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Abstract

Our goal in this paper is to settle some transversality question for the
perturbed nonlinear Cauchy-Riemann equations on the cylinder. These
results play a central role in the definition of symplectic Floer homol-
ogy and hence in the proof of the Arnold conjecture. There is currently
no other reference to these transversality results in the open literature.
Our approach does not require Aronszajn’s theorem. Instead we derive
the unique continuation theorem from a generalization of the Carleman
similarity principle.

∗A. Floer died on May 15th, 1991
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1 Introduction

Let (M,ω) be a compact symplectic manifold and consider the differential
equation

ẋ(t) = Xt(x(t)) (1)

where Xt = Xt+1 : M → TM is a smooth family of symplectic vector
fields, i.e. the 1-forms ι(Xt)ω are closed. The periodic solutions x(t) =
x(t+ 1) of (1) are the zeros of the closed 1-form ΨX on the loop space L
of M defined by

ΨX(x; ξ) =

∫ 1

0

ω(ẋ(t) −Xt(x(t)), ξ(t)) dt

for ξ ∈ TxL = C∞(x∗TM). On the universal cover of L this 1-form is the

differential ΨX = dAX of the symplectic action functional AX : L̃ → R.
We shall assume throughout that the periodic solutions of (1) are all
nondegenerate. This is equivalent to the condition that AX is a Morse
function.

The Floer homology groups of X can roughly be described as the
Novikov homology of the closed 1-form ΨX on the loop space of M . The
precise definition involves an infinite dimensional analogue of Witten’s
approach to Morse theory. Thus one considers the chain complex gener-
ated by the zeros of the 1-form ΨX and constructs a boundary operator
by counting those gradient flow lines which connect two critical points of
relative Morse index 1. In the finite dimensional context this construction
requires the Morse-Smale transversality condition, namely that the stable
and unstable manifolds of any two critical points intersect transversally.
The infinite dimensional analogue of this condition is the subject of the
present paper.

To be more precise, we must study the gradient flow lines of ΨX with
respect to some L2-metric which is induced by a t-dependent family of
ω-compatible almost complex structures Jt = Jt+1 : TM → TM . These
gradient flow lines are solutions u : R

2 → M of the perturbed nonlinear
Cauchy-Riemann equations

∂su+ Jt(u)(∂tu −Xt(u)) = 0 (2)

which satisfy the periodicity condition u(s, t+1) = u(s, t) and have limits

lim
s→±∞

u(s, t) = x±(t) (3)

which are periodic solutions of (1). The infinite dimensional analogue of
the Morse-Smale condition asserts that the space M(x−, x+, X, J) of all
smooth solutions of (2) and (3) is a smooth manifold of local dimension

dimu M(x−, x+, X, J) = µ(u)

where µ(u) is the Fredholm index of the operator obtained by lineariz-
ing (2). We shall prove in Theorem 5.1 that this condition is satisfied for
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a generic family of almost complex structures Jt = Jt+1 or for a generic
family of symplectic vector fields Xt = Xt+1. The proof requires the next
four sections. It is based on a unique continuation theorem (Proposi-
tion 3.1) which we prove with the help of the Carleman Similarity Prin-
ciple (Theorem 2.2). Another key ingredient in the proof is the existence
of an injective point for every solution of (2) (Theorem 4.3).

In the second part of the paper (Section 6-8) we focus on the case where
the symplectic vector field Xt = X and the almost complex structure
Jt = J are independent of t. More abstractly, this can be interpreted as
the case where the action functional AX : L̃ → R and the L2-metric on
the loop space are invariant under the natural S1-action. As a matter of
fact, the loop space can be regarded as an infinite dimensional symplectic
manifold and the action functional A0 (with X = 0) as a Hamiltonian
function which generates the S1-action. If Xt = X is independent of t
then AX is an equivariant perturbation of A0. Now we are interested
in such perturbations whose critical points are all fixed points of the S1-
action and in those connecting orbits on which S1 acts freely. This means
we consider solutions u of (2) and (3) with Xt = X and Jt = J such that
the limits x±(t) = x± are zeros of X and which are simple in the sense
that u(s, t + 1/m) 6≡ u(s, t) for all integers m > 1. We shall prove in
Theorem 7.4 that the space of such simple solutions is a smooth manifold
of dimension µ(u). The proof is based on a technical transversality result
for symmetric matrices (Theorem 6.1). In the case µ(u) ≤ 1 we deduce
in Theorem 8.1 that the solutions u(s, t) of (2) and (3) with Xt = X and
Jt = J must be independent of t, i.e. they must lie in the fixed point
set of the S1 action on the loop space. This result is used in [7] and [10]
(in the case where X = XH is a Hamiltonian vector field) to prove that
the Floer homology groups HF∗(H,J) are naturally isomorphic to the
ordinary homology of M .

2 The Carleman similarity principle

Let V be a finite dimensional complex vector space and denote by S2 =
C∪{∞} the Riemannian sphere. Consider the vector bundle Λ0,1T ∗S2 ⊗
V over S2 whose fibre over z ∈ S2 is the space of complex anti-linear
maps TzS

2 → V . The space C∞(S2,Λ0,1T ∗S2 ⊗ V ) = Ω0,1(S2, V ) of
smooth sections of this bundle is, of course, the space of complex anti-
linear 1-forms on S2 with values in V . The Cauchy-Riemann operator
∂ : C∞(S2, V ) → Ω0,1(S2, V ) is defined by

∂u = du+ i ◦ du ◦ i.

For p > 1 this operator can be extended to the Sobolev space W 1,p(S2, V )
of V -valued functions whose first derivatives are p-integrable. It then takes
values in the space Lp(S2,Λ0,1T ∗S2 ⊗ V ) of Lp-sections of the bundle
Λ0,1T ∗S2 ⊗ V . For later reference we state here a special case of the
Riemann-Roch theorem.
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Theorem 2.1 For every p > 1 the operator

∂̄ : W 1,p(S2, V ) → Lp(S2,Λ0,1T ∗S2 ⊗ V )

is a Fredholm operator. Its index as a complex operator is given by

index∂ = dimC V

Moreover, this operator is onto and its kernel consists of the constant
functions.

That ∂ is a Fredholm operator can be proved by the usual Lp estimates
for elliptic operators. In our case this is just the Calderon-Zygmund in-
equality. The index formula follows from the explicit statements about
the kernel and the cokernel. That the kernel consists of the constant maps
is just the assertion of Liouville’s theorem. That the operator is onto fol-
lows from the fact that holomorphic vector bundles over Riemann surfaces
with negative Chern number do not have nonzero holomorphic sections.
In the special case of Theorem 2.1 surjectivity can in fact be proved by
constructing an explicit right inverse T of ∂ given by the formula

(Tv)(z) = lim
ε→0

(
−1

2π

∫

|ζ|≥ε

v(z + ζ)

ζ

)

for v ∈ C∞
0 (C, V ) where ζ = s+ it ∈ C. Then

∂ ◦ T (v) = vdz̄

for v ∈ C∞
0 (C, V ). Combining this with a change of coordinates and a

similar result for complex anti-linear 1-forms which are supported in a
neighbourhood of ∞ ∈ S2 we obtain that ∂ has a dense range and is
therefor onto. The proof that T actually extends to an operator from
Lp(S2,Λ0,1T ∗S2 ⊗ V ) to W 1,p(S2, V ) is, of course, equivalent to the
Calderon-Zygmund inequality.

Let F denote either the real or complex numbers. For a complex
vectorspace V we denote by LF(V ) the F-vectorspace of F-linear maps.
Likewise, we denote by GLF(V ) ⊂ LF(V ) the open subset of invertible
F-linear maps.

Write z = s+ it and consider the first order elliptic system

∂su(z) + J(z)∂tu(z) + C(z)u(z) = 0 (4)

where u : Bε = {z ∈ C | |z| < ε} → C
n. We assume that the map

z 7→ J(z) belongs to the Sobolev space W 1,p
(
Bε,LR(Cn)

)
for some p > 2

and that J(z) : C
n → C

n is a complex structure for every z, i.e.

J(z)2 = −1l.

Moreover, we assume the map z 7→ C(z) belongs to Lp
(
Bε,LR(Cn)

)
.

The following result is a higher dimensional version of the Carleman-
Similarity principle (cf.[24]). It says roughly that solutions of (4) be-
have like holomorphic maps.
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Theorem 2.2 Let u ∈ W 1,p
(
Bε,C

n
)

be a solution of (4) with u(0) = 0.

Then there exist a constant 0 < δ < ε, a map Φ ∈ W 1,p
(
Bδ,GLR(Cn)

)
,

and a holomorphic map and σ : Bδ → C
n such that

u(z) = Φ(z)σ(z), σ(0) = 0, J(z)Φ(z) = Φ(z)i

for z ∈ Bδ.

Proof: First choose a map Ψ ∈ W 1,p
(
Bδ ,GLR(Cn)

)
such that

J(z)Ψ(z) = Ψ(z)i

for z ∈ Bδ and define v ∈ W 1,p
(
Bδ,C

n
)

by u(z) = Ψ(z)v(z). Then

0 = ∂su + J∂tu+ Cu

= (∂sΨ)v + Ψ∂sv + J(∂tΨ)v + JΨ∂tv + CΨv

= Ψ
(
∂sv + i∂tv + C̃v

)

where C̃ = Ψ−1(∂sΨ + J∂tΨ + CΨ) ∈ Lp
(
Bε,LR(Cn)

)
. With respect to

the complex structure i we decompose C̃ into the linear and anti-linear
part

C̃(z) = C̃+(z) + C̃−(z), C̃±(z) = 1

2

(
C̃(z) ∓ iC̃(z)i

)
.

Now choose a map Bε → LR(Cn) : z 7→ D(z) such that

(a) D(z)v(z) = v(z) for z ∈ Bε,

(b) D(z) is complex anti-linear for every z ∈ Bε,

(c) D ∈ L∞
(
Bε,LR(Cn)

)
.

For example, define D(z)ζ = |v(z)|−2v(z)v(z)T ζ̄ whenever v(z) 6= 0 and
D(z) = 0 otherwise. Then the linear map

A(z) = C̃+(z) + C̃−(z)D(z)

is complex linear and satisfies

A(z)v(z) = C̃(z)v(z).

Moreover, A ∈ Lp
(
Bε,LC(Cn)

)
. For 0 < δ < ε define

Aδ ∈ Lp
(
S2,LC(Cn)

)

by Aδ(z) = A(z) for z ∈ Bδ and Aδ(z) = 0 otherwise. Now let V =
LC(Cn) and denote by Dδ : W 1,p(S2, V ) → Lp(Λ0,1T ∗S2 ⊗ V ) the per-
turbed Cauchy-Riemann operator

DδΘ = ∂Θ +AδΘdz̄.
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for Θ ∈ W 1,p(S2, V ). By Theorem 2.1 the operator Θ 7→ (∂̄Θ,Θ(0)) is
bijective. Since

lim
δ→0

‖Aδ‖Lp = 0

it follows that the operator Θ 7→ (DδΘ,Θ(0)) is bijective for δ > 0 suf-
ficiently small. Hence, for δ > 0 sufficiently small, there exists a unique
map Θδ ∈ W 1,p(S2, V ) such that

DδΘδ = 0, Θδ(0) = 1l.

In particular, ∂sΘδ + i∂tΘδ +AΘδ = 0 in Bδ. Since Θδ converges to the
constant map Θ0(z) = 1l in the W 1,p-norm as δ → 0 we may choose δ so
small that the complex linear map Θδ(z) ∈ V = C

n×n is invertible for
every z ∈ S2.

Now we drop the subscript δ, denote Θ(z) = Θδ(z), and define

Φ(z) = Ψ(z)Θ(z), σ(z) = Θ(z)−1v(z).

Then obviously Ψ ∈ W 1,p(S2,LR(Cn)) and Ψ(z)σ(z) = Φ(z)v(z) = u(z).
Moreover, in Bδ we have

0 = ∂sv + i∂tv + C̃v

= ∂sv + i∂tv +Av

= Θ∂sσ + iΘ∂tσ + (∂sΘ + i∂tΘ +AΘ)σ

= Θ(∂sσ + i∂tσ).

