The Logarithmic Tantolseical Ring

The logarithmic tautological ring (w/Pendhampende-Schmitt) Motwation { Relative CeW throng/PR cycles Deginerations of abelian varieties Motwation Cg Eg = T, WT Hodge bundle π Mg $\lambda_g = c_g(E_g)$ Formula (Hain, Crushevsky - Zakharov) $\begin{array}{ccccccc}
P_{1c}(c_{g}) & & U_{g} \\
 AJ (1 & 1 \\
M_{g} & \longrightarrow & U_{g} & moduli space of PPAVS \\
 & & & & t & g & moduli space of PPAVS \\
\end{array}$ $\lambda_g = (-i)^g AJ^*(10J)$ But [0] = CHE(Ug) satisfier $10] = \frac{\Theta^{q}}{q!}$ (Denninger-Leurre)

So dy = T? for some TECH' (Mg) Can ask the same question over Tig Try - Jy any compactification for which the Tonelli extends, e.g. Alexeen/Disson. Does the formula for [0] section/ly extend? Answer: No In fact λg ≠ dw CH (Ling) re dg is not a graduat of durisons for g>2 (Explicit calculation w/admcycles + recursion)

Nevertheless ۲۹،۵ (توم) ۲۹ (۲۰ بتر + D dwisor Still expect DM formula to hold Difficulty: 2Pic is not an algebraic stack. So CH (RPic) is meaningless. Honever, & Pic has a (log) blowup which in algebraic. So can consider question in log CH* (IIg) = lim CH*(IIg) IIg-IIg blowups along bdry strata Thm (wP,S) ly = dw log CH" (Tig)

Log tautological mg (X,D) a normal crossinge pair or torsidal embedding (X, D) has a natural log structure $M_{X}(u) = \{f \in \mathcal{D}_{X}(u) | f a unit on u \in \mathcal{D}\}$ Subtlety: Must consider on étale site When imedicable components (1)of D are smooth "Torsidal embedding w/o self-intersection" (KKMSD) then Mx can be defined on Zariski site.

In general, can have self-intersection + monodromy and Mx is an étale sheaf $\left(\right)$ $\overline{\mathcal{M}}_{\mathbf{X}} := \mathcal{M}_{\mathbf{X}} / \mathfrak{H}_{\mathbf{X}}^{*}$ is constructible and stratifier X

Construction Let S be a stratum 3 normalization of 3 ₹ <u>×</u> × Normal bundle NE étale locally splits If S=D, n. nDx étale locally, $N_{\Sigma} = \Sigma^* \mathcal{D}(\mathcal{D}_{i}) \otimes \cdots \otimes \mathcal{D}(\mathcal{D}_{k})$ But globally, monodromy obstructs this Lit G = monodromy group acting on the Di $N_{\Sigma} = \bigoplus N_{X}$ rk = size of orbit. There is a G-torsor and p^{*}N_E = N₁O... ON_k $T \xrightarrow{\vec{r}} \vec{s}$

Let P he a G-unvanant polynomial. \underline{Def} : $\iota_* P(c_1(N_1), \ldots, c_n(N_k)) \in CH^*(X)$ is a normally decorated strata class Def The logar Ahmie tautological ring is R*(X,D) := (normally decorated strata classes) Cantion $\mathbb{R}^{*}(\overline{\mathcal{M}}_{g,n}, \mathcal{M}_{g,n}) \neq \mathbb{R}^{*}(\overline{\mathcal{M}}_{g,n})$ Connection with PR: Pixton's formula

$\Gamma = (V(\Gamma), H(\Gamma)), A = (a_1,, a_n), Za_i = 0$
$\rightarrow \rightarrow \rightarrow \sim$
Neighing mod r:
$w: H(r) \longrightarrow \mathbb{Z}/2$
· w(h) = - w(h') if {h,h'} is an edge
· w(li) = ai for i-th leg
$\cdot \sum w(h) = 0 \forall v \in V(\Gamma)$ h $\ni v$
To any I, assign
$\mathcal{M}_{\Gamma} = \pi \mathcal{M}_{\nu,n(\nu)} \xrightarrow{\overline{J}_{\Gamma}} \overline{\mathcal{M}}_{g,n}$
monodromy torsor from
Letore
· · · · · · · · · · · · · · · · · · ·

