Symplectic Topology
 Example Sheet 1

Dietmar Salamon
ETH Zürich

27 February 2013

Exercise 1.1. Write the elements of the configuration space $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ in the form $z=(x, y)=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function, fix two vectors $a, b \in \mathbb{R}^{n}$, consider the path space

$$
\mathcal{P}:=\left\{z=(x, y):[0,1] \rightarrow \mathbb{R}^{2 n} \mid x(0)=a, x(1)=b\right\}
$$

and define the function $\mathcal{A}_{H}: \mathcal{P} \rightarrow \mathbb{R}$ by

$$
\mathcal{A}_{H}(z):=\int_{0}^{1}(\langle y(t), \dot{x}(t)\rangle-H(x(t), y(t))) d t
$$

for $z=(x, y):[0,1] \rightarrow \mathbb{R}^{2 n}$. Prove that a path $z \in \mathcal{P}$ is a critical point of \mathcal{A}_{H} if and only if it satisfies the Hamiltonian differential equation

$$
\begin{equation*}
\dot{x}_{i}(t)=\frac{\partial H}{\partial y_{i}}(x(t), y(t)), \quad \dot{y}_{i}(t)=-\frac{\partial H}{\partial x_{i}}(x(t), y(t)), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Exercise 1.2. Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function satisfying

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right) \neq 0 \tag{2}
\end{equation*}
$$

Convert the Hamiltonian system (1) locally into the Euler equation

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial v_{i}}(x(t), \dot{x}(t))=\frac{\partial L}{\partial x_{i}}(x(t), \dot{x}(t)), \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

Hint: Solve the equation $v_{i}=\frac{\partial H}{\partial y_{i}}(x, y), i=1, \ldots, n$, locally for $y=F(x, v)$, and define $L(x, v):=\langle y, v\rangle-H(x, y)$ for (x, v) in an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

Let $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ be a smooth function. The Hamiltonian vector field of H is defined by

$$
X_{H}(x, y):=\binom{\frac{\partial H}{\partial y}(x, y)}{\frac{\partial H}{\partial x}(x, y)}=-J_{0} \nabla H(x, y), \quad J_{0}:=\left(\begin{array}{rr}
0 & -\mathbb{1} \\
\mathbb{1} & 0
\end{array}\right) .
$$

Here we write $\frac{\partial H}{\partial x}:=\left(\frac{\partial H}{\partial x_{1}}, \ldots, \frac{\partial H}{\partial x_{n}}\right)$ and $\frac{\partial H}{\partial y}:=\left(\frac{\partial H}{\partial y_{1}}, \ldots, \frac{\partial H}{\partial y_{n}}\right)$.
Exercise 1.3. Prove that $\psi^{*} X_{H}=X_{H \circ \psi}$ for every canonical transformation $\psi: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ (satisfying $d \psi(\zeta)^{T} J_{0} d \psi(\zeta)=J_{0}$ for every $\zeta \in \mathbb{R}^{2 n}$) and every smooth function $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$.

The symplectic linear group is defined by

$$
\operatorname{Sp}(2 n):=\left\{\Psi \in \mathbb{R}^{2 n \times 2 n} \mid \Psi^{T} J_{0} \Psi=J_{0}\right\}
$$

The elements of $\operatorname{Sp}(2 n)$ are called symplectic matrices. Thus a canonical transformation is a diffeomorphism between open subsets of $\mathbb{R}^{2 n}$ whose Jacobi-matrices are symplectic.
Exercise 1.4. Prove that $\operatorname{Sp}(2 n)$ is a group, invariant under transposition:

$$
\Phi, \Psi \in \operatorname{Sp}(2 n) \quad \Longrightarrow \quad \Phi \Psi, \Psi^{-1}, \Psi^{T} \in \operatorname{Sp}(2 n)
$$

Prove that $\operatorname{Sp}(2 n)$ is a Lie group (i.e. a submanifold of $\mathrm{GL}(2 n, \mathbb{R})$ as well as a subgroup). Prove that its Lie algebra $\mathfrak{s p}(2 n):=T_{1} \operatorname{Sp}(2 n)=\operatorname{Lie}(\operatorname{Sp}(2 n))$ is given by $\mathfrak{s p}(2 n)=\left\{-J_{0} S \mid S=S^{T} \in \mathbb{R}^{2 n \times 2 n}\right\}$.

