Symplectic Topology Example Sheet 7

Dietmar Salamon
ETH Zürich

11 April 2013

Exercise 7.1. Let (V, ω) be a symplectic vector space and consider the space

$$
\mathcal{J}(V, \omega):=\left\{\begin{array}{l|l}
J \in \operatorname{End}(V) & \begin{array}{l}
J^{2}=-\mathbb{1} \\
\omega(\cdot, J \cdot)+\omega(J \cdot, \cdot)=0 \\
\omega(v, J v)>0 \forall v \in V \backslash\{0\}
\end{array}
\end{array}\right\}
$$

of ω-compatible linear complex structure on V.
(i) Prove that the formula

$$
\begin{equation*}
\left\langle\widehat{J}_{1}, \widehat{J}_{2}\right\rangle:=\frac{1}{2} \operatorname{trace}\left(\widehat{J}_{1} \widehat{J}_{2}\right) \tag{1}
\end{equation*}
$$

for $\widehat{J}_{i} \in T_{J} \mathcal{J}(V, \omega)$ defines a Riemannian metric on $\mathcal{J}(V, \omega)$ and the formula

$$
\begin{equation*}
\Omega_{J}\left(\widehat{J}_{1}, \widehat{J}_{2}\right):=\frac{1}{2} \operatorname{trace}\left(\widehat{J}_{1} J \widehat{J}_{2}\right) \tag{2}
\end{equation*}
$$

defines a nondegenerate 2 -form that is compatible with the Riemannian matric (1) and the almost complex structure $\widehat{J} \mapsto-J \widehat{J}$.
(ii) Prove that the formulas (1) and (2) define a Kähler structure on $\mathcal{J}(V, \omega)$. Hint: Show that the Levi-Civita connection of the metric (1) is given by

$$
\begin{equation*}
\nabla_{t} \widehat{J}=\partial_{t} \widehat{J}-\frac{1}{2} J\left(\left(\partial_{t} J\right) \widehat{J}+\widehat{J}\left(\partial_{t} J\right)\right) \tag{3}
\end{equation*}
$$

for every smooth curve $\mathbb{R} \rightarrow \mathcal{J}(M, \omega): t \mapsto J(t)$ and every smooth vector field $\widehat{J}(t) \in T_{J(t)} \mathcal{J}(V, \omega)$ along this curve. Show that it preserves the almost complex structure $\widehat{J} \mapsto-J \widehat{J}$.

Exercise 7.2. Prove that the diffeomorphism $\mathcal{S}_{n} \rightarrow \mathcal{J}\left(\mathbb{R}^{2 n}, \omega_{0}\right): Z \mapsto J(Z)$ in Exercise 2.11 is a Kähler isometry, where \mathcal{S}_{n} denotes Siegel upper half space with its standard complex structure and the Riemannian metric on \mathcal{S}_{n} is determined by the norm

$$
|\widehat{Z}|_{Z}:=\sqrt{\operatorname{trace}\left(\left(\widehat{X} Y^{-1}\right)^{2}+\left(\widehat{Y} Y^{-1}\right)^{2}\right)}
$$

Exercise 7.3. (i) Prove that the Riemann curvature tensor of the Riemannian metric (1) on $\mathcal{J}(V, \omega)$ is given by

$$
\begin{equation*}
R\left(\widehat{J}_{1}, \widehat{J}_{2}\right) \widehat{J}_{3}=-\frac{1}{2}\left[\left[\widehat{J}_{1}, \widehat{J}_{2}\right], \widehat{J}_{3}\right] . \tag{4}
\end{equation*}
$$

Deduce that $\mathcal{J}(V, \omega)$ has nonpositive sectional curvature.
(ii) Prove that the geodesics on $\mathcal{J}(M, \omega)$ are given by $t \mapsto J \exp (-J \widehat{J} t)$ for $\widehat{J} \in T_{J} \mathcal{J}(V, \omega)$ and $t \in \mathbb{R}$. Deduce that $\mathcal{J}(V, \omega)$ is geodesically complete.
(iii) Prove that the exponential map

$$
\begin{equation*}
T_{J} \mathcal{J}(V, \omega) \rightarrow \mathcal{J}(V, \omega): \widehat{J} \mapsto J \exp (-J \widehat{J}) \tag{5}
\end{equation*}
$$

is a diffeomorphism for every $J \in \mathcal{J}(V, \omega)$.
Exercise 7.4. Let (M, ω) be a compact symplectic manifold and denote by $\mathcal{J}(M, \omega)$ the space of ω-compatible almost complex structures on M. Fix an element $J_{0} \in \mathcal{J}(M, \omega)$ and define the distance function

