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My research interests lie broadly in algebraic geometry, though my expertise is more
specifically in moduli theory. My work falls roughly under three circles of ideas, although
the ideas often overlap significantly in my papers: moduli spaces of curves and stable
maps ([AM14],[MR19],[MPS21],[MR21]), moduli spaces of line bundles ([MW22], [HMOP20],
[MMUV22]), and resolution of singularities ([MT21], [Mol21], [GM15a], [GM15b]).

A recurring theme in my research is the study of moduli problems by degeneration methods, and
especially by employing techniques from logarithmic geometry. A situation one encounters often
in moduli theory is that one is interested in a certain moduli problem, parametrizing families of,
say, smooth varieties with certain properties. As smooth varieties tend to degenerate into singular
ones, the moduli problem is typically not compact. The philosophy of logarithmic geometry is that
one must endow the objects in question with additional structure, called a logarithmic structure,
and study the moduli problem of these logarithmic objects instead. Doing so correctly is often
more difficult than it seems; once it is done, however, it gives access to a variety of additional tools
with which one can study the smooth objects and the degenerate objects that appear in the limit
uniformly. It gives access to categorical, deformation theoretic, and combinatorial methods: log
schemes form a category, with notions of morphisms, fiber products, and so on; it makes sense to
speak about smoothness in this setup, and deformation theory of logarithmic objects has almost
identical formal behavior as ordinary deformation theory, controlled by the cohomology groups of
the so called logarithmic cotangent complex; and every logarithmic scheme has a tropicalization
– a certain piecewise linear object, consisting of a complex of cones, which is an object central to
the field of tropical geometry – to aid in their study. The moduli spaces of logarithmic objects
that arise tend to be automatically proper, and furthermore to have excellent formal properties: a
functor of points, functorial desingularizations, or perfect obstruction theories when appropriate.

Below I present a sample of my results, which illustrate the scope of my research and my
mathematical taste.

1. Jacobians of Nodal Curves and Double Ramification Cycles

While the Jacobian of a smooth family of curves X → S is an abelian scheme over S, the
situation breaks down when X → S is nodal. There are two natural candidates with which
one can replace the Jacobian – the space Pic0(X/S) of line bundles of total degree 0, and the

space Pic[0](X/S) of multidegree 0 line bundles, that is, degree 0 on every irreducible compo-
nent of every fiber of X → S. However, neither is proper: Pic0(X/S) is both not universally

closed and highly non-separated, while Pic[0](X/S) is semiabelian, i.e. an extension of an abelian

scheme by a torus. Compactifications of Pic[0](X/S) have been the subject of a vast study
([OS79],[Sim94],[Cap94],[KP19],[Mel19],[Est01]). While the resulting spaces – the so called com-
pactified Jacobians – are of course proper, they depend on auxiliary choices, and do not have a
group structure.

A very interesting story runs in parallel on the moduli space of curves. Fix a vector of integers
A = (a1, · · · , an) with

∑
ai = k(2g − 2) := d. The double ramification cycle DRk

g,A is the

virtual class of the locus of curves in Mg,n which admit a k-differential with zeros and poles

of orders dictated by A. More precisely, the DRk
g,A is a codimension g algebraic cycle class in
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CHg(Mg,n), supported on the locus of curves (C, x1, · · · , xn) for which ω⊗k
C

∼= O(
∑

aixi). While

the afformentioned locus is unambiguous, properly defining the cycle class DRk
g,A, and moreso

computing it in terms of more familiar classes (say, in the tautological ring of Mg,n) is subtle.
Over the locus of smooth curves, the distinction is clear, and so is the connection with Jacobians.
The difference between the locus and the class is the difference between the schematic intersection
DRL of the section ω⊗k with the Abel-Jacobi section ajA(C, x1, · · · , xn) = O(

∑
aixi), and the

refined intersection aj∗A([ω
⊗k]), as in the diagram below:

DRL Mg,n

Mg,n Picd(Cg,n/Mg,n)

