Symplectic Topology
 Example Sheet 6

Dietmar Salamon
ETH Zürich

28 March 2013

Adjunction Inequality

Let (M, J) be an almost complex 4-manifold, (Σ, j) be a closed connected Riemann surface, and $u: \Sigma \rightarrow M$ be a simple J-holomorphic curve. Denote the set of critical points by $C(u):=\{z \in \Sigma \mid d u(z)=0\}$ and the set of selfintersections by $Z(u):=\left\{\left\{z_{0}, z_{1}\right\} \subset \Sigma \mid z_{0} \neq z_{1}, u\left(z_{0}\right)=u\left(z_{1}\right)\right\}$. Then $C(u)$ and $Z(u)$ are finite sets. For $\left\{z_{0}, z_{1}\right\} \in Z(u)$ (respectively $z \in C(u)$) denote by $\iota\left(u ;\left\{z_{0}, z_{1}\right\}\right) \in \mathbb{Z}$ (respectively $\left.\iota(u ; z) \in \mathbb{Z}\right)$ the sum of the intersection indices of nearby self-intersections of an immersed perturbation of u with transverse self-intersections. These numbers are well defined by the MicallefWhite theorem. Moreover, $\iota\left(u ;\left\{z_{0}, z_{1}\right\}\right) \geq 1$ for every $\left\{z_{0}, z_{1}\right\} \in Z(u)$ (with equality iff the intersection is transverse), $\iota(u, z) \geq 1$ for every $z \in C(u)$, and

$$
\begin{equation*}
A \cdot A-c_{1}(A)+\chi(\Sigma)=2\left(\sum_{\left\{z_{0}, z_{1}\right\} \in Z(u)} \iota\left(u ;\left\{z_{0}, z_{1}\right\}\right)+\sum_{z \in C(u)} \iota(u ; z)\right) \tag{1}
\end{equation*}
$$

where $A:=[u]=u_{*}[\Sigma] \in H_{2}(M ; \mathbb{Z}), A \cdot A:=u \cdot u$ denotes the self-intersection number of u, and $c_{1}(A):=\left\langle c_{1}(T M, J), A\right\rangle$.
Exercise 6.1. Verify equation (1) for the holomorphic curve $u: \mathbb{C P}{ }^{1} \rightarrow \mathbb{C P}^{2}$ defined by $u\left(\left[z_{0}: z_{1}\right]\right):=\left[z_{0}^{3}: z_{0} z_{1}^{2}: z_{1}^{3}\right]$.
Exercise 6.2. Prove the adjunction formula $g=\frac{(d-1)(d-2)}{2}$ for the genus of an embedded degree- d curve $C \subset \mathbb{C} P^{2}$ by degenerating C to a union of d lines in general position. How many self-intersections does an immersed degree- d curve $u: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{2}$ have?

Hirzebruch Signature Theorem

Let M be a closed oriented smooth 4-manifold. Then the formula

$$
\begin{equation*}
H^{2}(M ; \mathbb{R}) \times H^{2}(M ; \mathbb{R}) \rightarrow \mathbb{R}:(\omega, \tau) \mapsto \int_{M} \omega \wedge \tau \tag{2}
\end{equation*}
$$

defines a nondegenerate symmetric bilinear form on the deRham cohomology group $H^{2}(M ; \mathbb{R})$. The signature of M is defined as the signature of the quadratic form (2) and is denoted by

$$
\sigma(M):=b^{+}(M)-b^{-}(M), \quad b^{+}(M)+b^{-}(M)=\operatorname{dim} H^{2}(M ; \mathbb{R})
$$

Here $b^{ \pm}(M)$ denotes the dimension of a maximal positive (respectively negative) subspace of $H^{2}(M ; \mathbb{R})$ with respect to (2).

