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protein inference
in a picture

(Nesvizhskii et al. 2003)
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protein inference
schema
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protein inference

Input:

• peptide identifications and scores from PeptideProphet
(Keller et al. 2002)

• list of possible proteins in the sample:
• proteins with at least one matching peptide
• “minimal set” of proteins explaining all the peptides

Goal:

• score for each protein

• decide which proteins are in the sample

Applications:

• proteome annotation

• identification of proteins associated with a disease
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bipartite graph
components
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• 2 types of nodes:
peptide and protein
sequences

• edges between peptides
and proteins

• edge:
peptide sequence matches
the protein sequence
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bipartite graph
construction
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peptides
assumptions and modeling

Assumptions:

• peptide scores are realisations of random variables

Implications:

• peptide scores are modeled by probability distributions

• uncertainty of peptide scores propagates to the protein
scores
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to be computed

P[Zj = 1|{pi ; i ∈ I}]

where

Zj indicates if protein j is present (1 stands for
present, 0 for absent)

pi is the score of peptide i

I is the set of all experimentally identified peptides
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assumptions and modeling

Look at the problem the other way around by using
Bayes’ theorem:

• P[A|B] = P[B|A]P[A]
P[B] = probability of protein presence

given the peptide scores

• P[A] = protein prior

• P[B] = peptide probabilities

• P[B|A] = peptide probabilities given the presence or
absence of proteins
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connected components
assumptions and modeling

Assumptions:

• different connected components are independent

• peptides in the same connected component are
independent given their neighboring proteins

Implications:

• only have to look at one connected component at a time
(not at the whole graph)

• the probability of a certain peptide score depends only on
the peptide’s neighboring proteins
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mixture model
assumptions and modeling

p
(
pi |{zj ; j ∈ Ne(i)}

)
∼


f0(pi ) if

∑
j∈Ne(i)

zj = 0

f1(pi ) if
∑

j∈Ne(i)

zj > 0
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a special mixture model with 2 parameters
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proteins
assumptions and modeling

Assumptions:

• prior presence of protein is independent of other proteins

• presence of protein is independent of the experimental
conditions

In addition, we use:

• same prior probability for all proteins
→ potential loss of biological knowledge
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computations
parameter estimation

• estimate the parameters of the peptide probability
distribution: MLE

• protein “priors” are estimated: MLE

• handle large connected components: random sampling
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testing the model

Tests on different datasets:

• two control datasets
• mixture of 18 purified proteins (Keller et al. 2002)
• Sigma49 (Tabb et al. 2007)

• real data
• Drosophila melanogaster (Brunner et al. 2007)

Evaluation: comparison with ProteinProphet
(Nesvizhskii et al. 2003)



Introduction

Model

Results

Extension

Summary

Sarah Gerster
Workshop

Ascona 2009

mixture of 18 purified proteins
control dataset

true positives versus false positives
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mixture of 18 purified proteins
control dataset

true positives versus false positives, no single hits
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sigma49
control dataset

true positives versus false positives
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sigma49
control dataset

true positives versus false positives, no single hits
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D. melanogaster
real data

Including single hits:

n 25 50 76 100 168 205 219

intersection 25 50 76 100 113 138 152

Not including single hits:

n 25 50 76 100 150 200 219

intersection 25 50 76 100 123 169 179
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D. melanogaster
real data

ordered protein scores
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application to gene models

A new level is added to the graph: “tripartite” graph

1 0.99

0.76 0.76

0.99

• shared peptides

• proteins may not be
clearly identifiable

• several proteins from
the same gene model

• try to make a statement
about the gene model
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modeling for gene models

P[gene model occurs] = 1− P[none of its proteins occur]

0.98 11 1

0.61 0.61 0.61

0.84

The three proteins here are CG12013-PA, CG12013-PC and
CG12013-PD.
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summary

We present a new model with

• peptide probabilities modeled as random quantities

• transparent uncertainty propagation from the peptide level
to the protein level

• an extension to compute probabilities of a gene model
being present or not in the sample

Our results look promising when compared to ProteinProphet.
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