

Interested in nice compactifications of a space tones T ~ tone variety X ~ smooth X w/ X·U=D normal crossings smooth U From moduli: Mrd (X,D) = { C - X w/ prescribed tanguncy behavior along DJ D smooth: Koy stable maps Kr(X,D) Pelative stable maps Accs (Xi-Ruan, J. Kr) Ranganathau · Toroidal compactifications of Jac on nodal curres (Oda - Seshadri) Ag c Ag toroidal compactifications

These compactifications are not unique $(\mathbf{x}) \in$ $\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$ So how do we pick one? . Maybe there is a minimal one (If so, usually a great advantage) E.g. Mgin, Krck,D) But often, no minimal compactification exists e.g. no minimal compactification of torus It's better to try and work with all compactifications at once. This has advantages even when a minimal compactification exists (but can be much harder)

Advantages: For any given geometric problem, it lits us pick a compactification best adapted to the problem uncovers extra structure Sample problem $A = (a_1, \dots, a_n)$ 2ai = 0B=(b1,...,bm) 26=0 DRgA = { CENgn | 3 C - P w/ramilication Profile A 3 = P* [Mg,A (P')] rubber Mg, A (P') parametrizes maps to P' w/ ramification profile A up to c"-action Mgn

Similarity $DDR_{g,A,B} = \begin{cases} c \rightarrow \overline{P} \times \overline{P} & w/ \text{ ram. profile} \\ A,B \end{cases}$ $= P_{\bullet} \left[\mathcal{M}_{g,A,S} (\mathcal{P} \times \mathcal{P})_{\mathcal{M}}^{*} \right]^{\mathcal{H}}$ Question: Is DDRg, A, B & R* (Mg, nine)? Proof : DDRg, A, B = DRg, A DRg, B eR*(Mg,n+m) by Faher-Pand. Pixton's formula So yes But the proof is wrong, because DPRG, AB & DRG, A DRG, B

But three are related classes DRg, A & CH(Ng, N), DRg, B, DDRg, A, B Mg, n Thy, n some blang along strata s.t. $\pi_* D_{Kg,A}^{\log} = D_{Kg,A}$ · DPRg,A,B = DRg,A DRg,B he have DRg, A = T * DRg, A + Correction So it we can undustand the correction term, the wrong proof could succeed.

Mg, num tr Mg, n Mg,m Mg,nm Jπ PJ 81 Mg,m $POR_{g,A,B} = \sigma_{x} (DOR_{g,A,B})$ $= \sigma_{\star} \left(\mu^{\star} DR_{g,A} \cdot \nu^{\star} DR_{g,B} \right)$ $\sigma_{\star}\left(\left(\mu^{\star}\pi^{\star}DR_{g,\Lambda}^{+}\cos r\right)\left(\nu^{\star}p^{\star}DR_{g,B}^{+}+\cos r\right)\right)$ = $\sigma_{\star}((\sigma^* \mu^* DR_{g,A} + von)(\sigma^* \nu^* DR_{g,B} + von))$ = $f^* DR_{g,A} \cdot v^* DR_{g,B} + f^* DR_{g,A} \cdot \sigma_{*}(con)$ + $v^* DR_{g,B} \cdot \sigma_{*}(con)$ Q + (Coll · Coll ·)

Context : Logarithmic geometry Extra data on scheme X sheat of monords log Scheme = (X, Mx) $\mathfrak{L}: \mathcal{M}_{\mathsf{X}} \longrightarrow \mathfrak{I}_{\mathsf{X}}$ $\varepsilon'(9_x^*) = 9_x^*$ $(\times, M_{\star}) \rightarrow (\gamma, M_{\star})$ Map $f: \mathbf{x} \longrightarrow \mathbf{y}$ $f'M_{y} \longrightarrow M_{x}$ $f' \mathcal{S}_{\gamma} \longrightarrow \mathcal{S}_{x}$ Mx = Mx/9x "charactoristic monoid" For geometry: extra assumptions . The timbely generated, integral, saturated (1.s.) · "Coherent" (has atlas of local charts)

Consequences, all J'll use : · Log scheme comes w/ stratification { Mx, x = constant } VXEX, affine tone variety of core $\sigma_{x} = \overline{N}_{x,x}^{v}$ $u_x \xrightarrow{f_x} V(\sigma_x)$ ét] stratified map. The choice of ox is locally constant on strata Examples X tone variety Mx generated by units/monomials → v(⊵) P

Normal crossings pair (X,D) My (u) = { fe Dx (u) | f in a unit on UD} Choice of log structure (=> Choice of D Sumpler (no self-intersection) (\ddagger) Maximally complicated (monodromy) X

Also less geometric examples · Log point : S = Spec C, interesting log structure. < V(MS) Ms + family examples querade by 4x, Y, t>/xy=t ↓ (x,y) t=xy t'®C* ----- 4' ーン . ____ . ___ . . . Det: X is log smooth/toroidal if charts fix are smooth J'11 stick with that for the rest of the talk

