Symplectic Topology
 Example Sheet 3

Dietmar Salamon
ETH Zürich

7 March 2013

Exercise 3.1. Let L be an n-dimensional manifold, equipped with and atlas $\phi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ and define an atlas on the cotangent bundle $T^{*} L$ by

$$
\psi_{\alpha}: T^{*} U_{\alpha} \rightarrow \mathbb{R}^{n} \times\left(\mathbb{R}^{n}\right)^{*}=\mathbb{R}^{2 n}, \quad \psi_{\alpha}\left(q, v^{*}\right):=\left(\phi_{\alpha}(q),\left(d \phi_{\alpha}(q)^{*}\right)^{-1} v^{*}\right)
$$

for $q \in U_{\alpha} \subset L$ and $v \in T_{q}^{*} L$.
(i) Prove that there is a unique 1-form $\lambda \in \Omega^{1}\left(T^{*} L\right)$ such that

$$
\left.\lambda\right|_{T^{*} U_{\alpha}}=\psi_{\alpha}^{*}\left(\sum_{i=1}^{n} y_{i} d x_{i}\right)
$$

for every α.
(ii) Show that the 1 -form $\lambda \in \Omega^{1}\left(T^{*} L\right)$ in (i) can be written in the form

$$
\lambda_{p}(\widehat{p})=\left\langle v^{*}, d \pi(p) \widehat{p}\right\rangle, \quad p=\left(q, v^{*}\right) \in T^{*} L, \quad \widehat{p} \in T_{p}\left(T^{*} L\right)
$$

Here $\pi: T^{*} L \rightarrow L$ denotes the obvious projection.
(iii) A 1-form $\alpha \in \Omega^{1}(L)$ is a section of the cotangent bundle of L and hence can be interpreted as a smooth map from L to $T^{*} L$. Show that the pullback of the 1-form $\lambda \in \Omega^{1}\left(T^{*} L\right)$ under the smooth map $\alpha: L \rightarrow T^{*} L$ is the 1-form α itself, i.e.

$$
\alpha^{*} \lambda=\alpha
$$

Prove that the 1 -form λ on $T^{*} L$ is uniquely determined by this property. It is also called the canonical 1-form on $T^{*} L$ and denoted by $\lambda_{\text {can }}$.
(iv) Prove that

$$
\omega_{\text {can }}:=-d \lambda_{\text {can }}
$$

is a symplectic form on $T^{*} L$ and that the canonical coordinates

$$
\psi_{\alpha}: T^{*} U_{\alpha} \rightarrow \mathbb{R}^{2 n}
$$

are Darboux charts for $\omega_{\text {can }}$.
Warning: Many authors, inspired by physics, use the notation q instead of x for the position variable and p instead of y for the momentum variable; in this notation the canonical 1-form is $\lambda_{\text {can }}=p d q$ and $d \lambda_{\text {can }}=d p \wedge d q$ is then often used as the canonical symplectic form on the cotangent bundle. In the (x, y)-notation this would be $d y \wedge d x$. This is a key source for different choices of sign conventions in symplectic topology. (In short $d y \wedge d x$ for physicists and $d x \wedge d y$ for complex geometers.)

Consider the coordinates $z=\left(z_{1}, \ldots, z_{n}\right)$ on \mathbb{C}^{n} with $z_{j}=x_{j}+\mathbf{i} y_{j} \in \mathbb{C}$ for $j=1, \ldots, n$. The next exercise uses the complex-valued 1 -forms

$$
d z_{j}:=d x_{j}+\mathbf{i} d y_{j}, \quad d \bar{z}_{j}:=d x_{j}-\mathbf{i} d y_{j}
$$

and the differential operators

$$
\frac{\partial}{\partial z_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-\mathbf{i} \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+\mathbf{i} \frac{\partial}{\partial y_{j}}\right)
$$

on the space of complex valued smooth functions on \mathbb{C}^{n}. Thus $d z_{j}$ is complex linear, $d \bar{z}_{j}$ is complex anti-linear, and every complex-valued 1-form on \mathbb{C}^{n} is, at each point, a linear combination of the $d z_{j}$ and the $d \bar{z}_{j}$ with complex coefficients. For example the differential of a smooth function $f: \mathbb{C}^{n} \rightarrow \mathbb{C}$ can be written in the form $d f=\partial f+\bar{\partial} f$, where

$$
\partial f:=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} d z_{j}, \quad \bar{\partial} f:=\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j} .
$$