Hence σ is holomorphic in Bδ. Moreover, by construction,

J(z)Φ(z) = J(z)Ψ(z)Θ(z) = Ψ(z)iΘ(z) = Ψ(z)Θ(z)i = Φ(z)i

This proves the theorem. 2

Here is an immediate consequence of the Carleman similarity principle.

Corollary 2.3 Let ` ≥ 2 and p > 2. Let J ∈W `,p(Bε,LR(Cn)) and C ∈
W `−1,p(Bε,LR(Cn)) with J(z)2 = −1l for every z ∈ Bε. Let u : Bε → C

n

be a nonconstant W `,p-solution of (4) with u(0) = 0.

(i) There exists a constant 0 < δ < ε such that u(z) 6= 0 for 0 < |z| < δ.

(ii) If C = 0 then there exists a constant 0 < δ < ε such that du(z) 6= 0
for 0 < |z| < δ.

Proof: In view of Theorem 2.2 we have

u(z) = Φ(z)σ(z)

for |z| < δ where σ : Bδ → C
n is holomorphic and Φ(z) ∈ GLR(Cn) for

|z| < δ. Hence for |z| < δ

u(z) = 0 ⇐⇒ σ(z) = 0

Since σ is holomorphic we have either σ ≡ 0 on a neighborhood of 0 or
σ(z) 6= 0 on a punctured neighborhood of zero. This proves (i).
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Assertion (ii) is obvious in the case du(0) 6= 0. Hence assume du(0) =
0. Differentiating the identity ∂su + J(z)∂tu = 0 with respect to s we
obtain that the function v = ∂su satisfies

∂sv + J(z)∂tv + (∂sJ)(z)J(z)v = 0

Here we have used the identity ∂tu = J(z)∂su = J(z)v. It follows again
from Theorem 2.2 that v(z) = ∂su(z) = Φ(z)σ(z) with Φ and σ as above
and this proves the corollary. 2

Remark 2.4 Standard elliptic regularity theory asserts that if J ∈ W `,p

and C ∈ W `−1,p with ` ≥ 2 and p > 2 then every W 1,p-solution u of (4)
is necessarily of class W `,p. To see this just apply the operator ∂s − J∂t

to the left hand side of (4) and use the local Lp-regularity theorem for the
Laplace operator.

3 Unique continuation

In this section we show how the Carleman similarity principle can be used
to prove a unique continuation theorem for J-holomorphic curves in al-
most complex manifolds. More precisely, consider the perturbed nonlinear
Cauchy Riemann equations

∂su+ J(z, u)∂tu+ Y (z, u) = 0. (5)

Here we assume that the map J : C×C
n → LR(Cn) is of class W 1,p with

p > 2 and
J(z, w)2 = −1l

and the vector field Y : C × C
n → C

n is of class W 1,p. A W 1,p-function
u : C → C

n is said to vanish to infinite order at a point z0 ∈ C if

lim
r→0

sup|z−z0|≤r |u(z)|

rk
= 0

for all k ≥ 0. Of course, a smooth function u vanishes to infinite order
at a point z0 if and only if all derivatives of u vanish at that point. In
particular, for a smooth function the set of points at which it vanishes
to infinite order is closed and for a holomorphic function it is open and
closed. The next proposition asserts that this property of holomorphic
functions persists for the solutions of (5).

Proposition 3.1 (Unique continuation) Let u, v : Ω → C
n be two

W 1,p-solutions of (5) defined in some open set Ω ⊂ C. Then the sets of
points z ∈ Ω where u− v vanishes to infinite order is open and closed. In
particular, if Ω is connected and u = v on some nonempty open subset of
Ω then u(z) = v(z) for all z ∈ Ω.
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Proof: Define w = u− v. Then

∂sw + J(z, u)∂tw = J(z, u)∂tw + J(z, v)∂tv + Y (z, v)

−J(z, u)∂tu− Y (z, u)

=
(
J(z, v) − J(z, u)

)
∂tv + Y (z, v) − Y (z, u)

=

(∫ 1

0

d

dτ
J
(
z, u+ τ (v − u)

)
dτ

)
∂tv

+

∫ 1

0

d

dτ
Y

(
z, u + τ (v − u)

)
dτ

= −C(z)w

where C : Ω → LR(Cn) is locally p-integrable. Hence w(z) = u(z) − v(z)
satisfies

∂sw + J̃(z)∂tw + C(z)w = 0

where J̃(z) = J(z, u(z)) is locally of class W 1,p. By Theorem 2.2 every
point z0 ∈ Ω admits a neighbourhood Bδ(z0) in which w can be written in
the form w(z) = Φ(z)σ(z) where σ is holomorphic and Φ(z) is invertible.
Hence w vanishes to infinite order at z ∈ Bε(z0) if and only if σ vanishes
to infinite order at z. Hence the sets of such points is open and closed in
Bδ(z0). This proves the proposition. 2

We will use the previous proposition for functions which are defined on
all of C = R

2 and take values in a manifold. In this case Proposition 3.1
asserts that two solutions which agree to infinite order at a point must
agree globally.

4 Injective points

In [12] Dusa McDuff proved that a J-holomorphic curve u : Σ → M in
an almost complex manifold is either multiply covered or admits a point
z ∈ Σ such that

du(z) 6= 0, {z} = u−1(u(z)).

(See also [13].) Such a point is called an injective point and the exis-
tence of such points plays a crucial role in the transversality theory for
J-holomorphic curves. The purpose of this section is to prove an ana-
logue of this result for the perturbed equation (5) in the case where both
the almost complex structure J(z, w) and the perturbation Y (z, w) are
independent of the variable s = Re z. Hence consider the equation

∂su+ J(t, u)(∂tu −X(t, u)) = 0. (6)

where J : R × C
n → LR(Cn) and X : R × C

n → C
n are of class C`

with ` ≥ 2 and J(t, w)2 = −1l for all t ∈ R and w ∈ C
n. Thus every

W 1,p-solution of (6) with p > 2 is necessarily of class W `+1,p and hence of
class C`. We begin with an analogue of Corollary 2.3 (ii) for the nonlinear
equation (6).
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Lemma 4.1 Let u : Bε → C
n be a C`-solution of (6) and assume that

∂su 6≡ 0. Then the set of points (s, t) ∈ Bε with ∂su(s, t) = 0 is discrete.

Proof: Let ψt : Ωt → C
n be the local diffeomorphisms generated by the

vector fields Xt(w) = X(t, w) via

d

dt
ψt = Xt ◦ ψt, ψ0 = id. (7)

It suffices to prove the lemma locally and hence we may assume that
u(s, t) ∈ ψt(Ωt) for (s, t) ∈ Bε. Then the function v(s, t) = ψ−1

t (u(s, t))
satisfies

∂su = dψt(v)∂sv, ∂tu−Xt(u) = dψt(v)∂sv.

Hence dψt(v)∂sv + Jt(u)dψt(v)∂tv = 0 where Jt(w) = J(t, w) and this
means that

∂sv + ψ∗
t Jt(v)∂tv = 0.

Moreover, v is nonconstant since otherwise ∂su ≡ 0. Hence it follows
from Corollary 2.3 (ii) that the set of critical points of v is discrete. Since
dv(z) = 0 if and only if ∂su(z) = 0 the lemma is proved. 2

Lemma 4.2 Let u, v : Bε → C
n be C`-solutions of (6) with X = 0 such

that
u(0) = v(0), du(0) 6= 0, dv(0) 6= 0.

Moreover, assume that there exists a constant 0 < δ < ε such that for
every (s, t) ∈ Bδ there exists an s′ ∈ R such that (s′, t) ∈ Bε and u(s, t) =
v(s′, t). Then v(z) = u(z) for |z| < ε.

Proof: Choose ε > 0 so small that Σ = v(Bε) is a submanifold of C
n. By

the implicit function theorem v−1 : Σ → Bε extends to a C`-map defined
on a neighbourhood of Σ. By assumption, u(Bδ) ⊂ Σ and hence the map
v−1 ◦ u : Bδ → Bε is of class C`. Moreover, our assumptions assert that
this map takes the form v−1 ◦ u(s, t) = (φ(s, t), t). Differentiating the
formula u(s, t) = v(φ(s, t), t). we obtain

0 = ∂su(s, t) + J(t, u)∂tu(s, t)

= ∂sv(φ, t)∂sφ+ J(t, v(φ, t))
(
∂sv(φ, t)∂tφ+ ∂tv(φ, t)

)

= ∂sv(φ, t)∂sφ+ ∂tv(φ, t)∂tφ− ∂sv(φ, t)

= ∂sv(φ, t)(∂sφ− 1) + ∂tv(φ, t)∂tφ

Since ∂sv(φ, t) and ∂tv(φ, t) are linearly independent we deduce that ∂sφ =
1 and ∂tφ = 0. Hence φ(s, t) = s+ s0 for some s0 ∈ R. Since 0 = u(0) =
v(s0, 0) we obtain s0 = 0 and hence φ(s, t) = s. This implies that u and
v agree in a neighbourhood of 0. By unique continuation it follows that
u = v on Bε (see Proposition 3.1). 2

The next theorem is a global result in an almost complex manifold M .
More precisely, let M be a manifold (without boundary) of real dimension
2n and fix a compactly supported C`-diffeomorphism φ : M → M with
` ≥ 2. (Here compactly supported means that φ(x) = x outside a compact
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set.) Moreover, let R → End(TM) : t 7→ Jt be a C`-family of almost
complex structures on M and R → X (M) : t 7→ Xt be a C`-family of
vector fields such that

φ∗Jt+1 = Jt, φ∗Xt+1 = Xt.

Sometimes we write X(t, p) = Xt(p) and J(t, p) = Jt(p). Now let u :
R

2 → M be a C`-solution of (6) such that

u(s, t+ 1) = φ(u(s, t)), (8)

lim
s→±∞

u(s, t) = x±(t), lim
s→±∞

∂su(s, t) = 0. (9)

Here the convergence is uniform in t. It follows that the limit curves x±(t)
are solutions of the ordinary differential equation

ẋ(t) = Xt(x(t)), x(t+ 1) = φ(x(t)). (10)

These correspond to fixed points of the C`-diffeomorphism φX = ψ−1
1 ◦ φ

where ψ1 denotes the time-1-map generated by the vector fields Xt via (7).
In principle we should be more careful with the domain of definition of the
diffeomorphism φX . However, since the set u(R× S1)∪ x−(S1)∪ x+(S1)
is compact we may assume without loss of generality that the vector fields
Xt vanish outside a compact set and are therefore complete.

Now let u : R
2 → M be a C`-solution of (6), (8) and (9). A point

(s, t) ∈ R
2 is called regular for u if

∂su(s, t) 6= 0, u(s, t) 6= x±(t), u(s, t) /∈ u(R − {s}, t).

We denote by R(u) the set of regular points of u. In particular, these
conditions mean that the map s′ 7→ u(s′, t) is an immersion near s′ = s
and meets the point u(s, t) only once. This notion is analogous to that of
an injective point for J-holomorphic curves mentioned above. The next
theorem is the main result of this section.

Theorem 4.3 Let u : R
2 →M be a C`-solution of (6), (8), and (9) such

that ∂su 6≡ 0. Then the set R(u) of regular points for u is open and dense
in R

2.

Proof: We first reduce the theorem to the case Xt = 0. Denote by
ψt : M → M the time dependent flow generated by the vector fields Xt

via (7). Since Xt is compactly supported so is ψt for every t. Recall from
the proof of Lemma 4.1 that the functions v(s, t) = ψ−1

t (u(s, t)) satisfy
the partial differential equation

∂sv + ψ∗
t Jt(v)∂tv = 0

and note that

v(s, t+ 1) = φX(v(s, t)), lim
s→±∞

v(s, t) = x±(0), φX = ψ−1
1 ◦ φ.
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Since R(u) = R(v) we may assume from now on that Xt = 0 for all t.
In particular, this implies that x±(t) is independent of t and we denote
x± = x±(t).

