Symplectic Topology
 Example Sheet 5

Dietmar Salamon
ETH Zürich

22 March 2013

Generating Functions

Exercise 5.1. Let $A=A^{T} \in \mathbb{R}^{n \times n}$ and $C=C^{T} \in \mathbb{R}^{N \times N}$ be symmetric matrices and let and $B \in \mathbb{R}^{n \times N}$. Prove that the following set is a Lagrangian subspace of $\mathbb{R}^{2 n}$:

$$
\Lambda:=\left\{\begin{array}{l|l}
(x, y) \in \mathbb{R}^{2 n} & \begin{array}{l}
\exists \xi \in \mathbb{R}^{N} \text { such that } B^{T} x+C \xi=0 \\
\text { and } A x+B \xi=y
\end{array}
\end{array}\right\}
$$

Exercise 5.2 (Generating Functions). Let $\pi: E \rightarrow L$ be a submersion between smooth manifolds and let $f: E \rightarrow \mathbb{R}$ be a smooth function. Denote the fiber over $q \in L$ by $E_{q}:=\pi^{-1}(q)$, the restriction of f to the fiber by $f_{q}:=\left.f\right|_{E_{q}}: E_{q} \rightarrow \mathbb{R}$, and the set of fiber critical points by

$$
\mathcal{C}:=\mathcal{C}(E, f):=\{c \in E \mid \operatorname{ker} d \pi(c) \subset \operatorname{ker} d f(c)\}
$$

Define the map $\iota_{f}: \mathcal{C} \rightarrow T^{*} L$ by $\iota_{f}(c):=\left(q, v^{*}\right)$, where $q:=\pi(c)$ and $v^{*} \in T_{q}^{*} L$ is the unique Lagrange multiplier given by

$$
\begin{equation*}
d f(c)=v^{*} \circ d \pi(c) \tag{1}
\end{equation*}
$$

Assume that the graph of $d f$ in $T^{*} E$ intersects the fiber normal bundle $N_{E}:=\left\{(c, \eta) \in T^{*} E \mid \operatorname{ker} d \pi(c) \subset \operatorname{ker} \eta\right\}$ transversally. Prove that \mathcal{C} is an n-dimensional submanifold of E and that $\iota_{f}: \mathcal{C} \rightarrow T^{*} L$ is a Lagrangian immersion. Thus the immersed submanifold $\Lambda:=\iota_{f}(\mathcal{C}) \subset T^{*} L$ of Lagrange multipliers is a Lagrangian submanifold. Hint: Assume first that $L=\mathbb{R}^{n}$ and $E=\mathbb{R}^{n} \times \mathbb{R}^{N}$. Use Exercise 5.1.

Exercise 5.3. Let M be a manifold and let $f, g_{1}, \ldots, g_{n}: M \rightarrow \mathbb{R}$ be smooth functions. For $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ define

$$
f_{y}:=f-\sum_{i=1}^{n} y_{i} g_{i}: M \rightarrow \mathbb{R}
$$

Consider the set

$$
\mathcal{C}:=\left\{(p, y) \in M \times \mathbb{R}^{n} \mid d f_{y}(p)=0\right\} .
$$

Assume that

$$
\operatorname{ker} d^{2} f_{y}(p) \cap \bigcap_{i=1}^{n} \operatorname{ker} d g_{i}(p)=\{0\}
$$

for all $(p, y) \in \mathcal{C}$. Prove that \mathcal{C} is an n-dimensional submanifold of $M \times \mathbb{R}^{n}$. Prove that the map

$$
\mathcal{C} \rightarrow \mathbb{R}^{2 n}:(p, y) \mapsto(g(p), y)
$$

is a Lagrangian immersion. Hint: This is a special case of Exercise 5.2. If the map $g=\left(g_{1}, \ldots, g_{n}\right): M \rightarrow \mathbb{R}^{n}$ is a submersion, take $E:=M, L:=\mathbb{R}^{n}$, and $\pi:=g$. Alternatively, take $E:=M \times \mathbb{R}^{n}, L:=\mathbb{R}^{n}, \pi(p, y):=y$, and $f(p, y):=f_{y}(p)$. In this case the roles of x and y are reversed, and $x=g(p)$ is now the Lagrange multiplier.

Energy

Exercise 5.4. Let (M, ω) be a symplectic manifold, let $L \subset M$ be a Lagrangian submanifold, let $J \in \mathcal{J}_{\tau}(M, \omega)$ be an ω-tame almost complex structure, and denote by $g_{J}:=\frac{1}{2}(\omega(\cdot, J \cdot)-\omega(J \cdot, \cdot))$ the Riemannian metric determined by ω and J. Let (Σ, j) be a compact Riemann surface with boundary and let $u:(\Sigma, \partial \Sigma) \rightarrow(M, L)$ be a J-holomorphic curve with boundary values in L. Prove that the energy

$$
E(u):=\frac{1}{2} \int_{\Sigma}|d u|_{J} \operatorname{dvol}_{\Sigma}
$$

of u depends only on the homotopy class of u subject to the boundary condition $u(\partial \Sigma) \subset L$.