Our Tools : (1) To each log scheme, we assign two combinatorial objects (tropicalization) CCX) = cone complex of X "Artin Fau" (KKMSD) (Abramovich-Wise) For X toroidal, no self-intersection: For each stratum S, w/ givenc point xs, look at core Oxs . When S specializes to T $(x_T \in \overline{x_S})$ Oxy C Oxy is a face

C(x) = lim oxs stiata e.g., when X a tone vanety, C(x) = Yau of X . Ax is built the same way Instead of ox, book at $\overline{\mathcal{M}}_{X,X} = \sigma_X$ $\mathcal{A}_{\overline{\mathcal{M}}_{\mathbf{x},\mathbf{x}}} = \left[V(\sigma_{\mathbf{x}}) / T_{v(\sigma_{\mathbf{x}})} \right]$ Stack w/ log structure Hom (Ap, Aq) = Hom (Q, P) = Hom (P', Q') Kyst So Hom (Ox, Ox,) = Hom (A, A, A, A, X,)

CCX) = lin oxs Strata $A_{\chi} = \lim_{x \to x} A_{\overline{M}_{\chi}}$ CCX) more geometric Ux easiver to relate to X because it conser with a map $\chi \longrightarrow \mathcal{U}_{\chi}$ Example: X is toroidal <= · Xx is smooth Example (X,D) smooth C(x) = Ax = [1/A/am] = moduli space of lure bundles w/section (X,D) - A' tautological map opren by D

The constructions which some basic geometry. (2**)** Log Modifications × · Subdwide CCX) A $\widetilde{\mathfrak{u}}_{x} \rightarrow \mathcal{V}(\widetilde{\mathfrak{s}}_{x})$ $u_{x} \rightarrow v(c_{x})$ Local subdivisions gline to X a proper burational map "a log modification"

Ex: X is smooth, toroidal ccx) star subdivision = blowup at stratum . Star subdivisions are cofinal Any $\widetilde{X} \longrightarrow X$ is dominated by $\tilde{\tilde{x}} \longrightarrow \tilde{x}$ X sequence of star subdursions = sequence of blowups along non-singular strata

(3) Also get a distinguished subring x CH(Ax) C CH. (X) "the logarithmic tautological mg" The x CHop (Ax) guerated by Chern roots of normal bundles of strata of X Example . If X is a smooth tone variety, $x^* C H_{op}^* (A_x) = C H_{op}^* (x) = C H_{a}(x)$ X = (Ig,n, Jug,n) • 1f λg ∈ a^{*}CH^{*}_{op} (⊥_x) Ψ. & x CHop (Ax)

Theorem $CH_{op}^{*}(A_{x}) = PP(ccx))$ is a combinatorial object. Proof requires some understanding Сн. (_,1) A . . . some stack like Bam (A consequence in that CHop (Ax) satisfier étale descent) In summary, two tools to analyze X Its combinational shadow CCX) . Simple piece x "CHop" (X) of its cohomology

The trouble Elementary observation Fiber product in category of tone vanetin Fiber product in category of schemen Examples Scheme Fan MIT AZ - 12 (x,y) E . (x,xy) tone schematic 'A' 4[x,y]/x=xy

·Å + 2 $\begin{array}{ccc} & & 1 \\ A' \longrightarrow A' \\ + \longrightarrow +^2 & t^3 \end{array}$ / -/ 3 A hlx y]/y=x3 { Thorem Lt $X \rightarrow Y$ be a tone dragram. (i) Then the tone there product $\begin{pmatrix} f_s \\ X_{X_y} Z \end{pmatrix}$ notation is the normalization of the closure $d T_x \times T_2$ (ii) In fact, Xx, Z has an inductive description Irreducible components have following form: Look at strata DLO) × DLT) Normalization of closure = D(0) x - O(T) Irreducible components are maximal

	\rightarrow Y is a log modification, no absorber is needed.
Thre is	one case where everything works
	x 1 y
If m	$C(z) \rightarrow C(y)$
· · · · · · · · · ·	cones map <u>onto</u> cones integral structure maps onto integral structure
Then	$\begin{cases} I_s \\ X \times_y Z = X \times_y Z \end{cases}$
Ľ	Ccx)
not onto	1 J oh (47)
· · · · · · · · · · · · · · · · · · ·	

The geometric meaning is flat with reduced floers when X-Y is dominant Intersecting strata transversely for X - Y closed embedding The discussion generalizes nerbation to toroidal schemes. The upshot of this discussion is $v_{x,y}$ $v_{x,y}$ 1 log modification strata dv,y,y $\checkmark \longrightarrow \gamma$ Ing map the strict transform of V for any deagram of log maps between toroidal vaneties

