Varianzanalyse

Idee

Begriffe

Faktor: diskrete, erklärende Variable Levels: Werte, die der Faktor annimmt

Ein-Weg-Varianzanalyse: Einfluss eines Faktors wird untersucht

Zwei-Weg-Varianzanalyse: Einfluss von zwei Faktoren wird untersucht

Treatment: Faktorkombination

Plot, experimentelle Einheit: kleinste Einheit, die einem Treatment zugeteilt werden

kann.

Ein-Weg-Varianzanalyse

Modell:

$$y_{ij} = \mu + A_i + \epsilon_{ij}$$
, wobei $\sum A_i = 0$

 y_{ij} ist die Messung für Plot j mit Treatment i, $j=1,\ldots,J; i=1,\ldots,I,$ μ ist das Gesamtmittel,

 A_i ist der Effekt des i-ten Levels von Faktor A, bzw. die Abweichung der Gruppe i vom Gesamtmittel und

 ϵ_{ij} ist ein zufälliger "Fehler" oder Rest, über den folgendes vorausgesetzt wird:

- 1) $E(\epsilon_{ij}) = 0$ für alle i und j
- 2) die ϵ_{ij} sind unabhängig und haben alle die gleiche Varianz σ^2
- 3) die ϵ_{ij} sind normalverteilt

Varianzanalyse-Grundgleichung

$$\underbrace{\sum_{i} \sum_{j} (y_{ij} - y_{..})^{2}}_{\text{Gesamtvariabilität}} = \underbrace{\sum_{i} \sum_{j} (y_{i.} - y_{..})^{2}}_{\text{Variabilität zwischen}} + \underbrace{\sum_{i} \sum_{j} (y_{ij} - y_{i.})^{2}}_{\text{Variabilität innerhalb}}$$

$$\underbrace{\text{Variabilität zwischen}}_{\text{den Gruppen}} + \underbrace{\text{Variabilität innerhalb}}_{\text{der Gruppen}}$$

total sum of squares
$$=$$
 treatment sum of squares $+$ residual sum of squares $SS_{tot} = SS_{treat} + SS_{res}$

N-1 $=$ I-1 $+$ N-I $df_{tot} = df_{treat} + df_{res}$

Total mean square: $MS_{tot} = SS_{tot}/(N-1)$

Residual mean square: $MS_{res} = SS_{res}/I(J-1) = \hat{\sigma}^2$, $E(MS_{res}) = \sigma^2$

Treatment mean square: $MS_{treat} = SS_{treat}/(I-1)$, $E(MS_{treat}) = \sigma^2 + \sum JA_i^2/(I-1)$

Anova-Tabelle

Source	SS	$\mathrm{d}\mathrm{f}$	MS	F	P-Value
Treatment	$\sum_{i} \sum_{j} (y_{i.} - y_{})^2$	I–1	MS_{treat}	$MS_{treat}/MSres$	$P_{H_0}(F > F^*)$
Residuals	$\sum_{i} \sum_{j}^{3} (y_{ij} - y_{i})^2$	N-I	MS_{res}		
Total	$\sum_{i}\sum_{j}(y_{ij}-y_{})^{2}$	N-1			

Tests und Parameterschätzungen

F-Test

 H_0 : alle $A_i = 0$, H_A : mindestens ein $A_i \neq 0$

Wenn die ϵ_{ij} normalverteilt sind, dann ist $F=MS_{treat}/MS_{res}$ unter H_0 F-verteilt mit I-1und N-I Freiheitsgraden. Verwerfe H_0 , falls $F > F_{95\%,I-1,N-I}$.

Effekt Modell: $y_{ij} = \mu + A_i + \epsilon_{ij}, \qquad \sum A_i = 0$

Schätzungen: $\hat{\mu} = y_{..}$ $\hat{\mu} + \hat{A}_i = y_{i.}$ $\hat{A}_i = y_{i.} - y_{..}$ Voraussage: $\hat{y}_{ij} = \hat{\mu} + \hat{A}_i = yi$. Residuum: $\hat{\epsilon}_{ij} = y_{ij} - y_{i.}$

Mean Modell: $y_{ij} = \mu_i + \epsilon_{ij} \qquad \hat{\mu}_i = y_i.$

Effekt Modell mit anderer Nebenbedingung: $y_{ij} = \mu + A_i + \epsilon_{ij}, A_1 = 0$

 $\hat{\mu} = y_{1.} , \quad \hat{A}_i = y_{i.} - y_{1.}$

Treatmentvergleiche

Treatmentunterschied $A_i - A_{i'}$ wird geschätzt durch $y_i - y_{i'}$, mit Standardfehler $\sqrt{\sigma^2(1/J + 1/J)} =$ $\sqrt{2\sigma^2/J}$, geschätzt durch $\sqrt{2MS_{res}/J}$.

