Symplectic Topology Example Sheet 7

Dietmar Salamon ETH Zürich

11 April 2013

Exercise 7.1. Let (V, ω) be a symplectic vector space and consider the space

$$\mathcal{J}(V,\omega) := \left\{ J \in \operatorname{End}(V) \left| \begin{array}{c} J^2 = -1, \\ \omega(\cdot, J \cdot) + \omega(J \cdot, \cdot) = 0, \\ \omega(v, Jv) > 0 \ \forall \ v \in V \setminus \{0\} \end{array} \right\} \right\}$$

of ω -compatible linear complex structure on V.

(i) Prove that the formula

$$\left\langle \widehat{J}_1, \widehat{J}_2 \right\rangle := \frac{1}{2} \operatorname{trace}(\widehat{J}_1 \widehat{J}_2)$$
 (1)

for $\widehat{J}_i \in T_J \mathcal{J}(V, \omega)$ defines a Riemannian metric on $\mathcal{J}(V, \omega)$ and the formula

$$\Omega_J(\widehat{J}_1, \widehat{J}_2) := \frac{1}{2} \operatorname{trace}(\widehat{J}_1 J \widehat{J}_2) \tag{2}$$

defines a nondegenerate 2-form that is compatible with the Riemannian matrix (1) and the almost complex structure $\hat{J} \mapsto -J\hat{J}$.

(ii) Prove that the formulas (1) and (2) define a Kähler structure on $\mathcal{J}(V, \omega)$. Hint: Show that the Levi-Civita connection of the metric (1) is given by

$$\nabla_t \widehat{J} = \partial_t \widehat{J} - \frac{1}{2} J \left((\partial_t J) \widehat{J} + \widehat{J} (\partial_t J) \right)$$
(3)

for every smooth curve $\mathbb{R} \to \mathcal{J}(M, \omega) : t \mapsto J(t)$ and every smooth vector field $\widehat{J}(t) \in T_{J(t)}\mathcal{J}(V, \omega)$ along this curve. Show that it preserves the almost complex structure $\widehat{J} \mapsto -J\widehat{J}$. **Exercise 7.2.** Prove that the diffeomorphism $S_n \to \mathcal{J}(\mathbb{R}^{2n}, \omega_0) : Z \mapsto J(Z)$ in Exercise 2.11 is a Kähler isometry, where S_n denotes Siegel upper half space with its standard complex structure and the Riemannian metric on S_n is determined by the norm

$$|\widehat{Z}|_{Z} := \sqrt{\operatorname{trace}\left(\left(\widehat{X}Y^{-1}\right)^{2} + \left(\widehat{Y}Y^{-1}\right)^{2}\right)}.$$

Exercise 7.3. (i) Prove that the Riemann curvature tensor of the Riemannian metric (1) on $\mathcal{J}(V,\omega)$ is given by

$$R(\hat{J}_1, \hat{J}_2)\hat{J}_3 = -\frac{1}{2} [[\hat{J}_1, \hat{J}_2], \hat{J}_3].$$
(4)

Deduce that $\mathcal{J}(V,\omega)$ has nonpositive sectional curvature.

(ii) Prove that the geodesics on $\mathcal{J}(M,\omega)$ are given by $t \mapsto J \exp(-J\widehat{J}t)$ for $\widehat{J} \in T_J \mathcal{J}(V,\omega)$ and $t \in \mathbb{R}$. Deduce that $\mathcal{J}(V,\omega)$ is geodesically complete. (iii) Prove that the exponential map

$$T_J \mathcal{J}(V,\omega) \to \mathcal{J}(V,\omega) : \widehat{J} \mapsto J \exp(-J\widehat{J})$$
 (5)

is a diffeomorphism for every $J \in \mathcal{J}(V, \omega)$.

