fixed point of ¢q,¢ in the class P, 7 can be represented by a path

R — A(E) x C®(%,iR) x C*(%,E) x Q%Y (X, E)
t = (A(t),\lf(t),@o(t)7®1(t))

that satisfies the equations

5 _ , 90]* _
a;t,A@O—O, *ZFA+T—T, (16)
#(A—d¥) =ilm (Qg,01),  i(Og+VOg) = d; O, (17)
= & o« 1002 1 .
07,,405,,4 ©1 + 5 0, = 5((9],5,14@0) o Ji, (18)
and the periodicity condition
At +1) = frA(t), T(t+1)=(t)o f,

Ou(t +1) = f*O0(t), O1(t+1) = f*O,(t). (19)

Here (16) asserts that [A(t), ©¢(t)] € M(J¢, 7) for every ¢, (17) and (18) assert
that the path ¢ — [A(t), ©¢(¢)] is horizontal with respect to the universal con-
nection, and (19) asserts that the path ¢ — [A(t), ©0(t)] belongs to P, 7. Two
such paths represent the same fixed point if and only if they are related by

(A, ,00,01) — (B+u tdu, ¥ +uti,u"'0p,u"10;)

for some u € Gy.

8 Mapping tori

We examine the Seiberg-Witten equations on a mapping torus. As before, let
> be a compact oriented smooth 2-manifold of genus g equipped with a volume
form w. Let f € Diff (¥, w) and denote by

Yi=RxX/~
the mapping torus. The equivalence relation is given by
(t+1,2)~ (¢ f(2).
Choose a smooth function R — (%) such that J;11 = f*J; and denote by
(e =l i) + ()

the Hermitian form on 7% induced by J; and w. Such a family of complex
structures determines a metric on Yy and a spin® structure.

18



The canonical spin® structure

The canonical spin® structure on Yy, determined by the family {J;} of almost
complex structures, will be denoted by ~v; : TY; — End(Wy). The Hermitian
rank-2 bundle Wy — Y} is given by

Wy ={(t:2,00,01) [t €R, z€ %, 0 € C, 01 € AYTIT} [/~

The equivalence relation is (¢ + 1, 2,00, 01) ~ (¢, f(2),00,01 0df(2)~!) and v

has the form
. @0 . —iT@o — ﬁGI(C)
V,f(t=z77’o( o) ) - ( iTO1 + (-, ¢):00/V2 )

for t,7 € R and ¢ € T.X. This structure is isomorphic to v, in Example 3.1 for
the vector field v = §/0t. To see this identify TS with the bundle A%'T*Y via
91 = 91 = —<791>/\/§

Lemma 8.1. Let n = no —m Adt € Q*>(Yy,iR), ie. n2(t) € Q*(X,iR) and
m(t) € QYT iR) satisfy n;(t + 1) = f*n;(t). Then

V¢ (*3(n2 —m A dt)) = (00%)g
if and only if

©0* — 1612

5 0, 11 — iv/2Im (©g, ©1) = 0.

*i12 +
Proof. The Hodge *-operator on 2-forms on Y7 is given by
k3(n2 — m A dt) = (kama)dt + x2m1,

where %o denotes the Hodge *-operator on ¥. Let v : ¥ — T'X be the vector
field dual to Imn;. Then Jv is dual to *Im#; = —Im; o J and

01(‘]1)) = <77(1)115 01>7 <'a J’U> = 277?71

Hence

tsatm = m nd0) (0 )

vf ((k2mz)dt + *2m1) ( zfl) >
_ ( —i(xa112)f0 — iv/201 (Jv) )
i(*om2)01 + (-, Jv)bo/V2

( —(k2im2)00 — iV2(n)", 01) >
(*2i772)91 + i\/i’l]lo’l@o '

Compare this with the formula

o o [ Mo+ (©1,01)0¢ 8o =61
(6@ )09 — ( —Ael + <®0,00>®1 ) ) )\ = 72
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to obtain *im2 + A = 0 and
(80,01) = V2R =i /V2 =m0 T/V2 =i /V2 + 1/ V2

Since 7; is an imaginary valued 1-form, this is equivalent to iIm (0, ©0;) =
#11/+/2. This proves the lemma. O

