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Abstract

We derive a wall crossing formula for the symplectic vortex invariants
of toric manifolds. As an application, we give a proof of Batyrev’s formula
for the quantum cohomology of a monotone toric manifold with minimal
Chern number at least two.

1 Introduction
Let T be a torus of dimension k, denote by t its Lie algebra, by
A= {fet| exp(§) =1}
the integer lattice, and by
AN ={wet|(w,§) €Zfor & e A}

the dual lattice. Suppose T acts diagonally on C™. The action is determined by
n homomorphisms p, : T — S, v = 1,...,n. We write each homomorphism

pv in the form .
pv(exp(§)) = 6_2’”(‘””’9, w, € A*.

The moment map of this action, with respect to the standard symplectic form
on C", is given by

pl) =7 3w, 1)
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for z = (z1,...,T,) € C". We assume throughout that u is proper and that the
vectors w, span the space t*. In [7] we have defined, together with Gaio and
Mundet, invariants

o7 ST(H) - R, m :=n — dim T+Zd,, >0, (2)

v=1

by counting solutions of the genus zero symplectic vortex equations (see Sec-
tion 2). Here A € A, d, := (w,, ), 7 is a regular value of the moment map,
and S™(t*) denotes the space of real valued polynomials of degree m on t. Note
that S*(t*) is canonically isomorphic to the cohomology H*(BT'; R) of the clas-
sifying space BT = ET/T. The isomorphism takes w, € t* to the first Chern
class of the bundle ET x,, C — BT. The invariant ®;'" takes rational values
on integral cohomology classes. These correspond to polynomials that map the
lattice A to the integers.

An element 7 € t* is a singular value of p if and only if it can be expressed
as a positive linear combination of at most & — 1 of the vectors w,. The set of
singular values is a disjoint union of open cones of codimensions 1 to k. A cone
of codimension j is called a wall of codimension j.

Let 19 € t* be an element of a wall of codimension one, 7; € t* be transverse
to the wall at 79, and e; € A be the unique primitive lattice vector that is
orthogonal to the wall at 79 and satisfies (71,e1) > 0. Denote by 71 C T the
subtorus generated by e; and by t; its Lie algebra. Let

I={v|(wy,,e1) =0}.
The action p induces an action pgy of the quotient torus
TO = T/Tl

on the space
Cl:={zreC"|z,=0forv¢l}.

The moment map of this action is the restriction uo := plcr : C1 — ¢ := t.
The following wall crossing formula expresses the difference of the invariants on
the two sides of the wall as the invariant of the reduced problem at 7q.

Theorem 1.1 (Genus Zero Wall Crossing). Let o € S*(t*), A € A, and
dy :={(wy,,A). Then for every sufficiently small positive number € we have

4T () — BT () = B (a),
where g is the projection of X to to := t/t; and

! a(é+ ze1)
ao(§) = i ?{ TL s (Wi, € + zeq)dett dz.

Here for each & the integral is understood over a circle in the complex plane
enclosing all the poles of the integrand.




There is an analogous wall crossing formula for higher genus which is formu-
lated in Theorem 3.1 below.

Theorem 1.1 gives rise to an explicit formula for the genus zero invariants.
To formulate the result we introduce the following notation. For a tuple of
nonnegative integers £ = ({1, ..., £,) denote

wh = W{l___wﬁn ESm(t*), || ;=21 + - + L.

Given such a tuple £ and a lattice vector A we introduce the set Z (¢) of partitions
{1,...,n} =1 U--- U I} that satisfy the following two conditions.

(Dimension) For every j € {1,...,k}, the subspace
E; :=span{w,|veU---UIL;} Ct"
has dimension j and w, ¢ E; for every v € I;11 U---U I}.
(Degree) For every j € {1,...,k},

Sty —d,—1)=-1.  d,:=(w,,\).

vel;

Theorem 1.2 (Genus Zero Invariants). Let A € A, d, := (w,, \), and £ be
an n-tuple of nonnegative integers.

(i) If Zn(€) = 0 then ®57 (w') = 0 for all 7.

(ii) Let J C {1,...,n} be a subset with k elements such that {w,|v € J} is a
basis of t* and assume

0 — d, ifveld,

" ldo+1 ifvéd

If T belongs to the cone C(J) spanned by {w, |v € J} then
1

| det({wy, €)vedj=1,...k)|

QK’T(WZ) )
where e1, ..., ey, is any basis of the lattice A. Otherwise ®57 (w') = 0.
(iii) Let X' € A and define d, :== (w,, X'). If £, +d., > 0 for every v then

!’
LT (wh) = BT, (wH).

(iv) Assume d, > —1 for every v. Then every element of S*(t*) is a linear
combination of monomials w' that satisfy either (i) or (ii).

(v) Let Jo:={v|t, < d,}. If 7 ¢ C(J;) then 7 (w’) = 0.

Remark. Assertions (i), (ii) and (iv) can be used to compute the genus zero
invariants whenever d,, > —1. This restriction can be removed by using (iii).



Now assume that T' acts freely on p~1(7), where

n
T = Z Wy,
v=1
and that the symplectic quotient
M :=C")T(r) :=p *()/T

has minimal Chern number N := max{m € Z|7/m € A*} > 2. These condi-
tions guarantee that the symplectic quotient M is a monotone toric manifold.
Combining Theorem 1.2 with the results of [10] one can compute the genus zero
Gromov—Witten invariants of the symplectic quotient. More precisely, denote
by S*(t*) = H*(M;R) : a ~ & the Kirwan homomorphism. Consider the dual
homomorphism Hy(M;Z) — A in degree two. This homomorphism is injective.
We denote its image by A(7) and the inverse map by A(7) — Hy(M;7Z) : A = A.
Given A € A(7) we denote by GW%’I the genus zero Gromov-Witten invariant
of M with fixed marked points in the homology class A. In [10, Theorem A] it is
proved that, for every A € A(7) and every n-tuple £ = ({1, ..., £,) of nonnegative
integers, B

BT (wh) = GWY (W1, s Wise oo, Wiy ooy Wi, (3)

where each argument W, occurs ¢, times. Thus Theorem 1.2 allows us to com-
pute the genus zero Gromov—Witten invariants of tuples of cohomology classes
of degree two. This can be used to compute the quantum cohomology ring of the
symplectic quotient. The statement of the theorem requires some preparation.

The chamber C(7) is defined as the component of the set of regular values
of u that contains 7. The effective cone Aqg(7) C A(7) is defined as the set
of lattice vectors X\ € A(7) that satisfy (7', A) > 0 for every 7’ € C(7).

Let R be any graded commutative algebra (over the reals) with unit which
is equipped with a homomorphism

Aegr(T) 52 R: A= ¢

from the additive semigroup Aeg(7) to the multiplicative semigroup R such that
deg(q*) = 2(7, \). Given such a graded algebra define the quantum cohomology
ring QH*(M;R) as the tensor product

QH*(M;R) := H*(M;R)® R

(of vector spaces over the reals). Thus an element of QH"(M;R) is a finite sum
@ =3, cr @7t where a, € H*(M;R). The ring structure is defined by

= Myt =1 = \=%.1 11 _\
a' xa = E E E GW5 (a;.,apn, &)ér'r"q",
i AEAese () 77T

where the &; form a basis of H*(M;R) and the & denote the dual basis with
respect to the cup product pairing.



Theorem 1.3 (Quantum Cohomology). Let M = C" /T (1) be a (nonempty)
monotone toric manifold with minimal Chern number N > 2. Then the ring
homomorphism

Rlus,...,u,] = QH*(M;R) : rut — r&* @)

induces an isomorphism QH*(M;R) = Rlu1,...,un]/J, where the ideal J C
Rlui, ..., uy] is generated by the relations

Z MWy = 0 = Znuuu = 07
v=1 v=1
T¢CH{1,....,n}\{v})) = u, =0,
€ Aea(r), df :=max{£(w,,N),0} = [[ul = [Jui.

The ring Rluy, ..., u,]/J was introduced by Batyrev [4]. It also appeared
in Givental’s work on mirror symmetry [11] for the monotone case. Examples of
Spielberg [16, 17] show that, in the nonmonotone case, the kernel of the homo-
morphism (4) is not necessarily equal to J. For special cases the isomorphism
Rlus, - -, un]/T — QH*(M;R) was established in [15, 16]. The reason for our
hypothesis N > 2 lies in the identity (3) which, in general, does not continue to
hold in the case N = 1 (the degrees of all the classes must be less than twice
the minimal Chern number).

In Section 2 we explain some background from [7] about the symplectic
vortex equations. The wall crossing formula (for arbitrary genus) is restated
in Section 3 and proved in Section 4. We prove Theorem 1.2 in Section 5 and
Theorem 1.3 in Section 6.

2 The symplectic vortex equations

Fix a compact Riemann surface (%, jx,dvoly), a principal T-bundle P — X,
and an inner product on t. The characteristic vector of P will be denoted by

)\(P) ::/;FA € A.

Here A € A = A(P) is a connection on P and A(P) is independent of the choice
of the connection. For each v € {1,...,n} the representation p, : T — S*
determines a complex line bundle

L,:=Px, C—>7%, ()

where the equivalence relation on P x C is [p, ¢] = [pg, p»(9)~'(] for g € T. This
bundle has degree

dy = 5 P) = (W, AP,



A section of L, can be thought of as a smooth map w, : P — C satisfy-
ing u,(pg) = p,(g) 'u,(p). The symplectic vortex equations (at a parameter
T € t*) have the form

*x A(P)

n
Oau, =0, *Fqg+7 Z |u,,|2 W, = )

v=1

+ 7, (6)

where u,, is a section of L,, x : Q?(%,t) — Q°(Z,t*) denotes the Hodge *-
operator determined by the volume form on ¥ and the inner product on ¢,
and ¢ : t = t* denotes the isomorphism induced by the inner product. The
gauge group G := C*®(X,T) acts on the space of solutions of (6) by g*(4,u) :=
(A+g~tdg, p(g)~u). This action has finite isotropy if and only if 7 is a regular
value of u. Moreover, the moduli space

M(1) .= {(A,u) |u and A satisty (6)}/Go

of based gauge equivalence classes of solutions of (6) is compact (see [7]). Here
we fix a point 29 € ¥ and denote the based gauge group by

Go:={g9 € G|g(z0) =1}.
Think of this moduli space as a subset of the space

AP) x @y, 2°(, L)
Go ’

The group T (of constant gauge transformations) acts contravariantly on B.
Heuristically, the invariants introduced in [7] are obtained by integrating equiv-
ariant cohomology classes of B over M(7)/T. The precise definition involves
evaluating the equivariant Euler class of an associated T-moduli problem which
we explain next. (See Appendix A for the relevant results from [8].)

Denote

B :=

C:=AP)x P, L), Z:=06t)e P (E,L,)
v=1

v=1

and consider the map S : C — Z defined by

S(A4,u) := (*FA + ﬂ'Z |UV|2 W, — *Vt:iigi -7, 8,411.,,) . (7

v=1

This map is equivariant under the (contravariant) action of the gauge group G
on both C and Z and its zero set is the space of solutions of (6). Note that the
configuration space C is an affine space over the vector space

X =03, e éQO(E,L,).

v=1



Every solution (A4, u) of (6) determines an elliptic complex

0 — LieG =5 X 25 2 0, (8)

where L is the infinitesimal action of G on C and dS denotes the differential of
S at (A,u). Associated to this complex is the augmented operator

D:=dSeK: X >ZaV.

Here V := Q9(%, t*) is understood as the dual space of the Lie algebra Lie G and
K : X =V is defined as the L? adjoint of £. Moreover, we identify the direct
sum Z @V with

V=03, 0C) o P (S, L)
v=1

by interpreting the first component of Z as the real part and the element of V
as the imaginary part of Q2°(%,t* ® C). Then the operator D is given by

sda + 21 30 (uy, Uy)w,
D(a,b) := | d*a+2n)_ (iu,,d4,)w, |. (9)
Oty + p,()%tu,

Here the first and third component correspond to the operator dS and the second
component is the operator K. This is a Fredholm operator of (real) Fredholm
index

n
index(D) = (n — dim T)(2 - 29) + 2 ) _ d,, =: 2m, (10)
v=1
The operator D is complex linear, where the complex structure on Q(X,1) is
given by the Hodge x-operator a +— *a = —a o Jy. Thus the determinant line
of D inherits a natural orientation from the complex structures.
The associated T-moduli problem is the triple (B,&,S), where the vector
bundle £ — B is given by

E:=Cxg, Z - B:=C/Gy.

The equivariant map S : C — Z defined by (7) descends to a section of £ that
will be denoted by the same letter. Its zero set is the above moduli space M (7).
The linearized complex at a solution (A,u) of (6) has the form

0—>ti>£ SN SN (11)

(Lie go)
Here we identify t with the space of constant maps ¥ — t. By Lemma B.4,
the elliptic complexes (8) and (11) both have the same index as the operator
D. Moreover, Lemma B.4 provides isomorphisms from their determinant lines
to det(D). Hence the complex orientation of det(D) induces orientations of
the determinant lines of (8) and (11). This is the orientation of the T-moduli



problem (B,&,S) used in [7] for the definition of the vortex invariants. (To fit
this into the definitions of [8] and Appendix A, one has to replace B and £ by
suitable Sobolev completions.)

Evaluating the Euler class of the T-moduli problem (B,&,S) on equivariant
cohomology classes on B yields a homomorphism

xP€S Hy(B) - R.
Now the projection 7 : B — A/Gy induces a homomorphism
" S*(tY) @ H*(A/Go) = H3(A/Go) — Hp(B)

on equivariant cohomology. Its composition with the Euler class will be denoted
by
47 5*(¢) @ H*(A/Go) = R,
Thus
@ﬁ:;(a) = xPES (¥ a) =: / ™ (12)
M(7)/T
for a € S*(t*) ® H*(A/Go) = Hj}(A/Go). The notation fM(T)/T m*a indicates
the heuristic interpretation of the Euler class as an integral over the zero set
of the section §. This can be understood literally whenever S is transverse to
the zero section, or equivalently, the operator D defined by (9) is surjective for
every solution (A, u) of (6). The invariant @f{”;(a) can only be nonzero when a
has degree 2m, where m is as in (10).

3 Wall crossing

In this section we formulate the wall crossing formula for arbitrary genus at an
element 79 € t* of a wall of codimension one. This means that there exists an
index set I C {1,...,n} satisfying the following conditions.

