Logarithmic Intersection Theory of Jacobians

1. Log Maps (and the problem)

$$
\underbrace{\text { smooth }}_{\left(X, D=D_{1} \cup D_{2} \cup \ldots \cup D_{m}\right)}
$$

smooth
$\overbrace{\left(X, D=D_{1} \cup D_{2} \cup \ldots \cup D_{m}\right)}^{\text {normal crossings }}$

\# of markings
genus $g, n \in \mathbb{N}$ fixed

$$
\begin{aligned}
& n!=\sum_{i=1}^{m} n_{i} \\
& \left(x_{1}, \ldots, x_{n}\right):=\left(x_{11}, x_{12}, \ldots, x_{1 n_{1}}, x_{21}, \ldots, x_{m n_{m}}\right) \\
& A_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n_{i}}\right) \in \mathbb{N}^{n_{i}}, A=\left(A_{1}, \ldots, A_{n 1}\right)
\end{aligned}
$$

$a_{i j}$ contact order of f at $x_{i j}$ with D_{i}

$$
K_{g, A}(x)^{\circ}=\left\{f,\left(c, x_{1}, \ldots, x_{1}\right) \rightarrow x \mid f^{*} D_{i}=\sum_{i} a_{i j} x_{i j}\right\}
$$

Sumplest Example: D smorth

$$
K_{g, A}(x)^{\circ}=\left\{f_{i}\left(c, x_{1}, \ldots, x_{i}\right) \rightarrow x \mid f^{*} D_{i}=\sum_{i} a_{i j} x_{i j}\right\}
$$

Moduli space not compact
Simplest Example: D smooth,$A=\left(a_{1}, \ldots, a_{n}\right)$

Compact, fications by various incarnations of Log Maps

Compact, fications by various incarnations of \log Maps

- D smooth: Jun \mathcal{L} (2000)

Compact, fications by various incarnations of \log Maps

- D smooth: Jun $\mathcal{L i}$ (2000)

Rile Chen (2010)

Compact, fications by various incarnations of
\log Maps

- D smooth: Jun \mathcal{L} (2000)
- D gereral:

Qile Chen (2010)

AC, GFS (2010)

Compact, fications by various incarnations of
Log Maps

- D smooth: Jun $\mathcal{L i}$ (2000)

Rile Chen (2010)

- general: Ranganathan (2018) AC, CSS (2010)

Compactifications by various incarnations of
\log Maps

- D smooth: Jun \mathcal{L} (2000) Qile Chen (2010)
- Degereral: Ranganathan (2018) AC, GS (2010)

All iterations have $\left[K_{g, A}(x)\right]^{\text {vir }}$

Compact, fications by various incarnations of
Log Maps

- D smooth: Jun $\mathcal{L i}$ (2000)

Qile Chen (2010)

- Degeneral: Ranganathan (2018) AC, GS (2010)

All iterations have $\left[K_{g, A}(x)\right]^{\text {vir }}$
Thm (Abr-Mar-wise, Zaiz)
All theories difine the same $(\log G W)$ mwariants.

Varsant (Rubbar): V a toric variety, $D=V-T$

$$
\mathcal{R}_{g, A}^{\text {rub }}(V)^{0}=\left\{f:\left(c, x_{1}, \ldots, x_{n}\right) \rightarrow v \left\lvert\, \begin{array}{c}
\text { as before, but up } \\
\text { to T-action }
\end{array}\right.\right\}
$$

+ Analogous compactifications.

$$
p: K_{g, A}^{\text {cub }}(v) \longrightarrow \bar{\mu}_{g, n}
$$

The problem: Lit $(V, V-T)$ be a proper tonic variety Compute

$$
D R_{A}(v):=P_{*}\left(\left[K_{, A}^{r u b}(v)\right]^{v i r}\right) \in C^{\left(i_{i m}\right) \cdot g}\left(\overline{\mu_{g}}\right)
$$