The canonical spin® connection

Computation in local coordinates shows that the vertical tangent bundle of the
fibration Yy — S' is invariant under the Levi-Civita connection. The direct
sum of this bundle with C is isomorphic to Wy and this gives rise to a spin®-
connection V. = V¢ on W¢. In explicit terms V; agrees with the Levi-Civita
connection of the metric w(-, Ji-) over each slice {t} x ¥ and the covariant
derivative in the direction 9/0t is given by

) 1 .
V,g@l = @1 + 5@1 odJJ.
If ©, is of type (0,1) then so is V;0;. Let Ay denote the Hermitian connection
on det(W;)'/2? induced by V;. The curvature of A; is the 2-form
iKt Qg
FAf = —Tw— ?/\dt7
where K; : ¥ — R denotes the Gauss curvature of the metric w(-, J;-) and

a; € QF(Z,iR) is defined by

1.
(Imag)J =V + §JVJ.

The Seiberg-Witten equations

Let E — ¥ be a Hermitian line bundle and choose a lift f cE— FEof ftoa
unitary automorphism of E:

E L. E
L
y L%

Such a lift determines a Hermitian line bundle E; = R x Ey / ~ over Y; where
(t+1,2,600) ~ (t, f(2), f(z)80). A connection on E; has the form A(t) + W(t) dt
where A(t) € A(E) and ¥(t) € Q°(%,iR) satisfy (19). The curvature of this
connection is given by

Farwar = Fa— (A—dW)A dt.
Now consider the twisted spin® structure

Va7 TYy — End(W, 5), W, 5=W;®Ej}.
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The Dirac operator on the Riemann surface with the standard spin€ structure
is equal to the Cauchy-Riemann operator determined by J and multiplied by a
factor v/2 (cf. [26, Theorem 6.17]). Abbreviate

. . 1 .
V;0p = Oy + YOy, V,591=®1+\I/@1+§®10JJ

for Og = O¢(t) € C>®(X,E) and ©; = 01(t) € Q%Y(X, E). Then the Dirac
equations for the twisted spin® structure have the form

—iViO0+ V2054701 =0,  iViO1 + V295460 = 0. (20)
By Lemma 8.1, the second equation in (2) decomposes as

K 180 — 164 _

21
> > 0 (21)

xi(Fa+1m2) +

%, (A—dw+%+m) = iv/2Im (69, ©1). (22)

Here n = mo — 1 A dt € Q?(Yy,iR) is the perturbation. Together with the
periodicity conditions (19) these are the Seiberg-Witten equations on Y7 for the
spin® structure -, 7. The goal is now to relate the solutions of these equations
to those of (16), (17), (18), and (19) which correspond to the fixed points of
¢a,f in the class P, ;.

As a first step we choose a perturbation

A dt (T K a
=19 — =il-4+—|w =——.
n=mn2—m ) 2 5 5 ) m B)
If 7 is independent of ¢ then this form is closed. Next we would like to get rid
of the various factors v/2. For this it is convenient to rename 0, and the metric
on X by:
1

eonew _ ﬁ®001d7 wohew — 5wold, Ktnew _ 2Kt01d.
Then the Hodge *-operator on 1-forms (on ¥) remains unchanged, the Hodge
x-operators on 2-forms are related by *"*V = 2x°4 and the norm of a 1-form
in the new metric is by a factor v/2 bigger. Moreover, the product K;w and the
1-form o are invariant under this scaling. All this is just change in notation
and the Seiberg-Witten equations now have the following form.

iViOp = 9.4 O1, —iV;01 = 0,400, (23)
2 2

wiFy + (S =10 5 O _ (24)

% (A - d\If) — ilm (6, O). (25)

The comparison between (23), (24), (25) and (16), (17), (18) involves an adia-
batic limit argument.
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The Chern-Simons-Dirac functional

Fix a path of connections Ay (t) € A(E) such that Ag(t+1) = f*Ag(t). Consider
the Chern-Simons-Dirac functional on Yy with the spin® structure Y, f> the
basepoint Ay + Ao, the perturbation n = iTw/2 — Fa,, and the above renaming
of w and ©g. This functional has the form

1
CSD,(A,¥,0) = %/ /(A—Ao)/\(/l—i-/lo)dt
0 b))
1
— / / (\I/(FA +iTw) + Re (04, 5,]“,4@0}(,«)) dt
0 2
1 1
+§/ / <Re <1Vt@0,®0> — Re (th®1,61>>wdt
0 2
If ©, =0 and (A(t), O¢(t)) € M(Jy, 7) then
1
CSD,(A,¥,0) = %/ / ((A — Ap) A (A + Ag) + Re (i0y, ®0>w) dt.
0 b))

This is the symplectic action of the path t — [A(t), ©¢(t)].