(i) The subspace Wy :=span{w, |v € I} C t* has dimension k—1 and w, ¢ Wy
for every v ¢ I.

(ii) 70 € u(C!), where C! := {x € C" |z, =0 for v ¢ I}.
(iii) If J C {1,...,n} is another index set satisfying (i) then 79 ¢ u(C”).

Note that under these conditions g is a positive linear combination of precisely
k — 1 linearly independent vectors from the set {w, |v € I}. Choose a vector
71 € t* that is transverse to u(C!) and let e; € A be the unique primitive lattice
vector that satisfies (11, e1) > 0 and is orthogonal to the wall at 79:

(wy,e1) =0 forvel.

Denote by 77 C T the subtorus generated by e; and by t; its Lie algebra. Let
To := T/T; be the quotient torus and to := t/t; be its Lie algebra. Then the
action p induces an action py of Ty on CT.



The wall crossing number will be expressed as an integral over the moduli
space My of based gauge equivalence classes of solutions (4, {u,},er) of the
equations

- A(P
Odau, =0 (vel), >|<FA4—71'Z|u,,|2w,,—)Ict ( )+7'0- (13)

= Vol(X)

We shall view this as a Tp-moduli problem. Indeed, the subgroup 71 C T acts

trivially on M. However, since 7y is a regular value of p|cr, the quotient group
To =T /T acts on My with finite isotropy.

It is interesting to compare Mgy with the moduli space M(C', Py, 1) of

based gauge equivalence classes of solutions of (6) with C™, T', and P replaced
Cl, Ty := T/T1, and Py := P/Ty. There is a natural projection

Mo — M(CI,P(),T()) : [AJ {UV}VEI] = [A(), {uV}VEI]J (14)

where Ay := IIpA € Q'(P,ty) can be thought of as a connection on P,. Here
IIp : t = to denotes the canonical projection. If (A, {u,},er) satisfies (13) then
the tuple (Ao, {uy }ver) satisfies the equations

*to)‘(PO)

Oaguy =0 (vEI),  xFa,+7 Y |u[ w, = Vol (%)

vel

+7'0.

and hence belongs to the moduli space M(C!, Py, 70). Here ¢, : t/t; — t is
given by [€] = € — |e1| 2(&,e1)er and ¢ : Q3(T,t/t1) — QO(%, ) is induced
by the Hodge x-operator on ¥ and *,. The map (14) defines a fibration whose
fiber can be described as follows.

Choose a complement of t; in t and denote the resulting projection by II; :
t — t;. Define Pic; as the space of based gauge equivalence classes of real valued
T-invariant 1-forms A; € Q!(P) that satisfy A;(pe1) = 1 for every p € P and

_ ILAP)
~ Vol(%) °

Here the based gauge group is Gy := {g1 : £ = T1|91(20) = 1} and it acts by
(g1*A1)e; := Aje; + g1 'dg1. Note that Pic; is a 2g-torus. It is the fibre
in (14) because the subgroup G; C Go acts trivially on A9 = g A and u, for
every v € I. We emphasize that the fibration (14) need not be a product. The
reason is that the map A — A; := II; A will not, in general, be gauge invariant.
A situation analogous to the one described by (13) and (14) was considered
in [14].

We are now in a position to state the wall crossing formula for arbitrary
genus. Think of M, as a subset of the space By := A(P) x C°(P,C!)/Go and
denote by

* Ay (15)

o+ S*(t5) ® H*(A/Go) — Hy, (Bo)
the homomorphism on equivariant cohomology induced by the Ty-invariant pro-
jection 7y : Bg = A/Go. The wall crossing formula involves integration of Tp-
equivariant cohomology classes on By over M /Ty. This is to be undestood as
the evaluation of the Euler class of the associated Tp-moduli problem.



Theorem 3.1 (Wall Crossing). Let a € S*(t*) @ H*(A/Go), A € A, and
d, = (w,, \).

Then, for every sufficiently small positive number &, we have
B 0) - @) = [ wgaa, (16)
Mo/TO

where ag € S*(t5) ® H*(A/Go) is the polynomial map defined by

£+ 261) QV
— 1 d
o 7{ [Logr(wo, &+ zep)dvtl-g P ; (wy, &+ ze1) o

Here Q, is the closed 2-form on A4/Gy defined by

k
= D Qywywiy

Ji'=1

Here we have chosen a basis ey, ..., e of t and a symplectic basis a1, ..., a4 of
H'(%;Z). These bases induce a basis 7;; of H'(A/Go;Z) and Q,; and w,; are
defined by

Qjjr = ZTU A Tivg.jt Wy = (Wy,€j).
i=1

Note that €2;; is independent of the choice of the a; and 2, is independent of
the choice of both bases. For each &, the integral in the definition of ag(§) is
over a circle in the complex plane enclosing all the poles of the integrand.

Remark 3.2 (Residues). Consider a rational function f : C — C with poles
Pi,.-.,Pn. It induces a meromorphic 1-form fdz. Let § f dz be the integral of
f dz over a closed curve in C around all the poles of f. By the residue theorem,

%my{fdz = —Reswo(fdz) = j:ZIRespj(fdz).

Note that the 1-form f dz and hence the residue at infinity do not change if the
complex coordinate is shifted by z — z + ¢. If we expand f as a Laurent series

ko
E akzk

k=—o0

in 27! that converges near infinity, then the residue at infinity is minus the
coefficient of 271, i.e. Resoo(f) = —a_1.

10



Example 3.3. Consider the action of the 1-torus T' = R/Z on C" with pos-
itive integer weights w, = ¢, € A* = Z. Thus the symplectic quotient in the
nontrivial chamber is a weighted projective space. Let ¢ € A* be the standard
generator ¢(§) = £ and pick a homology class A =d € A =2 Z. Assume

m::Z(dE,,+1—g)+g—120.

v=1

We compute the invariant @g:;(cm) in the nonempty chamber by wall crossing
from the empty chamber. Here I =0, Ty =T = R/Z, e1 = 1, and Ty = {1}.
Then Mg = Picis a 2g-torus and Q,, = £,%Q, where Q is the standard symplectic

form on Pic. It satisfies 1
— Q9 =1.

9! Jpic
The integrand in Theorem 3.1 is given by
o _ifLex (El++€n)ﬂ _(£1++€n)gg
"7 f L : T, AT g

Integrating this class over Pic yields the formula from [7]:

([1_}_...4_@”)9

pT(emy = LT T o)
o 6

A9

4 Proof of the wall crossing formula

4.1 A cobordism argument

The idea of the proof of Theorem 3.1 is to study the cobordism W from M (19—
e11) to M(7o + e71) constructed from the solutions of (6) with 7 varying from
To — €71 t0 To +e71. If this cobordism were a manifold the wall crossing number
would be zero. However, in general, the cobordism W will have a singular set
M associated to the value 7 = 79. We shall prove the wall crossing formula
by cutting out a neighbourhood of the singular set and evaluating the Euler
class asssociated to the resulting third boundary component Mj. It turns out
that for the computation it is easier to deform M first into another T-moduli
problem which we explain next.
We introduce the gauge invariant differential equations

Oqu, =0 (v=1,...,n),

. (AP 17
xFy +7TZ |u,,|2 w, = VtOIEE; + 70, Z ||’Ltu||2 =1, (17)
vel vl

where ||u,|| denotes the L?-norm. Denote the moduli space of based gauge
equivalence classes of solutions of (17) by

Po := {(4,u) | A and w satisfy (17)} /Go.

11



Note that there is a T-equivariant projection Py — M, whose preimage at each
point (A, {u, }rer) € Mo is the unit sphere in the kernel of the Cauchy-Riemann
operator in the variables u, for v ¢ I. We emphasize that the dimensions of
these preimages can vary even if Py is a manifold.

The T-moduli problem associated to (17) is the triple (B, £, So) defined as
follows. The base B is defined by B :=C/Gy as in Section 2. Denote by Vo C V
the codimension-1 subspace

wi={ee 0 e) | [ (g eavols =0}, (18)
b
and by Zy C Z the codimension-1 subspace
Zy:=Voo PV (S, L) (19)
v=1

Then the vector bundle & — B is given by
& :=C xg, (ZO &) R).

As above we do not distinguish in notation between a T-equivariant section
B — & and its lift to a G-equivariant function C — Z; ® R. The section
So : C = Zy ® R is defined by

AP =
So(A,u) :== (*FA + WZ | |” W, — Vtol((E; - To,aAuu,Z lJuw||” — 1) .

vel vl

In the following proposition the integral is understood as x%¢0%0(1*a), where
the orientation of the T-moduli problem (B, &y, Sp) is as in Remark 4.2 below.

Proposition 4.1. The wall crossing number can be expressed in the form
BLTHE () — BT ) = / ™o (20)
Po/T

Remark 4.2 (Orientation). The moduli problem (B,&,So) is oriented as
follows. The elliptic complex associated to a solution (A4, w) of (17) has the form

c X S
_— . 21
0—>t—>£(Lieg0)AZO@R—>O (21)

Since L is injective, the derminant line of this complex is equal to the determi-
nant line of the Fredholm operator

X
dSp : —— Z R.
S0 Filieg) 209
Define the operator Ko : X — Vo & R by

Ko(a, ) := (d*a + 27 Z(iu,,,ﬁ,,)w,,,lm@(ﬂ)) ,

vel

12



where the complex linear map ¥ : @_, Q°(X,L,) — C is defined by

R 2w . .. N
W(a) = m;ﬂ(wy,el)/z((u,,,u,,)—}—z(zu,,,ul,)) dvols.  (22)

The imaginary part of ¥ corresponds to the local slice for the Tj-action. It
follows that Ky is surjective and its kernel is a complement of the image of the
infinitesimal action £ : Lie(G) — X. Hence Lemma B.4 provides an isomor-
phism from the determinant line of the augmented operator dSy @ Ko to the
determinant line of the complex (21). Thus it remains to orient the operators
dSo®Ko: X = Zo @R ® Vo @R in a consistent way.

For this it is convenient to introduce the operator Dy : X — )Y by

xdo + 21 ), (U, U)W,
Do(a, @) == | d*a+2m)],  liu,,d,)w,
Oty + py(a)®tu,

As in Section 2, the first two components denote the real and imaginary parts
in Q°(%, t* ® C) and Dy is complex linear. Note that the image of Dy is always
contained in the complex codimension-1 subspace

w={eeEe 00 [Eerdas —olo @ L. @)
z v=1
Define the linear map ® : ¥ — R? by

®(a, ) := (Z (uy, ﬂ,,)dvolg,ImlIl(ﬁ)> . (24)

vl z

Then the operator Dy P : X = Vo P R%isequal to dSy @Ko : X = Zo OR P
Vo @R under the obvious identifications. Since Dy is complex linear the resulting
orientation of det(Dy) induces, by Lemma B.1, an orientation of det(Dy @ @)
and hence of the complex (21). Note that the orientation depends on eg: if ey
changes sign, then so does the imaginary part of ¥ and hence, by Lemma B.3,
the orientation of our 7T-moduli problem.

Remark 4.3. If the operator Dy ®® : X — )y ®R? in Remark 4.2 is onto then
Py is a smooth T-invariant submanifold of B near (A, u) and the tangent space
of the quotient Py /T at (A,u) is

Ti4,uPo/T = {(e,4) | Do(e,d) = 0, ®(ax, @) = 0} .
In this case a basis vy, ..., v2, of the tangent space is positively oriented if the

vectors vy, ..., vam, wo = (0,{u,}y¢r), w1 = (0,{2mi(w,,e1)u,},¢r) form a
positive basis of the complex vector space ker Dy.

13



Proof of Proposition 4.1. Denote 7, := 19 4+ t71 and consider the moduli space
W= {(t,4A,u)| —e <t<eg, (6) holds with 7 = 7} /Go.
This space has boundary
OW = ({—¢} x M(7_2)) U ({e} x M(7.)).

Note that W is the zero set of the T-moduli problem with boundary ([—¢, €] x
B,[—¢€,e] x £,{S¢}—c<i<e), where S; is defined by (7) with 7 = 7. This moduli
problem will in general not be regular.

The isotropy subgroup of an element [t, A,u] € W is not finite if and only if
t =0 and u, = 0 for v ¢ I. This singular set is the moduli space Mg introduced
in Section 3. To obtain a regular cobordism we cut out a neighbourhood of the
singular set. Thus we consider the configuration space

Q:= {(t,A,U) €l-eelxC| Y [lul”> 5},

vl
where ||-|| denotes the L2-norm. Define the T-moduli problem (R, F,T) by
R := 9Q/Go, F:=0Q xg, Z, T, Au) =S (A, u).

The boundary of this moduli problem has three parts: (B,£,S_.) for t = —¢,
(B,E,S:) fort = ¢, and (B’,€°, 8°) associated to the condition -, 4 llun||” = 6.
These three boundary strata intersect and so (R, F,7T) is a T-moduli problem
with corners. However, we shall see that, if § > 0 is sufficiently small, the zero
set WO of T does not intersect the corners and hence we obtain a T-moduli
problem with boundary by restricting to a sufficiently small neighbourhood of
W9. Namely, the intersection of W? with the boundary of R is the set

OW? = ({—e} x M(7_2)) U ({e} x M(7)) U MO,
where M?¢ is the moduli space of based gauge equivalence classes of solutions of

dau, =0 (v=1,...,n),

" ¢ AP 25
*Fa+my |u,l w, = VtolEE; 7, Y wl? =4 (25)
v=1 vl

Every solution of these equations satisfies

= o 2l (e o)

To see this take the inner product of the second equation in (25) with e; and
integrate over X.. This shows that the parameter ¢ is determined by u and can
therefore be removed in the definition of M?. Moreover, the formula (26) shows
that |¢| < € whenever § is sufficiently small.
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We define the moduli problem (B?,£°%,8%) by

B :=C%/Gy, &°:=C°xg, Zo, C°:= {(A,u) €Cd lul’= 5},

vl

where Z is defined by (19). The section S° : C% — Zj is defined by S%(4,u) :=
T(t,A,u), where t is given by (26). There is an obvious morphism of this
moduli problem to the restriction of (R,F,7T) to the boundary component
Yugr lluvll* =8, given by (u, A) = (t,u, A) with ¢ given by (26).