The operation 15~ Vx, Y eventually v ∕v stabilizes Look at C(v) CCY) slice of 4d core slice of zd come CCV) 1 Any subdivision CCY) that contains CLVS $v_{x_{\gamma}} \overset{f_{s}}{\gamma} = (v_{x_{\gamma}} \overset{f_{s}}{\gamma})_{x_{\gamma}} \overset{\approx}{\gamma}$ For any y ĩ

Consequence Crimen V -> Y, the class [vxyÿ] stabilizes in system of blowups $\tilde{Y} \rightarrow Y$ Meaning ν $\tilde{\mathbf{x}} \stackrel{+}{\longrightarrow} \tilde{\mathbf{x}} \stackrel{-}{\longrightarrow} \mathbf{x}$ C(V) contains C(V) on subcomplex $\{\tilde{\nabla}_{x,x}^{f_{x}}, v\} = [\tilde{\nabla}_{x,x}^{f_{x}}, v]^{*}\}$ $Def: [v]^{10q} = [vx, \tilde{y}] \in CH_{*}(\tilde{y})$

(Fancy statement: [V] & LogCH(Y) := lim, CH°(Ÿ)) ỹ→y log modul. Think DR's = V toq - DR jugin = ÿ -> Y= Jug , M some blowup determined by combinatorics $\mathcal{A} \quad (\mathcal{C}\mathcal{V}) \longrightarrow (\mathcal{C}\mathcal{V})$ " tropical ames . "tropical stable maps"

In reality, picture is a bit more complicated because of the M^{nl}_{g,A}(P')[°] L P,o,t E virtual structure M P.o.t J t pulls back P V^{los} f.s. . log smoth! Mg, A (Ap) = V f.s.a a log mod. + Mgin = Y Mgin -DR 109 g.A = P. [Musjvir = $r_* f_{\epsilon}^{\prime} [v^{\prime}]$

So how do I compare N'n with U?
$\tilde{\mathbf{y}} \xrightarrow{\mathbf{f}} \mathbf{y}$
$f_{iog} V = V^{iog} = strict transform.$
$f^*V = total transform$
Fulton: Suppose $\tilde{Y} \rightarrow Y$ blowup along smooth center X
exceptional X i Y I excess bundle
exception $\widehat{X} \xrightarrow{\rightarrow} \widehat{Y} = \underbrace{\text{excess bundle}}_{g \downarrow}$ $g \downarrow \qquad \downarrow f$ $x \xrightarrow{\rightarrow} \widehat{Y} = \underbrace{\text{excess bundle}}_{E = g^* N \times / Y / N \times / \widehat{Y}}$
$\begin{array}{ccc} y & y \\ x & \xrightarrow{i} \end{array} & \begin{array}{c} y \\ y \end{array} & \begin{array}{c} z \\ z \\ z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \\ z \\ z \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \\ z \end{array} & \begin{array}{c} z \end{array} & \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \end{array} & \end{array} & \begin{array}{c} z \end{array} & \end{array} & \begin{array}{c} z \end{array} & \begin{array}{c} z \end{array} & \end{array} & \begin{array}{c} z \end{array} & \end{array} & \begin{array}{c} z \end{array} & \end{array}$

Then I'V - Vlog = j. (c(E) · g* S(xx, V, V)) Segre Class generally hard to compute A class in N×, Y=U (Components indexed by strata of V that map into X) But because V-Y is a log map is a monomial VXYXCV subscheme

VxyX - Aver Ax v ~ v $S(v_{x_y}X,v) = \alpha^* S(A_{v_{x_y}}A_{x_y},A_{v})$ a precewise polynomial class In fact, there is a remarkable formula Thm (Aluffi) Assume (V, D) normal crossings pour $S(X_{x_y}V,V) = \sum_{\text{strata of}} (\text{coefficient}) D_1 D_1$

Consequence Nby is in subring of CH*(Y) generated by fr and image of PP(v) (For DR, because of virtual structure, get my generated by f" DR, PP(F), lower dimensional DR.) Prod Alter replacing y with fiver one, can factor $\tilde{\gamma} \rightarrow \gamma$ on $\rightarrow \gamma_{1} \rightarrow \gamma_{0} = \gamma$ $\tilde{\gamma} = \gamma_n \rightarrow \gamma_{n-1} \rightarrow \gamma_{n-2}$ blowups along smooth centers

Then apply Fulton + Aluffi Corollary; DDRg, A, B in tautological 5: Mg, nim - Mg, nim DDR g.A.B = DRg, A DRg, B + J. (PP. TT (smaller DZ)) E R" (Mg, nim) Questions More ar less evenything is open. Effectivise algorithm. eg DRg.A has a formula Can menne formula for DRg, A??

We are trying with PPS, but vong oller methods; algorithm too Complicated. · Can we instead relax assumptions in Fulton's formula? Relying on lei center seems artificial Is DR g.A an honest strict transform using the right model? . Write down structure of DR^{logs} in LogCH(Mg,n) · Develop some calculus for RogCH*