Holomorphic equivalence relations

Let $\Gamma \subset \mathbb{C} P^{1} \times \mathbb{C P}^{1}$ be an equivalence relation and write $z \sim \zeta$ when $(z, \zeta) \in$ Γ. Denote the equivalence class of $z \in \mathbb{C}{ }^{1}$ by

$$
[z]:=\left\{\zeta \in \mathbb{C P}^{1} \mid \zeta \sim z\right\}
$$

The equivalence relation is called holomorphic if there exists a finite set $X \subset \mathbb{C} P^{1}$ such that Γ intersects the dense open set $\left(\mathbb{C P}^{1} \backslash X\right) \times\left(\mathbb{C} P^{1} \backslash X\right)$ in a one-dimensional complex submanifold whose projection onto the first factor is a proper holomorphic covering, and Γ is the closure of its intersection with $\left(\mathbb{C P}^{1} \backslash X\right) \times\left(\mathbb{C P}^{1} \backslash X\right)$. Associated to such a holomorphic equivalence relation Γ is a multiplicity function $m_{\Gamma}: \mathbb{C} P^{1} \rightarrow \mathbb{N}$ defined by

$$
m_{\Gamma}(z):=\#([w] \cap U)
$$

for a sufficently small neighborhood $U \subset \mathbb{C} P^{1}$ of z and for $w \in \mathbb{C} P^{1} \backslash\{z\}$ sufficiently close to z. In particular $m_{\Gamma}(z)=1$ for $z \in \mathbb{C} P^{1} \backslash X$. The number

$$
d:=\sum_{\zeta \sim z} m_{\Gamma}(z)
$$

is independent of the choice of z and is called the degree of Γ.
Exercise 5.5. Let $\Gamma \subset \mathbb{C P}^{1} \times \mathbb{C P}^{1}$ be a holomorphic equivalence relation of degree d. Prove that there is a rational function $\phi_{\Gamma}: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ of degree d such that

$$
\begin{equation*}
\phi_{\Gamma}(z)=\phi_{\Gamma}(\zeta) \quad \Longleftrightarrow \quad z \sim \zeta . \tag{2}
\end{equation*}
$$

Hint: Choose an identification of $\mathbb{C} P^{1}$ with the Riemann sphere $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ such that $0 \nsim \infty$ and define

$$
P_{0}:=\{z \in \mathbb{C} \mid z \sim 0\}, \quad P_{\infty}:=\{z \in \mathbb{C} \mid z \sim \infty\}
$$

For $z \in \mathbb{C} \backslash P_{\infty}$ define

$$
\begin{equation*}
\phi_{\Gamma}(z):=\prod_{\zeta \sim z} \zeta^{m_{\Gamma}(\zeta)} \tag{3}
\end{equation*}
$$

Prove that ϕ_{Γ} is holomorphic, extends to a rational function of degree d from $\overline{\mathbb{C}}$ to itself, has a zero of order $m_{\Gamma}(z)$ at $z \in P_{0}$, and has a pole of order $m_{\Gamma}(z)$ at $z \in P_{\infty}$. Prove that ϕ_{Γ} satisfies (2).

Exercise 5.6. Let $u: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ be a nonconstant rational function such that $u(0) \neq u(\infty)$. Prove that the set $\Gamma:=\{(z, \zeta) \in \overline{\mathbb{C}} \times \overline{\mathbb{C}} \mid u(z)=u(\zeta)\}$ is a holomorphic equivalence relation. Prove that $m_{\Gamma}(z)$ is the order of z as a pole of u when $u(z)=\infty$, and that $m_{\Gamma}(z)$ is the order of z as a zero of $u-u(z)$ when $u(z) \neq \infty$. Define $\phi_{\Gamma}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ by (3) as in Exercise 5.5. Prove that there exists a Möbius transformation $u^{\prime}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ such that $u=u^{\prime} \circ \phi_{\Gamma}$.

