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Abstract. We show that the tautological ring of Mct
g,n is not Gorenstein for g ≥ 2 and

2g + n ≥ 12. We prove new cases of Pixton’s conjecture that the 3-spin relations are a
complete set of relations for the tautological ring, including Mct

6 , Mct
5,2, and Mct

7 . These
are the first known cases where Pixton’s conjecture is true, but the tautological ring is not
Gorenstein.

1. Introduction

1.1. The tautological ring. Let Mg,n be the moduli space of stable curves of genus g with
n markings. For a stable graph Γ of genus g with n legs and vertex set V , we set

MΓ =
∏
v∈V

Mg(v),n(v).

There is a proper gluing morphism

ξΓ : MΓ → Mg,n

whose image is the closure of the locus of curves with dual graph Γ. Let π : Mg,n+1 → Mg,n

be the universal curve and si : Mg,n → Mg,n+1 the universal sections. The ψ classes on
Mg,n are defined as

ψi = c1(s
∗
iωπ) ∈ A1(Mg,n).

The Arbarello–Cornalba κ classes are

κj = π∗(ψ
j+1
n+1) ∈ Aj(Mg,n),

and the lambda classes are

λk = ck(π∗ωπ) ∈ Ak(Mg,n).

Let πv : MΓ → Mg(v),n(v) be the projection map. A decoration on Γ is a product of
monomials in ψ and κ classes of total degree at most 3g(v)− 3 + n(v) pulled back from the
moduli spaces associated to the vertices by πv. Let S∗(Mg,n) be the Q-vector space whose
basis elements are pairs [Γ, γ], where Γ is a stable graph of genus g with n legs and γ is a
decoration. The vector space S∗(Mg,n) is finite dimensional and graded:

deg [Γ, γ] = |E(Γ)|+ deg(γ),

where E(Γ) is the set of edges of Γ. It also has the structure of a Q-algebra, with the product
determined by the intersection theory of the boundary strata of Mg,n, see [21, Appendix]
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for details. The product respects the grading, and so S∗(Mg,n) is a graded algebra called
the strata algebra.

Let Mct
g,n be the moduli space of compact type curves of genus g with n markings. For

g ≥ 1, there is a degree shifting map on underlying graded vector spaces

ξloop : S
∗−1(Mg−1,n+2) → S∗(Mg,n),

given by connecting the last two legs of the stable graph in the domain by an edge. The
quotient is denoted by S∗(Mct

g,n), the compact type strata algebra. It has as a basis the pairs
[Γ, γ], where Γ is a stable tree of genus g with n legs.

Strata algebra classes give rise to Chow and cohomology classes on Mg,n by pushforward
from MΓ. The following diagram commutes:

S∗(Mg,n) A∗(Mg,n)

S∗(Mct
g,n) A∗(Mct

g,n).

The images of the horizontal maps are by definition the tautological rings R∗(Mg,n) and
R∗(Mct

g,n), respectively. We denote the kernel of the upper horizontal map by I∗A(Mg,n) and
of the lower horizontal map by I∗A(Mct

g,n). These are the ideals of tautological relations for
stable and compact type moduli, respectively.

We can further compose with the cycle class map, obtaining a commutative diagram:

S∗(Mg,n) H2∗(Mg,n)

S∗(Mct
g,n) H2∗(Mct

g,n).

The images of the horizontal maps are the tautological cohomology rings RH2∗(Mg,n) and
RH2∗(Mct

g,n). The kernel of the upper horizontal map is denoted by I∗H(Mg,n) and of the lower
horizontal map by I∗H(Mct

g,n). These are the ideals of cohomological tautological relations for
stable and compact type moduli, respectively. We always have I∗A ⊂ I∗H.
A fundamental open problem in the intersection theory of moduli spaces of curves is to

determine the structure of the tautological rings. Even basic aspects are not well understood.
It is unknown, for example, if I∗A = I∗H for stable or compact type moduli. It is also unknown if
the restriction map I∗A(Mg,n) → I∗A(Mct

g,n) is surjective, and analogously for the cohomological
ideals. In other words, we do not know if the sequence

Rk−1(Mg−1,n+2) → Rk(Mg,n) → Rk(Mct
g,n) → 0

is always exact.
There have been two prominent proposals for the structure of the tautological rings: the

Gorenstein property and Pixton’s conjecture, which we describe in the next two sections.

1.2. The Gorenstein property. The Gorenstein property was first studied by Faber in the
tautological ring of Mg. The tautological ring R∗(Mg) is the image of R∗(Mg) in A∗(Mg)
under restriction, or equivalently, the subring generated by the κ classes.
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The Gorenstein property concerns the intersection pairing

(1) Ri(Mg)× Rg−2−i(Mg) → Rg−2(Mg) ∼= Q.
Looijenga [28] showed that dimRg−2(Mg) ≤ 1 and that dimRi(Mg) = 0 for i > g − 2.
Faber [15, Theorem 2] proved that dimRg−2(Mg) ≥ 1, establishing the isomorphism

Rg−2(Mg) ∼= Q.
The pairing (1) is defined as

(α, β) 7→
∫
Mg

α · β · λg−1 · λg.

Here, α and β are arbitrary lifts of α and β to R∗(Mg). The pairing is well-defined because
λg−1 ·λg vanishes on the boundary Mg∖Mg [15, p. 112]. There is also an analogous pairing
in the cohomological tautological ring.

Faber conjectured [15, Conjecture 1a] that the intersection pairings (1) are perfect for all
i. That is, R∗(Mg) is a Gorenstein ring with socle in codimension g − 2. If the Gorenstein
conjecture is true, then there is an algorithm to compute the ideal of relations among the κ
classes: a homogeneous polynomial in the κ classes of degree i is zero if and only if it pairs to
zero with all homogeneous κ polynomials of degree g − 2− i. The pairing can be computed
explicitly using the proportionalities of [15, Conjecture 1c], which has now been proven in
many different ways [19,20,27].

Faber provided low genus evidence for the Gorenstein conjecture on Mg computationally.
Originally, he showed that the conjecture is true when g ≤ 15 [15], and later he extended
these computations to g ≤ 23. He also showed, however, that the ring generated by the κ
classes modulo the Faber–Zagier relations is not Gorenstein when g = 24. See Section 1.3
below for a discussion of the Faber–Zagier relations and their generalizations. For g ≥ 24,
the Gorenstein conjecture remains open.

Analogous conjectures (or speculations) were made for Mg,n and Mct
g,n [16,29]. There are

intersection pairings

(2) Ri(Mg,n)× R3g−3+n−i(Mg,n) → R3g−3+n(Mg,n) ∼= Q, (α, β) 7→
∫
Mg,n

α · β

and

(3) Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → R2g−3+n(Mct
g,n)

∼= Q, (α, β) 7→
∫
Mg,n

α · β · λg.

Here α and β are arbitrary lifts of α and β to Mg,n. The latter pairing is well-defined
because λg vanishes on the boundary Mg,n ∖Mct

g,n [17, Equation 5]. The codomain of the
pairing is called the socle. For the fact that the socle is one dimensional, see [18, 22]. If the
pairings (2) (respectively, (3)) are perfect, then we say R∗(Mg,n) (respectively, R

∗(Mct
g,n)) is

Gorenstein. We will also consider the analogous pairings in the cohomological tautological
rings RH∗(Mg,n) and RH∗(Mct

g,n).
Just as in the case of Mg, if the Gorenstein property holds, it gives an algorithm for

determining the ideals of tautological relations I∗A(Mg,n) and I∗A(Mct
g,n), thereby completely

determining the structure of R∗(Mg,n) and R∗(Mct
g,n). The pairings (2) and (3) can be

computed explicitly and have been implemented in the Sage package admcycles [11, 14].
3



Note that Mct
0,n = M0,n is compact and the tautological ring is equal to the entire Chow

or cohomology ring by a result of Keel [25]. Therefore, the tautological rings in genus 0
are Gorenstein by Poincaré duality. Furthermore, Tavakol [36] proved R∗(Mct

1,n) is always

Gorenstein, and Petersen [32] proved R∗(M1,n) is always Gorenstein.
Nevertheless, neither R∗(Mg,n) nor R

∗(Mct
g,n) is always Gorenstein. Petersen and Tommasi

proved R∗(M2,n) is not Gorenstein when n ≥ 20 [34], and recent work of the first named
author shows that R∗(Mg,n) is not Gorenstein for g ≥ 2 and 2g + n ≥ 24 [7]. For compact
type moduli, Petersen [33] proved the tautological ring ofMct

2,n is not Gorenstein when n ≥ 8.
Our first theorem extends Petersen’s compact type result to higher genera.

Theorem 1. If g ≥ 2 and 2g + n ≥ 12, the tautological rings R∗(Mct
g,n) and RH∗(Mct

g,n) are
not Gorenstein.

The proof of Theorem 1 goes by reducing to the case g ≥ 2 and 2g+n = 12, and studying
each such pair (g, n) individually. It is not clear what the relationship between the failure of
the Gorenstein conjecture is for the cases when 2g+n = 12, as there is no gluing map between
the corresponding moduli spaces. The analogous result for Mg,n is proven by reduction to
the case g = 2 and n = 20, using the self-gluing map [7,34].

We obtain a partial converse to Theorem 1.

Theorem 2. If g = 0, 1 or g ≥ 2, 2g + n < 12, and (g, n) ̸= (2, 7) or (3, 5), then R∗(Mct
g,n)

and RH∗(Mct
g,n) are isomorphic and Gorenstein.

As noted above, the cases g = 0, 1 are due to Keel [25] and Tavakol [36], respectively. The
proof of Theorem 2 uses Theorem 4 below. We expect that the full converse of Theorem 1
holds. Computer calculations in the remaining cases (g, n) = (2, 7) and (g, n) = (3, 5) are
currently running. See Section 7 for a discussion of the computational aspects. In Table 1
below, we record the ranks of the tautological groups when g ≥ 2 and 2g + n < 12.