ω⊗k

ajA

As there is no good candidate for a compactification of Picd(Cg,n/Mg,n) – the compactified
Jacobians may sound like a natural choice, but there is no compactified Jacobian to which the
Abel-Jacobi section extends –, extending the class away from the locus of compact type curves is
subtle. The question of how to do so goes back to Eliashberg, and by now has been studied by a
great number of people – see for instance [GV05], [KZ03], [BCG+18], [FP18], [Hol21], [MW20] for
just a sample. At the end, answers have been proposed which lie in the intersection of Gromov-
Witten theory, complex geometry, Abel-Jacobi theory and logarithmic geometry. In a sense,
the definitive approach to the question was provided in the papers [JPPZ17], [BHP+21], which

together culminate with an explicit formula for DRk
g,A in the tautological ring of Mg,n, called

Pixton’s formula. However, even these approaches reach a stumbling block: for instance, if we
were to study the analogous problem for two vectors A = (a1, · · · , an), B = (b1, · · · , bn), one can

define the analogous higher ramification cycle “DDRk
g,A,B” supported on the locus (C, x1, · · · , xn)

where O(
∑

aixi) ∼= ω⊗k
C

∼= O(
∑

bixi), but the methods of [JPPZ17] do not generalize to provide a

formula. In particular, the naive expectation DDRk
g,A,B = DRk

g,ADR
k
g,B, while valid in the interior

of Mg,n, fails over the boundary. Yet the classes DDRg,A,B (and their even-higher dimensional
analogues) play a central role in the Gromov-Witten theory of higher dimensional varieties, and
so are of significant interest.

1.1. The logarithmic Jacobian. While no compactification of Pic[0](X/S) can retain both
smoothness and group structure, such a best possible compactification is possible in the logarith-
mic setting. Following ideas of Illusie-Kato, and Kajiwara-Kato-Nakayama, Jonathan Wise and I
construct the logarithmic Picard stack LogPic(X/S) of a family X → S of nodal (or more gen-
erally, log) curves and study its structure and main properties [MW22]. The stack LogPic(X/S)
is in fact a gerbe, and a rigidified version, the logarithmic Picard group LogPic(X/S) is also
available. The logarithmic Picard stack/group have several remarkable properties, which can be
summarized as follows:

Theorem 1.1.1. [MW22, Theorems A,B,D,E] The stack LogPic(X/S) (resp. sheaf
LogPic(X/S)) is a logarithmically smooth, proper commutative group object. It is a stack
(resp. sheaf) in the log étale topology, and it has a log étale cover by an algebraic stack with a
log structure (resp. log scheme). It coincides with the classical Picard stack Pic (resp. Picard
scheme Pic) on the smooth locus of X → S. The sheaf LogPic(X/S) is a logarithmic abelian
variety in the sense of [KKN08].

In particular, given a family of nodal curves X → S which is smooth over some open
subscheme U ⊂ S, LogPic(X/S) provides a log smooth, proper, group compactification of
LogPic(XU/U) = Pic(XU/U). For instance, applying the construction to the universal curve
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Cg,n → Mg,n over the moduli space of curves produces a compatification of the universal

Jacobian Pic(Cg,n/Mg,n).
The biggest difficulty in the theory is that LogPic is not representable by an algebraic stack

with a logarithmic structure. To explain what this entails is technical, but, informally, it means
that in order to define the T points LogPic(X/S)(T ), it is necessary to specify a log structure on
T . This may give the impression that the logarithmic Picard group is complicated, but in fact it is
possible to get a good grasp on it simply on account of its simple functor of points, and through
its tropicalization TroPic(X/S). This tropicalization is the solution of an analogous moduli
problem on the tropicalization X of X → S – a tropical curve –, and is a fully combinatorial
object that can be understood explicitly: it is a constructible sheaf of abelian groups varying
over strata in an appropriate stratification of S. We relate the combinatorial object TroPic to
LogPic(X/S) by observing that LogPic(X/S) contains the multidegree 0 part Pic[0](X) of the
Jacobian of X as a subgroup, and that we have:

Theorem 1.1.2. [MW22, Theorem C.] There is an exact sequence of group stacks

0 Pic[0](X) LogPic(X/S) TroPic(X) 0

and an analogous sequence of sheaves for LogPic(X/S).