We prove thatR(u) is open. Assume otherwise that there exists a point
(s, t) ∈ R(u) which can be approximated by a sequence (sν , tν) /∈ R(u).
Then ∂su(sν , tν) 6= 0 and u(sν , tν) 6= x± for ν sufficiently large. Since
(sν , tν) /∈ R(u) it follows that there exists a sequence s′ν ∈ R such that

u(sν , tν) = u(s′ν , tν), s′ν 6= sν .

If the sequence s′ν is unbounded then, passing to a subsequence if neces-
sary, we may assume that s′ν → ±∞ and hence, by (9), u(s′ν , tν) → x±.
This implies u(s, t) = x± in contradiction to (s, t) ∈ R(u). Hence the
sequence s′ν is bounded and we may assume without loss of generality
that s′ν → s′. Then u(s, t) = u(s′, t) and since (s, t) ∈ R(u) we must have
s′ = s. Hence s′ν and sν both converge to s and this contradicts the fact
that ∂su(s, t) 6= 0. This proves that the set R(u) is open.

We prove that R(u) is dense. To see this recall from Lemma 4.1 that
the set C(u) of all points (s, t) ∈ R

2 with ∂su(s, t) = 0 is discrete. Hence
it suffices to prove that every point in R

2 −C(u) can be approximated by
a sequence in R(u). Now a point (s, t) /∈ C(u) can obviously be approx-
imated by a sequence (sν , t) ∈ R

2 − C(u) with u(sν , t) 6= x±(t). In fact
any sequence sν with sν 6= s will do. Hence we must prove that every
point (s0, t0) ∈ R × [0, 1] with

∂su(s0, t0) 6= 0, u(s0, t0) 6= x±(t0)

can be approximated by a sequence in R(u). Assume otherwise that

Bε(s0, t0) ∩R(u) = ∅

for some ε > 0. Choose ε so small and T > 0 so large that the following
holds

(i) u(s, t) /∈ u(Bε(s0, t0)) for |s| ≥ T and |t− t0| ≤ ε.

(ii) If |t − t0| ≤ ε then the map [s0 − ε, s0 + ε] → M : s 7→ u(s, t) is an
immersion.

Now, by Lemma 4.1, the set C(u) ∩ [−T, T ] × [0, 1] is finite. Moving the
point (s0, t0) slightly, if necessary, we may assume that u(s0, t0) 6= u(s, t)
whenever (s, t) ∈ C(u) ∩ [−T, T ] × [0, 1]. We may then shrink ε > 0 to
obtain

(iii) u(Bε(s0, t0)) ∩ u(C(u) ∩ [−T, T ] × [0, 1]) = ∅.

This modification will not affect the conditions (i) and (ii) above.
Now it follows from (i) and (ii) that ∂su(s, t) 6= 0 and u(s, t) 6= x±(t)

for all (s, t) ∈ Bε(s0, t0). Hence the condition u(Bε(s0, t0)) ∩ R(u) = ∅
means that for all (s, t) ∈ Bε(s0, t0) there exists an s′ ∈ R such that
u(s, t) = u(s′, t) and s′ 6= s. In view of (iii) we have ∂su(s

′, t) 6= 0 for any
such point s′ and in view of (i) we have |s′| ≤ T . Hence there can only be
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finitely many such points s′ for each pair (s, t). (Otherwise there would
be an accumulation point at which ∂su = 0 and we have just seen that
this is impossible.) Hence let s1, . . . , sN ∈ [−T, T ] be the points with

u(s0, t0) = u(s1, t0) = · · · = u(sN , t0).

We claim that for every constant r > 0 there exists a δ > 0 such that

u(B2δ(s0, t0)) ⊂

N⋃

j=1

u(Br(sj , t0)).

Otherwise there would exist a sequence (sν , tν) → (s0, t0) such that

u(sν , tν) /∈ Bρ(sj , t0)

for every j ≥ 1. But there exists a sequence s′ν 6= sν such that u(sν , tν) =
u(s′ν , tν). By assumption (s′ν , tν) /∈ Bρ(sj , t0) and, by (ii), we have |sν −
s′ν | ≥ ε. By (i), we have |s′ν | ≤ T . Hence the sequence s′ν has an accumu-
lation point s′ which must be distinct from all the points s0, . . . , sN but
satisfies u(s′, t0) = u(s0, t0). This contradiction proves the claim.

Now define

Σj = {(s, t) ∈ cl(Bδ(s0, t0)) | u(s, t) ∈ cl(u(Br(sj , t0)))}

for j = 1, . . . , N . These sets are closed and

cl(Bδ(s0, t0)) = Σ1 ∪ . . . ∪ Σk

Hence at least one of the sets Σj has a nonempty interior. Assume without
loss of generality that int(Σ1) 6= ∅ and 0 ∈ int(Σ1). Choose ρ > 0 so small
that Bρ(0) ⊂ Σ1 ⊂ Bε(s0, t0) and note that

Bρ(0) ∩Br(s1, t0) = ∅

provided that r > 0 was chosen sufficiently small. On the other hand it
follows from the definition of Σ1 that for every (s, t) ∈ Bρ(0) there exists
an s′ ∈ R such that (s′, t) ∈ Br(s1, t0) and u(s, t) = u(s′, t). Since the
point s′ is uniquely determined by s we may assume that t0 = 0 and
u(0, 0) = u(s1, 0). This means that the functions u(s, t) and v(s, t) =
u(s + s1, t) satisfy the assumptions of Lemma 4.2 with ε = r and δ = ρ.
Hence it follows from Lemma 4.2 that

u(s, t) = u(s+ s1, t)

in a neighbourhood of zero and hence, by unique continuation this equa-
tion holds on all of R

2 (see Proposition 3.1). But this implies

u(s, t) = lim
k→±∞

u(s+ ks1, t) = x±

for all s and t. Hence u is constant in contradiction to our assumption
that ∂su 6≡ 0. This proves the theorem. 2
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Remark 4.4 Assume z0 = (s0, t0) ∈ R(u). Then for any smooth func-
tion ρ : R2 → R which is supported in a sufficiently small neighbourhood
of z0 there exists a smooth cutoff function R×M → [0, 1] : (t, p) 7→ βt(p)
such that

βt(u(s, t)) = ρ(s, t), βt+1 ◦ φ = βt.

We leave the proof of this elementary fact as an exercise.

5 Transversality

In this section we specialize to the case where (M,ω) is a compact sym-
plectic manifold, φ : M → M is a symplectomorphism, and the almost
complex structure Jt : TM → TM is compatible with ω. This means that
the formula

〈v, w〉t = ω(v, Jtw) (11)

defines a Riemannian metric on M for every t. We also assume that Xt

is a Hamiltonian vector field for every t. This means that there exists
a smooth time dependent Hamiltonian function R ×M → R : (t, p) 7→
H(t, p) = Ht(p) such that

ι(Xt)ω = dHt.

We now assume that H and J satisfy the periodicity condition

Ht = Ht+1 ◦ φ, Jt = φ∗Jt+1.

We shall denote by Jφ(M,ω) the space of all smooth t-dependent almost
complex structures R → End(TM) : t 7→ Jt which are compatible with
ω and satisfy Jt = φ∗Jt+1. Likewise, denote by C∞

φ (M) the space of all
smooth t-dependent Hamiltonian functions R → C∞(M) : t 7→ Ht which
satisfy Ht = Ht+1 ◦ φ.

We point out that the requirement on the vector field Xt to be Hamil-
tonian rather than symplectic (i.e. ι(Xt)ω is exact rather than closed)
poses no restriction at all. The proof of Theorem 4.3 shows that the vec-
tor field X can be removed from (6) at the expense of altering φ and J .
So if we perturb J we can simply consider the case X = 0. However, if we
perturb X it is essential to know that this can be done within the class
of Hamiltonian vector fields.

Now the partial differential equation (6) can be written in the form

∂J,H(u) = ∂su+ Jt(u)∂tu −∇Ht(u) = 0 (12)

where ∇Ht = JtXt denotes the gradient with respect to the t-dependent
metric (11). As before we also assume that u satisfies

u(s, t+ 1) = φ(u(s, t)), (13)

lim
s→±∞

u(s, t) = ψt(x
±), φH(x±) = x± (14)
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where the convergence is uniform in t and ∂su(s, t) converges to zero, also
uniformly in t, as s tends to ±∞. Here ψt : M →M denotes the family of
symplectomorphism generated by the Hamiltonian vector fields Xt = XHt

via (7) and
φH = ψ−1

1 ◦ φ

Hence, again as before, the limit curves x±(t) = ψt(x
±) are solutions of

the ordinary differential equation ẋ(t) = Xt(x(t)) and the equation

ψt+1 ◦ φH = φ ◦ ψt

shows that x(t+ 1) = φ(x(t)). As in [10] one can prove that for a generic
Hamiltonian function H the fixed points of φH are all nondegenerate.
(In [10] this was proved for the case φ = 1l.)

If the fixed points of φH are all nondegenerate then for solutions of (12)
and (13) the existence of the limits (14) is equivalent to the finiteness of
the energy

E(u) = 1

2

∞∫

−∞

1∫

0

(
|∂su|

2 + |∂tu −Xt(u)|
2
)
dtds <∞.

If u satisfies (12), (13), and (14) then the energy of u is given by

E(u) =

∞∫

−∞

1∫

0

ω(∂su, ∂tu) dtds+

1∫

0

Ht(x
+(t)) dt−

1∫

0

Ht(x
−(t)) dt. (15)

In fact these solutions minimize the energy E(u) among all smooth func-
tions u which satisfy (13) and (14). These observations follows from stan-
dard arguments as in [5], [7], [19], [20].

A key theorem in Floer homology asserts that for a generic H or a
generic J the space

M(x−, x+) = M(x−, x+, φ,H, J)

of all solutions of (12), (13) and (14) is a finite dimensional manifold. The
proof is based on Fredholm theory and Thom-Smale transversality and
we shall carry out the details in this section.

The first step is to linearize the partial differential equation (12). This
leads to the first order differential operator

Du : W 1,p

φ (u∗TM) → Lp

φ(u∗TM)

defined by

Duξ = ∇sξ + Jt(u)∇sξ + ∇ξJt(u)∂tu−∇ξ∇Ht(u)

where ∇ denotes the Levi-Civita connection with respect to the t-depen-
dent metric (11). For every inter k ≥ 0, we denote by W k,p

φ (u∗TM) the

completion with respect to the W k,p-norm of the space of smooth vector
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fields ξ(s, t) ∈ Tu(s,t)M along u which satisfy ξ(s, t+1) = dφ(u(s, t))ξ(s, t)
and have compact support in R × S1. For k = 0 we denote Lp

φ(u∗TM) =

W 0,p
φ (u∗TM). If x± are nondegenerate fixed points of φH and u satis-

fies (13) and (14) then the operator Du is Fredholm and its index

indexDu = µ(u)

is the Maslov class of u. That Du is Fredholm was proved for the case
φ = 1l by Floer [7] and the index formula was proved by Salamon and
Zehnder in [20] (see also [18]). The case of general φ is treated in [3]. The
Maslov class µ(u) is invariant under homotopy, additive for catenations,
and satisfies

µ(u#v) = µ(u) + 2c1(v
∗TM)

for any sphere v : S2 →M . It is related to the Morse index as follows. If
φ = id and Ht = H : M → R is a Morse function with sufficiently small
second derivatives then the fixed points x± of φH are critical points of H
and

µ(u) = indH(x+) − indH(x−)

whenever u(s, t) = u(s) is independent of t. If φ = id then these properties
determine the Maslov class uniquely. In general one can choose a trivial-
ization of the vector bundle u∗TM → R×S1 and express the Maslov class
as the difference of the Conley-Zehnder indices corresponding to the ends.
The Conley-Zehnder index is a version of the Maslov index for symplectic
paths and was introduced in [1]. For details about the above assertions
about the Fredholm index and the Maslov class we refer to [3], [17], [18],
and [20].