Why? (i) Ordunary GWr theory
$\cup V_{i}$

Gw Theory of x reconstructed by $\log G W$ thong of v_{i} (ACGS, Ranganathan)

Why? (i) Ordunary Gw theory
$\cup V_{i}$

Gw Theory of x reconstracted by $\log G W$ thong of v_{i} (ACGS, Ranganathan)

Thm (Ran-Urundolil Kumaran '22)
$D R_{A}(V)$ determines log Gw theong of V
(ii) Tautological ring $R^{*}\left(\bar{M}_{g, n}\right) \subset C_{i}^{*}\left(\bar{M}_{g, n}\right)$
(iu) Tantological ring $R^{*}\left(\bar{M}_{g, n}\right) \subset C_{i}^{*}\left(\bar{M}_{g, n}\right)$

C

$1 \pi 1$
S

(ii) Tautological ring $R^{*}\left(\bar{M}_{g, n}\right) \subset C L^{*}\left(\bar{M}_{g, n}\right)$

C

$$
\begin{aligned}
& \pi_{*}\left(c_{1}\left(\omega_{c / s}\right)^{a+1}\right)=k_{a} \\
& x_{i}^{*}\left(c_{1}\left(\omega_{c / s}\right)\right)=\psi_{i} \\
& c_{i}\left(\pi_{*} \omega_{c / s}\right)=\lambda_{i}
\end{aligned}
$$

$$
R^{*}\left(\bar{M}_{y, n}\right)=\left\langle k_{\alpha}, \psi_{i}, \lambda_{i}\right\rangle
$$

+ closed under all gluing/fogetful maps

$$
M_{g^{\prime} n^{\prime}} \longrightarrow M_{g, n}
$$

Study of relations in $R^{*}\left(\bar{M}_{y, n}\right)$ ore of the biggest problems in the area.

Study of relations in $R^{*}(\bar{M}, n)$ ore of the biggest problems in the area.

Study started by Mumford (1982)
$\varepsilon_{x}: \lambda_{1}$ are generated by the K_{α}
"Mumford's formula"

Study of relations is $R^{*}\left(\overline{M_{y, n}}\right)$ ore of the biggest problems in the area.

Study started by Mumford (1982)
$\varepsilon_{x}: \lambda_{i}$ are generated by the K_{α}
"Mumford's formula"
GW theory gives most complete set of relations in $R^{*}\left(\bar{\mu}_{g, n}\right)$ known to date.

Paxton - Pandharipande-Zvonkive (2013)
Pixton Relations/Corjectures.

What's known (2020)

What's known (2020)

- $V=\mathbb{P}^{+} \leadsto$ Pixtons formula (JPPZ, 2015)

$$
J
$$

localization on

What's known (2020)

- $V=\mathbb{P}^{\perp} \leadsto$ Pixton's formula (JPPZ, 2015)

$$
7
$$

localization on

- In higher dimension, all attempts to generalize JPPZ have been unsuccesful. Cannot even show $D R_{g, A}(v) \in R^{*}\left(\bar{M}_{g, n}\right)$

Some new ideas are needed
2. Log Intersection Theory

What is it?

What is \log

(x, D) toroidal embedding
u

- (X, D) is stratified.

Def: A simple log blowup is an iterated blowup along boundary strata.

What is intersection theory? Study of $\mathrm{CH}^{*}(X)$

What is intersection theory?
Study of $\mathrm{CH}^{*}(X)$
What is \log intersection theory?
Study of $\log C H^{*}(x, D):=\lim C H^{*}(y)$

$$
(y, E) \rightarrow(x, D)
$$

Perspective: $X-D=u$ is the object of interest.

