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Abstract. We define a tautological projection operator for algebraic cycle classes on the moduli
space of principally polarized abelian varieties Ag: every cycle class decomposes canonically as a
sum of a tautological and a non-tautological part. The main new result required for the definition
of the projection operator is the vanishing of the top Chern class of the Hodge bundle over the
boundary Ag ∖ Ag of any toroidal compactification Ag of the moduli space Ag. We prove the
vanishing by a careful study of residues in the boundary geometry.

The existence of the projection operator raises many natural questions about cycles on Ag. We
calculate the projections of all product cycles Ag1×. . .×Agℓ in terms of Schur determinants, discuss
Faber’s earlier calculations related to the Torelli locus, and state several open questions.
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1. Introduction

1.1. Tautological rings of Ag and Ag. Let Ag ⊂ Ag be a toroidal compactification of the moduli

space of principally polarized abelian varieties. The space Ag is a nonsingular Deligne-Mumford

stack of dimension
(
g+1
2

)
, and the compactification Ag is a reduced and irreducible (but possibly

singular) proper Deligne-Mumford stack, see [FC]. The Hodge bundle

E → Ag

is defined as the pullback to Ag via the zero section s of the relative cotangent bundle of the

universal family Xg of abelian varieties,

p : Xg → Ag , s : Ag → Xg , E ∼= s∗Ωp .

There is a canonical extension of the Hodge bundle over Ag by [FC, Theorems V.2.3, VI.1.1, VI.4.2],

E → Ag .
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By [vdG,EV], the Chern classes λi of the Hodge bundle satisfy Mumford’s relation1:

(1) (1 + λ1 + λ2 + . . .+ λg)(1− λ1 + λ2 − . . .+ (−1)gλg) = 1 ∈ CHop(Ag) ,

for all g ≥ 1. Van der Geer [vdG] defined the tautological rings

R∗(Ag) ⊂ CH∗(Ag) , R∗(Ag) ⊂ CHop(Ag)

to be the Q-subalgebras generated by the λ-classes. Both tautological rings are calculated by a

fundamental result of [vdG].

Theorem 1 (van der Geer). The following properties hold:

(i) The kernel of the quotient

Q[λ1, λ2, λ3, . . . , λg] → R∗(Ag) → 0

is generated as an ideal by Mumford’s relation (1).

(ii) R∗(Ag) is a Gorenstein local ring with socle in codimension
(
g+1
2

)
,

R(
g+1
2 )(Ag) ∼= Q .

The class λ1λ2λ3 · · ·λg is a generator of the socle.

(iii) R∗(Ag) ∼= R∗(Ag)/(λg) is a Gorenstein local ring with socle in codimension
(
g
2

)
,

R(
g
2)(Ag) ∼= Q .

The class λ1λ2λ3 · · ·λg−1 is a generator of the socle.

1.2. Tautological projection for Ag. The idea of tautological projection on Ag (Definition 2

below) appears in work of Faber [Fa] and of Grushevsky and Hulek [GH]. Since Ag is proper of

dimension
(
g+1
2

)
, we obtain an evaluation

ϵcpt : R(
g+1
2 )(Ag) → Q , α 7→

∫
Ag

α ,

and a pairing between classes on Ag,

(2) ⟨ , ⟩cpt : CHk(Ag)× R(
g+1
2 )−k(Ag) → Q , ⟨γ, δ⟩cpt =

∫
Ag

γ · δ .

Here, cpt stands for compact.

By Theorem 1(ii), the socle of R∗(Ag) is spanned by the class λ1λ2λ3 · · ·λg. Equivalently,

(3) γg = ϵcpt(λ1λ2λ3 · · ·λg) ̸= 0 .

The exact evaluation2,

(4) γg =

g∏
i=1

|B2i|
4i

,

1Since Ag is possibly singular, even as a stack, some care must be taken with the Chow theories. Here, CHop is
the Q-algebra of operational Chow classes. Usual Chow cycle theory, indexed by codimension, is denoted by CH∗.

2Here, B2i is the Bernoulli number.
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is computed in [vdG, page 9]. By the Gorenstein property of R∗(Ag), the pairing of tautological

classes

Rk(Ag)× R(
g+1
2 )−k(Ag) → R(

g+1
2 )(Ag) ∼= Q

is non-degenerate (where the last isomorphism is via ϵcpt).

Definition 2. Let γ ∈ CH∗(Ag). The tautological projection tautcpt(γ) ∈ R∗(Ag) is the unique3

tautological class which satisfies

⟨tautcpt(γ), δ⟩cpt = ⟨γ, δ⟩cpt

for all classes δ ∈ R∗(Ag).

• If γ ∈ R∗(Ag), then γ = tautcpt(γ), so we have a Q-linear projection operator:

tautcpt : CH∗(Ag) → R∗(Ag) , tautcpt ◦ tautcpt = tautcpt .

• From the point of view of Ag, a difficulty with the theory on Ag is the dependence upon com-

pactification. Given a subvariety

V ⊂ Ag ,

we can define a projection

(5) tautcpt([V ]) ∈ CH∗(Ag)

with respect to the Zariski closure V ⊂ V in a toroidal compactificationAg ⊂ Ag, but the projection

(5) will depend upon the choice of Ag. In order to study cycles on the moduli of abelian varieties,

we would like to construct a canonical projection operator depending just upon Ag.

1.3. Top Chern class of the Hodge bundle. To define a tautological projection operator on

the interior Ag, we will define a pairing similar to (2). The theory depends upon a new vanishing

result for the top Chern class of Hodge bundle on Ag.

We recall the λg-pairing on tautological classes4on the moduli space of curves of compact type

Mct
g ⊂ Mg. On the tautological ring of Mct

g , the λg-pairing is given by

Rk(Mct
g )× R2g−3−k(Mct

g ) → R2g−3(Mct
g )

∼= Q , (α, β) 7→
∫
Mg

α · β · λg ,

where α and β are arbitrary lifts of α and β to Mg. The λg-pairing is well-defined, independent of

the lifts, because λg ∈ Rg(Mg) restricts trivially to the boundary

λg|Mg∖Mct
g
= 0 ,

see [FP2]. A parallel boundary vanishing for λg ∈ R∗(Ag) is our first result.

3The existence and uniqueness of tautcpt(γ) follows from the Gorenstein property of R∗(Ag) applied to the functional

δ 7→ ⟨γ, δ⟩cpt on R∗(Ag).
4We refer the reader to [FP3,P] for a review of the theory of tautological classes on the moduli spaces of curves.

Unlike the case of Ag, the tautological ring R∗(Mct
g ) is not a Gorenstein local ring, see [CLS,Pix] and [Pet] for the

pointed case.
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Theorem 3. The restriction of λg to Ag ∖Ag vanishes for every toroidal compactification Ag.

In characteristic p, the Theorem 3 can be proven5 by considering the p-rank zero locus in Ag.

The p-rank zero locus avoids the boundary and has class in R∗(Ag) equal to a multiple of λg,

[vdG, Theorem 2.4]. In all characteristics, the vanishing of λg over the boundary of the partial

compactification Apart
g of torus rank 1 degenerations follows from the discussion of [vdG, page 6].

The statement for the entire boundary is new.

Our proof of Theorem 3 is obtained as a consequence of the following statements about semistable

degenerations of abelian varieties:

(i) The sheaf of relative log differentials has a trivial rank 1 quotient on the singularities of

the fibers of the universal family. The trivial quotient statement is true for any semistable

family, independently of abelian structure (also applying, for example, to families of curves).

(ii) For abelian schemes, the sheaf of relative log differentials is isomorphic to the pullback of

the Hodge bundle [FC].

The full proof is presented in Section 2 after a review of log structures, semistable degenerations,

and residues.

The vanishing of Theorem 3 of the top Chern class of the Hodge bundle for the moduli of abelian

varieties implies the parallel vanishing for the moduli of curves,

λg|Ag∖Ag
= 0 =⇒ λg|Mg∖Mct

g
= 0 ,

via the Torelli map from Mg to a suitable6 toroidal compactification Ag. We can hope for an

even deeper connection: a lifting of Pixton’s formula [HMPPS, JPPZ] for λg on Mg to Ag. The

natural context for such a lifting should be the logarithmic Chow ring of the moduli space of abelian

varieties. A discussion of these ideas is presented in Section 2.6.

