
Symplectic Topology
Example Sheet 5

Dietmar Salamon
ETH Zürich
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Generating Functions

Exercise 5.1. Let A = AT ∈ Rn×n and C = CT ∈ RN×N be symmetric
matrices and let and B ∈ Rn×N . Prove that the following set is a Lagrangian
subspace of R2n:

Λ :=

{
(x, y) ∈ R2n

∣∣∣∣∣ ∃ ξ ∈ RN such that BTx+ Cξ = 0
and Ax+Bξ = y

}
.

Exercise 5.2 (Generating Functions). Let π : E → L be a submersion
between smooth manifolds and let f : E → R be a smooth function. Denote
the fiber over q ∈ L by Eq := π−1(q), the restriction of f to the fiber by
fq := f |Eq : Eq → R, and the set of fiber critical points by

C := C(E, f) := {c ∈ E | ker dπ(c) ⊂ ker df(c)} .

Define the map ιf : C → T ∗L by ιf (c) := (q, v∗), where q := π(c) and
v∗ ∈ T ∗q L is the unique Lagrange multiplier given by

df(c) = v∗ ◦ dπ(c). (1)

Assume that the graph of df in T ∗E intersects the fiber normal bundle
NE := {(c, η) ∈ T ∗E | ker dπ(c) ⊂ ker η} transversally. Prove that C is an
n-dimensional submanifold of E and that ιf : C → T ∗L is a Lagrangian
immersion. Thus the immersed submanifold Λ := ιf (C) ⊂ T ∗L of Lagrange
multipliers is a Lagrangian submanifold. Hint: Assume first that L = Rn

and E = Rn × RN . Use Exercise 5.1.
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Exercise 5.3. Let M be a manifold and let f, g1, . . . , gn : M → R be smooth
functions. For y = (y1, . . . , yn) ∈ Rn define

fy := f −
n∑
i=1

yigi : M → R.

Consider the set

C :=
{

(p, y) ∈M × Rn
∣∣ dfy(p) = 0

}
.

Assume that

ker d2fy(p) ∩
n⋂
i=1

ker dgi(p) = {0}

for all (p, y) ∈ C. Prove that C is an n-dimensional submanifold of M × Rn.
Prove that the map

C → R2n : (p, y) 7→ (g(p), y)

is a Lagrangian immersion. Hint: This is a special case of Exercise 5.2. If
the map g = (g1, . . . , gn) : M → Rn is a submersion, take E := M , L := Rn,
and π := g. Alternatively, take E := M × Rn, L := Rn, π(p, y) := y, and
f(p, y) := fy(p). In this case the roles of x and y are reversed, and x = g(p)
is now the Lagrange multiplier.

Energy

Exercise 5.4. Let (M,ω) be a symplectic manifold, let L ⊂ M be a La-
grangian submanifold, let J ∈ Jτ (M,ω) be an ω-tame almost complex struc-
ture, and denote by gJ := 1

2
(ω(·, J ·)−ω(J ·, ·)) the Riemannian metric deter-

mined by ω and J . Let (Σ, j) be a compact Riemann surface with boundary
and let u : (Σ, ∂Σ)→ (M,L) be a J-holomorphic curve with boundary values
in L. Prove that the energy

E(u) :=
1

2

∫
Σ

|du|J dvolΣ

of u depends only on the homotopy class of u subject to the boundary con-
dition u(∂Σ) ⊂ L.
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Holomorphic equivalence relations

Let Γ ⊂ CP1×CP1 be an equivalence relation and write z ∼ ζ when (z, ζ) ∈
Γ. Denote the equivalence class of z ∈ CP1 by

[z] :=
{
ζ ∈ CP1 | ζ ∼ z

}
.

