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1 Goals. A goal of robust statistics is to perform linear regression with a high
breakdown point as well as high efficiency of the estimate. For inference, the
scale parameter and covariance matrix of the estimated coefficients must be esti-
mated. The resulting tests or confidence intervals should adhere to their nominal
levels, and prediction intervals should have correct coverage. More precisely, we
consider ε-contamination neighborhoods Vε around a central model H0, the for-
mer is defined as Vε(H0) = {H = (1− ε)H0 + εH∗ : H∗ arbitrary distribution}.
We measure the performance of the estimates at the central model. For example,
prediction intervals are supposed to cover “the good part” of the data.

2 Program. In this talk we focus on MM-estimators, consisting of an S-
estimator producing the scale σ̂S and an M-estimator defined by the ψ-function
ψ.
The estimator of the covariance matrix of the regression parameters β can be
split into three parts: a scale, a correction factor based on the asymptotic
normality of M-estimates, and a matrix part:

ĉov(β̂) = σ̂2γV−1
X . (1)

It is plausible that the above goals can be fulfilled if the procedures have the
following properties: The scale estimate is unbiased and has high efficiency; the
correction factor is correct at the central model; and the matrix part excludes
“discarded” observations. All estimators should have the rejection property:
the estimate should be invariant w.r.t. the inclusion of a clear outlier in the
dataset.

3 σ̂ Part. The scale estimate σ̂S of the initial S-estimate does not have the
rejection property described above. We therefore estimate the scale again, based
on the final residuals (r1, . . . , rn), by solving∑
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The τi are used to standardize the residuals. By replacing sums with integrals
over the approximated distribution of ri we get a defining equation for τi (this
was covered in last year’s talk, see also [2]).
For the functions χ and ν we choose ν(r) = ψ(r)/r and χ(r) = ν(r)r2. Note
that ν gives the robustness weights wi of the final regression M-estimate when
applied to the residuals scaled by the initial scale estimate.

4 γ Part. Asymptotic normality of M-estimates gives us a correction factor
γ = E[ψ(u/σ)2]/(E[ψ′(u/σ)])2, where u ∼ H0. This is usually estimated using
the empirical distribution of the residuals and is multiplied by a factor n/(n−
p). For small samples this estimate requires an additional correction factor as
outlined in [1].
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We propose to use either the empirical distribution of the τ standardized resid-
uals (without the small sample correction) or just the expected values evaluated
at the central model.

5 V−1
X Part. We second the proposal of [4], to use

VX =
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wi/n). (3)

6 Results. It turns out that the choice of ψ-function is crucial for the tests
and intervals to maintain the specified levels. While keeping the maximum
asymptotic bias reasonably small, we stress the need to use slowly redescending
ψ-functions such as Hampel (decent rate 1/2 or lower) or a modification of the
Welsch. We define the latter as

ψ(x, c) =
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(4)

Using such a ψ-function and the proposed covariance matrix estimate showed
in simulations to keep the specified levels even for n/p ratios as low as 5.
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