Exercise 7.4. Let (M, ω) be a compact symplectic manifold and denote by $\mathcal{J}(M, \omega)$ the space of ω -compatible almost complex structures on M. Fix an element $J_0 \in \mathcal{J}(M, \omega)$ and define the distance function

$$d: \mathcal{J}(M,\omega) \times \mathcal{J}(M,\omega)$$

by

$$d(J_1, J_2) := \sum_{k=0}^{\infty} 2^{-k} \frac{\|\widehat{J}_1 - \widehat{J}_2\|_{C^k}}{1 + \|\widehat{J}_1 - \widehat{J}_2\|_{C^k}}, \qquad J_i =: J_0 \exp(-J_0 \widehat{J}_i).$$

(Define what is meant by the C^k -norm of a section of a vector bundle.) Prove that $(\mathcal{J}(M,\omega), d)$ is a complete metric space. Prove that a sequence $J_{\nu} \in \mathcal{J}(M,\omega)$ converges to $J \in \mathcal{J}(M,\omega)$ with respect to the metric d if and only if it converges to J with respect to the C^{∞} topology. Deduce that every countable intersection of open and dense (both with respect to the C^{∞} topology) subsets of $\mathcal{J}(M,\omega)$ is dense. **Exercise 7.5.** Let X, Y, Z be Banach spaces and let $D : X \to Y$ and $\Phi : Z \to Y$ be bounded linear operators such that D has a closed image and the operator

$$D \oplus \Phi : X \times Z \to Y,$$
 $(D \oplus \Phi)(x, z) := Dx + \Phi z$

is surjective. Consider the bounded linear operator $\Pi: W \to Z$ defined by

 $W := \ker(D \oplus \Phi) = \left\{ (x, z) \in X \times Z \mid Dx + \Phi z = 0 \right\}, \qquad \Pi(x, z) := z.$

Prove that Π has a closed image and that the linear operators

$$\ker D \to \ker \Pi : x \mapsto (x, 0), \qquad \frac{Z}{\operatorname{im} \Pi} \to \frac{Y}{\operatorname{im} D} : [z] \mapsto [\Phi z]$$

are (well defined) Banach space isomorphisms.

Exercise 7.6. Let (M, J) be an almost complex manifold, (Σ, j) be a Riemann surface, and $u: \Sigma \to M$ be a *J*-holomorphic curve. Denote by

$$D_u: \Omega^0(\Sigma, u^*TM) \to \Omega^{0,1}_J(\Sigma, u^*TM)$$

the linearized operator defined by

$$D_u \widehat{u} := \frac{1}{2} \left(\nabla \widehat{u} + J(u) \nabla \widehat{u} \circ j \right) - \frac{1}{2} J(u) \left(\nabla_{\widehat{u}} J(u) \right) \partial_J(u)$$

for $\widehat{u} \in \Omega^0(\Sigma, u^*TM)$. (See Exercises 6.6 and 6.8.) Prove that

$$D_u(du \cdot \xi) = du \cdot \bar{\partial}_j \xi$$

for $\xi \in \operatorname{Vect}(\Sigma) = \Omega^0(\Sigma, T\Sigma)$. Here $\overline{\partial}_j : \Omega^0(\Sigma, T\Sigma) \to \Omega_j^{0,1}(\Sigma, T\Sigma)$ is the Cauchy–Riemann on the tangent bundle of Σ , determined by the complex structrure j.

Exercise 7.7. Let (Σ, j) be closed connected Riemann surfaces of positive genus and define $M := \Sigma \times \mathbb{CP}^1$ with the product complex structure J. (i) Let $u : \mathbb{CP}^1 \to M$ be a *J*-holomorphic curve of the form

$$u(z) := (p, \phi(z))$$

for $z \in \mathbb{CP}^1 \cong \mathbb{C} \cup \{\infty\}$, where $p \in \Sigma$ and $\phi : \mathbb{CP}^1 \to \mathbb{CP}^1$ is a rational map of degree d. Compute the Fredholm index of D_u and show that D_u is surjective.

(ii) Let $u : \Sigma \to M$ be the *J*-holomorphic curve u(z) := (z,q) for $z \in \Sigma$, where $q \in \mathbb{CP}^1$. Compute the Fredholm index of D_u and show that D_u is not surjective.