Multiple Vergleiche

Ein Kontrast C ist eine Linearkombination von Effekten: $C = \sum_{i=1}^{I} \lambda_i A_i$ mit $\sum \lambda_i = 0$ und wird durch $\hat{C} = \sum \lambda_i y_i$ geschätzt.

Zwei Kontraste $C_1 = \sum \lambda_i A_i$ und $C_2 = \sum \lambda_i' A_i$ heissen orthogonal, wenn $\sum \lambda_i \lambda_i' = 0$. Die entsprechenden Schätzungen sind dann unkorreliert. Es gibt I-1 orthogonale Kontraste.

n geplante, orthog. Kontraste Bonferroni (-Holm) Signifikanzniveau α/n $(n \leq I - 1)$

Tukey: krit. Werte für die Verteilung von $\max |y_{i} - y_{i'}|$ alle Paarvergleiche

Scheffé: krit. Wert $\sqrt{(I-1)F_{I-1,N-I,95\%}}$ komplexe nichtorthogonale oder komplexe ungeplante Vergleiche

Vollständiges Blockdesign

Jedes Treatment kommt in jedem Block gleich oft vor.

Modell: $y_{ij} = \mu + A_i + b_j + \epsilon_{ij}$, b_j : Effekt des Blocks j.

Fixed-Effects Model / Modell I Mixed Model / Modell III

alle b_j und ϵ_{ij} unabhängig

Random-Effects Model / Modell II alle Faktoren haben zufällige Effekte

Anova-Tabelle:

Source	SS	df	MS	F
Blocks		J-1		
Treatments		I-1		
Residual		(I-1)(J-1)		
Total		N-1		

Multi-Faktor-Experimente

2-Weg-Varianzanalyse

Modell:

$$y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + \epsilon_{ijk}, \quad i = 1, \dots, I; j = 1, \dots, J; k = 1, \dots, K.$$

mit den Nebenbedingungen: $\sum A_i = 0$, $\sum B_j = 0$, $\sum_i (AB)_{ij} = 0$, $\sum_i (AB)_{ij} = 0$.

 y_{ijk} ist die k-te Beobachtung mit Faktor A auf Level i und Faktor B auf Level j, μ ist das Gesamtmittel, A_i ist der Haupteffekt des i-ten Levels des Faktors A, B_j ist der Haupteffekt des j-ten Levels des Faktors B, $(AB)_{ij}$ ist die Interaktion des i-ten Levels von A mit dem j-ten Level von B und ϵ_{ijk} ist der zufällige Rest mit $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

 $SS_{tot} = SS_A + SS_B + SS_{AB} + SS_{res}$ Zerlegung der Gesamtvariabilität:

$$SS_{tot} = \sum \sum \sum (y_{ijk} - y_{...})^2$$
 $SS_A = \sum \sum \sum \sum (y_{i...} - y_{...})^2$ $SS_B = \sum \sum \sum (y_{.j.} - y_{...})^2$ $SS_{AB} = \sum \sum \sum (y_{ij.} - y_{i...} - y_{.j.} + y_{...})^2$ $SS_{res} = \text{ \sim Differenz \sim}$

Ein Faktor mit I Levels hat I-1, eine Interaktion zwischen zwei Faktoren mit I und J Levels hat (I-1)(J-1) Freiheitsgrade.

Anova-Tabelle

Source	SS	df	MS	F	P-Wert
A		I-1		MS_A/MS_{res}	_
В		J-1		MS_B/MS_{res}	
AB		(I-1)(J-1)		MS_{AB}/MS_{res}	3
Residual		${\rm \ll} Differenz {\gg}$			
Total		IJK-1			

Modell mit zufälligen Effekten (Modell II)

$$y_{ijk} = \mu + a_i + b_j + \epsilon_{ijk}, \quad i = 1, \dots, I; j = 1, \dots, J; k = 1, \dots, K.$$

 μ ist das Gesamtmittel,

 a_i ist der zufällige Effekt von Faktor a, $a_i \sim \mathcal{N}(0, \sigma_a^2)$,

 b_j ist der zufällige Effekt von Faktor b, $b_j \sim \mathcal{N}(0, \sigma_b^2)$,

 ϵ_{ijk} ist der zufällige Rest, $\epsilon_i \sim \mathcal{N}(0, \sigma_e^2)$, die a_i, b_j und ϵ_{ijk} sind alle unabhängig.

Schätzungen:

$$\hat{\sigma}^2 = MS_{res}$$

$$\hat{\sigma}_e^2 = MS_{res}$$

$$\hat{\sigma}_a^2 = (MS_a - MS_{res})/JK$$

$$\hat{\sigma}_b^2 = (MS_b - MS_{res})/IK$$

$$\hat{\sigma}_b^2 = (MS_b - MS_{res})/IK$$