The composition of (2) with the homomorphism $H^{2}(M ; \mathbb{Z}) \rightarrow H^{2}(M ; \mathbb{R})$ is the quadratic form $H^{2}(M ; \mathbb{Z}) \times H^{2}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}:(a, b) \mapsto\langle a \cup b,[M]\rangle$ and is dual to the intersection pairing $Q_{M}: H_{2}(M ; \mathbb{Z}) \times H_{2}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}$, given by $Q_{M}(A, B):=A \cdot B$ for $A, B \in H_{2}(M ; \mathbb{Z})$.

Let J be an almost complex structure on M. The Hirzebruch signature theorem asserts that its first Chern class $c:=c_{1}(T M, J) \in H^{2}(M ; \mathbb{Z})$ satisfies

$$
\begin{equation*}
c^{2}=2 \chi(M)+3 \sigma(M) \tag{3}
\end{equation*}
$$

Here $c^{2}:=\langle c \cup c,[M]\rangle \in \mathbb{Z}$. A theorem of Wu asserts that a cohomology class $c \in H^{2}(M ; \mathbb{Z})$ is the first Chern class of an almost complex structure on M if and only if it satisfies equation (3) and is an integral lift of the second Stiefel-Whitney class $\mathrm{w}_{2}(T M) \in H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z})$. (If $H^{2}(M ; \mathbb{Z})$ has no 2-torsion then a cohomology class $c \in H^{2}(M ; \mathbb{Z})$ is an integral lift of $\mathrm{w}_{2}(T M)$ if and only if the number $\langle c, A\rangle-A \cdot A$ is even for every $A \in H_{2}(M ; \mathbb{Z})$.)
Exercise 6.3. Prove that the n-fold connected sum

$$
n \mathbb{C P}^{2}=\mathbb{C P}^{2} \# \mathbb{C P}^{2} \# \cdots \# \mathbb{C} P^{2}
$$

admits an almost complex structure if and only if n is odd.
Exercise 6.4. Let $X \subset \mathbb{C} P^{3}$ be a degree- d hypersurface. Compute the Euler characteristic and signature of X and the Chern class of $T X$. Hint: Use the fact that X is simply connected.
Exercise 6.5. Let $X \subset \mathbb{C} P^{4}$ be a degree- d hypersurface. Compute the Betti numbers of X and the Chern class of $T X$. Hint: Use the fact that X is simply connected and that $H_{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$. Thus, by Poincaré duality, it remains to compute $b_{3}=\operatorname{dim} H_{3}(X ; \mathbb{R})$.

The Linearized Cauchy-Riemann Operator

Let (M, J) be an almost complex manifold, equipped with a Riemannian metric

$$
g=\langle\cdot, \cdot\rangle
$$

with respect to which J is skew-adjoint, denote by

$$
\omega:=\langle J \cdot, \cdot\rangle
$$

the nondegenerate 2-form on M determined by g and J, and denote by ∇ the Levi-Civita connection of g. Let (Σ, j) be a closed connected Riemann surface and let $u: \Sigma \rightarrow M$ be a smooth map. The operator

$$
D_{u}: \Omega^{0}\left(\Sigma, u^{*} T M\right) \rightarrow \Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)
$$

is defined by

$$
\begin{equation*}
D_{u} \xi:=(\nabla \xi)^{0,1}-\frac{1}{2} J(u)\left(\nabla_{\xi} J(u)\right) \partial_{J}(u), \tag{4}
\end{equation*}
$$

where

$$
(\nabla \xi)^{0,1}:=\frac{1}{2}(\nabla \xi+J(u) \nabla \xi \circ j), \quad \partial_{J}(u):=\frac{1}{2}(d u-J(u) d u \circ j)
$$

Exercise 6.6. Prove that, in local coordinates, the Christoffel symbols on the right hand side of equation (4) cancel whenever u is a J-holomorphic curve.