Throughout we shall work with the opposite boundary orientation of
the moduli problem (B%,£%,S%). We begin by explaining how it is defined. The
elliptic complex at a point (4,u) € M? has the form

X0 s
0—>ti>£ 25, 2y — 0, (27)

(Lie go)

where X9 := T A,U)C‘; C X is the real codimension-1 subspace

.= 7 Uy ydvoly = .
X ._{(a,u)€X|;ﬂ/E(u,,,u,,)d oly, 0}

We show how to identify the determinant of the complex (27) with the deter-
minant of the operator

Diad: X — V& R?,

where ® : X — R? is defined by (24), ), is defined by (23), and the operator
D1 : X = )y is defined by

xda + 21 >0 (uy, Gy)w, — Re O (4)1
Di(a, @) := | d*a+2r) ) (iuy,0,)w, —ImT(a)ry | . (28)
6,4121/ + pu(a)o’lull

Since L is injective the determinant line of the complex (27) is that of the
Fredholm operator dS° : X% /L(LieG) — Zo. Define K1 : X — Vo @ R? by

o d* o + 27 Z::1<iu,,, ’ay)wu — Im lp(a)’rl
ICl ( a ) . ZV¢I fE(uVaﬁ/y)dVOIE
Im ¥ ()

This map is surjective and there is an obvious isomorphism from the kernel of
K1 to the quotient X°/L(LieG). Hence Lemma B.4 provides an isomorphism
from the determinant of the operator dS° : X%/L(LieG) — Zo to that of the
augmented operator dS° @ K1 : X — Vo ® R? = Z5 @ Vo @ R2. Since the real
part of the complex linear map ¥ defined by (22) is the differential of the map
u — t given by (26), this augmented operator agrees with D; @ ®. Now D;
is complex linear and so, via Lemma B.1, the complex orientation of det(D;)
determines an orientation of the T-moduli problem (B%,&%,S59).

15



That this orientation of (B%,£°%,8?) is indeed the opposite of the boundary
orientation is verified in Remark 4.4 below. With the orientations understood,
the (Cobordism) axiom in Theorem A.4 implies that the wall crossing number
is given by

LT () — LT () = / ™o (29)
Mé/T
It remains to prove that the integrals over M%/T and Po/T agree. We prove

this by a homotopy argument. Fix a real parameter s € [0, 1] and replace the
second equation in (25) by

A(P
*Fq + WZ |, |* W, — 30122}; —T0=S§ <trl - WZ Ju|* w,,) . (30)
vel vl

This defines a homotopy of sections 8% : B — £%,0 < s < 1, with 8¢ = S° and

5 _ 2 *AMP) 5
S§(A,u) = (*FA—}—WVZEI|U,,| Wy Vol(®) 70,04Uy | .

The zero sets of these sections form a compact subset of [0,1] x B?. Following
the above discussion we obtain an isomorphism from the determinant line of the
moduli problem (B%,£%,8?) at a tuple (s, 4,u) to the determinant line of the
Fredholm operator

DS@Q):X—)J}()@R2,

where the operator D : X — ) is defined by

a o 2W2u¢1<uvaﬂll>wu _Reql(A)Tl
D, ( a ) =Dy ( i ) +s | 273, grliu, Gy)wy — Im ¥ (d)7y
0

Since Dy is complex linear the resulting orientation of the moduli problem
(B%,£9,8?) varies continuously in this homotopy. Moreover, there is an obvi-
ous orientation preserving morphism from (B%,£%,83) to the T-moduli problem
(B, &, So) discussed before Proposition 4.1. Hence it follows from the (Cobor-
dism) and (Punctoriality) axioms in Theorem A.4 that the integrals over M®/T
and Py /T agree, and so equation (20) follows from (29). O

Remark 4.4 (Boundary orientation). We prove that the above orientation
of (B%,£° 8%) is the opposite of the boundary orientation. To see this, fix a
boundary point [A,u] € M®, let D : X — Y be the operator (9), and define
®; : X = R to be the first component of the linear map (24), i.e.,

&y (o) =) / (uy, G, )dvols.
>

vl

Assume first that the restriction of D to the kernel of ®; is surjective. Then
W9 is a manifold near [t, A,u] (with  given by (26)) that is transverse to the
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boundary of R. Moreover, the tangent space of W? is the kernel of the operator
D:Red X — )Y given by

D(t, a, ) := D(a,d) — (in,0,0).

Each element in the kernel of this operator satisfies # = Re ¥(4) (take the in-
ner product of the first component with e; and integrate over ). A positively
oriented basis of the tangent space then has the form vg,v1,...,v2,, where
vo = (f,0,@) with £ = Re®(4) > 0, and the vectors vy, ..., Vs, form a posi-
tively oriented basis of ker D C ker D. Throughout we shall fix three vectors
wp, V1, w; € X such that

ébl(wO) = 17 DUJO = (07070)7 \IJ(wO) 0

@1(’1)1) = 07 DUl = (T17070)7 ‘IJ(Ul) = ]'7
él(wl) = 07 le = (07T170)7 \Il(wl) =i

Note that wp is an inward pointing vector tangent to W?, that vy is a tangent
vector to the boundary, and that w; does not belong to the kernel of D. The
tangent space of M? is isomorphic to the subspace ker D; Nker ® C ker D. The
vector v; belongs to this subspace and a complement of Rv; is the intersection
ker D N ker ®;. Choose a basis vs,...,vs, of ker D N ker ®; such that the
vectors vy, . . ., v2,;, form a positive basis of ker D; Nker ® (with respect to the
opposite boundary orientation). Then the vectors wg, v1, - - . , U2y, form a positive
basis of ker D. We claim that the vectors W, W1, V1, - .,Vay, form a positive
basis of the kernel of D; (and hence vy, ...,vs, form a positive basis of the
tangent space of M?® with respect to the orientation introduced in the proof
of Proposition 4.1). To prove the claim note that the vectors wq,v2,...,vam
form a basis of ker D and the vectors v1, wo,v2,...,v2, form a negative basis
of ker D. Since Re ¥(v1) > 0 it follows that the vectors wq,v2, . ..,V form a
negative basis of ker D. Since vy, w; € ker Dy satisfy ¥(v1) =1 and ¥(wy) =i
it follows that the vectors vy, w1, wq, va, . . ., V2, form a negative basis of ker Dy
and thus wg, w1, v1,v9,...,V, form a positive basis as claimed.

If the restriction of D to the kernel of ®; is not onto one can homotop to
a situation where this condition is satisfied and use the compatibility of all our
isomorphisms with the local trivializations of the determinant line bundle, or
one can argue as follows. We only sketch the main points. The elliptic complex
associated to the T-moduli problem (R, F,T) has the form

c X
0—t—=Ra 7£(Lieg0)
Lemma B.4 provides an isomorphism from the determinant of (31) to the deter-
minant of the augmented operator D:RoX — Y, defined above. The latter
is canonically oriented by Lemma B.1 and the complex orientation of det(D).
Next it is convenient to identify the kernel and cokernel of D with the kernel
and cokernel of the operator

4,z 0. (31)

D1 &ImV¥ : X = )y &R,
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where D; is defined by (28). These identifications are obtained by the in-
clusion ¥ - R X : (a,4) — (Re¥(4),q,4) and the decomposition ) =
Yo ® R(71,0,0) @ R(0,71,0) with Vo @ R corresponding to the first and last
summands. If one uses Lemma B.1 and the complex orientation of det(D;)
to orient det(D; & Im¥), then the isomorphism det(D; @ Im &) — det(D)
just described is orientation reversing. Now restrict the operator D; @& Im ¥
to the kernel of ®; to obtain the augmented operator for (3%,£% 8%). Then
the opposite boundary orientation translates, via Lemma B.4, to the orienta-
tion of det(D; ® Im¥ & ®;). By Lemma B.3 going over to det(D; & ®) =
det(D; & &1 ® Im ¥) involves another sign change which compensates the minus
sign in the isomorphism det(D; ®Im ¥ B ®;) — det(D @ ®1). Thus the composi-
tion det(D; @ ®) — det(D @ ®,) is orientation preserving. This means precisely
that the above orientation of (B%,£%,S°) is the opposite boundary orientation
as claimed.

The moduli space Sy is the sphere bundle in the kernel bundle of a family
of Cauchy—Riemann operators over Mgy. In Section 4.3 we explain a general
equivariant localization formula for such kernel bundles. The relevant index
computation uses the Atiyah—Singer index theorem for families and will be car-
ried out in Section 4.4. The next section explains the necessary background
about the equivariant Euler class.

4.2 The equivariant Euler class

We begin with some recollections about the equivariant Euler class (see [8] for
details). Let X be a compact oriented smooth manifold, £ — X be an oriented
real vector bundle of rank k, and G be a compact Lie group which acts on X
and E by orientation preserving diffeomorphisms such that the projection is
equivariant and the action is linear on the fibres. We shall think of the action of
G on X and FE as a right action and denote it by (z,¢e) — (g*z, g*e) for e € E,.
The corresponding covariant action will be denoted by g.z := (97 1)*z and the
infinitesimal (contravariant) action of £ € g := Lie(G) by {*z € T, X. An
equivariant Thom form is a dg-closed equivariant differential form 7q(E) €
QF (E) with compact support and fibre integral one. The equivariant Euler
class eq(E) € HE(X) is the cohomology class of the pullback of an equivariant
Thom form under the zero section. We will sometimes use the same notation
for the Euler class and a form representing it. The Thom class and the Euler
class are multiplicative under direct sum.

Now suppose that FE is a rank n complex vector bundle and the action of G is
complex linear on the fibres. Then an explicit representative of the equivariant
Euler class can be constructed as follows. Fix a G-invariant Hermitian metric
on E and let P — X denote the unitary frame bundle of E. This bundle
carries a right action of U(n) and a left action of G, and these two action
commute. Let X; € Vect(P) denote the infinitesimal (covariant) action of
& € g. More precisely a point p € P, of the fibre over x € X is a unitary
vector space isomorphism p : C* — E, and the left action of g € G is given by
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9xp: C" = E, .. The vector field X, € Vect(P) is defined by

Xe(p) = 5 expli€)op € T,P.
t=0
The following formula was established in Berline-Vergne [5] and, in a more
general setting, in Berline-Getzler—Vergne [6]. In particular, the term A(X¢)
coincides with the generalized moment map in [5, 6]. We include a proof for the
sake of completeness.

Lemma 4.5. Let A € A(P) C QY(P,u(n)) be a G-invariant U(n)-connection
form on P. Then the G-equivariant Euler class of a complex vector bundle E
is represented by the dg-closed form

-~
2

ea(E, €) = det (%FA + A(Xg)) , (32)

where Fu € Q?(P,u(n)) denotes the curvature of A.

Proof. The right hand side in (32) is invariant and horizontal for the U(n)-action
and thus descends to a G-equivariant form on X. It is easy to check that this
form is dg-closed and hence represents an equivariant cohomology class.

To prove (32) we assume first that E = X x C" is a trivial bundle and
p: G — U(n) is a unitary representation of G. The homomorphism p defines
the covariant action of G on E and so

g*(z,2) = (g%z, p(g9) " 2)

for x € X, z € C", and g € G. The frame bundle of E is the product bundle
P := X x U(n) and the formula

Az,u(v,un) =1

for v € T, X, u € U(n) and n € u(n) defines a U(n)-connection form A €
QL(P,u(n)). This connection is G-invariant and flat. For £ € g the vector field
X¢ € Vect(P) is given by

Xe(z,u) = (0, p(§u)
and so

AXe(ou) = tp(u, det (5oACKe) ) = det (3-066))

Now a Thom form on E can be constructed as follows. For k = 0,...,n let
or : u(n) = Q2" 2K(C") be a polynomial map of degree k. It is shown in [8,
Lemma 5.5] that these polynomials can be chosen such that oo € Q2*(C") is
the standard volume form,

on(n) = det(in),
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and
Uvg)ok(n) = AN ory1(n)

for each k, where A € Q!(C") is the differential of the function z — |2|?/2 and
the vector field v, € Vect(C") is defined by v,(z) := nz for n € u(n). Now
choose functions f, : [0, 00) = [0, 00) with compact support such that fo(s) =0
fors <§and s > 1 and

fl::(s)+fk—1(s):07 fk(l):07

and

o) oo 1
k _ n—1 - -
/0 s"fo(s)ds =0, /0 $ Jo(s)ds = 2n—1Vol(S2n—1)

for 0 <k <n—2. Then

e AR O

and hence fi(s) =0 for s < § and k < n and

fr(s) =

1 1

10 = = T Vo) ~ @

Now a Thom form on £ = X x C™ is given by

n

7€) =Y full=l*/2)on(p(€)).

k=1

Its pullback under the zero section is given by

™

c6 () = 2 0)on (5(6) = det (3-0(6))

This proves the lemma in the case E = X x C". For general G-equivariant
bundles E — X the result follows from the (Naturality) axiom for the Euler class
and the fact that the pullback of E under the projection P — E is isomorphic
to the trivial bundle P x C". O

Remark 4.6. The formula of Lemma 4.5 can also be expressed as follows. Let
V be a G-equivariant Hermitian connection on E and, for £ € g, denote by
¢V € Q°(X,End(E)) the covariant infinitesimal action defined by

Ve:=V, exp(t&) «eli=o

Then the Euler class is given by

eq(E, &) = det (%FV + %gv) )
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Example 4.7. Let £ — X be a rank n complex vector bundle. Suppose G
acts trivially on X and that the covariant action on the fibres is given by a
homomorphism p : G = S*, given by

plexp(§)) = e T8,

where w € g*. Then, for every G-invariant Hermitian connection V on E,
the endomorphism ¢V € Q°(X,End(E)) is given by multiplication with the
imaginary number p(£). Hence

. . n
i i -
E,§)=det [ —FY + —p = " (E).
ca(5,€) = det (3-F7 + 1-5(6)) > ey ey )
We wish to invert the equivariant Euler class. This requires an extension of
the equivariant cohomology ring of X.
Standing assumption. In the following X is a smooth manifold, G is a

compact Lie group acting on X, and Ty C G is an oriented circle which is
contained in the center of G and acts trivially on X.

Denote the quotient group by Go := G/T;. Denote by e; the positive integral
generator of the Lie algebra t; := Lie(T1). Let n be an integer. A Tj-rational
G-equivariant differential form of degree n on X is a Laurent series in

2z~ of the form ‘
alé,z) = Y (6,
i<n/2

with coefficients a; € Qg_Qj (X), that satisfies the following conditions.