The proof of Theorem 1 gives concrete examples of nonzero classes in Ri(Mct
g,n) that pair to

zero with every class in R2g−3+n−i(Mct
g,n) for some i ≥ 5. We conjecture that the codimension

5 classes are of the minimal possible codimension.

Conjecture 3. For i ≤ 3, the pairings

Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → R2g−3+n(Mct
g,n)

are perfect. If i = 4, the pairing is of rank dimR4(Mct
g,n).

Conjecture 3 implies the analogous conjecture in cohomology (see Proposition 8). When
i = 0, the conjecture holds, simply because the socle R2g−3+n(Mct

g,n) is one dimensional
[18,22]. We prove Conjecture 3 when i = 1.

Theorem 4. The pairings

R1(Mct
g,n)× R2g−4+n(Mct

g,n) → R2g−3+n(Mct
g,n)

are perfect.
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(g, n) 0 1 2 3 4 5 6 7 8
(2, 0) 1 1
(2, 1) 1 2 1
(2, 2) 1 5 5 1
(2, 3) 1 11 24 11 1
(2, 4) 1 23 101 101 23 1
(2, 5) 1 47 384 769 384 47 1
(2, 6) 1 95 1362 4981 4981 1362 95 1
(2, 7) 1 191 4610 28606 ≤ 52330 28606 4610 191 1
(3, 0) 1 2 2 1
(3, 1) 1 4 7 4 1
(3, 2) 1 8 24 24 8 1
(3, 3) 1 16 82 144 82 16 1
(3, 4) 1 32 274 813 813 274 32 1
(3, 5) 1 64 895 4281 7258 4281 ≥ 895 64 1
(4, 0) 1 3 6 6 3 1
(4, 1) 1 5 17 25 17 5 1
(4, 2) 1 10 51 120 120 51 10 1
(4, 3) 1 20 158 568 882 568 158 20 1
(5, 0) 1 3 10 19 19 10 3 1
(5, 1) 1 6 28 75 107 75 28 6 1

Table 1. The ranks of Ri(Mct
g,n)

∼= RH2i(Mct
g,n) when g ≥ 2 and 2g+n < 12.

1.3. Pixton’s conjecture. Pixton gave an alternate proposal for the structure of the tau-
tological ring [35]. He defined a subspace FZ∗(Mg,n) ⊂ S∗(Mg,n) that he conjectured was
contained in I∗A(Mg,n), and hence I∗H(Mg,n).

1 The inclusion FZ∗(Mg,n) ⊂ I∗H(Mg,n) was
proven by Pandharipande–Pixton–Zvonkine [31] using the 3-spin cohomological field theory.
Later, Janda proved the inclusion FZ∗(Mg,n) ⊂ I∗A(Mg,n). We now call the space FZ∗(Mg,n)
the 3-spin relations.2 By restriction, one also obtains relations on Mct

g,n, denoted FZ∗(Mct
g,n).

We write

R∗
FZ(Mg,n) = S∗(Mg,n)/FZ

∗(Mg,n) and R∗
FZ(Mct

g,n) = S∗(Mct
g,n)/FZ

∗(Mct
g,n).

Conjecture 5 (Pixton [35]). The 3-spin relations are complete in Chow and cohomology:

R∗
FZ(Mg,n) = R∗(Mg,n) = RH∗(Mg,n) and R∗

FZ(Mct
g,n) = R∗(Mct

g,n) = RH∗(Mct
g,n).

There has been significant effort to produce relations in the tautological ring, but the only
known relations are contained in the span of the 3-spin relations [10,24], and so Conjecture
5 remains open. Pixton’s conjecture in codimension 0 is trivial. Gubarevich [23] proved
Pixton’s conjecture in codimension 1 for Mg,n:

R1
FZ(Mg,n) = R1(Mg,n) = RH2(Mg,n).

Kramer, Labib, Lewanski, and Shadrin [26] showed that the 3-spin relations imply Graber
and Vakil’s Theorem ⋆ [22]. Arguing as in [22, Section 5.5], one sees that Pixton’s conjecture

1FZ is an extension of the Faber–Zagier relations from Mg to Mg,n.
2The 3-spin relations are also known as the generalized Faber–Zagier relations and Pixton’s relations.
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holds for R3g−3+n(Mg,n) = RH6g−6+2n(Mg,n). Moreover, using the same line of reasoning, the
thesis of Al-Aidroos [1] establishes Pixton’s conjecture in dimension 1 and 2: Rd−i

FZ (Mg,n) =
Rd−i(Mg,n) = RH2d−2i(Mg,n) for i = 1, 2 and d = dimMg,n.

For compact type moduli, we prove some new cases of the conjecture.

Theorem 6. For i ∈ {0, 1, 2g − 4 + n, 2g − 3 + n},
Ri
FZ(Mct

g,n) = Ri(Mct
g,n) = RH2i(Mct

g,n).

The i = 0 case is trivial, and the i = 1 case follows quickly from Gubarevich’s result (see
Corollary 13). For i = 2g − 3 + n and 2g − 4 + n, the proof uses that the 3-spin relations
imply Graber and Vakil’s Theorem ⋆ [22, 26].

Using computer calculations, Pixton showed Conjecture 5 implies that R∗(Mct
6 ) and

R∗(Mct
5,2) are not Gorenstein [35], which is now confirmed by Theorem 1. As the num-

ber of marked points increases, the computations become significantly more difficult. The
next theorem provides the first cases where Pixton’s conjecture holds, but the tautological
ring is not Gorenstein.

Theorem 7. The 3-spin relations are complete in Chow and cohomology for Mct
6 , Mct

5,2, and

Mct
7 . In each case, the Gorenstein kernel is 1-dimensional and occurs in degree ⌈2g−3+n

2
⌉.

In Table 2 below, we record the ranks of the tautological groups for the moduli spaces in
Theorem 7.

(g, n) 0 1 2 3 4 5 6 7 8 9 10 11
(5, 2) 1 12 82 314 636 637 314 82 12 1
(6, 0) 1 4 15 42 71 72 42 15 4 1
(7, 0) 1 4 20 69 171 277 278 171 69 20 4 1

Table 2. The ranks of Ri(Mct
g,n)

∼= RH2i(Mct
g,n) for (g, n) as in Theorem 7,

with the ranks breaking the symmetry marked in bold.

1.4. The kernel of the pairing and moduli of abelian varieties. Let Ag denote the
moduli space of principally polarized abelian g-folds, and let p : Xg → Ag be the universal
abelian variety. The lambda classes on Ag are defined as λi = ci(p∗Ωp), and the tautological
ring R∗(Ag) is the subring of the Chow ring of Ag generated by the lambda classes.
The Torelli map Tor : Mct

g → Ag associates to a curve of compact type its Jacobian,
which is the product of the Jacobians of its components. The first interesting example of a
non-tautological class in A∗(Ag) was found recently [9, Theorem 5]: for g = 6, we have

[A1 ×A5] /∈ R∗(A6) .

First, by [9, Proposition 2], if [A1 ×Ag−1] ∈ R∗(Ag), then

[A1 ×Ag−1] =
g

6|B2g|
λg−1.

Therefore, if the class

∆g = [A1 ×Ag−1]−
g

6|B2g|
λg−1
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is nonzero, then [A1 × Ag−1] is not tautological. If Tor∗∆g ̸= 0, then ∆g ̸= 0. However,
by [9, Theorem 4] the pullback Tor∗∆g ∈ Rg−1(Mct

g ) lies in the kernel of the pairing (3).
Therefore, it is difficult to test whether Tor∗∆g is nonzero. Theorem 7 provides a complete
description of R∗(Mct

6 ), and using this description, it is shown [9, Theorem 5] that Tor∗∆6

generates the 1-dimensional kernel of the pairing

R4(Mct
6 )× R5(Mct

6 ) → Q.

Surprisingly, Tor∗∆7 = 0 [9, Proposition 7], but it is suspected that Tor∗∆g ̸= 0 for g ≥ 8.
The fact that [A1×A5] is not tautological provides a geometric explanation for the failure of

the Gorenstein property for R∗(Mct
6 ). We do not know of an analogous geometric explanation

for the failure of the Gorenstein property of R∗(Mct
g,n) when g ≥ 2, n > 0, and 2g + n = 12.

Plan of the paper. Sections 2, 3, and 4 deal with the cases when the tautological ring is
Gorenstein. In Section 2, we prove Theorem 2. In Section 3, we discuss the relationship be-
tween Pixton’s Conjecture 5 for stable and compact type moduli. As a quick application, we
prove the i = 1 case of Theorem 6. In Section 4, we prove Theorems 4 and 6 simultaneously.

Sections 5 and 6 deal with the failure of the Gorenstein property. In Section 5, we reduce
Theorem 1 to the cases g ≥ 2 and 2g + n = 12. In Section 6, we study these cases, proving
Theorem 7 and finishing the proof of Theorem 1.

Finally, in Section 7, we give a more detailed description of the computer computations
used throughout the paper.

Acknowledgments. We thank Jonas Bergström, Carel Faber, Dragos Oprea, Rahul Pand-
haripande, Dan Petersen, Aaron Pixton for helpful conversations. We are grateful to Carel
Faber for sharing his point counting data in genus 4. We also thank Charles Bouillaguet for
advice on using the SpaSM library [6] for Gaussian elimination modulo p.
Many of the computer checks in this paper were carried out on the servers of ETH Zürich

and UZH Zürich. We thank the respective IT support groups for their help in facilitating
these calculations.

2. When the tautological ring is Gorenstein

In this section, assuming Theorem 4, we prove Theorem 2. Theorem 4 will be proven in
Section 4.

