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Generating Functions

Exercise 5.1. Let A = AT € R™" and C = C7 € R¥*¥ be symmetric
matrices and let and B € R™*¥. Prove that the following set is a Lagrangian
subspace of R?":

— 2n
A= {(a:,y)E]R and Az + B¢ =y

3¢ e RN such that BTz + C¢ =0 }

Exercise 5.2 (Generating Functions). Let 7 : E — L be a submersion
between smooth manifolds and let f : E — R be a smooth function. Denote
the fiber over ¢ € L by E, := 7 '(q), the restriction of f to the fiber by
fo:= flg, : B, — R, and the set of fiber critical points by

C:=C(E,f) ={ce E|kerdn(c) C kerdf(c)}.

Define the map ¢y : C — T*L by tf(c) = (¢,v*), where ¢ := m(c) and
v* € T/ L is the unique Lagrange multiplier given by

df (¢) = v* o dm(c). (1)

Assume that the graph of df in T*FE intersects the fiber normal bundle
Ng = {(¢c,n) € T*E| kerdn(c) C kern} transversally. Prove that C is an
n-dimensional submanifold of £ and that ¢y : C — T*L is a Lagrangian
immersion. Thus the immersed submanifold A := ¢;(C) C T*L of Lagrange

multipliers is a Lagrangian submanifold. Hint: Assume first that L = R”
and F = R" x RV. Use Exercise 5.1.



Exercise 5.3. Let M be a manifold and let f,g1,...,9, : M — R be smooth
functions. For y = (y1,...,y,) € R™ define

i=1

Consider the set

C:={(p,y) € M x R"|df,(p) =0}.
Assume that .
ker d* f,(p) N [ ker dgi(p) = {0}
i=1
for all (p,y) € C. Prove that C is an n-dimensional submanifold of M x R".

Prove that the map
C—R™: (p,y) — (9(p),v)

is a Lagrangian immersion. Hint: This is a special case of Exercise 5.2. If
the map g = (g1,...,9,) : M — R" is a submersion, take £ := M, L := R",
and 7 := g. Alternatively, take £ := M x R", L := R", 7(p,y) := y, and
f(p,y) :== fy(p). In this case the roles of x and y are reversed, and x = g(p)
is now the Lagrange multiplier.

Energy

Exercise 5.4. Let (M,w) be a symplectic manifold, let L C M be a La-
grangian submanifold, let J € J.(M,w) be an w-tame almost complex struc-
ture, and denote by g; := 3(w(:, J-) —w(J+,-)) the Riemannian metric deter-
mined by w and J. Let (X, ) be a compact Riemann surface with boundary
and let u : (X,0%) — (M, L) be a J-holomorphic curve with boundary values
in L. Prove that the energy

1
E(u) := 5 /E|du|J dvoly;

of u depends only on the homotopy class of u subject to the boundary con-
dition u(0X) C L.



Holomorphic equivalence relations

Let I' € CP! x CP' be an equivalence relation and write z ~ ¢ when (z,() €
I'. Denote the equivalence class of z € CP! by

[2] == {¢C € CP'|( ~ 2} .

The equivalence relation is called holomorphic if there exists a finite set
X C CP! such that I intersects the dense open set (CP'\ X) x (CP*\ X) in
a one-dimensional complex submanifold whose projection onto the first factor
is a proper holomorphic covering, and I is the closure of its intersection with
(CP'\ X) x (CP'\ X). Associated to such a holomorphic equivalence relation
I' is a multiplicity function mr : CP! — N defined by

mr(z) := #([w]NU)

for a sufficently small neighborhood U C CP' of z and for w € CP'\ {z}
sufficiently close to z. In particular mp(z) = 1 for z € CP'\ X. The number

d:= Zmp(z)

is independent of the choice of z and is called the degree of I'.

Exercise 5.5. Let I' € CP* x CP! be a holomorphic equivalence relation of
degree d. Prove that there is a rational function ¢p : CP' — CP! of degree
d such that

¢r(z) = ¢r(¢) — z~ . (2)
Hint: Choose an identification of CP' with the Riemann sphere C = CU{occ}
such that 0 % co and define

Py:={z€Cl|z~0}, Po:={2€C|z~o0}.

For z € C\ P, define
or(z) =[] ¢, (3)
(~z

Prove that ¢r is holomorphic, extends to a rational function of degree d from
C to itself, has a zero of order mr(z) at z € I, and has a pole of order mr(z)
at z € P,. Prove that ¢r satisfies (2).



Exercise 5.6. Let u : C — C be a nonconstant rational function such that
u(0) # u(co). Prove that the set I' :== {(2,{) € Cx C|u(z) =u(()} is a
holomorphic equivalence relation. Prove that mrp(z) is the order of z as a
pole of u when u(z) = oo, and that mr(z) is the order of z as a zero of
u—u(z) when u(z) # oo. Define ¢r : C — C by (3) as in Exercise 5.5. Prove

that there exists a Mdbius transformation «' : C — C such that u = u’ o ¢p.

