Goal: Start with family $x \rightarrow B$ of complex projective vanetus Cist sss. weallys.s.

Semistable

Honzontal maps are alterations or compositions of modifications +rot stacks After step 1, everything is combunatorics of cone complexes

Dan will explain step 1.
Step 3 is the real purpose of the seminar. Today: Explain Step 2.

Recall: (X, D) toroidal embedding
$\longrightarrow \Sigma(X, D)$ a cone complex built from the local charts of (x, D).

When (X, D) has no self-untursection

For evens stratum S, w/ generic point x_{s}, there exists local chart

$$
\frac{u_{s}}{u_{x}} \rightarrow V\left(\sigma_{x_{,}, x_{s},} v_{x, x_{2}}\right)
$$

If $x_{s} \leadsto x_{r}$ is a specialuzation, ie
$x_{T} \in \bar{x}_{S}$, then

$$
\begin{aligned}
& \sigma_{x, x_{s}} \subset \sigma_{x, x_{T}} \\
& \Sigma(x, D)=\operatorname{face}^{\lim \left(\sigma_{x, x_{s}}, \sigma_{x, x_{s}} \cap N_{x, x_{s}}\right)}
\end{aligned}
$$

Example: When $(X, P)=$ toric varety,
$\Sigma(X, D)=$ tan of X, withont embedding unto cocharacter lattice N.

$$
\Sigma(x, D)=\left(\Sigma x=\left\{\sigma_{x, x_{s}}\right\}, N_{x}=\left\{N_{x, x_{s}}\right\}\right)
$$

collection of cones + untegral structuren

- Things lihe orbit-cone correspondence extend to strata-core correspondence by constuction.

Recall A map $(x, D) \xrightarrow{f}(y, E)$ is Combinatonally weakly s.s. if $\Sigma(x, D) \xrightarrow{\Sigma(f)} \Sigma(y, E)$ tahes
(i) Coner onto Core,
(ii) Whn $\Sigma(f)(\sigma)=\tau, \quad \Sigma(f)\left(\sigma \cap N_{\sigma}\right)=\tau \cap N_{\tau}$. ("́attices onto lattices)
ci)

$$
\rfloor \text { not oh }
$$

1 ot
(ii)

1

Consequences:

- When $x \rightarrow y$ is dominant, weakly sis. $\Rightarrow x \rightarrow y$ is flat $w /$ reduced flyers.
- For any diagram

$$
\begin{array}{r}
(x, 0) \\
1 f \\
(y, E)
\end{array}
$$

f weakly sss. $\Rightarrow x_{x} z$ is toroidal
In general, thin farts badly
Example diagram of tore vareten

In general, normalization of closure of main component in toroidal. For weakly ss. maps the two notions agree.

The cone complex of this main component is the feer product of cone complexes:

$$
C\left(x x_{y}^{\text {f.s. }} z\right)=C(x) x_{C(y)} c(z)
$$

So when $(X, D) \rightarrow(y, E)$ is weakly sis., The is no ambiguity iso e.g important in moduli)
(3) really sis maps are stable under base change

Goal: Given $(X, D) \longrightarrow(Y, E)$, turn $\Sigma(X, D) \rightarrow \Sigma(Y, E)$ mealcly sis. in "less intrusive way posidole".

Operations Fix (x, D)

- Subdivision $\tilde{\Sigma} \longrightarrow \Sigma(x, D)=\left\{\Sigma_{x}, N_{x}\right\}$
is a compatible choice of subdivisions

$$
\left(\tilde{\Sigma}_{x_{s}}, N_{x, x_{s}}\right) \rightarrow\left(\sigma_{x, x_{s}}, N_{x, x_{s}}\right)
$$

of each cone $\sigma_{x, x_{s}} \in \Sigma_{x}$.

$$
\begin{aligned}
& \tilde{u}_{s} \rightarrow V\left(\tilde{\Sigma}_{x_{s}}, N_{x, x}\right) \\
& 1 \\
& u_{s} \rightarrow V\left(\sigma_{x, x_{s}}, N_{x, x_{s}}\right) \\
& \downarrow \\
& x
\end{aligned}
$$

Compatibility: The \tilde{u}_{s} descend to modification (proper, birational)

$$
(\tilde{X} \tilde{D}) \longrightarrow(X, D) \text { with } \Sigma(\tilde{X}, \tilde{D})=\tilde{\Sigma}
$$

Geometric meaning proper, burational.