(i) For every £ € g and every = € X the Laurent series >, 5 @, (€)z27 is a
rational function on C with values in the complex vector space A*T; X ® C.
(ii) For every t € R we have a(&,t + z) = a(§ + te, z). Equivalently,

awerte)= ¥ (Dot k2o (53)

k<j<n/2

aerten= Y (D7 )a@cort k<o @)
k<j<0

Denote by QF, 7, (X) the space of Tj-rational G-equivariant differential forms
on X. This is a chain complex with respect to the usual equivariant differential
daa(§) = da(€) + t(X¢)a(€). The cohomology of this chain complex will be
denoted by H¢ 7, (X).

Let @ = 3 ;27 € Qf r,(X). Then a_1(§ +ter) = a_1(§). In other
words, the coefficient of 2! descends to a Gg-equivariant cohomology class on
X. Minus this coefficient is called the residue at infinity of o and will be
denoted by

1

Resy (@) := —a_1(&) = ~9. a(f,z)dz € QE?(X)
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The residue at infinity descends to a homomorphism
i +2
Reseo : HG 1, (X) — Hg, ~(X).

Remark 4.8. There is an obvious inclusion Qg (X) — Qf 1, (X) whose image
is the subspace of polynomials a = } o<, /2 a2l € Q% 1, (X). Condition (33)
shows that any such form is uniquely determined by oy € Q% (X) and vice versa.
The inclusion Q¢ (X) < QF 7, (X) induces an inclusion in cohomology

HG(X) = Hg 1, (X)
whose left inverse is induced by the projection a = Zj a;jzd = ag.

Let E — X be a G-equivariant complex vector bundle of rank ng. The
subgroup T3 acts on E with weight

wg = det (L[)w(el)> € Z.
27

Here the homomorphism p, : Ty — Aut(E,) denotes the action on the fiber
over ¢ and p; : t; — End(E;) denotes the corresponding Lie algebra homomor-
phism. The weight wg is independent of . Think of the equivariant Euler class
as a polynomial map g — Q*(X). By Lemma 4.5, the G-equivariant Chern
classes ¢;(E) € Hé’ (X) are the coefficients of 2"#~7 in the polynomial

ec(E, €+ zey) =: ch(E, E)Z"E*j.
j=0

In particular, co(E,§) = wg. If wg # 0 then the equivariant Euler class
eq € H7""(X) has a well defined inverse 1/eg in the T}-rational G-equivariant
cohomology group H(;fTT:E (X). To see this, expand the rational function z
1/ec(€ + ze1) into a Laurent series in z~! which converges near infinity:

k
ec(E,&+ ze1) wgZ"e —~ = VE

=: Z s;i(E,&)z et
=0

The coefficients s;(E) € HZ(X) of this Laurent series are called the equi-
variant Segre classes of E. They are uniquely determined by the equation
1, ifk=0,
i+j=k
In particular, the degree zero Segre class is so(E,€) = 1/wg. If F - X is
another G-equivariant complex vector bundle of rank nr with weight wg, then
the quotient

eqg(F np—2ng
ca(F 0 F) = AT € R (X)
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depends only on the equivariant K-theory class FF © E € Kg(X). It is only
defined for equivariant K-theory classes F© F whose denominator E has nonzero
weight.

4.3 Localization

Let X be an orientable smooth manifold, G = T be a torus acting on X, and
Ty C T be an oriented circle that acts trivially on X. We assume that the
quotient group Tp := T/T: acts on X with finite isotropy. Denote the Lie
algebras by t := Lie(T), t; := Lie(T1), and ty := t/t; := Lie(Tp), let A C ¢t
be the integer lattice, and denote by e; € t; N A the positive generator of the
sublattice. Throughout we denote m := dim X — dim Tj.

Let £ -+ X and F — X be complex Hilbert space bundles on which T acts
complex linearly such that the projections are equivariant. Assume that T} acts
with finite isotropy outside the zero sections of £ and F. Let

Dy :E — Fu

be a smooth family of G-equivariant complex linear Fredholm operators of com-
plex numerical index

index(D) := dim® ker D, — dim® coker D,.
Denote by

IND(D) := | J {x} x ker D, © coker D, € Ka(X)
zeX

the topological index of D, understood as a G-equivariant K-theory class. Con-
sider the following G-moduli problem. The Hilbert manifold B is given by

Bi={(@e)|ze X ec&, el =1},
the Hilbert space bundle H — B has fibre
Hpe := Fo
over (z,e) € B, and the section S : B — H is given by
S(z,e) := Dye.
The zero set of this section is the kernel manifold
M := {(z,e) € B| Dye =0}.

Denote by 7 : B — X the obvious projection. The equivariant K-theory class
IND(D) € K (X) has a nonzero weight (for the Tj-action) and hence carries
an equivariant Euler class

eG(IN'D(D)) € H. 1, (X).
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in the T}-rational T-equivariant cohomology of X. The following theorem gen-
eralizes the localization formula for circle actions in [8]. The assertion requires
a choice of orientations.

Remark 4.9. Orientations of X/Ty and T; determine an orientation of the
T-moduli problem (B, H,S) as follows. By choosing local trivializations we may
assume that £ and F are (complex) Hilbert spaces equipped with a T-action
and so D is a T-equivariant smooth map X — £(&,F) : © = D,, which assigns
a (complex linear) Fredholm operator D, to every z € X. In this case the
vertical differential of S at a point (z,e) € M is an operator

DS(z,e) : {(2,8) € T, X x £|(é,e) =0} = F.

It is given by )
DS(z,e)(Z,€) = Dyé + D(%)e,

where D(#)e is defined as the derivative of the path R — F : t — Dexp, (tz)€ at
t = 0. Now suppose that D, is surjective. Then a positive basis of the kernel
of DS(z,e) is defined as follows. Pick a positive basis Z1,..., 2, of TpX/tox
and choose é;,...,én € & such that D,é; + D(&;)e = 0 and (&;,e) = 0 for
i = 1,...,m. Next choose a positive basis €41, .,Emt2n of the complex
vector space ker D, such that é,,42,—1 is a positive tangent vector of the T7-
orbit of e and é,, 12, = e. Then the vectors (&;,€;) for ¢ = 1,...,m and the
vectors (0,€;) for j =m+1,...,m + 2n — 2 are declared to be a positive basis
of ker DS(z,e)/t- (z,e). This definition of the orientation is independent of the
choices. If D, is not surjective, one can apply the same construction to the
kernel of a suitably augmented operator. We emphasize that the orientation
described here agrees with the convention of Remark 4.2.

Theorem 4.10. Let m := dim X — dim Ty and n := index(D). Fiz any ori-
entation of X /Ty, let Ty be oriented by ey, and orient M/T as in Remark 4.9.

Then
a
o= Resoo [ ——2 36
/M/T” /X/To s (eTaND(D)) (36)

for every a € HIT?"2(X).

The integral on the left is understood as the Euler class of the T-moduli prob-
lem (B, H, S) evaluated on 7*« (see [8]). The integrand on the right is the residue
at infinity of the 7j-rational T-equivariant cohomology class a/er(ZND(D)) €
H:?f;f (X). It is a Tp equivariant cohomology class in Hf} (X) and can be inte-
grated over X /Ty because Ty acts on X with finite isotropy.

Remark 4.11. Theorem 4.10 continues to hold if we replace X by a Tp-moduli
problem (By,&,Sp) as in [8] and £ and F by Hilbert space bundles over By.
Then B is the unit sphere bundle in &, H . = Eop © Fo, S(b, e) = (So(b), Dpe),
and the right hand side of (36) is understood in terms of the Euler class of
(Bo, &0, So)- To prove this, choose a finite dimensional reduction of (By, &g, So)
and note that (36) continues to hold for noncompact manifolds X and compactly
supported T-equivariant differential forms a.
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Proof of Theorem 4.10. The proof has three steps.

Step 1. We may assume without loss of generality that £ is finite dimensional
and admits an equivariant trivialization and that F = 0.

The reduction to the finite dimensional case is proved as in [8, Theorem 11.1].
Hence assume F = £ and F = F are finite dimensional. By Proposition C.1,
there exists a T-equivariant complex vector bundle E' — X such that E® E' is
equivariantly isomorphic to X x V for some complex T-representation V. Since
T is a torus there exists a homomorphism T — S! whose restriction to T} has
nonzero degree. Multiplying the action of T' on E’ with a suitable power of this
homomorphism we may assume that the action of 77 on E' has nonzero weight.
Now let B’ C E @ E' be the unit sphere bundle, H' — B’ be the pullback of
F @ E' under the projection 7’ : B’ = X, and §' : B' — H' be given by

S'(z,e,€') := (z, Dye,e').

Then the inclusion B — B’ : (z,¢) — (z,e,0) defines a morphism of T-moduli
problems. Hence, assuming the assertion for E replaced by X xV and F' replaced
by the zero bundle, we obtain

/ 7T*Oé — X]B,H,S(ﬂ_*a)
M/T

]B’]HI’S’( )
7r “a Aer(H')

X
= / m*aNT"er(F® E')
I/T
a/\eT(F@E’)>
- Resoo | ————+—
/X/To ( er(E® E')

~ [ Fe (rvmmy )

Here the second equation uses the (Naturality) axiom for the Euler class, the
third equation uses the (Thom class) axiom (see [8]), the fourth equation uses
the fact that H' is the pullback of FF @ E’, and the fifth equation uses the
hypothesis that the result holds when E is a trivial bundle and F' = 0.

Step 2. Suppose E = L = X x C is a trivial line bundle and denote by B C L
the unit circle bundle. Then for every a = .., ;2" € Qfp (X), new

minus sign
a
™oy = — Reseo | —— ). 37
/B/T 0 /X/To (eT(L)) 37)

Let p: T — S' denote the covariant action of T' on the fibres of L and suppose
that T} acts on the fibers with weight £. Then p(e1) = —2mif and, by Lemma 4.5,

(&)
27

er(L,&+ zey) = bz + —==
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Each form a; € Q' ~*(X) is equivariantly closed and hence represents a T-
equivariant cohomology class on X. Now

a(f,z) _ aj(f) i—1 1
ZIEENE PR Fes
a(é) ;- ip(€)\"
=2 Z(‘m)-
i<m/2 k>0

The residue at infinity is minus the coefficient of z~! in this power series. Thus

Res (055 ) = Yoo (—%) (39)

By (33), the right hand side is invariant under the shift £ — £ + te; and hence
descends to a Tp-equivariant differential form on X.

To compute the integral of 7*ag over B/T, we denote the elements of B =
X x S! by (z,u), where € X and u € S'. Then u~'du is the standard
U(1)-connection form on B. Define 4; € Q'(B,t;) by

v ldu
27l

A1 = - e].

This form is T-invariant and satisfies A;(0,—p(e1)z) = (ip(e1)/2nl)er = ey.
Hence it is a T-invariant Tj-connection as in [8], where we regard the action by
p~ ! as the contravariant action on B. The infinitesimal covariant action of £ € t
on B is given by X¢(z,u) = (0, p(§)u). Hence the T-equivariant curvature of
A; is the 2-form Fy, v € Q%.(B,t) given by

ip(§)
ot Y

Fa,7(8) = Fa, + &+ A1(Xe) =€ —

(see [8, Section 3]). Replacing & by F4, () in the equivariant differential form
™oy € Q7 (B) we obtain the T;-basic T-equivariant differential form

wrain, = a0 (6~ 29e) = a0 (—;’7(3)

Jj=0

on B = X x S!. The projection 7 : B — X induces a Ty-equivariant diffeomor-
phism from B/T; to X, however, each point in B has an isotropy subgroup of
order £ under the action of T;. Moreover, the diffeomorphism is orientation pre-
serving if and only if £ is positive. (If &1, ..., &y, is a positive basis of T, X /Ty and
u € S' then, according to Remark 4.9, the basis (£1,0), ..., (§m,0) of Ty, B/T
is positive if and only if the vectors (&1,0), ..., (&€m,0), (0, p(e1)u), (0,u) form a
positive basis of T, X/To x C. Since p(e;) = —2mil, this is the case if and only
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if £ is positive.) Hence

fopmeo= [, oo =72 [ o (55

and so the assertion of Step 2 follows from (38).

Step 3. We prove the theorem.

By Step 1, we may assume without loss of generality that F =0and £ = X xV
for some unitary T-representation V. Since T is a torus, we may assume that
V = C" and that T acts diagonally by homomorphisms p, : T — S for
v =1,...,n. Denote by L, := X x C the T-equivariant bundle where T acts
by p, on the fibre. Consider the T-moduli problem (B, H, S) given by

B:= X x 8§71, H=r"Li® --®n*L,_1,
where 7 : B — X denotes the projection, and
S(z,21,---y20) = (21, Zn_1)-

Then the T-equivariant Euler class of H is the pullback under 7 of the Euler
classof i ®---® L1, i.e.

er(H) =7n*er(Li) AN---AN7*er(Lp—1).

Let a € Q72" 2(X) and define 8 € Q7. (X) by
T VAT

— @ , m—2j

Since T acts on B with finite isotropy, we can represent the equivariant coho-
mology class ep(H) € H2"?(B) by a T-invariant and horizontal differential
form 7y € Q?"2(B) (see [8, Theorem 3.8]). With such a representative the
identity 7*a = 7B A er(H) in Qf 5, (X) takes the form 7*a = 7*8y A TH.
Now S is transverse to the zero section and S~1(0) is the unit sphere bundle
B, :=BNL,in L,. Hence it follows from the (Transversality) axiom for the
Euler class in [8] that

/ T = / " Bo N TH = / ™ B = —/ Resso (L> .
B/T B/T B, /T X/To er(Ln)

The last equation follows from Step 2. Since 8/er(L,) = a/er(E), this proves
the theorem. O
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4.4 The index formula

We return to the setting of Section 3. Recall that P — X. is a principal T-bundle
and L, = P x,, C— X forv=1,...,n, Given an index set I C {1,...,n} as
in Section 3 we consider the principal Gyo-bundle

Pr = A(P) x @ Q%2, L,) = Br:=Pr/Go

vel

where the based gauge group Gy acts by g*(4,u,) = (A + g~ 'dg, p,(g9)"tu,).