Pixton's formula 1 Aut(r) h(r) P_g = Z Z g,A = r weighings w of r (Ji), { Thexp(ai \$41) The large edges edges exp (-wh)w(h'))(4+4+) 4++4+ Degree & piece r,d Pg,A = polynomial m r for (>>0 g,A Constant term of Pg, A = DRg, A For A=\$, no leg contributions So dg e R"(Mgin, 2Mgin) (fact R^{*} (Mg,n, Do))

kog Chow Instead of Mx, build combinatorial space that recovers Nx (X, D) toroidal w/o self-intersection For generic point x_s of streature s $\sigma_{x,x_s} = \overline{\mathcal{M}}_{x,x_s}$ If xy ~~ xs (ie xse{xy) Ox, x, C Ox, xs is a face KKMSD CCX,D) = lim GX,XS strata S rational polyhedral cone complex Ex: When X = tone variety, (C(X, X)T) = fan of X, without embedding unto cocharacter lattice

In the presence of monodromy presentation (8) $n \Rightarrow v \rightarrow (x, p)$ as small as possible $C(x, D) = [C(u) \Rightarrow C(v)]$ Stack over category of rat polyhedral cover Think about it as colimit of comes ox, = Mx, x · maps: 100 morphisms onto a face · potentially more than one map between 2 objects Ex above: 21 Jo Tyn

 \underline{Def} : A subdivision $C' \longrightarrow C(X, D)$ is a subdivision of each cone compatible w/ all maps in the colimit. Construction: For c' - ccx, D), get étale locally u --- V(C'lox,x) 1 → Speck[Mx,] = V(,) X Compatibility means the local 14 give to $(x', p') \longrightarrow (x, p)$ with C' = CCX', D'Det Such a map is called a log modulication.

For a stratum S w/ 5 normal, star subdivision of core of S = blewup of X at 3. "Simple Howup" Example 27432 blowing at point truple point doem't work 9-1 he caure not equivariant

Def log CH+ (X, D) lim CH*(x') F $(x',p') \rightarrow (x,p)$ log modulication X' smooth Maps in colimit are indexed by Gysin Pullback Simple blanups are cofinal among Dag modulications: For any (x', D') - (x, D) by mod., three exists $(x'', D'') \xrightarrow{f} (x, D)$ (x',D') a composition of simple blowups. **E** [S.**t**.

Alternate print of view Artin Fan (Abramovich-wise) For monoid P, Ap := [Speck[7]/Speck[99]] alg.stack w/ log structure Ston (A, A) = Hom (Q, P) = Hom (P, 2) Logst Core Core I.e. P' - Ap embeds cat, of cores into cat. of log stacks. C(x, D) = a columnit of comes $S_{x, \overline{x}} = \overline{M}_{x, \overline{x}}$ Ax = A(x, D) = same columit of A TXx

C(K)) = (ϑ) $A_{x} = t \frac{(t_{1})}{(A^{2}/C_{m})} (A^{2}/C_{m}) (x_{1}, y)$ [1A/cm] = 12 1 [1A/cm] (V,N) 9 B(Cm x R/2) BCm Pt · Ax is unnersal log space w/ combinatorics governed by CCX, D). There is a smooth map X - Ix Subdivisions C' -> C(x, D) also gre propur birational map $\mathcal{A}_{\mathbf{X}}' \longrightarrow \mathcal{A}_{\mathbf{X}}$

and $\begin{array}{c} \chi' \longrightarrow \mathcal{A}_{\chi'} \\ 1 & \square & J \\ \chi \longrightarrow \mathcal{A}_{\chi} \end{array}$ $\frac{Thm}{R_{log}}(X,D) = Tm(CH_{op}(A_X) \rightarrow CH_{op}(X))$ Proof: Every step in the construction of a normally decorated strata class is pulled back from dx ۲ ۹ 7 <u>s</u>---<u>s</u> <u>s</u>---<u>s</u> <u>s</u> $\sim A_{\rm X}$ $7^*N_E = B^*q^*N_S$ is of form and so *n.d.s.c* (₄ % $l_{x}b^{*}y = \alpha^{*}J_{x}y$

Consequences:

• For a log modification $(\tilde{x}, \tilde{D}) \xrightarrow{f} (x, D)$, $f_* \mathcal{R}_{irg}^* (\tilde{x}, \tilde{D}) = \mathcal{R}_{irg}^* (x, D)$ 4 Riog (X, D) C Riog (X, D) Connection w/ combinations Thm : $CH_{op}^{*}(A_{x}) = PP^{*}(CCx)$ Ingredients in the proof · For a cone $\sigma = N^k$, $CH_{op}^{*}(A_{N^{k}}) = PP^{*}(N^{k}) = k[x_{1,...,x_{k}}]$ easy . When X is smooth,

Ax = lim Ank and one can show CHop" (lim Ank) = lim CHop (ANK) · For general X, need descent for CH op for blowups > For schemes : Kimura stachs: Bae-Park From the descent me can reduce to case of smooth X, or even the theorems of Brion/Payne which pose the analogous statement for tone vancties. In any case, CH" , 1) play a key role