- A blowup if $\tilde{\Sigma}$ is domain of linearity of some PL function.
- Star subdivision at a cone = blowup of stratum comesponding to cone.

blown at stratum

- Root construction.

$$
\begin{aligned}
& \tilde{\Sigma}=\left(\Sigma_{x}, f_{x}, N_{x}\right) \\
& \text { with }\left\{\sigma_{x, x_{s}}\right\}\left\{f_{x, x_{3}}\right\} \quad\left\{N_{x, x}\right\} \\
& \left\{\sigma_{s}\right\} \quad\left\{\alpha_{s}\right\} \quad\left\{\begin{array}{l}
n \\
N_{s}
\end{array}\right\}
\end{aligned}
$$

with $d_{s} \subset N_{s}$ a finite under inclusion sit
\Leftrightarrow if $\sigma_{S}<\sigma_{T}$,

$$
\mathcal{L}_{s}=\mathcal{L}_{\tau} \cap N_{s}
$$

Given $(0, l, N)$,
$T_{\alpha} \rightarrow T_{\mu}$ finite map of tori $k_{\text {LN }}=$ Kernel of thin map

$$
V(\sigma, R, N):=\left[V(\sigma, R) / K_{z / N}\right]
$$

Thin is a tonic stack w/ coarse moduli space

$$
N(\sigma, N)
$$

on x :

$$
\begin{aligned}
& \tilde{u}_{s} \rightarrow v\left(\sigma_{x, x_{3}}, R_{x, x_{5}}, N_{x, x_{5}}\right) \\
& 1 \quad D \\
& u_{s} \rightarrow v\left(\sigma_{x, x_{3}}, N_{x, x_{5}}\right) \\
& x
\end{aligned}
$$

and compatibility means \tilde{u}_{s} glue to

$$
\tilde{x} \underset{7}{ } x
$$

DM stack over x w/ coovise space X.

Example $(X, D)=$ smplicial tonic varety
 red lattice misses $(1,1)$.

For each $\sigma_{x, x_{s}}, \mathcal{L}_{x, x_{s}}=$ lattice generated by extreme rays of

$$
\sigma_{x, x}
$$

$V\left(\sigma_{x, x_{3}}, \mathcal{L}_{x, x_{3}}, N_{x}, x_{3}\right)$ smooth DM stach $w /$ coarse space (x, D) "Canonical smoothing"

Thin works for arbitrary (x, D) with $\Sigma(x, D)$ sumplicial.

Thm : Let $(x, D) \rightarrow(y, E)$ be a proper, dominant, torsidal morphism. Tlen \exists a root+modefication

$$
\begin{aligned}
& (z, F)=v\left(\tilde{z}_{y}, \tilde{x}_{y}, \tilde{N}\right) \rightarrow(y, E) \\
& \text { s.t } \quad \begin{array}{l}
(x, D) \\
x_{s} z \\
\rfloor \\
(z, F)
\end{array}
\end{aligned}
$$

Furturnore, (Z, F) is unversal: for any otur $(w, G) w /$ thin proputy, the exints a runique map

$$
(w, G) \longrightarrow(z, F)
$$

Proof: we are given $\Sigma(x, D) \rightarrow \Sigma(y, E)$ and we must make it combinatonally weakly sss.

Idea

Algorithm
(i) Local on y, so can assure $\Sigma(Y, E)=(\tau, Q)$ is a single cone, 1 lattice.
For $v \in t$, let

$$
\begin{gathered}
N_{0}(v)=\left\{v \in \Sigma_{x} \mid \sigma \text { maps to } \tau \text { w/ rel dim } 0\right\} \\
\exists \text { hit } v_{\sigma} \text { of } v \text { on } \sigma
\end{gathered}
$$

Claim
$\left\{v \in \tau \mid N_{0}(v)=f_{u x e d}\right\}$ form a subdwision of τ It is clear that the sets partition τ, and are conical.

What's not clear is that thy are convex.

- not convex

Properness saves this

In fact, properness is not strictly necessary. Need something live "tropical smoothies"

Properness or thin condition give convexity Argument: Suppose v, w hare $f(v)=N_{0}(w)$

Let u frost pout
 $m \overline{v w} \quad \omega / N_{0}(u) \neq$ $N_{0}(v)$.
This means 3 Core $\sigma \in \sum(X, D) w /$
lift of u, but sit v, w do not lift to σ.
 there is some core of here. nerve

path from u to v lifts to path $u_{\sigma} \tilde{v}$ for Some \tilde{v} in a core $\tilde{\sigma}$ in $N_{0}(v)$.