1.2. Compactified Jacobians. Due to its lack of representability, the logarithmic Picard
stack/group may be thought of as an organizing formalism instead of a genuine space as a first
approximation – just as a usual algebraic stack can be thought of as an organizing formalism
instead of a space. Regardless, we have found the formalism useful rather than vacuous. It is a
general principle of logarithmic geometry that given a log scheme X, with tropicalization ΣX ,
which is a cone complex, subdivisions Σ′

X of the cone complex ΣX correspond to a very specific
subset of blowups X ′ → X called logarithmic blowups. The significance of this observation in
this context is that using the exact sequence of 1.1.2 we can classify toroidal compactifications
of Pic[0](X) by subdivisions of TroPic(X/S) – put otherwise, they are all log blowups of
LogPic(X/S). In [MMUV22, MMU+on] we carry out this analysis more carefully. We show that
all the usual spaces that arise in the study of compactified Jacobians – the so called universal
and generalized Jacobians, the Caporaso, Esteves and Melo compactified Jacobians, and the
compactified Jacobians of Kass-Pagani all have tropicalizations, which we compute, and are
determined relative to LogPic(X/S) by these tropicalizations. For example, for any choice of
an appropriate “stability condition” ϕ (which we do not define here), Kass and Pagani construct
a compactified Jacobian Pic(ϕ) over Mg,n. We show

Theorem 1.2.1. [MMUV22, MMU+on] The compactified Jacobian Pic(ϕ) has a tropicalization
Pictrop(ϕ), which comes with a map π : Pictrop(ϕ) → TroPic(Cg,n/Mg,n). We have

Pic(ϕ) = Pictrop(ϕ)×TroPic(Cg,n/Mg,n)
LogPic(Cg,n/Mg,n)

The map π is a subdivision of cone complexes. Analogous statements hold for the universal and
generalized Jacobian, other compactified Jacobians, and the analogous versions for the correspond-
ing (unrigidified) stacks.

Thus, the theory of compactified Jacobians on a family of nodal curve X → S can be seen as
specifying subdivisions of TroPic(X/S). This point of view allows us to get new constructions of
compactified Jacobians; for instance, the constructions of Caporaso, or of Kass-Pagani, depend
on the choice of a stability condition but yield a proper space only when the stability condition
turns out to have no strictly semistable objects. In the ongoing work [MMU+on], we show
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Theorem 1.2.2. For any stability condition ϕ, which may contain strictly semistable objects,

there is a way to associate a subdivision π : P̃ic
trop

(ϕ) → TroPic(Cg,n/Mg,n). The fiber product

P̃ic(ϕ) = P̃ic
trop

(ϕ)×TroPic(Cg,n/Mg,n)
LogPic(Cg,n/Mg,n)

provides a new compactification of the universal Jacobian, which coincides with the usual com-
pactification Pic(ϕ) when ϕ does not contain strictly semistable objects.

1.3. Double Ramification Cycle. The discussion on the log Jacobian immediately provides
a suggested route out of the difficulties the double ramification cycle runs over the boundary of
Mg,n: One should instead look at the diagram

DRL Mg,n

Mg,n LogPicd(Cg,n/Mg,n)

ω⊗k

ajA

and define DRk
g,A as aj∗A[ω

⊗k], for [ω⊗k] the class of the section determined by ω⊗k in

CHg(LogPic(Cg,n/Mg,n). The problem is that, as LogPic is not algebraic, this suggestion is
nonsense! There is simply no way to make sense of CHg(LogPic) directly. There is however, an
alternative cohomology theory one may use. Given a log smooth logarithmic scheme X, the log
Chow ring of X is defined as the colimit

logCH(X) := lim−→
X′→X

CH∗(X ′)

where X ′ → X ranges through all log blowups of X with X ′ smooth. This is a (non-finitely
generated) ring that contains CH(X). Moreover, as LogPic(Cg,n/Mg,n), while non-algebraic, has
log blowups which are algebraic (the compactified Jacobians), it does make sense to ask about
the class [ω⊗k] ∈ logCH(LogPic(Cg,n/Mg,n)).

Before taking the suggestion of working with a cohomology theory of the logarithmic Jacobian
seriously, we can explore some of its consequences. First of all, it suggests that the double
ramification cycle should be more naturally defined as a class in logCH(Mg,n). What this means,

in practice, is that it should be studied as a collection of classes (DRk,α
g,A)α∈C ∈ CH(Mα

g,n), where

fα : Mα
g,n → Mg,n, α ∈ C range through a class of (log) blowups of Mg,n, so that the classes

DRk,α
g,A are compatible: for any log blowup M′

g,n of Mg,n dominating two of the given blowups

Mα
g,n,M

β
g,n, the pullbacks of DRk,α

g,A and DRk,β
g,A must coincide. In fact, such a class was already

constructed by Holmes in [Hol21]. The classes (DRk,α
g,A)α∈C are somewhat remarkable. First, they

form a refinement of DRk
g,A, i.e. they contain strictly more information: we have

(fα)∗DR
k,α
g,A = DRk

g,A

but
f∗
αDR

k
g,A ̸= DRk,α

g,A

But, more importantly, the classes DRk,α
g,A controll the problematic higher ramification cycles

DDRg,A,B discussed above:

DDRg,A,B = (fα)∗(DR
k,α
g,ADR

k,β
g,B)

for appropriate α.

