Symplectic Topology Example Sheet 8

Dietmar Salamon ETH Zürich

19 April 2013

Exercise 8.1 (Isoperimetric Inequality). Let (V, ω) be a symplectic vector space and let $J \in \mathcal{J}(V, \omega)$ be an ω -compatible linear complex structure. Associated to a smooth loop $\gamma : \mathbb{R}/\mathbb{Z} \to M$ are the symplectic action $A(\gamma)$, the energy $E(\gamma)$, and the length $L(\gamma)$, defined by

$$\begin{aligned} A(\gamma) &:= \frac{1}{2} \int_0^1 \omega(\dot{\gamma}(t), \gamma(t)) \, dt, \\ E(\gamma) &:= \frac{1}{2} \int_0^1 |\dot{\gamma}(t)|^2 \, dt, \\ L(\gamma) &:= \int_0^1 |\dot{\gamma}(t)| \, dt, \end{aligned}$$

where $|v| := \sqrt{\omega(v, Jv)}$ for $v \in V$. Prove that

$$|A(\gamma)| \le \frac{1}{4\pi} L(\gamma)^2 \le \frac{1}{2\pi} E(\gamma).$$
(1)

If γ is nonconstant, prove that $|A(\gamma)| = (2\pi)^{-1}E(\gamma)$ if and only if the image of γ is a circle. **Hint:** Assume $(V, \omega, J) = (\mathbb{C}^n, \omega_0, \mathbf{i})$ and write γ as a Fourier series $\gamma(t) = \sum_{k=-\infty}^{\infty} v_k e^{2\pi \mathbf{i}kt}$ with $v_k \in \mathbb{C}^n$. Prove that

$$A(\gamma) = -\pi \sum_{k=-\infty}^{\infty} k |v_k|^2, \qquad E(\gamma) = 2\pi^2 \sum_{k=-\infty}^{\infty} k^2 |v_k|^2.$$

Prove that $A(\gamma) \leq (2\pi)^{-1} E(\gamma)$. Approximate γ by immersed loops and reparametrize by the arc length.

Exercise 8.2. Prove the isoperimetric inequality for the local symplectic action of sufficiently small loops in a compact symplectic manifold (M, ω) with an ω -compatible almost complex structure J for any constant $c > 1/4\pi$. **Hint:** Reduce the problem to Exercise 8.1 via Darboux charts.

Exercise 8.3. Consider the family of Möbius transformations $u_{\varepsilon} : \mathbb{CP}^1 \to \mathbb{CP}^1$ given by

$$u_{\varepsilon}(z) := \varepsilon z$$

for $z \in \mathbb{C} \cup \{\infty\} \cong \mathbb{C}P^1$. Compute the supremums-norm of du_{ε} with respect to the Fubini–Study metric on source and target. Prove that

$$\lim_{\varepsilon \to 0} \| du_{\varepsilon} \|_{L^{\infty}} = \infty$$

Exercise 8.4. Consider the family of quadrics

$$Q_{\varepsilon} := \left\{ [x : y : z] \in \mathbb{C}\mathrm{P}^2 \,|\, xy = \varepsilon z^2 \right\} = u_{\varepsilon}(\mathbb{C}\mathrm{P}^1),$$

where $u_{\varepsilon}: \mathbb{CP}^1 \to \mathbb{CP}^2$ is the holomorphic curve, defined by

$$u_{\varepsilon}([w_0:w_1]) := [w_0^2:\varepsilon w_1^2:w_0w_1].$$

Prove that

$$\lim_{\varepsilon \to 0} \|du_{\varepsilon}\|_{L^{\infty}} = \infty.$$

Prove that u_{ε} converges to $u([w_0:w_1]) := [w_0:0:w_1]$ uniformly on every compact subset of $\mathbb{CP}^1 \setminus \{[0:1]\}$. Prove that there exists a sequence of Möbius transformations $\phi_{\varepsilon} : \mathbb{CP}^1 \to \mathbb{CP}^1$ such that $u_{\varepsilon} \circ \phi_{\varepsilon}$ converges to $v([w_0:w_1]) := [0:w_1:w_0]$ uniformly on compact subsets of $\mathbb{CP}^1 \setminus \{[1:0]\}$. Compute the homology classes $[u], [v], [u_{\varepsilon}] \in H_2(\mathbb{CP}^2; \mathbb{Z})$. Show that

$$[u] + [v] = [u_{\varepsilon}].$$

Exercise 8.5. Let $\mathbb{D} \subset \mathbb{C}$ be the closed unit disc and $u : \mathbb{D} \setminus \{0\} \to M$ be a continuously differentiable function. Suppose that there exist constants $0 < \mu < 1$ and c > 0 such that

$$|du(z)| \le \frac{c}{|z|^{1-\mu}}$$

for every $z \in \mathbb{D} \setminus \{0\}$. Prove that u is Hölder continuous with exponent μ , i.e. there exists a constant C > 0 such that

$$d(u(z), u(w)) \le C|z - w|^{\mu}$$

for all $z, w \in \mathbb{D} \setminus \{0\}$. If M is compact, deduce that u extends to a Hölder continuous function from \mathbb{D} to M.