Now if the operator Du is onto then it follows from an infinite di-
mensional implicit function theorem that the space M(x−, x+) is a finite
dimensional manifold of local dimension dimu M(x−, x+) = µ(u) near u.
Hence we denote by

HJreg = HJreg(M,ω, φ)

the space of all pairs (H,J) ∈ C∞
φ (M) × Jφ(M,ω) such that the fixed

points of φH are all nondegenerate and the operator Du is onto for all con-
necting orbits u ∈ M(x−, x+, φ,H, J) and all fixed points x± ∈ Fix(φH).

We are now in a position to state the main theorem of this section.
Recall that a subset of a complete metric space is said to be of the second
category if it contains a countable intersection of open and dense sets. By
Baire’s category theorem, every set of the second category is dense. Recall
also that the spaces Jφ(M,ω) and C∞

φ (M) with their C∞-topology admit
the structure of a complete metric spaces. Now fix a Hamiltonian function
H0 ∈ C∞

φ (M) such that the fixed points of φH0
are all nondegenerate.

Denote by
C∞

φ (M,H0)

the subset of all H ∈ C∞
φ (M) which agree with H0 up to second order on

the solutions of ẋ(t) = XH0
(x(t), t) which satisfy x(t+ 1) = φ(x(t)).
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Theorem 5.1 Let (M,ω) be a compact symplectic manifold and φ : M →
M be a symplectomorphism.

(i) Let H ∈ C∞
φ (M) and assume that the fixed points of φH are all non-

degenerate. Then the set

Jreg = Jreg(M,ω,φ,H)

= {J ∈ Jφ(M,ω) | (H,J) ∈ HJreg}

is of the second category in Jφ(M,ω).

(ii) Let J ∈ Jφ(M,ω) and H0 ∈ C∞
φ (M) and assume that the fixed points

of φH0
are all nondegenerate. Then the set

Hreg = Hreg(M,ω,φ,H0)

=
{
H ∈ C∞

φ (M,H0) | (H,J) ∈ HJreg

}

is of the second category in C∞
φ (M,H0).

Remark 5.2 The proof of Theorem 5.1 shows that it suffices to perturb
the almost complex structure Jt outside a neighbourhood U of the points
ψt(x) where x runs through the (finitely many) fixed points of φH . This is
because any connecting orbit which is independent of s must have positive
energy and in the case x+ = x− it follows from the energy identity (15)
that

∫
u∗ω > 0. So even in the case x− = x+ a nontrivial connecting

orbit cannot stay close to the curves ψt(x) where x = φH(x). Thus we
may replace the space Jφ(M,ω) by the subspace of those almost complex
structures which agree with a given structure Jt in U .

Unfortunately, however, we were not able to prove such a statement
in the case of the Hamiltonian functions Ht. Here our proof requires
possible perturbations arbitrarily close to the limit curves x±(t). The
result should remain valid for Hamiltonian functions with support outside
a fixed neighbourhood U of the curves ψt(x) with x ∈ Fix(φH) but this
requires a modification of our argument below which we could not quite
see how to do.

Remark 5.3 It is easy to see that instead of ω-compatible almost com-
plex structures we can consider all structures Jt which are tamed by ω
in the sense that ω(v, Jtv) > 0 whenever v 6= 0. In this case the induced
metric is given by 〈v, w〉t = 1

2
(ω(v, Jtw) + ω(w, Jtv)) rather than (11).

Proof of Theorem 5.1: Fix a number p > 2 and two nondegenerate
fixed points x± = φH(x±), denote x±(t) = ψt(x

±), and choose trivializa-
tions Φ±(t) : R

2n → Tx±(t)M with Φ±(t+ 1) = dφ(x±(t))Φ±(t). Denote
by

B = B1,p(x−, x+, φ)

the space of continuous maps u : R
2 → M which satisfy (14), are lo-

cally of class W 1,p and satisfy ξ+ ∈ W 1,p([T,∞) × [0, 1]) and ξ− ∈
W 1,p((−∞,−T ] × [0, 1]) where ξ±(s, t) = ξ±(s, t + 1) ∈ R

2n is defined
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by expx±(t)(Φ
±(t)ξ±(s, t)) = u(s, t) for ±s ≥ T with T sufficiently large.

The space B1,p is an infinite dimensional Banach manifold with tangent
space

TuB = W 1,p

φ (u∗TM)

Consider the vector bundle E → B whose fiber over u ∈ B is the space

Eu = Lp
φ(u∗TM).

The left hand side of the equation (12) defines a section

∂J,H : B → E

of this bundle and the moduli space M(x−, x+, J) of connecting orbits is
the zero set of this section. To prove that this moduli space is a manifold
we must shows that ∂J,H is transversal to the zero section. Now the
tangent space of E splits at the zero section as T(u,0)E = TuB⊕Eu and the

composition of the differential d∂H,J : TuB → T(u,0)E with the projection
πu : T(u,0)E → Eu is precisely the operator Du : TuB → Eu introduced

above. Hence ∂H,J is transversal to the zero section if and only if the
operator Du is onto for every u ∈ M(x−, x+) and this means that (H,J) ∈
HJreg.

Now denote by J ` = J `
φ(M,ω) the completion of Jφ(M,ω) with re-

spect to the C`-topology. This space is a Banach manifold. Its tangent
space is the space TJJ

` of C`-maps R × TM → TM : (t, p, v) 7→ Yt(p)v
which satisfy

JtYt + YtJt = 0, ω(Ytv, w) + ω(v, Ytw) = 0, φ∗Yt+1 = Yt.

The first two conditions can be summarized as Yt ∈ C`(End(TM, Jt, ω)).
The map (u, J) 7→ ∂H,J(u) defines a section of the bundle E → B × J `

with fiber E(u,J) = Eu which we denote by

F : B × J ` → E , F(u, J) = ∂H,J(u).

The zero set of this section is the universal moduli space

M(x−, x+,J `) =
{
(u, J) ∈ B × J ` | ∂H,J(u) = 0

}
.

We shall prove that the section F is transverse to the zero section and
hence M(x−, x+,J `) is a Banach manifold. To see this note that the
differential DF(u, J) = πu ◦dF(u, J) : TuB×TJJ

` → Eu at a point (u, J)
with F(u, J) = 0 is given by

DF(u, J)(ξ, Y ) = Duξ + Yt(u)(∂tu−Xt(u))

for ξ ∈ TuB = W 1,p

φ (u∗TM) and Y ∈ TJJ
`. We must prove that the

operator DF(u, J) is onto for every (u, J) ∈ M(x−, x+,J `).
Since the operator Du is Fredholm it suffices to prove that DF(u, J)

has a dense range. Hence choose q > 1 such that 1/p+1/q = 1 and suppose
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that η ∈ Lq

φ(u∗TM) is in the annihilator of the range of DF(u, J). This
means that ∫ ∞

−∞

∫ 1

0

〈η,Duξ〉 dtds = 0 (16)

for all ξ ∈W 1,p
φ (u∗TM) and

∫ ∞

−∞

∫ 1

0

〈η, Yt(u)∂tu〉 dtds = 0 (17)

for all Y ∈ TJJ
`. The first equation asserts that η is a weak solution

of D∗
uη = 0 where D∗

u is the formal adjoint operator of Du which can
be obtained from Du by replacing ∇s with −∇s. Since D∗

u is an elliptic
first order operator with coefficients of class C` it follows that η is of
class C` and is a strong solution of D∗

uη = 0. In local coordinates the
operator Du is of the form (4) and hence the unique continuation result
(Proposition 3.1) shows that it suffices to prove that η vanishes on some
open set. We shall in fact prove that η(s, t) = 0 for (s, t) ∈ R(u) where
R(u) ⊂ R

2 is defined as in Section 4. In view of Theorem 4.3 this set is
open and dense in R

2.
Assume, by contradiction, that there is a point z0 = (s0, t0) ∈ R(u)

with η(z0) 6= 0. Then it is easy to see that there exists a

Y0 ∈ End(Tu(z0)M,Jt0 , ω)

such that
〈η(z0), Y0∂su(z0)〉 > 0.

(See for example [20], p. 1346.) Now choose any Y ∈ TJJ
` such that

Yt0(z0) = Y0. Multiply Yt by a cutoff function βt as in Remark 4.4 to

obtain a section Ỹt = βtYt for which the left hand side of (17) does no
vanish. This contradiction shows that η(z) = 0 for all z ∈ R(u) and hence
η = 0. Thus we have proved that the operator DF(u, J) has a dense range
and is therefore onto whenever ∂H,J(u) = 0. This implies that the space
M(x−, x+,J `) is a Banach manifold.

Now consider the projection

M(x−, x+,J `) → J ` : (u, J) 7→ J.

This is a Fredholm map between Banach manifolds and hence it follows
from the Sard Smale theorem [22] that the set

J `
reg(x

−, x+) ⊂ J `

of regular values of this projection is of the second category in J `. Now
it follows from the usual argument in Thom-Smale transversality that the
regular values of the above projection are precisely those almost complex
structures J ∈ J ` for which the operator Du is surjective whenever u ∈
M(x−, x+, J).

Thus we have proved statement (i) in the C` category. Although this
would suffice for most applications it is more elegant to work with the full
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statement in the C∞ category. This can be reduced to the C`-statement
via the following argument which is due to Taubes [23] and was also used
in [13].

Consider the space
Jreg,K ⊂ J

of all smooth almost complex structures such that Du is onto for all x±

and all u ∈ M(x−, x+, J) which satisfy |∂su(s, t)| ≤ K for all s and t.
Then

Jreg =
⋂

K>0

Jreg,K

and we prove that the set Jreg,K is open and dense in J with respect
to the C∞-topology. We prove first that the complement of Jreg,K is
closed. Thus let Jν /∈ Jreg,K converge to J ∈ J in the C∞-topology.
Then there exists a sequence uν of connecting orbits with respect to Jν

such that Duν is not onto. We may assume without loss of generality that
uν ∈ M(x−, x+, Jν) for some fixed pair x± = φH(x±). Since the first
derivatives of uν are uniformly bounded we may also assume without loss
of generality that uν converges weakly to a finite collection of connecting
orbits vj ∈ M(xj−1, xj , J) with x0 = x− and xN = x+. If all the Dvj

were onto then, by the usual gluing argument, it would follow that also
Duν is onto for ν sufficiently large. Hence one of the limit operators Dvj

is not onto and this shows that J /∈ Jreg,K. Thus we have proved that
Jreg,K is open in J with respect to the C∞-topology.

Now we shall prove that Jreg,K is dense in J in the C∞-topology. To
see this note first that

Jreg,K = J `
reg,K ∩ J

where J `
reg,K is defined as Jreg,K but with the C∞-topology replaced by

the C` topology. But we have proved above that J `
reg,K is dense in J `

with respect to the C`-topology. Hence the set J `
reg,K is both open and

dense in J ` with respect to the C`-topology. This implies that Jreg,K is
dense in J with respect to the C`-topology. (Take J ∈ J , approximate it
in the C` topology by an element J ′ ∈ J `

reg,K, and then approximate J ′ by

an element J ′′ ∈ Jreg,K = J `
reg,K ∩ J in the C`-topology.) Thus we have

proved that the set Jreg,K is dense in J with respect to the C` topology
for every `. But this implies that Jreg,K is dense in J with respect to the
C∞ topology. (Given J ∈ J and ν ∈ N choose Jν ∈ Jreg,K such that
‖J − Jν‖Cν ≤ 2−ν . Then Jν converges to J in the C∞-topology.) Hence
we have represented Jreg as a countable intersection of open and dense
sets and this proves statement (i).

The proof of (ii) is essentially the same as that of (i). The only point
of difference is that we now consider the bundle E → B×H` where H` =
C`

φ(M,H0). The fibers of the bundle E are given by E(u,H) = Lp

φ(u∗TM)

as before. The section F : B × H` → E is given by F(u,H) = ∂J,H(u)
and its differential DF(u,H) : TuB ×H → Eu is of the form

DF(u,H)(ξ, h) = Duξ −∇ht(u).
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In this case a section η ∈ Lq

φ(u∗TM) is in the annihilator of the image of

DF(u,H) if and only if it is of class C` wit D∗
uη = 0 and

∫ ∞

−∞

∫ 1

0

dht(u)η dtds = 0 (18)

for all h ∈ H`. Again we must prove that any such η vanishes on some
open set. The details were carried out in [20], pp. 1349–1351, and we
reproduce the argument here.