Thus, the study of the refinement (DRα,k
g,A)α∈C – elliptically refered to as logDRk

g,A ∈
logCH(Mg,n) – becomes the key to the study of the higher ramification problems.
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A special case deserves mentioning. When A = (0, · · · , 0) and k = 0, the class DRk
g,A is

nothing but the class (−1)gλg: the top Chern class of the Hodge bundle Eg. In this special case,

we also happen to have that DRk,α
g,A = f∗

α(−1)gλg, i.e. we are in one of the rare cases where

the class logDRk
g,A is determined by DRk

g,A. Nevertheless, studying λg ∈ logCH(Mg,n) rather

than CH(Mg,n) still reveals additional structure. In [MPS21], together with Pandharipande and
Schmitt, we study whether – as happens over the locus of compact type curves, where λg is the
pullback Θg/g! of the universal Θ-divisor on the moduli space of Abelian varieties under the
Torelli map – λg is a product of divisors. We show

Theorem 1.3.1. [MPS21] The class λg cannot be written as a product of divisor classes in

CH(Mg) for g ≥ 2. However, it is a product of divisor classes in logCH(Mg).

Another special case is studied in joint work [MR21] with Dhruv Ranganathan. There we still
study the case when k = 0, but A = (a1, · · · , an) an arbitrary vector of integers summing to 0. The

resulting cycle DRk
g,A, elliptically denoted as simply DRg,A, is the case of primary interest from the

perspective of Gromov-Witten theory, as it can be interpreted as the virtual fundamental class of
the moduli space of rubber relative stable maps. The work [MR21] devotes a significant amount of
effort into developing foundations for logarithmic intersection theory. In our setup, we recognize
the refined classes DRα

g,A as arising from a general construction in logarithmic intersection theory,
which essentially expresses the difference of f∗

αDRg,A and DRα
g,A as the difference between the

(virtual) total and strict transforms of a subscheme. We show that, working on a log scheme
X, such differences are in general controlled by a specific subalgebra of the Chow ring of X,
the algebra PP(ΣX) of piecewise polynomial functions on the tropicalization of X, for which we
develop the foundations. This algebra is very simple – essentially a combinatorial object – but
was already a crucial ingredient in the proof of 1.3.1 in [MPS21]. It is further crucially used here
to show that

Theorem 1.3.2. [MR21] The classes DRα
g,A are in the subring of CH(Mα

g,n) generated by the

pullbacks of tautological classes on Mg,n and piecewise polynomial functions on the tropicalization

of Mα
g,n. In particular, for vectors A,B, the higher ramification cycles

DDRg,A,B

are in the tautological ring of Mg,n.

In recent work with Holmes, Pandharipande, Pixton and Schmitt, we go further and obtain

explicit formulas for DRk,α
g,A. This way, we can also get formulas for the DDRk

g,A,B, and so on.

To do so, we take the suggestion that DRk
g,A should be considered as the pullback of [ω⊗k] ∈

logCH(LogPic(Cg,n/Mg,n) seriously. This suggestion entails that, for any compactified Jacobian
– say, for concreteness, any of the Jacobians Pic(ϕ) defined by Kass and Pagani for a stability
condition ϕ –, there must be a log blowup Mg,n(ϕ) of Mg,n, and a resolution of the Abel-Jacobi
section

Mg,n(ϕ) Pic(ϕ)
ajϕ

and the representative DRk
g,A(ϕ) of the class logDRk

g,A on Mg,n(ϕ) must be aj∗ϕ[ω
⊗k]. We show

that this is indeed the case, and show that Mg,n(ϕ) is determined by an explicit subdivision of

the tropicalization of Mg,n. Using this, we show

Theorem 1.3.3. [HMP+22] There is an explicit class

P k
g,A(ϕ) ∈ CH∗(Mg,n(ϕ))
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written in terms of tautological classes on Mg,n and piecewise polynomial classes on the tropical-

ization of Mg,n(ϕ). Its codimension g part computes DRk
g,A(ϕ).