9 Adiabatic limits

The main idea is to change the parameters in the equations (23), (24), and (25).
We multiply the metric on ¥ by a small constant £? and simultaneously divide
7 by the the same constant:

This does not affect the product 7w and hence the original perturbation 7 re-
mains unchanged. The new equations have the form

iV;Oq = e 2 gJ)A*G)l, —iV,0, = gJ,AG)Oa (26)

@2— 7262
|90 €710 — 27

e 2 xiFs + 5 , (27)

» (A - d\If) — ilm (6, O). (28)
Here the Hodge *-operators are to be understood with respect to the old metric

and the dependence of € is made explicit. Now it is convenient to rename the
variables ©y and ©; by

@Oncw _ 56001d7 @1ncw _ Eflelold'
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Then the Seiberg-Witten equations (26), (27), and (28) translate into the form

iV;Op = 9,4 O1, —iV;01 = £720;, 40,

_2 . |@0|2 |@1|2
F 2o et B
€ <>kz A+ 5 T 5

oy (A _ d\p) = iIm (O, O1).

(29)

(30)

(31)

This already looks promising. The first equation in (29) and (31) are reminiscent
of the equations for parallel transport in (17) and the other two equations give
the vortex equations in the limit ¢ — 0. The crucial point is to control the
bevaviour of ©; and its derivatives in the small ¢ limit. The first step in this
direction is the following observation, which relates the section ©; in the Seiberg-

Witten equations to the variable ©; in (18).

Lemma 9.1. Every solution of (29), (30), and (31) satisfies

|©0/?

Dy, 405,401+ 5

1 .
01— 5(05,480) 0 Jy = £2V,V,0;.
Proof. First recall that
5 d 5 5 1. :
V;07,,400 = E((fi}t,,cx@o) +Wdy, 400 + 5(6‘,7“14@)0) o JJ.

Since

ida©g = (07,4600) 0 J — (05.460¢) 0 J

this gives the commutator identity

_ _ . 1 .
V.07, 400 — 01, aViO0 = (A — d¥)*1Oy + 5(3,Jt,A®o) o JyJy.

Moreover, (31) is equivalent to

i(A —d0)*! = —(00,0,).

N =

Hence

05,407,401 = id;,4Vi00

= iv)ngt,Aeo — ’L(A — d\I/)O’l(ao — %(ajhA@o) o tht

1 1 .
= £2%Vi0; — §<®0,@1>@0 + 5(3,Jt,A@o) o Jy.

This proves the lemma.
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Remark 9.1. Tt is interesting to consider the special case of the product
Y =8"x%
with the product metric and the product spin® structure
Ya: TY — End(Wy),

where Wy = S! x (E® A®'T*Y. ® E) and E — ¥ is a Hermitian line bundle of
degree d. In this case J can be chosen independent of ¢, the adiabatic limit is
not required, and (32) with € =1 takes the form

_ _ % (e 2
07,,407,,4 ©1 —V;V;O1 + %@1 =0.

Take the inner product with ©; and integrate to obtain

1
_— 1
/ / (|6A ®1|2+|Vt®1|2+§|®0|2|®1|2>wdt:0.
0 3

This implies that either ©g = 0 or ©®; = 0. Since the mean value of 7 — *iF4
is positive it follows that ©®; = 0. Moreover, by choosing an appropriate gauge
transformation, we may assume without loss of generality that ¥(¢) = 0 for all
t. Then it follows that A(t) = A and ©¢(¢t) = ©¢ are independent of ¢ and
satisfy the vortex equations. In other words, the moduli space of solutions of
the Seiberg-Witten equations over S! x ¥ can be identified with the symmetric
product and a standard perturbation argument now shows that

SW(S! x 2,74) = x(58%) = T(S* x %, eq). (34)

All the other invariants are zero and this proves Theorem 1.1 in the product
case. A similar argument works whenever some iterate of f is the identity.