The standard symplectic form on $\mathbb{R}^{2 n}$ is the nondegenerate skew-symmetric bilinear form

$$
\omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}: \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}
$$

In explicit terms

$$
\begin{aligned}
\omega_{0}\left(\zeta, \zeta^{\prime}\right) & =\sum_{i=1}^{n}\left(\xi_{i} \eta_{i}^{\prime}-\eta_{i} \xi_{i}^{\prime}\right) \\
& =\left\langle\xi, \eta^{\prime}\right\rangle-\left\langle\eta, \xi^{\prime}\right\rangle \\
& =\left(J_{0} \zeta\right)^{T} \zeta^{\prime}
\end{aligned}
$$

for $\zeta=(\xi, \eta), \zeta^{\prime}=\left(\xi^{\prime}, \eta^{\prime}\right) \in \mathbb{R}^{2 n}$. A subspace $\Lambda \subset \mathbb{R}^{2 n}$ is called Lagrangian if it has dimension n and $\omega_{0}\left(\zeta, \zeta^{\prime}\right)=0$ for all $\zeta, \zeta^{\prime} \in \Lambda$. The Lagrangian Grassmannian is the set \mathcal{L}_{n} of all Lagrangian subspaces of $\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.

Exercise 1.5. (i) Let $\Lambda \subset \mathbb{R}^{2 n}$ be a linear subspace of the form

$$
\Lambda=\left\{(\xi, A \xi) \mid \xi \in \mathbb{R}^{n}\right\}
$$

with $A \in \mathbb{R}^{2 n \times 2 n}$. Prove that Λ is Lagrangian if and only if A is symmetric.
(ii) Prove that $\Lambda \subset \mathbb{R}^{2 n}$ is a Lagrangian subspace if and only if there exists a unitary matrix $U=X+\mathbf{i} Y \in \mathrm{U}(n)$ such that

$$
\begin{equation*}
\Lambda=\Lambda_{U}:=\left\{\left.\binom{X \xi}{Y \xi} \right\rvert\, \xi \in \mathbb{R}^{n}\right\} . \tag{4}
\end{equation*}
$$

(iii) Let $U, V \in \mathrm{U}(n)$. Prove that $\Lambda_{U}=\Lambda_{V}$ if and only if $U U^{T}=V V^{T}$.
(iv) Prove that \mathcal{L}_{n} is a submanifold of the real Grassmannian $\operatorname{Gr}(n, 2 n)$ of dimension $\operatorname{dim}\left(\mathcal{L}_{n}\right)=\frac{n(n+1)}{2}$.
(v) Denote by $\mathrm{U}(n) / \mathrm{O}(n)$ the homogeneous space of all equivalence classes of unitary matrices $U \in \mathrm{U}(n)$ under the equivalence relation $U \sim V$ iff there exists an orhogonal matrix $O \in \mathrm{O}(n)$ such that $V=U O$. (This quotient space has naturally the structure of a manifold.) Denote by $\mathcal{S}(n) \subset \mathbb{C}^{n \times n}$ the space of symmetric complex $n \times n$-matrices. Prove that the map

$$
\mathrm{U}(n) / \mathrm{O}(n) \rightarrow \mathcal{L}_{n}:[U] \mapsto \Lambda_{U}
$$

is a diffeomorphism. Prove that the map

$$
\mathcal{L}_{n} \rightarrow \mathrm{U}(n) \cap \mathcal{S}(n): \Lambda_{U} \mapsto U U^{T}
$$

is an embedding whose image is $\mathrm{U}(n) \cap \mathcal{S}(n)$. Deduce that $\mathrm{U}(n) \cap \mathcal{S}(n)$ is a submanifold of $\mathrm{U}(n)$ of dimension $\frac{n(n+1)}{2}$.
(vi) Let $U=X+\mathbf{i} Y \in \mathrm{U}(n)$ and let $\Lambda=\Lambda_{U} \in \mathcal{L}_{n}$ be given by (4). Define

$$
g_{\Lambda}:=U U^{T}=\left(X X^{T}-Y Y^{T}\right)+i\left(X Y^{T}+Y X^{T}\right)
$$

Define $R_{\Lambda} \in \mathbb{R}^{2 n \times 2 n}$ by

$$
R_{\Lambda}:=\left(\begin{array}{cc}
X X^{T}-Y Y^{T} & X Y^{T}+Y X^{T} \tag{5}\\
X Y^{T}+Y X^{T} & Y Y^{T}-X X^{T}
\end{array}\right) .
$$

Prove that R_{Λ} is the unique anti-symplectic involution with fixed point set Λ, i.e. R_{Λ} satisfies the conditions

$$
\begin{equation*}
R_{\Lambda}^{2}=\mathbb{1}, \quad R_{\Lambda}^{T} J_{0} R_{\Lambda}=-J_{0}, \quad \operatorname{ker}\left(\mathbb{1}-R_{\Lambda}\right)=\Lambda \tag{6}
\end{equation*}
$$

and is uniquely determined by them. Prove that the fixed point set of every linear anti-symplectic involution of $\mathbb{R}^{2 n}$ is a Lagrangian subspace.