It also acts on Ly, by g°[p,¢] = [pg(=)1,C] = p, puy(9(2)) '], where 2 =
m(p) € X. For vy ¢ I we consider the universal line bundle

_ P] X L,,o
Go

The torus T acts on " by h*[A,u,,p,(] = [4, pu (k) us,p, pu, (h) (]

For x = [A,u] € By let us denote by L% the restriction of L” to {x} x X.
This restriction is equipped with a natural connection (induced by A) and hence
with a Cauchy-Riemann operator

LYo : —)BIXE.

5,’: : QO(E,]L;) — QO*I(E,]L;).
Next consider the universal vector bundle

E::@L"

vl
and its restrictions Ex to {x} x X. The Cauchy-Riemann operators
Oy : Q°(,Ey) = Q%' (3, Ex)

form a family of Fredholm operators over By between appropriate Hilbert space
completions & of (X, Ey) and Fy of %1 (3, E4). These operators are complex
linear and equivariant with respect to the action of T'.

As in Section 3 we denote by Tj the identity component of the isotropy
subgroup of the subspace C! := {z € C" |z, =0 for v ¢ I} and assume that
T is a circle. This circle acts trivially on the base By and with finite isotropy
outside of the zero sections of £ and F. The quotient group To := T/T1 acts
with finite isotropy on the moduli space Mg C Br of solutions of equation (13).
Hence we are in the situation of Theorem 4.10. The relevant dimensions are

dim M —dimT = (n—dimT)(2—29)+2) d, =: 2m,
v=1
dim Mo —dimTy, = (|I| —dimTo)(2 - 29) + 2> _d, +2g,
vel

index(9) = Z(du +1-9),

vl
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where d,, denotes the first Chern number of the bundle L, — X. Note that
the kernel manifold of d is precisely the space Sy of solutions of equations (17).
Hence, by Theorem 4.10 and Remark 4.11, we have

/po P /MO gy e (eT(IA(;D(é)))

- /MO/TO Heseo (H,,¢1 GT(;ND@"))) ' (39)

Lemma 4.12. Denote by mg : Hf 1, (A/Go) — H7. 7, (Br) the homomorphism
induced by the projection o : By = A/Go. Then, for every v ¢ I,

er(IND(@) = 7w, T exp (=25 ) € Hi, (B1).

Proof of Theorem 3.1. By Proposition 4.1 and (39) we have

<I>§”g’°+”1(a)—<I>§”g’°_5”(a) = / ™a
’ ’ Po/T

- /MO/TO Hesoo (Hu¢1 eT(;ND(gu)))

= / Moo,
My /To
where
1 a(é+ zer) 0,
= ——|d
*(t) 2mi 7{ [Logr(wo, & + zer)dti=o P (;ﬂ (W, + Zel)) :
(by Lemma 4.12). This proves the theorem. O

Proof of Lemma 4.12. Note first that L.V is the pullback under the projection
mo X id : By x ¥ = A/Go x T of the bundle
L,
o= A g xS,
Go

and ZN'D(0") € Kr(Br) is the pullback under mo of the index bundle of the
Cauchy-Riemann operators on £”. The torus T acts trivially on A/Gy x ¥ and
by p, on the fibres of £¥. Hence by Example 4.7,

er(IND@”, L)) = Y (w,, )%+ 7979, (IN'D(8”, £")). (40)

Jj=0

Hence it remains to compute the ordinary Chern classes of the K-theory class
IND(0”,L"). The Atiyah-Singer index theorem for families asserts that

ch(IND(8”, £¥)) = / td(TS)ch(LY) € H*(A/).
X
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(See [1, Theorem 4.3] and [2, Theorem 5.1].) Here ch and td denote the Chern
character and the Todd class, respectively. The Todd class of T is given by

td(TE) =14 (1 - g)o,

where o € H2(X;Z) denotes the positive generator. Thus our task at hand is
to compute the Chern character of the line bundle £¥. By Lemma 4.13 below,
the first Chern class of LY is given by

29

k
cl(ﬁ”) = d,,U' — ZZW,,jai A Tz'j.

i=1 j=1
From this we can compute ch(£"). Note that a; Ay = 0 whenever i’ =i+g
and is equal to zero otherwise. Hence

2

1 29 k g k
B E E Wy N T = —0A E E Wy i Wyt Tij N Titg,j
i=1 j=1 i=1 j,j'=1

= —oAQ,,

and all higher powers vanish. It follows that

2g k
Ch(ﬁu) =1+4+d,o— ZZW,,jai N Ti5 — oAQ,.

i=1 j=1

Applying the index theorem for families we obtain

h(IND@, L") = / td(TS)ch(LY)
z
29 k
= / (du+1—g)a—ZZW,,ja,-/\T,-j—a/\Q,,
x i=1 j=1
= dy+1—9g—Q,.

The last formula implies, by a standard algebraic argument, that
_ _ 1 _ .
a(IND(O”,L7)) = -Q,, ¢;i(IND(0”, L") = ﬁcl(IND(B”,E”))J.
Hence, by (40),

eT(IND(5V7£V)) — Z(Wwé—)dy-‘,—l_g—jiy)j

Jj20 Jt
Q
= (w,, )Tt 9ex (——") .
WO eR (T g
Since e7(ZND(0")) = nger(ZND(0”, L") the result follows. O
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Lemma 4.13. The first Chern class of LY is given by

a(l’)=d J—ZZW,,JQ,/\T”

i=1 j=1

Proof. Fix a reference connection 4y € A(P) and denote by Ay C A(P)
the set of connections A € A(P) that satisfy Fa4 = Vol(X)~!A(P)dvoly and
d*(A — Ag) = 0. The restricted gauge group Goo C Go(P) consists of all gauge
transformations g : ¥ — T that satisfy d*(g~'dg) = 0 and g(z¢) = 1. Identify
the quotient Ag/Goo with the standard torus T29* via the map

2g k
R29k Ag:t—= Ay := Ag + Z Ztijaiej.

i=1 j=1

For i and j let g;; € Ggo be the unique harmonic gauge transformation that
satisfies gi_jldgij = a4e; (and g;5(20) = 1). Then the restriction of £¥ to the
submanifold Ag/Goo x £ can be identified with the quotient R29% x L, /Z29%,
where m = {m;;} € Z?9* acts by

m (t,2,0) = (¢ +m,2, ]| pu(gi5(2)) 7).

A section is a map R?9% x ¥ — L, : (t,2) = s(t,z) = s4(2) € L, that satisfies

s(t+m,z) Hp,, 9i5(2)) "M s(t, 2), m € 7F,

A connection is given by the formula

d S —dAtSt“‘zzaa:t z]
v

i=1 j=1

An easy computation shows that the curvature of this connection is the 2-form
FYV € Q?(T?9* x ,+/—1R) given by

k

BE) -3 (Gt ) et

i=1 j=1

FV

1
=21/ —=1{w,, A(P)) \(j(;(z > E E 21V —1{wy, ej)a; A dt;j.
i=1 j=1

Since the first Chern class of of £” is represented by the 2-form /—1FV /2,
the result follows. U
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5 Computation of the genus zero invariants

Let Z denote the set of partitions
LU---Ul,={1,...,n}

that satisfy the (Dimension) condition in the introduction, i.e. for every j €
{1,...,k}, the subspace

E; :=span{w, |[ve L U---UL}Ct

has dimension j and w, ¢ E; for every v € I 1 U---UI}. It is now convenient to
fix an orientation of t. For every I = (I1,...,I};) € Z we introduce the iterated
residue ¢ = ¢"’I : S*(t*) — R by

I ZZ ej)
ol (a) : 2m ?{ %H,, - w,,,zjzjej)d —rdzy - da, (41)

where d, := (w,,)). Here the lattice vectors e1,...,e; € t form an oriented
integral basis of A such that the vectors ej,. .., e, are orthogonal to the span
of the vectors w, for v € [; U---UI;_; and 2 < j < k. These requirements
determine the e; up to a change e = te; + ZZ>J a;je;. The corresponding
coordinates £ = ) zje; = ) 2}e}; change by z; = £2;+ EK, a2 ] Since the e;
and the e} form oriented bases there is an even number of minus signs. It follows
from these observations and Remark 3.2 that the integral (41) is independent
of the choice of the e;.

Lemma 5.1. For every reqular value T of u there exists a collection of integers

{mr}1ez such that
(I>P, Z mI¢)\
IeT

for every A € A and every a € S*(t*). Moreover, given a path v connecting T
to t* \ im u, the coefficients my can be chosen to satisfy the following condition:
IfI =(L,...,It) €T is such that v does not intersect the hyperplane spanned
by the w, forve I; U---Uli_q, then my = 0.

Proof. Theorem 1.1 and induction over the dimension of T'. O

Remark 5.2. Fix an oriented basis ey, ..., e of t, let H, C C* be the hyper-
plane Ele (wy,ej)z, =0, and denote H := |J!_, H,. Then the right hand side
of (41) can be interpreted as the integral of the k-form

a(}C zje;) k(rk
o= dzy N+~ Ndz, € Q°(C°\ H
Wa, (2771')’“ H:L:l (Wu, Ezj'ej)<w"*)‘)+1 21 2k ( \ )
over a suitable homology class oy € Hy(C* \ H). Hence, by Lemma 5.1, there
is a locally constant map 7 + o(7) := ).y mr(7)o; which assigns to every
regular value of y a homology class o(7) € Hi(C* \ H) such that the invariant
®27(a) is equal to the integral of wy o over o(7) (for all X and a). It is an
interesting problem to study the map 7 — o (7) in more detail.
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Lemma 5.3. Forv =1,...,n letl, be integers and a,, b, be real numbers such
that a, #0. If >0, £, = —1 then

27”7{1_[ (avz +by) dz—Ha".

If Y20, €, < —1 then the integral is zero.

Proof. In the variable w := 1/z the integrand reads

ay & [ —dw I1,(av + byw)tdw
H (E +b") ( w? > - w2t by '

v

Since a,, # 0 the numerator is holomorphic near the origin. Hence the residue is
zero whenever 2+ " £, < 0 and is equal to [, a%* whenever 2+ ¢, =1. O

Lemma5.4. Let] € Z andey,...,e; be a positive basis of A such thate;, ..., ex
are orthogonal to w, forve L U---UILj_y (asin (41)). Let A € A and £ be an
n-tuple of nonnegative integers such that

ll=n—k+> dy,  dy:=(w,A\. (42)

If I € T\(¢) then

k

-1
=TT T e
j=1lvel;

Otherwise ¢X(w*) = 0.
Proof. The condition I € Z)(f) asserts that

>, —d,—1)=-1

vel;
for j = 1,...,k. Consider the integral over z;. The coefficient (w,,eg) of zj
in the linear map (z1,...,2r) — (Wu, >, zje;) is nonzero iff v € I;. So, by

Lemma, 5.3,

(W) = (H(Wwek)e”_d”_l)ﬁ

vely

7{ 7{1_[ 11 W"’Zzﬂ Tl g dy

j=1vel;

whenever 37 ;. (b, —d, —1) = —1. If }° ;. (b, —d, — 1) < —1 then the
integral over 2 is zero. Hence it follows by induction that ¢%(w‘) has the
required form whenever I € Z)(¢). If I ¢ Z,(£) then it follows from (42) that
Yer; (by —dy, — 1) < ~1 for some j and hence ¢ (w’) = 0. O
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Proof of Theorem 1.2. Assertion (i) follows from Lemmata 5.1 and 5.4.

We prove (ii). Let A € A, d, := (w,, ), £ be an n-tuple of nonnegative
integers, J C {1,...,n} be an index set such that {w, |v € J} is a basis of t*,
and assume that £, = d, for v € J and £, = d, 1 for v ¢ J. Then a partition I
belongs to Z»(¢) if and only if I € Z and I; N J consists of a single element for
each j. This follows from the fact that Eye 1;(lv —dy, —1) = —1 and that each
summand ¢, — d, — 1 equals 0 or —1.

Assume 7 ¢ C(J) = {3, c; MWy | 7y > 0}. We must prove that 7 (wt) =
0. To see this, we examine the set Z)(£). Since the set {w, |v € J} is linearly
independent it follows that, for each ordering J = {v1,..., v}, there exists a
unique partition I € Zx(¢) such that v; € I; for all j, and conversely, each
partition I € Z,(f) determines an ordering of J. Moreover, for every such
partition the hyperplane Wy := span{w, |v ¢ I} agrees with the hyperplane
Wy, = span{w, |v € J\ {vr}}. Hence the hyperplanes Wy for I € Z,(¢) are
precisely the supporting hyperplanes of C(J). Since 7 ¢ C(J), there exists a
straight line v connecting 7 to t*\ im g which misses the supporting hyperplanes
(this is true because C(J) is a cone over a simplex). Hence the coeflicients m
in Lemma, 5.1 can be chosen such that my = 0 for every I € Z,(£). This implies

that
oT(wh) = D mug(wh) =0.
IEI)\(Z)

The same argument shows that the invariant ®5'"(wt) for 7 € C(J) is indepen-
dent of 7.
Assume 7 € C(J). Fix an ordering J = {v1,...,v} and let I € Z,(€) be

the unique partition satisfying v; € I; for j =1,...,k. Choose an integer basis
ei,...,ex of t such that (w,,e;) =0 for v € ; U---I;_; and (w,,,e;) > 0.
Let 79 be a positive linear combination of w,,,...,w,,_,. Since the invariant

is independent of the choice of 7 € C(J), we may assume 7 = 79 + €71, where
T1 := W, . Since the invariant is zero outside of C(J), we have

oLToTE (wh) =0.
Hence, by Theorem 1.1,

1 _
(I)/P\y‘r(wf) — @PO,TO H

<WVk ) ek

~.E

Now assertion (ii) follows by induction.
We prove (iii). Assume || =n—k+>.._, d, (otherwise both invariants are
zero). Since
b, —d,—1=40,+d,— (d, +d,) —

for every v we have
Tl) =T (L+d),  $i(w') = ¢h 0 (whHT)

for every I € 7 (see Lemma 5.4). Hence (iii) follows from Lemma 5.1.
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To prove (iv) and (v) we introduce the following notation. For every A € A
and every n-tuple £ of nonnegative integers define the number

INGES Z max{{, —d, — 1,0} + Z l,, dy = (Wy, ).

d, 20 d,<-1

Recall that J; := {v|£, < d,}. We prove (iv) and (v) in five steps.

Step 1. Each w' can be expressed as a linear combination of classes w!' that
satisfy Jpo C Jy and either Ty(£') = 0 or £, < max{d, + 1,0} for all v.