The proof of Theorem 1.1 in the general case is considerably deeper. It is
obvious from (30) that the square of the L?-norm of © is bounded below by
twice the mean value of 7 — xiF4. Hence one can introduce ©/(t) € 93;1(27 E)
as the unique solution of (18). In particular, one has to prove that the difference
©1 — O) converges to zero as ¢ — 0. This requires some pointwise estimates
on the functions Oy, ©1, ©} and their derivatives that are remiscent of some of
the estimates that appear in the work of Taubes [29, 30]. This is related to the
convergence question. From the other side one needs a singular perturbation
result which asserts that near every nondegenerate solution of (16), (17), (18),
and (19) (corresponding to a fixed point of ¢4,y in the class P, 7) there is, for
e > 0 sufficiently small, a solution of the Seiberg-Witten equations (29), (30),
and (31) that satisfies the same periodicity condition (19) (contributing to the
Seiberg-Witten invariant SW(Yy,v, 7)). Once the one-to-one correspondence
between gauge equivalence classes of solutions has been established, one needs
to compare the fixed point index with xSW. This amounts to a comparison of
the spectral flows. The full details of the proof will appear elsewhere.
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10 Floer homology
There is a 4-dimensional version of the adiabatic limit argument. After the ap-

propriate choices of perturbation, change in parameters, and scaling the Seiberg-
Witten equations over the tube R x Y} take the form

V00 + iV, = th,A*Glu V01 —iV;0; = 8_2(3]“,4@0. (35)

2 2
g2 (*iFA + |®20| - T> = @ +i(0,® — 957), (36)

Here s is the real parameter and A + ®ds + ¥ dt is the connection on the

bundle R x £ — R x Y. In the adiabatic limit € — 0 the solutions of these
7 .

equations degenerate to holomorphic curves in the moduli space My 4(J, 7) =

S9%. Explicitly, the limit equations have the form

07, 400 = 0, ¥iFa +|00]?/2 =T, (38)
(DA — d®) + s, (8, A — dV) = ilm (O, O1), (39)
V.00 +iV;O¢ = 0y, 4 01, (40)
01,405,401 + |®0|2@1 = %(aJhA@O) o Jy. (41)

The small € analysis should now give rise to a proof of the following analogue
of the Atiyah-Floer conjecture [1, 3, 4, 5].

Conjecture 10.1. For every f € Diff (¥,w) and every lift f of f to a unitary
automorphism of a line bundle E — X of degree d there is a natural isomorphism
between Seiberg- Witten and symplectic Floer homologies

SW 3
HE®Y (Yy, v, 7) — HEY™(da,r, P, 7).
These isomorphisms intertwine the natural product structures:

HF®Y (Y}, 5, 7) © HE®W (Y, 7a,5) - HFW(Ypg, 74 75)

! 1 ! :
HEY"P(¢q,1, Py 7) @ HE¥™P(dag, Pag) — HEY"P(da 19, Py 75)
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Theorem 2.1 asserts that the Seiberg-Witten and the symplectic Floer ho-
mology groups have the same Euler characteristic. The comparison of the spec-
tral flows shows in fact that they can be modelled on the same chain complex.
The adiabatic limit argument should prove that the boundary operators agree
for € sufficiently small.

One of the difficulties in the proof of Conjecture 10.1 lies in the presence of
holomorphic spheres with negative Chern number. Such spheres exist in My 4
whenever the genus ¢g and the degree d satisfy

g+1<d<g—1. (42)

In this case the new approaches to Floer homology in the presence of holomor-
phic spheres with negative Chern number are required (cf. Fukaya—Ono [10],
Liu-Tian [18], Ruan [24], and Hofer—Salamon [13, 25]). If (42) does not hold
then the standard theory applies (cf. [6, 7, 8, 12, 21, 22, 28, 25, 27]). In this
case the proof of Conjecture 10.1 should be quite analogous to the proof of the
Atiyah-Floer conjecture for mapping tori in Dostoglou—Salamon [3, 4, 5].
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