Symplectic Topology
 Example Sheet 2

Dietmar Salamon
ETH Zürich

27 February 2013

For a real vector space V denote the space of symplectic bilinear forms, linear symplectic structures, respectively inner products by

$$
\begin{aligned}
\mathcal{S}(V) & :=\{\omega: V \times V \rightarrow \mathbb{R} \mid \omega \text { is skew symmetric and nondegenerate }\}, \\
\mathcal{J}(V) & :=\left\{J \in \mathrm{GL}(V) \mid J^{2}=-\mathbb{1}\right\}, \\
\mathcal{M}(V) & :=\{g: V \times V \rightarrow \mathbb{R} \mid g \text { is an inner product }\} .
\end{aligned}
$$

A linear complex structure $J \in \mathcal{J}(V)$ is called compatible with the symplectc form $\omega \in \mathcal{S}(V)$ if

$$
\omega(J \cdot, J \cdot)=\omega, \quad \omega(v, J v)>0 \text { for all } v \in V \backslash\{0\} .
$$

It is called compatible with the inner product $g \in \mathcal{M}(V)$ if

$$
g\left(J_{\cdot}, J \cdot\right)=g .
$$

A symplectic form $\omega \in \mathcal{S}(V)$ is called compatible with the inner product $g \in \mathcal{M}(V)$ if there exists a linear complex structure $J \in \mathcal{J}(V)$ such that $g=\omega(\cdot, J \cdot)$. For $g \in \mathcal{M}(V)$ and $\omega \in \mathcal{S}(V)$ define

$$
\begin{aligned}
\mathcal{J}(V, \omega) & :=\{J \in \mathcal{J}(V) \mid J \text { is compatible with } \omega\}, \\
\mathcal{S}(V, g) & :=\{\omega \in \mathcal{S}(V) \mid \omega \text { is compatible with } g\}, \\
\mathcal{J}(V, g) & :=\{J \in \mathcal{J}(V) \mid J \text { is compatible with } g\}, \\
\mathcal{S} \mathcal{J}(V) & :=\{(\omega, J) \in \mathcal{S}(V) \times \mathcal{J}(V) \mid J \text { is compatible with } \omega\} .
\end{aligned}
$$

The first of these manifolds is contractible, the second and third are diffeomorphic to each other, and the last three are homotopy equivalent to each other and to $\mathcal{J}(V)$ and $\mathcal{S}(V)$.

Exercise 2.1. Let V be a $2 n$-dimensional real vector space and let $J \in \mathcal{J}(V)$ and $\omega \in \mathcal{S}(V)$. Prove that J is compatible with ω if and only if the formula

$$
g_{J}:=\omega(\cdot, J \cdot)
$$

defines an inner product on V. Prove that, if J is compatible with ω, then J is compatible with g_{J}. Prove that the following are equivalent.
(a) $J \in \mathcal{J}(V, \omega)$
(b) There exist $v_{1}, \ldots, v_{n} \in V$ such that the vectors $v_{1}, J v_{1}, \ldots, v_{n}, J v_{n}$ form a basis of V and $\omega\left(v_{i}, J v_{j}\right)=\delta_{i j}$ and $\omega\left(v_{i}, v_{j}\right)=\omega\left(J v_{i}, J v_{j}\right)=0$ for all i, j.
(c) There is a vector space isomorphism $\Psi: \mathbb{R}^{2 n} \rightarrow V$ such that $\Psi^{*} \omega=\omega_{0}$ and $\Psi^{*} J=J_{0}$.