Truly interesting classes arise from processes that produce a class by $\in C H(y)$ for all y
s.t By eventually stabilizes:

$$
b_{z}=b_{y} \|_{z} \quad \text { for } z \rightarrow y
$$

Truly interesting classes arise from processes that produce a class $b y \in C H(y)$ for all y
s.t by eventually stabilizes:

$$
b_{z}=\left.b_{y}\right|_{z} \quad \text { for } z \rightarrow y
$$

Examples:

b^{0} cycle or u

$$
b_{y}=\overline{b^{0}} \text { in } C H_{x}(y)
$$

b has stabilized here
(ii)

$$
\begin{aligned}
& K_{g, A}^{r u b}(v) \xrightarrow{p} \bar{M}_{g, n} \\
& \sim \exists_{q}^{\prime} \stackrel{M_{g, n}}{\prime \prime} f \\
& q_{*}\left[K_{g, A}^{r u b}(v)\right]^{v i r} \in C H_{*}\left(\bar{M}_{g, n}^{\prime}\right)
\end{aligned}
$$

m The process stabilizer to produce a class

$$
\log D R_{g, A}(v) \in \log C H^{*}\left(\bar{u}_{g, n}\right)
$$

Conceptual advantages
(i)

$$
\begin{aligned}
\log C H^{*}\left(\bar{\mu}_{g, N}\right) & \longrightarrow C H^{*}\left(\bar{\mu}_{g, n}\right) \\
\log D R_{g, A}(v) & \longrightarrow D R_{g, A}(v)
\end{aligned}
$$

Conceptual advantages
(i) $\log C H^{*}\left(\bar{M}_{g, n}\right) \longrightarrow C H^{*}\left(\bar{\mu}_{g, n}\right)$

$$
\log D R_{g, \Lambda}(v) \longrightarrow D R_{g, A}(v)
$$

(ii) $\log D R$ satisfies burational unvanance +product formula (Ran, Her '18)

$$
\leadsto \log D R_{g,\left(A_{1}, \ldots, A_{m}\right)}(V)=\prod_{i=1}^{m} \log D R_{g, A_{i}}\left(\mathbb{P}^{\prime}\right)
$$

Recall:
The problem: Lit $(V, V-T)$ be a proper tonic variety Compute

$$
D R_{A}(v):=P_{*}\left(\left[K_{g, A}^{r u b}(v)\right]^{v_{i r}}\right) \in C^{\left(d_{i m} v\right) \cdot g}\left(\overline{\mu_{g}}\right)
$$

Thus:
Suffices to determine $\log D R_{g, A}\left(\mathbb{P}^{\prime}\right) \in \log C H\left(\bar{M}_{g, n}\right)$

As it stands, $\log \mathrm{CH}^{*}(X, D)$ is "poor".
~ It has allowed me to use res. of sing. methods an Chow
~ But I have traded away explicitness.
Recover Explucitress by combunatorics.
(a) Cone complexes

- \exists an equwalunce of categones

of (x, D)

Tonic V Toroidal (x, D)	
Fan Σ_{v}	Cone complex $\Sigma(x, D)$

$[\mathrm{V} / \mathrm{T}]$
Toric blowup

$$
\Sigma_{v}^{\prime \prime} \rightarrow \Sigma_{v}
$$

Toroidal (x, D)
Cone complex $\Sigma(x, D)$
Actin fan A_{x}
Log Blowup

$$
\Sigma_{(x, 0)}^{\prime} \longrightarrow \Sigma(x, 0)
$$

(b)

$$
\operatorname{PP}\left(\Sigma_{x}\right) \xrightarrow{\Phi} C H^{+}(x)
$$

$$
[M P S, M R] C H^{*}\left(A_{x}\right)
$$

Roughly: PL function with slope 1 along ray f corresponding to dwisor Dg goes to $C_{1}\left(\rho\left(D_{p}\right)\right)$. Extend by excess intersection formula + lnearity

Example

(X,D)

$$
\Sigma_{(x, D)}
$$

Tonic v	Toroidal (x, D)
Fan Σ_{v}	Cone complex $\Sigma(x, D)$
$[v / T]$	Actin fan I_{x}
Toric blowup	
$\Sigma_{v}^{\prime \prime} \rightarrow \Sigma_{v}$	