The socle R2g−3+n(Mct
g,n) is generated by the fundamental class of the locus parametrizing

maximally degenerate n+g pointed rational curves with g elliptic tails attached [18, Section
4.1.2]. That is, the socle is generated by the image of the point class on Mct

0,n+g under the
composition

Rg+n−3(Mct
0,n+g) → Rg+n−3(Mct

0,n+g × (Mct
1,1)

×g) → R2g+n−3(Mct
g,n),

where the first map is the pullback along the projection and the second map is the pushfor-
ward along the gluing map. This description of the socle holds in both Chow and cohomology,
so the cycle class map in the socle degree

(4) c : R2g−3+n(Mct
g,n)

∼=−→ RH4g−6+2n(Mct
g,n)

is an isomorphism. Using the isomorphism (4), we see that the Gorenstein property in Chow
and cohomology are closely related.
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Proposition 8. If the pairing

Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → Q

is perfect, then so is the pairing

RH2i(Mct
g,n)× RH4g−6+2n−2i(Mct

g,n) → Q.

Proof. The proof is entirely analogous to [34, Corollary 2.5]. To obtain a contradiction, as-
sume the latter pairing is not perfect. Then the cycle class map c : R∗(Mct

g,n) → RH2∗(Mct
g,n)

is not an isomorphism in degree i or 2g − 3 + n − i. It is by definition surjective, so there
must be an element α such that c(α) = 0. By assumption, there is an element β ∈ R∗(Mct

g,n)
of complementary degree such that α · β ̸= 0. Because α · β is in the socle degree,

0 ̸= c(α · β) = c(α) · c(β),

contradicting c(α) = 0. □

Proof of Theorem 2, assuming Theorem 4. By Proposition 8, we can work in the tautological
Chow ring R∗(Mct

g,n). We may also assume g ≥ 2, as Theorem 2 holds when g = 0, 1
by [25,36].

Let g ≥ 2, 2g + n < 12, and (g, n) ̸= (2, 7), (3, 5). We need to show that the pairings

Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → Q

are perfect. For i = 0, the pairing is perfect because we know R2g−3+n(Mct
g,n)

∼= Q. For
i = 1, the result follows from Theorem 4. We now assume i ≥ 2.
Using admcycles, we compute a matrix MFZ,i(Mct

g,n) whose columns are indexed by the

decorated graph generators for Si(Mct
g,n) and whose rows correspond to elements of a gen-

erating set for FZi(Mct
g,n). We reduce the entries of the matrix modulo p for some prime p,

obtaining a matrix MFZ,i
Fp

(Mct
g,n). Here, we only use that the denominators of the entries in

MFZ,i(Mct
g,n) are not divisible by p. We have

rankMFZ,i
Fp

(Mct
g,n) ≤ rankMFZ,i(Mct

g,n).

We compute rankMFZ,i
Fp

(Mct
g,n). Then

dim Si(Mct
g,n)− rankMFZ,i

Fp
(Mct

g,n)

is an upper bound for the dimension of Ri(Mct
g,n).

3

Next, we bound from below the ranks of the pairings

Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → Q,

again using admcycles. In each case, the upper bound and lower bound agree. The results
are recorded in Table 1. See Section 7 for more details on the computer implementation. □

3When g = 2, we calculate the upper bound for the dimension of Ri(Mct
2,n) only when i ≤ ⌊ 2g−3+n

2 ⌋
because the tautological Betti numbers are known to be symmetric when n ≤ 7 [33, Theorem 3.6].
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3. The 3-spin relations on Mg,n and Mct
g,n

In this section, we give a method for proving the 3-spin relations are complete for Mct
g,n.

The method depends on the completeness of the 3-spin relations for the cohomology of Mg,n

and Mg−1,n+2.

Lemma 9. Suppose that H2k−2(Mg−1,n+2) = RH2k−2(Mg−1,n+2). Then the sequence

RH2k−2(Mg−1,n+2) → RH2k(Mg,n) → RH2k(Mct
g,n) → 0

is exact.

Proof. By definition, the restriction map

RH2k(Mg,n) → RH2k(Mct
g,n)

is surjective, and the pushforward map H2k−2(Mg−1,n+2) → H2k(Mg,n) sends tautological
classes to tautological classes. Therefore, we have a commutative diagram

H2k−2(Mg−1,n+2) H2k(Mg,n) W2kH
2k(Mct

g,n) 0

RH2k−2(Mg−1,n+2) RH2k(Mg,n) RH2k(Mct
g,n) 0 ,

where the top row, coming from the long exact sequence in cohomology, is exact. A diagram
chase shows that the bottom row is exact as well. □

Lemma 10. Suppose that H2k−2(Mg−1,n+2) = RH2k−2(Mg−1,n+2). If the 3-spin relations are
complete for RH2k(Mg,n), then they are complete for RH2k(Mct

g,n).

Proof. By Lemma 9, the top row of the diagram below

RH2k−2(Mg−1,n+2) RH2k(Mg,n) RH2k(Mct
g,n) 0

Sk−1(Mg−1,n+2) Sk(Mg,n)

is exact. Hence, RH2k(Mct
g,n) = RH2k(Mg,n)/S

k−1(Mg−1,n+2). By assumption, RH2k(Mg,n) =

Sk(Mg,n)/FZ
k(Mg,n). We have

RH2k(Mct
g,n) = Sk(Mg,n)/(FZ

k(Mg,n) + Sk−1(Mg−1,n+2))

=
(
Sk(Mg,n)/S

k−1(Mg−1,n+2)
)
/
(
im(FZk(Mg,n))

)
= Sk(Mct

g,n)/FZ
k(Mct

g,n),

showing the 3-spin relations are complete. Here im(FZk(Mg,n)) is the image of FZk(Mg,n)
in the quotient ring Sk(Mg,n)/S

k−1(Mg−1,n+2), which itself is canonically isomorphic to the
space Sk(Mct

g,n) of decorated strata of the compact-type moduli space. □

Remark 11. One can also prove versions of Lemmas 9 and 10 in the Chow ring, using the
excision exact sequence for Chow groups instead of the long exact sequence in cohomology.

9



Using Lemma 10, we show the 3-spin relations are complete for Mct
1,n and that the 3-spin

relations are complete in codimension 1.

Corollary 12. The 3-spin relations are complete in Chow and cohomology for Mct
0,n and

Mct
1,n.

Proof. It suffices to prove the result in cohomology, as there can be no more relations in Chow
than in cohomology. The genus 0 case is well-known. Indeed, by [25], the ideal IH(M0,n) is
generated by the WDVV relations, which are contained in FZ∗(M0,n) [31, Section 3.6].

When g = 1, we use Lemma 10. By [25], we have the equality H∗(M0,n) = RH∗(M0,n).
Moreover, the ideal of relations I∗H(M1,n) is generated by the WDVV and Getzler relations
[32]. Both of these relations are known to be contained in FZ∗(M1,n), see [31, Section 3.6]
and [30, Section 4.6] or [35, p. 87]. Applying Lemma 10 yields the statement. □

Corollary 13. The 3-spin relations are complete for R1(Mct
g,n) and RH2(Mct

g,n).

Proof. By [23], the 3-spin relations are complete for RH2(Mg,n). The fundamental class
[Mg−1,n+2] is tautological by definition, and so we may apply Lemma 10. □

4. Proof of Theorems 4 and 6

4.1. Overview. In this section, we prove Theorems 4 and 6. A key tool is the following
result.

Theorem 14. Any α ∈ Rd
FZ(Mg,n) is a linear combination of decorated strata classes [Γ, γ]

such that Γ has at least d− g + 1 genus 0 vertices.

Theorem 14 is often called Theorem ⋆, and was proven in Rd(Mg,n) by Graber and Vakil
[22]. The stronger statement that Theorem ⋆ holds in Rd

FZ(Mg,n) was proven recently by
Kramer, Labib, Lewanski, and Shadrin [26, Proposition 5.7 and Corollary 5.9]. Theorem 6
for i = 2g − 3 + n follows quickly from Theorem 14 (see Section 4.2).
Theorem 6 for i = 2g− 4+n and Theorem 4 will be proven simultaneously. We will show

that the pairing

(5) R1
FZ(Mct

g,n)× R2g−4+n
FZ (Mct

g,n) → R2g−3+n
FZ (Mct

g,n)
∼= Q

is perfect. The perfectness of the pairing forbids further relations, proving Theorem 6.
Therefore, the pairing

R1(Mct
g,n)× R2g−4+n(Mct

g,n) → Q
is perfect, proving Theorem 4.

4.2. Proof of Theorem 6 for i = 2g−3+n. We follow [22, Section 5.6]. For (g, n) = (2, 0)
we have 2g − 3 + n = 1, so the result follows from Corollary 13. For (g, n) ̸= (2, 0), any
stable graph Γ without loops has at most g − 2 + n genus 0 vertices. By Theorem 14, any
generator of R2g−3+n

FZ (Mct
g,n) thus has exactly g−2+n genus 0 vertices. Moreover, each genus

0 vertex must be trivalent, and all other vertices are genus 1 leaves. There can be no κ or ψ
decorations. Repeatedly applying the WDVV relation on M0,4, which is a 3-spin relation,

we see any two such strata are equivalent in R2g−3+n
FZ (Mct

g,n). □
10



4.3. Proof of Theorem 6 for i = 2g − 4 + n and Proof of Theorem 4. We prove that
the pairing (5) is perfect by induction on g, using the map φ : Mct

g−1,n+1 ×Mct
1,1 → Mct

g,n,
gluing an elliptic tail to the last marked point. The base cases for this induction are that
the pairing

R1
FZ(Mct

g,n)× R2g+n−4
FZ (Mct

g,n) → Q
is perfect when g = 0 [25] and when g = 1 [36] and the 3-spin relations are complete when
g = 0, 1 by Corollary 12. Note that by the geometric description of the socle as in Section
2, the map

φ∗ : R
2g−4+n
FZ (Mct

g−1,n+1)
∼= R2g−4+n

FZ (Mct
g−1,n+1 ×Mct

1,1) → R2g−3+n
FZ (Mct

g,n)

is an isomorphism.
Combined with the push-pull formula, this implies the following fact: for w ∈ Ri

FZ(Mct
g,n)

and ṽ ∈ R2g−4+n−i
FZ (Mct

g−1,n+1), we have

(6) w · φ∗ṽ = 0 ⇐⇒ φ∗w · ṽ = 0.