We prove Step 1 by induction over ¢ (£). If tx(€) = 0 then £, < max{d,+1,0} for
all v. Assume ) (£) > 0 and, by induction, that the claim has been established
for every ¢' that satisfies tx(¢') < tx(¢). If Z)(¢) = @ there is nothing to prove.
Hence assume 7 () # 0. Since ¢x(£) > O there is a vy such that £,, > 0 and
by > dy, + 1. Let I = (I,..., 1) € Ix(£). Since 3, cf (by —dy —1) = —1 for
every j there are indices v; € I; for j = 1,...,k such that £,;, < d,,. By the
(Dimension) condition, the vectors w,,,...,w,, form a basis of t*. Hence w,,
can be expressed as a linear combination of the vectors w,,. Since £,, > 0 we can
replace one of the factors w,, in w’ by this linear combination. This expresses
w! as a linear combination of monomials of the form w¢ with 15(¢') < 1x(£) and
Jo C Ji. Hence the assertion for w' follows from the induction hypothesis.

Step 2. If ¢, <d, + 1 for every v and Ix(£) # 0 then £ satisfies (ii).

Let I € Z)(¢). Then the formula Zyelj (¢, —d, — 1) = —1 shows that, for each
J, there is precisely one index v; € I; such that £,, = d,; and £, = d, + 1 for
v € I; \ {v;}. Since the vectors w,,, ..., w,, form a basis of t*, it follows that ¢
satisfies (ii) with J = {v1,..., v}

Step 3. We prove ().

Assume d, > —1 for every v. Then, by Step 1, each w¢ € S™*(t*) is a linear
combination of classes w’ that satisfy either Z(¢') = @ or ¢!, < d, + 1 for all v.
Hence the assertion follows from Step 2.

Step 4. (v) holds under the assumption d, > —1 for all v.

We argue indirectly and assume that ®5°7 (w*) # 0. Then the linear combination
in Step 1 must contain a term w that satisfies Jy C Jp, and %7 (w’) # 0.
The latter implies that Z,(¢') # 0 and so £, < d,, + 1 for all v. Hence, by Step 2,
¢ satisfies (ii) with J = Jy = {v|€, < d,}. Since 7 (w') # 0, it follows
from (ii) that 7 € C(Jp) C C(Jy).

Step 5. We prove (v).

Suppose ®,(w’) # 0. Choose X such that d, := (w,,\') > max{0,—1—d,}
for all v. Then, by (iii), we have ®yx (WT?) = &, (w?) # 0. Hence, by Step 4,
T € C(J), where J :={v|l, +d, < (w,,\+ X} = {v|{, < d,}. This proves

the theorem. O
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6 Quantum cohomology

Let 7 be a regular value of p. Throughout this section we assume that T acts
freely on p~1(7). Equivalently, if J C {1,...,n} is an index set consisting of
k elements such that 7 € C(J), then 7 belongs to the interior of C(J) and the
determinant of the tuple {w, |v € J} is equal to plus or minus one. Under this
assumption the symplectic quotient

N = MJT(r) = =" (7)/T

is a Kéhler manifold. We denote by H*(M), respectively H, (M), the quotients
of the integral (co)homology groups by their torsion subgroups. By Kirwan’s

theorem, the homomorphism H*(BT) — H*(M) is surjective and the homo-
morphism H,(M) — H,(BT) is injective. For every v denote by w, € H2(M)
the image of the cohomology class w, € A* = H?(BT) under the Kirwan ho-
momorphism H?(BT) — H2(M). By Theorem E.4, the cohomology class W,
vanishes whenever 7 ¢ C({1,...,n} \ {v}). The remaining classes w, generate
H?(M). Hence the image of the homomorphism Hy(M) — Ho(BT) = A is the
subgroup

A(r)={ e AT ¢ C{L,...,n}\ {v}) = (w,,\) =0}.

Recall the definition of the inverse isomorphism A(7) — Ho(M) : A — X and
the effective cone Aegr(7) C A(T)

Aer(T) ;== {X € A(7) | (7',A) > 0 for all 7' € C(7)},
where C(7) denotes the chamber of 7. Note that
(',A\) >0 for X € Aer(7) \ {0}, 7' € C(7).
Denote by Deg(7) C Z™ the cone
Deit (1) := {({(W1,A), .-, (Wn; A)) [ A € Aerr(7) } -

Note that the map Aeg(7) — Deg(7) is a bijection. We denote the inverse
by Desr(1) = Aest(7) : d = Ag. We emphasize that Deg(7) is not necessarily
contained in the positive quadrant of Z".

Let us now consider the vector

T = ZW,,. (43)
v=1

(We still assume that T acts freely on p~1(7).) Then M is a monotone sym-
plectic manifold (see Lemma E.3). The genus zero Gromov-Witten invariants
of M with fixed marked points in a homology class A € Ho(M) are denoted by

GWM . H*(NI) x --- x H*(M) — Z.
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The number of arguments will in each case be clear from the context. For
an n-tuple £ = ({1,...,£,) of nonnegative integers and a cohomology class
a € H*(M) we abbreviate

GWY (&*,a) := GWY (F1, .o, Wiy e ey Wiy v e, Wi, @),

where each argument W, occurs £, times. Since the Gromov-—Witten invariants
are invariant under symplectic deformation, we have

A€ A7)\ Aer(7) = GwW{=o

Lemma 6.1. Let 7 := Y ) | w,, suppose that T acts freely on u= (1), and
assume that the minimal Chern number N of M is greater that one. Then for
every d € Deg(T), every X\ € A(7), and every & € H*(M), we have

aW¥ (w7, a) = GWIL 5 (%7, @), (44)
where the n-tuples d and d= are defined by

{ d,, ifd, >0, P { —d,, ifd, <0,

d+ — —
) 0, ifd, <0, v 0, ifd,>0.

v

Proof. Let a:= w* for an n-tuple £ of nonnegative integers satisfying
€| =n—k+ (r,A) — |d*]|.

By Theorem 1.2 (iii), with A replaced by A — Ag, A’ = A4, and £ replaced by
£+ d—, we have
q)f{’T(w‘#_H) (I)i’— d( d_-HZ)‘ (45)

Hence it follows from [10, Theorem A] and the fact that N > 1 (see equation (3)
in the introduction) that

V(= *(dT Vi —x(d™
GWY (w7 F0) = GWYL 5 (w17 +D). (46)

Now the gluing theorem for the Gromov—Witten invariants with fixed marked
points (see [13]) asserts that

GWM( *d+7v—V€) — GWM(—*(d++£))
33 GWiL (w7 ) GWY (e, ),

i AN£0

where the second sum is over all lattice vectors A" € A¢g(7)\{0}. Hence, by (46),

GWM( xdt —l) GWM ( *d~ ,V_Vl) (47)
=3 > GWil(er,w) (GW&” 55, e) = GWI 5 (! ey) )
i AN#£0
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Note that in each summand on the right we have

Sdeg(e) = n—k+(rA—X)—|d*
< n—k+(r,\)—|d|
= .
Hence the assertion follows from (47) by induction over |£|. O

Remark. Let 7, M be as in Lemma 6.1 and A € Aeg(7) such that (w,,\) > 0
for every v. Then it follows from Lemma 6.1 with d,, := (w,, A) and @ := PD(pt)
that GW%I # 0. Hence the homology class A € Hy(M) can be represented by a
holomorphic stable map of genus zero.

As in the introduction, let R be any graded commutative algebra (over the
reals) with unit which is equipped with a homomorphism

Aeg(T) > R: A ¢
from the additive semigroup Aeg(7) to the multiplicative semigroup R such that
deg(q*) = 2(r, \).
The most important example is the ring

R:R[qla"'aqkaql_la"'aqlzl]

of polynomials with real coefficients in the variables ¢; and qj_l. To obtain the
homomorphism choose a basis e, ..., e of A, define the grading by deg(g;) =
> {wu,ej), and the map A — ¢* by

k k
A.
a7 :=qu7, A:Z/\jej.
j=1 j=1

With a more careful choice of the basis one can take R = R|g,...,q]. Other
possibilities are the polynomial ring R = R[g¢] in one variable, the ring of poly-
nomials in ¢ and ¢~ !, or the ring of Laurent series in ¢q. In these cases one can
choose ¢ to have degree two and define ¢* := ¢{™*). The simplest example is
R = R with the constant map A — ¢* := 1, but then the grading has to be
reduced modulo 2N, where N is the minimal Chern number.

Given a graded algebra R as above define the quantum cohomology ring
QH*(M;R) as the tensor product

QH*(M;R) := H*(M;R)® R

(of vector spaces over the reals). Thus an element of QH™(M; R) is a finite sum
@ =3, cg @rr such that deg(a,) + deg(r) = m for all r. The ring structure is
defined by

) . Myt =1 = \=%. .11 X
o xa = E E E GWy (ag, apn, €)eir'r"q”,

i AEAegs(T) T,
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where the &; form a basis of H*(M) and the & denote the dual basis with
respect to the cup product pairing (see [13]).

Corollary 6.2. Let 7:= )., | w,, suppose that T acts freely on p='(7), and
assume that the minimal Chern number N of M is greater that one. Then

W*d+ *d” Aq

for every d € Degg(T).

Proof. By the gluing theorem for the Gromov-Witten invariants (see [13]), we
have

= Y ewl (w7 &)elq

1A
_ M —xd” = \z* A
= Y GWIL (v eerg
T,A

— W*d_ qu .

The second equality follows from Lemma 6.1. O

Proof of Theorem 1.3. We prove that the homomorphism (4) is surjective. Note
that there is an obvious inclusion H*(M) — QH*(M;R) : a ~ al, where
1 denotes the unit in R. Throughout we identify H*(M) with its image in
QH*(M;R) under this homomorphism. Since (4) is a homomorphism of R-
modules, it suffices to prove that every class in H*(M) belongs to the image
of (4). We prove this by induction over the degree. If @ € H°(M) then &
obviously belongs to the image of (4). Hence let deg(a) = 2¢ > 0 and assume,
by induction, that every class in H*(M) of degree less than 2¢ belongs to the
image of (4). By Kirwan’s theorem, the class @ is a linear combination of classes
of the form w,, - --w,,. Let p(uy,...,u,) be the same linear combination of the
polynomials u,, - - - u,,. Then the image of p(u) under the homomorphism differs

from @ by a class of the form

f= Z Brd*, deg(By) = 2¢ — 2(1, A) < 2.
A#0

Here the sum is over all A\ € A (7) that satisfy (7,A) > 0. Hence, by the
induction hypothesis, every (y in this sum belongs to the image of (4), and so
does the class Gxg*. Hence 3 belongs to the image of (4), and so does a.

Let Jo C Rlu,...,un] be the kernel of (4). Then the linear polynomial
>, My belongs to Jo whenever > n,w, = 0. Moreover, by Corollary 6.2,
the polynomial u?" — ¢*u?” belongs to Jo whenever A € Acg(r) and df =
max{+(w,,A),0}. Hence J C Jo.

We prove that Jo C J. Define the classes @, € H*(M), for n-tuples £ of
nonnegative integers and lattice vectors A € Aeg(7) with 0 < (7, A) < |¢|, by

wrt = wl + Z g, deg(ay,) = 2/¢| — 2(r, \).
AEAeff(T)\{O}
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For N € Z denote by Jo(NN) the set of polynomials p € Jy of the form

p(ut, ..., u,) = Z rout, (48)

[eI<N

where the sum is over all n-tuples £ = (¢1,...,£,) of nonnegative integers sat-
isfying |¢| < N. We prove by induction on N that Jo(N) C J. For N < 0
this is obvious because Jo(N) = {0}. Let N > 0 and assume by induction that
Jo(N —1) C J. Let p € Jp(N) be a polynomial of the form (48). Since p € Jo

we have
0= E rew*t = E whre + E E O_ze,,\wq)‘-
) ) £ A

This identity splits up into

0= Z'I‘zv_vl-i—z Z @g,,\’r'gq’\, 7=0,...,N.

~ &
=g >3 0 21e-

Since ry = 0 for |¢| > N, we have

Z T‘[We =0.

=Y

Choose a basis p1, . . ., pm of the vector space span{r; | |{| = N} C R and express
each ry in this basis, i.e.

m
re= Zaeim, ag €ER, (| = N.
=1

Then

This means that the polynomials

— £ -
Pio(U1, .-+, Up) = E agu’, i=1,...,m,
|e|=N

belong to the kernel Z C Rluq,...,u,] of the homomorphism (59) in Theo-
rem E.4. Hence they can be expressed in the form

pio = sz'jofj;
i

where f; € Rluq,...,uy], and the p;jo are taken from the set of generators of Z
in Theorem E.5. Thus each p;;o satisfies one of the following conditions.

(a) pijo(u) = 3, nyuy, where 3, 1w, =0.
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(b) pijo(u) = uy, where Ay, = 0.

(¢) pijo(u) = u?", where d € Degr(7) \ {0}

In cases (a) and (b) define p;; := pijo € J. In the case (c) it follows from the
definition of J that there is a generator p;; € J of the form

piiw) =u” —Put,  pow) =u?,  deDea(r)\{0}.

Define p € J by
P(u) := Z Z pipij (u) f; (uw).

i=1 j

Since J C Jp we have p— p € Jy. Since

m m m
DY pipijo(w)fi(w) =) pipio(uw) =Y Y piagu’ = Y e,
=1 j i=1 i=1 |(|=N [(|=N

the leading terms cancel in p — p and hence p — p € Jo(N — 1) C J. Hence
p € J. This completes the induction and the proof of the theorem. O

Example 6.3. This example shows that in the definition of the ideal J it may
not suffice to consider vectors A € Aeg(7) such that the integers d, := (w,, A)
are all nonnegative. Suppose the 2-torus T' = T? acts on C® with weight vectors

w1 = (170)) Wa = (151)7 W3 = Wyqg = W5 = (OJ 1)

The symplectic quotient M at the parameter 7 := w; + --- + ws = (2,4) is a
smooth monotone toric 3-fold with minimal Chern number N = 2. The effective
cone is given by

Aeﬁ‘(T) = {(/\1,)\2) S ZZ|)\2 >0, M+ A > 0}

Tt is the convex cone spanned by the vectors e := (1,0) with d = (1,1,0,0,0) and
e’ =(—1,1) withd' = (-1,0,1,1,1). For the quantum cohomology let us choose
the polynomial ring R := R[qy, ¢2], graded by deg(q1) = deg(gz) = 4, and the
homomorphism ¢* := q{\1+’\2 q2’\2. Thus ¢1, ¢ correspond to the generators e, e’

of Aeg(7). Then the ideal J C Rlui,...,us,q1, g2] is generated by the relations
Uz = U4 =Us = Up — UL, UiUz =G,  UslgUs = Ui (49)

If one considers only vectors A € Aew(7) with nonnegative degrees d, := (wy, A)
then one has to replace the last relation in (49) by usugusus = ¢1¢2 and obtains
a strictly smaller ideal.
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A G-moduli problems

In this appendix we summarize results from [8] that are used in this paper.