1.4. Tautological projection for Ag. Given α ∈ CH∗(Ag), we define an evaluation,

ϵab : CH(
g
2)(Ag) → Q , α 7→

∫
Ag

α · λg = deg(λg ∩ α) ,

where α is a lift to the toroidal compactification Ag. The answer is well-defined (independent of

lift) by the vanishing of Theorem 3. We also have an induced pairing between classes on Ag,

(6) ⟨ , ⟩ : CHk(Ag)× R(
g
2)−k(Ag) → Q , ⟨γ, δ⟩ =

∫
Ag

γ · δ · λg = deg(δ · λg ∩ γ) ,

which we call the λg-pairing for the moduli of abelian varieties. Here, δ is a lift of

δ ∈ R∗(Ag) = R∗(Ag)/⟨λg⟩

to a tautological class on Ag, while γ is an arbitrary lift of γ. The lift of δ is well-defined up to the

class λg, while the lift of γ is well-defined up to cycles supported on the boundary. The vanishing

of λ2
g on Ag and Theorem 3 ensure that the λg-pairing is well-defined.

5We thank van der Geer for the characteristic p argument.
6The second Voronoi compactification can be taken here [A1], [N].
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By Theorem 1(iii), the socle of R∗(Ag) is spanned by the class λ1λ2λ3 · · ·λg−1. The Gorenstein

property of R∗(Ag) together with the non-vanishing (3) implies that the restriction of the λg-pairing

to tautological classes

Rk(Ag)× R(
g
2)−k(Ag) → R(

g
2)(Ag) ∼= Q

is non-degenerate (where the last isomorphism is via ϵab).

Definition 4. Let γ ∈ CH∗(Ag). The tautological projection taut(γ) ∈ R∗(Ag) is the unique7

tautological class which satisfies

⟨taut(γ), δ⟩ = ⟨γ, δ⟩

for all classes δ ∈ R∗(Ag).

• If γ ∈ R∗(Ag), then γ = taut(γ), so we have a Q-linear projection operator:

taut : CH∗(Ag) → R∗(Ag) , taut ◦ taut = taut .

• For γ ∈ CH∗(Ag), tautological projection provides a canonical decomposition

γ = taut(γ) + (γ − taut(γ))

into purely tautological and purely non-tautological parts.

• Tautological projection commutes with restriction: for every toroidal compactification Ag ⊂ Ag

and every class γ ∈ CH∗(Ag),

tautcpt(γ)
∣∣
Ag

= taut
(
γ
∣∣
Ag

)
.

To prove the restriction property, consider classes

γ ∈ CH∗(Ag) and δ ∈ R∗(Ag) .

Equations (2) and (6) imply the compatibility between pairings

(7) ⟨γ
∣∣
Ag

, δ⟩ = ⟨γ, δ λg⟩cpt,

where δ is any lift of δ to the compactification Ag. Then,

⟨tautcpt(γ), δ λg⟩cpt = ⟨γ, δλg⟩cpt =⇒ ⟨tautcpt(γ)
∣∣
Ag

, δ⟩ = ⟨γ
∣∣
Ag

, δ⟩

=⇒ tautcpt(γ)
∣∣
Ag

= taut
(
γ
∣∣
Ag

)
.

Here, we have used Definition 2, equation (7), and Definition 4 (and the argument is not possible

without Theorem 3).

7The existence and uniqueness of taut(γ) follows from the Gorenstein property of R∗(Ag).
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1.5. Tautological projection of product classes. As an application of the theory, we consider

the tautological projections of product loci. For g = g1 + g2 with gi ≥ 1, the product map

Ag1 ×Ag2 → Ag

defines a class [Ag1 ×Ag2 ] ∈ CH∗(Ag). More generally, for every partition g =
∑ℓ

i=1 gi in positive

parts, we have a product map and an associated class:

(8)
ℓ∏

1=1

Agi → Ag ,

[
ℓ∏

1=1

Agi

]
∈ CH∗(Ag) .

Whether these product maps and classes (8) naturally extend to a compactification Ag depends

upon the choice of toroidal compactification. Toroidal compactifications of Ag correspond to choices

of admissible fans Σg in Sym2
rc(Rg), the rational closure of the positive-definite symmetric forms

on Rg. Following [GHT], a collection of such fans {Σg}g∈N is additive if the sum σ1 ⊕ σ2 of any

two cones σ1 ∈ Σg1 and σ2 ∈ Σg2 is a cone in Σg1+g2 . Let AΣg

g be a toroidal compactification

corresponding to an additive collection of fans {Σg}. The perfect cone compactification satisfies

these properties, see [SB]. In the additive case, the product maps extend,

ℓ∏
i=1

AΣgi
gi → AΣg

g ,

and we can therefore define cycles [
ℓ∏

i=1

AΣgi
gi

]
∈ CH∗(AΣg

g ) .

While the definition of tautological projection is independent of toroidal compactification, natural

compactifications can be used for the calculation. We prove a closed formula for the tautological

projection of the product cycles. The result extends calculations of [GH] for g ≤ 5.

Theorem 5. For g1+ . . .+gℓ = g, the tautological projection of the product locus AΣg1
g1 ×· · ·×AΣgℓ

gℓ

in AΣg

g is given by a g × g determinant,

tautcpt([AΣg1
g1 × · · · × AΣgℓ

gℓ
]) =

γg1 · · · γgℓ
γg

∣∣∣∣∣∣∣∣
λα1 λα1+1 . . . λα1+g−1

λα2−1 λα2 . . . λα2+g−2

. . . . . . . . . . . .
λαg−g+1 λαg−g+2 . . . λαg

∣∣∣∣∣∣∣∣ ,
for the vector

α = (g − g1, . . . , g − g1︸ ︷︷ ︸
g1

, g − g1 − g2, . . . , g − g1 − g2︸ ︷︷ ︸
g2

, . . . , g − g1 − . . .− gℓ, . . . , g − g1 − . . .− gℓ︸ ︷︷ ︸
gℓ

).

We set λk = 0 for k < 0 or k > g and λ0 = 1.

In the above determinant, αi denotes the ith component of the vector α. The last gℓ entries of α

are 0, and contribute rows with 1’s on the main diagonal and 0’s below the main diagonal. These

last entries do not change the determinant, but are included for a more symmetric formulation.

The constants γg are defined in (4).
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The proof of Theorem 5 in Section 3 relies on the connections between the tautological ring of

AΣg

g and the Chow ring of the Lagrangian Grassmannian LGg of C2g as explained in [vdG2]. The

argument combines properties of tautological projection, the Hirzebruch-Mumford proportionality

principle, and the geometry of LGg.

Using the restriction property of tautological projection and the relations in Theorem 1 (iii), we

prove the following result in Section 3.4.

Theorem 6. For g1 + . . .+ gℓ = g, the tautological projection of the product locus Ag1 × · · · × Agℓ

in Ag is given by a (g − ℓ)× (g − ℓ) determinant,

taut([Ag1 × · · · × Agℓ ]) =
γg1 · · · γgℓ

γg
· λg−1 · · ·λg−ℓ+1 ·

∣∣∣∣∣∣∣∣
λβ1 λβ1+1 . . . λβ1+g∗−1

λβ2−1 λβ2 . . . λβ2+g∗−2

. . . . . . . . . . . .
λβg∗−g∗+1 λβg∗−g∗+2 . . . λβg∗

∣∣∣∣∣∣∣∣ ,
for the vector

β = (g∗ − g∗1, . . . , g
∗ − g∗1︸ ︷︷ ︸

g∗1

, g∗ − g∗1 − g∗2, . . . , g
∗ − g∗1 − g∗2︸ ︷︷ ︸

g∗2

, . . . , g∗ − g∗1 − . . .− g∗ℓ︸ ︷︷ ︸
g∗ℓ

) ,

where g∗ = g − ℓ and g∗i = gi − 1.