Tonic v	Toroidal (x, D)
Fan Σ_{v}	Cone complex $\Sigma_{(x, D)}$

$[V / T]$
Toric blowup

$$
\begin{gathered}
\Sigma_{v}^{\prime \prime} \rightarrow \Sigma_{v} \\
P P\left(\Sigma_{v}\right) \\
\qquad C_{T}(v) \\
C H^{\prime \prime}(\nu)
\end{gathered}
$$

(Payne 'obs)

Cone complex $\Sigma(x, 0)$
Artin fan A_{x}
Log Blowup

\[

\]

analogue of mon-equariaint limit

Paradigm: How to write a formula in $\log \mathrm{CH}^{*}$

$$
b \in \log C H^{*}(X, D)
$$

- Find $\Sigma_{(y, E)} \longrightarrow \Sigma_{(X, D)}$ sit
(i) $b \in C H^{*}(y)$
(ii) Understand $\Sigma_{(Y, E)}$ very well.
-Write b in terms of $C H^{*}(x), \operatorname{PP}(\Sigma(y, E)$)

Some new ideas are needed

Some new ideas are needed
but also:

Some old ideas are needed
3. Jacobians

So let's use the Jacobian

Dan Abramovic, ambedding
a eurve of geaus 3 in
its Jatobion,

$$
\begin{aligned}
& \left.\begin{array}{c}
P_{1 c}^{0}\left(c_{g, n}\right) \\
1 \\
\mu_{g, n}
\end{array}\right) \quad a_{j_{A}}\left(c, x_{1}, \ldots, x_{A}\right) \simeq g_{c}\left(\sum a_{i} x_{i}\right) \\
& \left.D R_{g, A}\right|_{M_{g, n}}=a_{J_{A}}^{*}([0])
\end{aligned}
$$

$$
\begin{aligned}
& P_{1 c}{ }^{\circ}\left(C_{g, n}\right) \\
& \left.\begin{array}{c}
1 \\
\mu_{g, n}
\end{array}\right) \quad a_{j_{A}}\left(c, x_{1}, \ldots, x_{A}\right)=g_{c}\left(2 a_{i} x_{b}\right) \\
& \left.D R_{g, A}\right|_{M_{g, n}}=a_{j A}^{*}([0])
\end{aligned}
$$

Diagram can be extended to compact type

$$
\begin{aligned}
& \mathcal{P}_{c c}^{{ }_{001}}\left(c_{g, n}^{c t}\right) \\
& \left.\frac{1}{\mu_{g, n}^{c t}} \quad\right\} a_{A}
\end{aligned}
$$

$$
\operatorname{Thm}_{m}\left(C_{\text {ar }}-M_{13} \text {-wixe }\right): \quad a_{A}^{*}([0])=D R_{g, A} \text { on } \bar{M}_{g, n}^{c t}
$$

In fact, first calculations were performed using Jacobians

Main (2003) usung $\theta^{g} / g!=[0]$ Grushersky-Zakharar (2013)

Extending to $\bar{M}_{g, n}$ is subtle
Reason: Abelian Varieties don't dequerate well
(A_{g} not compact)

Extending to $\bar{M}_{g, n}$ is subtle.
Reason: Abelian Varieties don't degenerate well
(Ag not compact)
Mumford's philosophy: Good (toroidal) compactifications exist. But
[A,F-C,O] . Not canonical

- depend on combunatonal choices
i) start with a set of periods $Y \subset \tilde{G}(K)$ where $\tilde{G} \cong G_{m}^{r} \times S$, satisfying suitable conditions;
ii) construct a kind of compactification:

such that the action of Y by translation extends to \widetilde{P}, and Y acts freely and discontinuously (in the Zariski topology) on \widetilde{P}_{0}. Unlike the case of curves, \widetilde{P} is neither unique nor canonical!
this has not yet been done. Instead I conclude the paper with many examples. For me, one of the most enjoyable features of this research was the beauty of the examples which one works out without a great deal of extra effort. In fact, the non-uniqueness of \tilde{P} gives one freedom to seek for the most elegant solutions in any particular case.