We first prove that η(s, t) and ∂su(s, t) are linearly dependent for all
(s, t) ∈ R

2. Suppose otherwise that ∂su and η are linearly independent at
some point (s0, t0). We may assume without loss of generality that 0 <
t0 < 1 and, by Theorem 4.3, we may also asume without loss of generality
that (s0, t0) ∈ R(u). Then there exists a neighbourhood U0 ⊂ (0, 1) ×M
of (t0, u(s0, t0)) such that

V0 =
{
(s, t) ∈ R

2 | (t, u(s, t)) ∈ U0

}

is a small neighbourhood of (s0, t0). Now for ε > 0 sufficiently small and
t sufficiently close to t0 there is an embedding gt : Bε(0, s0) → U0 defined
by gt(r, s) = expu(s,t)(rη(s, t)). This embedding satisfies

gt(0, s) = u(s, t), ∂rgt(0, s) = η(s, t).

Since gt is an embedding there exists a Hamiltonian function ht : M → R

such that the map (0, 1)×M → R : (t, x) 7→ ht(x) is supported in U0 and

ht(gt(r, s)) = rβ(r)β(s− s0)β(t− t0)

where β : R → [0, 1] is a cutoff function which is equal to 1 near 0.
Differentiating this identity with respect to r at r = 0 we obtain

dht(u(s, t))η(s, t) = β(s− s0)β(t− t0)

for all s and t. Moreover ht vanishes for t near 0 or 1 and hence we can
extend ht to all t ∈ R such that ht = ht+1 ◦ φ. Thus we have found a
function h ∈ H` such that the left hand side of (18) does not vanish. This
contradiction proves that η(s, t) and ∂su(s, t) must be linearly dependent
for all (s, t) ∈ R

2.
Now recall that C(u) is the set of points (s, t) with ∂su = 0. By what

we have just proved there is a unique function λ : R
2 − C(u) → R such

that
η(s, t) = λ(s, t)∂su(s, t)

for (s, t) ∈ R
2 − C(u). We prove that

∂sλ(s, t) = 0

for all (s, t) ∈ R
2 − C(u). Assume otherwise that there exists a point

(s0, t0) ∈ R
2 − C(u) such that ∂sλ(s0, t0) 6= 0. Since R(u) is dense in R

2

we may assume without loss of generality that (s0, t0) ∈ R(u). Choose a
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smooth function ρ : R
2 → [0, 1] with support in a neighbourhood V0 of

(s0, t0) as above such that
∫
ρ∂sλ 6= 0 and hence
∫

V0

λ∂sρ 6= 0.

Now choose ht : M → R such that ht(u(s, t)) = ρ(s, t) (see Remark 4.4).
Then dht(u)η = λ∂sρ and it follows again that the left hand side of (18) is
nonzero. Thus we have proved that ∂sλ(s, t) = 0 for all (s, t) ∈ R

2−C(u).
Since C(u) is a discrete set it follows that λ(s, t) extends to a C`-function
on R

2 which is independent of s. Hence λ(s, t) = λ(t) is defined for all
t ∈ R and

η(s, t) = λ(t)∂su(s, t)

for all (s, t) ∈ R
2. Now assume η 6= 0. Then it follows from Corollary 2.3

that the set of points where η(s, t) vanishes is discrete. Hence λ(t) must
be nonzero for all t. We assume, without loss of generality, that

λ(t) > 0

for all t. (Otherwise replace η by −η.) Now use

Du∂su = 0, D∗
uη = 0

to obtain

d

ds

∫ 1

0

〈η, ∂su〉 dt =

∫ 1

0

(〈η,∇s∂su〉 + 〈∇sη, ∂su〉) dt

=

∫ 1

0

(〈η,Du∂su〉 − 〈D∗
uη, ∂su〉) dt

= 0.

On the other hand
∫ 1

0

〈η, ∂su〉 =

∫ 1

0

λ(t)|∂su(s, t)|
2 dt > 0

and so the total integral over R × [0, 1] would be infinite. But since
η ∈ Lq

φ(u∗TM) and ∂su ∈ Lp
φ(u∗TM) with 1/p + 1/q = 1 this integral

has to be finite. This contradiction shows that η = 0.
Thus we have proved that the section (u,H) 7→ ∂J,H(u) of the bundle

E → B×H` is transverse to the zero section. The remainder of the proof
of (ii) is precisely the same as that of (i) and can be safely left to the
reader. 2

Remark 5.4 Theorem 5.1 generalizes under suitable assumptions to non-
compact manifolds. For example in [9] the first and the second auther
considered Hamiltonian systems in C

n = R
2n with the standard complex

structure J0 and the standard symplectic form ω0. These are given by

ω0 =

n∑

j=1

dxj ∧ dyj , J0 =

(
0 −1l
1l 0

)
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in the coordinates (z1, . . . , zn) with zj = xj +iyj . They considered smooth
Hamiltonian functions Ht = Ht+1 : C

n → R which satisfy the conditions

|∂t∇Ht(z)| ≤ c(1 + |z|),
∣∣∇2Ht(z)

∣∣ ≤ c

for a suitable constant c > 0. Moreover H is required to satisfy the
asymptotic condition

lim
|z|→∞

|∇Ht(z) −Az|

|z|
= 0

for a symmetric matrix A whose spectrum does not intersect the lattice
2πZ. This means that the equation

J0ż(t) = Az(t), z(0) = z(1)

has only the trivial solution. In this case the transversality theorems of
this section remain valid for almost complex structures J = J(t, z) which
are compatible with ω0 and agree with J0 for large |z|.

Our next goal is to study the transversality problem for the partial
differential equation (6) in the case where φ = 1l and J and X are in-
dependent of t. This is a severe restriction and the techniques of this
section will break down in this case. In the time independent case The-
orem 4.3 is useless and transversality can only be expected for simple
solutions. Moreover we need an additional technical result about sym-
metric (2n× 2n)-matrices which will be discussed in the next section.

6 Symmetric matrices

Consider R
2n with the standard complex structure

J0 =

(
0 −1l
1l 0

)

and the standard inner product. Denote the vector space of symmetric
(2n × 2n)-matrices by S =

{
S ∈ R

2n×2n |ST = S
}
. Now consider the

subset
Sreg ⊂ S

of all those matrices S = ST ∈ R
2n×2n such that for any four real numbers

a, b, α, β there is no nonzero solution ζ ∈ R
2n of the equations

(SJ0 − J0S − a− bJ0)ζ = 0 (19)

and
(SJ0 − J0S − a− bJ0)Sζ − αζ − βJ0ζ = 0. (20)

Our goal in this section is to prove the following theorem.

Theorem 6.1 Assume n ≥ 2. Then the set Sreg is open and dense in S.
Moreover, if S ∈ Sreg then τΦTSΦ ∈ Sreg for every real number τ 6= 0
and any unitary matrix Φ ∈ U(n) = GL(n,C) ∩ O(2n).
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Remark 6.2 If we identify R
2n = C

n in the usual way by z = x + iy
with x, y ∈ R

n then a real linear transformation T : C
n → C

n can be
written in the form

T (ζ) = Aζ +Bζ̄

for ζ ∈ C
n where A,B ∈ C

n×n represent the complex linear and the
complex anti-linear part of T . In real notation T is represented by multi-
plication with a symmetric matrix if and only if

A = A∗, B = BT

where BT denotes the transposed matrix and A∗ = ĀT the conjugate
transpose. With λ = i

2
(a + ib) and µ = i

2
(α + iβ) the equations (19)

and (20) can be written in the form

Bζ̄ − λζ = 0, B(Aζ +Bζ̄) − λ(Aζ +Bζ̄) − µζ = 0.

Now assume n = 1. Then B is just a complex number and A is a real
number. Hence the first equation has a solution λ = B̄, ζ = B and the
second equation can obviously be solved for µ. Hence in this case Sreg is
the empty set.

Proof of Theorem 6.1: Sreg is open: Let Sν be a sequence in S−Sreg

and assume that Sν converges to S ∈ S. Then there exist corresponding
sequences aν , bν , αν , βν such that the equations (19) and (20) have a
solution ζν ∈ R

2n with |ζν | = 1. Since ζν and J0ζν are orthogonal it
follows that

a2
ν + b2ν ≤ 4 ‖Sν‖

2 .

Similarly, the sequences αν and βν are bounded and so we may assume
without loss of generality that the sequences aν , bν , αν , βν , and ζν all
converge. Hence in the limit we obtain a nonzero solution of (19) and (20)
and this shows that S /∈ Sreg. 2

The proof that Sreg is dense will occupy the rest of this section. We
shall begin by examining (19). Denote by

Σ ⊂ S × R
2 × R

2n

the set of all quadruples (S, a, b, ζ) with S = ST ∈ R
2n×2n, a, b ∈ R,

ζ ∈ R
2n such that

(SJ0 − J0S − a− bJ0)ζ = 0

and ζ 6= 0.

Lemma 6.3 Σ is a smooth submanifold of S × R
2 × R

2n.

Proof: We must prove that 0 is a regular value of the map

f : S × R
2 × (R2n − {0}) → R

2n

defined by
f(S, a, b, ζ) = (SJ0 − J0S − a− bJ0)ζ.
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We shall prove in fact that whenever ζ 6= 0 then the differential of this
map with respect to S is onto. This means that for every η ∈ R

2n and
every nonzero vector ζ ∈ R

2n there exists a symmetric matrix Ŝ ∈ R
2n×2n

such that (ŜJ0 − J0Ŝ)ζ = η. Denote A = Ŝ + J0ŜJ0 and ξ = J0ζ. Then
we must prove that the equation

Aξ = η, AT = A = J0AJ0

has a solution A ∈ R
2n×2n for all ξ, η ∈ R

2n with ξ 6= 0. Such a matrix is
given by the explicit formula

A =
1

|ξ|2
(
ηξT + ξηT

)
+

1

|ξ|2
J0

(
ηξT + ξηT

)
J0

−
〈η, ξ〉

|ξ|4
(
ξξT + J0ξξ

T J0

)
−

〈η, J0ξ〉

|ξ|4
(
J0ξξ

T − ξξTJ0

)
.

This proves the lemma. 2

Now denote by S1 ⊂ S the set of regular values of the projection

Σ → S : (S, a, b, ζ) 7→ S.

in view of Sard’s theorem this set is of the second category in S and, in
particular, it is dense.

Lemma 6.4 The set S1 is open and dense in S. Moreover, S ∈ S1 if
and only if 0 is a regular value of the map fS : R

2 × (R2n − {0}) → R
2n

defined by
fS(a, b, ζ) = (SJ0 − J0S − a− bJ0)ζ.

Proof: The second assertion follows from standard Thom-Smale trans-
versality theory for paramerized smooth maps Λ × X → Y : (λ, x) 7→
f(λ, x) = fλ(x). Let y ∈ Y be a regular value of f and denote Σ = f−1(y).
Then y is a regular value of fλ : X → Y if and only if λ is a regular value
of the projection Σ → Λ : (λ, x) 7→ λ. Apply this to the above map f
with Λ = S, X = R

2 × (R2n − {0}), Y = R
2n, and y = 0 to obtain the

required characterization of the set S1.
Now, by Sard’s theorem, the set S1 is dense in S. That S1 is open

follows from the fact that for every S the set

{(a, b, ζ) | fS(a, b, ζ) = 0, |ζ| = 1}

is compact and that dfS(a, b, ζ) is onto if and only if dfS(a, b, tζ) is onto
for any t ∈ R − {0}. 2

Now denote by

Γ ⊂ S1 × R
4 × (R2n − {0})

the set of all sixtuples (S, a, b, α, β, ζ) which satisfy (19) and (20).