The tautological projections of the product loci in Ag from Theorem 6 in the simplest cases are:

(9) taut ([A1 ×Ag−1]) =
g

6|B2g|
λg−1 ,

(10) taut ([A2 ×Ag−2]) =
1

360
· g(g − 1)

|B2g||B2g−2|
· λg−1λg−3 ,

(11) taut ([A3 ×Ag−3]) =
1

45360
· g(g − 1)(g − 2)

|B2g||B2g−2||B2g−4|
· λg−1(λ

2
g−4 − λg−3λg−5) ,

(12) taut ([A1 ×A2 ×Ag−3]) =
1

90
· g(g − 1)(g − 2)

|B2g||B2g−2||B2g−4|
· λg−1λg−2λg−4 ,

(13) taut

A1 × . . .×A1︸ ︷︷ ︸
k

×Ag−k

 =

 g∏
i=g−k+1

i

6|B2i|

λg−1 · · ·λg−k .

In genus g = 4, formula (13) yields

taut ([A1 ×A1 ×A2]) = 420λ3λ2 , taut ([A1 ×A1 ×A1 ×A1]) = 4200λ3λ2λ1 .

In fact, [A1 ×A1 ×A2] and [A1 ×A1 ×A1 ×A1] are tautological [COP].

An interesting case of (13) occurs when k = g − 1 since the class λg−1 · · ·λ1 generates the socle

of the tautological ring R(
g
2)(Ag). A speculation of [COP] is that the g-fold product

[A1 × · · · × A1] ∈ CH(
g
2)(Ag)
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also lies in the socle of the tautological ring. If the speculation is correct, then we obtain an exact

evaluation

(14) [A1 × · · · × A1] =

(
g∏

i=1

i

6|B2i|

)
λg−1 · · ·λ1 .

Question A. When is the non-tautological part of the product locus nonzero:[
ℓ∏

1=1

Agi

]
− taut

([
ℓ∏

1=1

Agi

])
̸= 0?

The cycles [A1 ×Ag−1] ∈ CH∗(Ag) are studied in [COP] via the Torelli map

Tor : Mct
g → Ag .

A central result of [COP] is that [A1×A5] is not tautological on A6, so the purely non-tautological

part is nonzero,

[A1 ×A5]− taut ([A1 ×A5]) ̸= 0 .

Detection of the non-vanishing of the non-tautological part is subtle since the class

∆g = Tor∗
(
[A1 ×Ag−1]−

g

6|B2g|
λg−1

)
lies in the kernel of the λg-pairing

Rg−1(Mct
g )× Rg−2(Mct

g ) → R2g−3(Mct
g )

∼= Q

for all genera g by an argument of Pixton, see [COP].

The Noether-Lefschetz loci in Ag parametrize abelian varieties whose Picard rank jumps. The

rank 2 Noether-Lefschetz loci have been classified in [DL] (the products Ag1 ×Ag2 for g1 + g2 = g

arise in the classification, but there are other loci as well). After Theorem 6, we can hope for a

more general result.

Question B. Calculate the tautological projections of all Noether-Lefschetz loci in Ag.

Beyond product and Noether-Lefschetz cycles, we can consider the tautological projection of the

locus of Jacobians of genus g curves of compact type,

[Jg] ∈ CH∗(Ag) .

Faber [Fa] determined these explicitly for g ≤ 7. For all genera, in the basis of monic square-free

monomials in the λ′s, the leading term is given by

taut ([Jg]) =

(
1

g − 1

g−2∏
i=1

2

(2i+ 1)|B2i|

)
λ1 · · ·λg−3 + . . . ,

as proposed in [Fa, Conjecture 1] and confirmed via [FP1, Theorem 4]. A more complicated formula

for the coefficient of the term λ2 . . . λg−4λg−2 was predicted by [Fa, Conjecture 2] and subsequently

proven in [FP2, Section 5.2].
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For each genus g, the class taut ([Jg]) ∈ R∗(Ag) can be computed algorithmically by a finite

number of Hodge integral evaluations [Fa]. Finding expressions for the coefficients of the remaining

terms of taut ([Jg]) is an open question, but we could hope for more structure.

Question C. Is there a simpler way to understand the tautological projection

taut ([Jg]) ∈ R∗(Ag) ?

When is the non-tautological part nonzero?
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2. The top Chern class of the Hodge bundle

2.1. Overview. Logarithmic geometry provides a convenient tool for considering all toroidal com-

pactifications of Ag simultaneously and plays an important role in the proof of Theorem 3. A

quick review of the basic language of log geometry is given in Section 2.2. The proof of Theorem

3 relies on the residue map constructed in Section 2.3. After a discussion of the Hodge bundle on

toroidal compactifications of Ag in Section 2.4, the proof of Theorem 3 is presented in Section 2.5.

Conjectures and future directions related to tautological classes on toroidal compactifications of Ag

are discussed in Section 2.6.

2.2. The logarithmic Chow ring for toroidal embeddings. We will use the language of log

geometry and assume some rudimentary familiarity with the central definitions as given in [K]. A

summary of the relevant background information can be found in [MPS].

For a log scheme (S,MS), we write

ϵ : MS → OS

9



for the structure morphism from the monoid MS . Let Mgp
S be the associated group, and let MS

be the characteristic monoid

MS = MS/O∗
S .

The sheaf MS is constructible, and thus stratifies S.

For a toroidal embedding (S,D), the log structure is given by the étale sheaf of monoids

MS = {f ∈ OS : f is a unit on S ∖D} .

For toroidal embeddings, we will denote the log structure by either (S,D) or (S,MS) depending

upon context.

An important special case is that of a normal crossings pair (S,D): a smooth Deligne–Mumford

stack S with a normal crossings divisor D. These are precisely the log smooth log Deligne–Mumford

stacks with smooth underlying stack. The normal crossings condition is equivalent to

MS,s = Nk

for each s ∈ S and for some k depending on s. The integer k is the number of local branches of D

passing though s.

For a morphism of log structures f : X → S, let

MX/S = MX/MS

be the relative characteristic monoid. The morphism f is strict if MX/S = 0. For a log scheme

(X,MX) defined over a field K, a (global) chart for the log structure of X is a finitely generated,

saturated monoid P and a strict map

X → Spec(K[P ]) ,

where the target carries the canonical log structure (coming from the torus invariant divisor). We

require all log schemes to admit charts étale locally.

A morphism f : X → S is log smooth if, étale locally on X, we can find a map of monoids Q → P

such that Ker(Qgp → P gp) and the torsion part of Coker(Qgp → P gp) are finite groups of order

invertible in K, and a diagram

X S ×SpecK[Q] SpecK[P ] SpecK[P ]

S SpecK[Q]

αX

αS

with αX , αS strict and αX smooth. If we can find such a diagram with Q → P of finite index and

αX étale, the morphism is log étale. In particular, toroidal embeddings (S,D) are exactly the log

smooth log schemes over (SpecK,K∗).

To a toroidal embedding (S,D), we can associate a cone complex Σ(S,D). We refer the reader

to [MPS, Section 4.3] for an outline of the construction and further references. Each cone has an

integral structure, and the cone complex is built by gluing the cones together with their integral
10



structure. A strata blowup is a blowup of (S,D) along a smooth closed stratum. The result is

a new toroidal embedding (S′, D′) with D′ the total transform of D, so the procedure can be

iterated indefinitely. A log modification of (S,D) is a proper birational map S′ → S that can be

dominated by an iterated strata blowup. More intrinsically, the log modifications of S are precisely

the proper, representable, log étale monomorphisms S′ → S. Combinatorially, log modifications of

S correspond exactly to subdivisions of the cone complex Σ(S,D).

Log modifications form a filtered system. Indeed, two log modifications

S′ → S and S′′ → S

can always be dominated by a third: the log modification corresponding to the common refine-

ment of the subdivisions corresponding to S′ and S′′ together with the intersection of the integral

structures. To a toroidal embedding (S,D), we can thus associate refined operational Chow groups

logCH∗(S,D) = lim−→CHop(S′) ,

where S′ ranges over log modifications of S.