$$
\begin{array}{cc}
P_{1 c} \circ & \operatorname{Pic}(\Delta) \\
1 & 1 \\
\mu_{g, n} \subset \bar{M}_{g, n} & \text { toindal comp } \\
& \\
& \Delta / \text { comb data }
\end{array}
$$

But it doesn't quite help. \exists no $\operatorname{Pic}(\Delta)$ with $a_{n}: \bar{M}_{g, n} \rightarrow \operatorname{Pic}(\Delta)$

Marcus-Wise, Holmes: Succeeded in extending '17 '17
$\left.a_{J_{A}}^{*}([0])\right|_{\bar{M}_{g, n}^{c t}}$ along those lives

+ proved extension $=D R_{g, A}$

But: Extension also insufficient for calculation

Roughly

Extension $P_{*}\left(a_{j}![0]\right)$. Must push from DRL.
But no real understanding of space PRL

The problem of compactified Jacobians can be perfectly organized

The problem of compactified Jacobians can be perfectly organized

$$
\begin{aligned}
& \text { Tho }(M w, 2022-\infty-2022)^{b} \\
& \qquad \operatorname{Pic}^{\circ}\left(\bar{C}_{g, n}\right) \subset \log _{1 c}{ }^{\circ}\left(\bar{C}_{g, n}\right) \\
& t \quad l \\
& M_{g, n} \subset \bar{M}_{g, n}
\end{aligned}
$$

(i) - proper, group, smooth

1. Personal Recollection
(ii) Every Pic(Δ) is a log blowup of $\log P$ ic

Means: Log Pic has a fan $\sum_{\text {Log }} P_{i c}$
Mumford's comb.data (Δ) is exactly a subdivision $\Delta \rightarrow \Sigma_{\text {hog Pic }}$ cone complex tori over $\sum_{\bar{\mu}_{g, n}}$ not cone complex
(iii) Not representable by toroidal alg. stack algebraic \log space, not log algebraic space
(iv)

$$
\exists a_{j_{A}}: \bar{\mu}_{g, n} \longrightarrow \log P_{i c}
$$

Dan Abramovic, embedding a curve of genus 3 in its Jacobian?
$\hat{\log }$
2. Personal Aspiration
(iv)

$$
\exists a_{j_{A}}: \bar{\mu}_{g, n} \longrightarrow \log _{0} P_{i c}
$$

Great: Lets take $a y_{N}^{*}([0])$, for

$$
[0] \in C H^{*}\left(R_{\circ g} P_{i c}\right)
$$

(iv)

$$
\exists a_{j_{A}}: \bar{\mu}_{g, n} \longrightarrow \log _{\text {ag ic }}
$$

Great: Lets take $a y_{n}^{*}([0])$, for

$$
\begin{aligned}
{[0] } & \in \log C H^{*}\left(\log _{\text {Pic }}\right) \\
& =\lim _{\vec{\Delta}} C H^{*}\left(P_{i c}(\Delta)\right)
\end{aligned}
$$

i.e $\quad a y_{A}^{*}: \log C H\left(R_{\circ g} P_{i c}\right) \longrightarrow \log C H\left(\bar{M}_{g, n}\right)$

In practice: $\forall \operatorname{Pic}(\Delta)$

Class $\quad a_{\jmath_{A}}(\Delta)^{*}([0]) \in C H^{*}\left(M_{g, A}(\Delta)\right)$
Thu (HMPPS) : For any Pic(Δ),

$$
a_{y_{A}}(\Delta)^{*}([0])=\log D R_{g, A} \in \log C_{H^{*}}\left(\bar{\mu}_{g, n}\right)
$$

4. Synthesis

Recall paradigm:

- Find $\Sigma_{(y, E)} \longrightarrow \Sigma_{(x, D)}$ s.t
(i) $b \in C H^{*}(y)$
(ii) Understand $\Sigma(y, E)$ very well.
-Write b in terms of $C H^{*}(x), \operatorname{PP}(\Sigma(y, E))$

Recall paradigm:
\checkmark. Find $\Sigma_{(y, E)} \longrightarrow \Sigma_{(x, D)}$ sit $\Sigma_{M_{g, A}(\Delta)}$
(i) $b \in C H^{*}(y) \quad a_{j}^{*}(\Delta)[0]$
(ii) Understand $\Sigma_{(Y, E)}$ very well.