The proof that (5) is perfect breaks into two parts, given by Propositions 15 and 17 below.

Proposition 15. For any nonzero element w ∈ R1(Mct
g,n) = R1

FZ(Mct
g,n), there exists some

v ∈ R2g−4+n
FZ (Mct

g,n) such that v · w ̸= 0.

Using the following lemma, the equivalence (6), and induction, we will reduce Proposition
15 to g = 2. The proof of Proposition 15 in genus 2 is similar to the g ≥ 3 cases, but more
technical, so we defer it until later.

Lemma 16. If g ≥ 3, then

φ∗ : R1(Mct
g,n) → R1(Mct

g−1,n+1 ×Mct
1,1)

∼= R1(Mct
g−1,n+1)

is injective.

Proof. First suppose that g ≥ 4 so that all separating boundary, ψ and κ classes are inde-
pendent in R1(Mct

g−1,n+1) by [2, Theorem 2.2]. Let δa,A = [Γa,A, 1] denote the fundamental
class of the boundary divisor associated to the graph Γa,A, consisting of a vertex of genus
a hosting markings A ⊂ {1, . . . , n} with a single edge to a vertex of genus g − a hosting
markings Ac. In order to avoid overcounting, we assume a ≤ g/2 and, when n > 0, that
1 ∈ A if a = g/2. The generic form of an element in R1(Mct

g,n) is

w =
n∑

i=1

ciψi +
∑
a≤g/2

1∈A if a = g/2
(a,A) ̸=(1,∅)

ca,Aδa,A + eδ1,∅ + fκ1 ∈ R1(Mct
g,n)

for ci, ca,A, e, f ∈ Q. Let {1, . . . , n, x} be the marking set on Mct
g−1,n+1, where φ glues an

elliptic tail in at the marking x. Then

φ∗w =
n∑

i=1

ciψi +
∑
a≤g/2

1∈A if a = g/2
(a,A)̸=(1,∅)

ca,A(δa−1,A+x + δa,A) + e(−ψx + δ1,∅) + fκ1 ∈ R1(Mct
g−1,n+1).

Above, we use the convention δ−1,A+x = 0 to avoid writing out separate cases for the a = 0
terms in the sum. We claim the classes appearing in the linear combination above are
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independent. From this it follows that if φ∗w = 0, then we have ci = ca,A = e = f = 0, so
that w = 0, proving injectivity.

To verify the claim, we need to know that as we vary A we never make δa,A = δa′−1,A′+x, so
that there is no way for cancellation to occur in the above sum. In order for that to happen,
we would need g − 1 − a = a′ − 1 and Ac = A′ + x. That would mean g = a + a′. Since
a, a′ ≤ g/2 this can only happen when a, a′ = g/2. But in this case, we have assumed that
1 ∈ A and 1 ∈ A′, so we cannot have Ac = A′ + x.
When g = 3, we take w as before and the expression for φ∗w is valid. However, this time,

the ψ classes and boundary divisors are a basis for R1(Mct
2,n+1), and there is a relation that

expresses κ1 in terms of them. Nevertheless, since −ψx and δ1,∅ are independent and appear
only in the term e(−ψx + δ1,∅), it suffices to see that the coefficients of ψx and δ1,∅ in κ1 are
not negatives of each other. This relation is given in [2, Theorem 2.2(b)]. In the notation
there, δa =

∑
A δa,A, and ψ =

∑
ψi + ψx, so δ1,∅ appears with coefficient 7/5 in κ1, while ψx

appears with coefficient 1. □

Proof of Proposition 15 for g ≥ 3 assuming the case g = 2. Let w ∈ R1(Mct
g,n) be nonzero.

By Lemma 16, φ∗w ̸= 0. Thus, there exists a class ṽ ∈ R2g−5+n
FZ (Mct

g−1,n+1) such that
ṽ · φ∗w ̸= 0 by induction on g. Setting v = φ∗ṽ, we see v · w ̸= 0 by (6). □

The second direction in Theorem 4 is the following.

Proposition 17. For any nonzero element v ∈ R2g−4+n
FZ (Mct

g,n), there exists some class

w ∈ R1(Mct
g,n) such that v · w ̸= 0.

The following two lemmas describe all such classes v. Lemma 19 plays a role dual to
Lemma 16.

Lemma 18. Any class v ∈ R2g−4+n
FZ (Mct

g,n) is a linear combination of decorated strata classes
[Γ, γ] with the following features:

(1) There is one vertex of Γ of type (0, 4), (1, 2), (2, 0) or (2, 1).
(2) All other vertices of Γ are of type (0, 3) or (1, 1).
(3) If Γ has no vertex of type (2, 1), then γ is of degree 0.
(4) If Γ has a vertex of type (2, 1), then γ is of degree 1 on the type (2, 1) vertex and

degree 0 on all other vertices.

Proof. We first prove parts (1) and (2). By Theorem 14, any nontrivial generator of the
group R2g−4+n

FZ (Mct
g,n) has at least g − 3 + n genus 0 vertices, which is one less than the

maximum possible number of genus 0 vertices, g − 2 + n.
We proceed by induction on g and n. As Γ is a tree, we may suppose it has a leaf of some

type (g′, n′). This leaf is glued to a tree Γ0 of genus g − g′ with n− n′ + 2 markings. First
suppose g′ = 0. Then Γ0 must have at least g − 4 + n genus 0 vertices. Hence, we have
g − 4 + n ≤ (g − g′) − 2 + (n − n′ + 2), which implies n′ ≤ 4. That is, any genus 0 leaf is
type (0, 4) or (0, 3). If the leaf is type (0, 4), then Γ0 has the maximal number of genus 0
components given its genus so all other vertices are type (0, 3) or (1, 1). If the leaf is type
(0, 3), then Γ0 has one less than the maximal number of genus 0 components and the claim
follows by induction. Now suppose g′ > 0. Then Γ0 must have at least g − 3 + n genus 0
vertices. Hence, we have g − 3 + n ≤ (g − g′)− 2 + (n− n′ + 2), which implies g′ + n′ ≤ 3.
Thus, the allowable (g′, n′) are (1, 1), (1, 2), (2, 1), and (2, 0). If the leaf is type (1, 2) or (2, 1),
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then Γ0 has the maximal number of genus 0 components, so all other vertices are type (0, 3)
or (1, 1). If the leaf is type (1, 1), then Γ0 has one less than the maximal or the maximal
number of genus 0 components, and thus has the claimed form by induction.

To prove parts (3) and (4), note that the number of edges in a graph Γ satisfying (1) and
(2) is 2g − 4 + n, unless Γ has a vertex of type (2, 1), in which case there are 2g − 5 + n
edges. In the latter case, there must be a degree 1 decoration and the only place it gives a
non-vanishing generator is on the (2, 1) vertex. □

Lemma 19. If g ≥ 3, the map

φ∗ : R
2g−5+n
FZ (Mct

g−1,n+1)
∼= R2g−5+n

FZ (Mct
g−1,n+1 ×Mct

1,1) → R2g−4+n
FZ (Mct

g,n)

is surjective.

Proof. If g ≥ 3, any class in R2g−4+n
FZ (Mct

g,n) must be supported on a graph with a (1, 1)
vertex by Lemma 18. Thus, all classes in codimension 2g − 4 + n are pushed forward from
the elliptic tail divisor. □

Now consider the commutative diagram obtained by attaching two elliptic tails:

(7)

Mct
g−1,n+1 ×Mct

1,1

Mct
g,n Mct

g−2,n+2 ×Mct
1,1 ×Mct

1,1.

Mct
g−1,n+1 ×Mct

1,1

φ α

βφ

There is a complex

(8) R1(Mct
g,n) R1(Mct

g−1,n+1 ×Mct
1,1) R1(Mct

g−2,n+2 ×Mct
1,1 ×Mct

1,1).
φ∗ α∗−β∗

Lemma 20. If g ≥ 3, then the complex (8) is exact.

Proof. Let x be the last marking on Mct
g−1,n+1. Suppose u ∈ ker(α∗ − β∗) ⊂ R1(Mct

g−1,n+1).

We wish to produce a class w ∈ R1(Mct
g,n) such that φ∗w = u. We first treat the case

g − 1 ≥ 3. In this case, we can write u uniquely as a sum of compact type graphs with one
edge and ψ and κ classes

u =
∑
Γ

aΓ[Γ] +
n∑

i=1

ciψi + cxψx + dκ1.

Given a graph Γ, write g(x) for the genus of the vertex containing x. Write Γ⟨−x+1⟩ for the
graph obtained from Γ by removing the marking x and adding 1 to the genus of the vertex
that contained x.
Let

w =
∑

Γ:g(x)≥g−1−g(x)

aΓ[Γ⟨−x+ 1⟩] +
n∑

i=1

ciψi + dκ1.
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Recall that each of the ψ classes pulls back to the ψ class of the same name. Note also that
φ∗δ1,∅ = δ1,∅ − ψx. By construction

(9) u− φ∗w = c′xψx +
∑

Γ:g(x)<g−1−g(x)

bΓ[Γ]

for some bΓ and c′x = cx + aΓe , where Γe is the elliptic tail graph.
We have α∗[Γ] is the sum of graphs where we decrease the genus of one of the vertices by

one and add the marking y on that vertex. Write Γ⟨y ̸= x⟩ for the term in α∗[Γ] where y
and x are not on the same vertex. Then we have

α∗(u− φ∗w) = c′xψx +
∑
Γ

2g(x)<g−1

bΓ[Γ⟨y ̸= x⟩] + terms with x, y on same vertex.