The equivalence relation is called holomorphic if there exists a finite set
X ⊂ CP1 such that Γ intersects the dense open set (CP1 \X)× (CP1 \X) in
a one-dimensional complex submanifold whose projection onto the first factor
is a proper holomorphic covering, and Γ is the closure of its intersection with
(CP1\X)×(CP1\X). Associated to such a holomorphic equivalence relation
Γ is a multiplicity function mΓ : CP1 → N defined by

mΓ(z) := #([w] ∩ U)

for a sufficently small neighborhood U ⊂ CP1 of z and for w ∈ CP1 \ {z}
sufficiently close to z. In particular mΓ(z) = 1 for z ∈ CP1 \X. The number

d :=
∑
ζ∼z

mΓ(z)

is independent of the choice of z and is called the degree of Γ.

Exercise 5.5. Let Γ ⊂ CP1×CP1 be a holomorphic equivalence relation of
degree d. Prove that there is a rational function φΓ : CP1 → CP1 of degree
d such that

φΓ(z) = φΓ(ζ) ⇐⇒ z ∼ ζ. (2)

Hint: Choose an identification of CP1 with the Riemann sphere C = C∪{∞}
such that 0 6∼ ∞ and define

P0 := {z ∈ C | z ∼ 0} , P∞ := {z ∈ C | z ∼ ∞} .

For z ∈ C \ P∞ define

φΓ(z) :=
∏
ζ∼z

ζmΓ(ζ). (3)

Prove that φΓ is holomorphic, extends to a rational function of degree d from
C to itself, has a zero of order mΓ(z) at z ∈ P0, and has a pole of order mΓ(z)
at z ∈ P∞. Prove that φΓ satisfies (2).
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Exercise 5.6. Let u : C → C be a nonconstant rational function such that
u(0) 6= u(∞). Prove that the set Γ :=

{
(z, ζ) ∈ C× C |u(z) = u(ζ)

}
is a

holomorphic equivalence relation. Prove that mΓ(z) is the order of z as a
pole of u when u(z) = ∞, and that mΓ(z) is the order of z as a zero of
u−u(z) when u(z) 6=∞. Define φΓ : C→ C by (3) as in Exercise 5.5. Prove
that there exists a Möbius transformation u′ : C→ C such that u = u′ ◦ φΓ.

Exercise 5.7 (Simple J-Holomorphic Curves). Let J be a C2 almost
complex structure on a manifold M and let (Σ0, j0), (Σ1, j1) be closed con-
nected Riemann surfaces. Let u0 : Σ0 → M , u1 : Σ1 → M be simple
J-holomorphic curves of class C2.

(i) Assume u0(Σ0) = u1(Σ1). Prove that there exists a unique holomorphic
diffeomorphism φ : (Σ1, j1)→ (Σ0, j0) such that u1 = u0 ◦ φ.

(ii) Assume u0(Σ0) 6= u1(Σ1). Prove that the set u−1
0 (u1(Σ1)) ⊂ Σ0 is at

most countable and can only accumulate at the critical points of u0.

Positivity of Intersections

Let D ⊂ C denote the closed unit disc and let v0, v1 : D → R4 be smooth
maps such that

v0(∂D) ∩ v1(D) = ∅, v0(D) ∩ v1(∂D) = ∅ (4)

and v0 and v1 intersect transversally, i.e.

R4 = im dv0(w0)⊕ im dv1(w1)

for every pair (w0, w1) ∈ D×D such that v0(w0) = v1(w1). The intersection
number of v0 and v1 is defined

v0 · v1 :=
∑

v0(w0)=v1(w1)

ε(w0, w1),

where the sum runs over all (w0, w1) ∈ D × D such that v0(w0) = v1(w1)
and the sign ε(w0, w1) ∈ {±1} is chosen according to whether or not orienta-
tions match in the direct sum decomposition R4 = im dv0(w0)⊕ im dv1(w1).
Standard intersection theory asserts that the intersection number v0 · v1 is
invariant under homotopies preserving condition (4) and hence is well defined
for any pair of smooth maps v0, v1 : D→ R4 satisfying (4).
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Now let Σ0, Σ1 be closed oriented 2-manifold, M be an oriented 4-
manifold and u0 : Σ0 →M and u1 : Σ1 →M be smooth maps such that