For each $z \in \mathbb{C}^{n}$ the complex-linear functional $\partial f_{z}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is the complexlinear part of $d f_{z}=d f(z): \mathbb{C}^{n} \rightarrow \mathbb{C}$, and the complex-anti-linear functional $\bar{\partial} f_{z}: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is the complex-anti-linear part of $d f_{z}$. Thus f is holomorphic if and only if $\bar{\partial} f=0$. We also need the 2 -form

$$
\partial \bar{\partial} f:=\sum_{j, k=1}^{n} \frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k} .
$$

This 2-form is imaginary-valued when f is real valued. Also $\partial \bar{\partial}+\bar{\partial} \partial=0$.

Exercise 3.2. The Fubini-Study form $\omega_{\mathrm{FS}} \in \Omega^{2}\left(\mathbb{C P}^{n}\right)$ is defined by

$$
\begin{equation*}
\omega_{\mathrm{FS}}:=\frac{\mathbf{i}}{2|z|^{4}} \sum_{j, k=1}^{n}\left(\left|z_{j}\right|^{2} d z_{k} \wedge d \bar{z}_{k}-\bar{z}_{j} z_{k} d z_{j} \wedge d \bar{z}_{k}\right) \tag{1}
\end{equation*}
$$

(Strictly speaking this is a real valued 2-form on $\mathbb{C}^{n+1} \backslash\{0\}$ and ω_{FS} is its pullback the the quotient manifold $\mathbb{C P}=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}$. $)$
(i) Prove that

$$
\omega_{\mathrm{FS}}=\frac{\mathbf{i}}{2} \partial \bar{\partial} \log \left(|z|^{2}\right) .
$$

(ii) Let $\omega_{0}:=\sum_{j=0}^{n} d x_{j} \wedge d y_{j}=\frac{\mathbf{i}}{2} \sum_{j=0}^{n} d z_{j} \wedge d \bar{z}_{j}$ be the standard symplectic form on \mathbb{C}^{n+1}. Define $\phi: \mathbb{C}^{n+1} \backslash\{0\} \rightarrow S^{2 n+1}$ by $\phi(z):=|z|^{-1} z$. Prove that

$$
\omega_{\mathrm{FS}}=\phi^{*} \omega_{0} .
$$

(iii) Let $B \subset \mathbb{C}^{n}$ be the open unit ball and define the coordinate charts $\phi_{j}: U_{j} \rightarrow B, j=0, \ldots, n$, on $\mathbb{C} P^{n}$ by $U_{j}:=\left\{\left[z_{0}: \cdots: z_{n}\right] \in \mathbb{C P}^{n} \mid z_{j} \neq 0\right\}$ and

$$
\begin{equation*}
\phi_{j}\left(\left[z_{0}: \cdots: z_{n}\right]\right):=\frac{\left(z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{n}\right)}{|z|} . \tag{2}
\end{equation*}
$$