Let τ be the automorphism of Mct
g−2,n+2 that swaps x and y. Then,

(10) 0 = (α∗−β∗)(u−φ∗w) = c′x(ψx−ψy)+
∑
Γ

2g(x)<g−1

bΓ[Γ⟨y ̸= x⟩]−
∑
Γ

2g(x)<g−1

bΓτ
∗[Γ⟨y ̸= x⟩].

The left-hand side vanishes because u and φ∗w are both in ker(α∗ − β∗).
If g−1 is even, then 2g(x) < g−1 means that g(x) < (g−1)/2, so g−1−g(x) ≥ g(x)+2.

This means that g(y) > g(x) in the graph Γ⟨y ̸= x⟩. Since g(y) > g(x), the graphs in the
second sum in (10) are distinct from those in the first. Assuming that g − 2 ≥ 2, all terms
on the right hand side of (10) are independent by [2, Theorem 2.2]. Thus, we have c′x = 0
and bΓ = 0 for all Γ. Hence, considering (9), we have u− φ∗w = 0 so u lies in the image of
φ∗.

Now suppose g − 1 is odd and that g − 2 ≥ 2. As in the previous paragraph, we learn
that c′x = 0 and bΓ = 0 for Γ with g(x) < (g − 2)/2. However, when g(x) = (g − 2)/2, then
there is another graph Γ′ with the property that τ(Γ′⟨y ̸= x⟩) = Γ and vanishing of (10)
implies bΓ = bΓ′ , rather than that both vanish. If Γ has markings x ∪ A on the vertex of
genus g/2− 1, then Γ′ is the graph with x∪Ac on the vertex of genus g/2− 1. In particular,
[Γ] + [Γ′] = φ∗[Γ⟨−x + 1⟩]. Hence, considering (9) we see that u − φ∗w is actually in the
image of φ∗, so u lies in the image of φ∗.

Finally, we treat the case g − 1 = 2. Recall that φ∗κ1 = κ1, but in genus 2 there is a
relation that expresses κ1 in terms of ψ and boundary classes [2, Theorem 2.2(b)]. Let us
define ϵΓ to be −1 if Γ has a vertex of genus 0 and 7

5
if Γ has a vertex of genus 1. Then the

relation is

κ1 = ψx +
n∑

i=1

ψi +
∑
Γ

ϵΓ[Γ] ∈ R1(Mct
2,n+1).

When g − 1 = 2, we can write u uniquely as a sum of compact type graphs and ψ classes

u =
∑
Γ

aΓ[Γ] +
n∑

i=1

ciψi + cxψx ∈ R1(Mct
2,n+1).

Now, let us set

w = cxκ1 +
n∑

i=1

(ci − cx)ψi +
∑

Γ:g(x)≥g−1−g(x)

(aΓ − cxϵΓ)[Γ⟨−x+ 1⟩] ∈ R1(Mct
3,n).

14



Then,

(11) u− φ∗w =
∑

Γ:g(x)<g−1−g(x)

bΓ[Γ]

for some bΓ. Notice that g(x) < 2 − g(x) implies g(x) = 0, so the sum is over graphs with
g(x) = 0. The rest of the proof proceeds similarly. We find that

(12) 0 = (α∗ − β∗)(u− φ∗w) =
∑
Γ

bΓ[Γ⟨y ̸= x⟩]−
∑
Γ

bΓ[Γ⟨y ̸= x⟩].

The first sum consists of graphs where g(x) = 0 and g(y) = 2 while the second sum consists
of graphs where g(x) = 2 and g(y) = 0. In genus 1, there are no relations among the
boundary divisors. Thus, the terms on the right are independent, so all bΓ = 0. Considering
(11), we see that u− φ∗w = 0, so u lies in the image of φ∗. □

Proof of Proposition 17 for g ≥ 3 assuming the g = 2 case. Suppose v ∈ R2g−4+n
FZ (Mct

g,n). By

Lemma 19, we can write v = φ∗ṽ for some ṽ ∈ R2g−5+n
FZ (Mct

g−1,n+1). For any w ∈ R1
FZ(Mct

g,n),
we have

v · w = φ∗ṽ · w = ṽ · φ∗w

by (6). We will show that (Imφ∗)⊥ ⊂ kerφ∗, so that v · w = 0 for all w only if v = 0.
By induction on g, the pairing induces isomorphisms

R1(Mct
g−2,n+2)

∨ ∼= R2g−6+n
FZ (Mct

g−2,n+2) and R1(Mct
g−1,n+1)

∨ ∼= R2g−5+n
FZ (Mct

g−1,n+1).

By (6), it follows that under these dualities, the map

α∗ − β∗ : R
2g−6+n
FZ (Mct

g−2,n+2) → R2g−5+n
FZ (Mct

g−1,n+1)

is dual to the pullback map

α∗ − β∗ : R1
FZ(Mct

g−1,n+1) → R1
FZ(Mct

g−2,n+2).

By Lemma 20 and duality,

(Imφ∗)⊥ = ker(α∗ − β∗)⊥ = Im(α∗ − β∗) ⊂ kerφ∗,

where the last containment follows from the commutativity of (7). □

Theorem 4 will thus follow once we prove Propositions 15 and 17 when g = 2.

4.3.1. Genus 2. The genus 2 analogue of Lemma 16 is the following.

Lemma 21. If g = 2, then the kernel of φ∗ : R1(Mct
2,n) → R1(Mct

1,n+1) is the span of λ1.

Proof. We have 0 ̸= λ1 ∈ R1(Mct
2 ) and R1(Mct

2 ) → R1(M1,1) = 0, so λ1 is in the kernel of φ
with no markings. Now assume n > 0. Considering the commutative diagram

R1(Mct
2,n) R1(Mct

1,n+1)

R1(Mct
2 ) R1(M1,1)

φ∗
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we see that λ1 must lie in the kernel of φ∗ for all n.
It suffices to show that φ∗|W is injective for some codimension 1 subspace W ⊂ R1(Mct

2,n).
We take W to be the subspace spanned by ψ classes and boundary divisors besides δ1,∅. Let

(13) w =
∑
1∈S
Sc ̸=∅

aSδ1,S +
∑
|S|≥2

bSδ0,S +
n∑

i=1

ciψi ∈ W,

where the sums run over subsets S ⊂ {1, . . . , n}. The pullback is

φ∗w =
∑
1∈S
Sc ̸=∅

aS(δ1,S + δ0,S+x) +
∑
|S|≥2

bSδ0,S +
n∑

i=1

ciψi,

where the sum still runs over sets S ⊂ {1, . . . , n}. Using the relations δ1,A = δ0,Ac and
ψi =

∑
i∈A,|A|≥2 δ0,A in R1(Mct

1,n+1), we rewrite this in terms of the boundary divisors δ0,A:

φ∗w =
∑
1∈S
Sc ̸=∅

aS(δ0,Sc+x + δ0,S+x) +
∑
|S|≥2

bSδ0,S(14)

+
n∑

i=1

ci

 ∑
i∈A,|A|≥2

δ0,A

 ,

where the sums run over sets S ⊂ {1, . . . , n} and the last sum over sets A ⊂ {1, . . . , n, x}.
Now suppose that φ∗w = 0. Since the boundary divisors δ0,A form an independent set in

R1(Mct
1,n+1), when we collect terms, the coefficient of each δ0,A above vanishes. We use this

to prove that all aS, bS and ci vanish. Take some set S ⊂ {1, . . . , n} with 1 ∈ S and Sc ̸= ∅.
Considering the coefficient of δ0,S+x in (14), we have

(15) 0 = aS +
∑
i∈S

ci,

while from considering the coefficient of δ0,Sc+x, we have

0 = aS +
∑
i∈Sc

ci.

Hence, for every set with 1 ∈ S and Sc ̸= 0, we have∑
i∈S

ci =
∑
i∈Sc

ci.

In addition, considering the coefficient of δ0,{1,...,n,x}, we see

0 =
n∑

i=1

ci.

This implies all ci = 0. (Indeed, ci =
∑

j ̸=i ck and 0 =
∑
ck forces ci = −ci.) Hence, (15)

implies all aS = 0. Finally, given S ⊂ {1, . . . , n} with |S| ≥ 2, considering the coefficient of
δ0,S shows

0 = bS +
∑
i∈S

ci,
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which implies bS = 0 as well. Thus, considering (13), we have w = 0. □

Proof of Proposition 15 when g = 2. Let w ∈ R1(Mct
2,n) be nonzero and write

w = cλ1 + w′

where w′ does not lie in the span of λ1. First we assume w′ ̸= 0. Then by Lemma 21

φ∗w = φ∗w′ ̸= 0.

By the Gorenstein property in genus 1 [36], there exists ṽ ∈ Rn−1
FZ (Mct

1,n+1) such that

0 ̸= ṽ · φ∗w = φ∗ṽ · w,
where the equality is (6).

Now we assume w′ = 0 and c ̸= 0. Let

ξ : Mct
2,1 ×Mct

0,n+1 → Mct
2,n

be the map gluing the last marked point on each component. Set z = ξ∗(ψ⊗pt) ∈ Rn
FZ(Mct

2,n).
Then

(16) w · z = cλ1 · z = cξ∗(ξ
∗λ1 · (ψ ⊗ pt)) = cξ∗(λ1ψ1 ⊗ pt).

Above, λ1ψ ∈ R2
FZ(Mct

2,1)
∼= Q lies in the socle degree and is non-zero, which can be seen by

lifting λ1ψ to M2,1 and pairing with λ2. By the geometric description of the socle in Section
2, it is clear that the map ξ∗ sends the generator of the socle of Mct

2,1 to the generator of the
socle of Mct

2,n, so (16) is nonzero. □

Next we prepare to prove Proposition 17 in genus 2. The g = 2 analogue of Lemma 19 is
the following.