- Write b in terms of $C H^{*}(x), \operatorname{PP}\left(\Sigma_{(y, E)}\right)$

Doing much better, but not dore.

We take the toroidal compactifications of
Oda-Seshadiv, Caporaso, Esteres, Melo, Kass-Pagani $\begin{array}{lllll}\prime & 79 & \prime 94 & \prime 97 & 15\end{array}$

Numerical data of a μ really good models "stability condetion" $\partial \longrightarrow \operatorname{Pic}(\Delta)$

$$
\operatorname{Pic}(\partial)=\left\{\begin{array}{l}
\left.C^{\prime}, L \mid \text { multdeg } L \text { is close to } \theta\right\} \\
\text { quasi-stable }\}
\end{array}\right.
$$

$$
\begin{aligned}
& \bar{M}_{g, A}(\theta) \xrightarrow{a_{A}(\theta)} P_{i c}(\theta) \\
& \|\left(\frac{\downarrow}{\mu_{g, n}} \longrightarrow \log _{\text {ogic }}\right. \\
& \left\{\left(c^{\prime}, \alpha \in \operatorname{PL}\left(\Sigma_{c^{\prime}}\right)\right) \mid a_{j_{A}} \otimes O(\Phi(\alpha))=\theta \text {-stable }\right\} \\
& \sum \bar{M}_{g, A}(\partial)=\left\{5^{\prime}, \alpha \mid \text { multdeg } a j_{A}+d w \alpha=\partial-s t\right\}
\end{aligned}
$$

Tho (HMPPS)
\exists an explicit formula for $\log D R_{g, A}$ m terms of

$$
\begin{aligned}
& \left.R^{*}\left(\bar{M}_{g, n}\right)+\operatorname{PP}\left(\Sigma_{M_{g, A}(\lambda)}\right)\right) \\
& { }^{-} \\
& C H^{*}\left(\bar{M}_{g, n}\right)
\end{aligned}
$$

To write the formula, we must first define two special strict piecewise power series $\mathfrak{P}, \mathfrak{L}$ on Σ^{θ}. The functions $\mathfrak{P}, \mathfrak{L}$ are uniquely determined by their restriction to the interior cones of $\widetilde{\Sigma}^{\theta}$. As discussed in Section 1.7.2, the interior cones correspond to a stable graph $\Gamma \in \mathcal{G}_{g, n}$ together with a tuple ($\widehat{\Gamma}, D, I$). We will define the functions $\mathfrak{P}, \mathfrak{L}$ on the associated cone $\sigma_{\widehat{\Gamma}, I} \in \widetilde{\Sigma}_{\Gamma}^{\theta}$.

- The definition of \mathfrak{P} requires a sum over weightings: for a positive integer r, an admissible weighting mod r on $\widehat{\Gamma}$ is a flow w with values in $\mathbb{Z} / r \mathbb{Z}$ such that

$$
\operatorname{div}(w)=D \in(\mathbb{Z} / r \mathbb{Z})^{V(\hat{\Gamma})} .
$$

$$
\begin{aligned}
& \text { We define } \\
& \quad \operatorname{Cont}_{(\widehat{\Gamma}, D, I)}^{r}=\sum_{w} r^{-h^{1}(\widehat{\Gamma})} \prod_{e \in E(\widehat{\Gamma})} \exp \left(\frac{\bar{w}(\vec{e}) \cdot \bar{w}(\overleftarrow{e})}{2} \widehat{\ell}_{e}\right)<\in \mathbb{Q}\left[\left[\widehat{\ell}_{e}: e \in E(\widehat{\Gamma})\right]\right]
\end{aligned}
$$