Lemma 6.5 Γ is a smooth submanifold of S1 × R
4 × R

2n of dimension

dim Γ = dim S + 4 − 2n.
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Proof: We must prove that 0 is a regular value of the map

F : S1 × R
4 × (R2n − {0}) → R

2n × R
2n

defined by

F(S, a, b, α, β, ζ) = (f(S, a, b, ζ), f(S, a, b, Sζ) − αζ − βJ0ζ).

In fact, it suffices to differentiate F with respect to S, α and β. The
differential of F in these directions is a linear operator L = (L1, L2) :
S × R

2 → R
2n × R

2n given by

L1(Ŝ, α̂, β̂) = (ŜJ0 − J0Ŝ)ζ,

L2(Ŝ, α̂, β̂) = (ŜJ0 − J0Ŝ)Sζ

+ (SJ0 − J0S − a− bJ0)Ŝζ

− (α̂+ β̂J0)ζ.

The strategy is now as follows. Given η1, η2 ∈ R
2n first choose Ŝ1 such

that
(Ŝ1J0 − J0Ŝ1)ζ = η1.

That this is possible was shown in the proof of Lemma 6.3. Secondly, use
the fact that S ∈ S1 and hence, by Lemma 6.4, 0 is a regular value of fS.
This implies that there exist α̂, β̂ ∈ R and ξ ∈ R

2n such that

(SJ0 − J0S − a− bJ0)ξ − (α̂ + β̂J0)ζ = η2 − (ŜJ0 − J0Ŝ)Sζ.

The final step is to find a matrix A ∈ R
2n×2n such that

Aζ = ξ, AT = A, AJ0 = J0A.

An explicit formula for A is given by

A =
1

|ζ|2
(
ξζT + ζξT

)
−

1

|ζ|2
J0

(
ξζT + ζξT

)
J0

−
〈ξ, ζ〉

|ζ|4
(
ζζT − J0ζζ

T J0

)
+

〈ξ, J0ζ〉

|ζ|4
(
J0ζζ

T + ζζT J0

)
.

Now it follows from the previous three equations that

L1(Ŝ, α̂, β̂) = η1, L2(Ŝ, α̂, β̂) = η2

with Ŝ = Ŝ1 + A. Here we have used the fact that, since A is complex
linear, ŜJ0 − J0Ŝ = Ŝ1J0 − J0Ŝ1. 2

Proof of Theorem 6.1: Sreg is dense: Denote by S2 ⊂ S1 the set of
regular values of the projection

Γ → S1 : (S, a, b, α, β, ζ) 7→ S.

Then for every S ∈ S2 the set

ΓS = {(a, b, α, β, ζ) | (S, a, b, α, β, ζ) ∈ Γ}
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is a manifold of dimension

dim ΓS = dim Γ − dim S = 4 − 2n.

This set consists precisely of the quintuples (a, b, α, β, ζ) which satisfy (19)
and (20) and ζ 6= 0. Moreover, if ΓS is nonempty then it is at least 1-
dimensional because it is invariant under the action of R − {0} given by
(a, b, α, β, ζ) 7→ (a, b, α, β, tζ). Hence in the case n ≥ 2 we conclude that
ΓS = ∅ for every S ∈ S2 and this implies S2 ⊂ Sreg. Hence, by Sard’s
theorem, Sreg is dense in S1 and hence in S. 2

7 Transversality for simple curves

In this section we examine the solutions of the equation (6) in the case
where both the almost complex structure J and the symplectic vector
field X are independent of t and, moreover, the symplectomorphism φ is
the identity. Hence consider the partial differential equation

∂su + J(u)(∂tu−X(u)) = 0 (21)

with boundary condition u(s, t+ 1) = u(s, t) and limit condition

lim
s→±∞

u(s, t) = x± (22)

where x± are zeros of the vector field X. We shall assume that both
zeros are nondegenerate as 1-periodic solutions of ẋ = X(x). This means
that the eigenvalues of dX(x±) are not integer multiples of 2πi. If X is
sufficiently small in the C1-topology then this simply means that dX(x±)
is nonsingular.

Since X is a symplectic vector field (in the sense that ι(X)ω is closed)
it follows that JX is locally the gradient of a smooth function and our
assumptions imply that x± are nondegenerate critical points of this func-
tion and are therefore hyperbolic zeros of the (gradient) vector field Y =
JX : M → TM . If X is a Hamiltonian vector field then

ι(X)ω = dH

for some function H : M → R and the vector field JX = ∇H is the
gradient field of H. In this case it is interesting from the point of view of
Morse theory to study the space of gradient flow lines γ : R → M which
run from x− to x+:

γ̇ = J(γ)X(γ), lim
s→±∞

γ(s) = x±. (23)

These gradient lines form special solutions of (21), namely those which are
independent of t. Of course, this remains valid if X is only a symplectic
vector field. In this case the Hamiltonian function H is to be replaced by
the closed 1-form

α = ι(X)ω
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and JX can be interpreted as the gradient vector field of α. So in this case
the solutions of (23) could be thought of as the gradient flow lines of the
closed 1-form α. Now these special flow lines give rise to a chain complex
which in the Hamiltonian case generates the homology of M (cf. [19], [21],
[25]) and in the general case generates the Novikov homology of the 1-form
α (cf. [11], [14], [16])

The important question is now if the solutions of (21) are all indepen-
dent of t and thus degenerate to gradient flow lines of the form (23). An
elementary example on M = S2 shows that this can in general not be
expected (cf. [10]). However, in this example the solutions which depend
on t in a nontrivial way all have Maslov class µ(u) ≥ 2. In Theorem 8.1
we shall prove that this holds in general. In order to formulate this more
precisely we first recall that under our assumptions the Maslov class of a
smooth map u : R × S1 →M which satisfies (21) and (22) is given by

µ(u) = indα(x+) − indα(x−) + 2

∫
u∗c1 (24)

provided that X is sufficiently small in the C1-topology. Here indα(x)
denotes denotes the Morse index, i.e. the dimension of the negative part
of the Hessian of the closed 1-form α at the critical point x.

A function u : R
2 → M which satisfies u(s, t + 1) = u(s, t) is called

simple if for every integer m > 1 there exists a point (s, t) ∈ R
2 such

that u(s, t+ 1/m) 6= u(s, t). For any two zeros x± of X we denote by

M∗(x−, x+, X, J)

the space of simple solutions of (21) and (22). Our goal is to prove that for
a generic choice of H and J this space is a finite dimensional manifold of
dimension µ(u) near u. Then it follows that the space M∗(x−, x+, X, J)
cannot contain any t-dependent solutions unless µ(u) ≥ 2 because these
always come in (at least) 2-dimensional families. To state the result more
precisely we make the following definition. We denote by

ψX : M →M

the time-1-map of the symplectic differential equation ẋ = X(x).

Definition 7.1 A symplectic vector field X ∈ X (M,ω) is called admiss-
able if the following holds.

(i) Every zero p of X is a nondegenerate fixed point of ψX , i.e. det(1l −
dψX(p)) 6= 0. Equivalently, the spectrum of the linear transformation
dX(p) : TpM → TpM does not intersect the set 2πiZ.

(ii) There exists an almost complex structure J ∈ J (M,ω) such that for
each zero pj of X and each unitary frame Φj : R

2n → Tpj
M (i.e.

ΦjJ0 = J(pj)Φj and Φ∗
jω = ω0) we have

Sj = J0Φ
−1
j dX(pj)Φj ∈ Sreg.
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Denote by
Xad(M,ω)

the set of admissable symplectic vector fields. Given a cohomology class
a ∈ H1(M,R) we denote by X (M,ω, a) the set of vector fields X ∈
X (M,ω) such that the 1-form ι(X)ω represents the class a and

Xad(M,ω, a) = Xad(M,ω) ∩ X (M,ω, a).

Given a vector field X ∈ Xad(M,ω) we denote by

Jad(M,ω)

the set of all almost complex structures J ∈ J (M,ω) which satisfy (ii)
above.

Lemma 7.2 Assume dim M = 2n ≥ 4.

(i) For every a ∈ H1(M,R) the set Xad(M,ω, a) is dense in X (M,ω, a)
with respect to the C∞-topology.

(ii) The set Xad(M,ω) is open in X (M,ω) with respect to the C1-topology.

(iii) For every X ∈ X (M,ω) the set Jad(M,ω,X) is open in J (M,ω)
with respect to the C0-topology.

(iv) If the pair (X, J) satisfies the conditions of Definition 7.1 then so
does the pair (τψ∗X,ψ∗J) for any sufficiently small real number
τ 6= 0 and any symplectomorphism ψ.

Proof: Recall from Theorem 6.1 that in the case n ≥ 2 the set Sreg ⊂ S
is an open and dense set of symmetric matrices, characterized by the fact
that the equations (19) and (20) have no solution (a, b, α, β, ζ) with ζ 6= 0.

Now every symplectic vector field is locally Hamiltonian and so can
be written in the form XH = −J0∇H in local coordinates near a critical
point. In this terminology condition (ii) in Definition 7.1 asserts that the
Hessian of H at pj can be represented by a regular symmetric matrix
Sj ∈ Sreg in some (and hence every) unitary frame. This can be achieved
by an arbitrarily small perturbation of the local Hamiltonian function H
and hence of the symplectic vector field X. This proves (i). (ii) and (iii)
follow from the fact that Sreg is open in S. (iv) follows from the last
statement in Theorem 6.1 and the fact that the eigenvalues of τdX(p) for
sufficiently small τ have modulus less that 2π. 2

Remark 7.3 (i) The proof of the lemma shows in fact that admissability
of X with a given almost complex structure J can be achieved by an
arbitrarily small Hamiltonian perturbation of X. Thus the set of all
pairs (X, J) which satisfy the conditions of Definition 7.1 is dense in
X (M,ω) × J (M,ω).

(ii) The results of the previous section do not show whether admissability
can be achieved by only perturbing J where we have to assume, of
course, that the symplectic vector field X satisfies condition (i) of
Definition 7.1. This question seems to be slightly more difficult
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than the one addressed in the previous section and be related to the
linear Birkhoff normal form. Thus we do not know whether the set
Jad(M,ω,X) is dense in J (M,ω) for X ∈ Xad(M,ω).

Given an admissable symplectic vector field X ∈ Xad(M,ω) we denote
by

Jreg = Jreg(M,ω,X)

the set of all admissable almost complex structures J ∈ Jad(M,ω,X) such
that the operator Du is onto for all simple solutions u ∈ M∗(x−, x+, X, J)
and all x± ∈ Fix(ψX). These almost complex structures are called regu-
lar for X. Our goal in this section is to prove the following theorem.

Theorem 7.4 Let (M,ω) be a compact symplectic manifold of dimension
2n ≥ 4 and let X ∈ Xad(M,ω). Then the set Jreg(M,ω,X) is of the sec-
ond category in Jad(M,ω,X) with respect to the C∞-topology (it contains
a countable intersection of open and dense sets).

The proof of this theorem relies on the following four lemmata. The
first is concerned with a nonlinear version of the equations (19) and (20)
in the previous section. Given X ∈ Xad(M,ω) and a sufficiently small
neighbourhood V of the zero set of X there exists a unique Hamiltonian
function H : V → R such that ι(X)ω = dH in V and H(pj) = 0 for
every zero pj of X. (The condition H(pj) = 0 is only used to simplify the
notation in the proof.)

Lemma 7.5 Let X, V , and H be as above and J ∈ Jad(M,ω,X). Then
there exists a neighbourhood U ⊂ V of the zero set of X such that for any
four real numbers α, β, α̂, β̂ the equations

[∇H,X] = α∇H − βX (25)

and
∇∇H [∇H,X] = α∇∇H∇H + β∇∇HX + α̂∇H + β̂X (26)

have no solution in U other than the zeros of X.

Proof: Choose local Darboux coordinates such that z = 0 is the critical
point of H and such that the almost complex structure J(z) ∈ R

2n×2n

satisfies J(0) = J0. Then JT
0 J(z) is a positive definite matrix for every z

and
X(z) = −J0∂H(z), ∇H(z) = −J(z)J0∂H(z)

where ∂H(z) denotes the ordinary gradient of H and ∇H(z) denotes the
gradient induced by the J-metric (11). Now suppose, by contradiction,
that there exists a sequence zν → 0 and sequences αν , βν , α̂ν , β̂ν of real
numbers which satisfy (25) and (26). Then there exists a constant c > 0
such that (

|αν | + |βν | + |α̂ν | +
∣∣β̂ν

∣∣) |zν | ≤ c.