Exercise 2.2. Prove that $\mathcal{J}(V, \omega) \neq \emptyset$ for every $\omega \in \mathcal{S}(V)$.
Exercise 2.3. Fix an inner product $g \in \mathcal{M}(V)$. Prove that the projection $\pi_{\mathcal{S}}: \mathcal{S} \mathcal{J}(V) \rightarrow \mathcal{S}(V)$ is a homotopy equivalence with homotopy inverse

$$
\mathcal{S}(V) \rightarrow \mathcal{S} \mathcal{J}(V): \omega \mapsto\left(\omega, J_{g, \omega}\right) .
$$

Here $J_{g, \omega}:=Q^{-1} A \in \mathcal{J}(V, \omega) \cap \mathcal{J}(V, g)$ is defined by $g(A \cdot, \cdot)=\omega$ and $Q:=\sqrt{ } A^{*} A$ is the unique g-self-adjoint, g-positive-definite automorphism of V whose square is $A^{*} A=-A^{2}$.

Exercise 2.4. Fix an inner product $g \in \mathcal{M}(V)$. Prove that the projection $\pi_{\mathcal{J}}: \mathcal{S} \mathcal{J}(V) \rightarrow \mathcal{J}(V)$ is a homotopy equivalence with homotopy inverse

$$
\mathcal{J}(V) \rightarrow \mathcal{S} \mathcal{J}(V): J \mapsto\left(\omega_{g, J}, J\right), \quad \omega_{g, J}:=\frac{g(J, \cdot, \cdot)-g(\cdot, J \cdot)}{2}
$$

Exercise 2.5. Prove that the map

$$
\mathrm{GL}(2 n, \mathbb{R}) \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}\right): \Psi \mapsto \Psi J \Psi^{-1}
$$

descends to a diffeomorphism $\operatorname{GL}(2 n, \mathbb{R}) / \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}\right)$. (Here we identify $\mathrm{GL}(n, \mathbb{C})$ with the subgroup of all nonsingular real $2 n \times 2 n$-matrices that commute with J_{0}.)

Exercise 2.6. Prove that the map

$$
\mathrm{GL}(2 n, \mathbb{R}) \rightarrow \mathcal{S}\left(\mathbb{R}^{2 n}\right): \Psi \mapsto\left(\Psi^{-1}\right)^{*} \omega_{0}
$$

descends to a diffeomorphism $\operatorname{GL}(2 n, \mathbb{R}) / \operatorname{Sp}(2 n) \rightarrow \mathcal{S}\left(\mathbb{R}^{2 n}\right)$.

Exercise 2.7. Prove that the map

$$
\operatorname{GL}(2 n, \mathbb{R}) \rightarrow \mathcal{S} \mathcal{J}\left(\mathbb{R}^{2 n}\right): \Psi \mapsto\left(\left(\Psi^{-1}\right)^{*} \omega_{0}, \Psi J_{0} \Psi^{-1}\right)
$$

descends to a diffeomorphism $\operatorname{GL}(2 n, \mathbb{R}) / \mathrm{U}(n) \rightarrow \mathcal{S} \mathcal{J}\left(\mathbb{R}^{2 n}\right)$.
Exercise 2.8. Let g_{0} denote the standard inner product on $\mathbb{R}^{2 n}$. Prove that the spaces $\mathcal{J}\left(\mathbb{R}^{2 n}, g_{0}\right)$ and $\mathcal{S}\left(\mathbb{R}^{2 n}, g_{0}\right)$ are both diffeomorphic to the homogeneous space $\mathrm{O}(2 n) / \mathrm{U}(n)$. Construct explicit diffeomorphisms.
Exercise 2.9. Let $J \in \mathbb{R}^{2 n \times 2 n}$. Prove that $J \in \mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ if and only if the matrix $P:=-J_{0} J$ is symplectic, symmetric, and positive definite. Deduce that the space $\mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ is contractible.