where the sum runs over admissible weightings $w \bmod r$. Inside the exponential, $\bar{w}(\vec{e})$ and $\bar{w}(\bar{e})$ denote the unique representative of $w(\vec{e}) \in \mathbb{Z} / r \mathbb{Z}$ and $w(\bar{e}) \in \mathbb{Z} / r \mathbb{Z}$ in $\{0, \ldots, r-1\}$.

As in [36, Appendix], for each fixed degree in the variables $\widehat{\ell}_{e}$, the element $\operatorname{Cont}_{(\widetilde{\Gamma}, D, I)}^{r}$ is polynomial in r for sufficiently large r. We denote by Cont $\left.\widehat{(}, D, I\right)$ the polynomial in the variables $\widehat{\ell}_{e}$ obtained by substituting $r=0$ into the polynomial expression for $\operatorname{Cont}_{(\widehat{(r, D, I)}}^{r}$. We define

```
\(\left.\left.\mathfrak{P P}\right|_{\sigma_{\hat{\Gamma}, I}}=\left.\operatorname{Cont}_{(\hat{\Gamma}, D, I)}\right|_{\hat{\ell}=\hat{\ell}(\ell)} \in \mathbb{Q}\left[\ell \ell_{e}: e \in E(\Gamma)\right]\right]\),
```

where we use the variable substitution $\widehat{\ell}=\widehat{\ell}(\ell)$ associated to $\sigma_{\widehat{\Gamma} I I}$ from Claim 2. We claim that these functions fit together to give a well-defined strict piecewise power series \mathfrak{P} on $\widetilde{\Sigma}^{\theta}$.

- To define \mathfrak{L} on $\widetilde{\Sigma}^{\theta}$, we fix a vertex $v_{0} \in V(\widehat{\Gamma})$. For every length assignment $\widehat{\ell}$ in the cone $\tau_{\widehat{\Gamma}, I}$ and any vertex $v \in V(\widehat{\Gamma})$, let $\gamma_{v_{0} \rightarrow v}$ be a path from v_{0} to v in $\widehat{\Gamma}$. We define

$$
\begin{equation*}
\alpha(v)=\sum_{\vec{e} \in \gamma_{v_{0} \rightarrow v}} I(\vec{e}) \cdot \hat{\ell}_{e}, \tag{16}
\end{equation*}
$$

where the sum is over the oriented edges \vec{e} constituting the path $\gamma_{v_{0} \rightarrow v}$. The defining equations of $\tau_{\widehat{\Gamma}, I}$ imply that for $\widehat{\ell} \in \tau_{\widehat{\Gamma}, I}$ the expression (16) is independent of the chosen path $\gamma_{v_{0} \rightarrow v}$. We define

$$
\begin{equation*}
\mathfrak{L}=\sum_{v \in V(\hat{\Gamma})}\left(D+\underline{\operatorname{deg}}_{k, A}\right)(v) \cdot \underbrace{\left.\alpha(v)\right|_{\hat{\ell}=\hat{\ell}(t)}}_{\mathbb{Z}} \in \mathbb{Q}\left[\ell_{e}: e \in E(\Gamma)\right] . \tag{17}
\end{equation*}
$$

The substitution of variables $\widehat{\ell}=\widehat{\ell}(\ell)$, which give the inverse of the isomorphism $\tau_{\widehat{\Gamma}, I} \rightarrow \sigma_{\widehat{\Gamma}, I}$ and thus have image in $\tau_{\widehat{\Gamma}, I}$, ensure that the expression is independent of the choice of the paths $\gamma_{v_{0} \rightarrow v}$. The expression is also independent of the base vertex v_{0}, which follows from the fact that the divisor $D+\underline{\operatorname{deg}}_{k, A}$ has total degree 0 on $\widehat{\Gamma}$.