Definition A.1. Let G be a compact Lie group. A G-moduli problem is a
triple (B,&,S) with the following properties.

e B is a Hilbert manifold (without boundary) equipped with a smooth G-action.

o & is a Hilbert space bundle over B, also equipped with a smooth G-action, such
that G acts by isometries on the fibres of £ and the projection & — B is
G-equivariant.

e S: B — & is a smooth G-equivariant Fredholm section of constant Fredholm
index such that the determinant bundle det(S) — B is oriented, G acts by
orientation preserving isomorphisms on the determinant bundle, and the
zero set

M :={z € B|S(z) =0}
18 compact.
A G-moduli problem (B,E,S) is called regular if the isotropy subgroup G, :=
{9 € G|g*z = z} is finite for every x € M. A finite dimensional regular G-
moduli problem (B, E,S) is called oriented if TB/g and E are oriented vector

bundles over B and G acts on both bundles by by orientation preserving diffeo-
morphisms.

Let (B,£,S) be a G-moduli problem. The fibre of £ over z € B will be
denoted by &,. Thus elements of £ are pairs (z,e), where z € B and e € &,.
In this notation a section is a map of the form B — & : z — (z,S5(z)), where
S(z) € &,. Abusing notation, we also denote the map B — & by S. The
Fredholm property asserts that, for x € M = S~1(0), the vertical differential

D, :=DS(x) : T,B = &,

is a Fredholm operator whose Fredholm index is independent of z. Since S is
equivariant there is a complex

0—g=5T,B25¢, —0, (50)

where the map L, : g — T, B is the infinitesimal action. Note that the index of
this complex is
index(S) := index(D,) — dim G.

Its determinant line is defined by
det(8S), := A"*(ker Lp)* @ A"*(ker D, /imL,) ® A" (&, /imD,)*.

This defines a real line bundle over M which extends to a line bundle over
an open neighbourhood of M. The orientation hypothesis asserts that the
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determinant bundle is oriented over such a neighbourhood. Note that in the
finite dimensional regular case det(S), = A™**(T,B/imL,) ® A™*(E,)* and
the orientation hypothesis asserts that both factors are oriented. G-moduli
problems form a category as follows.

Definition A.2. Let (B,£,S), (B',£',S") be G-moduli problems. A morphism
from (B,E,8) to (B',E',8") is a pair (v, ¥) with the following properties.

¢ : By — B
is a smooth G-equivariant embedding of a neighbourhood By C B of M into B',
U:&:=E&|g, > &

is a smooth injective bundle homomorphism and a lift of 1, and the sections S
and S' satisfy

Soypy=0oS8, M' = p(M).
Moreover, the linear operators dyv : T,B — Td,(z)B’ and U, : £, — El’l)(w) induce
isomorphisms

dz : ker D, — ker D:/}(w)’ P, : cokerD, — cokerD:/,(w), (51)

for x € M, and the resulting isomorphism from det(S) to det(S') is orientation
preserving.

Let (B,£,S) and (B',£',S') be G-moduli problems and suppose that there
exists a morphism from (B,&,S) to (B',£',S'). Then the indices of S and &'
agree. Moreover, (B,£,S) is regular if and only if (B',£',S') is regular.

Definition A.3. Two regular G-moduli problems (B;,&;,S;), i = 0,1, are called
cobordant if there exist a G-equivariant Hilbert space bundle E = B over a
Hilbert manifold B with boundary, a smooth oriented G-equivariant Fredholm
section S : B — & such that the zero set M := S=1(0) is compact, G acts with
finite isotropy on B~, and

6I§=BOU61, 5,-:53“ Szzg

Bi-

Moreover, det(S) carries an orientation which induces the orientation of det(S)
over By and the opposite of the orientation of det(So) over By. Here an orien-
tation of det(S) induces an orientation of the determinant bundle of S := S| 5

via the natural isomorphism det(S)|,5 = Rv ® det(S) for an outward pointing
normal vector field v along 0B.

The next theorem is proved in [8]. It states the properties of the Euler class.
We denote by HE(B) the equivariant cohomology with real coefficients.

Theorem A.4. There exists a functor, called the Euler class, which assigns
to each compact Lie group G and each regular G-moduli problem (B,E,S) a
homomorphism x5S : H{(B) — R and satisfies the following.
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(Functoriality) If (zp,I\Il) is a morphism from (B,&,8) to (B',E',S") then
XPES(*a) = xB ¢S () for every a € HE(B').

(Thom class) If (B,E,S) is a finite dimensional oriented regular G-moduli
problem and T € Qf(E) is an equivariant Thom form supported in an
open neighbourhood U C E of the zero section such that U N E, is convex
for every x € B, U N7~ (K) has compact closure for every compact set
K C B, and S~Y(U) has compact closure, then

XB’E’S(a)z/ alNS*T
B/G

for every o € HE(B).

(Transversality) If S is transverse to the zero section then

@S- [ a
M/G

for every a € HY(B), where M := S871(0).

(Cobordism) If (By, &o,So) and (By,E1,S81) are cobordant G-moduli problems

then

Bo,Eo ,50( 30,51,31(

X La) = X 1a)
for every a € Hé(g), where 1y : By — B and B = B are the

inclusions.

The Euler class is uniquely determined by the (Functoriality) and (Thom class)
azrioms.

The integrals in the (Transversality) and (Thom class) axioms are defined
in terms of local slices for the G-action and an equivariant partition of unity.
For details see [8].

B Determinants

Let X and Y be real Banach spaces and denote by F(X,Y) the space of linear
Fredholm operators D : X — Y. For every nonnegative integer m denote by
L(X,R™) the space of bounded linear operators ® : X — R™. If D € F(X,Y)
and ® € L(X,R™) then the operator D ® ® : X — Y & R™, defined by

(D@ ®)zx := (Dz, ®x),

is Fredholm and index(D @ ®) = index(D) — m. The determinant line of a
Fredholm operator D € F(X,Y) is defined by

det(D) := A™* ker D @ A™** ker D*.
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Lemma B.1. There is o family of isomorphisms
T(D,®) : det(D) — det(D & d),

one for nonnegative integer n and each pair (D, ®) € F(X,Y) x L(X,R™), such
that
T(D,®®¥)=T(D®®,¥)oT(D,d) (52)

for D € F(X,Y), ® € L(X,R™), and ¥ € L(X,R").

Proof. There is an obvious isomorphism

ker D * ~ im ®* (53)
ker DNker ®/ =~ im D* Nim &*°
Moreover,
ker (D @ ®) = ker D Nker ® C ker D
and hence
ker D
A™*ker D 2 A" ker(DO®) Q AT { ————— | 4
°r (Do) @ (kerDﬂker <I>) (54)

Now the kernel of (D @ ®)* is given by

ker(D @ ®)* = {(y*,2") e Y* ® (R™)* | D*y" + &*2" = 0}.
So there is an exact sequence

0 — ker D* @ ker ®* — ker(D @ ®)* — imD* Nim®* — 0.

Here the second map is the obvious inclusion and the third map is given by
(y*,2*) = D*y* = —d*z*. This shows that there is an isomorphism

A™ker D* @ A ker * @ A" (imD* Nim®*) =2 A™** ker(D & 9)*.
Moreover,
max * max: * A~ max * max (Rm)* ~
AT ker * @ A" imd* =2 AT ker @ @ A —— | =R
ker &*

Here the first isomorphism is induced by the isomorphism ®* : (R™)* / ker ®* —
im®*, and the second one by the canonical orientation of R™. Combinig the
last two isomorphisms, we obtain

A" ker D* @ A™**(imD* Nim®*) = A™** ker(D & ¢)* ® A™**im®*,
and hence

im®*
AP ker D* 2 A™® ker(D @ ®)* @ A™ | — .
er er(D @ )" ® (i IGE <I>*> (55)

Combining the isomorphisms (54) and (55), and using (53), we obtain the re-
quired isomorphism T(D, ®) : det(D) — det(D & ®). The construction shows
that these isomorphisms satisfy equation (52). O
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Remark B.2. If X and Y are complex Banach spaces and D € F(X,Y) and
® € L(X,C™) are complex linear then the isomorphism T'(D,®) : det(D) —
det(D @ ®) of Lemma B.1 preserves the orientations arising from the complex
structures. This implies that the determinat line bundle over the space of com-
plex linear Fredholm operators carries a canonical orientation.

Let D € F(X,Y), ® € L(X,R™), and ¥ : R™ — R™ be an isomorphism.
Then the kernels of D & ® and D ® ¥® are equal and there is an isomorphism
ker(D & ¥®)* — ker(D & ®)* : (y*,2*) — (y*, ¥*2*). This induces an isomor-
phism

U() : det(D @ T®) — det(D & D).

Lemma B.3. For every D € F(X,Y), every ® € L(X,R™) and every isomor-
phism ¥ : R™ — R™ the following diagram commutes:

det(D o v8) % det(D o d)
) t
det(D) ‘W get(D).

Here the vertical maps are T(D,¥®) and T(D, ®), respectively.
Proof. We prove that there is a commutative diagram

ker ®*0* @ im & Y39  ker &* @ im ®*
t 0 . (56)

To see this, choose a decomposition
(R™)* 2 ker(®*T*) @ W,

and observe that
(R™)* = ker ®* @ T*W.

With respect to this decomposition, the left vertical arrow in (56) is given by
(v,w) = (v,®*T*w), and similarly for the right vertical arrow. Note that
although these maps depend on the choice of W, the induced maps between
the top exterior powers are independent of this choice. Commutativity of the
diagram (56) is now obvious from the definition of the maps. The result follows
from (56) by taking top exterior powers and observing how the resulting maps
fit into the construction of the isomorphisms T'(D, ®) and T(D, ¥®). O

Consider now Banach spaces X, Z,V and bounded linear operators
F:X—Z, K: XV

such that K is surjective.
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Lemma B.4. The operator F|ier x is Fredholm if and only if the augmented
operator F@ K : X — Z®V is, and in this case their Fredholm indices agree.
Moreover, there is a collection of isomorphisms

S(F,K) : det(F|ker k) — det(F @ K),

one for every such pair F, K, such that for every ® € L(X,R™) the following
diagram commutes:
det (Flier k) SEL Get(F e K)
\J 1

det((F & @)|xer k) SUeLH0 det(F & ¢ @ K).

Here the vertical maps are T(F|ker k), Plker k) and T(F @ K, ®), respectively.
Proof. There are obvious isomorphisms
ker(F|er k) — ker(F @ K), coker(F'|ker k) — coker(F & K).
These induce the required isomorphism S(F, K). O
The proof of the next lemma is straightforward.

Lemma B.5. Let F and K be as in Lemma B.4 and and ¥ : V — V' be a
Banach space isomorphism. Then the following diagram commutes:
det(Flerx) ) det(F @ K)
[ N3

det(F|ker wk) SEREO det(F @ TK).

Here the right vertical arrow is induced by the map id® ¥ : ZdV — ZpV'.
(The kernels are equal.)

C Equivariant trivialization

Proposition C.1. Let G be a compact Lie group and E — X be a G-equivari-
ant complex vector bundle over compact smooth manifold X. Then there exists
a G-equivariant complex vector bundle F' — X and a complex G-representation
W such that E ® F is equivariantly isomorphic to X x W.

Lemma C.2. Let G be a compact Lie group, H C G be a normal subgroup, and
V be a complex H-representation. Then there exists a complex G-representation
W and an injective H-equivariant homorphism ¢ : V — W.

Proof. Consider the infinite dimensional vector space

W:={f:G-=>V|f(hg) =hf(g) YVh € H, Vg € G}.
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This space carries an action of G by

(9'f)(g) == f(g9")

and the evaluation map W — V : f + f(1) is H-equivariant and surjective. To
prove surjectivity let v € V be given and let f : G — V be any smooth extension
of the map H — V : h = hv. By averaging the maps g — h~! f(hg) over h € H
we can ensure that the extension is H-equivariant. By Peter—Weyl’s theorem,
there exists a finite dimensional G-invariant subspace W C W such that the
restriction of the homomorphism f — f(1) to W is still surjective. By [13,
Remark A.4.2], the surjection W — V has an H-equivariant right inverse. O

Proof of Proposition C.1. Let x € X, H C G be the isotropy subgroup of x,
and V := E,. By the local slice theorem, the restriction of E to a suitable
neighbourhood of the G-orbit of z is equivariantly isomorphic to the bundle

GxUxV

H —>GXHU,

where U is a neighbourhood of zero in the horizontal tangent space at z (i.e. in
the orthogonal complement of T,,Gz with respect to some G-invariant metric).
Let ¢ : V — W be as in Lemma C.2. Then the map

GxUXxV —>GxUxW:(g,u,v) — (g,u,9¢(v))

descends to a G-equivariant injective bundle homomorphism from (GxU xV)/H
to (G xg U) x W (where G acts diagonally). This construction gives rise to a
G-invariant open cover {U,}q of X and a collection of G-equivariant injective
bundle homomorphisms ¢, : E|y, = Uy X W,. Let py : X — [0,1] be a G-
invariant partition of unity subordinate to the cover {Uy}, and denote W :=
@, Wa. Then the homomorphism E — X x W : (z,e) = (2, {pa(2)da(z)e}a)
is the required G-equivariant embedding. O

D Convex polytopes

In this section we recall some well-known facts about convex polytopes (see
e.g. [9]). Let A be a compact convex polytope in the dual space V* of a finite
dimensional vector space V. We denote elements of V' by v, w and elements of
V* by &, 1. Define the support function ¢ : V — R of A by

¢(v) == inf (£, v).

