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1. Introduction

Notation and Assumptions

yi = x′iβ + ei for i = 1, . . . , n x′i = (1, xi1, . . . , xip−1)

ri (β̂) = yi − x′i β̂ β′ = (β0, . . . , βp−1)
ei

σ
∼ F i.i.d. scale family, symmetric

MM-estimation

1 high breakdown S-estimate (→ β̂S , σ̂S)

2 high efficiency M-estimate (→ β̂)

(Sometimes simultaneous M-regression and M-scale estimate
between 1 and 2.)
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Importance of σ̂

Tests of parameters: Usually Wald-type tests based on
estimated covariance matrix (from asymptotic theory):
Compare β̂i/ŝei (β̂) to tn−p.

ĉov(β̂) = σ̂2 ·
n

n−p avei ψ( ri
σ̂ )2[

avei ψ′(
ri
σ̂ )
]2 · K 2 ·

(
X′WX

avei wi

)−1

(1)

(likelihood ratio tests may be better)

Prediction intervals: well estimated σ̂ crucial
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2. Design adapted scale estimate

M-scale estimate

ave
i
χ

(
ri
σ̂S

)
= κ :=

∫
χ(e)dF (e) (2)

OLS: var(ri ) = (1− hi )σ
2
(

=⇒ E
[∑n

i=1 r2
i

]
= (n − p)σ2

)
ave

i
χ

(
ri

τi σ̂D

)
= κ (3)

In case of OLS: τi =
√

1− hi

Manuel Koller and Werner A. Stahel, ETH Zürich Inference in robust regression
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Calculation of τi

Use von Mises first order expansion:

ri = yi − x′i β̂n = yi − x′i

(
β +

1

n

n∑
h=1

IF(eh, xh, σ) + remainder

)
≈ g(ei , xi , σ) + u−i (e,X, σ)

u−i : sum of n − 1 terms, therefore approximately normal with
variance s2

i . We get an implicit formula for τi :∫
χ

(
g(ei , xi , σ) + u

τiσ

)
dF
(ei

σ

)
d N 0,s2

i
(u) = κ (4)
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χ-Function

Natural choice: estimation of σ̂ analogue to weighted least squares.

Use robustness weights from M-regression estimator:

χ(r) = wr2 =
ψ(r)

r
r2 = ψ(r)r (5)

(
use avei χ

(
ri

ti σ̂D

)
= κ ave wi

)
Influence on scale → 0 for r →∞.
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MMDW-estimation

Four step procedure:

1 high breakdown S-estimate (→ β̂S , σ̂S)

2 high efficiency M-estimate

3 Design adapted scale estimate (→ σ̂D)

4 high efficiency M-estimate (→ β̂)
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3. Simulation study

Design 1 (n = 20)

X1
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Design 2 (n = 20)
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−8 −6 −4 −2 0 2 4 6 8 10

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

−
2.

0
−

0.
5

1.
0

2.
5

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

−
8

−
4

0
4

8

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

X2 ●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

−2.0 −1.0 0.0 0.5 1.0 1.5 2.0 2.5

●

●

●

●

●

●

●

●
● ● ● ●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ● ● ●●

●
●

●

●
●

●

●

0 1 2 3 4 5 6 7 8 9 10

0
2

4
6

8
10

exp(X3)

Manuel Koller and Werner A. Stahel, ETH Zürich Inference in robust regression
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Simulation parameters

Simulate 2000 repetitions, β = 0, n = 20.

Error distributions: N (0, 1), t3 and Cauchy

bisquare ψ functions tuned for 95% efficiency at the normal
(c = 4.685).

Estimators:

lm.mmdw as described above
rlm from package MASS

lm.rbase function lmrob from package robustbase
lm.robust function lmRob from package robust
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σ̂ statistics: median and mad (error: N (0, 1))
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4. Covariance matrix estimate

ĉov(β̂) = σ̂2
n

n−p
avei ψ(

ri
σ̂

)2

[avei ψ′(
ri
σ̂

)]
2 K 2 avei wi (X

′WX)−1

lm.mmdw σ2
D x x x

rlm x x x no weights
lm.rbase x asymmetry and heteroskedasticity

lm.robust x x x x
lm.mmdw.tau σ2

D uses τi x
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Level statistics: #
[∣∣∣ β̂i

ŝei

∣∣∣ > qt(0.975,df)
]/

2000 (log scale)
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5. Conclusions and Outlook

σ̂ is important

New design adapted scale estimate σ̂D :
simulation results promising

Likelihood ratio tests may be better.

Estimation of covariance matrix not so clear,
some implementations are more robust than others.
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