Toroidal compactifications of Ag correspond to admissible decompositions of the rational closure

Sym2
rc(Rg) of the cone of positive-definite symmetric quadratic forms on Rg. Any two admissible

decompositions can be refined by a third. Hence, logCH∗(Ag, ∂Ag) is independent of the choice of

compactification. We define

logCH∗(Ag) = logCH∗(Ag, ∂Ag)

for any toroidal compactification Ag.

2.3. Semistable families and residues. For suitable families of log schemes, we prove the exis-

tence of a residue map in Theorem 16 below. The residue map will be applied in Section 2.4 to the

universal family over the moduli space of abelian varieties in order to prove Theorem 3.

The sheaf of relative logarithmic differentials Ωlog
X/S is defined as the quotient of

ΩX/S ⊕ (OX ⊗Z Mgp
X )

by the subsheaf locally generated by sections of the form

(dϵ(m), 0)− (0, ϵ(m)⊗m) and (0, 1⊗ n) ,

where m ∈ MX and n ∈ Im(Mgp
S ) ⊂ Mgp

X , see [K]. As usual, we write

d logm = (0, 1⊗m)

which we view as dϵ(m)/ϵ(m).

For a strict map f : X → S, we have Ωlog
X/S = ΩX/S , and for a log étale map f : X → S, we have

Ωlog
X/S = 0.

Definition 7. The sheaf of residues is defined to be the quotient

R = Ωlog
X/S/ΩX/S .

11



Definition 8. ([M, Definition 2.1.2]) A logarithmic family X → S is a log smooth, surjective,

integral and saturated map of log schemes.

Families of stable curves and families of toroidal compactifications of semi-abelian schemes are all

examples of log families. The condition that f is integral and saturated – called weak semistability

in [M] – is a technical condition that, for log smooth f , implies that f is flat with reduced fibers [M,

Lemma 3.1.2], [Ts, Theorem II.4.2].8 Being integral and saturated is local on X and can be

understood in terms of the cone complexes ΣX and ΣS . Integrality combined with saturatedness

say, locally on X, that the associated map ΣX → ΣS maps cones of ΣX surjectively onto cones of

ΣS and that the integral structure of a cone σ surjects onto the integral structure of its image cone.

Given a log scheme (S,MS) and a finite index extension of sheaves MS → M ′
S , there is a

universal log DM stack (S′,M ′
S) with a log map to (S,MS) whose map on log structures is given

by the extension MS → M ′
S . The stack S′ is called the root of S along MS → M ′

S . The simplest

instance of this operation is taking a root along a boundary stratum of a normal crossings pair

(S,D). We call a composition of logarithmic modifications and roots a logarithmic alteration. Log

alterations of toroidal embeddings are isomorphisms on S∖D, but are not necessarily representable.

Logarithmic alterations are furthermore log étale. See [MW] for a lengthier discussion.

Remark 9. Because we work with Q-coefficients, pullbacks via root maps induce isomorphisms

on Chow groups. Therefore, for a toroidal embedding (S,D), the logarthmic Chow groups can be

equivalently defined as

logCH∗(S,D) = lim−→CHop(S′) ,

where S′ ranges over logarithmic alterations of S.

Definition 10. Let f : X → S be a log map. A logarithmic alteration of f is a log map f ′ : X ′ → S′

and a commutative diagram

X ′ X

S′ S

f ′ f

such that S′ → S and X ′ → X are logarithmic alterations.

Theorem 11 (Semistable Reduction Theorem, [ALT,AK,M]). Let f : X → S be a dominant log

smooth morphism of logarithmic schemes. Then there is a log alteration f ′ : X ′ → S′ of f which is

a log family. Furthermore, if S is log smooth, then one can take X ′ and S′ smooth.

Definition 12. A pair (X,D) is called simplest normal crossings if D ⊂ X is normal crossings in

the Zariski topology and each intersection of components of D is connected.

8When S and is also log smooth, the integrality condition is equivalent to f being flat, and the conditions that f
is integral and saturated together are equivalent to f being flat with reduced fibers.
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Remark 13. In more geometric terms, a toroidal embedding (X,D) has simplest normal crossings

if the following conditions are all satisfied:

(i) (X,D) is a normal crossings pair (with X smooth),

(ii) the components of D have no self-intersection,

(iii) intersections of components of D are connected.

We note that properties (ii) and (iii) are stable under logarithmic alterations, but (i) is not.

Corollary 14. Let f : (X,DX) → (S,DS) be a log family with (S,DS) toroidal. Then there is a

log alteration f ′ : (X ′, DX′) → (S′, DS′) which is a log family where both S′ and X ′ have simplest

normal crossings.

Proof. We can make S and X simplest normal crossings by suitable log modifications

S1 → S , X1 → X ×S S1 .

For example, we can take the log modifications corresponding to double barycentric subdivisions

(see the discussion in [MPS, Section 5.6]). Since logarithmic alterations are log étale and surjective,

the morphism X1 → S1 remains log smooth and surjective. Moreover, as noted in Remark 13, any

further log alteration of X1 or S1 which is smooth will have simplest normal crossings. Therefore,

we may apply Theorem 11 to X1 → S1 to get the desired X ′ → S′. □

Let (X,MX) be a log scheme. An orientation on MX is an ordering of the sections of MX(U)

for all U ⊂ X compatible with the restriction maps. We say MX is orientable if it admits an

orientation.

Lemma 15. Suppose (X,D) is a pair with simplest normal crossings. Then the log structure of

(X,D) is orientable.

Proof. We choose an ordering of the components Di of the divisor D. Every stratum is the inter-

section

Di1 ∩ · · · ∩Dik

where the components appear in the ordering we have chosen. For each x in the stratum, we have

a canonical isomorphism

MX,x =
⊕

Nmik .

Here, mik is the image in MX,x of any element m̃ik ∈ MX,x that maps to a local defining equation

for Dik . We order the sections as mi1 < mi2 · · · < mik . □

Theorem 16. Let f : X → S be a log family with X and S simplest normal crossings pairs. Every

choice of orientation on MX yields a map

(15) R → ⊕HOH

13



where H ranges over the irreducible components of the stratification determined by MX/S on the

locus where rank MX/S ≥ 1. Furthermore, the projection

R → OH

of (15) to each summand OH is surjective.

Proof. Choose an orientation of MX as in Lemma 15. We will construct the map (15) locally on

X, and then we will prove the gluing compatibility required for the global definition.

Let x be a point of X. Choose an ordered basis

m1, . . . ,mn ∈ MX,x

of MX at x. Let m̃i be arbitrary lifts in MX , and write xi = ϵ(m̃i) for their images in OX . In

other words, xi are local defining equations for the divisor Di of X at x. Similarly, write ti for the

corresponding images in S near f(x). Then, without loss of generality, we may assume that the

map of characteristic monoids has the form

Nk = MS,f(x) → MX,x = Nn1 ⊕ Nn2 ⊕ · · · ⊕ Nnk ⊕ Nℓ ,

with the jth basis element of Nk mapping to the vector (1, . . . , 1︸ ︷︷ ︸
nj

) of the summand Nnj on the right.

We have equations

t1 = u1
∏
α∈A1

xα , . . . , tk = uk
∏

α∈Ak

xα

for disjoint sets A1, . . . , Ak ⊂ {1, 2, . . . , n} with n1, . . . , nk elements respectively and units ui ∈
OX,x. By the orientation assumption, the sets A1, . . . , Ak are ordered. For convenience, we write

A = A1 ∪ . . . ∪Ak .

The additional ℓ parameters y1, · · · , yℓ have vanishing loci V (yi) representing horizontal divisors9

over S.

The logarithmic differentials Ωlog
X,x are generated by ΩX,x and dxα

xα
, α ∈ A, and dy1

y1
, . . . , dyℓyℓ

. We

have the relations
dui
ui

+
∑
α∈Ai

dxα
xα

=
dti
ti

, 1 ≤ i ≤ k .