N
The following properties of ¢ are obvious from the definition.
(P1) o¢(tv) =to(v) for t > 0.
(P1) ¢ is concave, i.e. (v +w) > ¢(v) + p(w).
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(P3) A can be recovered from ¢ as the intersection of half spaces

A= ({EeV* (&) = ¢(v)}

veV

Let F be a face of A. Pick an interior point p of F' and define the dual cone to
F by 3
F:={veV|{&—pv)>0forall £ € A}.

If ¢ is another interior point of F and £ € A then ¢ +#(§ —p) € A for t > 0
sufficiently small. Hence (£ — p,v) > 0 iff (¢ + t({ —p) — ¢,v) > 0. This shows
that the definition of F' does not depend on the point p. Moreover, the condition
(€ —p,v) > 0for all £ € A can be rewritten as ¢(v) > (p,v), or equivalently
#(v) = (p,v) since p € A. So F can be written in the equivalent forms

F = {veV|{—pw)>0forall{é € A,p€ F}
= {veV|{p,v)=¢(v) forall p € F}.
The following properties are obvious from these descriptions of F.
(F1) F is a convex polyhedral cone.
(F2) The restriction of ¢ to F is the linear function ¢(v) = (p,v) for any p € F.
(F3) F is perpendicular to F and dim F' = codimF.

(F4) If Hy,...,Hy, C V* are the supporting hyperplanes for A meeting at F,
then F' is the cone generated by inward pointing normal vectors vy, ..., vp
to the hyperplanes.

(F5) If G is a subface of F then F is a subcone of G.
(F6) The union of the cones p dual to vertices p of A is the whole space V.

The collection ¥ of the cones F' dual to nonempty faces of A is called the fan
dual to A (see [3] for the general definition of a fan).

E The cohomology of symplectic quotients
Let T be a k-dimensional torus and p = (p1,...,pn) : T — T" := (S1)" be a
diagonal homomorphism with

727I"L.<W,, 76)

pv(exp(§)) =e

for £ € t:= Lie(T). Here the w, are elements of the dual lattice A* C t* as in the
introduction. We identify the Lie algebra of T™ with R™ via the map 5 +— in/2n
so that the integer lattice corresponds to Z™ C R™. In this identification the
linearization of p is the map p : t = R” given by

p(g) = (<W17€>7 RS <Wn7£))
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Consider the quotient torus

T .= T"/p(T).

Its Lie algebra is the quotient space
T=R"/p(t)

and the dual space of t can be identified with the subspace

The canonical action of T™ on C” induces an action of 7" with moment map
u: C" = t* given by (1). We assume throughout that u is proper and that the
action is effective (i.e. the weight vectors w, span t*). Let 7 € t* be a regular
value of p. Then the torus T acts on the symplectic quotient

= {17 € (R™)*

M :=C")T(t) = u~*(1)/T.
A moment map i : M — t* for this action is given by the formula

w1 + G
() == : )
Wlxn|2 +(n

where ¢ = ((1,--.,(,) € (R™)* is chosen such that

n
Z Gwy, = —7T.
v=1

The image of i is the convex polyhedron
B n
A= p(M) = {TIG(R")*‘ Znyw,,=0, UVZ§V}- (58)
v=1

Each subset I C {1,...,n} determines a (possibly empty) face
Ar:={neA|n, = forvel}.

Recall that C(I) denotes the cone spanned by the vectors w,, v € I. The next
lemma shows that if 7 is a regular value of u, then the intersection of any j
codimension-1 faces of A is either empty or has codimension j.

Lemma E.1. Assume that 7 is a reqular value of p and let I C {1,...,n}.

(1) The set Ay is either empty or has codimension |I|.

(ii) Ar=0<=71¢C{1,...,n}\I).
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Proof. We prove (i). Assume Ay # @ and let J := {1,...,n}\ I. Then, by the
definition of fi, there is a y € C’ such that

y) =1 lylw =1

vedJ
Since 7 is a regular value of u, there exist indices vy, ...,y € J such that the
vectors Wy, , . .., Wy, are linearly independent and y,,; # 0 for every j. We claim

that there is a vector z € C7 such that
w(z) =T, z, #0 forall veJ

To see this choose =z, for v € J\ {v1,...,v} such that |z,|*> = |y,|*> + & and
choose z,,, such that

Z |a:V_7 |yVJ )Wuj +e€ Z w, =0.

Jj=1 veJ\{vi,...,vi}

B

Then u(xz) = u(y) = 7 and, for € > 0 sufficiently small, we get z, # 0 for all
veld.
The differential dji(z) : Tp(M N C7) — t* is given by

di(z)v = 2n{zy,v0))ver,

where v € C7 satisfies

z)v =27 Z(x,,,v,,)w,, =0

vedJ

Since z,, # 0 for v € J, this shows that the image of T,(M N C’) under dji(x)
equals {n € (R/)* | 3, .,mw, = 0}. This space, and therefore A;, has
dimension |J| —k=n—k —|I|.

We prove (ii). If Ay # () there exists an n € (R™)* such that >_/'_, n,w, =0,
1y > ¢, for all v, and i, = (, for v € I. Hence

T_Z Cuwu—z _CV)WVEC({]‘7"'7n}\I)'

vl

The converse follows by reversing the argument. O

Standing assumption. In the remainder of this appendix we assume that T
acts freely on p=1(7).

~

Denote by w, € H: 2(M;R) the image of w, under the homomorphism A* =
H*(BT;Z) — H*(M;R).

Lemma E.2. For every J C {1,...,n} the following holds.
() If r ¢ C(J) then ][, ¢ ;% = 0.
() If T € C(J) and |J| =k then [],4; W, = PD(pt).
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Proof. ¥, is the first Chern class of the line bundle L, := p~!(7) x,, C. Hence
the zero set of the holomorphic section M — L, : [z] = [z,z,] is Poincaré dual
to W,. Denote this zero set by W, := {[z] € M |z, = 0} . This is a (possibly
empty) complex submanifold of M of complex codimension one. Moreover,

T¢C(J) = [W=0
vgJ

This proves (i). If 7 € C(J) and |J| = k, then the submanifolds W, for v ¢ J
intersect transversally in a single point. This proves (ii). O

Lemma E.3. (i) The Chern classes of TM are given by

G(TM)= > %y, j=L..,n—Fk

v1<---<vj
(ii) The cohomology class of the symplectic form © € Q2*(M) is
@] =T7.

Proof. We prove (i). Consider the Whitney sum p~!(7) x C* = E & F, where
the complex vector bundles E — p~1(7) and F — p~1(7) are defined by

E, :={v € C" |du(z)v = du(z)iv = 0},

F$ = {U € (Cn | 35,77 € fVI/ Uy = ((Wua£> +i<Wu,T)))xu} N

Then the bundle F' admits a T-equivariant complex trivialization and the quo-
tient bundle E/T — pu~'(7)/T is isomorphic to the tangent bundle of M. Hence

GITN) = (™ (1) xr € = 3 Wy o0,

V1< <;
We prove (ii). Denote
|
do = o ;(@d% —z,dz,) € QYC™),  wo = d)o,

and let pg : C* — R”™ be the moment map given by
po(z) == (|21 ..., |zal?) -

Since d» \g = wo — fo, the equivariant cohomology class [wo — po] € H2. (C™) is
trivial. Pulling back under the homomorphism HZ, (C") — HZ2(C™) induced by
p yields 0 = [wo — p] € H2(C™). Restriction to p~!(7) yields 0 = [t*wo — t*7] €
H2(u=(7)), where ¢ : p=1(7) — C™ is the inclusion. Now the result follows by
passing to the quotient. O
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Theorem E.4 ([12]). The ring homomorphism
Rlug, -, un] = H*(M;R) : plug, ..., up) = p(Wi,-..,Wn) (59)
induces an isomorphism
H*(M;R) = Rlug,...,u,)/Z,

where the ideal T C Rluy,...,u,] is generated by the relations

Z TyWy = 0 — Z Tty = 07 (60)
v=1 v=1
Ic{l,...,n}, Ar=0 = IIu =o0. (61)
vel

Remark. Theorem E.4 continues to hold with coefficients in Z. That the
homomorphism (59) is surjective follows from Kirwan’s theorem, and that the
ideal Z is contained in the kernel of (59) is an easy consequence of Lemma E.2.
The nontrivial part of the proof is to show that the kernel is contained in 7.

Theorem E.5 ([4]). Assume p~'(7) # 0 and T acts freely on p~ (7). Then
the ideal T is generated by the linear relations (60), the linear monomials u, for

Apy =0, and the monomials u?" for d € Deg (1) \ {0}.

For the sake of completeness, we present a somewhat more elaborated version
of the proof given in [4]. We need some preparation. Denote by A C t and
A* C ¥ the integer lattices. Thus A is the image of Z" under the projection
R® — tand A* = t* N (Z")*. For v = 1,...,n let &, € A be the image of the
basis vector e, = (0,...,0,1,0,...,0) € Z™ under the projection R — t.

Lemma E.6. Suppose that T acts freely on p=1(7).
(i) Let J C {1,...,n} satisfy |J| = n —k and Ay # 0. Then the vectors

€;|j € J} form an integer basis of A.
J

(ii) Let d, € Z satisfy Y _,_, dye, = 0. Then there ezists a vector A\ € A such
that d, = (w,, A} for every v.

Proof. We prove (i). Assume |J| =n —k and Ay # 0. Since T acts freely on
p(r), and 7 € C({1,...,n} \ J), the vectors {w, |v ¢ J} form an integer
basis of A*. Hence, for every v € Z", there exists a unique vector A € A such
that v, = (w,,\) for v ¢ J. This implies that the image ¥ € t of v under the
projection R™ — t satisfies

b=y (v;—(w;, A\)ej.

JjEJ

Hence the vectors {€; | j € J} span the integer lattice A as claimed.
We prove (ii). By definition of the projection R™ — t, there exists a vector
& € t such that d, = (w,,&) for every v. Now let J C {1,...,n} be any index
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set such that |J| = n —k and Ay # . Then the argument in the proof of (i)
shows that there exists a lattice vector A € A such that d, = (w,,\) for v ¢ J.
Hence (w,,& — A) =0 for v ¢ J. Since the vectors {w, |v ¢ J} form a basis of
t* we deduce that £ = A and hence d, = (w,, A} for every v. O

Proof of Theorem E.5. Let Ty C Rluy,...,u,] be the ideal generated by the
linear polynomials Y, _, nyu,, where >."'_ n,w, = 0, the monomials u,, where
Agy =0, and the monomials ud” for d € Degr(7) \ {0}.

We prove that Ty C Z. We must show that u¢" € T for every d € Deg(1)\{0}-
We prove a stronger statement: If A € A satisfies (1,A) > 0 and d, := {w,, \)
then u?" € I. To see this, consider the set I := {v | d, > 0}. We claim that
A1 = (). Otherwise, by Lemma E.1, there would exist numbers 7, > 0 such that
T= Eygz 1, w,. But then

0<(r, ) =2 mdy <0,
vl

a contradiction. Since A; = ), the monomial Hue 1 Uy belongs to the ideal 7.

But u?" is a multiple of [],.; u, and hence also belongs to 7.

We prove that 7 C Zy. Consider the moment polytope A C t* defined
by (58). The faces of A are subsets of the form Ay for I C {1,...,n} such that
7€ C({1,...,n}\ I). The vectors {¢;|i € I} are the inward pointing normal
vectors to the supporting hyperplanes of A meeting at the face A;. Hence, by
property (F4) of the dual cones (see Appendix D), the dual cone of Aj is given

by
AI = {Zciei ci > 0} .
el

By Lemma E.1, the codimension of the face Ay equals |I|. In particular, the
vertices of A are subsets Ay where |[J| =n —k and Ay # 0.

Now let I C {1,...,n} such that A; = . We must prove that the monomial
[, v belongs to Zo. Shrinking the set I, if necessary, we may assume without
loss of generality that Ay # @ for every proper subset I' C I. Since u(7) # 0 we
have I # (). If |I| = 1 then the polynomial ], ., u, belongs to Zo by assumption.
Hence assume |I| > 2. Then

vel = Ay # 0. (62)

We shall prove that there exists a vector d € Deg(7) \ {0} such that d, =1
for v € I and d, < 0 for v ¢ I. To see this, consider the vector ), ;& € A.
Since the union of the cones dual to vertices is the whole space t, it follows that
there exists an index set J C {1,...,n} such that |J| =n —k, Ay # 0, and
Eie 1€ € A ;. Hence there exists nonnegative real numbers c; such that

E €; = E Cj€j.

iel JjEJ
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By Lemma E.6, the set {&;|j € J} is an integer basis of A. Hence the c; are
actually integers and, after shrinking J, we may assume that ¢; > 0 for all
j € J. Define d € Z™ by

1, ifvell\lJ,
d, = —cy, ifved\I,
VY 1—¢,, ifrelnd,
0, ifvg¢IulJ.

Then "), d,€, = 0 and hence, by Lemma E.6, there exists a lattice vector
A € A such that d, = (w,, ) for v = 1,...,n. By (62), we have A,y # 0 for
every v € IUJ. Hence d, = 0 whenever A,y = 0, and this implies A € A(7).

We prove that d € Deg(7) \ {0}. Let ¢ : t = R be the support function of A
as in Appendix D. By property (P2), we have

D ge) < ¢ (Z éi) =o (D e | =) cidlE)).

iel iel jeJ jed

Here the last equation follows from property (F2) and the fact that the set
{€; |7 € J} spans the cone A;. Now, by (58) and the definition of ¢, we have
#(ey) > G, with equality if and only if the face Ay,) is nonempty. Moreover,
d, = 0 whenever Ay, = (). This implies

n

0> Zdu¢(éu) = Zdvgu = Z(Ww)‘)CV = —(1, ).

v=1

If we replace 7 by another vector 7' in the same chamber, the fan ¥ remains
the same, so the above argument yields the same vector A € A. This shows that
(r',A) > 0 for every 7/ in the chamber of 7. So A € Aeg(7) and d € Deg (7).
Since A; =0 and Ay # (), we have I # J and hence d # 0.

We prove that I NJ = (). Otherwise let v € INJ and I' := T\ {vo}.
Then d, <0 for v ¢ I'. Hence the argument in the proof of Zy C Z shows that
Ap = . But this contradicts the minimality assumption on I. Hence INJ =)
as claimed. It follows that the vector d satisfies d, = 1 for v € I and d,, < 0 for
v ¢ I. Since d € Deg(7) \ {0} we deduce that

H Uy = ud+ € 1.
This shows that 7 C Zy and hence 7 = 7. O
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