For the $\log \mathrm{DR}_{g, A}$ formula, in addition to \mathfrak{P} and \mathfrak{L}, we will also require the tautological class

$$
\begin{equation*}
\eta=k^{2} \kappa_{1}-\sum_{i=1}^{n} a_{i}^{2} \psi_{i} \in \mathrm{R}^{*}\left(\overline{\mathcal{M}}_{g, n}\right) . \tag{18}
\end{equation*}
$$

$\phi: \mathrm{PP} \rightarrow \mathrm{CH}$

Define the mixed degree logarithmic class

$$
\begin{equation*}
\mathbf{P}_{g, A}^{\theta}=\exp (-\frac{1}{2}(\eta+\underbrace{\Phi(\mathfrak{L})}_{\boldsymbol{P L}})) \cdot \underbrace{\Phi(\mathfrak{P})}_{\mathbf{P P}} \in \operatorname{logR}^{*}\left(\overline{\mathcal{M}}_{g, n}\right), \tag{19}
\end{equation*}
$$

where Φ is the extension of the map (11) to piecewise power series as described at the end of Section 1.7.1.

Theorem B. Let θ be a small nondegenerate stability condition. The log double ramification cycle is the degree g part of $\mathbf{P}_{g, A}^{\theta}$,

$$
\operatorname{logDR}{ }_{g, A}=\mathbf{P}_{g, A}^{g, \theta} \in \log \mathrm{R}^{g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Example

Corollary: All $D R_{g, A}(V)$ are determined
Example $\quad g=2, \quad A=(3,-3,0), B=(0,3,-3)$
$-\frac{49}{160}$ - $0+\frac{27}{320}$ o o $0+\frac{213}{640}$ o oo
$+\frac{711}{640} \Omega \quad \boldsymbol{\oplus}$
$+\frac{9}{256}$ ᄋ

5. A norel approach
5. A novel approach

A novel take on an old approach

The geometry of $\mu_{g, A}(\theta)$ is in fact extremely favorable

$$
\begin{aligned}
& C_{g, A}(\partial), \mathscr{L}=a_{j A} \otimes(\phi(\alpha)) \\
& \pi \downarrow \\
& M_{g, A}(\theta)
\end{aligned}
$$

Thu (AMP)

$$
\log D R_{g, A}=c_{g}\left(-R \pi_{*} \mathcal{L}\right)
$$

So $\log D R_{g, A}$ can be calculated by GRR
Thu (AMP): Let $C \xrightarrow{f} S$ be a family of curves.
The GRR formula lefts to $\log C H$. The result is an explicit formula in terms of

$$
C H^{*}(s), \lim _{\Sigma_{s^{\prime}} \rightarrow \Sigma_{s}} \operatorname{PP}\left(\Sigma_{s^{\prime}}\right)
$$

The approach leads to new formulas

Mumford	Paxton
$\lambda_{1}=\frac{k_{1}+\delta}{12}$	$\lambda_{1}=\delta_{\text {ir r } / 12}$

AMP

$$
\begin{gathered}
\log D R_{1,(3,-3)}= \\
\frac{9}{2} \psi_{1}+\frac{9}{2} \psi_{2}+\frac{3}{2} \psi_{1}-\frac{3}{2} \psi_{2} \\
+
\end{gathered}
$$

HIPS

Relations: $\psi_{1}=\psi_{2}, \lambda_{1}=\delta_{i=1 / 12}$ on $\bar{\mu}_{1,2}$

In fact, the method calculates the (virtual) classes of any unvertal $w_{g, d}^{r}$ pulled back to $\bar{\mu}_{g, n}$

$$
\begin{aligned}
& w_{g, 0}^{0}=[0] \sim \log D R \\
& w_{g, d<0}^{0}=0 \leadsto \text { Relations on } \bar{M}_{g, n}
\end{aligned}
$$