The formula is in fact amenable to implementation to a computer, and allows us to compute
several examples of higher ramification cycles which were previously out of reach.

1.4. Néron Models. The results above illustrate that the (non-algebraic) space LogPic(X/S)
controls the theory of compactified Jacobians, via (algebraic) subdivisions of its tropicalization.
As mentioned above, the source of non-algebraicity of LogPic(X/S) is that, in order to define its
T points, it is necessary to specify a log structure on T . A more technical way to say this is that,
LogPic(X/S) is a sheaf on the category LogSch/S of log schemes over S, and that there is no way
to descend LogPic(X/S) to an algebraic space on Sch/S, under the natural forgetful morphism
LogSch/S → Sch/S. On the other hand, the category Sch/S also embeds into LogSch/S,
by giving a scheme T → S its log structure induced from S (called the “strict” log structure).
Thus, instead of trying to resolve non-algebraicity by blowing up, it is possible to address it by
restricting LogPic(X/S) to a sheaf sLogPic(X/S) (with s standing for “strict”) on Sch/S. The
sheaf sLogPic(X/S) is now representable by an algebraic space, and turns out to be intimately
connected with the Néron model of the Jacobian of X → S. Assume that X → S is a family of
nodal curves over a toroidal base S, smooth over a dense open set U . Recall that for an abelian
scheme AU → U , the Néron model of AU → U is defined to be a smooth, separated algebraic
space A → S restricting to AU → U over U , with the Néron mapping property : Given a smooth
map f : T → S with f−1(U) = V , and a map m : V → AU , there is a unique extension of m to a
map T → A. Néron’s theorem asserts that a Néron model exists when S is a Dedekind scheme.
In [HMOP20], we show

Theorem 1.4.1. [HMOP20] Let X → S be a family of nodal curves over a toroidal base S of
arbitrary dimension, smooth over a dense open U ⊂ S. Then sLogPic(X/S) is a smooth algebraic
space which satisfies the Néron mapping property.

In other words, the algebraic space sLogPic(X/S) is in a sense the Néron model of Jac(XU/U)
– it is the unique object that can possibly be the Néron model, and the only property in the
definition that potentially fails is separatedness. However, non-separatedness of sLogPic(X/S)
can be again detected tropically. More precisely, we show that the tropicalization sTroPic(X/S)
of sLogPic(X/S) controls the smooth separated group models of Jac(XU/U)):

Theorem 1.4.2. [HMOP20] There is an equivalence of categories between smooth separated group
models of Jac(XU/U) and quasi-finite open subgroups of sTroPic(X/S), which, to such a subgroup
G ⊂ Jac(XU/U) assigns the group model

G = G×sTroPic(X/S) sLogPic(X/S)

In particular, there is always a maximal smooth separated group model of Jac(XU/U), corre-
sponding to the torsion subgroup sTroPic(X/S).

To summarize, if we relax the hypothesis that the Néron model is separated, then the Jacobian
of a family of nodal curves X over a toroidal base S of arbitrary dimension always has a Néron
model – sLogPic(X/S) – and if we insist on separatedness, a Néron model exists if and only
if sTroPic(X/S) is torsion. Either way, this analysis provides the Néron model with a modular
interpretation, which as far as we know is novel even for one dimensional bases.

2. Resolution of Singularities

2.1. Weak Semistable Reduction. One of the main problems is moduli theory is the following:
given a family of varieties X → S, can one modify X and S to obtain a family X ′ → S′ that is “as
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nice as possible”? A classical result [KKMSD73] shows that when the base S is one-dimensional,
one can take a finite cover S′ → S such that for a blowup Y → X ×S S′ the map is Y → S′ is
flat, has reduced fibers, and Y is smooth. When S is higher dimensional, Abramovich and Karu
proved that by taking a blowup of a finite cover of S – an alteration –, one can at least always
ensure a blowup Y of X×S S