Lemma 22. If n ≥ 1, the group Rn
FZ(Mct

2,n) is spanned by the image of

Rn−1
FZ (Mct

1,n+1)
∼= Rn−1

FZ (Mct
1,n+1)⊗ R0

FZ(Mct
1,1) → Rn

FZ(Mct
2,n)

together with the pushforward of ψ ⊗ pt ∈ Rn−1
FZ (Mct

2,1)⊗ R0
FZ(Mct

0,n+1) → Rn
FZ(Mct

2,n).

Proof. By Lemma 18, classes in codimension 2g − 4 + n = n are generated by decorated
graphs where all but one vertex have (g(v), n(v)) = (0, 3) or (1, 1) and one vertex has
(g(v), n(v)) = (0, 4), (1, 2) or (2, 1). If there are no (2, 1) vertices, then such a graph has a
(1, 1) vertex.

Meanwhile, there is one such graph that has no elliptic tails, namely we take a (2, 1) vertex
decorated with a codimension 1 decoration and the rest of the graph is (0, 3) vertices. We
can take the decoration to be ψ1 because κ1 is proportional to ψ1 modulo boundary divisors
on Mct

2,1 by [2, Theorem 2.2(b)]. □

Lemma 20 holds when g = 2 as well.

Lemma 23. When g = 2 and n ≥ 2, the complex (8) is exact.

Proof. The idea is similar to the proof of Lemma 20, except there are more relations in low
genus. Suppose for contradiction that there exists u ∈ ker(α∗ − β∗) ⊂ R1(Mct

1,n+1) such that

u /∈ Imφ∗. Since R1(Mct
1,n+1) is spanned by the boundary divisors δ0,S, we can write

u =
∑
|S|≥2

cSδ0,S.
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Note that φ∗ψi = ψi =
∑

i∈S δ0,S = δ0,{i,x} + . . .. Replacing u with u −
∑n

i=1 c{i,x}φ
∗ψi, we

can assume cS = 0 when x ∈ S and |S| = 2. Next, observe that, when written in terms of
boundary divisors,

φ∗

(
δ1,∅ +

n∑
i=1

ψi

)
= δ1,∅ − ψx +

n∑
i=1

ψi = (n− 1)δ0,{1,...,n,x} + . . .

has coefficient n− 1 on δ0,{1,...,n,x} and coefficient 0 on all δ0,{i,x}. Thus, by replacing u with
u− 1

n−1
c{1,...,n,x}φ

∗ (δ1,∅ +
∑n

i=1 ψi), we can assume cS = 0 when x ∈ S and |S| = 2 and when
S = {1, . . . , n, x}. Next, replacing u with

u−
∑
x,1∈S

cS · φ∗δ1,S−x

we can assume that cS = 0 when x, 1 ∈ S, or |S| = 2, or S = {1, . . . , n, x}. (Note that if
1 ∈ S, and S ̸= {1, . . . , n, x}, then φ∗δ1,S−x = δ0,S+δ1,S = δ0,S+δ0,Sc+x; since 1 /∈ Sc+x, this
second term does not change other coefficients we have already fixed to be zero.) Finally,
replacing u with

u−
∑
x/∈S

cS · φ∗δ0,S

we may also assume that cS = 0 when x /∈ S.
In summary, after adjusting u by elements in Imφ∗, we may assume that u has the form

u =
∑

x∈S,1/∈S
|S|≥3
Sc ̸=∅

cSδ0,S.

Now, since u ∈ ker(α∗ − β∗), we have

0 = (α∗ − β∗)(v) =
∑

x∈S,1/∈S
|S|≥3
Sc ̸=∅

cSδ0,S −
∑

x∈S,1/∈S
|S|≥3
Sc ̸=∅

cSδ0,S−x+y.

Note that in the terms δ0,P appearing above, |P | ≥ 3 and 1 ∈ P c. OnM0,n+2, the δ0,P = δ0,P c

with 1 ∈ P c and |P | ≥ 3 are independent by [2, Lemma 3.9]. It follows that all cS = 0.
Thus, u = 0 ∈ Imφ∗, which is a contradiction. □

Proof of Proposition 17 when g = 2. We have computationally checked the cases n ≤ 1, so
assume n ≥ 2. Let v ∈ Rn

FZ(Mct
2,n). By Lemma 22, we can write

v = φ∗ṽ + cξ∗(ψ ⊗ pt),

where ṽ ∈ Rn−1
FZ (Mct

1,n+1) and c is a constant. Note that φ∗ṽ · λ1 = ṽ · φ∗λ1 = 0. Therefore,

v · λ1 = cξ∗(ψ ⊗ pt) · λ1.

If c ̸= 0, then v ·λ1 ̸= 0 by the same argument as in the g = 2 case of the proof of Proposition
15. Now we can assume c = 0, and in this case the proof is exactly the same as in the case
when g ≥ 3, using Lemma 23. □
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Combining Propositions 15 and 17 shows that the pairing

R1
FZ(Mct

g,n)× R2g−4+n
FZ (Mct

g,n) → R2g−3+n
FZ (Mct

g,n)
∼= Q

is perfect. The perfectness of the pairing forbids further relations, thereby proving Theorems
6 and 4. □

5. The Gorenstein property and invisibility

In this section, we study some generalities about the failure of the Gorenstein property.
The failure of the Gorenstein property in Chow follows from its failure in cohomology, by
Proposition 8. We will thus work in cohomology here.

Definition 24. We say that a nonzero class α ∈ RH2i(Mct
g,n) is invisible if

α · β = 0

for all β ∈ RH4g−6+2n−2i(Mct
g,n).

The tautological ring is not Gorenstein if and only if there exists an invisible class.
We show that certain natural operations on compact type moduli spaces send invisible

classes to invisible classes. This structure arises because of certain operations that preserve
the socle. Let π : Mct

g,n+1 → Mct
g,n be the map forgetting the last marked point. Recall that

the socle RH4g−6+2n(Mct
g,n) is generated by the fundamental class of the locus parametrizing

maximally degenerate n+ g pointed rational curves with g elliptic tails. It follows that

(17) π∗ : RH
4g−4+2n(Mct

g,n+1)
∼=−→ RH4g−6+2n(Mct

g,n)

is an isomorphism.

Lemma 25. Suppose α ∈ RH2i(Mct
g,n) is invisible. Then π

∗α ∈ RH2i(Mct
g,n+1) is invisible.

Proof. Because the Gorenstein property holds for g = 0, 1, we can assume g ≥ 2. For any
γ ∈ RH2i(Mct

g,n), we have

γ =
1

2g − 2 + n
π∗((π

∗γ) · ψn+1).

Therefore, π∗ is injective. Let β ∈ RH4g−4+2n−2i(Mct
g,n+1). We have

π∗(π
∗α · β) = α · π∗β = 0,

where the second equality follows from the assumption that α is invisible. Because π∗α is
not zero and π∗α · β is in the socle degree, the claim follows from the fact that the map in
(17) is an isomorphism. □

Invisible classes also play well with pushforward along gluing maps

φ : Mct
g,n ×Mct

g′,n′ → Mct
g+g′,n+n′−2.

Given α ∈ H∗(Mct
g,n) and γ ∈ H∗(Mct

g′,n′), we write α⊗γ ∈ H∗(Mct
g,n×Mct

g′,n′) for the product
of the pullbacks of these two classes along the projection maps. For β ∈ H∗(Mct

g,n ×Mct
g′,n′),

we write β ∈ RH∗(Mct
g,n×Mct

g′,n′) if it admits a tautological Künneth decomposition. Because
the tautological ring vanishes beyond the socle degree, we have

RH4(g+g′)−12+2(n+n′)(Mct
g,n ×Mct

g′,n′) ∼= RH4g−6+2n(Mct
g,n)⊗ RH4g′−6+2n′

(Mct
g′,n′) ∼= Q.
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When we glue together two maximally degenerate genus 0 curves, the result is a maximally
degenerate genus 0 curve. Thus, using the geometric description of the socle, we see that
the pushforward map

(18) φ∗ : RH
4g−6+2n(Mct

g,n)⊗ RH4g′−6+2n′
(Mct

g′,n′) → RH4(g′+n′)−6+2(n+n′−2)(Mct
g+g′,n+n′−2),

is an isomorphism. If α ∈ RH2i(Mct
g,n) is invisible, it readily follows that, if it is nonzero,

then φ∗(α ⊗ γ) is invisible for any γ ∈ RH∗(Mct
g′,n′). Indeed, for any β in complementary

degree to φ∗(α⊗ γ), we have

φ∗(α⊗ γ) · β = α⊗ γ · φ∗β = 0.

Above, the first equality follows from the fact that (18) is an isomorphism; the second equality
follows because the only nonzero terms come from Künneth components of φ∗β where the
first factor lies in complementary degree to α, and we are assuming α is invisible.

In general, it may be difficult to determine when the pushforward φ∗(α ⊗ γ) is non-zero.
One sufficient criterion is if φ∗φ∗(α⊗γ) ̸= 0. This class can be computed by considering the
fiber product of the gluing map with itself and using the excess intersection formula:

(19) φ∗φ∗(α⊗ γ) =

{
−(αψp)⊗ γ − α⊗ (ψp′γ) if n′ > 1

(α(δg′,∅ − ψp))⊗ γ − α⊗ (ψp′γ) if n′ = 1.

One case where we can see such classes are non-zero is when γ = 1 and (g′, n′) ̸= (1, 1), so
that ψp′ ̸= 0. Another case where we can verify the above pushforward is non-zero is when α
is pulled back from a moduli space with less markings. This is the idea behind the following
result.

Lemma 26. Let φ be the gluing map (18) that glues p and p′ and let π : Mct
g,n → Mct

g,n−1

be the map that forgets the marking p. Suppose α ∈ RH2i(Mct
g,n−1) is invisible. Then for any

nonzero γ ∈ RH2j(Mct
g′,n′), we have φ∗(π

∗α⊗ γ) ∈ RH2i+2j+2(Mg+g′,n+n′−2) is invisible.