Exercise 2.10. Denote Siegel upper half space by

$$
\mathcal{S}_{n}:=\left\{Z=X+\mathbf{i} Y \in \mathbb{C}^{n \times n} \mid X=X^{T}, Y=Y^{T}>0\right\}
$$

Prove that a matrix

$$
\Psi=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right), \quad A, B, C, D \in \mathbb{R}^{n \times n}
$$

is symplectic if and only if

$$
A^{T} D-C^{T} B=\mathbb{1}, \quad A^{T} C=C^{T} A, \quad B^{T} D=D^{T} B
$$

Prove that the formula

$$
\Psi_{*} Z:=(A Z+B)(C Z+D)^{-1}
$$

defines a transitive group action of $\operatorname{Sp}(2 n)$ on Siegel upper half space. Prove that $\operatorname{Sp}(2 n) \cap \mathrm{SO}(2 n) \cong \mathrm{U}(n)$ is the stabilizer subgroup of the matrix $\mathbf{i l l} \in \mathcal{S}_{n}$.
Exercise 2.11. Prove that the formula

$$
\operatorname{Sp}(2 n) \times \mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right) \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right):(\Psi, J) \mapsto \Psi J \Psi^{-1}
$$

defines a transitive group action of the linear symplectic group $\operatorname{Sp}(2 n)$ on the space of ω_{0}-compatible linear complex structures on $\mathbb{R}^{2 n}$, and that the stabilizer subgroup of J_{0} is $\mathrm{Sp}(2 n) \cap \mathrm{SO}(2 n) \cong \mathrm{U}(n)$. Deduce that there is a unique $\operatorname{Sp}(2 n)$-equivariant diffeomorphism $\mathcal{S}_{n} \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right): Z \mapsto J(Z)$, such that $J(\mathbf{i} 11)=J_{0}$. Prove that an explicit formula for this diffeomorphism is given by

$$
J(X+\mathrm{i} Y)=\left(\begin{array}{cc}
X Y^{-1} & -Y-X Y^{-1} X \tag{1}\\
Y^{-1} & -Y^{-1} X
\end{array}\right)
$$

Deduce that $\mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ is contractible.

Exercise 2.12. Let $\omega \in \mathcal{S}(V)$. A linear complex structure $J \in \mathcal{J}(V)$ is called ω-tame if

$$
\omega(v, J v)>0 \quad \text { for all } v \in V \backslash\{0\} .
$$

This exercise shows that the space $\mathcal{J}_{\tau}(V, \omega)$ of all ω-tame linear complex structures on V is contractible. Let $J \in \mathbb{R}^{2 n \times 2 n}$. Prove that the following assertions are equivalent.
(a) $J \in \mathcal{J}_{\tau}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$.
(b) The matrix $Z:=-J_{0} J$ satisfies $Z^{-1}=J_{0}^{-1} Z J_{0}$ and $\langle v, Z v\rangle>0$ for every nonzero vector $v \in \mathbb{R}^{2 n}$.
(c) The matrix $W:=(\mathbb{1}-Z)(\mathbb{1}+Z)^{-1}$ satisfies $\|W\|<1$ and $J_{0} W+W J_{0}=0$.

The set of matrices $W \in \mathbb{R}^{2 n \times 2 n}$ satisfying (c) is convex, hence $\mathcal{J}_{\tau}\left(\mathbb{R}^{2 n}, \omega_{0}\right)$ is contractible, and hence so is the space $\mathcal{J}_{\tau}(V, \omega)$ of ω-tame linear complex structures for every symplectic vector space (V, ω).

Exercise 2.13. Assume $\operatorname{dim}(V)=2$ and let $\omega \in \mathcal{S}(V)$ and $J \in \mathcal{J}(V)$. Prove that ω and J are compatible if and only if they induce the same orientation on V.

Exercise 2.14. Assume $\operatorname{dim}(V)=4$ and let $g \in \mathcal{M}(V)$. Prove that $\mathcal{J}(V, g)$ is diffeomorphic to two disjoint copies of the 2 -sphere.

Exercise 2.15. Assume $\operatorname{dim}(V)=6$ and let $g \in \mathcal{M}(V)$. Prove that $\mathcal{J}(V, g)$ is diffeomorphic to two disjoint copies of a 2 -sphere bundle over a 4 -sphere.