By def, \exists left $\tilde{\omega}$ on $\tilde{\sigma}$ as well.
But the σ and $\tilde{\sigma}$ do not meet along mutual facer, which is umposside.

So only possibility in $v=u$ or $u=w$.
wi th thin subdivision, call it $\tilde{\Sigma}_{y}$,

$$
\begin{array}{r}
\left\{\tilde{\Sigma}_{x}=\Sigma_{x x} \Sigma_{y} \tilde{y}_{y}, \tilde{N}_{x}\right\}-\left\{\Sigma_{x}, N_{x}\right\} \\
j \\
\left\{\tilde{\Sigma}_{y}, \tilde{N}_{y}\right\} \rightarrow\left\{\Sigma_{y}, N_{y}\right\}
\end{array}
$$

Cones map onto cones.
From here, we $f: x$ the lattices: let $\tau \in \tilde{\Sigma}_{y}$, $\sigma_{1}, \ldots, \sigma_{k}$ the cores which map onto C.
we take $\tilde{\mathscr{L}}_{\tau}=\cap \Sigma(f)\left(N_{\sigma_{l}}\right)$, and $\tilde{\mathcal{L}}_{\sigma_{i}}=\Sigma(f)^{-1}$

$$
\begin{aligned}
& \left\{\tilde{\Sigma}_{x}, \tilde{z}_{x}, \tilde{N}_{x}\right\} \longrightarrow\left\{\Sigma_{x}, N_{x}\right\} \quad\left(z_{x}\right) \\
& \begin{array}{c}
1 \\
\left\{\tilde{\Sigma}_{y}, \tilde{\alpha}_{y}, \tilde{N}_{y}\right\}
\end{array} \longrightarrow\left\{\Sigma_{y}, N_{y}\right\}
\end{aligned}
$$

weakly
 not representable

Comment 1; weak semustabilly is stable under base change, so foo here we can modify the bare at will. For example, we could talkie a revolution of (Z, F).

Comment 2: For $\Sigma(x, D) \rightarrow \Sigma(y, E)$ meakly sis., the total barycentric subdivision $B \Sigma(X, D) \longrightarrow \Sigma(Y, E)$ factors through $B \Sigma(Y, E)$ and $B \Sigma(X, D) \rightarrow B \Sigma(Y, E)$ remains really sss.

Thus, from $\Sigma(x, D) \rightarrow \Sigma(y, E)$ we can constrect

weahly s.s.

- If we tale te canonical smosthing of $\Sigma(w, G)$, we gut non-representable s.s. reduction.

$$
\text { s.s. } \begin{gathered}
\tilde{\Sigma}(w, G) \\
\frac{1}{\Sigma(w, G)} \\
1 \\
\Sigma(Z, F)
\end{gathered}
$$

Honest sss reduction:
Find a further lattice altered subdursion

$$
\begin{aligned}
& \left(\tilde{\Sigma}_{w}, \mathscr{L}_{w} \alpha_{z} \tilde{l}_{z}, \omega_{w} \tilde{N}_{z}\right) \longrightarrow\left(\Sigma_{w}, \mathcal{L}_{w}, N_{w}\right) \\
& 1 \\
& \left(\tilde{\Sigma}_{z}, \tilde{L}_{z}, \tilde{N}_{z}\right) \longrightarrow\left(\Sigma_{z}, \mathcal{L}_{z}, N_{z}\right)
\end{aligned}
$$

with $\tilde{\Sigma}_{w}$ unimodular.
Again, thin is local So can assume Σ_{z} $=$ cove over polytope Q.

Then fiber of Σ_{w} over $Q=$ polytopal complex $P \rightarrow Q$.

A soot $\tilde{l}_{z} \rightarrow \mathcal{L}_{z}$ comesponds to dilating Q; pulling bach, to dilating P.

So, problem becomes:
Given map $P \rightarrow Q$ of polytopal complexer, s.t faces of P map onto faces,
find

- Dilation of P and Q
- uninisdular trangulation of delation of Q
s.t pullbach to P has unmodular traangulation.
Classical KKMSD result: $Q=p t$.
So sumplifien to fund delation of P w/ unimodular triangulation.