Exercise 5.7 (Simple J-Holomorphic Curves). Let J be a C^{2} almost complex structure on a manifold M and let $\left(\Sigma_{0}, j_{0}\right),\left(\Sigma_{1}, j_{1}\right)$ be closed connected Riemann surfaces. Let $u_{0}: \Sigma_{0} \rightarrow M, u_{1}: \Sigma_{1} \rightarrow M$ be simple J-holomorphic curves of class C^{2}.
(i) Assume $u_{0}\left(\Sigma_{0}\right)=u_{1}\left(\Sigma_{1}\right)$. Prove that there exists a unique holomorphic diffeomorphism $\phi:\left(\Sigma_{1}, j_{1}\right) \rightarrow\left(\Sigma_{0}, j_{0}\right)$ such that $u_{1}=u_{0} \circ \phi$.
(ii) Assume $u_{0}\left(\Sigma_{0}\right) \neq u_{1}\left(\Sigma_{1}\right)$. Prove that the set $u_{0}^{-1}\left(u_{1}\left(\Sigma_{1}\right)\right) \subset \Sigma_{0}$ is at most countable and can only accumulate at the critical points of u_{0}.

Positivity of Intersections

Let $\mathbb{D} \subset \mathbb{C}$ denote the closed unit disc and let $v_{0}, v_{1}: \mathbb{D} \rightarrow \mathbb{R}^{4}$ be smooth maps such that

$$
\begin{equation*}
v_{0}(\partial \mathbb{D}) \cap v_{1}(\mathbb{D})=\emptyset, \quad v_{0}(\mathbb{D}) \cap v_{1}(\partial \mathbb{D})=\emptyset \tag{4}
\end{equation*}
$$

and v_{0} and v_{1} intersect transversally, i.e.

$$
\mathbb{R}^{4}=\operatorname{im} d v_{0}\left(w_{0}\right) \oplus \operatorname{im} d v_{1}\left(w_{1}\right)
$$

for every pair $\left(w_{0}, w_{1}\right) \in \mathbb{D} \times \mathbb{D}$ such that $v_{0}\left(w_{0}\right)=v_{1}\left(w_{1}\right)$. The intersection number of v_{0} and v_{1} is defined

$$
v_{0} \cdot v_{1}:=\sum_{v_{0}\left(w_{0}\right)=v_{1}\left(w_{1}\right)} \varepsilon\left(w_{0}, w_{1}\right)
$$

where the sum runs over all $\left(w_{0}, w_{1}\right) \in \mathbb{D} \times \mathbb{D}$ such that $v_{0}\left(w_{0}\right)=v_{1}\left(w_{1}\right)$ and the $\operatorname{sign} \varepsilon\left(w_{0}, w_{1}\right) \in\{ \pm 1\}$ is chosen according to whether or not orientations match in the direct sum decomposition $\mathbb{R}^{4}=\operatorname{im} d v_{0}\left(w_{0}\right) \oplus \operatorname{im} d v_{1}\left(w_{1}\right)$. Standard intersection theory asserts that the intersection number $v_{0} \cdot v_{1}$ is invariant under homotopies preserving condition (4) and hence is well defined for any pair of smooth maps $v_{0}, v_{1}: \mathbb{D} \rightarrow \mathbb{R}^{4}$ satisfying (4).

Now let Σ_{0}, Σ_{1} be closed oriented 2-manifold, M be an oriented 4manifold and $u_{0}: \Sigma_{0} \rightarrow M$ and $u_{1}: \Sigma_{1} \rightarrow M$ be smooth maps such that

$$
Z:=\left\{\left(z_{0}, z_{1}\right) \in \Sigma_{0} \times \Sigma_{1} \mid u_{0}\left(z_{0}\right)=u_{1}\left(z_{1}\right)\right\}
$$

is a finite set. The intersection index of u_{0} and u_{1} at a pair $\left(z_{0}, z_{1}\right) \in Z$ is the integer

$$
\iota\left(u_{0}, u_{1} ; z_{0}, z_{1}\right):=v_{0} \cdot v_{1},
$$

where $\phi_{i}:\left(U_{i}, z_{i}\right) \rightarrow(\mathbb{C}, 0)$ is an orientation preserving coordinate chart on Σ_{i} for $i=0,1, \psi:(V, p) \rightarrow\left(\mathbb{R}^{4}, 0\right)$ is an orientation preserving coordinate chart on M centered at $p:=u_{0}\left(z_{0}\right)=u_{1}\left(z_{1}\right)$, and $v_{i}: \mathbb{D} \rightarrow \mathbb{R}^{4}$ is defined by $v_{i}(z):=\psi \circ u_{i} \circ \phi_{i}^{-1}(\varepsilon z)$ for $i=0,1$, and $\varepsilon>0$ sufficiently small. The intersection number of u_{0} and u_{1} is the integer defined as the sum of the intersection indices

$$
u_{0} \cdot u_{1}:=\sum_{\left(z_{0}, z_{1}\right) \in Z} \iota\left(u_{0}, u_{1} ; z_{0}, z_{1}\right) .
$$

