Inference In Robust Regression: the impact of scale estimation

Manuel Koller and Werner A. Stahel, ETH Zürich

June 2009, ICORS

1. Introduction

Notation and Assumptions

$$y_i = \mathbf{x}'_i \boldsymbol{\beta} + e_i \quad \text{for } i = 1, \dots, n \qquad \mathbf{x}'_i = (1, x_{i1}, \dots, x_{ip-1})$$
$$r_i(\hat{\boldsymbol{\beta}}) = y_i - \mathbf{x}'_i \hat{\boldsymbol{\beta}} \qquad \boldsymbol{\beta}' = (\beta_0, \dots, \beta_{p-1})$$
$$\frac{e_i}{\sigma} \sim F \text{ i.i.d. scale family, symmetric}$$

MM-estimation

high breakdown S-estimate (→ β̂_S, ô_S)
 high efficiency M-estimate (→ β̂)

(Sometimes simultaneous M-regression and M-scale estimate between 1 and 2.)

Importance of $\hat{\sigma}$

 Tests of parameters: Usually Wald-type tests based on estimated covariance matrix (from asymptotic theory): Compare β̂_i/sê_i(β̂) to t_{n-p}.

$$\widehat{\operatorname{cov}}(\widehat{\boldsymbol{\beta}}) = \widehat{\sigma}^2 \cdot \frac{\frac{n}{n-p} \operatorname{ave}_i \psi(\frac{r_i}{\widehat{\sigma}})^2}{\left[\operatorname{ave}_i \psi'(\frac{r_i}{\widehat{\sigma}})\right]^2} \cdot K^2 \cdot \left(\frac{\mathbf{X}' \mathbf{W} \mathbf{X}}{\operatorname{ave}_i w_i}\right)^{-1} \quad (1)$$

(likelihood ratio tests may be better)

• Prediction intervals: well estimated $\hat{\sigma}$ crucial

Outline

- Introduction (done)
- ② Design adapted scale estimate
- Simulation study
- **4** Covariance matrix of $\hat{\beta}$
- Occursion Conclusions and Outlook

2. Design adapted scale estimate M-scale estimate

ave
$$\chi\left(\frac{r_i}{\hat{\sigma}_S}\right) = \kappa := \int \chi(e) dF(e)$$
 (2)

OLS: $\operatorname{var}(r_i) = (1 - h_i)\sigma^2 \iff \mathbf{E}\left[\sum_{i=1}^n r_i^2\right] = (n - p)\sigma^2$ $\operatorname{ave}_i \chi\left(\frac{r_i}{\tau_i \hat{\sigma}_D}\right) = \kappa \tag{3}$

In case of OLS: $\tau_i = \sqrt{1 - h_i}$

Calculation of τ_i

Use von Mises first order expansion:

$$r_{i} = y_{i} - \mathbf{x}_{i}^{\prime} \hat{\boldsymbol{\beta}}_{n} = y_{i} - \mathbf{x}_{i}^{\prime} \left(\boldsymbol{\beta} + \frac{1}{n} \sum_{h=1}^{n} \mathbf{IF}(e_{h}, \mathbf{x}_{h}, \sigma) + \text{remainder} \right)$$
$$\approx g(e_{i}, \mathbf{x}_{i}, \sigma) + u_{-i}(\mathbf{e}, \mathbf{X}, \sigma)$$

 u_{-i} : sum of n-1 terms, therefore approximately normal with variance s_i^2 . We get an implicit formula for τ_i :

$$\int \chi\left(\frac{g(e_i, x_i, \sigma) + u}{\tau_i \sigma}\right) dF\left(\frac{e_i}{\sigma}\right) d\mathcal{N}_{0, s_i^2}(u) = \kappa$$
(4)

$\chi\text{-}\mathbf{Function}$

Natural choice: estimation of $\hat{\sigma}$ analogue to weighted least squares.

Use robustness weights from M-regression estimator:

$$\chi(r) = wr^{2} = \frac{\psi(r)}{r}r^{2} = \psi(r)r$$
(5)
$$\left(\text{use ave}_{i} \chi\left(\frac{r_{i}}{t_{i}\hat{\sigma}_{D}}\right) = \kappa \text{ ave } w_{i}\right)$$

Influence on scale $\rightarrow 0$ for $r \rightarrow \infty$.

MMDW-estimation

Four step procedure:

- **()** high breakdown S-estimate $(\rightarrow \hat{\boldsymbol{\beta}}_{S}, \hat{\sigma}_{S})$
- In high efficiency M-estimate
- **③** Design adapted scale estimate $(\rightarrow \hat{\sigma}_D)$
- $\textcircled{ \ } \bullet \ \mathsf{high efficiency M-estimate} \ (\to \hat{\boldsymbol{\beta}})$

3. Simulation study

Design 1 (*n* = 20**)**

Design 2 (n = 20)

Simulation parameters

- Simulate 2000 repetitions, $\beta = \mathbf{0}$, n = 20.
- Error distributions: $\mathcal{N}(0,1)$, t_3 and Cauchy
- bisquare ψ functions tuned for 95% efficiency at the normal (c = 4.685).
- Estimators:

lm.mmdw as described above
 rlm from package MASS
lm.rbase function lmrob from package robustbase
lm.robust function lmRob from package robust

$\hat{\sigma}$ statistics: median and mad (error: $\mathcal{N}(0,1)$)

4. Covariance matrix estimate

$\widehat{\rm cov}(\hat{\boldsymbol\beta}) =$	$\hat{\sigma}^2$	$\frac{\frac{n}{n-p}\operatorname{ave}_{i}\psi(\frac{r_{i}}{\hat{\sigma}})^{2}}{\left[\operatorname{ave}_{i}\psi'(\frac{r_{i}}{\hat{\sigma}})\right]^{2}}$	K ²	ave; $w_i(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$
lm.mmdw	σ_D^2	х	х	х
rlm	х	х	х	no weights
lm.rbase	х	asymmetry	/ and	heteroskedasticity
lm.robust	х	х	х	х
lm.mmdw.tau	σ_D^2	uses τ_i		х

Level statistics: $\# \left[\left| \frac{\hat{\beta}_i}{\hat{s}e_i} \right| > qt(0.975, df) \right] / 2000$ (log scale)

5. Conclusions and Outlook

- $\hat{\sigma}$ is important
- Likelihood ratio tests may be better.
- Estimation of covariance matrix not so clear, some implementations are more robust than others.

References

- M. Koller (2008) Robust Statistics: Tests for Robust Linear Regression. Master's Thesis, http://stat.ethz.ch/research/dipl_arb/2008/koller.pdf.
- P. J. Huber (1973). Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Statist. 1, 799-821.
- Maronna et al (2006). Robust Statistics, Theory and Methods. Wiley Series in Probability and Statistics, Wiley, New York.