Now define εν = |zν | and

Hν(ζ) = ε−2
ν H(ενζ), Xν(ζ) = ε−1

ν X(ενζ), Jν(ζ) = J(ενζ).
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Then the equations (25) and (26) are satisfied at the point ζν = ε−1
ν zν with

α = εναν , β = ενβν α̂ = ενα̂ν and β̂ = εν β̂ν . Now take th limit ν → ∞.
Then, since Hν converges to the quadratic part of H and Jν converges
to J0, we get a nontrivial solution of the equations (19) and (20) where
S = ∂2H(0) ∈ R

2n×2n is the Hessian of H at 0. But by assumption this
Hessian is in Sreg and so no such solution exists. This contradiction proves
the lemma. 2

The next lemma asserts that every simple solution u of (21) is almost
everywhere immersed.

Lemma 7.6 Let X ∈ X (M,ω) be a symplectic vector field with only non-
degenerate critical points and J ∈ J (M,ω) be an ω-compatible almost
complex structure. If u : R

2 → M is a simple solution of (21) and (22)
with u(s, t+ 1) = u(s, t) then the set of all points (s, t) ∈ R

2 at which ∂su
and ∂tu are linearly independent is open and dense in R

2.

Proof: There are two kinds of special solutions of (21), namely those
which are independent of t and hence satisfy ∂su = J(u)X(u) and those
which are independent of s and hence satisfy ∂tu = X(u). Our solution
u cannot be of the first kind because it is simple and it cannot be of the
second kind because then the limit condition (22) would imply that u is
constant. Hence it follows from Corollary 2.3 that the set of all points (s, t)
where either ∂su = 0 or ∂tu = 0 is discrete. We must prove that ∂su and
∂tu are linearly independent on a dense set. Suppose otherwise that there
exists an open set Ω ⊂ R

2 on which ∂su and ∂tu are linearly dependent.
We assume without loss of generality that Ω is a neighbourhood of 0 and
∂su and ∂tu do not vanish on Ω. Hence there exists a nonzero smooth
function λ : Ω → R such that

∂tu(s, t) = λ(s, t)∂su(s, t),

for (s, t) ∈ Ω. We shall prove that λ is constant in Ω. If we choose Ω
to be sufficiently small then the restriction of the symplectic vector field
X to a neighbourhood U of u(Ω) is Hamiltonian and hence there exists a
smooth function H : U → R such that

ι(X)ω
∣∣
U

= dH

Now (21) implies that ∂su+ J(u)∂tu = ∇H(u) and hence

∂s(H ◦ u) = 〈∇H(u), ∂su〉 = |∂su|
2.

Similarly,

∂t(H ◦ u) = 〈∇H(u), ∂tu〉 = 〈∂su, ∂tu〉 = λ−1|∂tu|
2.

Differentiate the last equation with respect to s and the first with respect
to t to obtain

2〈∇t∂su, ∂su〉 = ∂t∂s(H ◦ u)

= ∂s∂t(H ◦ u)

= 2λ−1〈∇s∂tu, ∂tu〉 + (∂sλ
−1)|∂tu|

2

= 2〈∇t∂su, ∂su〉 − |∂su|
2∂sλ.
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This shows that λ(s, t) = λ(t) is independent of s. Now the identity
∂tu = λ∂su shows that u(s, t) is constant along the characteristic curves
t 7→ (s(t), t) with ds/dt = −λ(t) and hence

u(s, t) = γ

(
s+

∫ t

0

λ(τ ) dτ

)

for small s and t where, obviously, γ(s) = u(s, 0). Now use the formula

∂su + J(u)∂tu = ∇H(u) at the point s = −
∫ t

0
λ(τ ) dτ to obtain

γ̇(0) + λ(t)J(γ(0))γ̇(0) = ∇H(γ(0)).

Since γ̇(0) 6= 0 this implies that λ(t) ≡ λ must be independent of t. The
above formula now becomes u(s, t) = γ(s + λt) and γ : (−ε, ε) → M is a
solution of the ordinary differential equation

γ̇(s) = (1l − λJ(γ))−1X(γ(s))

for small s. Extend this solution to all of R and define v(s, t) = γ(s+λt).
This function agrees with u in a neighbourhood of 0 and hence everywhere.
Thus we have proved

u(s, t) = γ(s+ λt)

for all t ∈ R. We have already ruled out the case λ = 0 because otherwise
u would not be simple. But in the case λ 6= 0 we obtain u(λk, 0) =
γ(λk) = u(0, k) = u(0, 0) = γ(0) for every integer k and in the limit as
k → ∞ we obtain γ(0) = x+. Since X(x+) = 0 this implies γ(s) = x+ for
all s. Hence u is constant and this again contradicts our assumption that
u be simple. This proves the lemma. 2

A point (s, t) ∈ R
2 is called a regular point for u if the four vectors

∂su, ∂tu, X(u), ∇H(u)

are linearly independent at (s, t). We denote by R(u) ⊂ R
2 the set of

regular points.

Lemma 7.7 Assume n ≥ 2 and let (X, J) ⊂ X (M,ω) × J (M,ω) be an
admissable pair in the sense of Definition 7.1. Let U be the neighbourhood
of the zero set of X in Lemma 7.5. Then for every simple solution u :
R

2 → M of (21) and (22) with u(s, t+ 1) = u(s, t) the set

{(s, t) ∈ R(u) |u(s, t) ∈ U}

is open and dense in u−1(U).

Proof: The set R(u)∩u−1(U) is obviously open and we must prove that
it is dense in u−1(U). Suppose otherwise that there exists an open set
Ω ⊂ R

2 such that

Ω ∩ R(u) = ∅, u(Ω) ⊂ U.
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By Lemma 7.6 we may assume that ∂su and ∂tu are linearly independent
in Ω. We may also assume that ∇H(u) 6= 0 in Ω. Since Ω ∩ R(u) = ∅
the vectors ∂su, ∂tu, ∇H(u), and X(u) are linearly dependent in Ω. This
implies that there exist smooth functions a, b : Ω → R such that

∂su = a∇H(u) + bX(u)

in Ω. Otherwise, by a general fact in complex linear algebra, the four
vectors ∂su, J(u)∂su, X(u), and ∇H(u) = J(u)X(u) would be linearly
independent and since ∂tu = J(u)∂su + X(u) this would contradict our
assumption. Now multiply the above formula by J(u) to obtain J(u)∂su =
b∇H(u) − aX(u). Since ∂tu = J(u)∂su+X(u) this implies

∂tu = b∇H(u) + (1 − a)X(u).

Denote by ∇ the Levi-Civita connection of the metric (11) (Note, that
this time we have no t-dependence of the metric). Then ∇s∂tu = ∇t∂su
and inserting the above two expression we obtain by a simple calculation
that

[∇H,X] = α∇H + βX

on u(Ω) where

α =
∂ta− ∂sb

a2 + b2 − a
, β =

∂sa+ ∂tb

a2 + b2 − a
.

Here we have a2 +b2−a 6= 0 since ∂su and ∂tu are linearly independent in
Ω. Now differentiate the previous identity (covariantly) in the direction
∇H = λ∂su+µ∂tu with λ = (a2+b2−a)−1(a−1) and µ = (a2+b2−a)−1b
to obtain

∇∇H [∇H,X] = α∇∇H∇H + β∇∇HX + α̂∇H + β̂X

where α̂ = λ∂sα+µ∂tα and β̂ = λ∂sβ+mu∂tβ. By Lemma 7.5 there are
no such numbers α, β, α̂, β̂ which satisfy the last two equations as long
as u(s, t) ∈ U . This contradiction shows that our assumption that ∂su,
∂tu, ∇H(u), X(u) were linearly independent on some open set in u−1(U)
must have been wrong. 2

Lemma 7.8 Assume n ≥ 2 and let (X, J) ⊂ X (M,ω) × J (M,ω) be an
admissable pair in the sense of Definition 7.1. Let U be the neighbourhood
of of the zero set of X in Lemma 7.5. Then for every simple solution
u : R

2 →M of (21) and (22) with u(s, t+1) = u(s, t) the set of all points
(s0, t0) ∈ R(u) ∩ u−1(U) which satisfy

u(s, t) = u(s0, t0) =⇒ s = s0, t− t0 ∈ Z

is open and dense in u−1(U).
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Proof: Openness follows from a simple compactness argument as in the
proof of Theorem 4.3. Suppose that the set in question was not dense.
Then there would exist an open set

Ω ⊂ R(u) ∩ u−1(U)

such that for every (s, t) ∈ Ω there exists a point (s′, t′) /∈ Ω with
u(s′, t′) = u(s, t). Choose Ω so small that the restriction of u to Ω is
an embedding. Denote

Ω′ =
{
(s′, t′) ∈ R

2 − Ω |u(s′, t′) ∈ u(Ω)
}
.

We shall first use Sard’s theorem and Baire’s category theorem to conclude
that Ω′ must contain an open set. To see this denote

v = u
∣∣
Ω
, v′ = u

∣∣
Ω′
.

Then v′(Ω′) = v(Ω) and the composite

φ = v−1 ◦ v′ : Ω′ → Ω

extends to a smooth map on some neighbourhood of Ω′. (Just project
u(z) onto the submanifold u(Ω) for z near Ω′ and then apply v−1.) If
z = (s, t) ∈ Ω is a regular value of φ then ∂su(z

′) and ∂tu(z
′) are linearly

independent for every z′ = (s′, t′) ∈ Ω′ with u(z′) = u(z). Hence for any
such regular value the set of points z′ ∈ Ω′ with u(z′) = u(z) consists of
isolated points and is therefore finite. By Sard’s theorem, fix z = z0 ∈ Ω
to be such a regular value and let z1, . . . , zN ∈ Ω′ be the corresponding
points with u(zj) = u(z0). Now proceed as in the proof of Theorem 4.3
to conclude that for every ε > 0 there exists a δ > 0 such that

u(Bδ(z0)) ⊂

N⋃

j=1

u(Bε(zν)).

Again, as in the proof of Theorem 4.3, the set Bδ(z0) is covered by the
finitely many sets

Σj =
{
z′ ∈ Bε(zν) |u(z′) ∈ u(Bδ(z0))

}
⊂ Ω′

and so, by Baire’s category theorem, one of these sets must have a non-
empty interior.

Having proved that Ω′ contains an open set we consider again the map
φ = v−1 ◦ v′ : Ω′ → Ω. Write φ(s, t) = (σ(s, t), τ (s, t)) and use the fact
that both u and u ◦ φ satisfy (21) to obtain

0 = ∂s(u ◦ φ) + J(u ◦ φ)∂t(u ◦ φ) − J(u ◦ φ)X(u ◦ φ)

= ∂su(φ)∂sσ + ∂tu(φ)∂sτ + J(u(φ))∂su(φ)∂tσ

+J(u(φ))∂tu(φ)∂tτ − J(u(φ))X(u(φ))

= (∂sσ − ∂tτ )∂su(φ) + (∂sτ + ∂tσ)∂tu(φ)

−X(u(φ))∂sτ − J(u(φ))X(u(φ))(1 − ∂tτ ).
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The last equation follows from J(u)∂su = ∂tu − X(u) and J(u)∂tu =
J(u)X(u) + ∂su. Since the image of φ is contained in R(u) it follows
that the vectors ∂su(φ), ∂tu(φ), X(u(φ)) and J(u(φ))X(u(φ)) are linearly
independent and hence

∂sσ = ∂tτ = 1, ∂sτ = ∂tσ = 0.

Hence φ is a translation. Since the domain and range of φ are disjoint in
R × S1 it follows that there exists a point (s0, t0) ∈ R

2 − {0} × Z such
that

u(s, t) = u(s+ s0, t+ t0).

