Inference In Robust Regression: the impact of scale estimation

Manuel Koller and Werner A. Stahel, ETH Zürich

June 2009, ICORS

1. Introduction

Notation and Assumptions

$$
y_i = \mathbf{x}'_i \boldsymbol{\beta} + e_i \quad \text{for } i = 1, ..., n \qquad \mathbf{x}'_i = (1, x_{i1}, ..., x_{ip-1})
$$
\n
$$
r_i(\boldsymbol{\hat{\beta}}) = y_i - \mathbf{x}'_i \boldsymbol{\hat{\beta}} \qquad \qquad \boldsymbol{\beta}' = (\beta_0, ..., \beta_{p-1})
$$
\n
$$
\frac{e_i}{\sigma} \sim F \text{ i.i.d. scale family, symmetric}
$$

MM-estimation

 \textbf{D} high breakdown S-estimate $(\rightarrow \hat{\boldsymbol{\beta}}_{\boldsymbol{S}}, \hat{\sigma}_{\boldsymbol{S}})$ **2** high efficiency M-estimate $(\rightarrow \hat{\beta})$

(Sometimes simultaneous M-regression and M-scale estimate between 1 and 2.)

Importance of $\hat{\sigma}$

Tests of parameters: Usually Wald-type tests based on estimated covariance matrix (from asymptotic theory): Compare $\hat{\beta}_i/\widehat{\text{se}}_i(\hat{\beta})$ to t_{n-p} .

$$
\widehat{\text{cov}}(\widehat{\boldsymbol{\beta}}) = \widehat{\sigma}^2 \cdot \frac{\frac{n}{n-p} \text{ ave}_i \,\psi(\frac{r_i}{\widehat{\sigma}})^2}{\left[\text{ave}_i \,\psi'(\frac{r_i}{\widehat{\sigma}})\right]^2} \cdot K^2 \cdot \left(\frac{\mathbf{X}' \mathbf{W} \mathbf{X}}{\text{ave}_i \,w_i}\right)^{-1} \tag{1}
$$

(likelihood ratio tests may be better)

• Prediction intervals: well estimated $\hat{\sigma}$ crucial

[Introduction](#page-1-0) [Design adapted scale estimate](#page-4-0) [Simulation study](#page-8-0)

[Covariance matrix estimate](#page-12-0) [Conclusions and Outlook](#page-14-0)

Outline

- **O** Introduction (done)
- ² Design adapted scale estimate
- ³ Simulation study
- **•** Covariance matrix of $\hat{\beta}$
- **⁵** Conclusions and Outlook

2. Design adapted scale estimate

M-scale estimate

$$
\operatorname{ave}_{i} \chi\left(\frac{r_{i}}{\hat{\sigma}_{S}}\right) = \kappa := \int \chi(e) dF(e) \tag{2}
$$

OLS:
$$
\text{var}(r_i) = (1 - h_i)\sigma^2 \ (\implies \mathbf{E} \left[\sum_{i=1}^n r_i^2 \right] = (n - p)\sigma^2)
$$

$$
\text{ave } \chi \left(\frac{r_i}{\tau_i \hat{\sigma}_D} \right) = \kappa \tag{3}
$$

In case of OLS: $\tau_i =$ √ $1-h_i$

Calculation of τ_i

Use von Mises first order expansion:

$$
r_i = y_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}_n = y_i - \mathbf{x}_i' \left(\boldsymbol{\beta} + \frac{1}{n} \sum_{h=1}^n \mathbf{IF}(e_h, \mathbf{x}_h, \sigma) + \text{remainder} \right)
$$

$$
\approx g(e_i, \mathbf{x}_i, \sigma) + u_{-i}(\mathbf{e}, \mathbf{X}, \sigma)
$$

 u_{-i} : sum of $n-1$ terms, therefore approximately normal with variance s_i^2 . We get an implicit formula for τ_i :

$$
\int \chi \left(\frac{g(e_i, x_i, \sigma) + u}{\tau_i \sigma} \right) dF \left(\frac{e_i}{\sigma} \right) d\mathcal{N}_{0, s_i^2}(u) = \kappa \tag{4}
$$

χ -Function

Natural choice: estimation of $\hat{\sigma}$ analogue to weighted least squares.

Use robustness weights from M-regression estimator:

$$
\chi(r) = wr^2 = \frac{\psi(r)}{r}r^2 = \psi(r)r
$$
\n(5)

$$
\left(\text{use ave}_i \chi\left(\frac{r_i}{t_i \hat{\sigma}_D}\right) = \kappa \text{ ave } w_i\right)
$$

Influence on scale \rightarrow 0 for $r \rightarrow \infty$.

MMDW-estimation

Four step procedure:

- \textbf{D} high breakdown S-estimate $(\rightarrow \hat{\boldsymbol{\beta}}_{\boldsymbol{S}},\hat{\sigma}_{\boldsymbol{S}})$
- **2** high efficiency M-estimate
- **3** Design adapted scale estimate $(\rightarrow \hat{\sigma}_D)$
- \bullet high efficiency M-estimate ($\rightarrow \hat{\beta}$)

3. Simulation study

Design 1 ($n = 20$)

Design 2 $(n = 20)$

Simulation parameters

- Simulate 2000 repetitions, $\beta = 0$, $n = 20$.
- Error distributions: $N(0, 1)$, t_3 and Cauchy
- \bullet bisquare ψ functions tuned for 95% efficiency at the normal $(c = 4.685)$.
- **·** Estimators:

lm.mmdw as described above rlm from package MASS lm.rbase function lmrob from package robustbase lm.robust function lmRob from package robust

$\hat{\sigma}$ statistics: median and mad (error: $\mathcal{N}(0,1)$)

4. Covariance matrix estimate

Level statistics: $\#\left[\right]$ $\frac{\hat{\beta}_i}{\hat{\mathsf{se}}_i}$ $\left| > qt(0.975, df) \right| / 2000$ (log scale)

5. Conclusions and Outlook

- \bullet $\hat{\sigma}$ is important
- New design adapted scale estimate $\hat{\sigma}_D$: simulation results promising
- Likelihood ratio tests may be better.
- **•** Estimation of covariance matrix not so clear, some implementations are more robust than others.

References

- M. Koller (2008) Robust Statistics: Tests for Robust Linear Regression. Master's Thesis, http://stat.ethz.ch/research/dipl arb/2008/koller.pdf.
- P. J. Huber (1973). Robust regression: Asymptotics, conjectures, and Monte Carlo. Ann. Statist. 1, 799-821.
- Maronna et al (2006). Robust Statistics, Theory and Methods. Wiley Series in Probability and Statistics, Wiley, New York.