Exercise 5.7 (Simple J-Holomorphic Curves). Let J be a C? almost
complex structure on a manifold M and let (X, jo), (X1, 1) be closed con-
nected Riemann surfaces. Let wg : X9 — M, u; : ¥ — M be simple
J-holomorphic curves of class C2.

(1) Assume ug(Xg) = u1(X1). Prove that there exists a unique holomorphic
diffeomorphism ¢ : (X1, 71) — (2o, jo) such that u; = ug o ¢.

(ii) Assume uo(Xo) # u1(31). Prove that the set uy'(u(31)) C Yo is at
most countable and can only accumulate at the critical points of wuy.

Positivity of Intersections

Let D C C denote the closed unit disc and let vy,v; : D — R* be smooth
maps such that

U()(aID)) N U1 (D) = @, ’U()(D) N U1 (8]1)) = @ (4)
and vy and v; intersect transversally, i.e.
R* = im dvy(wy) ® im dv, (w,)

for every pair (wp, w;) € D x D such that vg(wy) = v1(wy). The intersection
number of vy and v; is defined

Vo V1 = Z 6(’[1}0,11}1),

vo(wo)=v1(w1)

where the sum runs over all (wy,w;) € D x D such that vy(wg) = v1(wy)
and the sign e(wp, w;) € {£1} is chosen according to whether or not orienta-
tions match in the direct sum decomposition R* = im dvg(wp) @ im dvy (wy).
Standard intersection theory asserts that the intersection number vy - vy is
invariant under homotopies preserving condition (4) and hence is well defined
for any pair of smooth maps vg, v; : D — R* satisfying (4).
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Now let ¥y, >; be closed oriented 2-manifold, M be an oriented 4-
manifold and ug : X9 — M and u; : 37 — M be smooth maps such that

7 :={(20,21) € Yo X X1 |uo(20) = us(21)}

is a finite set. The intersection index of uy and wu; at a pair (29, 21) € Z is
the integer
L(Um U1; 20, 21) = - Uy,

where ¢; : (Ui, z;) — (C,0) is an orientation preserving coordinate chart on
¥ for i = 0,1, ¥ : (V,p) — (R 0) is an orientation preserving coordinate
chart on M centered at p := wug(29) = u1(21), and v; : D — R* is defined
by v;i(z) := 1 ou; o ¢;(e2) for i = 0,1, and € > 0 sufficiently small. The
intersection number of ug and wu, is the integer defined as the sum of the
intersection indices

Ug - Uy = Z t(ug, ut; 20, 21).

(Zo,zl)EZ
This is a homotopy invariant.

Exercise 5.8 (Transversality). Let vg,v; : C — C? be smooth maps.
Let A, be the set of vectors a € C* such that vy + a and v; intersect
transversally. Prove that the complement C? \ A,e, has Lebesque measure
zero. Hint: Prove that the set

Z = {(w07w1,a) € C x C x C?|vy(wy) — vo(wp) = a}

is a smooth 4-dimensional submanifold of C x C x C2. Prove that a € Aseg
if and only if @ is a regular value of the projection Z — C? : (wg, w1, a) — a.

Exercise 5.9 (Positivity of Intersections, Part 1). Let vy, v, : C — C?
be polynomials of the form

vo(wo) = wg (1, po(wy)), v1(wr) = wM (py(wy),1)

where ko, k1 € N and pg,p; : C — C are polynomials that vanish at the
origin. Prove that wy = w; = 0 is an isolated intersection of vy and v, and
that the intersection index is ¢(vg,v1;0,0) = kok;. Hint: Assume first that

po =p1 = 0.



Exercise 5.10 (Positivity of Intersections, Part 2). Let vg,v; : C — C?
be polynomials of the form

vo(wo) = we (1, po(wo)), vr(wy) = wi(1, p1(wy))

where £ € N and pg,p; : C — C are polynomials that vanish at the origin.
Assume that wy = w; = 0 is an isolated intersection point of vy and wvy.
Prove that the intersection index satisfies the inequality

t(vo,v1;0,0) > k(k+1)
and hence is at least two. Hint: Consider the intersections of the curves
vo.a(wo) = (wg, wgpo(wo) +a),  vi(wr) = (wy, wip:(wr))
near the origin for a # 0 sufficiently small.

Exercise 5.11 (Positivity of Intersections, Part 3). Let vy, v, : C — C?
be polynomials of the form

vo(wo) = we (1, po(wo)), vy (wy) = wit (1, pr(wy)), 0 < ko < ki,

where pg,p; : C — C are polynomials that vanish at the origin. Assume
that wy = w; = 0 is an isolated intersection of vy and v;. Prove that the
intersection index satisfies the inequality

t(vo,v1;0,0) > ko + 1
and hence is at least two. Hint: Consider the intersections of the curves
PO kO kO _ k1 kl
vo.a(wo) = (wy”, wy’po(wo) + a), v (wy) = (wi', wy'pr(wr))

near the origin for a # 0 sufficiently small. Take wy = z* and w; = \zk°
where \f1 = 1.