Proof. We can assume g ≥ 2, as otherwise the assumption is vacuous. By the discussion
above, it suffices to show that φ∗φ∗(π

∗α ⊗ γ) ̸= 0. By (19) (with α replaced by π∗α) it
suffices to show that π∗α · ψp ̸= 0 if n′ > 1 or π∗α · (δg′,∅ − ψp) ̸= 0 if n′ = 1. To see this
class is non-zero, we consider its pushforward along π: in either case, we obtain a non-zero
multiple of α. □

Applying Lemma 26 when (g′, n′) = (1, 1) and γ = 1, we obtain:

Lemma 27. If RH∗(Mct
g−1,n) is not Gorenstein, then RH∗(Mct

g,n) is not Gorenstein.

In order to prove that RH∗(Mct
g,n) is not Gorenstein for 2g + n ≥ 12, it suffices to show it

is not Gorenstein in the cases 2g+n− 12 = 0 by Lemmas 25 and 27. This idea is illustrated
in Figure 1. Indeed, once invisible classes are found at the pairs (g, n) marked by red boxes,
we apply Lemma 27 (indicated by the purple horizontal arrow below) followed by Lemma 25
(indicated by red vertical arrows) to see that all boxes above and to the right are also red.
The case (g, n) = (2, 8) (dark red) was established by Petersen [33]. The remaining cases
will be dealt with in Section 6.
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Figure 1. Lemmas 25 and 27 reduce the proof of Theorem 1 to the cases
when 2g + n = 12.

6. The tautological ring when 2g + n = 12

Here, we show that RH∗(Mct
g,n) is not Gorenstein for (g, n) = (6, 0), (5, 2), (4, 4), and (3, 6),

thereby proving Theorem 1. Then, we will prove Theorem 7.

6.1. Genus 5 and 6. The cases g = 5, 6 are simplest, so we treat them first.

Proposition 28. The tautological rings RH∗(Mct
6 ) and RH∗(Mct

5,2) are not Gorenstein.

Proof. Using admcycles, we calculate

dimR4
FZ(Mct

6 ) = 71, dimR5
FZ(Mct

6 ) = 72, dimR4
FZ(Mct

5,2) = 636, dimR5
FZ(Mct

5,2) = 637.

It thus suffices to show the 3-spin relations are complete for RH10(Mct
6 ) and RH10(Mct

5,2),
which we do using Lemma 10.

As in Section 2, we calculate upper bounds

dimRH10(M6) ≤ 988 and dimRH10(M5,2) ≤ 7147

by computing the rank of the matrices of 3-spin relations modulo a prime p. Next, we
compute lower bounds for the ranks of the pairings

RH10(M6)× RH20(M6) → Q

and

RH10(M5,2)× RH18(M5,2) → Q.

The ranks are 988 and 7147, respectively, and thus the 3-spin relations are complete for
RH10(M6) and RH10(M5,2). Moreover, by [8, Theorem 1.4], RH8(M5,2) = H8(M5,2) and
RH8(M4,4) = H8(M4,4). Applying Lemma 10, we see that the 3-spin relations are complete
for RH10(Mct

6 ) and RH10(Mct
5,2). □
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6.2. Genus 3. Here, we study the case (g, n) = (3, 6).

Proposition 29. The tautological ring RH∗(Mct
3,6) is not Gorenstein.

In principle, we could follow the same approach as in the proof of Proposition 28. Unfor-
tunately, because of the computational complexity of verifying that the 3-spin relations are
complete for RH10(M3,6) using the pairing method, we need a different approach to study
RH10(M3,6).

The cohomology groups Hk(Mg,n) are Sn representations. For a partition λ of n, we
denote by sλ the corresponding Sn representation. The S6 representation H∗(M3,6) was
calculated by Bergström and Faber [4] and recorded in [3]. Additionally, by [8, Theorem
1.4], H∗(M3,6) = RH∗(M3,6). From these results, we have the following proposition.

Proposition 30. As an S6 representation, RH10(M3,6) = H10(M3,6) is

(20) 44s2,14 + 1086s3,13 + 767s22,12 + 5851s4,12 + 6034s3,2,1

+ 1144s23 + 10327s5,1 + 10389s4,2 + 4266s3,3 + 5713s6.

Corollary 31. We have dimRH10(M3,6)
S2×S2×S2 = 80863.

Proof. To compute the S2 × S2 × S2 invariants, we need to find the number of copies of the
trivial representation in the restricted representation

ResS6S2×S2×S2RH
10(M3,6).

By Frobenius reciprocity, this number is the same as the inner product of RH10(M3,6) with
the induced representation

IndS6
S2×S2×S2(1⊠ 1⊠ 1) = s23 + 2s3,2,1 + s32 + s4,12 + 3s4,2 + 2s5,1 + s6.

Thus, by Proposition 30, we have

dimRH10(M3,6)
S2×S2×S2 = 1144 + 2(6034) + 4266 + 5851 + 3(10389) + 2(10327) + 5713

= 80863. □

Proof of Proposition 29. Because the intersection pairing

RH8(Mct
3,6)× RH10(Mct

3,6) → Q
is S6-equivariant, it suffices to show that

dimRH8(Mct
3,6)

S2×S2×S2 ̸= dimRH10(Mct
3,6)

S2×S2×S2 .

Using admcycles, we calculate4

dimR4
FZ(Mct

3,6)
S2×S2×S2 ≤ 13159 and R5

FZ(M3,6)
S2×S2×S2 ≤ 80863.

Hence, we have

80863 = dimRH10(M3,6)
S2×S2×S2 ≤ dimRFZ(M3,6)

S2×S2×S2 ≤ 80863,

where the first equality is Corollary 31. It follows that the above inequalities are all equalities
and that the 3-spin relations are complete for RH10(M3,6)

S2×S2×S2 . By [8, Theorem 1.4], we

4These calculations are done by reducing the matrix of relations modulo p, which is the reason we obtain
only an inequality.
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have H8(M2,8) = RH8(M2,8), so Lemma 10 shows that the 3-spin relations are complete for
RH10(Mct

3,6)
S2×S2×S2 .

Meanwhile, computing the rank of the matrix of relations (this time over Q to obtain the
exact rank), we have

dimR5
FZ(Mct

3,6)
S2×S2×S2 = 13160.

Thus, we conclude

dimRH8(Mct
3,6)

S2×S2×S2 ≤ dimR4
FZ(Mct

3,6)
S2×S2×S2 ≤ 13159

< 13160 = dimR5
FZ(Mct

3,6)
S2×S2×S2 = dimRH10(Mct

3,6)
S2×S2×S2 ,

and so RH∗(Mct
3,6) is not Gorenstein. □

Remark 32. The only reason for taking S2 × S2 × S2 invariants in the above proof is
computational. We are unable to compute dimR5

FZ(M3,6) using admcycles.

6.3. Genus 4. Here, we study the case (g, n) = (4, 4).

Proposition 33. The tautological ring RH∗(Mct
4,4) is not Gorenstein.

We follow the approach in Section 6.2, but we need a few new results about the cohomology
of M4,4. Because all cohomology of M4,4 is tautological [8, Theorem 1.4], we can write its
Poincaré polynomial as

(21)
26∑
i=0

(−1)i dimHi(M4,4)t
i =

13∑
j=0

dimRH2j(M4,4)t
2j.

By Poincaré duality, the polynomial (21) is determined by dimRH2j(M4,4) for 0 ≤ j ≤ 6.
The Euler characteristic χ(M4,4) determines one linear relation among the dimensions of
the cohomology groups. It was calculated by Bini and Harer [5, Table 2].

Lemma 34. We have χ(M4,4) = 327584.

To obtain two more linear relations, we use point counting results of Faber [13]. Because
the cohomology of M4,4 is pure Tate [8, Theorem 1.4], its point count over Fq is given by
substituting t = q in the expression (21):

#M4,4(Fq) =
26∑
i=0

(−1)i dimHi(M4,4)q
i =

13∑
j=0

dimRH2j(M4,4)q
2j.

Faber has computed the point counts when q = 2, 3 [13].

Theorem 35 (Faber). We have

#M4,4(F2) = 327154288 and #M4,4(F3) = 538336652.

Finally, using the pairing method in a computationally feasible range, we determine the
dimensions of three of the cohomology groups.

Lemma 36. We have

dimRH2(M4,4) = 41, dimRH4(M4,4) = 589, dimRH6(M4,4) = 4467,

and the 3-spin relations are complete in these cases.
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Proof. Using admcycles, we compute

dimR1
FZ(M4,4) = 41, dimR2

FZ(M4,4) = 589, dimR3
FZ(M4,4) = 4467,

giving upper bounds on dimRH2i(M4,4) for i = 1, 2, 3. To obtain lower bounds, we compute
the rank of the pairings

RH2i(M4,4)× RH26−2i(M4,4) → RH26(M4,4) ∼= Q
as in Section 2. In each case i = 1, 2, 3, the rank of the pairing agrees with the previously
calculated upper bounds, so the 3-spin relations are complete, and the dimensions of each
group are given by the upper bounds. □

Proof of Proposition 33. The Poincaré polynomial of M4,4

13∑
j=0

dimRH2j(M4,4)t
2j.

is determined by the coefficients of t2j for 0 ≤ j ≤ 6 and Poincaré duality. Lemma 36 gives
the first four coefficients. Lemma 34 and Theorem 35 determine the values of the Poincaré
polynomial at t = 1, 2, 3, giving three linear relations among the coefficients. Solving the
system, we see that dimRH10(M4,4) = 52761. Using admcycles, we have

dimR5
FZ(M4,4) ≤ 52761,

which shows the 3-spin relations are complete for RH10(M4,4). By Lemma 10, the 3-spin
relations are complete for RH10(Mct

4,4).
Using admcycles, we calculate

dimR4
FZ(Mct

4,4) ≤ 6222 and dimRH10(Mct
4,4) = dimR5

FZ(Mct
4,4) = 6224.