The quotient R = Ωlog
X/S/ΩX/S has a presentation as an OX -module with generators

(16)
dxα
xα

,
dy1
y1

, . . . ,
dyℓ
yℓ

,

where α ∈ A. The relations are ∑
α∈Ai

dxα
xα

= 0 , 1 ≤ i ≤ k ,

9For example, when X → S is a family of curves, the V (yi) correspond to markings. In our study of the moduli
of abelian varieties, ℓ = 0.
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(since we are working with relative differentials and the dui/ui are in ΩX/S) and additionally

xα
dxα
xα

= 0 , y1
dy1
y1

= 0 , . . . , yℓ
dyℓ
yℓ

= 0 ,

where α ∈ A. The irreducible components of the stratification of MX/S at x (with rk ≥ 1) are

given either by

• ti = 0, xβ = 0, xγ = 0 for triples (i, β, γ) with β < γ elements in Ai, or by

• yj = 0 for some 1 ≤ j ≤ ℓ.

Thus, we find10

⊕HOH =
⊕
(i,β,γ)

OX/(ti, xβ, xγ)⊕
⊕
j

OX/(yj).

We define a map

R → OX/(ti, xβ, xγ)

by sending all the generators in (16) to 0, with the exception of

dxβ
xβ

7→ 1,
dxγ
xγ

7→ −1 .

Similarly, we define a map

R → OX/(yj)

by sending all generators in (16) to 0, with the exception of

dyj
yj

7→ 1.

We must verify that the map is well-defined. First, for each (i, β, γ), we see that∑
α∈Ai

dxα
xα

7→ 0

since
dxβ

xβ
and

dxγ

xγ
map to opposite elements in OX/(ti, xβ, xγ), and the other terms map to 0. The

fact that

xα
dxα
xα

, y1
dy1
y1

, . . . , yℓ
dyℓ
yℓ

, α ∈ A

map to 0 in OX/(ti, xβ, xγ) and OX/(yj) is immediate from the definitions. Surjectivity of the map

to any summand OH is also clear, as the generator 1 is in the image.

We now inspect how our map depended on choices; the only choices involved were the lifts m̃i

of mi, and the choice of ordering of the mi. A different choice of m̃′
i differs from the original one

by a unit, and we have
d(ux)

ux
= u−1du+

dx

x
.

The term u−1du is an ordinary differential, and thus the residue of the logarithmic form is inde-

pendent of lift. On the other hand, the map does depend on the ordering of the coordinates. Since

we assume that the ordering is global, however, the local maps patch uniquely to all of X. □

10Of course, ti ∈ (xβ , xγ), but we have chosen to keep ti in the notation to emphasize that β, γ belong to the same
part Ai.
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Remark 17. In case S is a point, (X,D) is a simplest normal crossings pair, and only the horizontal

divisors H = OX/(yi) are present in our analysis. These are precisely the components Di of the

divisor D. Our residue map then reduces to the classical residue homomorphism

0 ΩX Ωlog
X ⊕iODi 0 ,

see [F2, Chapter 4, Proposition 1].

2.4. The Hodge bundle. Let Ag be a toroidal compactification of the moduli space of principally

polarized abelian varieties. The compactification Ag carries a universal family of semi-abelian

schemes

q : Ug → Ag

together with a zero section s : Ag → Ug. The Hodge bundle is the rank g vector bundle on Ag

defined by

E = s∗Ωq ,

with Chern classes λi = ci(E).

Definition 18. A compactification of q : Ug → Ag is a diagram

Ug Xg

Ag

q
p

where p is a proper log smooth morphism, Ug is open and dense in Xg, and Ug acts on Xg extending

the natural action of Ug on itself (and commuting with p). A compactification p is a compactified

universal family if in addition p is a log family.

The fiber (Xg)t of a compactified universal family p over a point t ∈ Ag contains the semiabelian

scheme (Ug)t as an open subscheme. More precisely, write

(17) 0 Tt (Ug)t At 0 ,

with Tt a torus and At an abelian scheme. Then (Xg)t admits a fibration

(18) X(Tt) (Xg)t At ,

where X(Tt) is a union of complete toric varieties with torus Tt.

An arbitrary toroidal compactification Ag may not carry a compactified universal family. How-

ever, toroidal compactifications Ag, with compactified universal families

p : Xg → Ag

can be constructed, see [FC, Chapter VI, Section 1]. Compactifications of q correspond to GLg ⋉N -

admissible decompositions Σ̃g of a certain subcone of Sym2
rc(Rg)×Hom(N,R) for a rank g lattice

N . The decomposition is required to have the property that every cone in Σ̃g maps into a cone of
16



the admissible decomposition Σg of Sym2
rc(Rg) defining Ag. A compactification p is a compactified

universal family if the map

Σ̃g → Σg

satisfies the additional hypotheses of Definition 8 (the cones of Σ̃g map onto cones of Σg, and

surjectivity also holds for their integral structure).

Both notions of compactification are stable under arbitrary base change A′
g → Ag. For a com-

pactification p : Xg → Ag, an arbitrary log alteration X ′
g → Xg of the domain of p remains a

compactification. On the other hand, log alterations of Xg are not compactified families, even

if the original p is a family, as the composed map X ′
g → Ag is rarely a log family (flatness and

reducedness of fibers is typically destroyed). Nevertheless, semistable reduction by Theorem 11

ensures that there is a log alteration of the map X ′
g → Ag which is a compactified family.

The sheaf of relative logarithmic differentials of q and p are fiberwise trivial of rank g [FC, Chapter

VI, Theorem 1.1]. Triviality follows from the fibration descriptions (17) and (18) since the sheaf of

differentials on a semi-abelian variety and the sheaf of logarithmic differentials on a toric variety

are both trivial.

When Ag has a compactified family p, we can use Ωlog
p to define the Hodge bundle, as

E = s∗Ωq = s∗Ωlog
q = s∗Ωlog

p |Ug = s∗Ωlog
p

since the section s factors through Ug and the map q is strict.

A second approach to the Hodge bundle is available. The following result can be found in [FC,

Chapter VI, Theorem 1.1].

Lemma 19. Suppose Ag carries a compactified universal family p : Xg → Ag. Then,

Ωlog
p = p∗E and E = p∗Ω

log
p .

Proof. Since Ωlog
p is fiberwise trivial, cohomology and base change implies that

Ωlog
p = p∗p∗Ω

log
p

Since s∗p∗ = id, we have

E = s∗Ωlog
p = s∗p∗p∗Ω

log
p = p∗Ω

log
p ,

and the result follows.

□

Lemma 20. The classes λi extend to logCH∗(Ag).

Proof. In light of Remark 9, we check compatibility of Hodge classes under logarithmic alterations.

Suppose τ : A′
g → Ag is a logarithmic alteration. Then we have a Cartesian diagram

U ′
g Ug

A′
g Ag

ρ

q′ q

τ

17



Since s ◦ τ = ρ ◦ s′ for the respective zero sections, we have

τ∗E = (s′)∗ρ∗Ωq = (s′)∗Ωq′ = E′ ,

which implies the required compatibility for λi. □

Remark 21. Toroidal compactifications of Ag with a compactified universal family

p : Xg → Ag

form a cofinal system among all toroidal compactifications: given an arbitrary toroidal compactifi-

cation A′
g, we can choose a toroidal compactification Ag with a compactified universal family, and

then any common refinement A′′
g of both compactifications carries a compactified universal family.

Lemma 22. The collection of simplest normal crossings compactifications Ag ⊂ Ag that carry a

compactified universal family with simplest normal crossings is cofinal among the toroidal compact-

ifications Ag.

Proof. Starting with an arbitrary compactified universal family

p : Xg → Ag

we may apply Corollary 14 to p, to obtain the desired family. □

2.5. Proof of Theorem 3. Let Ag be a toroidal compactification of Ag. By Lemma 22, there

exists a toroidal compactification A′
g satisfying the following conditions:

(i) there is a proper surjection A′
g → Ag that is an isomorphism on the interior,

(ii) A′
g admits a universal family X ′

g → A′
g of toroidal compactifications of semi-abelian schemes,

(iii) both A′
g and X ′

g have simplest normal crossings.