Show that

$$
\phi^{-1}(\zeta)=\left(\frac{\zeta_{1}}{\sqrt{1-|\zeta|^{2}}}, \ldots \frac{\zeta_{j-1}}{\sqrt{1-|\zeta|^{2}}}, 1, \frac{\zeta_{j}}{\sqrt{1-|\zeta|^{2}}}, \ldots \frac{\zeta_{n}}{\sqrt{1-|\zeta|^{2}}}\right)
$$

for $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in B$. Show that the ϕ_{j} are Darboux charts on $\mathbb{C P}^{n}$. Deduce that $\mathbb{C P}^{1} \subset \mathbb{C P}^{n}$ has area π. Warning: $\mathbb{C P}^{n}$ has a natural complex structure. However, the coordinate charts ϕ_{j} are not holomorphic.
(iv) Consider the case $n=1, x_{0}=1, z_{1}=z=x+\mathbf{i} y \in \mathbb{C}^{n}$. Show that

$$
\omega_{\mathrm{FS}}=\frac{\mathbf{i}}{2} \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}=\frac{d x \wedge d y}{\left(1+x^{2}+y^{2}\right)^{2}}, \quad \int_{\mathbb{C P}^{1}} \omega_{\mathrm{FS}}=\pi
$$

(v) Let $S^{2}:=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be the unit sphere with the volume form $\operatorname{dvol}_{S^{2}}:=x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}$. Let $\phi: S^{2} \rightarrow \mathbb{C} P^{1}$ be the stereographic projection $\phi(x):=\left[1-x_{3}: x_{1}+\mathbf{i} x_{2}\right]$. Prove that

$$
\phi^{*} \omega_{\mathrm{FS}}=\frac{1}{4} \mathrm{dvol}_{S^{2}} .
$$

Exercise 3.3. Show that the real projective space

$$
\mathbb{R P}^{n}:=\left\{\left[z_{0}: \cdots: z_{n}\right] \in \mathbb{C P}^{n} \mid z_{0}, \ldots, z_{n} \in \mathbb{R}\right\}
$$

and the Clifford torus

$$
\mathbb{T}^{n}:=\left\{\left[z_{0}: \cdots: z_{n}\right] \in \mathbb{C P}^{n}| | z_{0}\left|=\left|z_{1}\right|=\cdots=\left|z_{n}\right|\right\}\right.
$$

are Lagrangian submanifolds of $\left(\mathbb{C P}^{n}, \omega_{\mathrm{FS}}\right)$.
Exercise 3.4. Let (M, ω) be closed (i.e. compact without boundary) symplectic manifold and let $F, G: M \rightarrow \mathbb{R}$ be smooth functions. Show that the Poisson bracket of F and G satisfies the identity

$$
\{F, G\} \frac{\omega^{n}}{n!}=d F \wedge d G \wedge \frac{\omega^{n-1}}{(n-1)!}
$$

Deduce that the Poisson bracket has mean value zero, i.e.

$$
\int_{M}\{F, G\} \frac{\omega^{n}}{n!}=0
$$

Exercise 3.5. Let (M, ω) be closed symplectic manifold and let $\phi: M \rightarrow M$ be a symplectomorphism. Prove that, if ϕ is sufficiently close to the identity in the C^{1}-topology, then ϕ is symplectically isotopic to the identity, i.e. there exists a smooth map

$$
[0,1] \times M \rightarrow M:(t, p) \mapsto \phi_{t}(p)
$$

such that $\phi_{t}^{*} \omega=\omega$ for every t and

$$
\phi_{0}=\mathrm{id}, \quad \phi_{1}=\phi
$$

Hint: Use Weinstein's Lagrangian neighborhood theorem for the diagonal in

$$
\widetilde{M}:=M \times M, \quad \widetilde{\omega}:=(-\omega) \times \omega=\operatorname{pr}_{1}^{*} \omega-\operatorname{pr}_{0}^{*} \omega
$$

where $\operatorname{pr}_{0}, \operatorname{pr}_{1}: M \times M \rightarrow M$ are defined by $\operatorname{pr}_{0}(p, q):=p$ and $\operatorname{pr}_{1}(p, q):=q$. Show that every Lagrangian submanifold of $T^{*} M$ sufficiently close to the zero section in the C^{1}-topology is the graph of a closed 1-form. Show that every Lagrangian submanifold of \widetilde{M} sufficently close to the diagonal in the C^{1}-topology is the graph of a symplectomorphism.