′ will be flat with reduced fibers over S′. The proof in either [AK00]
or [KKMSD73] is done by reduction to the case of toroidal embeddings, by appeal to Hironaka’s
desingularization, and then studying the combinatorics of their associated cone complexes – the
tropicalization in the language above. In [Mol21], I study the toroidal part of the problem from
the viewpoint that its functorial aspects are important. I define a weakly semistable morphism
of toroidal embeddings to be a log smooth morphism which is flat with reduced fibers, and I
show that this condition is essentially combinatorial in nature. Furthermore, it is precisely the
condition necessary to ensure that the pullback of toroidal embeddings remains toroidal. The
main result of [Mol21] shows that the toroidal part of [AK00] can be done canonically if one
works with Deligne-Mumford stacks instead of schemes. Specifically, I show:

Theorem 2.1.1. [Mol21, Theorem 1.0.1] Let X → S be a proper, surjective, log smooth morphism
of toroidal embeddings.There is a commutative diagram

X //

��

X

��
S // S

where X → S is a weakly semistable morphism of toroidal Deligne-Mumford stacks, and any
weakly semistable Y → T mapping to X → S factors uniquely through X → S.

The theorem is essentially an analogue of the Raynaud-Gruson theorem in the toroidal category.
While the shift in perspective is innocuous, the observation that semistablization should be
thought of as an operaration seems to appear in various guises in logarithmic geometry – it
appears for instance in the work of Ranganathan [Ran20] on expansions of higher dimensional
targets, in the comparisons between strict and total transforms in [MR21], or in [AM14].

2.2. Logarithmic Differential Geometry. The project [GM15a] (my first one) has a slightly
different flavor than the works discussed above. It can be seen as a response to the papers
[KM11] and [Joy12] on manifolds with corners. Manifolds with corners do not form a good
category. Firstly, even though a definition of manifolds with corners is more or less accepted,
there is no consensus on what a morphism between manifolds with corners should be. Secondly,
the category of manifolds with corners is not closed under inverse limits: for example, fiber
products of transverse maps of manifolds with corners do not exist as manifolds with corners. In
[GM15a], we propose that manifolds with corners should be studied in the enlarged category of
differentiable spaces – a category which is roughly speaking built from the category of manifolds
in the same way as the category of schemes is built out of the category of smooth varieties. In fact,
we enlarge the category even more by allowing differentiable spaces to carry log structures. This
allows us to give a natural definition of a morphism of manifolds with corners – they are precisely
the log morphisms. We characterize manifolds with corners in terms of their log structure:

Theorem 2.2.1. [GM15a, Theorem 6.7.8] Manifolds with corners are positive log differentiable
spaces which are log smooth with a free log structure.

The payoff of working with differentiable spaces, which form a nicer category, is that many
objects obtain singularities – for instance, the motivating example of fiber products of manifolds
with corners. We thus discuss resolution of singularities in a rather general context. We start
from any category of “log spaces”, which can be for example the category of log schemes, log
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analytic spaces or log differentiable spaces. We discuss a notion of logarithmic smoothness for
any log space and we describe a procedure to assign combinatorial data to a log space, which we
call a monoidal space. This is analogous to the data of the fan of a toric variety. We discuss
how operations on this data, analogous to subdivisions of fans, have a geometric realization that
produces a new log space with a log smooth map to the original one. Following techniques from
the algebraic theory of resolution of singularities, we show how to resolve any monoidal space,
so that the geometric realization of this resolution gives a space with a free log structure. In the
example of positive differentiable spaces, it yields

Theorem 2.2.2. [GM15a, Theorem 10.4.1] Any (fs) positive log differentiable space X admits a
log smooth, surjective, locally projective map X ′ → X from a positive log differentiable space with
a free log structure, which is an isomorphism over the locus where the log structure of X is free.

In other words, X ′ is a resolution of singularities of X. If we begin with a log smooth space,
the resulting resolved space will be log smooth and free - a manifold with corners. As a corollary,
we obtain a different proof of the main result of [KM11]: the fiber product of transversal maps
of manifolds with corners can be resolved to a manifold with corners.