Because proper surjections are Chow envelopes, it suffices to show that

λg

∣∣
∂A′

g
= 0 .

Hence, after replacing Ag by A′
g, we may assume that Ag has properties (ii) and (iii) above.

Let T be a component of the boundary divisor of Ag and denote by pT : XT → T the base change

to T of the universal family

p : Xg → Ag .

Over T , either XT → T is smooth, or we can find a nonempty component H of the singular locus

X sing
T of pT . In the first case, λg

∣∣
T
= 0 because λg

∣∣
Ag

= 0.

In the second case, H is an irreducible component of the locus where rank MXg/Ag
≥ 1. Let

i : H → XT , pT ◦ i : H → T

be the inclusion and the projection. The map pT ◦ i is proper and surjective because p is a log

family, so it suffices to show that i∗p∗T
(
λg

∣∣
T

)
= 0. Using Lemma 19, we have Ωlog

p = p∗E. After

base change and pullback by i, we find

i∗p∗TE
∣∣
T
= i∗Ωlog

pT
.
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It remains to check that cg(i
∗Ωlog

pT ) = 0. By Definition 7 and Theorem 16, we have surjections

i∗Ωlog
pT

→ i∗R → 0 , i∗R → OH → 0 .

We therefore have an exact sequence of vector bundles on H,

0 K i∗Ωlog
pT OH 0 .

We conclude cg(i
∗Ωlog

pT ) = cg−1(K)c1(OH) = 0 . □

2.6. Log geometry and λg. There is a distinguished subalgebra of classes coming from the bound-

ary in the logarithmic Chow theory defined by the image of the algebra PP of GLg-invariant piece-

wise polynomials11 on Sym2
rc(Rg),

(19) PP → logCH∗(Ag) .

We refer the reader to [MPS,MR] for further details regarding the construction of the map (19).

Our main conjecture concerning λg in the logarithmic theory is the following claim.

Conjecture 23. The class λg ∈ logCH∗(Ag) lies in the image (19) of the algebra of piecewise

polynomials.

Our motivation for Conjecture 23 comes from a parallel study of λg in the logarithmic Chow

theory of the moduli space of curves Mg. Using Pixton’s formula [HMPPS,JPPZ], the class λg is

proven in [MPS] to lie in the image of the algebra of piecewise polynomials in logCH∗(Mg).

Question D. Find a lifting to logCH∗(Ag) of Pixton’s formula for λg ∈ logCH∗(Mg) which is

compatible with the Torelli map.

The definition by van der Geer of the tautological ring is best suited for studying classes on the

moduli space of abelian varieties Ag. There is a larger tautological ring which takes the boundaries

of the various compactifications into account,

logR∗(Ag) ⊂ logCH∗(Ag) ,

defined to be generated by all possible piecewise polynomial and Hodge classes on all boundary

strata of all toroidal compactifications Ag ⊂ Ag.

The investigation of the structure of logR∗(Ag) is an interesting future direction. For example,

pushing forward powers of the polarization, we can define κ classes over Ag, see [MOP] and [A2] for

similar constructions in the context of the moduli of K3 surfaces and over KSBAmoduli respectively.

In the case of abelian varieties, we expect12 that the κ classes lie in logR∗(Ag). Can a precise formula

be found?

11By definition, a piecewise polynomial on Sym2
rc(R

g) is an admissible decomposition together with a continuous
GLg-invariant function on the decomposition that is polynomial on each cone.

12We thank V. Alexeev for a discussion about κ classes at the conference Higher Dimensional Algebraic Geometry
in La Jolla in January 2024.
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3. Tautological projection of product classes

3.1. Product cycles. We compute here the tautological projections of all product cycles

Ag1 × . . .×Agℓ → Ag

for all g. Calculations for product cycles for genus g ≤ 5 can be found in [GH].

Fix toroidal compactifications Ag corresponding to an additive collection of fans. The product

maps ∏
g1+···+gℓ=g

Ag1 × · · · × Agℓ → Ag

then extend to maps

(20)
∏

g1+···+gℓ=g

Ag1 × · · · × Agℓ → Ag .

For example, we could take the perfect cone compactification for every g by [SB, Lemma 2.8].

The Hodge bundle splits canonically over the product (20). Indeed, the universal semiabelian

variety restricts in the natural fashion over the product, and the splitting of the Hodge bundle then

follows by restricting the relative cotangent bundle to the zero section.

3.2. Lagrangian Grassmannian. As remarked in [vdG], a consequence of Theorem 1 is the Q-

algebra isomorphism

R∗(Ag) ≃ CH∗(LGg) ,

where LGg denotes the Lagrangian Grassmannian of C2g with respect to a symplectic form ω. An

overview of the cohomology of the Lagrangian Grassmannian from the point of Schubert calculus

can be found, for instance, in [FPr,KT,PR].

The spaces Ag and LGg are further connected by the Hirzebruch-Mumford proportionality prin-

ciple. Let S → LGg be the universal rank g subbundle, and let xi = ci(S
∗). Then,

(21)

∫
Ag

λI = γg

∫
LGg

xI

for every I ⊂ {1, 2, . . . , g}. Here, we use the multindex notation

λI =
∏
i∈I

λi , xI =
∏
i∈I

xi .

The proportionality constant γg was computed in [vdG, page 9]:

γg =

∫
Ag

λ1 . . . λg =

g∏
i=1

|B2i|
4i

.

For any partition

g1 + . . .+ gℓ = g ,

we can consider the product

(22) LGg1 × . . .× LGgℓ → LGg .
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Finding the class of

Ag1 × . . .×Agℓ → Ag

is equivalent to finding the class of the product cycle (22) in CH∗(LGg) in terms of the Chern classes

xi = ci(S
∗) of the dual subbundle. More precisely, if

(23) [LGg1 × . . .× LGgℓ ] = P(x1, . . . , xg) ∈ CH∗(LGg) ,

then we have

(24) tautcpt
(
[AΣg1

g1 × . . .×AΣgℓ
gℓ

]
)
=

γg1 · · · γgℓ
γg

· P(λ1, . . . , λg) ∈ R∗(AΣg

g ) .

To derive (24) from (23), we use the Gorenstein property of R∗(AΣg

g ). We need only check that

polynomials of complementary degrees in the λ classes pair equally with both sides of (24):

(i) When restricted to the product loci in AΣg

g and LGg, both the Hodge bundle E and the dual

subbundle S∗ split as direct sums.

(ii) By the Hirzebruch-Mumford proportionality principle, integrals in the λ’s over AΣg

g can be

evaluated in terms of integrals in x’s over LGg. The answers are always proportional (21),

with proportionality constant γg.

Combining (i) and (ii), we see that the constant γg1 · · · γgℓ arises for all factors on the left hand

side, while the constant γg arises for all terms on the right hand side, showing that (23) implies

(24). The purely non-tautological part of the cycle in (24) plays no role in the argument.

3.3. Proof of Theorem 5. For g1 + . . . + gℓ = g, we must show that the tautological projection

of the product locus Ag1 × . . .×Agℓ in Ag is given by the g × g determinant

tautcpt([Ag1 × . . .×Agℓ ]) =
γg1 . . . γgℓ

γg

∣∣∣∣∣∣∣∣
λα1 λα1+1 . . . λα1+g−1

λα2−1 λα2 . . . λα2+g−2

. . . . . . . . . . . .
λαg−g+1 λαg−g+2 . . . λαg

∣∣∣∣∣∣∣∣
for the vector

α = (g − g1, . . . , g − g1︸ ︷︷ ︸
g1

, g − g1 − g2, . . . , g − g1 − g2︸ ︷︷ ︸
g2

, . . . , g − g1 − . . .− gℓ, . . . , g − g1 − . . .− gℓ︸ ︷︷ ︸
gℓ

) .

