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1 Motivation: Penicillin Data

Data from an experiment to assess the variability between samples of

penicillin by the B. subtilis method.
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Model: yij = µ + plate i + sample j + eij i = 1, ... , 24, j = 1, ... , 6.

(Data and plots taken from Bates, 2011.)
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Matrix formulation: Y = Xβ + ZB + E .

Matrix Z ᵀ:
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Cov(B) = Σb,θ: Cov(Y ) = ZΣb,θZ ᵀ + σ2
eI :
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2 The Linear Mixed Effects Model

Y = Xβ + ZB + E ,

B ∼ N
(
0, Σb,θ

)
, E ∼ N

(
0,σ2

eIn

)
, B ⊥ E ,

r (β, b) = y − Xβ − Zb.

Σb,θ is a parametrized q × q matrix with parameter vector θ.

The log of the density is

−2d(β, b, θ,σe|y ) = (n + q) log 2π + n logσe + log|Σb,θ|

+
1
σ2

e
r
(
β, b

)ᵀr
(
β, b

)
+ bᵀΣ−1

b,θb.

Usually, to get the likelihood:

Integrate the density over the random effects b first.
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3 Estimation in the classical case

Given θ̃, we can uniquely estimate β̃, b̃ and σ̃e.

The objective function that has to be minimized depends only on θ.

Solve using a general purpose optimizer allowing boundaries.
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4 Robustification

Again: the log of the density is

−2d(β, b, θ,σe|y ) = (n + q) log 2π + n logσe + log|Σb,θ|

+
1
σ2

e
r
(
β, b

)ᵀr
(
β, b

)
+ bᵀΣ−1

b,θb.

4.1 β and b

Replace the second line by

1
λe

1ᵀρe
(
r
(
β, b

)
/σe
)

+
1
λb

1ᵀρb

(
Σ
−1/2
b,θ b

)
.
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4.2 σe and θ

Estimate directly from r and b̃ and correct to get unbiased estimates.

To estimate σe we use Huber’s Proposal II,

σ̂2
e =

∑
i w2

e,i r
2
i∑

i E
[
w2

e,i r
2
i

] ,

where we,i are the robustness weights we,i = ρ′e(ri/σ̂e)/(ri/σ̂e).
Calculation of E

[
w2

e,i r
2
i

]
: Approximate ri linearly in terms of e and b.

r = y − X β̃ − Z b̃

= Xβ + Zb + e − X β̃ − Z b̃

= e + X (β − β̃) + Z (b − b̃)

Use a von Mises expansion for β̃, b̃. (DAS-scale uses a similar approach.)
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For diagonal Σb,θ, e.g., simple uncorrelated random effects, a similar ap-

proach can be used to estimate θ.

For correlated random effects, componentwise weights might break the

correlation structure. We use blockwise weights based on the Mahalanobis

distance instead.

The estimation of θ is then considerably more complicated and the details

have not been fully worked out yet.
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5 Tools

Helpful tools for developing a robust method:

• Study of a simple example.

• Estimates should be unbiased for all sensible tuning constants and

converge to the classical solution for tuning constants approaching

∞.

• Sensitivity curves for various types of outliers (e.g., for a one-way

anova: single observations, group, and spread of a group).
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Open Problems

• Implementation of non-diagonal case.

• Treatment of special correlation structures?

• Theoretical robustness properties.
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