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For a real vector space V denote the space of symplectic bilinear forms,
linear symplectic structures, respectively inner products by

S(V ) := {ω : V × V → R |ω is skew symmetric and nondegenerate} ,
J (V ) :=

{
J ∈ GL(V ) | J2 = −1l

}
,

M(V ) := {g : V × V → R | g is an inner product} .

A linear complex structure J ∈ J (V ) is called compatible with the sym-
plectc form ω ∈ S(V ) if

ω(J ·, J ·) = ω, ω(v, Jv) > 0 for all v ∈ V \ {0}.

It is called compatible with the inner product g ∈M(V ) if

g(J ·, J ·) = g.

A symplectic form ω ∈ S(V ) is called compatible with the inner product
g ∈ M(V ) if there exists a linear complex structure J ∈ J (V ) such that
g = ω(·, J ·). For g ∈M(V ) and ω ∈ S(V ) define

J (V, ω) := {J ∈ J (V ) | J is compatible with ω} ,
S(V, g) := {ω ∈ S(V ) |ω is compatible with g} ,
J (V, g) := {J ∈ J (V ) | J is compatible with g} ,
SJ (V ) := {(ω, J) ∈ S(V )× J (V ) | J is compatible with ω} .

The first of these manifolds is contractible, the second and third are diffeo-
morphic to each other, and the last three are homotopy equivalent to each
other and to J (V ) and S(V ).
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Exercise 2.1. Let V be a 2n-dimensional real vector space and let J ∈ J (V )
and ω ∈ S(V ). Prove that J is compatible with ω if and only if the formula

gJ := ω(·, J ·)

defines an inner product on V . Prove that, if J is compatible with ω, then
J is compatible with gJ . Prove that the following are equivalent.

(a) J ∈ J (V, ω)

(b) There exist v1, . . . , vn ∈ V such that the vectors v1, Jv1, . . . , vn, Jvn form
a basis of V and ω(vi, Jvj) = δij and ω(vi, vj) = ω(Jvi, Jvj) = 0 for all i, j.

(c) There is a vector space isomorphism Ψ : R2n → V such that Ψ∗ω = ω0

and Ψ∗J = J0.

Exercise 2.2. Prove that J (V, ω) 6= ∅ for every ω ∈ S(V ).

Exercise 2.3. Fix an inner product g ∈ M(V ). Prove that the projection
πS : SJ (V )→ S(V ) is a homotopy equivalence with homotopy inverse

S(V )→ SJ (V ) : ω 7→ (ω, Jg,ω).

Here Jg,ω := Q−1A ∈ J (V, ω) ∩ J (V, g) is defined by g(A·, ·) = ω and
Q :=

√
A∗A is the unique g-self-adjoint, g-positive-definite automorphism

of V whose square is A∗A = −A2.

Exercise 2.4. Fix an inner product g ∈ M(V ). Prove that the projection
πJ : SJ (V )→ J (V ) is a homotopy equivalence with homotopy inverse

J (V )→ SJ (V ) : J 7→ (ωg,J , J), ωg,J :=
g(J, ·, ·)− g(·, J ·)

2
.

Exercise 2.5. Prove that the map

GL(2n,R)→ J (R2n) : Ψ 7→ ΨJΨ−1

descends to a diffeomorphism GL(2n,R)/GL(n,C) → J (R2n). (Here we
identify GL(n,C) with the subgroup of all nonsingular real 2n× 2n-matrices
that commute with J0.)

Exercise 2.6. Prove that the map

GL(2n,R)→ S(R2n) : Ψ 7→ (Ψ−1)∗ω0

descends to a diffeomorphism GL(2n,R)/Sp(2n)→ S(R2n).
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Exercise 2.7. Prove that the map

GL(2n,R)→ SJ (R2n) : Ψ 7→
(
(Ψ−1)∗ω0,ΨJ0Ψ

−1)
descends to a diffeomorphism GL(2n,R)/U(n)→ SJ (R2n).

Exercise 2.8. Let g0 denote the standard inner product on R2n. Prove that
the spaces J (R2n, g0) and S(R2n, g0) are both diffeomorphic to the homoge-
neous space O(2n)/U(n). Construct explicit diffeomorphisms.

Exercise 2.9. Let J ∈ R2n×2n. Prove that J ∈ J (R2n, ω0) if and only if the
matrix P := −J0J is symplectic, symmetric, and positive definite. Deduce
that the space J (R2n, ω0) is contractible.

Exercise 2.10. Denote Siegel upper half space by

Sn :=
{
Z = X + iY ∈ Cn×n |X = XT , Y = Y T > 0

}
.

Prove that a matrix

Ψ =

(
A B
C D

)
, A,B,C,D ∈ Rn×n,

is symplectic if and only if

ATD − CTB = 1l, ATC = CTA, BTD = DTB.

Prove that the formula

Ψ∗Z := (AZ +B)(CZ +D)−1

defines a transitive group action of Sp(2n) on Siegel upper half space. Prove
that Sp(2n)∩SO(2n) ∼= U(n) is the stabilizer subgroup of the matrix i1l ∈ Sn.

Exercise 2.11. Prove that the formula

Sp(2n)× J (R2n, ω0)→ J (R2n, ω0) : (Ψ, J) 7→ ΨJΨ−1

defines a transitive group action of the linear symplectic group Sp(2n) on
the space of ω0-compatible linear complex structures on R2n, and that the
stabilizer subgroup of J0 is Sp(2n) ∩ SO(2n) ∼= U(n). Deduce that there is
a unique Sp(2n)-equivariant diffeomorphism Sn → J (R2n, ω0) : Z 7→ J(Z),
such that J(i1l) = J0. Prove that an explicit formula for this diffeomorphism
is given by

J(X + iY ) =

(
XY −1 −Y −XY −1X
Y −1 −Y −1X

)
. (1)

Deduce that J (R2n, ω0) is contractible.
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Exercise 2.12. Let ω ∈ S(V ). A linear complex structure J ∈ J (V ) is
called ω-tame if

ω(v, Jv) > 0 for all v ∈ V \ {0}.

This exercise shows that the space Jτ (V, ω) of all ω-tame linear complex
structures on V is contractible. Let J ∈ R2n×2n. Prove that the following
assertions are equivalent.

(a) J ∈ Jτ (R2n, ω0).

(b) The matrix Z := −J0J satisfies Z−1 = J−10 ZJ0 and
〈
v, Zv

〉
> 0 for

every nonzero vector v ∈ R2n.

(c) The matrix W := (1l−Z)(1l+Z)−1 satisfies ‖W‖ < 1 and J0W+WJ0 = 0.

The set of matrices W ∈ R2n×2n satisfying (c) is convex, hence Jτ (R2n, ω0)
is contractible, and hence so is the space Jτ (V, ω) of ω-tame linear complex
structures for every symplectic vector space (V, ω).

Exercise 2.13. Assume dim(V ) = 2 and let ω ∈ S(V ) and J ∈ J (V ). Prove
that ω and J are compatible if and only if they induce the same orientation
on V .

Exercise 2.14. Assume dim(V ) = 4 and let g ∈M(V ). Prove that J (V, g)
is diffeomorphic to two disjoint copies of the 2-sphere.

Exercise 2.15. Assume dim(V ) = 6 and let g ∈M(V ). Prove that J (V, g)
is diffeomorphic to two disjoint copies of a 2-sphere bundle over a 4-sphere.
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