By the connection between product cycles on Ag and LGg proven in Section 3.2, it suffices to show

that the class of the product LGg1 × . . .× LGgℓ in LGg is given by the determinant∣∣∣∣∣∣∣∣
xα1 xα1+1 . . . xα1+g−1

xα2−1 xα2 . . . xα2+g−2

. . . . . . . . . . . .
xαg−g+1 xαg−g+2 . . . xαg

∣∣∣∣∣∣∣∣ .
We will prove this determinantal formula using the geometry of LGg.

Let V = C2g with symplectic form ω. We consider a splitting

(25) (V, ω) ≃ (V1, ω1)⊕ . . .⊕ (Vℓ, ωℓ) ,
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where V1, . . . , Vℓ are symplectic subspaces of V with dimVi = 2gi. The splitting (25) defines an

embedding

j : LGg1 × . . .× LGgℓ → LGg , (P1, . . . , Pℓ) 7→ P = P1 ⊕ . . .⊕ Pℓ .

Consider the embedding of LGg into the usual Grassmannian G = G(g, 2g):

ι : LGg → G .

Let S → G be the universal subbundle (which restricts to the universal subbundle S → LGg via

the embedding ι). Similarly, let xi be the Chern classes of S∗ on G (which restrict to the classes xi

on LGg). Let Σ be the Schubert cycle in the Grassmannian G associated to the partition α with

respect to any complete flag satisfying the property

F2(g1+...+gi) = V1 ⊕ . . .⊕ Vi , 1 ≤ i ≤ ℓ .

By definition, P ∈ Σ provided

dim(P ∩ Fg+j−αj ) ≥ j , 1 ≤ j ≤ g .

For 1 ≤ i ≤ ℓ, let j = g1 + . . .+ gi, so that αj = g − (g1 + . . .+ gi). We see that for P ∈ Σ we have

(26) dim
(
P ∩ F2(g1+...+gi)

)
≥ g1 + . . .+ gi , 1 ≤ i ≤ ℓ .

The converse is also true. While there are additional requirements about dimensions of intersections

with other members of the flag, these are automatically fulfilled by elementary linear algebra

considerations.

In CH∗(G), we have the standard expression [F1, Chapter 14]:

[Σ] =

∣∣∣∣∣∣∣∣
xα1 xα1+1 . . . xα1+g−1

xα2−1 xα2 . . . xα2+g−2

. . . . . . . . . . . .
xαg−g+1 xαg−g+2 . . . xαg

∣∣∣∣∣∣∣∣ .
Moreover, we have

codim(Σ,G) = |α| =
ℓ∑

i=1

(g − g1 − . . .− gi)gi =
∑
i>j

gigj ,

which agrees with

codim(LG1 × . . .× LGgℓ , LGg) =

(
g + 1

2

)
−

ℓ∑
i=1

(
gi + 1

2

)
=
∑
i>j

gigj .

The scheme-theoretic claim

(27) LGg1 × . . .× LGgℓ = i−1Σ = Σ ∩ LGg ,

then implies

(28) [LGg1 × . . .× LGgℓ ] = ι∗[Σ] =

∣∣∣∣∣∣∣∣
xα1 xα1+1 . . . xα1+g−1

xα2−1 xα2 . . . xα2+g−2

. . . . . . . . . . . .
xαg−g+1 xαg−g+2 . . . xαg

∣∣∣∣∣∣∣∣ ,
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as required.

We first establish (27) set-theoretically. The left to right containment is clear for split subspaces

P = P1 ⊕ . . .⊕ Pℓ, so we show the converse. Let P ∈ Σ ∩ LGg. For convenience, write

hi = g1 + . . .+ gi .

We set Pi = P ∩ Vi. Note that P ∩ F2hi
is isotropic in F2hi

, hence dim(P ∩ F2hi
) ≤ hi. By the

Schubert condition (26), we must have

(29) dim(P ∩ F2hi
) = hi .

We will prove that dimPi = gi for all 1 ≤ i ≤ ℓ.

The case i = 1 is clear by (29) since V1 = F2h1 . For the general case, we induct on i. We assume

that

dim(P ∩ V1) = g1, . . . , dim(P ∩ Vi) = gi ,

and show that

dim(P ∩ Vi+1) = gi+1 .

To this end, let Q = P ∩ F2hi+1
, so that

dimQ = hi+1 , dim(Q ∩ F2hi
) = hi

by (29). Furthermore, Q is isotropic hence Lagrangian in (F2hi+1
, η) where η is the restriction of

the symplectic form ω. To show

dim(P ∩ Vi+1) = dim(Q ∩ Vi+1) = gi+1 ,

we compute

dim(Q ∩ Vi+1) = dimQ+ dimVi+1 − dim(Q+ Vi+1) = hi+1 + 2gi+1 − dim(Q+ Vi+1) .

It suffices then to show that dim(Q+ Vi+1) = hi+1 + gi+1, or equivalently,

(30) dim(Q+ Vi+1)
η = 2hi+1 − (hi+1 + gi+1) = hi .

Here, the complement is taken in F2hi+1
. Since Q is Lagrangian, Qη = Q. By construction,

V η
i+1 = F2hi

. We can therefore rewrite (30) as

dim(Q ∩ F2hi
) = hi ,

which is correct by the Schubert condition (29). The inductive step is proven.

Since P1⊕. . .⊕Pℓ ⊂ P , equality must hold for dimension reasons. Therefore, P ∈ LGg1×. . .×LGgℓ ,

and the proof of the set-theoretic equality (27) is complete.

To show (27) holds scheme-theoretically, it suffices to prove that the scheme-theoretic intersection

Σ ∩ LGg is nonsingular at all points P ∈ Σ ∩ LGg. Equivalently, we will show

(31) dimTP (Σ ∩ LGg) = dim(TP Σ ∩ TP LGg) ≤ dim LGg1 × . . . LGgℓ =

ℓ∑
i=1

(
gi + 1

2

)
.

23



We claim first that all P ∈ Σ ∩ LGg are nonsingular points of the Schubert variety Σ ⊂ G. We

use here a result due to [LS], [C, Corollary 2.5]: singular points of Σ must lie in Schubert varieties

for singular partitions associated to α, see [C, Definition 2.1] for the terminology. In our case,

nonsingularity at P ∈ Σ∩LGg is due to the fact that equality holds in (29). Equality (29) prevents

P from satisfying the Schubert conditions for any of the singular partitions associated to α.

The tangent space of Σ at nonsingular points is computed in [EH, Theorem 4.1]: TPΣ is identified

with a subspace of the space of linear maps

Φ : P → C2g/P

satisfying the property

Φ : (P ∩ F2hi
) → (P + F2hi

)/P .

For tangent space TPLGg, we require

Φ : P → P ∗

to be symmetric, where we identify C2g/P ≃ P ∗ using the symplectic form.

Assume Φ ∈ TPΣ ∩ TPLGg. A straighforward check shows that

(P + F2hi
)/P ≃ F2hi

/(P ∩ F2hi
)

gets identified with (P ∩ F2hi
)∗, so that

Φ : (P ∩ F2hi
) → (P ∩ F2hi

)∗ .

We have shown above that

(P ∩ F2hi
) = (P ∩ V1)⊕ . . .⊕ (P ∩ Vi) .

Therefore, Φ must be symmetric block diagonal with blocks of size g1, . . . , gℓ. Equation (31) then

follows. □

Example 24. For g1 + g2 = g, the tautological projection of the product locus Ag1 ×Ag2 is given

by the g1 × g1 determinant

(32) tautcpt([Ag1 ×Ag2 ]) =
γg1γg2
γg

∣∣∣∣∣∣∣∣
λg2 λg2+1 . . . λg−1

λg2−1 λg2 . . . λg−2

. . . . . . . . . . . .
λg2−g1+1 λg2−g1+2 . . . λg2

∣∣∣∣∣∣∣∣ .
The right hand side is the Schur determinant associated to the partition (g2, . . . , g2︸ ︷︷ ︸

g1

). The Schur

determinant is in general not preserved by exchanging g1 and g2 (which amounts to transposing

the partition), but it is so in the presence of Mumford’s relation by precisely [F1, Lemma A.9.2].

