About me
Associate Professor of Mathematics at ETH Zurich; CV
Research area: Elliptic Partial Differential Equations and related topics
Selected papers (Full publication list)
All papers can be found in arXiv
-
M. Caselli, E. Florit, J. Serra,
Yau's conjecture for nonlocal minimal surfaces,
preprint arXiv:2306.07100. -
H. Chan, S. Dipierro, E. Valdinoci, J. Serra,
Nonlocal approximation of minimal surfaces: optimal estimates from stability,
preprint arXiv:2308.06328. -
F. Franceschini, J. Serra,
Free boundary partial regularity in the thin obstacle problem,
Comm. Pure. Appl. Math., accepted. -
A. Figalli, X. Ros-Oton, J. Serra,
The singular set in the Stefan problem,
J. Amer. Math. Soc., accepted
See also M. Rovrig's story in Quanta Magazine: Mathematicians Prove Melting Ice Stays Smooth, -
A. Figalli, X. Ros-Oton, J. Serra,
Generic regularity of free boundaries for the obstacle problem,
Publ. Math. IHÉS 159 (2020), 181-292. -
X. Cabré, A. Figalli, X. Ros-Oton, J. Serra,
Stable solutions to semilinear elliptic equations are smooth up to dimension 9,
Acta Math., 224 (2020), 187-252. -
A. Figalli, J. Serra,
On the fine structure of the free boundary for the classical obstacle problem,
Invent. Math. 215 (2019), 311–366. -
A. Figalli, J. Serra,
On stable solutions for boundary reactions: a De Giorgi type result in dimension 4+1,
Invent. Math. 219 (2020), 153–177. -
S. di Pierro, J. Serra, E. Valdinoci,
Improvement of flatness for nonlocal phase transitions,
Amer. J. Math 142 (2020), 1083-1160. -
E. Cinti, J. Serra, E. Valdinoci,
Quantitative flatness results and BV-estimates for nonlocal minimal surfaces,
J. Differential Geom. 112 (2019), 447-504. -
L. Caffarelli, X. Ros-Oton, J. Serra,
Obstacle problems for integro-differential operators: regularity of solutions and free boundaries,
Invent. Math. 208 (2017), 1155-1211. -
X. Ros-Oton, J. Serra,
Boundary regularity for fully nonlinear integro-differential equations,
Duke Math. J. 165 (2016), 2079-2154.