Therefore, we have

dimRH8(Mct
4,4) ≤ dimR4

FZ(Mct
4,4)

< dimR5
FZ(Mct

4,4)

= dimRH10(Mct
4,4),

so RH∗(Mct
4,4) is not Gorenstein. □

6.4. Proof of Theorem 7. As in Section 2, we compute an upper bound for the dimensions
of Ri(Mct

g,n) by calculating the rank of the matrix of 3-spin relations modulo a prime. We
calculate lower bounds by computing the rank of the intersection pairings

Ri(Mct
g,n)× R2g−3+n−i(Mct

g,n) → Q.

The upper and lower bounds agree and the pairing is perfect, except for when i = ⌊2g−3+n
2

⌋.
Hence, the 3-spin relations are complete when i ̸= ⌈2g−3+n

2
⌉. For (g, n) = (6, 0) and (5, 2),

we have also shown the 3-spin relations are complete for i = ⌈2g−3+n
2

⌉ = 5 in the proof of
Proposition 28.

When (g, n) = (7, 0), we compute that the pairing

R5(Mct
7 )× R6(Mct

7 ) → Q
has rank 277. This matches the upper bound for R5(Mct

7 ) by calculated the matrix of 3-spin
relations. Therefore, dimR5(Mct

7 ) = 277. From calculating the rank of matrix of 3-spin
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relations, we have dimR6(Mct
7 ) ≤ 278. By Lemma 27, the kernel of the pairing is at least

one dimensional, hence dimR6(Mct
7 ) = 278. □

Remark 37. The only obstruction to extending Theorem 7 to a few more cases such as
(g, n) = (4, 4) and (g, n) = (3, 6) is computational. We have not been able to carry out the
necessary calculations in high codimension for these cases.

7. Computational aspects

Many of the results above are based on extensive computer calculations using the software
package admcycles [11]. The standard functions in the package (for computing ranks of
tautological rings, intersection matrices, etc) are well-suited for computations with small
g, n. However, some of the results above required working on spaces Mg,n and Mct

g,n outside
this range, leading to a steep increase in combinatorial complexity.

In the following sections we give a summary of some of these challenges and the math-
ematical and algorithmic adjustments that allowed us to finish the calculations. To avoid
repetitions, fix some g, n and denote by M either Mg,n or Mct

g,n.

7.1. Matrices of 3-spin relations. A first step in many of the computations is calculating
the 3-spin relations FZr(M) ⊆ Sr(M). For this, admcycles first enumerates all decorated
strata [Γ, γ] forming the basis of Sr(M). The standard ordering of this basis lists the graphs
Γ in increasing number of edges, and each of them is then decorated in all possible ways
with κ and ψ-classes. For M = Mct

g,n all decorations γ =
∏

v∈V (Γ) γv with deg(γv) greater

than the socle degree of R∗(Mct
g(v),n(v)) are omitted.

The relations themselves are stored as the rows of a matrix MFZ whose columns cor-
respond to the above basis of Sr(M). The rows themselves are enumerated by tuples
T = (Γ0, v0, D, (γv)v ̸=v0) of

• a stable graph Γ0 of a stratum of M together with a choice of vertex v0 ∈ V (Γ0)
where a 3-spin relation will be inserted,

• combinatorial data5 D determining which relation is glued into v0,
• decorations γv at all other vertices v ∈ V (Γ) \ {v0}.

Again, the implementation in admcycles lists these tuples T in increasing order of number
of edges of Γ0. Since the relation associated to T is supported on decorated strata [Γ, γ]
such that Γ0 is a contraction of Γ, the corresponding matrix MFZ is in general a non-square
matrix with roughly upper-triangular shape. For instance, relations associated to T with
|E(Γ0)| ≥ e will not feature any decorated strata [Γ, γ] with E(Γ) < e. As a result, the
matrix MFZ is in general quite sparse. We list a few examples of dimensions, ranks and
densities of such matrices in Figure 2.

On a practical level, the matrix MFZ is calculated entry by entry: there is a function
FZ coeff which given the data of T and a decorated stratum [Γ, γ] computes the associated
entry of MFZ (in row T and column [Γ, γ]).

Compared to the default implementation in admcycles we made the following optimiza-
tions for the project above:

5We will not need the precise nature of D in the following discussion, but see [35] for details.
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M r mFZ dim Sr(M) rankMFZ ρ
Mct

4,3 3 1052 1400 832 0.0368000
Mct

4,3 5 67138 27359 26791 0.0048397
Mct

4,3 7 799508 154522 154502 0.0017108

Figure 2. Some examples of moduli spacesM and Chow degrees r, for which
we list the numbermFZ of rows and dim Sr(M) of columns of the 3-spin matrix
MFZ, as well as its rank and density ρ of non-zero entries

• The calculation of the rows of MFZ was parallelized: there is one parent process
enumerating the tuples T indexing the rows of the matrix, which are distributed to
a number of child processes which calculate the individual rows.

• The output of the function FZ coeff is calculated from different contributions (e.g.
from various vertices) and the functions calculating these contributions will by default
cache all of their previous results. While this speeds up the calculation, it also lead
to significant memory blow-up. After analyzing this memory usage, we switched to a
Least Recently Used (LRU) caching with a fixed number of cache entries. In practice
LRU caching still provides moderate speedup while significantly reducing the memory
profile of FZ coeff.

• Instead of storing the rows of the matrix in the working memory, they are saved to
the disk storage using the shelve library in Python. This allows us to restart partial
computations and to share the resulting 3-spin matrices.

7.2. Ranks and basis vectors. After obtaining the relation matrixMFZ, we want to either

• calculate its rank, to determine the conjectural dimension of the tautological ring as
dim Sr(M)− rankMFZ,

• calculate a conjectural basis of Rr(M) as a subset of the generators of Sr(M), using
the rows of MFZ to eliminate such generators until we obtain a linearly independent
set; in this case, we prefer to have a basis supported on graphs with few edges (since
e.g. this makes it easier to calculate the intersection numbers in the next section).

In practice, both of these goals can be achieved by computing a row-reduced echelon form
of MFZ, since the basis elements will correspond to columns of this echelon form not given
by pivots.

The default implementation of admcycles performs this echelonization over the rational
numbers (since the entries of MFZ are by default elements of Q). This has the advantage
that the resulting echelon form allows us to express arbitrary generators of S∗(M) in terms
of the conjectural basis of R∗(M), and this is used e.g. when comparing tautological classes.
The two draw-backs of working over Q are that

• divisions during the elimination process generally lead to a blow-up of denomina-
tors. While SageMath can calculate with rational numbers having numerator and
denominator of arbitrary size, this can require significant memory usage.

• many specialized libraries for (sparse) linear algebra are geared towards calculations
over finite fields.

In practice, choosing a random mid-sized prime (like p = 4001), we can convert the matrix
MFZ to a matrix Mp

FZ over Fp. This conversion only uses that none of the denominators of
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any entry are divisible by p. The expectation is that both the rank and the pivot columns
of the echelon form of the matrices MFZ and Mp

FZ coincide.
More formally, it is the case that reducing mod p can only lower the rank of the matrix,

which would make us miss a tautological relation. When calculating the pairing matrices in
the next step, this would produce an unexpected element in their kernel (representing the
missed relation). Thus, if the intersection matrix does have full rank, we can a posteriori
conclude that the reduction modulo p did not change the rank of MFZ.

Most calculations in the paper above were performed using the sparse echelonization al-
gorithms of the LinBox library [12].
Here there is a subtle phenomenon: the standard row-reduced echelon form chooses the

lexicographically smallest set of pivot columns in the row reductions. When applying it to
the matrix Mp

FZ this benefits from the roughly right-upper-triangular nature of the matrix,
since the elimination process does not fill too many of the zero entries of the matrix during
intermediate steps. However, we do encounter a problem when trying to compute a basis
of Rr(M) consisting of decorated graphs with few edges. For this we need to find the
lexicographically largest set of pivot columns, essentially running the echelonization on a
vertical flip of the original matrix Mp

FZ. Now the matrix is left-upper triangular, which leads
to significantly more fill-in in the intermediate stages of the algorithm. For this reason, we
sometimes manage to calculate the conjectural rank of Rr(M) but fail to obtain a candidate
basis.

7.3. Intersection pairings. Assume that in the previous step we managed to calculate that
Sr(M)/FZr(M) has dimension dr. Then one way to show that the set FZr(M) of 3-spin
relations is complete is to show that the intersection pairing

Sr(M)× Src(M) → Q

has rank dr, where rc = socdeg(M)− r is the complementary degree to r. In principle this
is a finite calculation, but again there are several possible speedups:

• If via the previous step we were able to obtain conjectural bases for Rr(M) and
Rrc(M) then we can just calculate the pairing matrix (which is expected to be densely
filled with entries in Q) and compute its rank. This calculation can also be done
modulo p, since a lower bound on the rank is enough.

• If we have a conjectural basis B for Rr(M) but not for Rrc(M), we can instead
follow a heuristic algorithm: we iteratively choose generators of Src(M), compute
the vectors of intersection numbers with elements of B and add them as rows to a
matrix I. By performing row-reductions on I from time to time, we can monitor
its rank, and the calculation finishes when this rank becomes maximal (equal to the
cardinality dr of B). In practice, one can start with picking random generators of
Src(M) with at most e0 ≥ 0 edges, and increase the bound e0 if the rank of I starts
stabilizing.

• If only the rank of Rr(M) is known, one can apply the above heuristic by similarly
choosing increasing sets of generators of Sr(M) and Src(M) and tracking the rank
of the resulting square matrix. The disadvantage is that previous echelonizations of
intersection matrices I cannot obviously be used in the next step since both rows and
columns are added to I.
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Again, since calculations of intersection numbers are logically independent, some speed-up
via parallelization is possible when calculating the entries of the matrix I.
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