Exercise 3.6. Let J be an almost complex structure on a manifold M. The Nijenhuis tensor of J is the 2-form N_{J} on M with values in the tangent bundle $T M$, defined by

$$
N_{J}(X, Y):=[X, Y]+J[J X, Y]+J[X, J Y]-[J X, J Y]
$$

for $X, Y \in \operatorname{Vect}(M)$.
(i) Verify that N_{J} is a tensor, i.e.

$$
N_{J}(f X, g Y)=f g N_{J}(X, Y)
$$

for every pair of smooth functions $f, g: M \rightarrow \mathbb{R}$. Equivalently, for every $p \in M$, the tangent vector $N_{J}(X, Y)(p) \in T_{p} M$ depends only on $X(p)$ and $Y(p)$, but not on the derivatives of X and Y at p.
(ii) Show that

$$
N_{J}(J X, Y)=N_{J}(X, J Y)=-J N_{J}(X, Y)
$$

for all $X, Y \in \operatorname{Vect}(M)$.
(iii) Denote by $T M^{c}:=T M \otimes_{\mathbb{R}} \mathbb{C}$ the complexified tangent bundle and by

$$
E^{ \pm}:=\left\{\left(p, v^{c}\right) \in T M^{c} \mid J_{p} v^{c}= \pm \mathbf{i} v^{c}\right\}
$$

the subbundles determines by the eigenspaces of J. Thus $T M^{c}=E^{+} \oplus E^{-}$. Prove that the Nijenhuis tensor vanishes if and only if the subbundles $E^{ \pm}$ are involutive (i.e. invariant under Lie brackets).
(iv) Let $\phi: M^{\prime} \rightarrow M$ be a diffeomorphism. Prove that

$$
N_{\phi^{*} J}\left(\phi^{*} X, \phi^{*} Y\right)=\phi^{*} N_{J}(X, Y)
$$

for all $X, Y \in \operatorname{Vect}(M)$.
(v) Assume $\operatorname{dim}(M)=2$. Prove that $N_{J}=0$ for every $J \in \mathcal{J}(M)$.

Exercise 3.7. Let (M, ω) be a symplectic manifold. An almost complex structure $J \in \mathcal{J}(M)$ is said to be tamed by ω if

$$
\omega(v, J v)>0
$$

for every nonzero tangent vector v. Let $\mathcal{J}_{\tau}(M, \omega)$ denote the space of ω-tame almost complex structures J on M. Prove that $\mathcal{J}_{\tau}(M, \omega)$ is contractible.

Hint: Fix an ω-compatible almost complex structure $J_{0} \in \mathcal{J}(M, \omega)$ and denote by $g_{0}:=\omega\left(\cdot, J_{0} \cdot\right)$ the associated Riemannian metric. Let

$$
|v|_{0}:=\sqrt{g_{0}(v, v)}
$$

be the norm of a tangent vector $v \in T_{p} M$ with respect to this metric and let

$$
\|A\|_{0}:=\sup _{v \in T_{p} M \backslash\{0\}} \frac{|A v|_{0}}{|v|_{0}}
$$

be the corresponding operator norm of an endomorphism $A: T_{p} M \rightarrow T_{p} M$. Define

$$
\mathcal{A}:=\left\{A \in \Omega^{0}(M, \operatorname{End}(T M)) \mid A J_{0}+J_{0} A=0,\|A(p)\|_{0}<1 \forall p \in M\right\} .
$$

Prove that the formula

$$
\mathcal{F}(J):=\left(\mathbb{1}+J_{0} J\right)\left(\mathbb{1}-J_{0} J\right)^{-1}
$$

defines a homeomorphism $\mathcal{F}: \mathcal{J}_{\tau}(M, \omega) \rightarrow \mathcal{A}$ with inverse

$$
\mathcal{F}^{-1}(A)=J_{0}(\mathbb{1}+A)^{-1}(\mathbb{1}-A) .
$$

Use the fact that \mathcal{A} is convex.