• In case g1 = 1, we obtain

tautcpt([A1 ×Ag−1]) =
g

6|B2g|
λg−1 .
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• In case g = 2, we obtain

tautcpt([A2 ×Ag−2]) =
1

360
· g(g − 1)

|B2g||B2g−2|
· (λ2

g−2 − λg−1λg−3) .

Example 25. For g1 = . . . = gk = 1, gk+1 = g − k, Theorem 5 yields

(33) tautcpt

A1 × . . .×A1︸ ︷︷ ︸
k

×Ag−k

 =
γk1γg−k

γg

∣∣∣∣∣∣∣∣
λg−1 λg 0 . . . 0
λg−3 λg−2 λg−1 . . . 0
. . . . . . . . . . . . . . .

λg2−2k+1 λg−2k+2 λg−2k+3 . . . λg−k

∣∣∣∣∣∣∣∣ .
For example, we have

tautcpt
([
A1 ×A1 ×Ag−2

])
=

1

36
· g(g − 1)

|B2g||B2g−2|
· (λg−1λg−2 − λgλg−3) .

3.4. Proof of Theorem 6. Our goal is to prove that after restriction to Ag, the tautological

projections of the product cycles admit further factorization:

taut([Ag1 × · · · × Agℓ ]) =
γg1 . . . γgℓ

γg
· λg−1 · · ·λg−ℓ+1 ·

∣∣∣∣∣∣∣∣
λβ1 λβ1+1 . . . λβ1+g∗−1

λβ2−1 λβ2 . . . λβ2+g∗−2

. . . . . . . . . . . .
λβg∗−g∗+1 λβg∗−g∗+2 . . . λβg∗

∣∣∣∣∣∣∣∣ ,
for the vector

β = (g∗ − g∗1, . . . , g
∗ − g∗1︸ ︷︷ ︸

g∗1

, g∗ − g∗1 − g∗2, . . . , g
∗ − g∗1 − g∗2︸ ︷︷ ︸

g∗2

, . . . , g∗ − g∗1 − . . .− g∗ℓ︸ ︷︷ ︸
g∗ℓ

) ,

where g∗ = g − ℓ and g∗i = gi − 1.

The term λg−1 · · ·λg−ℓ+1 is expected to appear in the formula of Theorem 6 by the following

reasoning. First,

λg−m · [Ag1 × . . .×Agℓ ] = 0 , 1 ≤ m ≤ ℓ− 1 .

Indeed, the splitting of the Hodge bundle distributes a top Hodge class on at least one of the ℓ

factors Agi , yielding the vanishing by Theorem 1(iii). Second, we compute the annihilator ideal

Ann ⟨λg−1, . . . , λg−ℓ+1⟩ = ⟨λg−1 . . . λg−ℓ+1⟩ .

The right to left containment follows from the relations

(34) λ2
jλj+1 . . . λg−1 = 0 , 1 ≤ j ≤ g − 1

on Ag noted in [vdG, page 4]. The left to right inclusion can be justified by expressing an arbitrary

element z of the annihilator in terms of the square-free monomial basis in the λ’s. Using (34), in

particular λ2
g−1 = 0, it follows that all monomials that appear in z must contain λg−1. If not, z ·λg−1

would contain nonzero terms in the square-free monomial basis, corresponding to the monomials

of z not containing λg−1. This contradicts that z is in the annihilator ideal. Successively, we see

that λg−2, . . . , λg−ℓ+1 must also appear in each of the monomials of z, proving the claim.
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Proof. We only indicate the proof of Theorem 6 when ℓ = 2. The general case is an ℓ-fold iteration

of the same argument. To start, we restrict to Ag the expression provided by Theorem 5, see (32).

Then, we must prove∣∣∣∣∣∣∣∣
λg2 λg2+1 . . . λg−1

λg2−1 λg2 . . . λg−2

. . . . . . . . . . . .
λg2−g1+1 λg2−g1+2 . . . λg2

∣∣∣∣∣∣∣∣ = λg−1 ·

∣∣∣∣∣∣∣∣
λg2−1 λg2 . . . λg−3

λg2−2 λg2−1 . . . λg−4

. . . . . . . . . . . .
λg2−g1+1 λg2−g1+2 . . . λg2−1

∣∣∣∣∣∣∣∣
after setting λg = 0. The parallel identity for the Lagrangian Grassmannian is equivalent:

(35)

∣∣∣∣∣∣∣∣
xg2 xg2+1 . . . xg−1

xg2−1 xg2 . . . xg−2

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2

∣∣∣∣∣∣∣∣ = xg−1 ·

∣∣∣∣∣∣∣∣
xg2−1 xg2 . . . xg−3

xg2−2 xg2−1 . . . xg−4

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2−1

∣∣∣∣∣∣∣∣ mod xg .

The identity does not hold in the absence of the Mumford relations.

We will derive identity (35) geometrically via an excess intersection calculation on LGg. Fix a

symplectic splitting

V = W1 ⊕ L1 ⊕W2 ⊕ L2 , dimWi = 2(gi − 1) , dimLi = 2 .

In addition, fix Lagrangian subspaces P1 ⊂ L1 and P2 ⊂ L2. Let

ι : LGg−1 → LGg , P → P ⊕ P2 .

Here LGg−1 is the Lagrangian Grassmannian of W1 ⊕ L1 ⊕W2. For this embedding, we have

(36) ι∗ [LGg−1] = xg ∩ [LGg] ,

as can be seen by a normal bundle calculation. The reader can verify that

ι−1(LGg1 × LGg2) = LGg1 × LGg2−1 .

The left hand side has codimension g1g2 in LGg, while the right hand side has codimension g1(g2−1)

in LGg−1. Write

j : LGg1 × LGg2−1 → LGg−1

for the natural map determined by the pair (W1 ⊕L1,W2). The class ι∗(LGg1 × LGg2) can be com-

puted via excess intersection. The excess bundle is the dual tautological subbundle S∗g1 . Therefore,

(37) ι∗([LGg1 × LGg2 ]) = j∗((xg1 × 1) ∩ [LGg1 × LGg2−1]) = j∗k∗([LGg1−1 × LGg2−1]) ,

after using (36) again. The embedding

k : LGg1−1 × LGg2−1 → LGg1 × LGg2−1

is defined by taking sum with P1 on the first factor. Consider

u : LGg1−1 × LGg2−1 → LGg−2 , v : LGg−2 → LGg−1 ,
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where the first map is determined by the pair (W1,W2) and the second map is determined by

taking sum with P1. The equality j ◦ k = v ◦ u follows from the definitions. By (28) in the proof

of Theorem 5, we find

(38) u∗([LGg1−1 × LGg2−1]) = v∗

∣∣∣∣∣∣∣∣
xg2−1 xg2 . . . xg−3

xg2−2 xg2−1 . . . xg−4

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2−1

∣∣∣∣∣∣∣∣ .
Then, using (37) and (38), we have

ι∗([LGg1 × LGg2 ]) = j∗k∗([LGg1−1 × LGg2−1]) = v∗u∗([LGg1−1 × LGg2−1])

= v∗v
∗

∣∣∣∣∣∣∣∣
xg2−1 xg2 . . . xg−3

xg2−2 xg2−1 . . . xg−4

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2−1

∣∣∣∣∣∣∣∣ = xg−1

∣∣∣∣∣∣∣∣
xg2−1 xg2 . . . xg−3

xg2−2 xg2−1 . . . xg−4

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2−1

∣∣∣∣∣∣∣∣ ,
which recovers the right hand side of (35). On the other hand, by (28), the class on the left hand

side equals

ι∗

∣∣∣∣∣∣∣∣
xg2 xg2+1 . . . xg−1

xg2−1 xg2 . . . xg−2

. . . . . . . . . . . .
xg2−g1+1 xg2−g1+2 . . . xg2

∣∣∣∣∣∣∣∣ ,
while the pullback ι∗ : CH∗(LGg) → CH∗(LGg−1) has the effect of setting xg = 0. □
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Email address: rahul@math.ethz.ch

28


	1. Introduction
	2. The top Chern class of the Hodge bundle
	3. Tautological projection of product classes
	References