This holds on some open set and, by unique continuation, on all of R
2.

But this is impossible: if s0 6= 0 then u(s, t) = u(s + ks0, t + kt0) → x+

as k → +∞ and so u is constant, in contradiction to our assumption that
u be simple. Hence s = s0 and so u(s, s+ t0) = u(s, t) where t0 /∈ Z. But
if t0 is irrational then this condition together with u(s, t + 1) = u(s, t)
implies that u must be independent of t, again contradicting simplicity.
Finally, if t0 is rational then we have u(s, t + 1/m) = u(s, t) for some
integer m and this contradicts again the definition of simple. This proves
the lemma. 2

We point out that all three lemmata remain valid for almost complex
structures and symplectic vector fields of class C`. In this case all other
functions, in particular J-holomorphic curves, will in general also be only
of class C`.

Proof of Theorem 7.4: The basic strategy of the proof is the same as
in Theorem 5.1. We fix a symplectic vector field X ∈ Xad(M,ω) denote
by Bs ⊂ B = B1,p(x−, x+, id) the open subset of all those maps u ∈ B for
which there exists a point (s, t) ∈ R(u) such that

u(s′, t′) = u(s, t) =⇒ s′ = s, t′ − t ∈ Z.

We shall call such a point a regular injective point for u. Note in
particular that at any such point X(u(s, t)) 6= 0. It is a simple matter
to prove that the set Bs is open in B. Moreover, by Lemma 7.8, every
simple solution of (21) and (22) with any almost complex structure J ∈
Jad(M,ω,X) admits a regular injective point and is therefore contained
in Bs.

Now denote by Jad = J `
ad(M,ω,X) the space of all almost complex

structures J ∈ J `(M,ω) such that the pair (X, J) is admissable. This is
an open set in the space J `(M,ω) (of all almost complex structures of
class C` which are compatible with ω) and is therefore a Banach manifold.
We consider the Banach vector bundle

E → Bs × Jad

with fibers Eu = Lp(u∗TM). We shall prove that the section

F : Bs × Jad → E
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defined by

F(u, J) = ∂X,J(u) = ∂su+ J(u)(∂tu −X(u))

is transverse to the zero section or, equivalently, the differential

DF(u, J) : TuBs + TJJad → Eu,

given by
DF(u, J)(ξ, Y ) = Duξ + Y (u)(∂tu−X(u))

for ξ ∈ W 1,p(u∗TM) and Y ∈ TJJad, is surjective whenever ∂X,J (u) = 0.
Since Du is a Fredholm operator, it suffices to prove that DF(u, J) has a
dense range. Now if η ∈ Lq(u∗TM) with 1/p + 1/q = 1 annihilates the
range of DF(u, J) then η is of class C` with D∗

uη = 0 and, moreover,

∫ ∞

−∞

∫ 1

0

〈η, Y (u)J(u)∂su〉 dtds = 0.

for all Y ∈ TJJad. But this last equation implies, by the same argument as
in the proof of Theorem 5.1, that η must vanish at every regular injective
point of u. Since the set of such points is open and nonempty it follows
that η vanishes on some open set and, by unique continuation, η = 0. This
proves that F is transverse to the zero section and so the universal moduli
space of all pairs (u, J) ∈ Bs ×Jad with ∂X,J(u) = 0 is a smooth Banach
manifold. Now the regular values of the projection (u, J) 7→ J , defined on
this universal moduli space, are now the required regular almost complex
structures. This proves the theorem in the C`-case. The details of this
argument as well as the extension to the C∞-case are precisely the same
as in the proof of Theorem 5.1 and are left to the reader. 2

8 Equivariant action functional

Denote by L the space of contractible loops on M and think of these
loops as smooth maps x : R → M which satisfy x(t+ 1) = x(t). Given a
symplectic vector field X ∈ X (M,ω) there is a natural closed 1-form ΨX

on L defined by

ΨX(x; ξ) =

∫ 1

0

ω(ẋ(t) −X(x(t)), ξ(t)) dt.

for ξ ∈ TxL = C∞(x∗TM). The (negative) gradient flow lines of this 1-
form with respect to the metric induced by an almost complex structure
J ∈ J (M,ω) are precisely the solutions of

∂su + J(u)(∂tu−X(u)) = 0 (27)

with boundary condition u(s, t + 1) = u(s, t). Connecting orbits also
satisfy the limit condition

lim
s→±∞

u(s, t) = x± (28)
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where x± are zeros of the vector field X. These are the equations (21)
and (22) studied in Section 7.

From a more abstract point of view the infinite dimensional manifold L
carries a natural symplectic structure and the closed 1-form ΨX therefore
generates a symplectic vector field x 7→ ẋ − X(x) on L. The 1-form ΨX

and the corresponding vector field on L are invariant under the natural S1-
action. In the case X = 0 this vector field in fact generates the S1-action
on L and the X-term can be considered as an equivariant perturbation.
From this point of view the simple solutions of (27) and (28) are precisely
those gradient trajectories u of the closed 1-form ΨX such that

(a) the limit points x± = lims→±∞ u(s, t) are fixed points of the S1-
action,

(b) S1 acts freely on u.

Theorem 7.4 can be viewed as an equivariant transversality result for
such gradient trajectories. We shall now use this result to prove that if
the relative Morse index is less than or equal to 1 then all the connecting
orbits between zeros of X are independent of the t-variable. Equivalently,
if the limit points belong to the fixed point set of the S1-action and have
relative Morse index at most 1 then the connecting orbits also belong to
the fixed point set of the S1-action.

To make this precise we fix any symplectic vector field X ∈ X (M,ω).
By Lemma 7.2 (i) there exists an arbitrarily small Hamiltonian func-
tion H ∈ C∞(M) such that the X + XH ∈ Xad(M,ω). It follows
from Theorem 7.4 that the set Jreg(M,ω,X + XH) is of the second
category in the set Jad(M,ω,X + XH). Thus we have proved that for
any cohomology class a ∈ H1(M) there exists a symplectic vector field
X ∈ X (M,ω, a), an open set Jad(M,ω,X) ⊂ J (M,ω) and a generic
set J0(M,ω,X) ⊂ Jad(M,ω,X) (i.e. a set containing a countable inter-
section of open and dense sets in Jad(M,ω,X)) such that the following
holds.

(1) The zeros of X are all nondegenerate.

(2) There exists a number m0 > 0 such that for every integer m ≥
m0 the moduli spaces M∗(x−, x+, X/m, J) are finite dimensional
manifolds of local dimension

dimu M∗(x−, x+, X/m, J) = µ(u)

= indX(x+) − indX(x−) + 2

∫
u∗c1

near u for any two zeros x± of X.

These assertions hold in fact for an open and dense set of symplectic vector
fields in X (M,ω, a). Note that (1) is slightly weaker than condition (i)
in Definition 7.1. For the proof of (2) we note that if X ∈ Xad(M,ω, a)
then X/m ∈ Xad(M,ω, a/m) for every sufficiently large integer m ≥ m0

and Jad(M,ω,X/m) = Jad(M,ω,X). Thus J0(M,ω,X) can be defined
as the intersection of the sets Jreg(M,ω,X/m) over all integers m ≥ m0.
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These sets are all of the second category in Jad(M,ω,X) in the sense of
Baire and so is their intersection. The condition m ≥ m0 in (2) is required
in order the Maslov index of x± to agree with the Morse index indX(x±).
This number refers to the Morse index of x± as a critical point of H where
H is a local Morse function near x± such that ι(X)ω = dH.

The following result was proved in [10] in the case where X is a Hamil-
tonian vector field.

Theorem 8.1 Let (M,ω) be a compact symplectic manifold of dimension
2n ≥ 4. Assume either that M is monotone or c1(π2(M)) = 0 or the
minimal Chern number is N ≥ n. Assume also that X ∈ X (M,ω) and
J ∈ J (M,ω) satisfy the conditions (1) and (2) above. Then there exists a
constant m0 = m0(X, J) such that every solution u of (27) and (28), with
µ(u) ≤ 1 and X replaced by (1/m)X with m ≥ m0, is independent of t.

Proof: To prove this, one first uses a compactness argument to show that
every solution with nonpositive area

∫
u∗ω ≤ 0 must be independent of t

provided that m is sufficiently large, say m ≥ m0 (see [10], Lemma 7.1).
Now let u(s, t) = u(s, t+1) be a solution of (27) and (28) with X replaced
by (1/m)X where m ≥ m0 and hence

∫
u∗ω > 0.

Assume µ(u) ≤ 1 and, by contradiction, that u(s, t) is not independent
of t. If u is simple then u must be independent of t since otherwise the
functions (s, t) 7→ u(s0 + s, t0 + t) form a 2-dimensional family of simple
solutions in contradiction with the dimension formula of statement (2)
above. If u is not simple then there exists an integer k > 1 such that

u(s, t+ 1/k) ≡ u(s, t).

Let k be the largest such integer. (If there is no largest integer with this
property then u(s, t) is independent of t.) Then the function

v(s, t) = u(s/k, t/k) = v(s, t+ 1)

is a simple solution of (27) with X replaced by (1/mk)X and index

µ(v) = indH(x+) − indH(x−) + 2

∫
v∗c1.

If
∫
u∗c1 ≥ 0 then

∫
v∗c1 =

1

k

∫
u∗c1 ≤

∫
u∗c1.

and hence µ(v) ≤ 1. By (2) this implies that v, and hence u is independent
of t. If, on the other hand,

∫
u∗c1 < 0, then M is not monotone and hence

must have minimal Chern number N ≥ n or N = 0. In the former case
∫
v∗c1 ≤ −N ≤ −n

37



and hence µ(v) ≤ 0. In the latter case µ(v) = µ(u) ≤ 1. In both cases
v is a simple solution of (27) and (22) with X replaced by (1/mk)X
and µ(v) ≤ 1. Since ((1/mk)X, J) ∈ XJreg it follows again that v is
independent of t. This contradiction proves the theorem. 2

In [10] the previous theorem was used in the Hamiltonian case to prove
that the Floer homology groups HF∗(M,ω,H, J) are isomorphic to the
ordinary homology of M , tensored by the Novikov ring associated to ω.
In [11] LeHong Van and Kaoru Ono used a result similar to Theorem 8.1
to prove that, if the manifold M is monotone and Xt = Xt+1 : M → TM
is a time dependent family of symplectic vector fields, then the Floer ho-
mology groups HF ∗(M,ω,X, J) are naturally isomorphic to the Novikov
homology of the Calabi-invariant

α =

∫ 1

0

ι(Xt)ω dt.

Their result is based on an ingenious continuation argument which allows
them to rescale the vector field X (and hence the form α) by an arbitrarily
small constant without changing the Floer homology groups.

Theorems 7.4 and 8.1 will also play an important role in studying
equivariant Floer homology. For this it will be important to choose the
almost complex structure J ∈ J0(M,ω,X) such that, in addition to (1)
and (2) above the following conditions are satisfied

(3) The gradient flow JX of the 1-form α = ι(X)ω with respect to the
metric induced by J is of Morse-Smale type.

(4) The zeros of X and the gradient flow lines of JX with index dif-
ference 1 do not intersect the holomorphic spheres of J with Chern
number less than or equal to 1.

These conditions can be achieved by a generic perturbation of the almost
complex structure. For (3) this follows from Theorem 8.1 in [20]. For (4)
this follows from the fact that for a generic almost complex structure J
the set of points which lie on J-holomorphic spheres of Chern number less
than or equal to 1 form a set of codimension 2 in M (cf. [10] and [13]).
In particular, conditions (3) and (4) can be used to prove that the set
of simple solutions of (27) and (28) with relative Morse index µ(u) = 2
is compact and hence there are only finitely many of these (modulo the
action of S1 and R). The number of such orbits will play an important
role in equivariant Floer homology.
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[22] S. Smale, An infinite dimensional version of Sard’s theorem, Am. J.
Math. 87 (1973), 213–221.

[23] C. Taubes, Personal communication.

[24] I.N. Vekua, Generalized analytic functions, Pergamon Press.

[25] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17
(1982), 661–692.

40