3. Moduli of Maps

3.1. Broken Toric Varieties. In [AM14], Kenneth Ascher and I study the moduli space of
broken toric varieties in a toric variety V . Specifically, for a fixed toric variety V and a fixed
subtorus H of its torus, we study the stack AB, introduced in the work [AB06] of Alexeev and
Brion, which parametrizes families of equivariant maps f : X → V from a broken toric variety
with torus H to V . The stack AB is shown to be a proper Deligne-Mumford stack in [AB06],
but it is not irreducible. In the logarithmic setting, we study instead the logarithmic version K
of AB; we show that the stack K is a proper, log smooth Deligne-Mumford stack, and we obtain:

Theorem 3.1.1. [AM14, Theorem 5.12] The forgetful morphism K → AB is the normalization
of the closure of the main component of AB.

Furthermore, we give an explicit description of K as a toric stack, by describing its stacky
fan – we do this by observing that the Chow quotient V � H of Kapranov-Sturmfels-Zelevinsky
[KSZ91] has a natural structure structure of a “KM fan” 1 which carries a universal family, and
we show:

Theorem 3.1.2. [AM14, Proposition 5.11] The stack K is isomorphic to the Chow quotient stack
[V �C H].

3.2. Gromov-Witten Theory. The space of relative stable maps MLi(X), constructed by Jun
Li [Li01], parametrizes maps from nodal curves to a singular target X = Y1 ∪D Y2 that have pre-
scribed tangency conditions along D. The invariants one extracts from MLi(X) are called relative
Gromov-Witten invariants, and are important in Gromov-Witten theory due to their deformation
invariance: the Gromov-Witten invariants of a family Xt of smooth varieties degenerating to X
coincide with the relative Gromov-Witten invariants of X. The paper [Li01] is groundbreaking,
but introduces one technical difficulty: the space of relative stable maps to X is a locally closed
subset of the space of all maps to X, and hence the ordinary deformation/obstruction theory of
maps cannot be used; this makes its virtual fundamental class hard to understand, and thus the
invariants hard to compute. One of the main computational tools is the localization formula of
Graber-Vakil, available when there is an action of C∗ on X. In [Kim10], the author introduced

1The theory of KM fans is developed in joint work with W.Gillam in [GM15b], with main motivation to under-
stand this construction, and its precursor in [GM], but also certain mysterious differential geometric constructions
that appeared in the work [KM11] of Kottke and Melrose, to which the notion owes the name.
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the space MKim(X) of logarithmic stable maps to X. This space produces the same invariants
as MLi(X), but has several technical advantages, and in particular a virtual class governed by
standard log deformation theory. In [MR19], we study MKim(X) when X carries a C∗-action,
and show:

Theorem 3.2.1. [MR19, Theorem 5.1] There is a localization formula for MKim(X).
This formula recovers the formula of Graber-Vakil by pushing forward via the forgetful map
π : MKim(X) → MLi(X).

4. Future and Ongoing Work

The results above suggest several new routes of investigation. I outline here a sample of some
that I am pursuing currently or plan to pursue in the future.

4.1. Double Ramification Cycles. The geometry of the compactified Jacobians is very rich.
The compactified Jacobians carry in particular a collection of algebraic cycles, called the Brill-
Noether loci. The arguments of [HMP+22] show that the logarithmic double ramification cycle
is the pullback of a special Brill-Noether locus (the 0-th degree 0 Brill-Noether locus). The Brill-
Noether loci can be realized as degeneracy loci. Consequently, the logarithmic double ramification
cycle can be realized as a degeneracy locus as well. This provides a different way of calculating
it, via more traditional algebro-geometric techniques, such as the Grothendieck-Riemann-Roch
theorem. In ongoing work with Abreu and Pagani, we give formulas for the double ramification
cycle that come from its interpretation as a degeneracy locus. The calculation turns out to be
very interesting: it requires developing a way to calculate cycles on Mg,n which are a mix of
tautological and tropical classes – classes which come from the combinatorics of stable graphs.
The methods should be applicable to many other problems, and, remarkably, the formulas that
arise are totally different from Pixton’s formula. In particular, as they give two formulas for the
same class, this process produces relations in the Chow ring of Mg,n.

Question 4.1.1. What do the relations that arise from comparing Pixton’s formula with the
Grothendieck-Riemann-Roch formula look like? How do they fit with the Faber-Zagier and Pixton
relations?

On the other hand, from the point of view of the compactified Jacobians, the double ramifica-
tion cycle is a special case of the classes of all Brill-Noether loci. One can pull back these loci via
the Abel-Jacobi section and calculate their classes on Mg,n via Grothendieck-Riemann-Roch.