Some consequences	
. The dichotomy of	Mx
Zonski	Etale
No self-untersection	Self-intersection
· · · · · · · · · · · · · · · · · · ·	Honodromy
can be seen on cc	×,D)
No self-intersection	
CCX, D) can be	PX embedded in
a vector space	
Wen	
C(x,D) is also	
(ne each core m	
sunjl	reial)

Stanley-Reisner ning PP* (CCX, D)) = of C(x,D) = & [raye]/ leal of non-faces = { Lxg]/{xij xik : (1,..., Lk) do not span a face > In particular, Riog (X,D) is then generated Ly dwisors

Thin Ig is in dw Log CHLING, Dig) Prod Age Riog (ing, Ding) But for every (X,D), I log modification s.t (x, 3) is Zarriki + simplicial E.g. Canonical choice second bangcentrie-subdivision 27432 Every core is gurerated by a rungre collection of rays, or there is embedding in RIrays!

Therefore λg e Ring (Mg, JMg) < Ring (Mg. JMg) = dw Ring (Ng Ding) and so is in dwhog CH. Same argument : DRg.A dw Log CH Prof Pixton's formula puts DRg.A in rung generated by < Ring (My, n, sig, n), y classes >

Open Questions: We have done no calculations! Compute: · Riog (Ing, n, Duy, n) at least for small g,n · R* (Mg, n) / < Riog (Mg, n, 2 Mg, n) > I expect some interesting pattern

log modefication Mg, - Mg, For a define $\mathbb{R}^{\ast}(\widetilde{\mathcal{M}}_{g,n}) := (\mathbb{R}^{\ast}(\widetilde{\mathcal{M}}_{g,n}), \mathbb{R}_{\log}(\widetilde{\mathcal{M}}_{g,n}, 2\widetilde{\mathcal{M}}_{g,n}))$ Compute: Ring (B' Myin, DB' Mgin) double bangcentrie subduision R* (B* My,n)/Rug (B* My,n, 28* My,n) and Dream What is) Cony: they are = lin R'(Ilg,n)/Riog(Ilg,n, Dilg,n)? Ilgn-Mg,n log mod

Finally : Run the same program for Aq For example: Is the a subdivision $\tilde{A}_q \rightarrow \tilde{A}_q$ st the o-section of ing = ing x Ag is a product of dwisors? . The combinations of C(Ag, JAg) and C(Mg,n, DMgn) - C(Ag, JAg) are understood (tropical abdian vanetier, tropical torelli) First Guess: Find any subdwiscon Ãg - Ag which is smooth and for which the composition

CCB ² M.	$\partial B^2 \bar{u}_{ij} \longrightarrow c(\bar{\lambda}_{ij}, \gamma \bar{\lambda}_{ij})$	· · · · · · · · · · · · · ·
lits to	CCÃg, JÃg)	
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · · · ·		
· · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · ·		
· · · · · · · · · · · · ·		
· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	

																																			•		
																																			•		
•	•		•		•			•	•	•			•	•	•	•	•	•	•	•	•	•	•			•			•				•	•	•	•	•
*	•	•	•		•		•	•	•	•				•	•	•	•	•	•	•	•	•					•	•	•				•	•	•	•	•
					•													•	•														•			•	
•										•										•	•	•							•					•	•	•	•
•	•	•	•		•		•	•	•	•			•	•	•			•	•	•	•	•	•			•			•				•	•	•	•	•
*	•	•	•		•		•	•	•	•				•	•	•	•	•	•	•	•	•					•	•	•				•	•	•	•	•
																																				•	•
•																					•	•												•	•	•	•
•	•	•	•		•		•	•	•	•			•	•	•			•	•	•	•	•	•			•			•				•	•	•	•	•
*	•	•	•		•		•	•	•	•				•	•	•	•	•	•	•	•	•					•	•	•				•	•	•	•	•
					•													•	•														•			•	
																																			•	•	•
•		•			•		•	•		•			•					•	•	•			•			•	•	•					•		•	•	•
•	•				•				•	•					•	•	•	•	•	•	•	•							•				•	•	•	•	•
	•	•	•		•		•	•		•			•	•	•			•	•	•			•			•							•			•	•
	•	•	•	•			•	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		
		•	•	•		•	•	•			•	•	•										•	•	•	•	•	•		•	•	•					
	•	•	•																																•		•
																																			•		
																											•	•									
•	•	•	•						•																										•		
•	•																																				
•	•																																				
•																																			•		