$$
d: \mathcal{J}(M, \omega) \times \mathcal{J}(M, \omega)
$$

by

$$
d\left(J_{1}, J_{2}\right):=\sum_{k=0}^{\infty} 2^{-k} \frac{\left\|\widehat{J}_{1}-\widehat{J}_{2}\right\|_{C^{k}}}{1+\left\|\widehat{J}_{1}-\widehat{J}_{2}\right\|_{C^{k}}}, \quad J_{i}=: J_{0} \exp \left(-J_{0} \widehat{J}_{i}\right)
$$

(Define what is meant by the C^{k}-norm of a section of a vector bundle.) Prove that $(\mathcal{J}(M, \omega), d)$ is a complete metric space. Prove that a sequence $J_{\nu} \in \mathcal{J}(M, \omega)$ converges to $J \in \mathcal{J}(M, \omega)$ with respect to the metric d if and only if it converges to J with respect to the C^{∞} topology. Deduce that every countable intersection of open and dense (both with respect to the C^{∞} topology) subsets of $\mathcal{J}(M, \omega)$ is dense.

Exercise 7.5. Let X, Y, Z be Banach spaces and let $D: X \rightarrow Y$ and $\Phi: Z \rightarrow Y$ be bounded linear operators such that D has a closed image and the operator

$$
D \oplus \Phi: X \times Z \rightarrow Y, \quad(D \oplus \Phi)(x, z):=D x+\Phi z
$$

is surjective. Consider the bounded linear operator $\Pi: W \rightarrow Z$ defined by

$$
W:=\operatorname{ker}(D \oplus \Phi)=\{(x, z) \in X \times Z \mid D x+\Phi z=0\}, \quad \Pi(x, z):=z
$$

Prove that Π has a closed image and that the linear operators

$$
\text { ker } D \rightarrow \operatorname{ker} \Pi: x \mapsto(x, 0), \quad \frac{Z}{\operatorname{im} \Pi} \rightarrow \frac{Y}{\operatorname{im} D}:[z] \mapsto[\Phi z]
$$

are (well defined) Banach space isomorphisms.
Exercise 7.6. Let (M, J) be an almost complex manifold, (Σ, j) be a Riemann surface, and $u: \Sigma \rightarrow M$ be a J-holomorphic curve. Denote by

$$
D_{u}: \Omega^{0}\left(\Sigma, u^{*} T M\right) \rightarrow \Omega_{J}^{0,1}\left(\Sigma, u^{*} T M\right)
$$

the linearized operator defined by

$$
D_{u} \widehat{u}:=\frac{1}{2}(\nabla \widehat{u}+J(u) \nabla \widehat{u} \circ j)-\frac{1}{2} J(u)\left(\nabla_{\widehat{u}} J(u)\right) \partial_{J}(u)
$$

for $\widehat{u} \in \Omega^{0}\left(\Sigma, u^{*} T M\right)$. (See Exercises 6.6 and 6.8.) Prove that

$$
D_{u}(d u \cdot \xi)=d u \cdot \bar{\partial}_{j} \xi
$$

for $\xi \in \operatorname{Vect}(\Sigma)=\Omega^{0}(\Sigma, T \Sigma)$. Here $\bar{\partial}_{j}: \Omega^{0}(\Sigma, T \Sigma) \rightarrow \Omega_{j}^{0,1}(\Sigma, T \Sigma)$ is the Cauchy-Riemann on the tangent bundle of Σ, determined by the complex structrure j.
Exercise 7.7. Let (Σ, j) be closed connected Riemann surfaces of positive genus and define $M:=\Sigma \times \mathbb{C P}^{1}$ with the product complex structure J.
(i) Let $u: \mathbb{C P}^{1} \rightarrow M$ be a J-holomorphic curve of the form

$$
u(z):=(p, \phi(z))
$$

for $z \in \mathbb{C} P^{1} \cong \mathbb{C} \cup\{\infty\}$, where $p \in \Sigma$ and $\phi: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ is a rational map of degree d. Compute the Fredholm index of D_{u} and show that D_{u} is surjective.
(ii) Let $u: \Sigma \rightarrow M$ be the J-holomorphic curve $u(z):=(z, q)$ for $z \in \Sigma$, where $q \in \mathbb{C} P^{1}$. Compute the Fredholm index of D_{u} and show that D_{u} is not surjective.