Z := {(z0, z1) ∈ Σ0 × Σ1 |u0(z0) = u1(z1)}

is a finite set. The intersection index of u0 and u1 at a pair (z0, z1) ∈ Z is
the integer

ι(u0, u1; z0, z1) := v0 · v1,

where φi : (Ui, zi) → (C, 0) is an orientation preserving coordinate chart on
Σi for i = 0, 1, ψ : (V, p) → (R4, 0) is an orientation preserving coordinate
chart on M centered at p := u0(z0) = u1(z1), and vi : D → R4 is defined
by vi(z) := ψ ◦ ui ◦ φ−1

i (εz) for i = 0, 1, and ε > 0 sufficiently small. The
intersection number of u0 and u1 is the integer defined as the sum of the
intersection indices

u0 · u1 :=
∑

(z0,z1)∈Z

ι(u0, u1; z0, z1).

This is a homotopy invariant.

Exercise 5.8 (Transversality). Let v0, v1 : C → C2 be smooth maps.
Let Areg be the set of vectors a ∈ C2 such that v0 + a and v1 intersect
transversally. Prove that the complement C2 \ Areg has Lebesque measure
zero. Hint: Prove that the set

Z :=
{

(w0, w1, a) ∈ C× C× C2 | v1(w1)− v0(w0) = a
}

is a smooth 4-dimensional submanifold of C × C × C2. Prove that a ∈ Areg

if and only if a is a regular value of the projection Z → C2 : (w0, w1, a) 7→ a.

Exercise 5.9 (Positivity of Intersections, Part 1). Let v0, v1 : C→ C2

be polynomials of the form

v0(w0) = wk0
0 (1, p0(w0)), v1(w1) = wk1(p1(w1), 1)

where k0, k1 ∈ N and p0, p1 : C → C are polynomials that vanish at the
origin. Prove that w0 = w1 = 0 is an isolated intersection of v0 and v1 and
that the intersection index is ι(v0, v1; 0, 0) = k0k1. Hint: Assume first that
p0 = p1 = 0.
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Exercise 5.10 (Positivity of Intersections, Part 2). Let v0, v1 : C→ C2

be polynomials of the form

v0(w0) = wk0(1, p0(w0)), v1(w1) = wk1(1, p1(w1))

where k ∈ N and p0, p1 : C → C are polynomials that vanish at the origin.
Assume that w0 = w1 = 0 is an isolated intersection point of v0 and v1.
Prove that the intersection index satisfies the inequality

ι(v0, v1; 0, 0) ≥ k(k + 1)

and hence is at least two. Hint: Consider the intersections of the curves

v0,a(w0) := (wk0 , w
k
0p0(w0) + a), v1(w1) = (wk1 , w

k
1p1(w1))

near the origin for a 6= 0 sufficiently small.

Exercise 5.11 (Positivity of Intersections, Part 3). Let v0, v1 : C→ C2

be polynomials of the form

v0(w0) = wk0
0 (1, p0(w0)), v1(w1) = wk1

1 (1, p1(w1)), 0 < k0 < k1,

where p0, p1 : C → C are polynomials that vanish at the origin. Assume
that w0 = w1 = 0 is an isolated intersection of v0 and v1. Prove that the
intersection index satisfies the inequality

ι(v0, v1; 0, 0) ≥ k0 + 1

and hence is at least two. Hint: Consider the intersections of the curves

v0,a(w0) := (wk0
0 , w

k0
0 p0(w0) + a), v1(w1) = (wk1

1 , w
k1
1 p1(w1))

near the origin for a 6= 0 sufficiently small. Take w0 = zk1 and w1 = λzk0

where λk1 = 1.
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