Question 4.1.2. Is there an intepretation of the pulled back Brill-Noether loci in terms of
Gromov-Witten theory? Are they related to the other codimension pieces in Pixton’s formulas?

One can in fact go further. Exploiting the vanishing of Brill-Noether loci in appropriate
codimensions for negative degrees gives yet another large set of relations. We suspect the study
of these relations will be very fruitful, and plan to carry out this study in the future.

4.2. Abelian Varieties. The moduli space of principally polarized Abelian varieties of dimenson
g is not compact. Isolated toroidal compactifications exist in the literature [Ale02],[Ols08], such as
the compactification Avor

g corresponding to the Voronoi decomposition. While a minimal toroidal
compactification cannot exist, the existence of a minimal, non-representable compactification is
established in recent work of Kajiwara, Kato and Nakayama, and indicates that the toroidal
compactifications should be studied all together. This study should resolve the indeterminacy
of certain maps – for instance, the Prym-Torelli map – and suggest that the truly interesting
invariant should be the logarithmic Chow group of any (hence every) toroidal compactification.

Question 4.2.1. What can we say about logCH(Avor
g )? Does it have any interesting cycles?
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4.2.2. Higher dimensional Picard Functors. In [MW22], we studied the logarithmic Picard group
of a family of curves. We expect that the analogous theory for appropriate families is within
reach, and we plan to undertake the study in the future.

Definition 4.2.3. A logarithmic family is a proper, log smooth, flat map X → S with reduced
fibers. A log blowup of a logarithmic family is a logarithmic family Y → T such that T → S and
Y → X ×S T are log blowups.

In particular, starting with a logarithmic family X → S, we expect that there is a stack
LogPic(X/S), parametrizing a certain collection of Mgp

X torsors on X, satisfying the following
properties:

• LogPic(X/S) is a stack in the étale topology; it is a stack in the log étale topology when
S is log flat.

• LogPic(X/S) has a cover by the ordinary Pic(Y/T ) where Y → T ranges through all
log blowups of T , and Y through all log blowups of X ×S T .

• The stack LogPic(X/S) has a tropicalization, which is (after rigidification) a family of
tropical abelian varieties.

In particular, the sheaf of isomorphism classes of LogPic(X/S) will be a sheaf LogPic(X/S).
Assuming the construction goes through as expected, one can aim to study duality for logarithmic
abelian varieties. We expect that given a log abelian variety A/S, the dual logarithmic abelian va-
riety A∨/S will be identified with LogPic(X/S). Evidence in this direction is provided in ongoing
work [MUWon] with Ulirsch and Wise, in which we prove that the logarithmic Jacobian satisfies
duality: Following ideas introduced by Deligne in his study of duality for Pic, we construct a
“Deligne” pairing LogPic(X/S) × LogPic(X/S) → LogPic(S) for any family of nodal curves,
showing that LogPic(X/S) is its own dual log abelian variety. The perspective is of independent
interest, as it allows to approach theta divisors on compactified Jacobians in a systematic way.

4.2.4. Néron Models. While this discussion is admittedly technical, it should have immediate
applications. For example, if one were successful in proving the above results, the techniques
of [HMOP20] would go through to provide necessary and sufficient conditions for finding Néron
models of abelian schemes AU/U over arbitrary dimensional bases U .

4.2.5. Moduli of Abelian Varieties.

4.3. Compactifications of Moduli Spaces. Framing the problem of finding toroidal com-
pactifications of Jac(C/S) as that of finding blowups of LogJac(C/S) turns the problem of finding
such compactifications into a combinatorial question: finding compatible subdivisions of a system
of tropical abelian varieties. Using that, in [MMU+on], we construct novel compactifications of
Jac(C/S), which apply to a wider class of families of curves C/S – for instance, families which
do not require a marked point on C.

Furthermore, the idea of using the log Jacobian to transport stability conditions on Jacobians
to other problems should have several applications. Already, in ongoing work with di Lorenzo,
Gross, Horn, and Ulirsch, we use the idea to produce modular compactifications of the Prym
variety of a family of étale covers C → B over a base S. On the other hand, at the moment we
do not know:

Question 4.3.1. Do the compactified Pryms carry any interesting cycles?

I suspect that the answer is positive – the compactified Pryms should carry natural Brill-
Noether loci, and, moreso, the methods developed with Abreu-Pagani should be applicable to
allow us to calculate them.
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