Exercise 6.7. Define the connection $\widetilde{\nabla}$ on $T M$ by

$$
\begin{equation*}
\widetilde{\nabla}_{Y} X:=\nabla_{Y} X-\frac{1}{2} J\left(\nabla_{Y} J\right) X \tag{5}
\end{equation*}
$$

for $X, Y \in \operatorname{Vect}(M)$. Prove that $\widetilde{\nabla}$ is a Riemannian connection and $\widetilde{\nabla} J=0$. Prove that, for every smooth map $u: \Sigma \rightarrow M$, the connection $\widetilde{\nabla}$ in (5) induces a unique differential operator

$$
d^{\tilde{\nabla}}: \Omega^{1}\left(\Sigma, u^{*} T M\right) \rightarrow \Omega^{2}\left(\Sigma, u^{*} T M\right)
$$

that satisfies

$$
d^{\nabla}(\alpha \xi)=(d \alpha) \xi-\alpha \wedge \widetilde{\nabla} \xi
$$

for every $\alpha \in \Omega^{1}(\Sigma)$ and every $\xi \in \Omega^{0}\left(\Sigma, u^{*} T M\right)$.

Exercise 6.8. Prove that

$$
\begin{aligned}
D_{u} \xi= & \frac{1}{2}(\widetilde{\nabla} \xi+J(u) \widetilde{\nabla} \xi \circ j) \\
& +\frac{1}{4} N_{J}\left(\xi, \partial_{J}(u)\right) \\
& +\frac{1}{4}\left(J \nabla_{\bar{\partial}_{J}(u)} J+\nabla_{J \bar{\partial}_{j}(u)} J\right) \xi \\
& -\frac{1}{4}\left(J \nabla_{\xi} J+\nabla_{J \xi} J\right) \partial_{J}(u) .
\end{aligned}
$$

Note that the first term on the right is a complex linear first order operator from $\Omega^{0}\left(\Sigma, u^{*} T M\right)$ to $\Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)$, the second and third terms are complex anti-linear zeroth order operators from $\Omega^{0}\left(\Sigma, u^{*} T M\right)$ to $\Omega_{j}^{0,1}\left(\Sigma, u^{*} T M\right)$, and the last term is a complex linear zeroth order operator from $\Omega^{0}\left(\Sigma, u^{*} T M\right)$ to $\Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)$. Moreover, the third term vanishes whenever u is a J holomorphic curve, and the last two terms vanish whenever ω is closed.

Exercise 6.9. Assume ω is closed, fix a volume form $\operatorname{dvol}_{\Sigma} \in \Omega^{2}(\Sigma)$ compatible with the orientation, and consider the Riemannian metric

$$
\langle\cdot, \cdot\rangle_{\Sigma}:=\operatorname{dvol}_{\Sigma}(\cdot, j \cdot)
$$

on Σ determined by $\operatorname{dvol}_{\Sigma}$ and j. Let $u: \Sigma \rightarrow M$ be a smooth map and define the linear operator

$$
D_{u}^{*}: \Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right) \rightarrow \Omega^{0}\left(\Sigma, u^{*} T M\right)
$$

by

$$
\begin{equation*}
D_{u}^{*} \eta:=\frac{d^{\tilde{\nabla}}(\eta \circ j)}{\operatorname{dvol}_{\Sigma}}+\frac{1}{4} \frac{\left(\nabla_{\eta} J\right) \wedge \partial_{J}(u)}{\operatorname{dvol}_{\Sigma}} \tag{6}
\end{equation*}
$$

for $\eta \in \Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)$. Prove that

$$
\int_{\Sigma}\left\langle\eta, D_{u} \xi\right\rangle \operatorname{dvol}_{\Sigma}=\int_{\Sigma}\left\langle D_{u}^{*} \eta, \xi\right\rangle \operatorname{dvol}_{\Sigma}
$$

for every $\xi \in \Omega^{0}\left(\Sigma, u^{*} T M\right)$ and every $\eta \in \Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)$. Thus D_{u}^{*} is the formal adjoint operator of D_{u} with repect to the L^{2} inner products on $\Omega^{0}\left(\Sigma, u^{*} T M\right)$ and $\Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)$, determined by the Riemannian metrics on Σ and M.