This is a homotopy invariant.
Exercise 5.8 (Transversality). Let $v_{0}, v_{1}: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be smooth maps. Let $A_{\text {reg }}$ be the set of vectors $a \in \mathbb{C}^{2}$ such that $v_{0}+a$ and v_{1} intersect transversally. Prove that the complement $\mathbb{C}^{2} \backslash A_{\text {reg }}$ has Lebesque measure zero. Hint: Prove that the set

$$
\mathcal{Z}:=\left\{\left(w_{0}, w_{1}, a\right) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{2} \mid v_{1}\left(w_{1}\right)-v_{0}\left(w_{0}\right)=a\right\}
$$

is a smooth 4-dimensional submanifold of $\mathbb{C} \times \mathbb{C} \times \mathbb{C}^{2}$. Prove that $a \in A_{\text {reg }}$ if and only if a is a regular value of the projection $\mathcal{Z} \rightarrow \mathbb{C}^{2}:\left(w_{0}, w_{1}, a\right) \mapsto a$.

Exercise 5.9 (Positivity of Intersections, Part 1). Let $v_{0}, v_{1}: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be polynomials of the form

$$
v_{0}\left(w_{0}\right)=w_{0}^{k_{0}}\left(1, p_{0}\left(w_{0}\right)\right), \quad v_{1}\left(w_{1}\right)=w^{k_{1}}\left(p_{1}\left(w_{1}\right), 1\right)
$$

where $k_{0}, k_{1} \in \mathbb{N}$ and $p_{0}, p_{1}: \mathbb{C} \rightarrow \mathbb{C}$ are polynomials that vanish at the origin. Prove that $w_{0}=w_{1}=0$ is an isolated intersection of v_{0} and v_{1} and that the intersection index is $\iota\left(v_{0}, v_{1} ; 0,0\right)=k_{0} k_{1}$. Hint: Assume first that $p_{0}=p_{1}=0$.

Exercise 5.10 (Positivity of Intersections, Part 2). Let $v_{0}, v_{1}: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be polynomials of the form

$$
v_{0}\left(w_{0}\right)=w_{0}^{k}\left(1, p_{0}\left(w_{0}\right)\right), \quad v_{1}\left(w_{1}\right)=w_{1}^{k}\left(1, p_{1}\left(w_{1}\right)\right)
$$

where $k \in \mathbb{N}$ and $p_{0}, p_{1}: \mathbb{C} \rightarrow \mathbb{C}$ are polynomials that vanish at the origin. Assume that $w_{0}=w_{1}=0$ is an isolated intersection point of v_{0} and v_{1}. Prove that the intersection index satisfies the inequality

$$
\iota\left(v_{0}, v_{1} ; 0,0\right) \geq k(k+1)
$$

and hence is at least two. Hint: Consider the intersections of the curves

$$
v_{0, a}\left(w_{0}\right):=\left(w_{0}^{k}, w_{0}^{k} p_{0}\left(w_{0}\right)+a\right), \quad v_{1}\left(w_{1}\right)=\left(w_{1}^{k}, w_{1}^{k} p_{1}\left(w_{1}\right)\right)
$$

near the origin for $a \neq 0$ sufficiently small.
Exercise 5.11 (Positivity of Intersections, Part 3). Let $v_{0}, v_{1}: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be polynomials of the form

$$
v_{0}\left(w_{0}\right)=w_{0}^{k_{0}}\left(1, p_{0}\left(w_{0}\right)\right), \quad v_{1}\left(w_{1}\right)=w_{1}^{k_{1}}\left(1, p_{1}\left(w_{1}\right)\right), \quad 0<k_{0}<k_{1}
$$

where $p_{0}, p_{1}: \mathbb{C} \rightarrow \mathbb{C}$ are polynomials that vanish at the origin. Assume that $w_{0}=w_{1}=0$ is an isolated intersection of v_{0} and v_{1}. Prove that the intersection index satisfies the inequality

$$
\iota\left(v_{0}, v_{1} ; 0,0\right) \geq k_{0}+1
$$

and hence is at least two. Hint: Consider the intersections of the curves

$$
v_{0, a}\left(w_{0}\right):=\left(w_{0}^{k_{0}}, w_{0}^{k_{0}} p_{0}\left(w_{0}\right)+a\right), \quad v_{1}\left(w_{1}\right)=\left(w_{1}^{k_{1}}, w_{1}^{k_{1}} p_{1}\left(w_{1}\right)\right)
$$

near the origin for $a \neq 0$ sufficiently small. Take $w_{0}=z^{k_{1}}$ and $w_{1}=\lambda z^{k_{0}}$ where $\lambda^{k_{1}}=1$.

